

CP/M USER'S GUDE

A revealing look into CP/M on the C-128
o

By Jorg Schieb

and Elmar A. Weiler

A Data Becker Book

Published by

Abacus liBHisal Software

First Printing, March 1986

Printed in U.S.A.
Copyright © 1985 Data Becker GmbH

Merowingerstr. 30

4000 Diisseldorf, West Germany

Copyright © 1986 Abacus Software, Inc.
P.O. Box 7219
Grand Rapids, MI 49510

This book is copyrighted.No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of Abacus Software or Data Becker, GmbH.

Commodore 64, Commodore 128, Commodore 1541 and 1571 are
trademarks or registered trademarks of Commodore International, Limited.

CP/M and CP/M Plus are registered trademarks of Digital Research

IBM is a registered trademark of International Business Machines.

Wordstar is a registered trademark of Micropro International.

ISBN 0-916439-45-3

n

Foreword ix

Chapter 1 The Computer 1

1.1 The keyboard 4
1.2 The screen 6

1.3 The printer 7

1.3.1 The dot-matrix printer 7
1.3.2 The Daisy-wheel printer 8
1.3.3 The ink-jet printer g
1.3.4 The thermal printer 9
1.4 Data Memory 10

1.5 One or zero 10
1.6 Counting in binary 11

1.7 Memory values 12
1.8 Mass storage 14
1.8.1 The floppy diskette 14
1.8.2 Hard disk 16

1.9 Summary 16

Chapter 2 The Operating System 17

2.1 What is a program? 20
2.2 Operating Systems 21
2.3 CP/M's task 22
2.4 Different CP/M versions 22
2.5 The CP/M prompt 23
2.6 Playing it safe 28
2.7 Summary 28

Chapter3 Working with CP/M 29

3.1 The system diskette 31
3.2 Copying with a single disk drive 32
3.3 Copying with two disk drives 35
3.4 Displaying the directory 36
3.5 Copying with P IP 37

3.6 Rules for filenames 39
3.7 Extensions 40
3.8 Finding a data file 41
3.9 Searching with a question mark (?) 42
3.10 Summary 42

iii

Chapter 4 The resident commands 43

4.1

4.2

4.3

4.3.1

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.5

4.5.1

4.6

4.7

4.8

Commands, parameters, and options

The resident commands

USER and user areas

USER areas with CP/M 3.0

DIR

DIR with parameters

More about DIR

DIR and its options

DIRSYS

ERASE

Erasing with ERA in CP/M 3.0

Changing file names with REN(AME)

TYPE

Summary

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Introduction

Transient commands under CP/M

SET

Disk drive characteristics

Labels

Diskette PASSWORD

File PASSWORD

Time Stamping

SETDEF

SHOW

SUBMIT

The HELP command

Summary

46

47

49

49

51

52

52

53

54

55

56

57

58

58

Chapter 5 The transient commands 59

61

61

61

64

64

66

67

69

72

74

76

79

81

IV

Chapter 6 Everything about PIP 83

6.1 Diskette copying 86
6.2 Copying between user areas 88
6.3 Text files and non-text files 88
6.4 Merging data files 89
6.5 Line numbering 90

6.6 Converting between uppercase and lowercase 90
6.7 Searching for a string 91

6.8 Printing several data files 92
6.9 Automatically backing up data files 93
6.10 Overwriting without prompts 94
6.11 Copying system data files 95
6.12 Tidying up the 8th bit 95
6.13 Practical examples 96
6.14 Summary 98

Chapter 7 CP/M components 99

7.1 CP/MontheC-128 101
7.2 System disk for 1571 101
7.3 Virtual disk drive E: 103

7.4 The COPYSYS command 104
7.5 The status line 105

7.6 1571 disk formats 106
7.7 The keyboard 107
7.8 Keyboard values 108

7.8.1 Disabling/enabling 80 column color selection 108
7.8.2 Changing a key's ASCII value 109
7.8.3 Defining the function keys 111

7.9 KEYFIG functions and uses 116

Chapter 8 Additional Utilities 121

8.1 The Assemblers MAC and RMAC 124
8.2 Using the MAC assembler 126
8.3 Working with SUBMIT 137
8.4 The memory layout 142

Chapter 9 The Z-80 ROM listing 151

Chapter 10 The CP/M commands 225

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

10.28

10.29

10.30

10.31

COPYSYS

DATE

DEVICE

DIR

DIRSYS

DUMP

ED

ERASE

FORMAT

GENCOM

GET

HELP

HEXCOM

INITDIR

KEYFIG

LIB

LINK

MAC

PATCH

PIP

PUT

RENAME

RMAC

SAVE

SET

SETDEF

SHOW

SID

SUBMIT

USER

XREF

227

228

229

231

233

234

235

238

239

240

241

242

243

244

245

246

247

248

249

250

254

255

256

257

258

259

260

261

262

263

264

VI

Appendices 265

Appendix A: ASCII and Number Conversion Table 267
Appendix B: CP/M Control Codes 273

Appendix C: pip's parameters 275

Appendix D: SET' s parameters 279
Appendix E: 8080 Instruction Set 281

FOG: The CP/M Expert 289

Index 291

vu

Foreword

The Commodore 128 is an exciting, unique computer. It provides three
completely independent modes of operation: the 64 mode, the 128 mode,
and the CP/M mode. Each of these modes has its interesting applications
and deserves attention. The 128's forerunner, the Commodore C-64, has an

enormous amount of software available for it. All of it can run on the 128

with complete compatibility to the 64 mode. New software written for the

enhanced features found in 128 mode are appearing every day. Finally, the
128's CP/M mode, though often overlooked by owners and software
developers alike, has many very important and exciting possiblities.

Like the weather, everyone seems to talk about the 128's CP/M mode, but
no one does anything about it. Does that mean its CP/M isn't any good? On

the contrary. While the CP/M for the Commodore 64, CP/M 2.2, had its

difficulties, the 128 KBytes RAM with the C-128 makes it possible to run
CP/M 3.0 (also known as CP/M Plus). CP/M 3.0 performs much better
than the old CP/M 2.2.

The C-128 also has other inviting features. It has a fantastic keyboard that's

especially suitable here for long hours of programming. Some subtle but

very convenient ideas went into it. For example, the keys F and J are

provided with a small dot in the middle, so that you can more easily place
your fingers in the correct position on the keyboard without looking. The

Commodore developers have had a bit more experience designing
computers than a lot of newcomers. Several competitors have a mouse to

offer, but have really poor quality keyboards—and working with a bad

keyboard is about as inviting as eating in a dirty restaurant.

The C-128fs companion, the 1571 disk drive, offers a lot of performance
and value for the money. Theoretically you can work with CP/M 3.0 on

your old 1541, but this would greatly reduce the efficiency of the sytem. An

upgrade to the 1571 will save you many hours of waiting, in the long run.

Those who predict the death of CP/M caused by its new rival, GEM, will

have to be patient for a few more years. There's a lot of CP/M software out

there, all readily available to any computer equipped with CP/M. The

68000-chip computers have it pretty tough, because completely new

software must be developed for them.

IX

The purpose of this book is to show you how to work with CP/M as
comfortably and quickly as possible. All of the standard CP/M commands,
as well those CP/M commands peculiar to the Commodore 128, are

thoroughly explained.

We hope you have a lot of fun with CP/M on your Commodore 128, and

much success applying it.

Sincerely,

E. A. Weiler

J. Schieb

Diisseldorf, W. Germany

November 1985

Chapter One

I The Computer 1

1.1 The keyboard

1.2 The screen

1.3 The printer
1.3.1 The dot-matrixprinter

1.3.2 The daisy-wheel printer
1.3.3 The ink-jet printer

1.3.4 Thethermal printer

1.4 Data memory

1.5 One or zero
1.6 Counting in binary
1.7 Memory values

1.8 Mass storage

1.8.1 The floppy diskette
1.8.2 Hard disk

1.9 Summary

Abacus Software C-128 CP/M User's Guide

TheComputer

We don't know how familiar you are with computers. Unfortunately we

can't ask each reader individually. So well start at the beginning with

fundamental computer concepts so we can all start this book on equal

footing.

First of all, what is a computer? We'll try to answer this question

scientifically.

The word itself, "computer" tells us what it does. A computer is a

calculator—it computes. Such a computing machine can do great many

things, such as process a lot of numbers in accounting and calculate the

totals of ledger columns.

Abacus Software C-128 CP/M User's Guide

1.1 The keyboard

But we have a problem. In front of us is a box that supposedly can

calculate. How do we tell it what it should calculate? It would be nice if we

could just instruct it verbally, but that's still a few years down the road.

Therefore we have the next-best alternative, the good old typewriter

keyboard, and use it to enter information into our computing machine.

Since the computer has many more functions than a typewriter, its keyboard

is somewhat different. A computer keyboard has between 60 and 100 or so

keys, depending on its price and features. Since the Commodore 128 is a

many-featured computer, it is equipped with a numeric keypad for inputting

a large amount of numbers. The small mark in the middle of the 5-key

serves as orientation for your fingers on the numeric keypad when you are

not looking at it. By the way, you'll also find this small mark on the F and J

keys to guide your fingers.

A few often-used keys are especially important. We'll describe them now,

along with their uses.

RETURN

You'll recognize this key from the typewriter. With the C-128 and other

computers it's often used in different ways. The designations for this key

are:

<RETURN>

<ENTER>

CR (abbreviation for carriage return)

BACKSPACING

<BS> (back space)

<- (cursor left)

Abacus Software C-128 CP/M User's Guide

DELETIONORCORRECTIONKEYS

<DELETE>

DEL (abbreviation for DELETE)

RUB OUT

SHIFT/ UPPERCASE

<SHIFT> (turns on capitalization)

LOCK

<SHIFT LOCK> (continuous <SHIFT>)

The actual function of this key depends on the computer. This

key usually doesn't change the way the whole keyboard
functions. It means that only capital letters are printed when a

letter key is pressed. It can make your typing work a lot easier.

The Commodore 128, on the other hand, uses <SHIFT

LOCK> to change the function of all keys on the keyboard. It's

the same as holding down the <SHIFT> key.

CAPS LOCK

Normally the C-128's <CAPS LOCK> key only affects the

letter keys, but in CP/M it is inoperative.

CONTROL

The <CONTROL> key, is on the left side of your C-128
keyboard. It is used for many control commands in conjuction

with letter or digit keys.

Abacus Software C-128 CP/M User's Guide

1.2 The Screen

Actually the title of this section should be plural: The Screens. That's

because the C-128 use two screens at the same time. After we've put data in

the computer, we obviously need a way to display that information. It

doesn't help us much if the computer makes a lot of wonderful calculations

if it has no way of telling us what it's done. Data output on a screen is nice,

because it's fast and doesn't make any noise. Data and error messages from

the computer are quickly shown, and if you want a hardcopy of your

mistakes, we can always send them to a printer.

The screen itself is basically similar to a television set. It is often called a

monitor, and displays letters, digits, and other characters. The monitor is

different from a TV set in that it usually has a better resolution, making it

easier on the eyes of the user.

Abacus Software C-128 CP/M User's Guide

13 The Printer

The computer can send its data to a printer for permanent record of its data.

The first large computers, which performed quite slowly by today's

standards, used telex machines to output for permanent paper copies. These

telex machines were very loud, and wasted a lot of paper.

The disadvantages of printers, noise and paper waste, are still with us today

in varying degrees. But many people need their computer information in

printed form, so they need to use a printer. Since there are so many different

printers on the market today, well give you a short overview.

Printer prices and performance vary widely. They cost from $50 to $8000

and up. They can print between 15 and 800 characters per second,

depending on their cost.

13.1 The Dot-matrix Printer

Dot-matrix printers work especially well with microcomputers like the

C-128. They are the most popular, best-selling printers, due to the fact that

they are among the lowest priced printers. In addition, dot-matrix printers

do their work faster than many other types of printers. Dot-matrix printers

print dots very closely together to form letters and characters. Wire needles

strike a ribbon against the paper to produce a tiny dot. A minimum of seven

dots are required to produce a letter, digit or other character. In the early

days of personal computing (before 1980 or so), the quality of these

printers was very poor. It was quite hard to read its text if the printout is of

any great length.

But those days are past. There are still very cheap models of dot-matrix

printers on the market today that print 80 to 100 characters per second. They

aren't good enough for correspondence, but are sufficient for some

applications/A big advantage of dot-matrix printers is that you have a

choice of fonts, and can even program your own fonts—for example, to

include foreign language characters. This makes written correspondence

with Germany, Greece or Japan much easier.

Abacus Software C-128 CP/M User's Guide

High performance dot-matrix printers print up to 800 characters per second

with 132 dots across the width of the character. They vary in cost from

about $500 to $3000. This new breed of dot-matrix printers have become

available only recently. They usually have 24 print needles, and can

approach the quality of typewriter print (at reduced speed). Customarily

they print about 50 characters per second for correspondence, and 140 to

150 characters per second in quick-print mode.

1.3.2 The daisy-wheel printer

A second type of printer is the daisy-wheel printer. This group includes the

ball-head printers. These printers are typically based on obsolete typewriter

designs, and require a lot of costly maintenance. Their large number of

moving parts make them quite expensive to manufacture.

Daisy-wheel printers have a disk that replaces the type-basket or ball head of

a conventional typewriter. This disk contains the various letters and
characters required for printing on the rim of the disk itself. The disk rotates

on its axis, and a small hammer hits the required character against the

ribbon, creating an impression on the paper. Daisy-wheel print is

indistinguishable from that of a typewriter's. A daisy-wheel printer might be

considered if your computer output needs to be letter-quality.

The speed of the cheapest daisy-wheel printer models is about 20 characters

per second. Top-of-the-line models can print at about 80 characters per

second.

13.3 The ink-jet printer

A fairly new type of printer is the ink-jet printer. These are a lot cheaper

than daisy-wheel printers. Like a dot-matrix printer, it prints letters and

digits using little dots. However, there are no mechanical parts between the

print head and the paper. Instead, little drops of ink are " sprayedf! at the

paper. Its print quality is comparable to that of a cheaper dot-matrix printer.

The big advantage of ink-jet printers is that they are very quiet. Printing

about 150 characters per second, their noise level is very low. Their major

disadvantage is that they can't make multiple copies through carbon paper,

such as for printing invoices in triplicate.

Abacus Software C-128 CP/M User's Guide

13.4 The thermal printer

Thermal printers use heat to print the characters on the paper. They require

a special type of paper. The paper turns dark after exposure to heat. These

printers are quite cheap, and are good enough for everyday functions. The

simplest models of thermal printers cost under $100.

Also in this category, but at the other end of the quality and price spectrums,

is the laser printer. Laser printers produce the highest-quality print of all

computer printers. They use a laser beam to scan across a drum and form

characters, which are then printed using a Xerographic process. It!s hard to

tell a laser printer's copy from typeset print.

You really don't want to know how much laser printers cost. Believe me.

Abacus Software C-128 CP/M User's Guide

1.4 Data memory

Let's see what makes up our computer so far. We have a keyboard, a

screen, and a printer. Now what we need is a place to store the data we

which we enter. First we need storage while the data is inside the computer,

and then we need long-term storage. We can store the data inside the

computer in its memory. For long-term storage we can use a floppy diskette

or hard disk. Let's take a look at how a computer stores its data.

1.5 One or zero: Foundations of binary arithmetic

The computer is an electronic device. Because of this, any information

inside the computer must be represented in electrical form. But how do we

represent it with electricity? How do we tell the computer what we mean?

It's essential to have a method of representation that the computer

understands. One representation which the computer recognizes is power

flow—either the power is on or the power is off. It works on the same

principle as a light bulb. When the power is turned on, the filament in the

light burns. If you cut off its power source, the light goes out. This simple

process is fundamental to the operation of the computer. The computer is

wired in such a way that the condition "power on" has the same meaning as

the value "1".

Conversely, if no power is flowing, the computer reads this as the value

"0". Being able to differentiate between these two states leads to some

astonishing effects.

10

Abacus Software C-128 CP/M User's Guide

1.6 Counting in binary

The binary number system uses only ones and zeros for counting. It's not
especially good for ordinary use—counting aloud in binary from one to a

hundred would probably take you several hours. Fortunately, the
computer's circuitiy can process the two digits of binary number system
with incredible speed.

There are several counting systems: binary, decimal, hexadecimal, and

others. We all know the decimal system very well. We are accustomed to
thinking in the decimal, or base 10, system. In fact, most of us can hardly
imagine counting any other way.

So what can we learn from this new system? Think of a decimal number:

zero, for instance. If we want a larger number, we can choose one, two,

and so on. If we want a number larger than 9, we go to a two-digit number:
10.

We can do something similar when we have only two numbers to work

with as in the binary system. The first number, as before, is zero. The next
is one. We don't have any more numbers than these to work with, so we

immediately go to a two-digit number. We denote the value two as 10.
Three is 11. For the number four we have to add a new digit place, and get
100.

Here is a table of binary numbers:

zero =

one

two

three =

four =

five =

six =

seven =

eight =

0

1

10

11

100

101

110

111

1000

We must pay attention to the number of places in this counting system. We

can represent two numbers with one place, four numbers with two places,

eight with three places, sixteen with four places, and so on. The number of

numbers that can be represented doubles for every place added on. In our

11

Abacus Software C-128 CP/M User's Guide

decimal system we know how place values work. Each added place in the

decimal system allows us to represent ten times as many numbers. With one

place we can represent 10 numbers, with two places a hundred, with three

place a thousand, and so on.

The binary number system proved to be so useful for use with computers

that people soon developed technical terms for describing elements of this

system. A single place is called a digit. Since there are only two possibilities

for each place, it is a binary place. Put together, we get the phrase binary

digit. We refer to this as a bit.

In order to make it easier for the computer to handle these individual bits,

they are grouped into a unit of eight bits—a byte. If we extend our previous
table of binary numbers, we would find that 8 bits, or one byte, can

represent 256 values.

1.7 Memory values

The computer must be able to store these numbers. A number is represented

by the computer as an electrical condition, a sequence of switches that are

on or off. Since one byte isn't a lot of memory, we often refer to a

computer's storage capacity in kilobytes, or thousands of bytes. To be

precise, one kilobyte represents 1024 bytes. A 64,000 byte memory is

designated as 64K.

Through electronic switching it is possible to read the value of a byte, to

process that value, and to assign it a new value. That is the power of
computer. Its advantage is that it can carry out these operations very

quickly, making it a very useful data manipulator.

All computer memory has a limited area in which to store data. The typical

size for the work memory of a personal computer with an 8-bit processor is

64 kilobytes (or 64K for short). The new 16-bit computers have work

memory between 128 K and about eight megabytes. Though the

Commodore 128 is an 8-bit machine, it has 128 K of memory—the amount

of space needed for CP/M 3.0. You can upgrade it to 512K if you desire.

12

Abacus Software C-128 CP/M User's Guide

You might wonder how we can store text in a computer, since it can only
accept and output numbers. For this purpose, the computer uses a

dictionary, similar to one we would use to translate a foreign language.
Within the computer is a table that associates every letter and character with

a numeric value. When you type in the letter T, for instance, it looks at the

table and finds the right value for T, and converts it into this binary number.
Then it proceeds to read the next character. To output a character to the
screen or printer, it reverses the procedure.

To be compatible regardless of the brand or model our computer,
manufacturers have agreed upon a standard for the translation table format.
Most computers use ASCII (American Standard Code for Information
Interchange). The ASCII code contains 128 characters, each of which has
its own numeric value. Appendix A has a table listing these ASCII values.

A computer's memory, regardless of size, cannot perform work unless

there is a set of commands to organize the computer's work. For instance, a
command might take a data value in memory location A add it to the value in

memory location B and put the sum in memory location C.

The computer's CPU (central processing unit) contains many such
commands.

To carry out a particular task, the computer must have an exact list of

coitlmands telling it what to do, every step of the way. This list of

commands is known as a program. A program's commands work in

sequence to guide the computer toward its end goal. The program must be

resident in the computer's memory to run, and therefore needs memory

space.

Depending on the task, such a program will be between 10K and 120K

long. Sometimes so much memory space is taken up by the program that

there is no room to store your data.

13

Abacus Software C-128 CP/M User's Guide

1.8 Mass Storage

It's rarely necessary to have an entire program in the computer's working
memory. Usually it's sufficient if the important parts are in work memory

and the rest are in storage, ready to be called up when needed. One of the
ways a computer does this is with the overlay technique. Using this method
frees up internal memory, as well as providing additional space for that
memory. The mass storage device can be a floppy disk drive or a hard disk
drive. Each has its own advantages and disadvantages, but all provide large
amounts of space for data, and can exchange that data with the computer in

a reasonable amount of time.

1.8.1 The Floppy Diskette

The floppy diskette, also referred to as afloppy or a disk, is made out of a
material similar to magnetic tapes. It is a thin disk with a finely polished,
high-density magnetic surface. Floppys are enclosed in jackets to protect the
disk from small contaminants like dust, dirt and fingerprints. An electronic
read-write head on the disk drive moves along the disk's surface and

magnetizes or demagnetizes different areas.

With a disk we again find two states: magnetized, or not magnetized.

There's a good reason for this. The data represented in the computer as

electrical states can be directly transferred to the floppy. Data is written to
the floppy in a binary technique, as magnetized and non-magnetized spots
on the floppy, and is later read back by the computer in a like manner. If a

bit is ON, the write head makes a small spot on the disk surface magnetic. If

the next bit is OFF, nothing is written on the floppy disk. This corresponds

directly with data representation within the computer itself.

The floppy diskette spins rapidly on its axis, making 200 to 300 revolutions

per minute. To organize the data on the magnetic surface, the disk is divided

into a number of tracks, which lie next to each other like lanes on an athletic

track.

If we want to put data on the disk, the write head moves over a particular

track and writes the data to it.

To reduce the time needed to read and write to different tracks, the disk is

divided once again, into sectors. These sectors are between 128 and 1024

bytes long, depending on the manufacturer. The Commodore 128 uses a

14

Abacus Software C-128 CP/M User's Guide

different floppy format in the CP/M mode, to make it compatible with
several different CP/M versions. We'll discuss these different formats later.

Unfortunately, disk drives from one computer manufacturer aren't
necessarily compatible with another manufacturer's disk drives. Every
computer maker uses their own format, much to the chagrin of users. Apple

is especially adept at frustrating programmers with its incompatible drives.

For these reasons, floppy disks can't be used straight out of the box. They
must first beformatted before they can be used. Each computer has its own
special program to write to those particular disk tracks and sectors that the
computer will use.

You've got to be careful to make sure you don't reformat disks containing
important data. Formatting destroys all the data already on a diskette. It's a
good idea to put a write protect tab on the notch of valuable data disks.
These tabs are the small stickers packed in every box of disks. They can
save you from the extreme frustration of seeing hours of work wiped out by
inadvertent reformatting.

By the way, it is smart always to have a backup copy for all important data
stored away, someplace where children, dogs, cats, fire, thieves,
snowstorms, and the like can't harm them. Even if you don't keep your

diamond jewelry in a safe, at least lock up your backup copies. They are
really that important to your programming. If you need help making CP/M
backups and other copies, skip ahead to the next chapter for a moment

At the present time there are a lot of different disk formats on the market.
For instance, you can still find the old 8" diskettes, at one time hailed as the
state-of-the-art in data processing. The 5 1/4" disks are especially popular,

widely used by personal computer users. This format is handy and
depending on the computer, you can fit up to two Megabytes on them.

The 3 and 3 1/2" micro-diskettes from Japan promise even more

convenience than the 5 1/4" diskettes. These disks have a metal flap that

closes access to the actual disk surface when not in use. This prevents

almost all contaminants from reaching the magnetic surface. Also, they have

a stiff plastic jacket that prevents damage due to accidental bending, folding

and other forms of user abuse.

15

Abacus Software C-128 CP/M Userfs Guide

1.8.2 The hard disk

Another type of mass storage device is the hard disk drive. Used
predominantly with business computers, a hard disk has the same
measurements as a 5 1/4" floppy disk (although there are also 3 l/2!l hard
disk drives). They cannot be inserted and ejected as with normal floppy
disks. This is because hard disks are permanently enclosed in a tightly
sealed housing, allowing more precision and hence increased rotation
speeds. The spinning magnetic disk makes about 3000 rotations per minute
as the read/write head glides over the disk surface. A dust or smoke particle
on the disk surface would affect the hard disk like a small rock on your

stereo turntable.

The standard memory capacity of the hard disk drive so far has been the 10
MByte (megabyte or millions of bytes) drive. But the 20 MB hard disk
drive is starting to gain popularity as its price drops.

In addition to its especially large storage capacity, the hard disk drive offers
another decided advantage—its can store and retrieve data about 20 times
faster than the floppy diskette drive. And the only real disadvantage of hard
disk drives is their steep price tags. They cost from $800 to over $5000.

1.9 Summary

Hopefully youVe gained an understanding of the fundamental components

of a computer system and their operation. Here's a quick review:

• A computer is an electronic calculating machine that uses a

keyboard and a monitor screen as input and output devices.

• A printer is another output device used to make permanent

copies of a computer's data. The categories of printers
include dot-matrix, daisy wheel, ink-jet, and thermal
printers, each with their own advantages and disadvantages.

• The computer works with binary numbers. The binary

system includes only the numbers one and zero. A computer

groups binary digits, or bits, into binary values.

• Floppy disks and hard disks are external storage devices.

In the next chapter well examine the operating system and its functions.

16

Chapter Two

I The Operating System 1

2.1 What is a program?
2.2 Operating systems
2.3 CP/M's task
2.4 Different CP/M versions
2.5 The CP/M prompt
2.6 Playing it safe
2.7 Summary

Abacus Software C-128 CP/M User's Guide

The operating system

In the previous chapter we took a quick look at the computer's
hardware—the individual components of a computer. In and of itself,
computer hardware has very little value. That's because a computer can't
initiate any useful activity. A computer becomes valuable when it is able to
run important, useful programs. That is why we need software. When
talking about software, we must make some differentiations.

We'll discuss two software types: the operating system and the programs.
You should keep it in the back of your mind that the operating system is a
program, too. The differentiation is mine. It arises from the function of the
two types of software.

We regularly hear inexperienced people who are interested in computers
ask: "Can it also do wordprocessing?" These people don't understand the
difference between a program and an operating system. Therefore we will
explain it, in case you are asked the question sometime.

19

Abacus Software C-128 CP/M User's Guide

2.1 What is a program?

Essentially, a program is a list of tasks which the computer performs
sequentially, one after the other. These tasks are specified as instructions
that the computer can understand. Since the computer is a machine, this
language is called machine language. Programs written in machine language

are incomprehensible to most "normal11 people, but the computer likes them.
Since machine language is written in a way that the computer can

understand, it performs these instructions very quickly.

To make programming easier for us "normal" people, other programming
languages are available. Among these are BASIC, COBOL, FORTRAN,
Pascal, and Modula-2. These languages have commands or statements
which are more understandable than machine language instructions. These

high-level commands are translated or converted into machine language

instructions before the computer carries them out.

Any program is nothing more than a sequence of machine language
instructions or high-level commands. When you write a program in BASIC
for the 128, you are not writing any of the instructions that the computer
actually carries out. A large number of small tasks are performed by the
computer without your knowledge. For example, the computer must

determine which key on the keyboard was pressed, which character is to
appear on the screen, or what data is to be read from the disk drive.

The computer spends a great deal of time performing these types of
activities. To write the instructions to perform these things for each and

every program is cumbersome.

20

Abacus Software C-128 CP/M User's Guide

2.2 Operating systems

There is a better way to program the computer and avoid repetitive work.
We can divide the program into a main program and "often-used routines."
The main program performs tasks such as print a customer invoice or dial a
number using a modem. The "often-used routines'1 perform tasks such as
scanning the keyboard for a pressed key or converting a value in memory to
an ASCII character.

Collectively these "often-used routines" can perform all of the low-level,
frequently used tasks that most programs require. This is then called an
operating system.

The operating system provides a standardized method for programs to use
the commonly used functions. The major task of the operating system is to
handle the data transmission between the computer and the peripherals.

In CP/M mode, the 128 uses a very well-known operating system. CP/M is
the acronym for Control Program for Microprocessors. CP/M works on
8080, 8085, and Z80 microprocessors.

21

Abacus Software C-128 CP/M User's Guide

2.3 CP/M'stask

CP/M handles the basic tasks of accepting input of characters, outputting
characters, managing the storage areas on the disk drive, and reading from
or writing to disks. These routines can be used in a standardized way in all
applications programs.

Since this is true, CP/M must do its job in two different modes. It is divided
into two large sections. The first section, BDOS (Basic Disc Operating
System) takes care of all the tasks which are machine independent. A
second part of the CP/M operating system is BIOS (Basic Input/Output
System). BIOS handles the program sections which are machine dependent

Every computer has its own methods of carrying out specific tasks.
Consequently, we can't simply take the operating system from one
computer and run it on another. Before an operating system is able to run on
different computer hardware, a new BIOS must be produced for the
computer, since BIOS is dependent on the computer's hardware. You
shouldn't have any problem with your C-128, since it's fitted with a

functioning operating system.

2.4 Different CP/M versions

Most programs that have been on the computer market for any length of
time have improvements made on them. Usually new versions are released.
There are no perfect programs, so some of a program's errors may creep in
when users try it out and test all its capabilities.

When the software publisher discovers program errors, and the errors are
corrected, a new version of the program is usually made available. One
version, CP/M 2.2, is practically error-free. It is the standard operating
system for many 8-bit computers. The newer version CP/M 3.0 isn't just an
upgrade to eliminate errors, but a new version with new features. The new
version is aimed at maintaining the life of CP/M with new computers and
new computer programming methods.

22

Abacus Software c.128 CP/M User's Guide

2.5 The CP/M prompt

Let's leave the theory and talk about the C-128 and the CP/M operating
system. To get the most from our discussions you'll need a functioning
128, a 1571 floppy disk drive, and a diskette with the CP/M operating
system on it.

Turn on the computer, insert the diskette with the CP/M operating system in
drive A and shut the drive's door. Pay attention to this sequence. If you turn
the computer on or off with a diskette in the drive, a power surge from the
read/write head could make your diskette unreadable—and unusable.

Now you've got your computer's power on and your CP/M system diskette
in the drive. There are several methods to start CP/M on the Commodore
128. First, you could shut off the power, insert the CP/M system diskette
and turn on the computer again. As mentioned above, this isn't the safest
way. Another, much safer way is to turn the computer on, insert the
diskette, and then press the RESET button.

The last way, which isn't much more complicated, is to insert the diskette
and then enter the command:

BOOT <RETURN>

Pressing the RESET button is the usual method of entering CP/M mode,
since it is the most dependable and fastest.

The disk drive will begin to read the diskette, its light will go on, and
shortly thereafter you see a message on the screen. The start message looks
somewhat different on every machine. That is because the message comes
from the BIOS part of the operating system and varies from computer to
computer. Before the Commodore start message comes on screen, you'll

see the message Boot ing..., then in blue text, Booting CP/M Plus.

As you know, the Commodore 128 can use either a 40-column or an
80-column display. Its nice to work with an 80-column screen, but CP/M
also supports a 40-column display. With the 40/80 display key you can
choose between with the 40-or 80-column screen (providing you have the
proper monitor). The initial message appears on either screen. After the
CP/M prompt, only one display is active.

23

Abacus Software C-128 CP/M User's Guide

A 40-column screen simulates an 80-column display. By using

<CONTROL> -» and <CONTROL> <- you can shift the screen.

Throughout this book, we assume that you are using an 80-column screen.

If you see the message:

NO CP/M+.SYS File - HIT RETURN TO RETRY

DEL TO ENTER C128 MODE

then you must have inserted the CP/M system diskette upside down. Turn
the diskette over and press the <RETURN> key. Your Commodore will

then boot CP/M.

There can also be disk read errors. In these cases, the screen displays the

message:

READ ERROR - HIT RETURN TO RETRY

DEL TO ENTER C128 MODE

If you want to try to reboot, then press the <RETURN> key. If you're too
frustrated to continue, press the key. All other keys are ignored.

If everything goes as planned, first the following five lines will appear in
the lower part of the screen:

BNKBIOS3 SPR F400 0800

BNKBIOS3 SPR CA00 1600

RESBDOS3 SPR EE00 0600

BNKBDOS3 SPR 9C00 2E00

58K TPA

These are information messages about the BIOS and BDOS, i.e., where
they are stored and how long they are. This proceeds rapidly. 58K TPA
means that 58 KBytes of memory remain for programs and data. TPA
means Transient Program Area. When these things are done, the following
four lines appear on the upper part of the screen:

DATA TABLES

COMMON CODE

BANKED CODE

BIOS8502 CODE

24

Abacus Software C-128 CP/M User's Guide

When information from the diskette is loaded, the normal CP/M message
appears on the screen. On the Commodore 128 it appears like this:

CP/M 3.0 On the Commodore 128 6 DEC 85

80 column display (or 40 column)

You've probably noticed that there are always some numbers in the lower
right corner during loading. Even when the initial message disappears, these
numbers don't go away. The last line of the screen is the status line, which
can't be written on. The numbers in the corner show which block is being
read from or written to. An R stands for reading from, and a w for writing
to a block. Further down is an A or B message, indicating the disk drive
that's being used.

The status line can be turned on and off with the key combination
<CONTROL> <RUN/STOP> if you wish. (80 column display only).

What if you don't like the screen color? No problem. By hitting the
<CONTROL> key and one of the keys 1 through 8, you can choose the
display color. You can also change the background color by hitting the
<CONTROL> key and one of the numerical keys 1 through 8 on the
numerical pad. For example, if you want black print and a white
background, press <CONTROL>-1 and <CONTROL>-2 (the latter
combination from the numerical keypad). That's takes care of it. CP/M on
the Commodore has other pleasant surprises waiting for you. (80 column
display only).

Back to our start message again. The start message tells you that the CP/M
operating system is stored correctly in the computer's work memory. Right
after the start message display, CP/M puts up a ready message—the
operating system prompt. The prompt looks like this:

A>

The large A tells you that you're working with disk drive A of your system.
The > symbol is the ready message from CP/M. CP/M expects you to enter
your command on the line with the prompt symbol. Well, then we won't
make CP/M wait too long and we'll write:

A>abcdefgh

Now the cursor remains behind the last input character and doesn't move.

25

Abacus Software C-128 CP/M User's Guide

The reason is that CP/M doesn't know whether we've finished entering the
command or if we still might have input To have the input accepted, we

must tell CP/M that we're done with the input.

We do this by pressing the <RETURN> or <ENTER> key. This is an
abbreviation for carriage return, or CR. As soon as we press this key, the
computer knows that a command has been given, and begins to carry it out.
Press the <RETURN> key and the following appears:

A>abcdefgh

ABCDEFGH?

A>

What happened? CP/M read the line and did not find file abcde fgh, so it
let us know. The operating system makes us aware of incorrect or
uncomprehensible commands by repeating the input and followed by a
question mark. The question mark means something like, "What is this
garbage?!? I can't do anything with it."

We'll try again—maybe the lowercase letters were the problem. After
booting you can enter capital letters (using <SHIFT>). By hitting the
<SHIFT LOCK> key you can enter capital letters every time. By the way,
the key <C=> does exactly the same thing. Press the <SHlhl LOCK> key

now.

A>ABCDEFGH

The following display comes back as an answer:

A>ABCDEFGH

ABCDEFGH?

A>

The operating system didn't understand the command in capital letters
either. You might have wondered in the previous sample why the command
line is repeated in capital letters, even though you entered lowercase letters.
That is a quirk of CP/M that we need to pay attention to. CP/M converts all
letters to capital letters and then interprets the input.

To show you that CP/M can really do something, we'll now enter a
command that will really work. You read in a previous section that an entry
on the diskette is managed by a table of contents. For this reason, CP/M
puts a directory on every diskette.

26

Abacus Software C-128 CP/M Userfs Guide

To look at the table of contents, we enter the command dir, which is an
abbreviation for directory. Enter this command now and press
<RETURN>:

DIR <RETURN>

A small note: As you may know, BASIC lets you see the table of contents
on the screen by pressing the Function 3 key. Because the coding isn't too
difficult, this is also possible in CP/M. Simply press the F3 key once.
Pressing the F4 key displays the text DIR on the screen, without an
automatic <RETURN>. We'll talk more about this option it later.

You'll see the directory of your operating system diskette on the screen.
Take a closer look. On the far left of the directory listing, the drive identifier
of the diskette is displayed. Next to this is the name of the data, separated
from the drive name by blank spaces. You'll often see the abbreviation
COM, for example, CCP . COM, pip . COM, and help . COM. These names

are explanations of their contents. Right now the COM programs are
interesting to us because they contain usable programs.

COM is an abbreviation for command. These files contain commands which
can be executed immediately. If you type in the name of one of these

programs without the COM following the operating system prompt, the
program will be put into the computer's memory and run. In other words,

all you have to do is enter pip and press <RETURN>. The program then
begins to run.

27

Abacus Software C-128 CP/M User's Guide

2.6 Playing it safe

If you are still working with your original diskette, we'd like to suggest that
you make a backup copy. You should get in the habit of making backups.
It's a good idea to never work with the original program, but instead use a
copy of the program and keep the original hidden away in a safe place. To
make it easier to make backup copies, CP/M includes routines for the

production of back up copies.

2.7 Summary

• You know a simple explanation of what an operating uses to

manage its tasks.

• You know what a program is and why we use an operating

system.

• You are familiar with CP/M's tasks.

• You know what the CP/M prompt is and how to look at the

directory of your disks.

• You have learned that you should make at least one backup

copy of every important diskette.

28

Chapter3

[Working with CP/M]

3.1 The system diskette
3.2 Copying with a single disk drive
3.3 Copying with two disk drives
3.4 Displaying the directory
3.5 Copying with PIP
3.6 Rules for filenames
3.7 Extensions
3.8 Finding a data file
3.9 Searching with a question mark (?)
3.10 Summary

Abacus Software C-128 CP/M User's Guide

Working with CP/M

3.1 The system diskette

You should always have backup copies of your original diskettes. If an

accident destroys a copy, your originals will still be usable. Next we'll
show you how to make a backup copy of the system diskette.

Two programs are needed to make backups. Type DIR <RETURN> to
display the diskette's directory. You'll find two programs named:

FORMAT.COM and PIP.COM

Normally, a diskette containing the CP/M operating system is copied using

the COPYSYS command. If you enter COPYSYS <RETURN> on the

C-128 keyboard, you'll discover that it is inoperative. In other CP/M

systems, COPYSYS copies the system tracks—tracks 0 and 1, which

contain most of the CP/M operating system routines.

Under Commodore CP/M, the FORMAT command uses tracks 0 and 1.

format places a BOOT sector on the diskette. Later, if the RESET button is

pressed or the BOOT command is typed (in C-128 mode) when this diskette

is in the drive, the CP/M system will be loaded automatically.

Unlike other CP/M systems, the programs on the system tracks are named.

They are: CPM+. SYS and CCP . COM.

The file CCP.COM contains CP/M's resident commands. Resident

commands are often-used commands that CP/M can perform without having

to load COM files from diskette. The CCP. COM file is loaded during boot.

31

Abacus Software C-128 CP/M User's Guide

3.2 Copying with a single disk drive

Next well show you how to make a backup diskette if you have a single

disk drive.

Insert your original CP/M systems diskette into drive A and close the door.

Enter:

A>FORMAT <RETURN>

The following message is displayed on the screen:

C128 FORMAT PROGRAM

15 May 1985

Drive A is a 1571 (or 1541)

Please select disk type to format

C128 double sided

C128 single sided

C64 single sided

You can use the cursor keys (upper right of the keyboard) to select one of
the three formats. Let's format a single-sided diskette. To do this, press the
cursor down key (upper right) and press <RETURN>. The following

appears on the screen:

Formatting C128 single sided

Insert diskette TO BE FORMATTED

in drive A. Type $ when ready,

any other key to abort

If you've changed your mind, press any key except the $ key to abort the

program. Otherwise, press the $ key to continue. You'll see the following

on the screen:

Formatting C128 single sided

If any error occurs, the screen is cleared, a warning message is displayed,

and the disk drive's green LED light flashes (or red LED on the 1541). If

this happens, examine the diskette. It may be damaged.

32

Abacus Software C-128 CP/M User's Guide

If there were no errors the following appears on the screen:

Do you want to format another disk?

Press the N key, since we only need a single formatted diskette for now.

Remove the formatted diskette and reinsert the original system diskette-

Next copy the two system files: CPM+. SYS and CCP . COM. To do this, use

the P IP command. As we will see later, P IP is a very useful program. For

now, enter the following:

PIP E:=A:CPM+.SYS <RETURN>

The following message appears in the status line:

Insert Disk E in Drive A

Remove the original system diskette from the disk drive and insert the

diskette we just formatted. Then press <RETURN>. The message

disappears and the disk drive begins copying CPM+. SYS to the new

diskette. When this is completed, the CP/M prompt reappears on the screen.

Now copy CCP . COM in the same way:

PIP E:=A:CCP.COM

CP/M knows that you still have the destination diskette E in the drive. A

message in the status line asks you to replace the diskette with the system

diskette again. Do so and press <RETURN> again. When prompted,

replace the system diskette with the E disk so that the data file CCP . COM

can be copied. To display the table of contents of the new CP/M diskette,

enter the command DIR. The status line requests that you insert the A

diskette in the drive. Leave your diskette in the drive and press <RETURN>

to change the E diskette the new A diskette.

That's all there is to it. The screen will display:

A: CPM-f SYS : CCP COM

33

Abacus Software C-128 CP/M User's Guide

This completes the first step. Since we want to make a copy of the entire

diskette for backup, we need to copy all of the data files. To do this, enter

the following command:

PIP E:=A:*.*

PIP tells you what file is being copied as it is working. A message in the

status line requests you to change diskettes several times during the

procedure. When you see this request, change the disks as instructed and

press <RETURN>. When PIP is through, the entire first side of the CP/M

system diskette will have been copied. The following files will be on it:

COPYING -

CPM+.SYS

CCP.COM

HELP.COM

HELP.HLP

KEYFIG.COM

KEYFIG.HLP

FORMAT.COM

PIP.COM

DIR.COM

C0PYSYS.COM

To copy the second side (this is advised), format second diskette and enter:

PIP E:=A:*.*

Everything else is displayed on the screen as above. After you copy both

sides, put the original system diskette in a safe place. If a copied diskette is

destroyed, you will still have a backup for the CP/M system.

34

Abacus Software C-128 CP/M User's Guide

3.3 Copying with two disk drives

If you have two disk drives, you can copy data files much faster and more

conveniently. You must first format a diskette. Make sure that the system

diskette is in drive A and enter:

A>FORMAT <RETURN>

The following message is displayed on the screen:

C128 FORMAT PROGRAM

15 May 1985

Drive A is a 1571 (or 1541)

Please select disk type to format

C128 double sided

C128 single sided

C64 single sided

You can use the cursor keys in the first row of keys to select one of the

three formats. Let's format a single-sided diskette. To do this, press the

cursor down key (on the upper row of keys) and press <RETURN>. The

following appears on the screen:

Formatting C128 single sided

Insert diskette TO BE FORMATTED

in drive A. Type $ when ready,

any other key to abort

If you've changed your mind, press any key except the $ key to abort the

program. Otherwise, press the $ key to continue. You'll see the following

on the screen:

Formatting C128 single sided

If any error occurs, the screen is cleared, a warning message is displayed,

and the disk drive's green LED light flashes (or red LED on the 1541). If

this happens, examine the diskette. It may be damaged.

35

Abacus Software C-128 CP/M User's Guide

If there were no errors the following appears on the screen:

Do you want to format another disk?

For now, press the N key, since we only need a single formatted diskette.

After the formatting is complete, replace the formatted diskette with the

system diskette. Insert the formatted diskette into the B drive. Now enter:

PIP B:=A:*.* <RETURN>

The copying proceeds without any diskette change requests.

3.4 Displaying the directory

You have just copied data from drive A to drive B. To verify the contents of

the diskette in drive B, enter:

DIR B:

Don't forget to insert a space after DIR. The command above tells CP/M to

display the contents of the diskette in drive B. If you display the contents of

an empty formatted diskette, the message NO FILE is displayed. This

means that the diskette contains no data.

36

Abacus Software C-128 CP/M User's Guide

3.5 Copying with PIP

Usually PIP is used to copy data files with two-drive systems. But this

command works differently on the Commodore 128. We can use a virtual

disk drive by specifying drive E. This drive doesn't physically exist, but is

recognized by the computer. Drive E physically uses drive A, by alternating

diskettes. Before starting, you should note which diskette will be the A

drive and which diskette will be the E drive. (This virtual memory trick

works with more than just P IP, by the way. Well talk more about its uses

later).

The pip program is an acronym for Peripheral Interchange Processor, and

can be a very useful program for us.

You have the system diskette in the disk drive at this time. Now type PIP

and press <RETURN>. The computer loads the PIP program into

memory. PIP displays its own prompt:

A>PIP

CP/M 3 PIP VERSION 3.0

The asterisk shows you that PIP is ready to accept commands. You'll get

an in-depth look at the full range of P IP commands in Chapter 6.

Let's use PIP again. Here's our task: Copy the files from the diskette in

drive A to the diskette in drive B (or drive E, if you only have one disk

drive). An alternate way of saying this is: The diskette in drive B should

receive the contents of the files contained on the diskette in drive A.

Why did we rephrase our goal for the task? Because PIP requires us to

enter commands in a similar way. When the files on the diskette in drive A

are copied to the diskette in drive B, both diskettes have identical contents.

Youll notice that the commands contain an equal sign. Another way to state

the command PIP B: =A: * . * is "make the contents of the diskette in

drive B equal to the contents of the diskette in drive A."

The asterisk is a way to tell P IP to copy all files. You can think of the * as

a wild card, which can be used to substitute for any card in any suit.

37

Abacus Software C-128 CP/M User's Guide

Recall that files are identified by a name and extension. The extension is a

three letter identification following the period.

To copy all the data on a diskette, enter a * . *. It looks like this on the

screen:

B:=A:*.* (or) E:=A:*.*

Because we want to make sure that all the data was transferred correctly,

we can instruct it to do this as it is copying. This is done by placing a V in

square brackets after the command, like this:

B:=A:*.* [V].

The v stands for Verify. By the way, the Commodore performs an

automatic Verify, so the Option [V] command usually isn't necessary. But

you should get into the habit of using it, so that if you switch to CP/M on a

different computer model, you will have the same data verification.

As PIP is working, it displays the name of the file which it is copying.

When work is completed, the * prompt is delayed. If there are no further

commands, press <RETURN> and the familiar CP/M A> prompt is

displayed.

38

Abacus Software C-128 CP/M User's Guide

3.6 Rules for filenames

You've run across the term files several times now, and you've seen

filenames in the directories on your screen, but you still don't know what a

file is, does, or what it's used for.

As you know, every file in CP/M has a name. That is important to you

because it lets you see what is on a diskette. Unfortunately, CP/M's
designers built in a few annoying limitations regarding filenames.

A.filename in CP/M may have a maximum of eight characters, followed by
a period, and then optionally followed by a three character extension to

specify the data type. That means that filenames can use no more than eight
characters, but must be descriptive enough to identify the file's contents.

Allowed characters for the filename are the 26 letters of the alphabet,

numbers 0 through 9, and +,-,/,%, and $ characters.

The following characters are not allowed in filenames or extensions,

because they have special meaning in CP/M:

> > . f . — i • L J •

Experience has taught us to always give a file a meaningful name. It's much

harder to remember the contents of a file named XK2 512AC. ABC, than

PAYROLL .DAT.You can have two files on a diskette with the same

filename, but different extensions, e.g. PAYROLL.DAT and

PAYROLL.CMD.

39

Abacus Software C-128 CP/M Userfs Guide

3.7 Extensions

An extension is a three-character suffix that follows the filename. The idea

behind an extension is to group similar files by type. Over time, users of

CP/M systems have more or less standardized the extension names.

Programs that are ready to run by typing their name at the prompt (e.g. A>)

have the extension of COM. You'll notice that P IP, SYSGEN and COPYSYS

all have a COM extension.

Some programs make a copy of a file that may be modified. For example, if

you are using the CP/M editor ED to modify a file called TEXT. DAT, it first

creates a copy of that file with the extension BAK or $$$. BAK stands for

backup. The data files with $$$ extensions are temporary data files. They

are used by a program and erased at the end of a program run. For example,

PIP uses temporary data files and erases them completely from the diskette

when its job is finished. Name your files to avoid confusing CP/M, as well

as yourself.

If you use the same filename for more than one file and distinguish between

them by using a different extension, then you should be aware of potential

problems. Suppose you have two files named text . 1 and text . 2.

When you use ED to edit TEXT . 1. it creates a copy of the original and

remnames it TEXT. BAK. What happens if you now edit TEXT. 2 ? When

ED finds a file already named TEXT. BAK, it deletes it and thus destroys any

backup copy of the original text . 1. Therefore you won't be able to use

the original TEXT. 1 (now TEXT. BAK) file after editing TEXT. 2.

To avoid this problem, you might name the first file TEXT1. TXT, the

second one TEXT2 . TXT, and the third TEXT3 . TXT.

Then if you modify a file, a back-up copy is always created—you can

always retrieve your original text if necessary.

40

Abacus Software C-128 CP/M User's Guide

3.8 Finding a data file

If you use your computer often, you'll probably create a lot of different

files. This might make it difficult to locate files that you're looking for in the

directory. It would be nice to be able to view files, for example, with names

similar to TEXT. TXT that are contained on the diskette.

There are two different ways to search for these files.

The asterisk, you'll recall, is a wildcard. It can represent any string of

characters.

The question mark is a wild card for a single character in a filename.

For example, the parameter text? searches for all files with the name

TEXT or with the name TEXT and one additional character. From the

previous example, the files TEXT1, TEXT2 and TEXT3 would be found

with the command:

DIR TEXT? <RETURN>

If a file named TEXT is also on the diskette, it too will be found and

displayed. CP/M always reserves eight characters for a data filename. If you

enter a filename with fewer than eight characters, CP/M fills in the rest of

the positions with blank spaces. Therefore, blank spaces are as equally valid

characters as are letters or digits.

41

Abacus Software C-128 CP/M User's Guide

3.9 Searching with a question mark (?)

Since the question mark can represent any character, then not only the files

TEXT1, TEXT2 and TEXT3 will be found, but also the file TEXT. Entering

a question mark doesn't let you delete a character, however. You can use as

many as eight question marks when entering the file name and up to three

question marks for the extension.

But this is wasted typing, since entering the beginning characters for a

filename followed by an asterisk for the extension will do the same thing.

The operating system doesn't distinguish between eight question marks and

one asterisk. CP/M converts every asterisk into eight question marks before

the search begins.

You can search using the asterisk more exactly if you put the first letter or

letters of the desired data file in front of the asterisk. However, the search

won't work if you enter an asterisk followed by letters. This method of

inputting file names with question marks or stars, can be used with the

commands DIR, TYPE, ERASE, SHOW, and PIP.

3.10 Summary

• You can now copy your system diskette and store your

original in a safe place.

• You can simplify data file searches using asterisks and

question marks in place of letters.

• You know that you should always use meaningful names

for files.

42

Chapter 4

I The resident commands

4.1

4.2

4.3

4.3.1

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.5

4.5.1

4.6

4.7

4.8

Commands, parameters, and options

The resident commands

userand user areas

USER areas in CP/M 3.0

DIR

DIRwith parameters

More about DIR

dirand its options

DIRSYS

ERASE

Erasing with era in CP/M 3.0

Changing filenames with ren(ame)

TYPE

Summary

Abacus Software C-128 CP/M User's Guide

The resident (built-in) commands

In the last chapter we became acquainted with several of CP/M's basic

commands. In this chapter we'll take a closer look at a number of resident

CP/M commands: USER, DIR, DIRS (YS), ERA (SE), REN (AME), and

TYPE.

Well also take another look at the transient programs. They are the CP/M

programs that appear in the directory and are stored as COM data files.

Finally, we'll expand on your knowledge of the DIR and P IP commands

covered in Chapter 3.

45

Abacus Software C-128 CP/M User's Guide

4.1 Commands, parameters, and options

Let's take care of some preliminaries.

A command is a keyword that tells CP/M to perform a specific action.

A parameter is usually a filename that informs a command which file or data

to use.

An option is a directive that changes the way the command functions.

Options are specified in square brackets. An example of an option using PIP

is the directive to verify the files as they are copied, [V].

The number and type of parameters vary, depending on the particular

command. If a parameter is required, but omitted, CP/M waits for you to

enter it. It will not continue until you enter a parameter.

The command and parameters must be separated by at least one space. This
is the only place where spaces are allowed. Spaces are not allowed within

commands, parameters, or options.

If a parameter is too long to fit on a single line, you can use <CONTROL>
E to continue entry on the following line. Commodore CP/M begins a new
line on its own whenever this becomes necessary. CP/M reads the two lines

as a single command line.

46

Abacus Software C-128 CP/M User's Guide

4.2 The resident commands

As previously mentioned, two types of commands are made available when

CP/M is started.

Resident commands are loaded into memory from the file CCP . COM.
Resident commands are built-in; that is, they are always in memory and

ready for execution. To execute a resident command, type its name: DIR

<RETURN>, and it will immediately start

A transient command is not loaded into the computer's memory until it is

needed. To execute a transient command, you also type its name: pip

<RETURN>, but it does not start immediately. Instead, it's loaded into the

computer's memory from the system diskette and then started. Thus you'll

notice a short delay as a transient command is read from diskette and then
starts its execution.

CP/M 3.0 has six resident commands. They are listed below:

Command

DIR

DIRSYS

ERASE

RENAME

TYPE

USER

Abbreviation

DIR

DIRS

ERA

REN

TYP

USE

Function

Shows the contents of a disk

Shows the SYSTEM data files

Erases files

Changes filenames

Shows text files

Changed user range

You can execute a resident command by entering either the command or its
abbreviation.

A seventh resident command doesn't have a name. This command allows

you to switch from one drive to the other. To log onto drive B from drive A,

type the following at the A> prompt:

A>B:<RETURN>

47

Abacus Software C-128 CP/M User's Guide

You can use drive designations from A to E. Any other designation causes

the following error message:

CP/M Error On F: Invalid Drive

BDOS Function __ 14

If you're now using drive B and the system diskette is in drive A, you can

still access programs from drive A. To do this, prefix the command with the

drive designation like this:

B>A:DIR

You can also prefix a parameter with a drive designation:

B>DIR A:DATEI.XXX

48

Abacus Software C-128 CP/M User's Guide

4.3 USER and user areas

The USER command lets you divide an external storage media (floppy

diskette or hard disk) into 16 areas. The areas are identified by numbers
from 0 to 15. These areas are quite useful when several users are sharing a

computer and and need to keep separate files, especially if the storage media

is a hard disk. User areas make it easier to nianage the large number of files
that can be stored on the hard disk.

By specifying a separate user area for a particular purpose, you can better

organize the data on the storage media. For example, in a classroom, each

of 16 different students are assigned a unique user area. Or, you could
designate one user area for text files, an area for your BASIC files, an area
for your business letters, etc.

By dividing storage space into user areas, it's also possible to have two data
files with exactly the same name and type identifier stored on the same

storage device. Each data file goes into a separate user area.

4.3.1 USER areas in CP/M 3.0

User area 0 has a special function. Any programs and data files that are
stored in user area 0 can be made available from any other user area, by

making them SYS files. You might think of these files as public files. They

can be made available to all users, like books at a public library. Files in
other areas can be thought of as private files. They are available only to a
specific user, like books in a private library.

When CP/M starts, you are automatically placed in user area 0. To change

to a different user area issue the USER command:

USER 3 <RETURN>

and youfre changed over to user area 3. Make sure that there is a space

between USER and the number of the user area. You'll notice that the CP/M

prompt changes. Instead of A>, the prompt now reads 3A> to let you know
which area you are using.

49

Abacus Software C-128 CP/M User's Guide

Naturally you can use another disk drive. To log on to the B drive, just type:

3A> B: <RETURN>

and the prompt changes to 3B>.

Alternate methods of getting to this user area on drive B are:

A> B3:

(or)

A> 3B:

If you are using both A and B drives, get back to the A drive:

3B> A: <RETURN>

If you display the directory now, the message NO FILE appears, since you
haven't put any files into user area 3. CP/M separates the directory entries
by user areas. This is helpful if many files in a single user area need to be

displayed.

All of the built-in, resident commands are available from any user area.

50

Abacus Software C-128 CP/M User's Guide

4.4 DIR

We've already discussed the DIR command. Actually, there are two

different versions of the DIR command: one is resident and the other is

transient. If you enter DIR without any options (in square [] brackets),
then the resident version is used. But if you do use options, then the

transient version from the diskette (DIR. COM) is used.

The resident version displays the files on the diskette in the current user
area. If you are logged on to user area 3, then only files stored in user area
3 are displayed.

Quite often, so many files are contained on a diskette that the directory
doesn't fit on a single screen. You can pause the directory by pressing
<CONTROL> S, continue the display by pressing <CONTROL> Q, or
stop the directory by pressing <CONTROL> C.

If you are logged onto drive A but want to see if the contents of drive B, you
can type:

A> B: <RETURN>

B> DIR <RETURN>

This logs you onto drive B and then displays the directory. Alternatively
you can type:

A> DIR B:

This keeps you logged onto drive A., but displays the directory of drive B.

To get a hardcopy of the directory you can press <CONTROL> P before the

DIR command. The <CONTROL> P turns on the printer hardcopy . Any

information that is normally displayed on the screen is now redirected to the
printer. Turn off the hardcopy by pressing <CONTROL> P again. This

key combination is a toggle command, turning the hardcopy on and then off
again.

51

Abacus Software C-128 CP/M User's Guide

4.4.1 dir with parameters

You can also use parameters with the DIR command. If you have a large

number of directory entries on a diskette, you can display the entry for a
particular file, instead of reading through all the entries:

DIR BrTEXT.TXT <RETURN>

The filename is displayed if TEXT. TXT exists on the diskette in drive B. If
the file is not on the diskette, the following is displayed:

No File

To use more complex functions of the DIR command, you must use the

transient version. In this case, you must make sure that the file DIR. COM.

is on the logged disk (usually on the A drive). For example, if the system

diskette is in drive A, but you are logged onto drive B, you must issue the

DIR command with options like this:

B> A:DIR [Options]

This ensures that DIR. COM is loaded from the A drive.

4.4.2 More about DIR

You'll recall that you can use asterisks in the DIR command. For example:

DIR *.COM

displays all of the * . COM files on the logged diskette.

You can also display the directory entries for several different file types:

DIR *.COM *.SYS

However, the above command will cause an error:

*.SYS?

Only the transient DIR command can handle this request.

52

Abacus Software C-128 CP/M User's Guide

To use the transient DIR command, do one of the following:

• prefix dir with a drive identifier
e.g. A: orB:

• append an option to the dir command
e.g. [FULL] or [DIR]

4.4.3 dir and its options

Up to 18 different options are available to DIR. Normally you will won't
use more than two of dir's options at the same time. Options are always
indicated by square brackets.

If more than one option is entered, they must be separated with commas or
blank spaces. If the symbol of the option is unambiguous, you can
abbreviate the option's name to two letters. You can also leave out the
closing square bracket, but only if it's the last character on the command
line.

For example:

DIR *.COM *.SYS [FULL]

DIR *.* [NOSORT,SIZE]

DIR *.BAS [USER=5 NOSORT SIZE

If the transient DIR is used, dir . COM is loaded into the TPA. Remember
that DIR. COM is about 15 KBytes in length and must be found in the
directory before it is loaded. When it first starts, the screen displays:

Scanning Directory...

It then looks at the parameters and options. When this is done it begins to
sort the filenames into alphabetical order (unless the NOSORT option is
entered). DIR displays:

Sorting Directory...

Then the directory is displayed to the screen or the printer. A typical
printout looks like this:

53

Abacus Software C-128 CP/M User's Guide

Directory for Drive A: User 0

Name Bytes Recs Attributes Name Bytes Recs Attributes

CCP

CPM+

FORMAT

HELP

KEYFIG

COM

SYS

COM

HLP

HLP

4k

23k

5k

83k

9k

25

182

35

664

72

Dir

Dir

Dir

Dir

Dir

RW

RW

RW

RW

RW

COPYSYS

DIR

HELP

KEYFIG

PIP

COM

COM

COM

COM

COM

Ik

15k

7k

10k

9k

3

114

56

75

68

Dir

Dir

Dir

Dir

Dir

RW

RW

RW

RW

RW

Total Bytes = 166k Total Records = 1296 Files Found = 10

Total Ik Blocks = 166 Used/Max Dir Entries for Drive A: 16/ 64

4.4.4 DIRSYS

When you display the directory, you may notice the following message:

SYSTEM FILE(S) EXIST

It tells you that, in addition to the files listed, the diskette also contains the
system files. If you don't see the message, then no system files are
contained on the diskette. System files are stored in user area 0, and can be
read and used by every work area. If you'd like to display the names of the
system files, enter the command DIRSYS or the abbreviation DIRS. Under
the listed files you then receive the message that No system files

exist.

You have the same capabilities with the command DIRSYS as with the
command DIR. You can also use asterisks and question marks, as in the

DIR command.

54

Abacus Software C-128 CP/M User's Guide

4.5 ERASE

The capacity of a diskette is limited, and therefore limits the number of
entries on a diskette's directory. On a single-sided diskette, there is room
for exactly 64 entries. On a double-sided diskette, the limit is 128 entries. If
you use the transient dir command, the maximum and current number of
directory entries on the diskette is displayed.

When a file is no longer required, you will want to delete or erase it. This
frees up space on the diskette so that it may be used by other programs. To
do this you can use the ERASE command.

Enter the command like this:

ERASE d-.name

The d represents the disk drive identifier. The name stands for the filename
to be erased. If you are logged onto drive A and want to erase a file on drive
A, then you can omit the drive identifier. The ERASE command can be
abbreviated to ERA.

Like the DIR command, you can use asterisks and question marks with the
ERA command. You should be very careful when using * or ? with ERA.
It's easy to accidentally erase the wrong files and suffer the consequences
afterwards.

To erase a specific type of file, for example, files with a BAK extension,
enter:

ERA *.BAK

The following message is displayed:

ERASE'*. BAK (Y/N)?

This is asking you to confirm the deletions. It's a safety precaution
requiring you to respond before CP/M erases all of the files with the . BAK
extension. Answer Y to delete the entries or N to abort.

55

Abacus Software C-128 CP/M User's Guide

If you are really brave, you can also erase all of the files on a diskette with

this command:

ERA *.*

Once again you are asked to confirm the deletions:

ERASE *.* (Y/N)?

If you respond by typing a Y all of the files will be erased.

4.5.1 Erasing with ERA in CP/M 3.0

Suppose that you want to erase all .BAS files on a diskette. You would type:

ERA *.BAS

The following is displayed to make sure the files really should be erased:

ERASE *.BAS (Y/N)?

Before you answer Y for yes, you should double-check your typing. Are
you certain that the command is correct and that you really want to erase this
file type? Once youVe typed a Y, there's no way to get the files back. The
files are gone completely. Check especially for typing mistakes. For

instance, it's easy to mistakenly type PAS instead of BAS. If you type in the
command like this, all the Pascal files on your disk are erased.

To protect yourself against these unpleasant surprises, there are two ways to

prevent accidental erasure. First, you can write-protect the individual files.

You'll see how to do this shortly. Second, you can ask the ERASE
command to confirm each deletion individually. To do this you must enter:

ERASE *.BAK[C]

Here, all files with the extension . BAK are erased, but only if you respond
Y to the confirmation message.

56

Abacus Software C-128 CP/M User's Guide

4.6 Changing filenames with REN (AME)

To rename files, you use the rename command. The format looks like this:

RENAME newname=d:oldname

Note that newname precedes the oldname and that they are separated by the
= sign. If the file oldname is on the logged drive, you can omit the drive
identifier d:.

If the file newname already exists, you are asked if it should be erased
before oldname is renamed to newname:

Error: Not renamed, newname file already exists,

delete (Y/N)?

If you answer this question with N, then RENAME is aborted.

If you enter Y, then the file newname will be erased, and the file oldname
is renamed newname. It is interesting that the resident part of RENAME
takes care of simple renaming, but if there are options—in this case, the
new file already existed—then the transient RENAME is loaded before it
continues. The abbreviation for RENAME is REN.

Here is an example of a "simple" renaming:

REN new.bas=old.bas

You can also use asterisks and question marks with the RENAME command.
A simple example might look like this:

RENAME *.TXT=*.BAK

This command changes all the files with the extension txt to files with the

BAK extension. The RENAME command doesn't change the contents of a
file, only its name.

57

Abacus Software C-128 CP/M User's Guide

4.7 TYPE

The TYPE command displays the contents of a file on the screen. It will
display the contents of any text file that uses the ASCII character set. Other
file types, for example COM or REL files, may contain characters that cause
strange output or cause the computer to hang up. The format for the TYPE

command is:

TYPE d:filename

To display the contents of a file from other than the logged drive, enter a

different drive identifier.

The TYPE command displays 23 lines of text per screen. You can read the
text on the screen an then press <RETURN> to view the next 23 lines of
text. By entering the option [NOPAGE] the text is displayed in its entirety
by scrolling continuously. You can halt the scrolling by pressing
<CONTROL> S, and then restart the scrolling with <CONTROL> Q. Also,
you can toggle <CONTROL> P to send the text to the printer.

The reverse side of the CP/M System diskette (the side titled utilities)
contains an assembler source file DATE. ASM that is a good example for

using the TYPE command:

TYPE DATE.ASM

4.8 Summary

CP/M has built-in commands that make it possible to work
with and manipulate files on a disk.

Commands can be entered with parameters or options.

You know the names of all the built-in commands, how they
work, and which options work only with the transient

commands.

58

Chapters

I The transient commands

5.1
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Introduction

Transient commands under CP/M

SET

Disk drive characteristics
Labels

Diskette password

File PASSWORD
Time stamping

SETDEF

SHOW

SUBMIT

The help command
Summary

Abacus Software C-128 CP/M Users Guide

The transient commands

5.1 Introduction

You have just read about CP/M!s built-in, resident commands. But the real
power of the operating system comes from transient commands. These are

listed as COM files in the directory. WeVe noted several times that these
commands are loaded into memory from diskettes when needed. These

commands are stored on diskette for good reason: they are simply too big

and would take up too much internal memory if they were built-in. Their
size is due to the large number of options they give you.

Transient commands are first searched for in the directory and then loaded
into memory. Therefore, they aren't as quickly accessible as their resident
command counterparts. Keep this in mind when you work with CP/M.

5.2 Transient commands under CP/M

Now well take a look at important and often-used CP/M commands. Here

we're referring to the transient commands found in the directory with COM
extensions. You already know how to call the programs—type in the
program name without the extension and press the <RETURN> key. There

are three methods to call transient programs. First, you can work in user
area 0. Second, you can make a program accessible to all user areas with a

SET command. Third, you can use the SETDEF command. We'll talk more
about this third command later.

61

Abacus Software C-128 CP/M Users Guide

5.3 SET

The SET command performs several tasks . Its main job is to set various

file attributes. Attributes are special characteristics of a file. For example,

you can use the SET command to make your CP/M files in user area 0

available to all user areas. Or you can protect a file by indicating, "Thisfile

is read-only or "Thisfile is protected by a password."

The SET command also contains options which affect the table of contents

(directory). For example, you can timestamp every file in the directory, to

allow you to determine when the program was first created and when it was

last accessed. You can use this timestamp later, to automatically back up all

the files that were altered since a certain date to another diskette.

Here is an overview of the various options of the SET command:

Option Meaning

DIR Makes a system file visible to the normal directory.

SYS Makes a file for SYSTEM file.

RO Makes the file read-only.

rw Makes a file read and write.

ARCHIV=OFF Sets the ARCHIV attribute to off. That means that the
file hasn't been backed up (put in an archive) yet. The

program PIP can copy the files with the attribute

ARCHIV=OFF by using option AAU. You enter the

PIP command with asterisks for the filenames and

PIP will copy all the files that have been changed

since the last copying with PIP using option AAU.

After P IP copies the files, it sets the file attribute to

ARCHIVON.

ARCHIV=ON Sets the ARCHIV attribute on. That means that this

file has been backed up. Normally PIP, using option

[A], changes the attribute after backing up the data.

You can change the attribute yourself as well by using

the SET command.

62

Abacus Software C-128 CP/M Users Guide

F 1=ON/OFF Switches the user-defined file attribute Fl on or off.

F2=0N/0FF Switches the user-defined file attribute F2 on or off.

F3=0N/0FF Switches the user-defined file attribute F3 on or off.

F4=ON/OFF Switches the user-defined file attribute F4 on or off.

Let's see some examples of the SET command.

Suppose you have a program called MYPROG. COM that you want to be able
to use from any user area. Normally this program is placed in user area 0.

An alternate way is to make your program a SYSTEM file. You can do this

with the SET command:

SET MYPROG.COM [SYS]

You can also protect your program from being overwritten:

SET MYPR0G.COM [RO]

Or you can make it a SYSTEM file and protect it:

SET MYPR0G.COM [SYS RO]

To undo the attributes, you can enter:

SET MYPR0G.COM [DIR RW]

The options may appear in any order ([DIR RW] or [rw DIR]) and
may be separated by spaces or commas.

Note: To use the preceding commands, you should initialize the directory
using the INITDIR command. You can prepare a diskette by typing:

INITDIR A:

This command reorganizes the directory of a diskette and prepares it for
timestamping.

63

Abacus Software C-128 CP/M Users Guide

5.4 Disk drive characteristics

You can protect the contents of an entire disk drive so that information can

only be read from it and can't be written to it. If youVe set a disk drive to

RO (read only), files can't be erased with ERASE, RENAME doesn't work,

and pip can't copy files to to that drive.

To do this, enter:

SET A:[RO]

Then, drive A is set to read-only. If you enter an RW (read/write)

instead of RO, the drive can be written to again. Setting the read-only

attribute does the same thing as putting on a write-protect tab.

5.5 Labels

You can give an entire diskette a name. A disk name is limited to eight

characters, the same as for a filename. To do this you use the name=

option of the SET command:

SET B:[NAME=FIBU]

If you have only one disk drive, the SET command will work if the file

SET. COM is on the diskette being accessed. To get around this limitation,

use the virtual disk drive E. Enter the following while the diskette

containing SET. COM is in the drive:

SET E:[NAME=FIBU]

CP/M loads the required file SET . COM, and then asks you to insert the

diskette representing drive E into the drive A. If you've entered the above

command, the following text will appear on the screen:

64

Abacus Software C-128 CP/M Users Guide

Label for drive E:

Directory Passwds Stamp Stamp

Label Reqd Create Update

E: FIBU . off off off

Well talk about the other options marked off shortly.

The DIR command does not display a disk!s name. To see the disk's name,

use the SHOW command with the LABEL option:

SHOW E:[L]

When using one drive and the virtual drive E, CP/M repeatedly requests you

to insert a disk into either the E or A drive. After youVe responded to the

request, press the disk A or disk E in the drive. Answer the request and then

hit the <RETURN> key to proceed.

Now the output is more detailed than when we entered the SET command:

Label for drive E:

Directory Passwds Stamp Stamp

Label Reqd Create Update Label created Label Updated

E:FIBU . off off off 12/06/85 01:04 12/06/85 01:04

Just like with more expensive computers, the creation date and the last time

the file was updated are displayed. Whenever a file's contents are changed,

the date of the update is also changed. Doing this gives us several

advantages. For example, you can use the PIP command with a special

option to update all the files that were changed on one particular day. But

this is relevant only if you religiously enter the date and time using the

DATE command whenever you work on the computer. Otherwise, the dates

are inaccurate—like the ones in our example.

65

Abacus Software C-128 CP/M Users Guide

5.6 Diskette PASSWORD

Passwords can be used to prevent unauthorized access to data files. You can

assign a password to an entire diskette and thereby restrict access to that

diskette, as well as restrict the use of the SET command for the diskette.

>

Before assigning a password to a diskette, it must have a label (SET d:

[name=label]). To assign a password enter:

SET d: [VASSWORD=password]

Now the diskette is password protected. If you try to use the SET command

for this diskette the following is displayed:

Directory label

Password?

Enter the correct password and press <RETURN> to gain access to the

diskette. You'll notice that the password is not displayed on the screen as

youfre typing at the keyboard. This is an added security measure.

To remove a password from the diskette type:

SET [PASSWORD=<cr> (<cr> = <RETURN>)

Naturally you can remove the password only if you already know the

password beforehand, since CP/M requires you to enter it here.

66

Abacus Software C-128 CP/M Users Guide

5.7 File PASSWORD

You can also assign a password to an individual file on a diskette. To assign

file passwords you must allow the diskette to be protected:

SET d: [PROTECT=ON] <RETURN>

where d is the drive indicator for the diskette.

Now you can assign a password to an individual file. To assign the

password secret to the file dir . COM, type:

SET d:DIR.COM[PASSWORD=SECRET]<RETURN>

To remove a password from the file, enter:

SET d:DIR.COM[PASSWORD=off]<RETURN>

There are also several other options for protecting files:

READ The password is required to read, copy, write, erase,

or rename a file

WRITE The password is required to write to, erase, or rename

a file.

DELETE The password is required only to erase or rename a

file.

NONE The password is removed

If you omit the option, READ is the default. Enter the option like this:

SET EiTEXT.TXT[PROTECT=DELETE]

This protects the file text . txt against accidental erasure.

To avoid confusion, we should understand that you cannot protect COM files

in this way. If a COM file has has password with READ option, when you

try to run this command you see this:

67

Abacus Software C-128 CP/M Users Guide

CP/M Error On A: Password Error

BDOS Function = 15 File = DIR .COM

You are not asked to enter the password before the command is run—the

command is simply aborted.

When you want to remove a password, you are first asked to enter the

password, which must be entered correctly. If you donft enter the password

correctly, then you won't be able to remove it. This prevents unauthorized

users from using these files.

68

Abacus Software C-128 CP/M Users Guide

5.8 Time Stamping

A time stamp is similar to punch-clock in a factory that records each
employees working hours by the date and time. CP/M can timestamp files.
The timestamp can then be used to determine the last time a file was

accessed or updated, for example.

Three steps are required to use timestamping:

DATE command to set the date and time

INitd IR command to prepare a diskette's directory to record the

timestamp

SET command to turn on the timestamping

To set the date and time enter:

DATE SET <RETURN>

The DATE command displays:

Enter today's date (MM/DD/YY):

Enter the date in the format month/day/year including the slash

between numbers and press the <RETURN> key. Next the DATE

command displays:

Enter the time (HH:MM:SS):

Enter the current time in the format hour :minutes : seconds

including the colon between numbers and press <RETURN>.

You can verify your entries by entering:

DATE <RETURN>

This displays the date and time. These values are updated as long as the

computers power remains on.

69

Abacus Software C-128 CP/M Users Guide

Next you must initialize the diskette to accept the timestamps. Here we

use the initdir command. We recommend thaj; you first make a

backup copy of the diskette. Since the initdir reorganizes the
diskette's directory, if it should encounter any errors, the data on the
diskette may become inaccessible. This is why we recommend making
a backup. To initialize the diskette for timestamping, enter:

INITDIRd: <RETURN>

The initdir command displays the following:

INITDIR WILL ACTIVATE TIMESTAMPS FOR SPECIFIED DRIVE

Do you want to re-format the directory on drive:d (Y/N)?

Press Y and <RETURN> to reorganize the directory.

Now you can use the SET command to begin recording the timestamps.
There are three options available:

CREATE=ON records the time stamp only when a file is created.

ACCESS=ON records the time stamp when a file is read.

UPDATE=ON records the time stamp when a file is changed.

CREATE and UPDATE are mutually exclusive. You can also turn off the

time stamp by using OFF in place of ON.This is because when you change a

file, you make a new file. The old file becomes a BAK (backup) copy.

To record the current date and time, you enter the following command:

SET E:[ACCESS=ON]

To see the result of this command, enter:

DIR[FULL]

70

Abacus Software C-128 CP/M Users Guide

The following directory will be displayed:

Directory for Drive B:

Name Bytes Recs Attributes Prot Update Access

TEXT.TXT 5K 38 DIR RW NONE 04/01/85 17:31

FIBU 20K 152 SYS RO NONE 04/01/85 09:10

The ACCESS option lets you find out when you last accessed a file. The

command for two entries in the table of contents looks like this:

SET E:[CREATE=ON,UPDATE=ON]

This directory is then displayed:

Directory for Drive B:

Name Bytes Recs Attri butes Prot Update Create

TEXT.TXT 5K 38 DIR RW NONE 04/17/85:10:00 01/01/85 09:00

FIBU 20K 152 SYS RO NONE 04/17/85:16:43 01/01/82 19:21

71

Abacus Software C-128 CP/M User's Guide

5.9 SETDEF

After CP/M receives a command, it always looks for the specified file on the

disk drive currently in use—indicated by the the drive designator displayed

onscreen. The SETDEF command lets you alter this. For example, if you

are working with drive B but have all your CP/M files stored on drive A,

SETDEF will allow you to tell CP/M the search path to use. In this way you

can store and retrieve programs from the correct disk dirve automatically,

without having to specify the drive designator every time.

If you enter:

SETDEF <RETURN>

you'll receive information about the current search path, which disk drive is

used for temporary files, and what type of file is being sought. It looks like

this on the screen:

Drive Search Path:

1st Drive - Default

Search Order - COM

Temporary Drive - Default

Console Page Mode - On

Program Name Display - Off

You can change the search path with the following command:

SETDEF A:

This command instructs CP/M to search for and retrieve the desired files on

drive A only, even if you are presently working on drive B. You can expand

the command like this:

SETDEF A:,*

CP/M then first looks for the files on drive A, and then on the drive

currently in use (represented by the asterisk). Each time you enter a

SETDEF command, you get an information list as follows:.

72

Abacus Software C-128 CP/M User's Guide

Drive Search Path:

1st Drive - A:

2nd Drive - Default

You can have this information sent to the printer with <CONTROL> P.

If you want temporary files (like the ones PIP uses) to be written to a

specified drive, enter:

SETDEF [TEMPORARY=E:]

This command will write temporary files to the virtual drive E. CP/M

recognizes the temporary files because their $$$ file extensions, as

discussed previously,

SETDEF normally only searches for files with a COM or SUB extension. By

default, CP/M searches for COM files first, but this order can be changed

with the following command:

SETDEF [ORDER=(SUB,COM)]

This changes the search order so that SUB files are sought first. SUB files

are called with the SUBMIT command, and contain a batch of runable

commands. We'll discuss the SUBMIT command in detail shortly.

73

Abacus Software C-128 CP/M User's Guide

5.10 SHOW

The SHOW command can give you a lot of information about your disks: the

amount of space on your disks, the names of your disks, and the number of

files per USER. When you enter:

SHOW

you'll see the status of all of the disk drives, as well as the remaining space

on each drive. Obviously, the utilities disk must be present in the drive.

A: RW, Space: Ilk

E: RW, Space: 2k

If you enter the drive designator behind it, you only get information for the

disk in the specified drive.

The SHOW command also lets you see the labels on your disk:

SHOW A:[LABEL]

You can abbreviate LABEL to L. On the screen you will see the following

table of contents:

Label for drive A:

Directory Passwds Stamp Stamp

Label Reqd Create Update Label Created Label Updated

FIBU.COM off off off 04/17/85 11:41 04/17/85 11:41

Another option of the SHOW command lets you see which USER areas on
your disk are being used, and how many files are in each area. Enter this

option as follows:

SHOW A:[USER]

The command will display the number of free entries in a table of contents:

74

Abacus Software C-128 CP/M User's Guide

A: Active User : 0

A: Active Files: 0 2 11 12

A: # of files : 22 6 11

A: Number of free directory entries: 24

If you simply enter:

SHOW A:[DIR]

youll just be shown the number of free directory entries—you get the last

line of the previous screen display.

The SHOW commard is closely related to the CP/M 2.2 command STAT.

CP/M 3.0 features several new commands that are derived from the single

CP/M 2.2 STAT command. Therefore, the SHOW command is more

powerful and user-friendly than its predecessor, and has none of its

limitations.

75

Abacus Software C-128 CP/M User's Guide

5.11 SUBMIT

YouVe learned to enter CP/M commands through the keyboard. By now

youVe probably noticed that you have to type in the same commands and

same instructions over and over again. This redundant input can get quite

annoying. CP/M has a command to relieve you of this burden.

The SUBMIT command lets you store a "batch11 of often-used commands

and the 128 will treat them like keyboard input. A SUBMIT file has the

extension SUB.

The SUBMIT command can make repetitive CP/M tasks much easier. For

example, the 128 doesn't have a built-in clock. Consequently, you have to

enter the time and date every time you boot up the computer. If you want to

require an up-to-date time stamp on every file access, you can make use of

the file PROFILE. SUB. This file will be accessed and run after every boot

or restart. The file's commands will be used as a SUBMIT file.

profile . SUB is comparable to the AUTOEXEC. BAT files on the IBM PC

and compatibles.

If you decide that the time and date should be entered, you don't enter it in

the usual way. You write the file like this:

A:DATE SET

and name this file PROFILE. SUB. (You can also enter another disk drive,

providing it contains the DATE. COM file). Don't forget the SUB extension.

If you want to enter a file through the keyboard, you can use the editor ED.

Since ED is quite difficult to use, there is still another possibility: by using

the PIP commands. You can enter files through the keyboard with the P IP

command, but cannot edit them:

PIP PROFILE.SUB=CON:

Wait until the disk drive stops running. Enter the line of text above

(A: DATE SET) and then hit <RETURN>. If you want to enter several

lines, continue to make entries. You must enter <CONTROL> Z as the last

line.

76

Abacus Software C-128 CP/M User's Guide

A SUB file holds many possibilities. It can contain CP/M commands,

interlocked SUBMIT commands, or input programs or CP/M commands.

You can also use parameters in a SUB file. These parameters are represented

by dollar signs ($). You can use the parameters $1 through $9.

For example, enter the following lines:

ERA $1.BAK

DIR *.$2

Name this file DIR. SUB. The set of commands in this file first erase all

files with a particular name and with the extension .BAK. Then it displays

all the files with a particular extension. To run the file, you enter:

SUBMIT DIR TEXT COM

Here DIR is the name of the SUBMIT file, and TEXT and COM replace the

parameters $ 1 and $2. When the file is run, first all the files with a BAK or

$1 extension are erased. Then all the files with a COM extension are

displayed (provided the SUBMIT. COM file and the SUB file are on the same

disk side: otherwise the virtual drive E must be used). The "translated"

SUBMIT file—the submit files with its inputted parameters—looks like this:

ERA TEXT.BAK

DIR *.COM

CP/M uses these commands as if they were entered through the keyboard.

If you enter fewer parameters than there are in the SUBMIT file, those

parameters won't be used. If you enter more parameters than the SUBMIT

file contains, the extraeneous parameters are ignored. If you want to use a

dollar sign in a command inside a SUBMIT file, enter two dollar signs ($$).

A SUBMIT file can also execute command input for programs. You can call

a program with one command line and use the next to enter commands to

the called program. For example:

PIP

<B:=A:*.COM

<

DIR *.COM

77

Abacus Software C-128 CP/M User's Guide

This small SUBMIT file calls PIP. COM in the first line. The second line is

the command to copy all the COM files to drive B. The third line exits P IP,

and the fourth displays the directory. All commands to be entered into a

program are identified with a less than sign (<). If you enter a command

without additional parameters, as with the third line, it signifies a

<RETURN>, which in this case ends P IP.

The SUBMIT command can be quite useful/For example, you can execute a

series of files and go get something to eat while they run. You write the

command file like this:

PIP LST:=FILE1

PIP LST:=FILE2

PIP LST:=FILE3

PIP LST:=FILE9

You can accomplish the same thing with the following command line:

PIP LST:=FILE?

Name the file bunch . SUB and enter the following before you leave:

SUBMIT BUNCH . SUB <RETURN>

You can also store the individual files on different disk drives. You need

only write the drive designator in front of the filename and SUBMIT

searches for all the files concurrently.

You could write a command file to list all the data files in all the USER areas

on a hard disk drive. The screen output can then be written to a new file

with the name Contents. In this file you can look for a specified file with

a search command in your text program, or print the file list.

78

Abacus Software C-128 CP/M User's Guide

5.12 The help command

By this time, you're probably having trouble remembering all of the many
CP/M commands, not to mention all their options. Fortunately CP/M
contains a help program to remind you of all the command codes and their
options. You need only tell CP/M where you need help.

Simply enter the command HELP:

A:>HELP

A menu with the possible help information packages is displayed on the
screen. There you choose a subpoint and will receive information about it.

Incidentally, the Commodore 128!s keyboard features a <HELP> key that
normally displays a program error in the BASIC operating system. Under

CP/M, pressing this key displays the word HELP onscreen, without an
automatic <RETURN>. This allows you to enter a word after it when you
know which topic you need assistance with.

The following is displayed the screen when you enter HELP without
specifying a topic:

HELP UTILITY VI.1

AT "HELP>fl enter topic [, subtopic] . . .

EXAMPLE: HELP> DIR EXAMPLES

Topics available:

C128__MODE COMMANDS CNTRLCHARS COPYSYS DATE DEVICE
DIR

GET

LINK

RMAC

SUBMIT

HELP>

DUMP

HELP

MAC

SAVE

TYPE

ED

HEXCOM

PATCH

SET

USER

ERASE

INITDIR

PIP (COPY)

SETDEF

XREF

FILESPEC

KEYFIG

PUT

SHOW

GENCOM

LIB

RENAME

SID

79

Abacus Software C-128 CP/M User's Guide

You can also enter the subtopics directly. For example, you can enter:

HELP SETDEF

This displays help information on SETDEF directly.

The HELP program is contained in the file HELP . COM and HELP . HLP. To

alter these files, call the file help . COM and enter the extract option:

HELP [EXTRACT]

The following display will appear on the screen:

Extracting Data...Extraction complete

HELP.DAT Created

You can abbreviate the EXTRACT to an E. The HELP program then creates a

new file with the name HELP . DAT . You can change this file as you see fit

using your text editor. By using the EXTRACT option you set it up so that

you can edit the topics.

To enter new help text, you must follow certain format rules. Every option

word must begin with three slashes (///) and a number. The number gives

the help steps of the option. For example:

<RETURN>

///2OPTIONS <RETURN>

///3PARAMETERS <RETURN>

///4EXAMPLES <RETURN>

Once youVe made your changes, store the data and call HELP . COM again,

but this time with CREATE option (abbreviated C). This creates a new

HELP . HLP file that contains your text alterations.

80

Abacus Software C-128 CP/M User's Guide

5.13 Summary

• You've learned about the transient commands of CP/M

• You know the options that change or expand the tasks of the

transient commands

• You know that files can be given labels

• YouVe seen how we can protect an entire disk, a file, or an

individual CP/M command for restricted use

• You know how to prepare a time stamp for your files that

furnishes the time and date of when a file was last accessed.

• You know how to alter the file search path with SETDEF

• You know how to display the system files of a disk using

SHOW

• You can use the PROFILE. SUB file to make your

computer's boot routine automatically run a program

81

Chapter 6

I Everything about PIP j

6.1 Diskette copying
6.2 Copying between user areas

6.3 Text files and non-text files
6.4 Merging data files
6.5 Line numbering

6.6 Converting between uppercase and lowercase
6.7 Searchingfor a string
6.8 Printing data files
6.9 Automatically backing up data flies
6.10 Overwriting without prompts
6.11 Copying system data files
6.12 Tidying up the 8-bit
6.13 Practical examples
6.14 Summary

Abacus Software C-128 CP/M User's Guide

Everything about PIP

YouVe already heard about some of the capabilities of pip. Here is a
complete list of its capabilities:

• Transfer a single file from one diskette to another

• Transfer a group of files from one diskette to another

• Copy a file and rename it

• Format text for printing

• Shorten lines of text in a file

♦Print a group of files

• Merge several files into one

• Access a section of a text file

• Change lowercase letters to uppercase letters and vice versa

• Reset the eighth or flag bit of a byte to zero

• Insert line numbers into a file

• Display a file during transfer

• Transfer system files

• Copy files from one user area to another

• Automatically back up new or altered files

As you can see, there are many uses for pip. You might do well to read
this chapter thoroughly so that you may use P IP to your greatest advantage.

85

Abacus Software C-128 CP/M User's Guide

6.1 Diskette copying

Nearly every programming book advises you to make a copy of any original
diskette for backup purposes. We saw how to do this earlier. Let's look at a

simple example. To copy a file called TEXT. TXT from the diskette in drive

A to the one in drive B, enter:

A>PIP <RETURN>

*B : TEXT . TXT=A: TEXT . TXT <RETURN>

By doing this, you copy the file TEXT. TXT from the diskette in drive A to

drive B and give it the same name. The original file in drive A remains

unaltered.

To copy the complete contents of a diskette, enter:

A>PIP <RETURN>

B:=A:.* <RETURN>

This transfers all of the files from drive A to drive B. If you have only one

disk drive, you can copy all the files to the virtual drive E using the

command:

A> PIP E:=A:*.* <RETURN>

This procedure involves more work for you, since you must alternate the
diskettes in the single disk drive. But without it, you wouldn't be able to

copy files with a single drive.

There are a large number of options that may be used with the pip

command. One option is [V], for verify. As PIP copies a file with the
verify option, the copy is checked to make sure that the data was transferred

correctly. Enter the command like this:

A>PIP <RETURN>

*B : =A: TEXT. TXT [V] <RETURN>

If you prefer, you can enter the parameters and options on the same line as

the command, like this:

A>PIP B : =A: TEXT. TXT [V] <RETURN>

86

Abacus Software C-128 CP/M User's Guide

Using this method, PIP immediately begins copying; when it has finished,
it displays the prompt (A>). You probably noticed that we didn't enter a
filename for drive B. The filename defaults to the same name as the file
being copied. To change the filename when you copy, enter:

PIP B:TEXTl.TXT=ArTEXT.TXT

This lets you copy a file and change its name at the same time.

Before copying files to another diskette, you should make sure that there is
enough space on that diskette for the new file.

PIP transfers each file to a temporary file that has the same filename, but
with the extension $$$. As each file is successfully transferred, pip
renames the temporary file with the specified filename.

What happens when you try to copy a file to a diskette that already has that
particular filename—for example, TEXT. TXT ? First, p IP transfers the file
to a temporary file called TEXT . $$$. Next the old version of the file

text . TXT on the destination diskette is erased. Finally text . $$$ is

renamed TEXT. TXT. If the destination diskette doesn't have enough space
for the new file, then you will have to erase the old TEXT. TXT file first.

As you transfer files using pip without special options, the file attributes
such as SYS, DIR, ro, and RW are also transferred. If you transfer a
SYSTEM file, the copy will also be a system file.

If you transfer a file to a destination diskette that has the same filename and
is write-protected (RO), p IP asks you to confirm that it should erase this
file. Respond with either Y or N as appropriate.

87

Abacus Software C-128 CP/M User's Guide

6.2 Copying between user areas

Unless you specify otherwise, PIP copies files only within the same user

area. If you are in USER area 3, PIP copies are transferred to USER area 3
on the destination diskette.

To transfer files from one USER area to another, you must specify the [Gn]
option, where n is the number of the new USER area. To transfer
TEXT . TXT from USER area 0 on drive A to USER area 2 on drive B,

enter:

PIP B:[G2]=A:TEXT.TXT

This command assumes that you are logged onto USER area 0 when you

enter the command.

6.3 Text files and non-text files

As far as P IP is concerned, it can differentiate between two types of files:

text files and the non-text files.

A text file is usually created by an editor such as ED or a wordprocessor. A
text file is stored as a series of readable characters.

The end of a text file is indicated by a <CONTROL> Z character. As a
result, any text following the <CONTROL> Z character in a text file is

ignored.

Non-text files may contain any characters, not just readable ones. Therefore
a non-text file may contain imbedded control characters like <CONTROL>

Z. With*non-text files, PIP does not recognize <CONTROL> Z to be the

end-of-file indicator.

Abacus Software c.128 CP/M User's Guide

6.4 Merging data files

If you want to merge the contents of two or more files into a single file, you
can do this with pip. Normally these files must be text files. Merging COM
files produces a non-executible program.

To merge (or concatenate) files using pip, the filenames to be combined are
separated by commas:

PIP ALL.TXT=PART1.TXT,PART2.TXT,PART3.TXT

This assumes that all of the files are contained on the same drive. If the file
is to be merged into a different USER area, enter:

PIP ALL.TXT[G3]=PART1.TXT,PART2.TXT,PART3.TXT

And to assure that the files are verified as they are merged, include the [VI
option:

PIP ALL.TXT[G3]=PART1.TXT[V],PART2.TXT[V],PART3.TXT[V]

If you try to merge non-text files, you may encounter problems. PIP
understands the <CONTROL> Z character as the end-of-file character.
Non-text files may contain <CONTROL> Z characters.

If you use P IP to transfer a COM file, then a <CONTROL> Z character is
transferred normally; it is not an end-of-file indicator. Instead, pip
continues to copy until the actual end-of-file.

To copy files that are neither text files nor COM files, use the [0] option
following the filename:

PIP ALL.DAT=P1.DAT[O],P2.DAT[0]

89

Abacus Software C-128 CP/M User's Guide

6.5 Line numbering

P IP can also insert line numbers into a text file. This feature is often used
by programmers or writers who want to identify their lines of text by
number. If you copy a file using the N options, a line number is inserted at
the beginning of each line of text:

PIP TEXTNR.TXT=TEXT.TXT[N]

The text now appears like this:

1: This is your text

2: numbered by line.

3: Practical, isn't it?

You can also insert a six digit line number by using the N2 option:

PIP TEXTNR.TXT=TEXT.TXT[N2]

The text now appears like this:

000001 This is your text

000002 numbered by line using option N2.

000003 Also practical, isn't it?

The line numbers are assigned sequentially and the order can't be changed.

6.6 Converting between uppercase and lowercase

To convert the text of a file to all uppercase, you can use the [U] option:

PIP CON:=TEXT.TXT[U]

To convert the text of a file to all lowercase, you can use the [L] option:

PIP CON:=TEXT.TXT[L]

90

Abacus Software C-128 CP/M User's Guide

6.7 Searching for a string

If you're printing a text file with p IP and the paper in the printer jams up,
you may not want to print 200 pages again. You can restart the operation

using the [S] option of P IP. To display the file TEXT. TXT beginning at
the word hungry, enter:

PIP CON:=TEXT.TXT[S hungry<CONTROL> Z]

The search string is ended with <CONTROL> Z. You can also use the [Q]
option to end the transfer when a search string is formed:

PIP COM:=TEXT.TXT[Q people<CONTROL> Z]

You can of course combine [S] and [Q] in a single transfer:

PIP CON:=TEXT.TXT[S hungry<CONTROL>Z Q people<CONTROL>Z]

If the search string is not contained in the source file, one of the following
error messages appears:

ERROR: START NOT FOUND

(or)

ERROR: QUIT NOT FOUND

91

Abacus Software C-128 CP/M User's Guide

6.8 Printing data files

We already talked about toggling the printer to get hardcopy. By pressing
<CONTROL> P, screen output is sent to the printer. To print a file you

could do the following:

<CONTROL>P toggle printer on

TYPE TEXT.TXT list file

<CONTROL>P toggle printer off

An alternate way to do this is to use the P IP option to transfer the file to the

printer. The printer is designated by the LST: device, so you can enter:

PIP LST:=TEXT.TXT

Of course, you can also print multiple files one after the other:

PIP LST:=TEXT1.TXT,TEXT2.TXT,TEXT3.TXT

Other options are available to insert line numbers, set TABs, and eject a new
page every 60 lines. We'll see these options later.

92

Abacus Software C-128 CP/M User's Guide

6.9 Automatically backing up data files

As you use CP/M, you'll find yourself creating and modifying many
different files. Then, in case one of the files is accidentally (or deliberately)
destroyed, you will still have a backup copy of your data.

CP/M has a method to help you organize your backup copies.

Each file has what is called an archiveflag. A file's archive flag indicates if

a backup has been made using pip. When a file is created or updated, its

archive flag is set to 1. When a backup is made, the flag is reset to 0.

Usually backups are time-consuming, because copies are made of each file.

You can save time by using the [A] option of PIP, which copies a file
only if the file is new or is changed—that is, if the file's archive flag is 1.

To make a backup copy of the new or changed TXT files, enter::

PIP B:=A:*.TXT[A]

This copies any TXT files to the diskette in drive B if the archive flag is 1.

You'll probably want to insure that the copies are transferred without error,
so you can use the [V] option:

PIP B:=A:*.TXT[AV]

If you display the directory of the diskette in drive A using:

DIR[FULL]

then the keyword arcv appears under the attributes indicating which files
were backed up.

93

Abacus Software C-128 CP/M User's Guide

6.10 Overwriting without prompts

Normally PIP overwrites a file on a destination diskette if the filename is
the same as the one that is being transferred. But if the file on the destination
diskette is protected by the RO attribute (SET command), then the following

message appears:

DESTINATION FILE IS R/O, DELETE (Y/N)?

You can overwrite the file by pressing Y, or abort the operation by pressing

N.

To avoid having to respond to this prompt, you can use the [W] option of

pip. For example:

SET TEXT.TXT[RO]

PIP TEXT.TXT=NEW.TXT[W]

will allow the file TEXT. TXT to be overwritten, even though it has been

previously set to read only.

94

Abacus Software C-128 CP/M User's Guide

6.11 Copying system data files

PIP normally cannot copy a file with the SYStem attribute. By using the

[R] option, PIP is able to find the SYSTEM file. To copy a diskette with

SYSTEM files enter:

PIP B:=A:*.COM[R]

To determine if system files are contained on a diskette, use the DIRSYS

command.

6.12 Tidying up the 8th bit

ASCII characters can be coded in seven bits of an eight-bit byte. The eighth

bit is unused.

Some programs such as WordStar® use the eighth bit for special purposes.

Other programs require the eighth bit to remain unused—for example,

MBASIC®, the BASIC interpreter for CP/M. If you use WordStar

document mode to edit a MBASIC program, the program will not run

correctly, since WordStar uses the eighth bit. You can fix this problem

using PIPfs [z] option:

PIP NEWPROG .BAS=BADPROG . BAS [Z]

This "strips" any used eighth bits from the file BADPROG.BAS as it

transfers the contents to NEWPROG. BAS.

95

Abacus Software C-128 CP/M User's Guide

6.13 Practical examples

In this final section of this chapter, well cover a few examples using pip

in various "real-life" applications. YouVe gotten to know various pip

options and also learned that you can use them together.

To get hardcopy you can enter:

PIP LST:TEXT.TXT[NT8P60]

The file TEXT . TXT is printed to the LST: device. Each line is numbered

[N], the tabs are set at column 8 [T8], and each page will contain a

maximum of 60 lines of text [P 60].

To display the text in lowercase, enter:

PIP LSTrTXT.TXT[NT8P60L]

Here we've added the [L] option to do this.

Suppose you want to back up files on a daily basis. To do this you enter:

PIP A:=B:*.*[WAR]

The option [WAR] works as follows: the [R] option copies the system

files, the [W] option overwrites any read only files, and the [A] option

copies only files that have not been previously copied.

You can create a submit file (let's call it ARCHIVE . SUB) containing the

above command. A SUBMIT file is a text file containing one or more

commands. Then we can enter the command:

SUBMIT ARCHIVE

This takes the text from the file ARCHIVE. SUB and performs the

commands as if they were entered at the keyboard. To create

archive. SUB, enter:

A>PIP <RETURN>

*ARCHIVE.SUB=CON: <RETURN>

PIP A:=B:*.*[WAR] <CONTROL> Z

96

Abacus Software C-128 CP/M User's Guide

Next you can SUBMIT this file. This will transfer the files that have not

been backed up from the B drive to the A drive.

You can also enter:

SUBMIT ARCHIVE [E]

and the commands contained in the SUBMIT file are echoed to the screen.

Naturally you can put other commands such as DIR and SHOW in the

SUBMIT file. This lets you see which files and how many files are copied,

as well as the amount of space contained on the destination diskette.

The 128 has several more device designations than other CP/M systems

have, because of its 40- and 80-character screens. These designations are

as follow:

KEYS

40COL

80COL

PRT1

PRT2

keyboard of the Commodore 128

40 character screen

80 character screen

serial printer (device number 4)

serial printer (device number 5)

Dwing notations for input and output are available:

CONIN:

CONOUT:

AUXIN:

auxout:

LST:

KEYS

80COL (40COL)

Null Device

Null Device

PRT1

Note that the standard printer output is to a serial printer, which has the

device address 4.

97

Abacus Software C-128 CP/M User's Guide

6.14 Summary

• P IP is one of the most powerful CP/M utilities

• You can transfer a single file to another diskette

• You can copy an entire diskette onto another

• You can merge several files into one

• You can extract a section of a file

• You can automatically number the lines of a text file

• You can automatically back up altered files

♦You can convert uppercase letters into lowercase letters and vice versa

• You can copy between USER areas

98

Chapter 7

CP/M components

7.1 CP/MontheC-128
7.2 System diskette for 1571

7.3 Virtual disk drive E

7.4 TheCOPYSYS command

7.5 The status line
7.6 1571 disk formats

7.7 The keyboard

7.8 Keyboard values
7.8.1 Disabling/enabling 80-column color selection
7.8.2 Changing a key's ASCII value

7.8.3 Defining the function keys

7.9 keyfig functions and uses

Abacus Software C-128 CP/M User's Guide

7.1 CP/M on the C-128

CP/M 3.0 is supposed to be identical for all computers, yet there are often
unique features of the hardware and architecture of the machines require
special adaptations of the CP/M functions.

One of the most obvious differences between the 128's CP/M 3.0 and
others is that their system diskette is special. This diskette can be read by
either the 1541 or 1571 disk drive. One drawback of this arrangement is that
the 1571 is not able to access both sides of the diskette without the user

removing it and flipping it over to its other side. COM files are located on

both sides of the diskette, yet they may be accessed only in the 157 Ts

one-sided mode. More about the 1571 next.

7.2 System diskette for 1571

To take advantage of the 157 Ts greater storage capacity you need to do a
little extra preparation. First of all, you must format a diskette as

double-sided. Type:

FORMAT

The following appears on the screen:

Please select disk type to format

C128 double sided

C128 single sided

C64 single sided v

Use the cursor keys on the upper row of the keyboard to select C12 8

double sided and press the <RETURN> key. Then insert a blank
diskette into the drive. Press the $ key only when you are sure that it is safe

to format the diskette in the drive.

After this is done, you will copy both sides of the original system diskette to
the new system diskette. Place the original with the label "128 CP/M

SYSTEM DISKETTE" in drive A and type:

PIPE: =A: * . * if you have one drive

(or) PIP B: =A: * . * if you have two drives

101

Abacus Software C-128 CP/M User's Guide

If you are using one drive, you are asked to change diskettes several times.
Follow these instructions, keeping in mind that the destination diskette E is
the newly formatted one.

After the first side of the original has been copied, you must copy the
second side. To do this, insert the original system diskette into the drive
with the label facing down and enter:

PIP A: =E: *. * if you have one drive

(or) PIP B: = :E:*.* if you have two drives

After you finish, you will have a double-sided system diskette. Use this
diskette with your 1571 and take advantage of the greater storage capacity
and convenience of a double-sided disk.

102

Abacus Software C-128 CP/M Users Guide

73 Virtual disk drive E

By design, the C-128 allows you to use up to four disk drives. In 128

mode, these are assigned device numbers 8, 9, 10 and 11. Under CP/M

these devices have the identifiers A:, B:, C:, and D:, respectively.

YouVe already been introduced to drive E in Chapter 3. But what is a

virtual drive? Virtual refers to something which appears to exist, but really

doesn't. The fifth drive may be addressed, but doesn't really exist except in

internal memory. The data on drive E resides in memory until it is copied to

a physical diskette in drive A. CP/M differentiates between drive A and drive

E and knows if it is to address the real drive A or pretend to address virtual

drive E. It alternates between drive A and drive E by prompting you to

change diskettes when necessary.

By using the virtual drive, you can use PIP to copy files even though you

only have a single real drive. If you have two disk drives, you have a great

advantage over those users with only one. For instance, copying is much

faster, and you can access much more storage capacity at one time. By all

means make full use of this second (or even third or fourth) disk drive. But

even if you have these advantages, sometimes it's faster and easier to use

the virtual drive.

103

Abacus Software C-128 CP/M User's Guide

7.4 The COPYSYS command

With other CP/M computers, the operating system programs are located on

tracks 0 and 1, and are copied with the COPYSYS command. On the C-128,

the operating system is contained in the files named CPM+. SYS and

CCP . COM. You can copy these to another diskette using PDP.If you run the

COPYSYS command, you will see that this command is not available for

the !128. Instead, you should do the following to copy the system programs

to a new diskette in drive E:

FORMAT

PIP E:=A:CPM+.SYS

PIP E:=A:CCP.COM

After FORMATing and Piping the system files, you will be able to start

(boot) CP/M with the new diskette. Since it doesnft contain any transient

commands, copy the COM files from the original to the new system diskette.

104

Abacus Software C-128 CP/M Userfs Guide

7.5 The status line

The last line on the screen is called the status line. The information here are

messages that CP/M displays. For example, when using the virtual drive,

CP/M displays a prompt on the status line asking you to insert the A diskette

or E diskette.

Disk information is displayed in the lower righthand corner of the screen.

The format of the information is as follows:

0 Dtt ss

The symbols used above have the following meanings:

0 = Operation: (R)ead or (W)rite

D = Drive being accessed (A, B, C, or D)

tt = two-digit track number / track presently being read or written

s s = two-digit sector number / sector presently being read or written

The display changes as the disk operation changes.

Track and sector numbers are separated by a space. If the diskette has been

formatted in the MFM-format (a double-sided disk) and you are accessing

the second side, the track and sector displays are separated by a dash (-).

If you do not want to display this disk status, you can turn it off (80-column

only) by pressing <CONTROL> <RUN/STOP>. The <CONTROL> key

must be held down while pressing <RUN/STOP>. To reactivate the

display, simply press the same key combination.

You cannot display your own messages on the status line. This is reserved

for use by CP/M.

You can echo the last command that you manually typed at the keyboard by

pressing the I (cursor-down) key on the bottom row. The separate cursor

block on the upper right of the keyboard will be excluded here, because it
has another important function. For instance, if you have entered the

DIR*.* command and pressed <RETURN>, you can press the
cursor-down key and the command will be redisplayed below—but without
the <RETURN>. This is so you can make any necessary changes in the

command before it is executed.

105

Abacus Software C-128 CP/M User's Guide

7.61571 disk formats

The 1571 disk drive is capable of reading various diskette formats.

The 157 l!s controller can be programmed to read and write different

formats, unlike the earlier 1541 drives. You can use the following diskette

formats with the 1571 drive:

Osborne DD (1024 bytes/sector, single sided, 5 sectors/track)

Epson QX10 (512 bytes/sector, double sided, 10 sectors/track)

IBM-8 SS (CP/M 86) (512 bytes/sector, single sided, 8 sectors/track)

IBM-8 DS (CP/M 86) (512 bytes/sector, double sided, 8 sectors/track)

KayPro II (512 bytes/sector, single sided, 10 sectors/track)

KayPro IV (512 bytes/sector, double sided, 10 sectors/track)

Thus six different formats are directly supported.

As you've probably noticed, the drive motor spins shortly after you insert

the disk and close the door. The disk drive is attempting to identify the

format of the disk. To do this, the drive checks bytes per sector, and sectors

per track. If this isn't sufficient to identify the format, a small box in the

lower left-hand corner of the screen shows the possible formats. You may

then select the correct format by scrolling through the list of choices. Use

the <r- or -» (cursor left and cursor right keys) to view the choices.

When you have scrolled to the desired format, confirm the selection by

pressing <RETURN>. If you wish to use that format exclusively, hold the

<CONTROL> key while pressing <RETURN>. This way CP/M knows

which format is being used, and will not ask you to enter the correct one

each time you switch diskettes.

106

Abacus Software C-128 CP/M User's Guide

7.7 The keyboard

The 128 keyboard functions differently under CP/M than in 64 or 128

mode.

For example,the cursor keys do not work the same as they do when using

BASIC. Pressing the cursor down key on the bottom row of the keyboard

redisplays the command last entered. But the cursor down key on the top

row of the keyboard has no effect.

You can re-boot the CP/M system from the keyboard by pressing

<CONTROL> <ENTER>. Note that the <ENTER> key is part of the

numerical keypad.

Each key on the 128 may have up to four different values. A key's value

may be: unshifted, shifted, control, and caps lock. The shifted value is not

always the same as the caps lock value. When you enter an unshifted value,

make sure that the caps lock key is in the "up" position. The characters

appearing on the screen should then be lowercase. The <40/80 DISPLAY>

key has no effect on the key values.

A shifted value is produced by holding the <SHIFT> key and pressing the

desired key.

A control value is produced by holding the <CONTROL> and pressing the

desired key.

To enter the "simulated" caps lock mode, press the Commodore key (C=).

In this mode, only letters will be shifted. Numbers and other characters

remain unshifted in "simulated" caps lock mode.

Using an 80-column monitor, you can change the background and cursor

color. To change the cursor color, press a number keys on the top row of

the keyboard in combination with the <CONTROL> key. The cursor will

change color correspondingly.' To change the background color, press a

number key on the numerical keypad in combination with the <CONTROL>

key. These colors correspond to the colors used in BASIC.

107

Abacus Software C-128 CP/M User's Guide

7.8 Keyboard values

The 128's keyboard is very flexible under CP/M. You can essentially assign

a new value to each key.

We've already noted that CP/M uses the ASCII character set. These

characters have values from 0 to 127. Any value greater than 128 ($80) in

hexadecimal has a different use—it may set the colors of the screen display

or substitute a predefined string of characters. Here's a list of these values:

8 0 - 9F predefined strings 0-15

A0 -AF 80-character foreground colors

B0 -BF 80-character background colors

C0 -CF 40-character foreground colors

D 0 -DF 40-character background colors

E0 -EF 40-character border color

F 0 -FF special functions

7.8.1 Disabling/enabling 80 column color selection

You can change the foreground color on a 80-column color monitor with

<CONTROL> <top row nwnber> combination. You can also change the

background color with the <CONTROL> <numerical keypad number>

combination. When you press one of these key combinations, a value of

160-167 or 176-183 is produced that changes either the screenfs foreground
or background color.

To disable this color selection, you can press the following key

combination:

<CONTROL> <RSHIFT> <ALT>

<RSHIFT> is the right <SHIFT> key. You must use the right <SHIFT>

key and not the left one. All three keys must be pressed simultaneously to

disable the color selection.

108

Abacus Software C-128 CP/M User's Guide

After pressing this key combination, you cannot change the screen!s

foreground or background color with <CONTROL> <top row number> or

<CONTROL> <numerical keypad nwnber>.

You can re-enable the foreground/background color selection by entering

the <CONTROL> <RSHIFT> <ALT> combination again. This key

combination acts as a toggle. Press the combination once and it disables.

Press the combination again and it enables.

If you disable the color selection, the <HELP> is also disabled.

7.8.2 Changing a key's ASCII value

When you press a key or a combination of keys (such as <SHIFT> <A> or

<CONTROL> <C>), CP/M encodes the key's physical location on the

keyboard to a numerical value ranging from 0 to 255 ($00 to $FF

hexadecimal).

For example, when you press the space bar, CP/M recognizes that the long

key on the bottom row of the keyboard was depressed. CP/M associates

this key with a value of 32 ($20 hexadecimal).

Under CP/M on the f128, you can change the encoding of each key. Using

what well call the keyboard editor, you can change CP/M so that pressing

the space bar produces the value normally associated with the letter "A"

(65=$41).

To use the keyboard editor, enter:

<CONTROL> <RSHIFT>< <->

The key denoted as < <-> is the cursor left key on the top row of the

keyboard.

Next press the key whose value you want to change. For example, press the

space bar. A highlighted area on the status line appears:

CSZIII

109

Abacus Software C-128 CP/M User's Guide

The value 20 is a hexadecimal number and represents the space bar!s current

value. This value is what we normally expect to see, since a space has an

ASCII value of 32 ($20 in hexadecimal). To change the space bar so that it

will produce the value for the letter HAlf, enter a new value: 41. The

highlighted area will disappear from the status line. You have now exited

the keyboard editor.

Now let's try out the key board to see if the change was effected. Press the

space bar. The letter A will appear on the screen at the cursor. This isn't a

very useful change, since you now have no way of entering a space. Enter

the keyboard editor again and undo the change. Press:

<CONTROL> <RSHIFT>

Now the current value of the space bar is displayed:

Gt&iio 1

Change the value back to its original value 20 and the keyboard is back to

normal.

As you have noticed, all values are displayed and entered in hexadecimal
notation. See APPENDIX A for a complete list of the characters and their

values in hexadecimal notation.

Changing the space bar to produce the letter "A11 wasn't very useful. Let's

try another example that will be of more use to us. Recall that a key value

greater than 127 has a different use than the ASCII values. On a 80-column

color monitor, you can normally change the background to one of eight

different colors. Actually, it is possible to select from 16 different colors.

Each different background color is represented by a value from

$B0 to $BF (or $D0 to $DF for 40-column screens).

To select the first eight colors, you press <CONTROL> <nwnber>, where

<number> is a number on the numerical keypad. For example, the key

combination <CONTROL> <1> produces the value $B0 and changes the

background color to black. But we are limited to eight colors with the

<CONTROL> key combination.

110

Abacus Software C-128 CP/M User's Guide

We can use the keyboard editor to be able to select the other eight colors. If

we decide to use the <SHEFT> <number> key combination, and assign

these to values between $B8 and $BF, then the other eight background

colors are available.

Enter the keyboard editor:

<CONTROL> <RSHIFT> «->

Now press <CONTROL> <1>, keeping in mind that <1> is on the

numerical keypad The following is displayed:

Change this key combination's value to B 8 . You have now added the

background color selection for the <SHIFT> <1> key combination. You

can add the other seven background colors similarly.

7.8.3 Defining the function keys

If you press a function key, a text string appears on the screen. By default,

the function keys are assigned the following string values:

Fl

F2

F3

F4

F5

F6

F7

F8:

Fl

F2

dir<CR>

dir

F5

F6

F7

6Dec85 (may differ on your system)

Pressing <F1> produces the value $80, <F2> produces $81, and so on.

Pressing <HELP> produces $9F. As CP/M recognizes a keyboard value

from $80 to $9F, it substitutes a string.

Ill

Abacus Software C-128 CP/M User's Guide

For example, when you press <HELP>, the value $9F is produced, in

which CP/M substitutes the text "Help." You can redefine the text

associated with each of the values $80 to $9F by using the function key

editor.

To use the function key editor, enter:

<CONTROL> <RSHIFT> < -»

where < —» denotes the cursor right key on the top row of the keyboard.

A highlighted area appears on the status line of the screen. Now press the

key <HELP>, or <F1> to <F8>, whichever key you wish to change the

text of. For this example press the <HELP> key, and the following appears

on the status line:

\ms - J

The symbols > and < are the start and end of the text. A block cursor is

positioned over the first character of the string H. For now, don't press any

of the keys. Well first explain explain the purpose of some of the keys.

Key combination Function

<CONTROLxRSHIFT><-> > move cursor right

<CONTROL> <RSHIFT> < <- > move cursor left

<CONTROL> <RSHIFT> < + > insert space at cursor

<CONTROLxRSHIFT>< - > delete character at cursor

<CONTROL> <RSHIFT> <RETURN> end function key editor

To change the text of the <HELP> key to Mdir a:", simply type the letters

and the screen will look like this:

112

Abacus Software C-128 CP/M User's Guide

If you press <RETURN> without holding <CONTROL> <RSHIFT>, a

carriage return is inserted into the text (it appears as a lowercase m). Then
exit the function key editor with the key combination:

<CONTROL> <RSHIFT> < RETURN>

Now every time you press the <HELP> key, you will display the directory

of the A drive. You'll notice that you can assign text strings to any value
form $80 to $9F. Therefore you can define up to 32 different text strings.
To invoke these strings you will have to use the keyboard editor (discussed
in the previous section) to assign one of these values to the desired key.

For example, some printers aren!t able to print the symbol £. You could

substitute the string "Pounds sterling'1 for the symbol. To do this,
first change the key value of the £ key from its normal value $23 to one in
the range $80 to $9F. Let's change it to $99.

Do this by using the keyboard editor:

<CONTROL> <RSHIFT> < *->

and pressing the £ key. You'll see the following on the status line:

Enter the new value 9 9. Now you can edit the text string that is associated

with "pseudo function key" £. Press the following:

<CONTROL> <RSHIFT>

and then press the £ key. You will see:

Type the words "Pounds sterling" and then press:

<CONTROL> <RSHIFT><RETURN>

113

Abacus Software C-128 CP/M User's Guide

The highlighted area in the status line disappears as it accepts the new text

string. Now if you press the £ key, the words Pounds sterling

appear. YouVe successfully programmed a new function key!

Here is a complete list of the functions and their hexadecimal codes:

$80

$81

$82

$83

$84

$85

$86

$87

$88

$89

$8A

$8B

$8C

$8D

$8E

$8F

F 1

F 2

dir<CR>

dir

F 5

F 6

F7

6 Dec 85

F9

F10

Fll

Screen left

Screen right

Screen left

Screen right

F16

$90

$91

$92

$93

$94

$95

$96

$97

$98

$99

$9A

$9B

$9C

$9D

$9E

$9F

F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F28

F29

F30

F31

HELP

From the table above, it appears that the text strings for codes $8B to $8E or
omitted. Actually, these codes are used to scroll the 40-column screen

horizontally.

114

Abacus Software C-128 CP/M Userfs Guide

In the following table, the values $F0 to $FF are reserved for special
functions. These special functions, which are defined for the 128fs CP/M,
are as follow:

$F0

$F1

$F2

$F3

$F4

$F5

$FF

turn disk status on/off

pause/unpause display

40-column

left screen (40-column)

right screen (40-column)

MFM unlock

reboot system

To invoke code $F0, press <CONTROL> <RUN/STOP>. This causes the
disk status line to disappear.

To invoke code $F1, press the <NO SCROLL> key. Pressing it once
temporarily halts the display of information on the screen and displays
PAUSE on the status line. Pressing it a second time reactivates the display.

To invoke code $FF, press <CONTROL> <ENTER>. This is the
equivalent to turning the computer off and then on again.

115

Abacus Software C-128 CP/M User's Guide

7.9 keyfig functions and uses

Both the keyboard editor and function editor described in the previous
section are resident. You may use either at any time. However, if you
frequently change key values or "program" the function keys, you'll soon

realize that these are time-consuming tasks.

Therms another way to change the key values and program the function

keyS—by using the keyfig transient command.

Make sure the system diskette is in the logged drive and enter KEYFIG
<RETURN>. The following will appear on the screen:

C128 SOFT KEYBOARD PROGRAM

3 Jan 1986

Welcome to the Commodore C128 Keyboard

Definition program. Do you want help?

You should never refuse an offer for help, especially if you are using a

command for the first time. Enter Y for Yes to display the following menu:

Help is available on the following topics:

—>done help<—

—>General Usage<—

—>Setting up your work file<—

—>What to do with your work file<—

—>Key values<—

—>Selecting a key to edit<—

—>Logical/Physical colors<—

—>Editing keys<—

—>Assigning/Editing strings<—

—>Assigning colors<—

—>Assigning special functions<—

—>Assigning hex values<—

—>Finishing up<—

—>For experts only<—

Use the up and down arrow keys to scroll

through the menu; type the <RETURN> key

to select the topic on which you want help.

116

Abacus Software C-128 CP/M User's Guide

Many of the headings are self-explanatory, but even so you may want to
read each of them, in order to gain a better understanding of keyfig.
Select the desired function by scrolling up and down with the cursor up and

cursor down keys (T and i on the top row of the keyboard).

To confirm the selected function (highlighted), press <RETURN>. The

option-->For experts only<— will tell you that the <CONTROL>
<RSHDFT> combination is considerably faster. Once you have had enough

help, select —>done help<—, and KEYFIG will continue.

If you want to make changes in your keyboard layout (i.e., define function
keys, simulate foreign keyboards, etc.), you'll need a way of saving these
definitions, to avoid having to make the changes over and over again.

KEYFIG can save the changes permanently. After you exit the >Help<
mode, the following display appears on the screen:

From which of the following sources of

key definitions would you like to work?

Default definitions

Definitions on the CP/M boot disk

Current definitions

(Your previous work file)

Choose the set of key definitions you want to work with by using the cursor
keys. The option in parenthesis will not appear if you are booting CP/M for
the first time. Depending on the option you choose, the system will or will
not retrieve the new keyboard definition from the diskette. The third line
indicates which keyboard definitions are being used.

To find out how easy it is to use KEYFIG, choose the second option when
the following menu is displayed:

Edit a key definition

Set up logicaK—->physical colors

Exit and save your work file

If you are using an 80-column color monitor, the pallette of colors are
displayed. These colors represent logical (key-defined) and physical colors.
You may rearrange this list of colors by simply entering their
correspondingly letters. The changes are displayed immediately.

117

Abacus Software C-128 CP/M User's Guide

To change the key definitions, choose the option Edit a key

definit ion/The following menu appears:

Editing: no key

This key has the 4 values shown below:

normal—*

CMDR SHFT^

SHIFT -»

CTRL -^

(done editing-exit and save work file)

Here too, you select the desired option by using the cursor keys on the top

row. If a key is pressed, its four values appear on the screen. CMDR SHFT

on the screen display (<C=> <SHIFT>) is equivalent to <CAPS LOCK>.
(Remember, the <CAPS LOCK> key is inoperative under CP/M).

One of the impressive features of KEYFIG is its ability to describe in text
what it cannot display. For example, it can describe the left-arrow located in

the upper lefthand corner of the keyboard as LEFT ARROW next TO 1.

Thus a key like <DELETE>, for which an ASCII code can't be displayed,

is described in text. For example, the text for the <DELETE> key is

RUBOUT. If you wish to change one of the four definitions per key, move

the marker to that option and press <RETURN>.

ASSIGN a STRING (more than 1 character)

ASSIGN new (single) character

ASSIGN a COLOR

ASSIGN hex value

ASSIGN a SPECIAL FUNCTION

don't modify this key

KEYFIG allows you to save these modifications. You may save the changes

on the system diskette or a separate diskette. If the changes are saved on the

system diskette, they are loaded automatically when CP/M is rebooted.

118

Abacus Software C-128 CP/M User's Guide

To save your keyboard changes, select the following options:

Exit and save your work file

on CP/M boot disk

After the changes are saved, KEYFIG will ask:

Do you want to do anything else []

Answer Y or N as appropriate. To exit KEYFIG at any time, you can press

<CONTROL> C KEYFIG asks you to confirm this so that you don't exit
the command accidentally.

119

Chapter 8

f Additional utilities j

8.1 The assemblers mac and rmac
8.2 Using the mac assembler
8.3 Working with SUBMIT
8.4 The memory layout

Abacus Software C-128 CP/M User's Guide

Additional utilities

In this chapter we'll take a look at several utilities. These utilities are part of
the CP/M development package available from Digital Research.

If you're a beginning CP/M user, you might want to skip this chapter. In
fact, this chapter might be renamed "CP/M for Advanced Programmers".

The CP/M development package includes an assembler, disassembler,
monitor, and other utilities for the CP/M machine language programmer.

We'll take a look at some of these utilities shortly.

123

Abacus Software C-128 CP/M User's Guide

8.1 The assemblers MAC and RMAC

MAC and RMAC are both assembler programs. They are successors to the

original ASM assembler distributed by Digital Research.

MAC is a macro assembler. RMAC is a variation of MAC that generates

relocatable object code. Relocatable code is machine code that can be
executed from any location in the computer's memory.

The three assemblers do their work in 8080 code. Two LIB files containing
several macros are included with the development package.

One LIB file is called Z80 .LIB and the other X6502 .LIB. Using these

LIB files, you can assemble Z-80 mnemonics with MAC and RMAC,
although most of the opcodes still look like 8080 mnemonics. For example,

the ld HL, 0 instruction must be coded as LXI H 0. Additional Z-80
instructions are added to the 8080 instructions—examples are relative

jumps, the IX and IY registers, and the exchange register instructions.

You can list these mnemonics by entering:

TYPE Z80.LIB

You can program in 6502 machine language using the other macro library.

The development package actually contains two assemblers. Let's look at

the MAC assembler first. First a little background. The 8080 processor is
the predecessor to the Z-80 contained in the '128, and in a certain sense is

its "parent." The Z-80 can execute programs that the 8080 understands, but
has a larger vocabulary (or instruction set) and different mnemonics.

Mnemonics are the notations for the machine language instructions used in

writing assembly language programs.

As you know, a machine language consists of a line of binary numbers. For

example, the Z-80 processor understands the instruction $41 and can

execute it. But it's very difficult for a human to associate this number with
any particular instruction or function. Mnemonics are used to represent

these machine codes and make them easier to understand. With the Z-80,

the mnemonic for the instruction $41 looks like this:

LD B,C

124

Abacus Software C-128 CP/M User's Guide

This mnemonic has a specific meaning to the machine language
programmer. It makes programming much easier, because you don't have

to keep referring a table to find out what code $ 41 does.

But the processor can't do anything with the mnemonic LD b, C. The
assembler's task is to convert these mnemonics, which humans understand,
to codes that the computer can understand. The assembler acts as a sort of

interpreter, translating the human language into machine language. The MAC
assembler also supports the user in other ways, which we'll mention later.

We've mentioned that the older 8080 processor is the parent of the Z-80.
You also know that the Z-80 has more instructions that the 8080. This is
important to know, since all CP/M programs must be written in 8080 code.

This is because there are many CP/M computers equipped with the earlier
8080 processor. Consequently, a Z-80 programmer is limited to those
commands that the 8080 can understand. This precludes some quite useful
Z-80 instructions.

On the Z-80, the code $41 represents the following mnemonic:

LD B,C

On the 8080, this same code represents this mnemonic:

MOV B,C

Either represents the same operation: transfer the contents of the C-register
to the B-register. The operations are identical; the notations are different.

125

Abacus Software C-128 CP/M User's Guide

8c2 Using the MAC assembler

One of the problems youll encounter in machine language programming is

in referencing memory locations when performing instructions like loading

or saving a register. Another common problem is keeping track of memory

location jumps. For instance, suppose you write a program that starts at

memory address $5000, and later want to move it to address $4000. You'd
have to change all jump addresses (except for the relative jumps) within the
program. If you insert a new instruction into a program, all of the relative

jumps and all other jumps are shifted. It would be nerve-wracking to try to

keep track of all these addresses.

To make this work easier, the MAC assembler allows us to define labels.
Labels are transformed into actual memory addresses during the assembly.

With labels, it's no longer a problem to insert a new instruction at or to

move a routine to a different memory location—the assembler does all the

work for you.

The MAC and RMAC assemblers allow you do this and much more. The

"Additional Utilities" diskette contains these programs. Insert it into drive A.

List the directory:

A:

A:

A:

A:

LIB

CBDOS3

CALLVERS

TRACE

COM :

SPR

; ASM :

UTL ;

: LINK

: BNKDOS3

DUMP

; READ

Notice the file named dump

COM :

SPR

COM

ME

.COM.

DUMP

: MAC COM :

: CRESBDOS3 SPR :

: ZECHOVERS ASM :

The syntax for this

<filename>

RMAC COM :

HEXCOM COM :

RANDOM ASM :

command is:

SID COM

XREFCOM

HISTUTL

DUMP displays the contents of the specified file in hexadecimal format (hex

dump). To see a sample dump display, enter:

DUMP DATE.COM

The file contents of dump.COM is displayed on the screen. You can pause

the scrolling output by pressing <CONTROL> S and start it again with

<CONTROL> Q. Alternatively, you can use the <NO SCROLL> key,

which you might find more practical. You can terminate the output by

pressing <CONTROL> C.

126

Abacus Software C-128 CP/M User's Guide

dump .ASM is the assembly language source program for the dump

command. You can display the ASCII contents of this file on the screen (or

printer) if you wish. Enter:

TYPE DUMP.ASM

The program header is the Digital Research copyright notice (the original

developers of the CP/M operating system).

Here is a small example of what appears on the screen when you DUMP a

COM file:

00A0 00 C9 3A 13 02 FE 80 C2 B3 01 CD CE 01 B7 CA B3

00B0 01 37 C9 5F 16 00 3C 32 13 02 21 80 00 19 7E B7

00C0 C9 AF 32 7C 00 11 5C 00 0E OF CD 05 00 C9 E5 D5

00D0 C5 11 5C 00 0E 14 CD 05 00 Cl Dl El C9 46 49 4C

00E0 45 20 44 55 4D 50 20 56 45 52 53 49 4F 4E 20 31

00F0 2E 34 24 0D 0A 4E 4F 20 49 4E 50 55 54 20 46 49

0100 4C 45 20 50 52 45 53 45 4E 54 20 4F 4E 20 44 49

Now here's a short example of an assembler listing:

console status function?

no, then just exit

yes, update the time

update$clock:

mov

cpi

jnz

lxi

dad

shld

lxi

a,c

11

next

h,0

sp

ret$stack

sp,local$stack

This is a good comparison of the assembly language source program (.ASM)

and the hexadecimal machine language display (. COM). It's obvious that the

assembly language source is much more readable. You can even insert

comments into the assembly language source to describe the program.

These comments start with a semicolon so that the assembler knows it

should ignore these lines of text. Otherwise the assembler would try to

assemble them, and cause numerous errors in the process.

The dump . ASM program may appear to be very long, but it's actually quite

short for an assembly language source code listing. Consider that the

operating system is written in assembly language—when printed out it can

127

Abacus Software C-128 CP/M User's Guide

reach a full 2000 pages in length. Even programs like the word processor

TEXTOMAT can easily reach 400 to 500 pages.

As you can see, programming in machine language can be a very

time-consuming process. Our goal here is to assemble a program to

demonstrate the operation of the assembler.

Copy DUMP .ASM to your the backup copy of the Additional Utilities

diskette. Make sure that your diskette is not write-protected, since we have

to write to the diskette on which the source code is located. You have made

a backup-copy of your CP/M diskette, haven't you? (If not, do so quickly).

To assemble this source program, enter:

MAC DUMP

Notice that you don't have to specify the filename extension. You don't

have to type DUMP. ASM, because the assembler automatically appends the

extension .ASM. The following display appears on the screen:

CP/M MACRO ASSEM 2.0

0257

002H USE FACTOR

END OF ASSEMBLY

A>

The assembler quickly creates three files:

• An assembler listing named DUMP. PRN

• A hexadecimal file called DUMP . HEX

• A symbol table named DUMP . SYM

Take a look first at the assembler listing by entering:

TYPE DUMP.PRN <RETURN>

Here's an illustration of what should appear on your screen:

128

Abacus Software

0112

0115

0118

011B

011D

0120

11F301

CD9C01

C35101

3E80

321302

210000

LXI

CALL

JMP

MVI

TA

LXI

D,OPNMSG

ERR

FINIS

A,80H

IBP

H,0

C-128 UF/M US

;TO RETURN

;OPENOK:

;OPEN OPERATION OK,

;SET BUFFER INDEX TO END

/SET BUFFER POINTER TO 8OH

;HL CONTAINS NEXT ADDRESS TO

/START WITH 0000

>er s uuiae

PRINT

The assembly language program is listed with all of the information added
by the assembler. The first column lists the address at which the code is
located—if a label is defined, the first column contains the value of the

label. The program starts at address $0100 and ends at $02 57. As a
result we know the meaning of the number the assembler printed (see

above). Most CP/M programs begin at address $0100.

After reviewing the assembler listing, or printed out a hardcopy, look at the
second file created by the assembler. Enter the following:

TYPE DUMP.HEX <RETURN>

Her!s an illustration of what should appear on your screen:

:100130004401CD7201CD59010FDA51017CCD8F01FF

:100140007DCD8F01233E20CD650178CD8F01C32366

:1001500001CD72012A1502F9C9E5D5C50E0BCD05Fl

:1001600000ClDlElC9E5D5C50E025FCD0500ClDl01

:10017000E1C93E0DCD65013E0ACD6501C9E60FFE20

:100180000AD28901C630C38B01C637CD6501C9F5D6

A set of numbers is displayed. These are the program codes (opcodes).

Other information is displayed, such as the address to which the code will

later be moved. This file is already considerably shorter than the

DUMP . PRN file. There is also a symbol table with the extension .SYM.

But we still can't execute this machine language program, since it isnft a

COM file. There is another program called HEXCOM that creates a COM file

from a hex file. To do this enter:

HEXCOM DUMP

129

Abacus Software C-128 CP/M User's Guide

Notice that an extension is not entered. HEXCOM automatically adds the
extension .hex. The screen then displays:

HEXCOM VERS: 3.00

FIRST ADDRESS 0100

LAST ADDRESS 0212

BYTES READ 0113

RECORDS WRITTEN 03

You have just created a COM file, the file DUMP . COM. We can execute

DUMP. COM by simply entering:

DUMP DUMP.COM (displaysitself)

Next we'll discuss a few things about the assembler, so that you can use it

properly. The source programs for the assembler are ASCII text files. Each
line of text has the following format:

<line nuwberxlabel>: <mnemonic><argument> / <comment>

The <line number> is optional. It need not be present, as in our example. It

is ignored by the assembler, and used here only because some text editors

(such as ED) automatically insert line numbers. The <mnemonic>: is also

optional, but if used must be placed at this location. The <mnemonic> and

the <argument> must be included in all assembler source lines, unless the

line is a line of comments.

The assembler converts lowercase letters to uppercase before processing

them. This simplifies programming greatly. The one exception to this rule is

the letters between quotation marks representing a fixed string—these letters

are left in lowercase, as in the following instruction:

DB "File Dump Version 1.4"

The individual components of an assembler source line are separated by at

least one space. It is standard practice to begin the line with the <label> (far

left) and then use the editor to TAB to the next components. This is not

required, but it improves the readability of the program. The program listing

will be in neat columns, like in this example:

130

Abacus Software C-128 CP/M User's Guide

DISKR: ;READ DISK FILE RECORD

PUSH H! PUSH D! PUSH B

LXI D,FCB

MVI C,READF

CALL BDOS

POP B! POP D! POP H

RET

The above program segment is from the DUMP program. DISKR is a label,
and labels are always identified by a colon. Then comes the mnemonic and

the argument, in that order.

You also see another feature of the assembler in this short routine. Multiple
assembler mnemonics may appear on the same line separated by

exclamation points.

A semicolon indicates that comments follow. Alternatively, you can define
an entire line as a comment by beginning that line with an asterisk. You can

use this feature to give individual routines in the assembly language

program a header line, like in the following example:

*** Read Disk File Record ***

Be sure that any labels you use are not the same as any of the assembler

mnemonics, such as MVI, MOV, and STA. Refer to Appendix E for a listing

of 8080 assembler mnemonics.

With the ASM assembler and many other assemblers, you can refer to the
current value of the program counter during the assembly process. For
instance, this is done automatically for program labels, as in the following

example:

posit: EQU $

Arguments may be composed of various arithmetic operators. For example:

MVI A,12+2*3

mnemonic arguments

131

Abacus Software C-128 CP/M User's Guide

The arithmetic operators are as follow:

+X Positive number

-X Negative number, corresponds to 0-x (always 16 bit!)

x+Y Addition of two 16-bit values

X-Y Subtraction of two 16-bit values

X*Y Product of X*Y

x/Y Division of the arguments

X MOD Y Remainder of the division X/Y

In addition, these two shift operators may be used:

X SHL Y Shifts die 16-bit value X by Y positions to the left

Bits shifted out are lost

x SHR Y Shifts the 16-bit value x by Y positions to the left

Bits shifted out are lost

Furthermore, these logical operators are available:

NOT x Logical negation of the argument x

X AND Y Logical and of the arguments X and Y

X OR Y Logical OR of the arguments X and Y

X XOR Y Logical XOR of the arguments X and Y

You may not see the value of these possibilities at first glance. But you'll

soon find out they are very useful. For example, if you want to load the

accumulator with the high-order byte of an address label, you can easily do

this by shifting this value to the right by 8 bits:

MVI A,label SHR 8

To load the lower 8 bits, you must explicitly mask the upper 8 bits.

Otherwise you would load the 8-bit accumulator with a 16-bit value.

132

Abacus Software C-128 CP/M User's Guide

You can do this as follows:

MVI A,label AND OFFH

In addition, there are the pseudo-opcodes:

ORG, EQU, END, DS, DB, DW, SET, IF and ENDIF

Pseudo-opcodes are directives to the assembler. They're called
pseudo-opcodes (or simply pseudo-ops) because they are used in the
assembly language program like the normal opcodes, but are not assembled
and are not understood by the CPU.

We wonft explain each pseudo-op in detail, but well mention the uses and
function of each.

ORG <start address>

defines the starting address of the program to be

assembled. ORG should always be the first command

in a program.

EQU <value>

assigns a value to a label. The <value> may be an

arithmetic expression.

Example: Diskan: EQU Diskr+055H

DS reserves a block of memory, usually for data. The
program counter is incremented by the appropriate

value.

Example: Diskm: DS 100

In this example 100 bytes are reserved. The starting

address is Diskm, the ending address is

Diskm+9 9. The following instruction starts at

Diskm+100.

133

Abacus Software C-128 CP/M Userfs Guide

DB places the individually defined values into memory.
The individual bytes are separated by commas.
Strings may also be used.

Examples:

Disktxt:DB "Please insert the disk"

Diskt2: DB 23,32,0,3,122

DW places 16-bit values (words) into memory. The

individual 16-bit values are separated by commas.

Example: Diskadr: DW 03AB9H, labell

END defines the end of the program to be assembled. For

special purposes it's also possible to specify a

starting address for the execution of the assembled
program.

SET Similar to the EQU command, the SET command

assigns a value to a label. But there is a difference:

the assignment is permanent using EQU. Labels

defined with SET may be changed during assembly.

Labels defined with SET do not appear in the
lefthand column of the assembler listing.

Examples:

Labell: SET Alfa

Labell: SET Labell+32

But we still haven't covered all the capabilities of MAC. Like many other

capable assemblers, ASM can perform conditional assembly. Conditional
assembly involves assembling a certain group of assembler source lines

only under specific conditions. It's done with the pseudo opcodes IF and

ENDIF.

Suppose that we want to write a program to read two values, and then either
add them or multiply them together. The algorithm would be the same for

both operations and both programs. You can write a program that checks a

flag during assembly to determine if the program should add or multiply:

134

Abacus Software C-128 CP/M User's Guide

r

Multi EQU 0 /Program is to add

ORG 0100H

r

/Read a value

CALL Read

IF Multi

CALL Multir /Call multiplication routine

END IF

IF NOT Multi

Call Addir /Call addition routine

END IF

CALL Output

END

This program is initially set to perform addition, since the value of Multi

is set to 0 . To change the program to multiply, set the value for Multi

equal to NOT 0 in the first line—that's the only change that has to be made.

When you assembled the DUMP program, three files were created on

diskette:

Kfilenamo.VRN, <filename>.HEX, and <filename>.SYM

There are options to suppress these files or specify where they are written.

The five options available are preceded with the $ symbol. The options are:

A Drive for .ASM file (A-O)

H Drive for .HEX file (A-O,Z)

L Drive for .LIB file (A-O)

P Drive for .prn file (A-O, Z, P, X)

S Drive for .SYM file (A-O, z, p, X)

135

Abacus Software C-128 CP/M Uscrfs Guide

The values A through 0 are the drive indicators. With the !128, only A

though E are possible.

The value P specifies the printer.

The value X specifies the screen.

The value z suppresses the file.

To assemble a file DUMP . ASM on the A drive, create a printed program

listing and write the hex file to the E drive, you would enter:

MAC DUMP $AA. PP HE

Notice that the options are separated by a space.

$ indicates that options follow

AA indicates that the ASM file is contained on the A drive.

PP indicates that the assembler listing is to be sent to the printer.

HE indicates that the HEX file is to be written to the E drive.

RMAC is very similar to MAC, except in can produce relocatable code in

memory. When assembling, a HEX file is not created, but a REL file. The

REL file is processed by the linker, LINK, unlike a HEX file which is

processed by HEXCOM. Using RMAC, there are only three options for RMAC:

r Drive for .REL file (A-O, Z)

S Drive for .SYM file (A-O, X, P, Z)

p Drive for .PRN file (A-O, X, P, Z)

Options are indicated by the $ symbol, and multiple options must be

separated single spaces.

Next well discuss the disassembler/monitor SID and the use of SUBMIT

files.

136

Abacus Software C-128 CP/M User's Guide

8.3 Working with submit

When you program in assembly language, you have to repeatedly enter a

specified sequence of CP/M commands. For example, you will use the ASM

to assemble the source file, convert the HEX file to a COM file and then test

the new command. If the name of your program is TESTPGM, then you

would have to use the following sequence of CP/M commands to

assemble, convert and execute your program:

MAC TESTPGM

HEXCOM TESTPGM

TESTPGM

If you use may such sequences of commands when working with CP/M,

you may want to create a SUBMIT file for each sequence. A SUBMIT file is

an ordered list of CP/M commands. Later, the user can redirect the input

from the keyboard to the SUBMIT file. In other words, CP/M takes the

commands from the submit file rather than the keyboard.

For those of you who want to know how this takes place, here's a short

explanation. When you SUBMIT a file, a temporary file called $$$. SUB.

is created. It contains a copy of the original SUBMIT file, except that

symbolic parameters are replaced. The CCP, which handles user input from

the keyboard, recognizes the presence of and accepts the first line of input

from the $$$. SUB file. (The first input line is then deleted from the

$$$.SUB file).

Finally, the command contained in the first input line is executed as if it had

been typed at the keyboard. When the first command line has been

completely executed, the CCP returns to the $$$. SUB file to get the next

input line. This is repeated until the $$$. SUB file is empty, at which time
the CCP reverts back to the keyboard for subsequent input.

Let's see a practical example in action.

When you display a directory of a diskette, you'll notice that no information

about the remaining space is displayed. You can get this information by

using the SHOW command. Let's create a SUBMIT file, which we'll call

DISP, that displays both the directory and the capacity.

137

Abacus Software C-128 CP/M User's Guide

To create a file called DISP . SUB we use an editor. The CP/M editor is

called ED. Here's a quick lesson on the use of ED.

Insert the system diskette into the drive, making sure that the second side is
face up (unless you've already made a double-sided 1571 system diskette).

To create the SUBMIT file using ED, type:

ED DISP.SUB

The cursor flashes as ED waits for us to input data. ED isn't the easiest
editor to use. But since we'll only be entering two lines, we won't have to

suffer very long. Next, enter : to indicate that you'll be inputting

characters into the file. The display will look like this:

: *i

1:

Enter the following:

1: show a: <RETURN>

2: dir <RETURN>

3: <CONTROL>Z

Then exit from ED by entering the E command:

: *E <RETURN>

ED saves the file DISP . SUB to the diskette. You can view the file with

TYPE DISP. SUB. Let's try out the new SUBMIT file. Enter:

SUBMIT DISP

Notice that the extension .SUB is not required. CP/M creates a temporary

$$$. SUB file by copying the contents of DISP . SUB, and then erases the
commands, line by line, from $$$. SUB as it proceeds to execute each line.

Hopefully our new SUBMIT file works: it displays the unused space on the

diskette as well as the directory.

Recall our original task. We want to assemble a file, convert it into a COM
file with HEXCOM, then execute it. The command sequence would like like:

138

Abacus Software C-128 CP/M User's Guide

MAC <filename> $<options>

HEXCOM <filename>

<filename>

Both <filename> and <options> in this example are parameters, and are

separated by at least one space. A parameter may be a specific parameter or

a symbolic parameter.

A specific parameter is entered as a string of characters, such as dump, d IR

or A:.

A symbolic parameter is a number preceded by a dollar sign ($). When it is

encountered in a SUBMIT file, a symbolic parameter is replaced by a value

entered in the SUBMIT command line. Here's an example. This is the

contents of a SUBMIT file called ASSEM. COM:

MAC $1 $$$2

HEXCOM $1

$1 $3

This is the SUBMIT command you enter to invoke the SUBMIT file above:

SUBMIT ASSEM DUMP AB SH0W.COM

The following $$$.SUB file is actually created:

MAC DUMP $AB

HEXCOM DUMP

DUMP SH0W.COM

If we return to the SUBMIT command line, we can see what happened. The

parameters in the command line are numbered beginning with 1.

SUBMIT ASSEM DUMP AB SH0W.COM

parameter 1 parameter 2 parameter 3

As SUBMIT processes a SUBMIT file, it replaces the parameters in the

SUBMIT file with the corresponding actual parameter from the command

line. Thus when it encounters $1 in the SUBMIT file, the first actual

parameter DUMP is substituted. When it encounters $$$2 in the SUBMIT

139

Abacus Software C-128 CP/M User's Guide

file, the second actual parameter $AB is substituted ($$ is the notation to

insert a single $). And finally, when it encounters $3, the third parameter

SHOW. COM is substituted.

To reiterate about embedded $, let's give another example. Suppose you

want to enter the following SUBMIT file:

ERA *.$$$

For each $, you must substitute $$. Therefore the command looks like this

in a SUBMIT file:

ERA *.$$$$$$

SUBMIT is a powerful command. Besides redirecting the CCP to input

commands from a SUBMIT file, you can redirect the input for other

commands such as ED or P IP. These embedded commands are preceded by

a less-than character (<). An example using embedded commands:

pip

<E:=A:*.COM

<

DIR *.COM

Notice that the last input line for PIP consists of a < character. This is used

to exit the transient P IP. This application could also be entered like this:

PIP e:=a *.COM

This would copy all the COM files from drive A to drive E. It's sufficient to

put a < character in the first column in order to pass data to COM files.
Parameters which are otherwise entered on the keyboard come from the file

$$$.SUB instead.

Here we end our discussion SUBMIT files. Try making your own SUBMIT

file the next time a suitable application crops up.

We've now discussed the assembler and SUBMIT files. We'll briefly

mention the SID disassembler. Disassembly is the opposite of assembly:

the machine opcodes are converted to their mnemonic equivalents. SID is
not just a disassembler, but a monitor as well.

140

Abacus Software C-128 CP/M User's Guide

SID, an acronym for Symbolic Interactive Debugger, allows you to test and

debug programs you have developed. SID supports breakpoints, symbolic

disassembly, assembly, memory display, memory fill functions, and it

monitors the program execution.

To get a complete list of the SID commands listed on your printer, insert the

CP/M system diskette and enter:

<CONTROL>P

HELP SID COMMANDS <RETURN>

This will list all of the SID commands to your printer. When the listing is

finished enter <CONTROL> P again to turn off the printer output.

If, for example, you want to disassemble the command file HEXCOM. COM,

you simply enter:

SID DUMP.COM

Before you press <RETURN>, you may press <C0NTR0L> P to send the

output to the printer as well.

CP/M SID - Version 3.0

NEXT MSZE PC END

0280 0280 0100 CEFF

Call up the disassembler HEXCOM by entering the command L:

#L

0100 LXI H,0000

0103 DAD SP

#L180

0180 LDAZ B

0181 JNC 0189

The D option dumps an area of memory in hexadecimal and ASCII. The G

option executes the program. The A option lets you enter source code
directly with a direct assembler.

141

Abacus Software C-128 CP/M User's Guide

8.4 The memory layout

We have already mentioned BDOS, CCP, and BIOS. These terms are

obviously very important, and you've probably heard or read them before.

You may have wondered all of them are located in the computer's memory.

Here's a quick overview:

CCP The Console Command Processor. This part of CP/M

controls the input from the keyboard and contains the

resident commands DIR, ERA, REN, SAVE, TYPE, and

USER.

BDOS The Basic Disk Operating System. This part controls the

transfer of data between the computer and the disk drives.

BIOS The Basic Input/Output System. The BIOS contains the

machine-specific code for the CP/M operating systemThe

BIOS and BDOS work closely together. This is why the

two are often often found under one common name:

FDOS.

TPA The Transient Program Area. The TPA is the user program

area in memory. The programs to be executed, and the data

to be processed by these programs, are managed in this

memory.

BIOS

BDOS

CCP

TPA

System parameter

142

Abacus Software C-128 CP/M User's Guide

The preceding figure shows the basic memory partitions of CP/M. The user

area (TPA) starts at address $0100,

The BDOS contains a collection of subroutines that performs the

fundamental work with files on disk, and handles other peripheral devices.

CP/M first appeared in the early 70fs, which explains its obsolete routines

for input and output from punch tape.

To call a BDOS routine, you must follow the standardized declarations

described below:

The BDOS function code for the desired service is passed to the BDOS in

the C register. Data is passed to the subroutine in the E register for 8-bit

values, or the DE register pair for 16-bit values. After the registers are

loaded, you jump to the BDOS at address 5 with a subroutine instruction

(CALL).

BDOS determines the address of the desired routine from the C register.

This ensures that programs written can really run on all computers, because

they all follow set rules. All hardware-dependent aspects of operation, like

input and output from the keyboard, are handled by special BDOS routines.

When a new computer is being developed, only these routines need to be

rewritten for all CP/M programs to run on the new computer.

Naturally, two preconditions must be made. The computer must have an

8080 or 8080-compatible processor, and it must be possible to read the

existing programs.

If the second condition is not met, it is still theoretically possible to run
CP/M programs on the new computer. Transferring existing programs has
proved to be the smaller of the two problems. This can be done by

a) programming the controller, or

b) using a simple communications program to transfer the existing
programs between the two computers, over a common interface
such as an RS-232.

143

Abacus Software C-128 CP/M User's Guide

If the BDOS is to return values to the main program, 8-bit results are

returned in the accumulator, while 16-bit values are returned in the HL

register pair. For 16-bit return values, the accumulator contains the

low-order byte, while the high-order byte is in the B register.

For example, to output a character to the console, you would use BDOS

routine number 2. Letfs print a question mark (using Z-80 mnemonics):

LD C,2 /CONSOLE OUTPUT

LD E,lf?" ;LOAD QUESTION MARK

CALL 5 /JUMP TO BDOS

If you want to do serious programming in machine language with CP/M,

we suggest you invest in one of the many special books for CP/M

programmers. They'll give you more information about the individual

routines. Here we will only list the BDOS routines with input and output

parameters for experimentation:

144

Abacus Software C-128 CP/M User's Guide

Routine name BDOS

function code

Generate warm start 0

Console input 1

Console output 2

Read punch tape 3

Punch tape 4

Character to printer 5

Direct console input 6

and output

Read IOBYTE 7

Set IOBYTE 8

Output string 9

Input from buffer 10

Console status 11

CP/M version 12

Disk system reset 13

Set reference drive 14

Open file 15

Close file 16

Find first entry 17

Next entry 18

Delete file 19

Read sector 20

Write sector 21

Create file 22

Rename file 23

Read active drive 24

Read reference drive 25

Fix data buffer 26

Read allocation table 27

Protect ref. drive 28

Protected drive 2 9

Set file options 30

Read disk parameters 31

Manage user number 32

Read sector 33

Write sector 34

Determine file size 35

Set descriptor 36

Reset drive 37

Required

parameter

E:character

: character

: character

E:255

E:character

E:IOBYTE

DE:=>string

DE:=>buffer

E:drv number

DErinfo

DErinfo

DE:info

else:

DE:info

DErinfo

DErinfo

DE:info

DErinfo

DErbuffer

DErinfo

E:255

Ernumber

DErinfo

DErinfo

DErinfo

DErinfo

BDOS returns

this value:

A:input

A:input

A:0

A: character

A:IOBYTE

A: character

A:=0 (no key)

HL:version

A:255 (error)

A:255 (error)

A:255 (error)

A: character

A: 255/character

A:255 (error)

A:0 (OK)

A:0 (OK)

A:255 (error)

A:255 (error)

HL:drv vector

A:drv number

HL:address

HL:drive vector

A:255 (error)

HL:address

A: number

A:0 (OK)

A:0 (OK)

(in buffer)

(in buffer)

DE:drv vector A:0

145

Abacus Software C-128 CP/M User's Guide

This table is intended to show the possibilities and capabilities of the BDOS.
As already mentioned, more internal knowledge of the routines is required

for serious BDOS programming.

The tasks of the BIOS are even more specialized. Like the BDOS, the BIOS
consists of a list of routines for data input and output. The BIOS also has
routines which duplicate some of the BDOS routines, such as reading the

console status.

The BIOS is largely responsible for the flexibility of CP/M, because CP/M
programs can use special BIOS routines to perform hardware-dependent

input and output to the console.

The BIOS is divided into four areas:

• Interface to the BDOS and CP/M programs (such as SUBMIT

files)

• Interface to the external storage media (disk drives)

• Input and output via the peripheral addressed by the BDOS

• Buffer for data, which is stored and then made available at

the appropriate time (such as with SUBMIT files).

The BDOS and the BIOS are relocatable in memory. The routines in the
BDOS are addressed by passing the function number in the C register—and

calling the fixed memory address $0005.

Calling BIOS routines is a little different than calling the BDOS.. There is a
fixed jump table, but the starting address of this table can be moved. First

let's take a look at the jump table:

146

Abacus Software C-128 CP/M User's Guide

00+offset JMP BOOT

03+offset JMP WBOOT

06+offset JMP CONST

09+offset JMP CONIN

OC+offset JMP CONOUT

OF+offset JMP LIST

12+offset JMP PUNCH

15+offset JMP READER

18+offset JMP HOME

lB+offset JMP SELDSK

lE+offset JMP SETTRK

21+offset JMP SETSEC

24+offset JMP SETDMA

27+offset JMP READ

2A+offset JMP WRITE

2D+offset JMP LISTS

30+offset JMP SECTRAN;

/Cold start

/Warm start

/Read console status

/Console input

/Console output

/Output to printer

/Paper tape puncher

/Paper tape reader

/Head to track 0

/Select drive

/Set track

/Select sector

/Select data buffer

/Read sector

/Write sector

/Read printer status

/Translate sector #

The offset stands for the starting address in memory, which we'll soon
discuss in more detail If one of the functions is not required, such as the
two routines for the punch tape, the corresponding memory addresses are
filled with:

RET ! NOP ! NOP

This is used so the memory behind these routines is not moved. Jumping to
this routine would cause an immediate return to the user (with no BIOS
service having been performed).

To determine the BIOS starting address (the offset), we must know that
address 0 of the base page of the system contains a jump to the warm start
vector (the second vector in the table). This makes it easy to find the starting
address. First boot up the CP/M system, then load the disassembler:

SID

147

Abacus Software C-128 CP/M User's Guide

To disassemble (List) the memory area at address 0, we enter:

L0000

SID's displays the following:

0000 JMP F403

0003 RST 07

0004 NOP

0005 JMP D300

0008 NOP (etc.)

What interests us is the first line—a jump is made to address $F403. This
means the BIOS jump table begins at address $F403. To jump to one of the
vectors, we calculate the jump address by entering:

Address:=jump number * 3 + $F403

As with BDOS routines, you can pass parameters to the BIOS routines or
receive results from them. If values are to be passed to the BIOS routines,
8-bit values are passed in the C register, while 16-bit values are passed in
the BC register pair. Here you see a difference from the BDOS routines.
They expect the parameter in the E register or the DE register pair. Those
parameters that the BIOS routines return to the main program are returned
like the BDOS routines: with 8-bit values in the accumulator. All 16-bit
values are returned in the HL register pair. Since the BIOS routines are
accessed via vectors in RAM, they can be changed. This allows you to write
your own routines that can then return to the original program.

There a re a few additional features of the base page of the system (address
$0000 to $0100). You just disassembled the area from $0000 to $0016 with
the command L0 . Several additional JMP instructions are found here.
Especially important is the jump instruction at address 5. This is the address
of the BDOS vector handler. Note that the BDOS routines for the '128 are

located at $D300. The JMP instruction at $0005 tells us this.

Let's take a closer look at this memory area:

LD300

148

Abacus Software C-128 CP/M User's Guide

At $D300 is another JMP instruction, this time to $D9A4.

This concludes our introduction to the important programs and utilities in
the Additional Utilities package. You should now be familiar with these
additional programs. Whether they are valuable to you or not is something
which you alone will decide.

149

Chapter 9

I The Z-80 ROM listing]

Abacus Software C-128 CP/M User's Guide

The Z-80 ROM listing

The f128!s ROMs contain parts of the Z-80 code and are listed in the book
Commodorel28 Internals. In all, 4K of memory, an area physically located
in the address range $D000 to $DFFF, are contained in the ROM.

When the Z-80 processor is activated and the Z-80 addresses memory in the
range $D000 to $DFFF, the program codes located in the ROM at $D000 to
$DFFF are actually addressed. The MMU (Memory Management Unit) is
responsible for redirecting these addresses transparently to the user.

When the '128 is turned off and on, or a RESET is performed, the Z-80 is
enabled briefly. The '128 makes the necessary preparations for a possible
CP/M start; you know that the C-128 automatically boots and starts if a
CP/M diskette is found in the drive on RESET. When the Z-80 is finished
with its preparations the 8502 is switched back on. This then continues at
exactly the place it was at when it was switched off—the place where the
Z-80 was first switched on. This may sound complicated, but it's really not.

If you want to program using the Z-80, you will need to know what the
Z-80 ROM contains. Furthermore, you will have to know how to program
the Z-80 in the Commodore 128, because there are some characteristics
which might lead to problems.

For example, if you want to address the area $D000 to $DFFF, that is, a
component like the VIC, VDC, SID, etc., you can't do so with the "normal"

addressing commands. The instructions IN and OUT must be used to access
these "ports.". To turn on the 8502, for example, the following instructions
are necessary:

LD BC,$D505 /Address Mode Configuration Register

LD A,$B1 ;Code to turn the 8502 on

OUT (C),A /Corresponds to LD (BC),A

Correspondingly, you must use the IN instruction to read from memory
locations. The address must always be in the BC register pair.

By carefully studying the ROM listings, you'll discover that it also contains
8502 code sequences. Enabling the processors, for example, must be given
in both Z-80 and 8502 mnemonics, or it will not work. In addition, the
switch must be made in a common memory area or the computer will crash
after the Z-80 is turned on.

153

Abacus Software C-128 CP/M User's Guide

What functions does the Z-80 ROM perform?

It loads all of the necessary CP/M resident operating system routines. All
screen handlers are contained in the ROMs, both for the 40-column and
80-column screens. Both the BIOS and BDOS access these ROM routines.
All system messages during boot are issued by the ROM routines. Not all of
the CP/M operating system is handled by the ROM; only extremely

system-specific routines are found here.

Loading programs from diskette is performed by the 8502. Here the Z-80
re-enables the 8502, which then turns the Z-80 on after it has finished
reading the data from diskette. In this way, the Z-80 can use the existing

Kernal routines of the 8502.

Before taking a closer look at the Z-80 ROMs, there are a few things you
should know. When the Z-80 is activated, several components are

"rearranged."

The memory range $D000 to $DFFF is remapped to $0000. To address the

logical range $D000 to $DFFF you must use IN (X) and OUT (X).

The screen memory and character generator are also relocated. The screen
memory (video RAM) is moved to $2C00. The character generator is
moved to $D100. The color memory remains at {{ $Dxxx}} since it cannot

be moved.

Besides the 40-column and 80-column screens there is a third screen.This
third screen is used to simulate the 80-column screen. It is located at $1400
and its color RAM at $lC00. We advise you not to use this area, since it
will be overwritten sooner or later.

Here is a short listing of the important addresses:

154

Abacus Software C-128 CP/M User's Guide

$2400 Misc temporary storage

$2402 Column for the 80-column simulation

$2404+ Mask for text output

$2406+ Address cursor 40-column screen

$2408 Lines per screen (default 24)

$2409+ Cursor address + $1400 for 80-column simulation

$240B Cursor column (40 column)

$240C Cursor line (40 column)

$240D Character color

$240E Background color

$240F Border color

$2410 Fill char (either $00 or $80) for reverse space

$2411 Cursor address

$2413 Cursor column

$2414 Cursor line

$2415 Attribute

$2416 Background color 80 column screen

$2417 Foreground color 80 column screen

$FD01 Flag for set vectors yes/no

$FD03 Track to read

$FD04 Sector to read

$FD05 Number of blocks to be loaded yet

$FD06 Error flag ($00, $0D, $FF)

$FD08 Logical filenumber

$FD0D Pointer to conversion table

$FD10 Attack/decay

$FD11 Volume

$FD12 Frequency (hi)

$FD13 Sustain/release

$FD14 Turn sound off

$FD15 Turn sound on

$FD18 Base address of block to load

+ The addresses marked with "+" are to be interpreted as 16-bit values.

155

Abacus Software C-128 CP/M User's Guide

The CP/M boot sector is identified as such by the three letters CBM followed

by five bytes containing zero. The program looks like this:

SEI Disable interrupts

JSR $FF84 IOINIT

LDA #$3E Define

STA $FF00 Configuration byte

LDA #$C3 Code for JP under Z-80

STA $FFEE Store code

LDA #$08 Low byte is $08

STA $FFEF Store

LDA #$00 High byte is $00

STA $FFF0 Store; corresponds to RST $08

JMP $FFD0 Turn Z-80 on

This is all that the boot sector does. Everything else is performed by the

Z-80 ROM.

Memory areas which are copied are specified with two addresses. First the
physical/logical address and then the destination address. Relative jumps

refer to their intended memory environment.

Now to the ROM listing:

156

Abacus Software C-128 CP/M User's Guide

********************************* RgT go (cold start)

0000: 3E 3E LD A,$3E configuration byte

(RAM,I/O)

0002: 32 00 FF LD ($FF00),A into config. register

0005: C3 3B 00 JP $003B cold start rest

********************************* RST 08; turn Z_8Q Qn again

0008: 31 77 3C LD SP,$3C77 SP initialization

000B: 3E 3F LD A,$3F configuration byte

000D: C3 8C 01 JP $018C RST-08-Routine's rest

********************************* rst 10

0010:

0011:

0012:

0015:

0016:

0017:

El

6E

C3 20 00

00

00

00

POP

LD

JP

NOP

NOP

NOP

HL

L, (HL)

$0020

Stack's return address

retrieve following byte

as offset

Start RST-20-Routine

Fill bytes

0018:

0019:

001A:

001D:

001E:

001F:

El

6E

C3 28 00

00

00

00

POP

LD

JP

NOP

NOP

NOP

HL

L, (HL)

$0028

Stack's return address

Lo-Byte of return address

start RST-28-Routine

Fill bytes

********************************* gp 20

0020: 3A OF FD LD A,($FD0F)

0023: A7 AND A Set Flags

0024: 28 02 JR Z,$0028 Return on nullflag

0026: 2C INC L otherwise increment the
0027: 2C INC L return pointer to 2

157

Abacus Software C-128 CP/M User's Guide

•••a**************************** rst 28; retrieve

return address

from table

Hi-Byte of table is 1

offset

pointer now to Hi-Byte

retrieve also Hi-Byte

Lo-Byte to L

And return indirectly

Fill byte

0028:

002A:

002B:

002C:

002D:

002E:

002F:

26 01

7E

23

66

6F

E9

00

LD

LD

INC

LD

LD

JP

NOP

H,$01

A,(HL)

HL

H,(HL)

L,A

(HL)

********************************* RST 30; Dummy;

construction data

0030: 30 35 2F 31 32 2F 38 35 .ASC "05/12/85'

=June 12, 1985

********************************* RST 38

0038: C3 FD FD JP $FDFD Continue RST 38 on $FDFD

003B:

003E:

0041:

0043:

0044:

0046:

0049:

004B:

004D:

004F:

0050:

0052:

01

11

ED

03

ED

01

3E

ED

ED

2F

E6

28

2F

FC

51

59

05

B0

79

78

30

05

DO

FF

D5

LD

LD

OUT

INC

OUT

LD

LD

OUT

IN

CPL

AND

JR

BCf$D02F

DE,$FFFC

<C),D

BC

(C),E

BC,$D505

A, $B0

(C),A

A, (C)

$30

Z,$0059

RST 0 Contn'd

Register 47 of VICchip

(Keyboard)

write $FF to the keyboard

no extension keys

Register 48=clock register

set $FC to -> 1 MHz-Mode

Mode configurtion Register

/EXROM and /GAME test,

and turn on 128-Mode

Mode configurtion Register

read out again and negate

/EXROM Oder GAME set?

No, then no carriage ret

158

Abacus Software C-128 CP/M User's Guide

a******************************

0054:

0056:

0058:

0059:

005C:

005E:

0060:

0061:

0063:

0065:

0066:

0068:

0069:

006A:

006C:

006D:

006E:

0070:

0072:

0073:

0075:

0077:

007A:

007C:

007F:

0082:

0084:

0085:

0087:

0088:

0089:

008A:

008C:

008F:

0092:

0095:

3E

ED

C7

01

3E

ED

0D

ED

0E

AF

ED

0D

3D

ED

OD

OD

3E

ED

03

ED

E6

01

28

21

01

16

7E

ED

2B

OD

15

20

21

11

01

ED

Fl

79

OF

08

79

79

03

79

79

7F

79

78

20

05

D8

B4

OA

OB

79

F8

1A

00

08

BO

DC

D5

OF

D5

OD

11

00

LD

OUT

RST

LD

LD

OUT

DEC

OUT

LD

XOR

OUT

DEC

DEC

OUT

DEC

DEC

LD

OUT

INC

IN

AND

LD

JR

LD

LD

LD

LD

OUT

DEC

DEC

DEC

JR

LD

LD

LD

LDIR

A,$F1

(C),A

$00

BC,$DC0F

A, $08

(C),A

C

(C),A

C, $03

A

(C)fA

C

A

(C),A

C

C

A,$7F

(C),A

BC

A, (C)

$20

BC,$D505

Z,$0054

HL,$0FB4

BC,$D50A

D, $0B

A, (HL)

(C),A

HL

C

D

NZ,$0084

HL,$OD1A

DE,$1100

BC,$0008

turn on 64-Mode and

turn control

over to cartridge

turn on 8502 and select

the 64-mode

and carry out cold start

CRB-Register in CIA 1

select and then

stop Timer B and

Timer A of

CIA 1

DDRB-data direction

register

for Port B:set all bits

forinput

set pointer to DDRA and

all bits here to

output

After decrementing 3 times

show BC on Port A

Port A with $7F (See also

keyboard matrix) describe

pointer to Port B (input)

and read out

Commodore-key masking

pointer for

Mode-config.-Reg.

was hit-> 64er-Mode

Now set the Register of

the MMU with the values

from $0FAA

Note, that all

11 Registers of MMU

from behind with values

will be described

from $0FB4

downward!

Loop end

Copy the area from $OD1A

to $1100

Eight Bytes are to be

copied (8502-Code!)

159

Abacus Software C-128 CP/M User's Guide

0097: 21 E5 0E LD HL,$0EE5 Also copy the area

009A: 11 DO FF LD DE,$FFD0 from $0EE5 on until Common

009D: 01 IF 00 LD BC,$001F Area from $FFD0

00A0: ED B0 LDIR 31 Bytes are to be copied

00A2: 21 00 11 LD HL,$1100 $1100 as return vector

00A5: 22 FA FF LD ($FFFA)fHL copy return vector in

00A8: 22 FC FF LD ($FFFC),HL all 4 addresses,

00AB: 22 FE FF LD ($FFFE),HL under other

00AE: 22 DD FF LD ($FFDD),HL also on $FFDD

(freshly copied)

00B1: C3 E0 FF JP $FFE0 and return in Z-80-part

00B4:

00B7:

00BA:

00BD:

00C0:

00C1:

00C4:

00C7:

00C8:

00CB:

00CE:

00CF:

00D0:

00D2:

CD

3A

22

11

F5

CD

CC

Fl

2A

11

19

3D

20

C9

6D

06

18

ED

D3

FA

18

20

E8

03

3C

FD

00

00

02

FD

00

CALL

LD

LD

LD

PUSH

CALL

CALL

POP

LD

LD

ADD

DEC

JR

RET

$036D

A, ($3C06)

($FD18),H

DE,$00E D

AF

$00D3

Z,$02FA

AF

HL, ($FD18

DE,$0020

HLfDE

A

NZ,$00BA

Load Block

get block number

Destination address of

loaded block

Save block number

compare (HL) with (DE)

If ok, then call

get block number back

Get load address

32 as Offset

add to each other

Decrement block counter

still not done, then loop

End of the subroutine

00D3:

00D5:

06

EB

OC LD

EX

B,

DE

$0C

,HL

********************************* compare (HL) with (DE)

12 Bytes to be compared

Exchange the two

compared registers

Load the first value

in accumulator

and erase the 8th Bit

compare with (HL) lead

through

and break off if different

00D6: 1A

00D7:

00D9:

E6 7F

BE

00DA: CO

LD

AND

CP

RET

A,(DE)

$7F

(HL)

NZ

160

Abacus Software C-128 CP/M User's Guide

OODB: 23 INC HL

OODC:

OODD:

OODF:

00E2:

00E4:

00E5:

00E7:

00E8:

OOEB:

OOEC:

13

10

3A

FE

1A

20

IF

32

AF

C9

F7

06 3C

40

01

35 3C

INC

DJNZ

LD

CP

LD

JR

RRA

LD

XOR

RET

DE

$00D6

A,($3C06)

$40

A,(DE)

NZ,$00E8

<$3C35),

A

otherwise increment

both addresses

by one

and loop

Get block number

64 Blocks zu load?

Get block # from table

$3C06 is smaller than 64

otherwise double accu

and note

Erase accu and Flags

Routine's end

a******************************** Text

00ED: 00 NOP

00EE: 43 50 4D 2B 20 20 20 20

00F6: 53 59 53 00

"CPM+"

"SYS" <End>

********************************* Compare HL with DE

00FA:

00FB:

00FC:

00FD:

00FE:

00FF:

7C

BA

CO

7D

BB

C9

LD

CP

RET

LD

CP

RET

A,H

D

NZ

A, L

E

Hi-Byte of HL

compare with D

and end, when different

otherwise compare

the Lo-Bytes from

HL and DE

and return with Flags

********************************* return table for RST 28

64 Return addresses0100:

0102:

0104:

0106:

0108:

010A:

010C:

010E:

84

6E

AB

BC

C2

DD

Dl

Fl

06

09

06

09

06

09

06

09

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

$0684

$096E

$0 6AB

$09BC

$06C2

$0 9DD

$O6D1

$O9F1

161

Abacus Software C-128 CP/M User's Guide

0110: DD 06

0112: 31 OA

0114: E8 06

0116: 3C OA

0118:

011A:

011C:

011E:

0120:

0122:

0124:

0126:

0128:

012A:

012C:

012E:

0130:

0132:

0134:

0136:

0138:

013A:

013C:

013E:

0140:

0142:

0144:

0146:

0148:

014A:

014C:

014E:

0150:

0152:

0154:

0156:

0158:

015A:

015C:

015E:

Fl

45

7A

48

80

62

91

8E

CA

BA

DC

DF

IE

2D

IB

7B

10

62

1C

95

27

A2

4E

AE

EB

EB

EB

EB

E3

6B

FA

EB

EB

EB

EB

EB

06

OA

07

OA

07

OA

07

OA

07

OA

07

OA

08

OB

07

OB

07

OB

09

09

09

09

07

OB

00

00

00

00

03

04

OC

00

00

00

00

00

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

.Word

$06DD

$0A31

$06E8

$0A3C

$O6F1

$0A45

$077A

$0A48

$0780

$0A62

$0791

$0A8E

$07CA

$0ABA

$07DC

$0ADF

$081E

$0B2D

$071B

$0B7B

$0710

$0B62

$091C

$0995

$0927

$09A2

$074E

$0BAE

$00EB

$00EB

$00EB

$00EB

$03E3

$046B

$0CFA

$00EB

$00EB

$00EB

$00EB

$00EB

162

Abacus Software

0160:

0162:

0164:

0166:

0168:

016A:

016C:

016E:

0170:

0172:

0174:

0176:

0178:

017A:

017C:

017E:

0780:

0182:

0183:

3C

4A

CF

OC

26

32

2C

EB

7F

C2

C7

E4

EB

3D

AE

60

C3

09

C3

OC

OC

OB

OC

05

05

05

00

OC

OC

OC

OC

00

08

08

06

OA

33

C-128 CP/M User's Guide

.Word $0C3C

.Word $0C4A

.Word $0BCF

.Word $0C0C

.Word $0526

.Word $0532

.Word $052C

.Word $00EB

.Word $0C7F

.Word $0CC2

.Word $0CC7

.Word $0CE4

.Word $00EB

.Word $083D

.Word $08AE

.Word $0660

.Word $0AC3

ADD HL,BC Add BC as Offset

09 JP $0933 Get A:attribute, B:char on

(HL) in VDC

********************************* HL as Update address in

VDC

0186: C3 53 09 JP $0953 HL as Update address

in VDC

a******************************** wait for VDC-Status and

choose register <accu>

0189: C3 45 09 JP $0945 wait for VDC-Status and

choose <accu>

********************************* 8 Contn'd

018C:

018F:

0192:

0195:

32 00 FF

21 00 30

11 01 30

01 FF CE

0198: 75

LD

LD

LD

LD

LD

($FF00),A accu into config. byte

HL,$3000 The areas

DE,$3001 $3000 to $FEFF

BC, $CEFF will be filled with

(HL),L the value $00

163

Abacus

0199:

019B:

019E:

01A1:

01A4:

01A6:

01A9:

01AC:

01AF:

01B1:

01B3:

01B6:

01B9:

01BC:

01BF:

01C1:

01C2:

01C4:

01C5:

01C6:

01C7:

01C9:

01CC:

01CF:

01D2:

01D3:

01D5:

01D7:

01DA:

01DC:

01DE:

01E0:

01E3:

01E5:

01E8:

01EB:

01ED:

Software

ED

21

11

01

ED

21

11

01

ED

3E

32

CD

21

01

16

7E

ED

2B

OD

15

20

21

11

01

75

ED

3E

CD

3E

ED

3E

32

3E

32

CD

3E

32

BO

22

00

C3

BO

E5

DO

IF

BO

C9

EE

EO

B4

OA

OB

79

F8

00

01

FF

BO

1A

45

90

79

83

15

OE

OD

BD

19

08

OD

30

01

OE

FF

00

FF

FF

OF

D5

10

10

IF

09

24

24

05

24

LDIR

LD

LD

LD

LDIR

LD

LD

LD

LDIR

LD

LD

CALL

LD

LD

LD

LD

OUT

DEC

DEC

DEC

JR

LD

LD

LD

LD

LDIR

LD

CALL

LD

OUT

LD

LD

LD

LD

CALL

LD

LD

HL,$0D22

DE,$3000

BC,$01C3

HL,$0EE5

DE,$FFD0

BC,$001F

A,$C9

($FFEE),A

$FFE0

HL,$0FB4

BC,$D50A

D,$0B

A,(HL)

(C),A

HL

C

D

NZ,$O1C1

HL,$1000

DE,$1001

BC,$1FFF

(HL),L

A,$1A

$0945

A,$90

<C),A

A, $83

($2415),A

A, $0E

($240D),A

$05BD

A, $19

($2408),A

C-128 CP/M User's Guide

The area from $0D22

will be copied to $3000

Here it works with

8502-Code!

Area down

$0EE5 in Common Area

Copy from $FFD0

31 Bytes

Code for RETurn

Set RST 8 with RET

Turn on 8502,then continue

The MMU-Register

will be filled with the

table

from $0FAA

s.o.

s .o.

s.o.

s.o.

s.o.

End of the loop

Fill the area

$1000 to $2FFF

with the value

$00

s.o.

Register 26 (color) of VDC

choose and then front/

Set Background color

on VDC to $90

(light red Cursor)

Define light blue

and alternate

har set as attributes

(VDC)

Define Char color for

VIC-Chip

Prepare VDC-char set

The screen is defined

with 24

lines (DEVICE)

164

Abacus Software C-128 CP/M User's Guide

01F0:

01F3:

01F4:

O1F5:

01FD:

0205:

0208:

020B:

020D:

020F:

0212:

0215:

0218:

021B:

021E:

0221:

0224:

0225:

0226:

0229:

022C:

022F:

0232:

0235:

0238:

023B:

023D:

0240:

0243:

0246:

0249:

024C:

024F:

CD

FF

81

42

43

53

01

3E

ED

CD

C2

21

22

CD

CD

2A

7C

B5

CA

21

22

CD

21

11

01

ED

CD

8A

21

CD

21

22

CD

26

OA

4F

50

00

18

B6

79

D2

FF

B2

02

B4

B4

09

FF

09

02

6D

00

29

OC

BO

26

80

34

00

04

26

05

4F

2F

DO

02

04

OF

3C

00

00

3C

04

3C

3C

03

34

3C

00

05

34

05

35

3C

05

CALL

.Byte

.Byte

54 49 4E

4D 20 50

LD

LD

OUT

CALL

JP

LD

LD

CALL

CALL

LD

LD

OR

JP

LD

LD

CALL

LD

LD

LD

LDIR

CALL

.Byte

LD

CALL

LD

LD

CALL

$0526

$FF

$81,$0A

47 20

4C 55

BC,$D018

A, $B6

(C),A

$02D2

NZ,$04FF

HL,$0FB2

($3C02),H

$00B4

$00B4

HL,($3C09

A,H

L

Z,$04FF

HL,$3C09

Output the following text

erase screen ($FF)

line 1, column 10

BOOTING

CP/M PLUS

US<End>

Basis address of Video-RAM

B->10-13 Video-RAM,

CHARROM; Videoram from

$2C00

Boot sector check and

retrieve

Output evtl. errors

Mark table beginning

in $3C02

Load first part

Load second part

Retrieve value

Set the zero flag

if the 16-bit value is 0

and return if yes

Mark new table beginning

($3C02),HL

$036D

HL,$3400

DE,$3C29

BC,$000C

$0526

Load dat

Copy 12 Bytes

from $3400

to $3C29

Output blank line

$8A,$00,$00 line 10, column 0 and

HL,$3480

$0534

HL,$3500

<End>

pointer to output text

and output Text from (HL)

Note pointer $3500

($3C04),HL

$0526 Ouput the following text

0252:

0254:

025C:

0260:

0263:

0266:

83

44 41 54

4C 45 53

2A 33 3C

22 09 FD

21 32 3C

.Byte $83,$0C

41

00

20 54 41 42

LD

LD

LD

line 3, column 12

DATA TAB

LES<End>

HL,($3C33) Load CP/M segments

($FD09),HL one after the other into

HL,$3C32 work memory

165

Abacus Software C-128 CP/M User's Guide

0269:

026C:

026F:

0272:

0275:

0276:

0278:

027B:

027D:

0285:

0289:

028C:

028F:

0292:

0294:

029C:

02A0:

02A3:

02A6:

02A9:

02AB:

02B3:

02B9:

02BC:

02BF:

02C2:

02C3:

02C6:

02C7:

02CA:

02CB:

02CE:

CD

22

CD

11

19

20

CD

84

43

4F

21

CD

CD

85

42

4F

21

CD

CD

86

42

20

21

CD

3A

47

3A

90

32

AF

32

2A

31

OB

44

80

F7

26

OC

4F

44

2A

24

26

OC

41

44

2C

24

26

OC

49

43

30

24

30

2F

DE

DD

2D

03

FD

03

00

05

4D

45

3C

03

05

4E

45

3C

03

05

4F

4F

3C

03

3C

3C

FF

FF

3C

CALL

LD

CALL

LD

ADD

JR

CALL

.Byte

4D 4F 4E

00

LD

CALL

CALL

.Byte

4B 45 44

00

LD

CALL

CALL

.Byte

53 38 35

44 45 00

LD

CALL

LD

LD

LD

SUB

LD

XOR

LD

LD

$0331

($FD0B),H

$0344

DE,$0080

HL,DE

NZ,$026F

$0526

$84,$0C

20 43

HL,$3C2A

$0324

$0526

$85,$0C

20 43

HL,$3C2C

$0324

$0526

$86,$0C

30 32

HL,$3C30

$0324

A,($3C30)

B,A

A,($3C2F)

B

($FFDE),A

A

($FFDD)fA

HL,($3C2D)

Get block number and

Start address

Note Start address

Add Record offset

(CP/M-Intern)

from 128

If still not finished,

then output

the following text

line 4, column 12

COMMON C

ODE<End>

Basis address for Table

and load Common Code

output the following text

line 5, column 12

BANKED C

ODE<End>

Basis address for Table

and load Banked Code

Output the following text

line 6, column 12

BIOS8502

CODE<Ende>

Basis address for Table

and load BIOS8502 Data

Form a difference

Difference as Hi-Byte

accu erase (=0)

Mark as Lo-Byte

return address for

02D1: E9 JP (HL)

CP/M-return

retrieve and return

166

Abacus Software C-128 CP/M User's Guide

********************************* Read from track I/Sector 0

Note load address for

first to load

Block

accu erase

Sector#=0

accu=l

Define track

Read track/Sector

If read, test boot sector

No Boot sector

Last character of the

block+1

Start address

32 as Block counter

If accu before

INCO$FF, return

change Hi-Byte to $3C

and double block number

(Record number)

Note load address

Note block number

erase accu and

Flags (important)

and End the Routine

02D2:

02D5:

02D8:

02D9:

02DC:

02DD:

02E0:

02E3:

02E6:

02E7:

02E8:

02EB:

02ED:

02EF:

02F1:

02F2:

02F5:

02F8:

21

22

AF

32

3C

32

CD

CD

CO

3C

21

3E

20

26

87

22

32

AF

00

18

04

03

4F

6B

00

20

03

3C

07

06

FE

FD

FD

FD

04

04

38

3C

3C

LD

LD

XOR

LD

INC

LD

CALL

CALL

RET

INC

LD

LD

JR

LD

ADD

LD

LD

XOR

HL,$FE00

($FD18),H

A

($FD04),A

A

($FD03),A

$044F

$046B

NZ

A

HL,$3800

A, $20

NZf$02F2

H,$3C

A, A

($3C07),H

($3C06),

A

02F9: C9 RET

02FA:

02FD:

0300:

0301:

0303:

0306:

0307:

030A:

030D:

0310:

0311:

11

3A

B7

28

11

3D

C2

2A

01

09

ED

09

35

07

19

80

18

10

B0

3C

3C

3C

04

FD

00

LD

LD

OR

JR

LD

DEC

JP

LD

LD

ADD

LDIR

DE

A,

A

z,

DE

A

NZ

HL

BC

HL

,$3C09

($3C35)

$030A

,$3C19

,$0480

, ($FD18)

,$0010

,BC

Load address for copy

Get Flag

Set Flags

Flag isn't set

otherwise Start address+16

and decrement flag

(counter)

and output errors

Get goal address

16 as Increment

add

and copy 16 Bytes

167

Abacus

0313:

0316:

0317:

0318:

031B:

031C:

031D:

031F:

0320:

0321:

Software

3A

B7

C8

2A

AF

BD

28

BC

C8

C3

09

18

02

29

3C

3C

02

LD

OR

RET

LD

XOR

CP

JR

CP

RET

JP

A,

A

Z

HI

A

L

z,

H

Z

($3C09)

i, ($3C18

$0321

$0229

C-128 CP/M User's Guide

Get counter and

set Flags

On zero, the work is done

Else get address

and compare with $0000

accu is zero

Lo-Byte is zero

compare with Hi-Byte

Hi-Byte is zero

Zero flag will be

passed as Parameter

0324:

0327:

032A:

032B:

032E:

0330:

CD

11

19

CD

20

C9

31

80

44

F7

03

FF

03

CALL

LD

ADD

CALL

JR

RET

$0331

DE,$FF80

HL,DE

$0344

NZ,$0327

Load Records from Floppy

Get number & start address

128 as two's complement

add (flag!)

Load record

Another Record

otherwise end of Routine

********************************* Qet number Start address

0331: 5E LD E,(HL) Get number

0332: 16 00 LD D,$00 and erase Hi-Byte

0334: 7B LD A,E Test number

0335: B7 OR A against zero

0336: CA IB 05 JP Z,$051B BAD if zero

0339: EB EX DE,HL otherwise number to HL

033A: 29 ADD HL,HL and double (Record number)

033B: 22 00 3C LD ($3C00)fHL note in $3C00

033E: EB EX DE,HL again to DE

033F: 2B DEC HL Decrement table pointer

0340: 66 LD H,(HL) Get Hi-Byte

0341: 2E 00 LD L,$00 and erase Lo-Byte

0343: C9 RET End of the Routine

168

Abacus Software C-128 CP/M User's Guide

034C: CD FA 00

034F: CC 6D 03

0352: EB

********************************* Load Record and

decrement counter

0344: E5 PUSH HL Save to stack

0345: 2A 07 3C LD HL,($3C07) Save the comparison

address

0348: EB EX DE,HL and mark in DE

0349: 2A 04 3C LD HL,($3C04) Get second comparison

address

CALL $00FA Compare (HL) with (DE)

CALL Z,$036D and return, if the same

EX DE,HL else exchange the

register again

0353: 21 80 00 LD HL,$0080 Record-Offset of 128

0356: 19 ADD HL,DE add to each other

0357: 22 04 3C LD ($3C04),HL and note again

035A: El POP HL call address back again

035B: E5 PUSH HL & restore safely to stack

035C: EB EX DE,HL Exchange goal and source

035D: 01 80 00 LD BC,$0080 and copy 128 Bytes

0360: ED B0 LDIR (1 Record)

0362: 2A 00 3C LD HL,($3C00) Get Record counter

0365: 2B DEC HL Decrement by one

0366: 22 00 3C LD ($3C00),HL and store again

0369: 7D LD A,L Test if record number

036A: B4 OR H is exactly zero, set flags

036B: El POP HL call address back

036C: C9 RET and end Routine

********************************* Load data from

$3400 + Offset

HL,$3400 Load address (Basis)

($FD18),H Note for 8502-Code

HL and push to Stack

HL,($3C02) pointer to Block load

table

D,$00 Erase Hi-Byte

E,(HL) and get Lo-Byte from Table

HL Increment pointer to Table

($3C02),HL and note again

DE,HL Number blocks to HL

036D:

0370:

0373:

0374:

0377:

0379:

037A:

037B:

037E:

21

22

E5

2A

16

5E

23

22

EB

00

18

02

00

02

34

FD

3C

3C

LD

LD

PUSH

LD

LD

LD

INC

LD

EX

169

Abacus Software C-128 CP/M User's Guide

037F:

0380:

0381:

0384:

0385:

0386:

0387:

0389:

038B:

038C:

29

29

3A

OF

OF

OF

FE

28

29

22

06 3C

04

01

16 FD

ADD

ADD

LD

RRCA

RRCA

RRCA

CP

JR

ADD

LD

HL,HL

HL,HL

A,($3C06)

$04

Z,$038C

HL,HL

($FD16)A

038F: 3D

0390:

0393:

0394:

0396:

0399:

039C:

039F:

03A0:

03A3:

03A4:

03A6:

03A9:

03AA:

03AC:

03AF:

03B0:

32 05 FD

F5

3E 01

32 BD 31

CD E3 03

2A 16 FD

23

22 16 FD

Fl

28 2A

3A 08 FD

A7

28 24

2A 03 FD

E5

CD E3 03

03B3: El

DEC

LD

PUSH

LD

LD

CALL

LD

INC

LD

POP

JR

LD

AND

JR

LD

PUSH

CALL

POP HL

AF

A, $01

03B4:

03B7:

03B8:

03BA:

03BB:

03BE:

03BF:

3A

BD

20

E5

2A

23

22

03

13

16

16

FD

FD

FD

LD

CP

JR

PUSH

LD

INC

LD

A,($FD03)

L

NZ,$03CD

HL

HL, ($FD1(

HL

($FD16),I

and double ->,Record no.

double again

Get block number

/2

/4

/8

Is block number 32 - 63??

Yes, then return

else double HL again

($FD16),HL Note us as Block number

(load CP/M)

k Decrement number to

loaded Blocks

($FD05),A and otherwise note

Save number to Stack

Number to the

loaded data blocks

($31BD),A set to 1

$03E3 Set to Block* ->

Track/Sector

HL,($FD16)Get Block number

HL Increment by one and

($FD16),HL lay down again

AF Get counter and Flags

Z,$03D0 If end, then return

A, ($FD08) Else get error flag

and set Flags

No errors

HL, ($FD03) Get Track/Sector

HL and save to stack

$03E3 wander Block* in

Track/Sector

calculate Track/Sector,

call back

Get track*

Compare with calculated

track

they are different

save Track/Sector

Get Block*

and increment Block number

($FD16),HL Note new Block number

A

Z,$03D0

170

Abacus

03C2:

03C5:

03C6:

03C9:

03CA:

03CC:

03CD:

Software

21

34

21

35

20

El

22

BD

05

E4

03

31

FD

FD

LD

INC

LD

DEC

JR

POP

LD

HL,$31BD

(HL)

HL,$FD05

(HL)

NZ,$03B0

HL

($FD03),

C-128 CP/M User's Guide

pointer to loaded Block

number

and also increment

Still to loaded Block

number

also increment by 1

(error correction)

still at least one Block

Get Track/Sektor from

Stack

HL Note Track/Sektor

********************************* Error walk

03D0: CD 4F 04 CALL $044F

03D3: 21 19 FD LD

Read Block/Blocks

from Diskette

HL,$FD19 Hi-Byte destination

address

03D6:

03D9:

03DA:

03DB:

03DE:

03DF:

03E1:

03E2:

3A

86

77

3A

A7

20

El

C9

BD 31

05 FD

AE

LD

ADD

LD

LD

AND

JR

POP

RET

A,($31BD

A, (HL)

(HL),A

A,($FD05

A

NZ,$038F

HL

A,($31BD) Get number to loaded block

Add to destination address

and note

Get number to loaded

blocks

Set flags

Continue, if not yet

finished

else get Track/Sektor

and End the Routine

03E3: 3E 23

03EE: B7

LD A, $23

03E5:

03E8:

03EB:

32

2A

11

00

16

A8

24

FD

02

LD

LD

LD

OR

Make out of Block*

Track/Sector

35 as Offset for 1571

(Side 2)

($2400),A and mark Offset

HL,($FD16)Get Block*

DE,$02A8 from Block # $2A8 ->

address side 2

A Carry for subtraction

erase

171

Abacus

03EF:

03F1:

03F3:

03F4:

03F7:

03F8:

03F9:

03FA:

03FD:

0400:

0401:

0403:

0405:

0406:

0409:

040C:

Software

ED

30

AF

32

19

23

23

11

01

B7

ED

38

23

11

01

ED

52

05

00

65

00

52

IB

85

11

52

24

01

15

00

13

SBC

JR

XOR

LD

ADD

INC

INC

LD

LD

OR

SBC

JR

INC

LD

LD

SBC

HL,DE

NC,$03F8

A

($2400),A

HL,DE

HL

HL

DE,$0165

BC,$1500

A

HL,DE

C$0420

HL

DE,$0085

BCf$1311

HL,DE

C-128 CP/M User's Guide

040E: 38 10 JR C,$0420

0410:

0413:

11

01

6C

18

00

12

LD

LD

DE,

BC,

$006C

$1218

0416: ED 52 SB HL,DE

0418:

041A:

041D:

0420:

0421:

0423:

0424:

0425:

0426:

0428:

042A:

38

11

01

19

16

58

B7

OC

ED

30

19

06

00 00

IE 11

00

52

FB

JR

LD

LD

ADD

LD

LD

OR

INC

SBC

JR

ADD

C$0420

DE,$0000

BC,$111E

HL,DE

D,$00

E,B

A

C

HL,DE

NC,$0425

HL,DE

absolute Blocknumber on

side 2

Find out by subtraction

return on side 1

Offset erase

and save

subtraction correction

Block* + 2, there 1./2.

Block

Reserved for Directory

(357) Block number from

track 19

track 0- has 21

sectors/track

erase carry for

subtraction

Control on 21

sectors/track

Yes, Block lies in

21-sectors-area

+1 for error correction

Have the next 133 blocks

17 sectors per track

Test if block is in this

area

Yes, then end series of

tests

Have next track

18 sectors/track (from

track $18)

Test if block is in this

area

Yes, then end test series

correction factor to zero

from track 30-17 sectors

Subtraction correction

Erase Hi-Byte from DE

sector to E

Erase Carry

Increment track

subtract sectors per track

and evtl. continue looping

error correction

172

Abacus Software C-128 CP/M User's Guide

042B:

042E:

042F:

0432:

0433:

0436:

0439:

043A:

043B:

043D:

043E:

043F:

0440:

0441:

0443:

0444:

0445:

0447:

0448:

0449:

044A:

044D:

044E:

3A

81

32

E5

21

01

7B

B9

28

09

OB

OB

B9

28

09

OB

18

Cl

09

7E

32

3C

C9

00

03

B5

15

OA

04

F9

04

24

FD

OF

00

FD

LD

ADD

LD

PUSH

LD

LD

LD

CP

JR

ADD

DEC

DEC

CP

JR

ADD

DEC

JR

POP

ADD

LD

LD

INC

RET

A, ($2400)

A,C

($FD03),A

HL

HL,$0FB5

BC,$0015

A,E

C

Z,$0447

HL,BC

BC

BC

C

Z,$0447

HL,BC

BC

$0440

BC

HL,BC

A,(HL)

($FD04),

A

Get Offset for page 0/1

add Offset to track

Note calculated track

Save sector* to Stack

Table for adjusted sector

numbers

To optimize access

Get sector number and

compare with maximal value

Is 21, then end

else add Offset for table

pointer

Next area has 2 sectors

fewer per track

Has the maximal value been

reached?

Yes, then end

else add Offset for next

area

Next area has one sector

fewer and cont. searching

Get sector* from Stack

and add to Basis

Get adjusted sector #

and note

Erase flags and

End block calculations

173

Abacus Software C-128 CP/M User's Guide

********************************* Reading from disk

Set number of read tries

on the floppy

set the flag for vector

(won't be set again)

Show Block (Track/sector)

on the screen

Turn on 8502

Turn on Configuration byte

RAM Bank 0

Get read error flag

and test for read errors

Read read errors

Else end the routine

044F:

0451:

0454:

0456:

0459:

045C:

045F:

0461:

0464:

0467:

0468:

046A:

3E

32

3E

32

CD

CD

3E

32

3A

B7

20

C9

03

36

01

01

8C

E0

3F

00

06

32

3C

FD

05

FF

FF

FD

LD

LD

LD

LD

CALL

CALL

LD

LD

LD

OR

JR

RET

A, $03

($3C36),A

A, $01

($FD01),A

$058C

$FFE0

A, $3F

($FF00)fA

A,($FD06

A

NZ,$049C

046B:

046E:

046F:

0471:

0472:

0473:

0474:

0476:

0477:

0478:

0479:

047B:

047C:

047E:

047F:

21

7E

FE

CO

2C

7E

FE

CO

2C

7E

FE

CO

2E

7E

C9

00 FE

43

42

4D

FF

LD

LD

CP

RET

INC

LD

CP

RET

INC

LD

CP

RET

LD

LD

RET

HL,$FE00

A,(HL)

$43

NZ

L

A, (HL)

$42

NZ

L

A, (HL)

$4D

NZ

L,$FF

A,(HL)

Test loaded block on

boot sector

Start address of

loaded Block

Get first character

is it "C"?

No, then not a boot sector

get next character

and

compare with "B"

No, then end

third character will be

checked

against "M"

No, not a Boot sector

Counter on last character

Get this character

and end the routine

********************************* error tread

0480:

0483:

CD 26 05

93 05

CALL $0526

.Byte $93,$05

Output the following Text

line 19, column 5

174

Abacus Software C-128 CP/M User's Guide

0485:

048D:

0495:

049B:

049C:

049D:

049F:

04A2:

04A3:

04A6:

04A8:

04AB:

04AD:

04B4:

04B8:

04BB:

04C5:

04CD:

04D1:

04D3:

04DB:

04E3:

04EA:

04ED:

04EF:

04F1:

04F2:

04F4:

04F6:

04F8:

04FA:

04FC:

04FE:

04FF:

0502:

0504:

0507:

050A:

050B:

0513:

0519:

051B:

33

43

20

CF

3C

28

3A

3D

32

20

CD

93

52

52

CD

20

45

20

94

44

4E

38

01

3E

ED

OC

ED

E6

28

ED

E6

20

C7

CD

93

4E

CD

20

43

20

18

CD

32

50

53

FC

36

36

AC

26

05

45

4F

26

2D

54

52

OF

45

54

20

00

FE

79

78

02

A3

78

01

EC

26

05

4F

26

43

50

46

9D

26

4B

4D

49

3C

3C

05

41

52

05

20

55

45

4C

45

4D

DC

05

00

05

4D

49

05

20 4D 41

2B 2E 53

5A 45 00

RST

INC

JR

LD

DEC

LD

JR

CALL

.Byte

44 20 45

00

CALL

48 49 54

52 4E 20

54 52 59

.Byte

20 54 4F

52 20 43

4F 44 45

LD

LD

OUT

INC

IN

AND

JR

IN

AND

JR

RST

CALL

.Byte

CALL

.Byte

2B 2E 53

4C 45 00

JR

CALL

58 20

59 53

$08

A

Z,$049B

A,($3C36)

A

($3C36),A

NZ,$0454

$0526

$93,$05

52

$0526

20 52

54 4F

$94,$0F

20 45

31 32

00

BC, $DC00

A, $FE

<C),A

C

A, (C)

$02

Z,$049B

A, (C)

$01

NZ,$04EA

$00

$0526

$93,$05

$0526

$20,$43

59 53

$04B8

$0526

32K MA:

CPM+.SYS

SIZE<End>

Repeat Boot proceedings

Test if Accu=&FF

If Accu=&FF also reboot

Else get the read counter

and decrement by one

put it down again

Try again

Output the following text

line 19, column 5

READ ER

ROR<End>

Output following text

HIT

RETURN TO

RETRY

line $14,$0F

DEL TO E

ENTER C128

MODE<End>

Port A CIA1

(Keyboard decoding)

DEL- and <CR> are

masked and checked

Pointer to Port B of CIA1

Get result

Test Bit for <CR>

<CR> was hit -> Reboot

Else get new value

Test DEL-Bit

Not hit, then keep trying

Else in the C-128-Mode

Output the following text

line 19, column 5

NO<End>

Output the following text

$20=Ab Cursor position

CPM+.SYS

FILE<End>

New try or 128 Mode

Output the following text

175

Abacus Software C-128 CP/M User's Guide

051E: 93

0520: 42 41 44 00

0524: 18 El JR

.Byte $93,$05

$0507

Line $13, column $05

BAD<End>

New try or 128-Mode

0526:

0527:

052A:

052B:

E3

CD

E3

C9

34 05

EX

CALL

EX

RET

(SP),HL

$0534

(SP),HL

Output the following text

return address from Stack

Output text from HL to$00

End of Text as new return

address and RETurn

********************************* Output text from DE

character mask for output

Set character

Text address to Stack

and read in HL

052C:

052F:

0532:

0533:

21

22

D5

El

FF

04

FF

24

LD

LD

PUSH

POP

HL,$FFFF

($2404),

DE

HL

********************************* Output text from HL

0534:

0535:

0536:

0539:

053A:

053C:

053D:

0540:

0541:

0542:

0543:

0544:

0546:

0547:

0548:

054B:

054C:

56

23

3A

A7

28

AA

32

57

7A

B7

C8

FE

C8

E5

21

E5

FE

05 24

05

05 24

24

33 05

0A

LD

INC

LD

AND

JR

XOR

LD

LD

LD

OR

RET

CP

RET

PUSH

LD

PUSH

CP

D,(HL)

HL

A,($2405

A

Z,$0541

D

($2405),

D,A

A,D

A

Z

$24

Z

HL

HL,$0533

HL

$0A

Get character

Increment pointer to

Text position

Get mask

Set flags

Mask allows everything,

end

Otherwise string together

with mask

and write back

character to D

actual character

Set flags

Zero character signals end

Dollar sign?

If yes, then end

Save the actual counter

jump from address $0533

simulate

If line feed, then

176

Abacus Software

054E:

054F:

0551:

0553:

0556:

0559:

055C:

055D:

055E:

0560:

0562:

0565:

0568:

056B:

056E:

0571:

0574:

0577:

0578:

0579:

057B:

057D:

057E:

057F:

0580:

0581:

0582:

0583:

0585:

0586:

0589:

058A:

058B:

C8

FE

20

CD

CD

CD

DF

OC

FE

20

11

CD

CD

CD

11

CD

CD

DF

20

E6

28

Cl

El

5E

23

E5

C5

CB

D5

CD

Dl

DF

04

0D

OB

45

Fl

Fl

FF

17

00

85

48

7A

00

85

62

80

39

BA

BC

0A

06

09

18

05

OA

07

00

05

OA

09

RET

CP

JR

CALL

CALL

CALL

RST

.Byte

CP

JR

LD

CALL

CALL

CALL

LD

CALL

CALL

RST

.Byte

AND

JR

POP

POP

LD

INC

PUSH

PUSH

RES

PUSH

CALL

POP

RST

.Byte

Z

$0D

NZ,$055

$0A45

$O6F1

$O9F1

$18

$0C

$FF

NZ,$0579

DE,$1800

$0585

$0A48

$077A

DE,$0000

$0585

$0A62

$18

$20

A,$80

Z,$05B6

BC

HL

E,(HL)

HL

HL

BC

7,D

DE

$0 9BC

DE

$18

$04

C-128 CP/M User's Guide

return on this address

Is character <CR>?

No, then to $055E

column=0 - 40 characters

column=0 - 80 characters

Increment line pointer

jump to $O6D1 (Increment

line counter)

Return vector

1st character $FF?

No, then jump over

erasing part

Pointer to Status line

(line /column)

Set Cursor position

Erase status line (40er)

Erase status line (VDC)

Pointer to first

screen position

Set Cursor position

Erase cursor position to

screen end

The same for VDC

Return vector 32

Test Bit 7

If erased,then output

normal character

Simulate RS-address back

Pointer back

Get column

Pointer to next character

Save pointer

Save simulated

CALL-address

Erase bit 7 from line

Save line /column

Set 40-character-Cursor

Get line /column

Jump on

80-character-Cursor

Return vector is 4

177

Abacus Software C-128 CP/M User's Guide

******••••••••••••••••••••••••••••Announce block

(Track/sector) to read

Set line 24,

column 74 as Cursor

Set 80-char cursor pos.

Line 24, column 34

Set 40-character-Cursor

to read track

wander in ASCII

Blank character

output

to loading sector

058C:

058F:

0592:

0595:

0598:

059B:

059E:

05A0:

05A3:

11

CD

11

CD

3A

CD

16

CD

3A

4A

AB

22

BC

03

A6

20

B6

04

18

06

18

09

FD

05

05

FD

LD

CALL

LD

CALL

LD

CALL

LD

CALL

LD

DE,$184A

$06AB

DE,$1822

$09BC

A, ($FD0

$05A6

D,$20

$05B6

A,($FD0

••••••••••••••••••••••••••••••••• Make out <Accu> ASCII

05A6:

05A8:

05A9:

05AB:

05AD:

05AF:

05B0:

05B1:

05B4:

06

04

D6

30

C6

F5

78

CD

Fl

2F

0A

FB

3A

B5 05

LD

INC

SUB

JR

ADD

PUSH

LD

CALL

POP

B,$2F

B

$0A

NC,$05A8

A, $3A

AF

A,B

$05B5

AF

ASCII "0" - 1

Increment ten's place

Move (if possible) 10 down

Ten's place is still

not zero

error correction plus

ASCII "0"

Save one's place

Ten's place (ASCII)

to <Accu>

and output

Get one's place (ASCII)

********************************* Output character <accu)

05B5:

05B6:

05B7:

05BA:

05BB:

05BC:

57

D5

CD 6E 09

Dl

DF

00

LD

PUSH

CALL

POP

RST

.Byte

D,A

DE

$096E

DE

$18

$00

characters after <D>

and note

character output

Get output character (V)

character to

40-character-screen

Vector 0

178

Abacus Software C-128 CP/M User's Guide

********************************* Prepare 80 character set

Address in VDC-RAM

Get value from $3004

and check against 0 by

decrementing and

incrementing

If zero, then it was

already prepared

05BD:

05C0:

05C3:

05C4:

21

CD

04

05

04

3D

30

09

LD

CALL

INC

DEC

HL,$3004

$093D

B

B

05C5: C8 RET

05C6:

05C9:

05CC:

05CE:

05D1:

05D4:

05D7:

05DA:

05DD:

05E0:

05E3:

05E6:

05E9:

05EC:

05EF:

05F2:

05F5:

05F8:

05FB:

05FE:

0601:

0604:

0607:

0609:

060C:

060F:

0612:

0615:

0618:

061B:

061E:

0621:

0624:

0627:

21

01

16

CD

21

11

01

CD

21

11

01

CD

21

11

01

CD

21

11

01

CD

21

01

16

CD

21

11

01

CD

21

11

01

CD

21

11

00

00

00

47

A0

A0

08

B0

90

90

08

B0

E0

E0

18

B0

10

10

98

B0

00

00

00

47

00

00

08

B0

B0

B0

28

B0

CO

00

38

04

08

37

38

00

08

36

38

00

08

35

38

00

08

30

36

01

08

30

02

08

20

34

00

08

21

35

00

08

21

38

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

HL,$3800

BC,$0400

D,$00

$0847

HL,$37A0

DE,$38A0

BC,$0008

$08B0

HL,$369

DE,$3890

BC,$0008

$08B0

HL,$35E0

DE,$38E0

BC,$0018

$08B0

HL,$3010

DE,$3610

BC,$0198

$08B0

HL,$300

BC,$0200

D,$00

$0847

HL,$2000

DE,$3400

BC,$0008

$08B0

HL,$21B0

DE,$35B

BC,$0028

$08B0

HL,$21C0

DE,$3800

Fill

$3FFF

value

$3800 to

with the

0

(erase)

ASCII 122

becomes

ASCII

ASCII

138

105

becomes

ASCII

ASCII

137

94 (PI)

becomes

ASCII 95 (_)

A-Z (ASCII 1-26)

to

ASCII

Erase

in

97 ff.

$3000 to $31FF

VDC-RAM

Copy

into

RAM

t to

to

ASCII

ASCII

to

"@" (ASCII 64)

VDC-

u (ASCII 27 thru 29)

91

28 (find character)

179

Abacus

062A:

062D:

0630:

0633:

0636:

0639:

063C:

063F:

0642:

0645:

0648:

064B:

064E:

0651:

0654:

0656:

0659:

065C:

065E:

0660:

0661:

Software

01

CD

21

11

01

CD

21

11

01

CD

11

21

CD

21

06

CD

21

06

18

El

E3

08

BO

E0

10

18

BO

00

00

F8

BO

1A

CO

70

EO

03

62

BO

05

02

00

08

21

38

00

08

24

3C

03

08

OF

35

06

35

06

37

LD

CALL

LD

LD

LD

CALL

LD

LD

LD

CALL

LD

LD

CALL

LD

LD

CALL

LD

LD

JR

POP

EX

BC,$0008

$08B0

HL,$21E0

DE,$3810

$08B0

HL,$2400

DE,$3C00

BC,$03F8

$08B0

DE,$OF1A

HL,$35C

$0670

HL,$35

B,$03

$0662

HL,$37B

B,$05

$0662

HL

(SP),HL

C-128 CP/M User's Guide

ASCII 128

ASCII 30 (A) becomes 129

and

Capital letters and

other characters

to $3C00 (ASCII 192)

ASCII 227

becomes

ASCII 92

ASCII 228-230

becomes

ASCII 94-96

ASCII 231-235

becomes

ASCII 123 ff.

Get return address to HL

and erase a return address

********************************* Copy (DE)->(HL) VDC (BC)

Save counter

Note destination address

(DE)->(HL) VDC-RAM 8

Bytes

Get goal address back

And add 16 (instead of 8)

because of internal

VDC-building

Get counter back

Another character to copy?

No, then end

0662:

0663:

0664:

0667:

0668:

066B:

066C:

0 66D:

066F:

C5

E5

CD

El

01

09

Cl

10

C9

70 06

10 00

F3

PUSH

PUSH

CALL

POP

LD

ADD

POP

DJNZ

RET

BC

HL

$0670

HL

BC,$001

HL,BC

BC

$0662

180

Abacus Software C-128 CP/M Userfs Guide

********************************* (de)->(HL) VDC; 8 Bytes

Announce HL as update

8 Bytes should be copied

Get the character from RAM

and store it in VDC

Pointer to Status-Flag

Increment pointer to table

Get status flag

Test ready-Bit

Still not finished

Pointer again to $D601

Decrement pointer

and jump if still not

8 Bytes

else end routine

0670:

0673:

0675:

0676:

0678:

0679:

067A:

067C:

067D:

067F:

0680:

0681:

CD

26

1A

ED

0D

13

ED

17

30

OC

25

20

53 0

08

79

78

FB

F2

CALL

LD

LD

OUT

DEC

INC

IN

RLA

JR

INC

DEC

JR

$0953

H, $08

A, (D

(C),A

C

DE

A, (C)

NC,$067

C

H

NZ,$06

0683: C9 RET

********************************* output <A> character inkl.

Cursormove

0684:

0687:

068A:

068D:

068F:

0691:

0692:

0695:

0698:

0699:

2A

CD

3A

FE

28

3C

32

2A

23

22

11

07

13

4F

3C

13

11

11

24

09

24

24

24

24

LD

CALL

LD

CP

JR

INC

LD

LD

INC

LD

HL, ($2411

$0907

A, ($241

$4F

Z,$06CD

A

($2413),

HL,($241

HL

($2411), H

Get cursor address

Output character on

80-character

Cursor column

right boarder

(79) reached?

Yes, then next line

else increment the

column pointer

and note the new column

Get cursor address

and also increment a place

and store again

********************************* Set HL as Cursor address

069C: 3E 0E

069E: CD 45 09

06A1: ED 61

LD A,$0E

CALL $0945

OUT (C),H

Cursor address Hi-Byte

Announce to VDC

Hand over High Byte on VDC

181

Abacus Software C-128 CP/M User's Guide

06A3:

06A5:

0 6A8:

06AA:

3E

CD

ED

C9

OF

45 09

69

LD

CALL

OUT

RET

A, $0F

$0945

<C),L

Register 15 is

Cursor address Lo

announce to VDC

and also pass Lo-Byte

End of transfer

********************************* Set 80-character-Cursor

position

D:column, E: line

06B7:

0 6BA:

0 6BD:

0 6C0:

7A LD A,D Get line

FE 19 CP $19 Larger than 24

DO RET NC Yes, then invalid and end

7B LD A,E Get column

FE 50 CP $50 Larger than 7 9?

DO RET NC Yes, then invalid and end

EB EX DE,HL for the purpose of storing

HL to DE

($2413),HL and noting

Cursor position

LD HL,($2413) Get cursor position

CALL $0CCE line *80 + column

LD ($2411),HL Note address

JR $0 69C Pass cursor address

to VDC

0 6AB:

06AC:

06AE:

0 6AF:

0 6B0:

0 6B2:

0 6B3:

06B4: 22 13 24 LD

2A 13 24

CD CE 0C

22 11 2

18 DA

******************************** Decrement line by one

06C2: 3A 14 24 LD A, ($2414) Get cursor line

06C5: B7 OR A set the CPU-Flags

06C6: C8 RET Z Line is already the

then stop

06C7: 3D DEC A else decrement the line

06C8: 32 14 24 LD ($2414),A and note this

0 6CB: 18 EA JR $06B7 new calculated

cursor address

182

Abacus Software C-128 CP/M User's Guide

********************************* column=0 (1st col)

set inkl.

Influence lines

06CD:

06CE:

06D1:

0 6D4:

0 6D6:

06D8:

0 6DA:

06DB:

AF

32

3A

FE

28

30

3C

18

13 24

14 24

17

21

1A

EB

XOR

LD

LD

CP

JR

JR

INC

JR

A

($2413),A

A, ($241

$17

Z,$06F

NC,$06F4

A

$06C8

Accu becomes null

and note as column

Get actual cursor line

Is it the 23rd line.?

Reached, then jump

Line is 24

Else increment line

by one

and mark line

********************************* Decrement column by one

Get actual column

set flags to test for zero

If already first column,

then end

else decrement column pter

and note new column

Calculate new

Cursor address

0 6DD:

06E0:

06E1:

06E2:

06E3:

06E6:

3A

B7

C8

3D

32

18

13

13

CF

2

24

LD

OR

RET

DEC

LD

JR

A, ($2413

A

Z

A

($2413),A

$06B7

********************************* increment column by one

06E8:

0 6EB:

06EC:

06EE:

06F0:

3A 13 24 LD A,($2413) Get actual column

3C INC A and increment by one

FE 50 CP $50 has column 80 been

reached?

20 F3 JR NZ,$06E No, then mark column

C9 RET else end the routine

0 6F1:

06F2:

AF

18 EF

XOR

JR

A

$06E3

(first column)

Set accu to exactly 0,

then note as new column

183

Abacus Software C-128 CP/M User's Guide

********************************* Set line =23

Set line to 23rd

and mark in memory

Scroll 'the screen

one line up

by copying the 2nd line to

the first line etc.

Pointer to last line (not

Status line)

Number is 80 characters

Line erase

announce new cursor

position

06F4:

0 6F6:

0 6F9:

0 6FC:

06FF:

0702:

0705:

0708:

070B:

070E:

3E

32

21

11

01

CD

21

01

CD

18

17

14

50

00

30

B0

30

50

41

A7

24

00

00

07

08

07

00

08

LD

LD

LD

LD

LD

CALL

LD

LD

CALL

JR

A, $17

($2-414), A

HL,$0050

DE,$0000

BC,$0730

$08B0

HL,$0730

BC,$0050

$0841

$06B7

********************************* Define new

attributes(B:to erase,

C:to set parameters)

Get attribute

Complement attribute

to erase Bits (qualities)

complement again

to set Bits (qualities)

($2415),A Store the new attributes

Routine's end

0710:

0713:

0714:

0715:

0716:

0717:

071A:

3A

2F

B0

2F

Bl

32

C9

15

15

24

24

LD

CPL

OR

CPL

OR

LD

RET

A, ($2415)

B

C

($2415),i

071B:

071C:

071E:

0720:

0722:

0724:

0727:

0728:

0729:

072B:

072C:

78

D6

FE

38

0E

CD

D8

7E

E6

80

32

20

20

0A

20

E5 0C

OF

00 24

LD

SUB

CP

JR

LD

CALL

RET

LD

AND

ADD

LD

A,B

$20

$20

C,$072C

C$20

$0CE5

C

A,(HL)

$0F

A,B

($2400)

Get character .

Subtract ASCII 32 (blank)

ASCII 32?

Smaller, then jump

Move marker for ASCII 32

Transform ASCII + Code

Produce

Get character from table

Mask Bits 4-7

and mark as Offset

character

184

Abacus Software C-128 CP/M User's Guide

072F: OE 20 LD C, $20

0731:

0733:

0736:

0739:

073A:

073B:

073D:

073F:

0741:

0744:

0745:

0747:

074A:

074B:

074D:

C6

21

CD

7E

80

FE

38

E6

32

F5

3E

CD

Fl

ED

C9

30

0A

E8

10

IB

OF

16

1A

45

79

OF

OC

24

09

ADD

LD

CALL

LD

ADD

CP

JR

AND

LD

A, $30

HL,$0F0A

$0CE8

A, (HL)

A, B

$10

C,$075A

$0F

($2416),A

PUSH AF

LD

CALL

POP

OUT

RET

A,$1A

$0945

AF

(C),A

ASCII 32

subtraction-counter

ASCII 48 ("0") add

Table for color alteration

transform

Get color values

and add attribute

Transfer into high

value Nibble?

Foreground color

is defined

else mask Bits 4-7

Note background color

Save color code

Register

2 6=fore/background

color

VDC-Status wait for

and announce

Get color value

and set color

End of the routine

074E:

0751:

0752:

0755:

0756:

0759:

3A

47

3A

57

3A

C9

16

.15

17

24

24

24

LD

LD

LD

LD

LD

RET

B:Backgnd, D:Attribut

A:Foregnd

A, ($2417) Get background color

B,A and move to

A, ($2415) Get attribute

D,A and move to D

A, ($2417) Get foreground color

End of the routine

*********************************Define new foreground color

Color to B

Get actual attribute

Mask color nibble

and set a new color

A, ($2400) Get background color and

075A:

075B:

075E:

0760:

0761:

0764:

47

3A

E6

B0

32

3A

15

F0

15

00

24

24

24

LD

LD

AND

OR

LD

LD

B,A

A,($2417)

$F0

B

($2415),;

A. ($2400)

185

Abacus

0767:

076A:

076D:

0770:

0771:

0774:

0777:

0779:

Software

32

2A

11

19

CD

3A

ED

C9

17

.11

00

53

15

79

24

24

08

09

24

LD

LD

LD

ADD

CALL

LD

OUT

RET

($2417),A

HL, ($2411

DE,$0800

HL,DE

$0953

A, ($241)

<C),A

i>iz» tr/M user s uuiae

note

Get Cursor address

Offset for RAM attribute

add

Announce HL as Update

Get attribute

store to Cursor address

End of routine

********************************* Erase cursor position to

line end

Get cursor position,

number of characters

Increment the number

erase the rest of the line

077A:

077D:

077E:

CD

03

18

C7

0E

OC CALL

INC

JR

$0CC7

BC

$078E

0780: CD C7 0C CALL $0CC7

0783:

0784:

0787:

0788:

078A:

078B:

078C:

078D:

078E:

EB

21

AF

ED

F8

44

4D

EB

C3

80 07

52

41 08

EX

LD

XOR

SBC

RET

LD

LD

EX

JP

DE,HL

HL,$0780

A

HL,DE

M

B,H

C,L

DE,HL

$0841

Erase Cursor position to

screen's end

Get Cursor position,

number of character

Cursor address to DE

address beginning of

status line

Erase carry for

subtraction

Calculate # chars to

status line

If negative, then

End (error)

Else BC exactly

Number characters to

status line

and actual cursor position

again to HL

Erase to beginning of

status line

186

Abacus Software C-128 CP/M User's Guide

0791: CD C7 0C CALL $0CC7

0794:

0797:

0798:

0799:

079B:

079C:

079D:

079E:

079F:

07A0:

07A1:

07A4:

07A7:

07A8:

07A9:

07AA:

07AB:

07AC:

07AD:

07AE:

07B1:

07B3:

07B4:

07B5:

07B8:

07B9:

07BB:

07BC:

07BD:

07BE:

21

19

3D

28

54

5D

2B

C5

E5

D5

CD

01

El

09

EB

El

09

Cl

C5

CD

ED

EB

F5

CD

Fl

ED

EB

Cl

2B

IB

4F

2C

AD

00

53

78

53

79

00 LD

ADD

DEC

JR

LD

LD

DEC

PUSH

PUSH

PUSH

07 CALL

08 LD

POP HL

ADD HL,

EX DE,

POP HL

ADD HL,

POP BC

PUSH BC

HL,$004F

HL,DE

A

Z,$07C7

D,H

E,L

HL

BC

HL

DE

$07AD

BC,$0800

r BC TO

,HL

-BC

0 CALL $0953

IN A, <

EX DE,

PUSH AF

(C)

HL

CALL $095

POP AF

OUT (C)

EX DE,

POP BC

DEC HL

DEC DE

,A

HL

Insert 1 character shift

rest line

Get cursor position and

number character

add 79 to line beginning

go to line beginning

Number chars to line end-1

Nothing more then stop

Address the line end

to DE

Address line end-1

Save number

Save source

Save destination

Copy (HL)->(DE) in VDC-RAM

Now add Offset for

RAM attribute in VDC

source address

note in DE get

destination address

from Stack

also add the offset

get number

and save again

Announce HL as update

Get actual contents

Exchange destination and

goal address

Save the found

out character

Announce HL again

as update

Get back the found

out character

copy in destination

address

Goal and destination

addresses again ok.

Get number back

Decrement source pointer

Decrement destination

pointer

187

Abacus

07BF:

07C0:

07C1:

07C2:

07C4:

07C7:

Software

OB

78

Bl

20 E9

2A 11

C3 05

24

09

DEC

LD

OR

JR

LD

JP

C-128 CP/M User's Guide

BC Decrement the counter

A,B Make sure Register-

C pair BC is exactly zero

NZ,$07AD then copy next character

HL,($2411) else get Cursor address,

$0905 output a blank character

********************************* Erase character in Cursor

position

Get Cursor address and

number of characters

Save line beginning

to stack

actual Cursor position

copy to DE

Increment source by one

(HL)->(DE) BC times =

erase one character

Line beginning to HL

And add 7 9 for

line end

Output a blank char to

end line

07CA:

07CD:

07CE:

07CF:

07D0:

07D1:

07D4:

07D5:

07D8:

07D9:

CD

D5

54

5D

23

CD

El

11

19

C3

C7

B0

4F

05

OC

08

00

09

CALL

PUSH

LD

LD

INC

CALL

POP

LD

ADD

JP

$0CC/

DE

D,H

E,L

HL

$08B0

HL

DE,$004F

HLfDE

$0905

********************************* Insert a line on

cursor line

07DC:

07DF:

07E1:

07E4:

07E5:

07E8:

07EA:

07ED:

07F0:

07F2:

11

3E

2A

BC

CA

38

21

11

06

CD

62

17

13

05

1A

E0

30

18

0A

OF

24

07

06

07

08

LD

LD

LD

CP

JP

JR

LD

LD

LD

CALL

DE,$0F6

A, $17

HL,($241

H

Z,$0705

C$0804

HL,$06E0

DE,$0730

B,$18

$080A

Pointer to table

Line 23 in accu

) Get line /column

Line 23 reached?

Yes, then erase 23rd line

smaller than 23, then jump

Source address (third to

last line)

Destination address

(second to last line)

24 lines are to be copied

Copy line (HL) to (DE)

188

Abacus

07F5:

07F8:

07F9:

07FB:

07FE:

07FF:

0802:

0804:

0805:

0806:

0807:

Software

3A

B8

20

CD

EB

01

18

3C

BD

CO

C3

14

F7

C7

50

3D

2C

24

OC

00

05

LD

CP

JR

CALL

EX

LD

JR

INC

CP

RET

JP

A, ($2414)

B

NZ,$07F2

$0CC7

DE,HL

BC,$0050

$0841

A

L

NZ

$052C

C-128 CP/M User's Guide

Get line

Actual line reached?

No, then continue copying

Get cursor position and

characters

HL: line beginning

80 as beginning of the

following lines

Erase cursor line

This location won't be

reached, or the cursor

would be on status line

Output text from DE

****************************** Copy line (HL) to (DE)

in VDC

080A:

080B:

080C:

080D:

0810:

0813:

0816:

0817:

0818:

0819:

081A:

081B:

081C:

081D:

C5

E5

D5

01 50 00

CD B0 08

01 B0 FF

El

09

EB

El

09

Cl

05

C9

PUSH

PUSH

PUSH

LD

CALL

LD

POP

ADD

EX

POP

ADD

POP

DEC

RET

BC

HL

DE

BC,$0050

$08B0

BC,$FFB0

HL

HL,BC

DE,HL

HL

HL,BC

BC

B

Save number to stack

Save source addr to stack

Save destination address

to stack

80 characters per line

Copy line

Adding 80fs complement is

used for subtraction

Get destination address

delete 80 characters

and put into DE

Get source address

subtract 80

Get number

Decrement the counter

End of the routine

081E:

0821:

0823:

3A

FE

DO

14

18

24 LD

CP

RET

Erase cursor line and move

the rest up

A, ($2414)Get line

$18 Has line 24 been reached?

NC Yes, then quit

189

Abacus Software C-128 CP/M User's Guide

0824: CD C7 0C CALL $0CC7

0827:

082A:

082B:

082C:

082D:

0830:

0831:

0834:

0835:

50 0021

19

EB

E5

21 80 07

AF

ED 52

0833: 44

4D

El

0836: EB

LD

ADD

EX

PUSH

LD

XOR

SBC

LD

LD

POP

EX

Get cursor pos and

number of chars

HL,$Q050 Add 80 to the start address

HL,DE of the cursor line

DE,HL and note that in DE

HL Push start address to

the Stack

HL,$0780 Status line's start address

A

HL,DE

B,H

C,L

HL

DE,HL

0837:

083A:

CD

C3

B0

05

08

07

CALL

JP

$08B0

$0705

Erase carry for subtraction

Subtract the following

line's start add

Give the number of

characters up to the

screen's end to BC

Get start address back

Exchange source and

destination address

(HL)->(DE) in VDC-RAM

Erase the last line before

the stat line

****************************** Put value in VDC-RAM

083D: El POP HL Get return address

083E: E3 EX (SP),HL and exchange with

preceding return address

083F: 18 06 JR $0847 Jump to routine

0841: 3A 15 24 LD A, ($2415) Get attribute

0844: 5F LD E,A Load attribute into E

0845: 16 20 LD D,$20 ASCII-Code for blank char

****************************** Fill (HL) in VDC-RAM with

D,attribute with E

(HL+800) will be filled.

Test number's Hi-Byte

and Hi-Byte against zero

If zero, then only fill

Lo-Byte

Save destination address

Save fill values

0847:

0848:

0849:

084B:

084C:

78

A7

28 0D

E5

D5

LD

AND

JR

PUSH

PUSH

A,B

A

Z,$0858

HL

DE

190

Abacus Software C-128 CP/M User's Guide

084D:

084E:

084F:

0852:

0853:

0854:

0855:

0856:

0858:

0859:

085A:

C5

AF

CD 5B 08

Cl

Dl

El

24

10 F3

79

A7

C8

PUSH

XOR

CALL

POP

POP

POP

INC

DJNZ

LD

AND

RET

BC

A

$085B

BC

DE

HL

H

$084B

A,C

A

Z

Save number

Accu=0 means 256 character

Fill (HL) with D, 256 times

Get number back

Get fill values back

Get destnation address back

Increment Hi-Byte

If bigger than 256

character, then jump

Test Lo-Byte against

zero (nothing more to fill)

and end, if done

ft*********-********************

085B:

085C:

085D:

085E:

0861:

0862:

0865:

0866:

0867:

086A:

086B:

F5

E5

D5

CD

Dl

01

El

09

CD

Fl

53

6C

00

FE

08

08

08

PUSH

PUSH

PUSH

CALL

POP

LD

POP

ADD

CALL

POP

LD

AF

HL

DE

$086C

DE

BC,$0800

HL

HL,BC

$08FE

AF

D,E

Save character <D> to <HL>

<a> number of times

Save number

Save destination address

Save fill character

Save character D

Get fill character

Offset for RAM attribute

Retrieve destination

address

and add Offset

See if HL is a

legitimate address

If ok, get counter

and attribute as fill char

a*****************************

086C:

086D:

0870:

0872:

0873:

0874:

0875:

0876:

F5

CD

ED

Fl

3D

C8

F5

3E

53 09

51

18

PUSH

CALL

OUT

POP

DEC

RET

PUSH

LD

AF

$0953

(C),D

AF

A

Z

AF

A, $18

character <D> <A> times to

<HL> in VDC-RAM

Save counter to stack

Announce HL as update

and pass character

Get number from stack

Decrement the counter

and end if full enough

else save counter

Announce Register 24

191

Abacus

0878:

087B:

087D:

087F:

0881:

0883:

0886:

0887:

0889:

088B:

088C:

088D:

088E:

088F:

0890:

0892:

0895:

0897:

0899:

089C:

089E:

089F:

08A0:

08A3:

08A4:

08A5:

08A8:

08A9:

08AB:

08AC:

08AE:

08AF:

Software

CD

ED

E6

ED

3E

CD

Fl

ED

06

4F

03

09

D5

E5

3E

CD

ED

3E

CD

ED

Dl

Cl

CD

DO

C5

CD

Cl

ED

23

18

El

E3

45

78

7F

79

IE

45

79

00

12

45

60

13

45

68

FA

53

41

F2

09

09

09

09

00

09

CALL

IN

AND

OUT

LD

CALL

POP

OUT

LD

LD

INC

ADD

PUSH

PUSH

LD

CALL

IN

LD

CALL

IN

POP

POP

CALL

RET

PUSH

CALL

POP

OUT

INC

JR

POP

EX

$0945

A, (C)

$7F

(C),A

A,$1E

$0945

AF

(C),A

B,$00

C,A

BC

HL,BC

DE

HL

A, $12

$0945

H, (C)

A, $13

$0945

L, (C)

DE

BC

$00FA

NC

BC

$0953

BC

(C),B

HL

$08A0

HL

(SP),HL

C-128 CP/M User's Guide

(copy-bit)

Get register's contents

and mask copy-Bit

Again into VDC memory

Select register 31

(Word count)

and announce

Get number from Stack

and pass the number's

remainder to VDC

Set BC's Hi-Byte to zero

and Lo-Byte with

number's remainder

add one

add start address

Save start address

Save calculated stop addr

Update Hi-Byte-Register

announce

and read the entire value

Update Lo-Byte-Register

announce

and read the entire value

Get the calculated

stop address

Get start address

Compare HL with DE

Everything OK, no mistakes!

Number to Stack

Announce HL as Update

Get number's remainder

and error correction

if calculated stop address

and actual stop address are

different

Get return address

and go one deeper in

the Stack

192

Abacus Software C-128 CP/M User's Guide

08B0:

08B1:

08B2:

08B4:

08B5:

08B6:

08B7:

08B8:

08BB:

08BC:

08BD:

08BE:

78

A7

28 OE

E5

D5

C5

AF

CD C5 08

Cl

Dl

El

24

LD

AND

JR

PUSH

PUSH

PUSH

XOR

CALL

POP

POP

POP

INC

AfB

A

Z,$08C2

HL

DE

BC

A

$08C5

BC

DE

HL

H

08BF: 14 INC D

a***************************** (HL) -> (DE) in VDC-RAM

<BC> times

Get number's Hi-Byte

Test Hi-Byte against zero

If zero, then number<256

Save source address

Save destination address

Save number toStack

erase Accu for 256 chars

(HL)->(DE) <A> times

Get number

Get destination address

Get source address

Increment source address1

Hi-Byte

Increment destination

address1 Hi-Byte

If more than 256 character,

then get Lo-number

see if it is zero

end if it is zero

else exchange source and

destination addresses

Save number to Stack

Save destination address

Save source address

(DE)->(HL) in VDC-RAM

<A> number of times

Offset for RAM attribute

Get source address

add Offset

Source address+Offset

into DE

Get destination address

add Offset

Test against memory

boundary

Get number

08C0:

08C2:

08C3:

08C4:

08C5:

08C6:

08C7:

08C8:

08C9:

08CC:

08CF:

08D0:

08D1:

08D2:

08D3:

08D4:

10

79

A7

C8

EB

F5

E5

D5

CD

01

El

09

EB

El

09

CD

F2

D8 08

00 08

FE 08

DJNZ

LD

AND

RET

EX

PUSH

PUSH

PUSH

CALL

LD

POP

ADD

EX

POP

ADD

CALL

$08B4

A,C

A

Z

DE,HL

AF

HL

DE

$08D8

BC,$0800

HL

HLfBC

DEfHL

HL

HL,BC

$08FE

08D7: Fl POP AF

193

Abacus Software C-128 CP/M User's Guide

• ••it**************************

08D8:

08D9:

08DC:

08DE:

08E1:

08E3:

08E5:

08E7:

08E9:

08EC:

08EE:

08F0:

08F3:

08F5:

08F7:

08FA:

08FB:

08FD:

F5

CD

3E

CD

ED

F6

ED

3E

CD

ED

3E

CD

ED

3E

CD

Fl

ED

C9

53

18

45

78

80

79

20

45

51

21

45

59

IE

45

79

09

09

09

09

09

PUSH

CALL

LD

CALL

IN

OR

OUT

LD

CALL

OUT

LD

CALL

OUT

LD

CALL

POP

OUT

RET

AF

$0953

A, $18

$0945

A, (C)

$80

<C),A

A, $20

$0945

<C),D

A, $21

$0945

(C),E

A,$1E

$0945

AF

(C),A

(DE) -> (HL) in

VDC-accumulator

<A> times

Save number to stack

Announce HL as

Update address

Announce register 24

(copy bit)

Get register's contents

and set the copybit

Report register to VDC

Announce Register 32

(Block-Start-Hi)

in VDC

Pass Hi-address source

Announce Register 33

(Block-Start-Lo)

in VDC

and pass Lo-address source

Announce Register 31 (Word

count)

and get number from stack

Report VDC number

End of routine

a*****************************

08FE:

08FF:

0901:

0902:

0903:

7C

FE 20

D8

Fl

Fl

LD

CP

RET

POP

POP

A,H

$20

C

AF

AF

0904: C9 RET

Test if after adding the

offset <HL>

the RAM attribute changes

Load Hi-Byte into accu

and check the border

If carry is set, <HL> is OK

Get AF from stack

Get return address from

the Stack

and a return occurs after

CALL $085B

194

Abacus Software C-128 CP/M User's Guide

a*****************************

0905: 16 20 LD

0907: 3A 15 24 LD

Output blank character to

(HL) (VDC)

D,$20 ASCII value for <space>

A,($2415) Get attribute

090A:

090B:

090C:

090F:

0910:

0911:

0914:

0915:

0916:

0919:

091B:

E5

D5

11

19

57

CD

Dl

El

CD

ED

C9

00

16

53

51

08

09

09

PUSH

PUSH

LD

ADD

LD

CALL

POP

POP

CALL

OUT

RET

Output character <D> with

attribute <A> to (HL)

HL Save destination address

DE Save character/attribute

DE,$0800 Add offset for RAM

attribute

HL,DE to destination address

D,A Output attribute as

the fill character

$0916 <D> to (HL)

DE Get character

HL Get destination address

$0953 Use HL as update

(C)fD and output char to (HL)

Routine's end

****************************** Qet <c>:attribute,

:character, to

cursor position <DE>

091C: CD AB 06 CALL $06AB Set cursor position <DE>

091F: 2A 11 24 LD HLf ($2411) Get cursor address

0922: CD 33 09 CALL $0933 Get character/attribute

0925: 4F LD C,A <C> is attribute

0 926: C9 RET End of the routine

0927: C5 PUSH

0928: CD AB 06 CALL

092B: 2A 11 24 LD

:character,

<C>:attribute, output

to <DE>

BC Save character/attribute

$06AB Set cursor position <DE>

HL,($2411)Get Cursor address

195

Abacus Software C-128 CP/M User's Guide

092E:

092F:

0930:

0931:

Cl

50

79

18 D7

POP

LD

LD

JR

BC

D,B

A,C

$090A

Get character/atrribute

<D> is a character

<A> is an attribute

Output character and

attribute

****************************** Get <A>:Attribute,

:character to (HL)

0933:

0934:

0937:

0938:

093B:

093C:

093D:

093E:

0941:

0942:

0944:

E5

11

19

CD

78

El

F5

CD

Fl

ED

C9

00 08

3D 09

53 09

40

PUSH

LD

ADD

CALL

LD

POP

PUSH

CALL

POP

IN

RET

HL

DE, $0

HL,DE

$093D

A,B

HL

AF

$0953

AF

B, (C)

Save address

DE,$0800 Add offset for

attribute address

Get values to

VDC-address (HL)

Attribute to <A>

Get text address

Save attribute

Use (HL) as update

Get attribute

Get value to address (HL)

Routine's end

****************************** Wait forVDC—Status

0945:

0946:

0949:

094B:

094C:

094E:

094F:

0951:

0952:

F5

01

ED

17

30

Fl

ED

OC

C9

00 D6

78

FB

79

PUSH

LD

IN

RLA

JR

POP

OUT

INC

RET

AF

BC, $D

A, (C)

NCf $0

AF

<C),A

C

Save output register

BCf$D600 Start address VDC-Chip

Get Status

Shift Status-Bit into Carry

NCf$0949 Still not done -> jump

Get the register from stack

once more

and choose register

Point to $D601

and RETurn from routine

196

Abacus Software C-128 CP/M User's Guide

0953:

0955:

0958:

095A:

095C:

095F:

0961:

0963:

0966:

0967:

0969:

096A:

096C:

096D:

3E

CD

ED

3E

CD

ED

3E

CD

0D

ED

17

30

OC

C9

12

45 09

61

13

45 09

69

IF

45 09

78

FB

LD

CALL

OUT

LD

CALL

OUT

LD

CALL

DEC

IN

RLA

JR

INC

RET

A, $12

$0945

(C),H

A, $13

$0945

(C),L

A,$1F

$0945

C

A, (C)

NC,$0967

C

HL as Update-address

Announce Update-address Hi

Pass Hi-Byte

Announce Update-address Lo

Pass Lo-Byte

Announce word count

register

Pointer again to $D600

Get Status

Roll status into Carry

Still not done

Yes now, pointer to $D601

RETurn from subroutine

****************************** Output character <D> to

40-character screen

096E:

096F:

0972:

0975:

0976:

0979:

097A:

097B:

097C:

097F:

0982:

0983:

0986:

0987:

098A:

098C:

098E:

098F:

0992:

42

CD

2A

47

3A

B0

77

23

22

11

19

3A

77

3A

FE

28

3C

32

C3

7F

09

10

09

FF

0D

0B

4F

5F

0B

4A

OC

24

24

24

07

24

24

24

OC

LD

CALL

LD

LD

LD

OR

LD

INC

LD

LD

ADD

LD

LD

LD

CP

JR

INC

LD

JP

B,D character to

$0C7F ASCII code transform VIC

HL,($2409)80-character-address

BfA character to

A,($2410)Get character offset

(Bit 7 1/0)

B Operate with character

(HL),A and write into RAM

HL Increment pointer

($2409),HL and mark this

DE,$07FF Add to offset

HL,DE for color RAM

A,($240D)Get character color

(HL)fA and set character color

A,($240B)Get cursor position

$4F Last column?

Z,$09ED Yes, then jump lines

A else increment the

column pointer

($240B),A and mark the new position

$0C4A Represent line

197

Abacus Software C-128 CP/M User's Guide

****************************** Get character and color

<C> from Cursor pos (DE)

Define line/column (DE)

HL, ($2409) Get cursor address of

80-character simulator

Get character in

Cursor position

DE,$0800 Add offset for RAM

attribute

Get attribute in

Cursor position

End of routine

0995:

0998:

099B:

099C:

099F:

0 9A0:

CD

2A

46

11

19

4E

Cl

09

00

09

24

08

CALL

LD

LD

LD

ADD

LD

$O9C1

HL,($2

B,(HL)

DE,$0E

HL,DE

C, (HL)

0 9A1: C9 RET

****************************** :character,<C>:attribute

to (DE)

0 9A2:

0 9A3:

0 9A6:

0 9A7:

09AA:

0 9AB:

0 9AD:

0 9AF:

0 9B1:

0 9B3:

09B4:

0 9B7:

0 9B8:

09B9:

C5

CD

Cl

2A

78

E6

CB

28

C6

77

11

19

71

C3

Cl

09

7F

71

02

80

00

4A

09

24

08

OC

PUSH

CALL

POP

LD

LD

AND

BIT

JR

ADD

LD

LD

ADD

LD

JP

BC

$O9C1

BC

Save character/attribute

Set Cursor position

Get character/attribute

HL, ($2409) Get 80-character

A,B

$7F

6,C

Z,$09B3

A,$80

(HL),A

DE,$0800

HL,DE

(HL),C

$0C4A

simulator address

character into <Accu>

Erase Bit 7

Test Bit 6

Isn't set

Set Bit 7 (reverses

character)

and set character

Add offset for

RAM attribute

Define attribute also

Represent line

****************************** Def. line/column

HL,$2404 address 40-character

6,(HL) 40-character bit set

A,D Get line

0 9BC:

09BF:

09C1:

21

CB

7A

04

F6

24 LD

SET

LD

198

Abacus

0 9C2:

09C4:

09C5:

09C6:

0 9C8:

09C9:

09CA:

Software

FE 19

DO

7B

FE 50

DO

EB

22 OB 24

CP

RET

LD

CP

RET

EX

LD

$19

NC

A,E

$50

NC

DE,HL

($240B)

C-128 CP/M User's Guide

Bigger than 24?

Yes, then end (error)

Get column

Have reached column 80?

Yes, then end (mistake)

line/column to HL

i,HL Set line/column

•a**************************** New cursor position

09CD: 2A OB 24 LD HL, ($240B Get line/column

09D0: CD CE 0C CALL $0CCE Calculate new cursor

address

DE,$1400 Add offset for

80-character simulator

19 ADD HL,DE to it

22 09 24 LD ($2409),HL And note the

adjusted address

09DA: C3 4A 0C JP $0C4A Represent line

09D3: 11 00 14 LD

09D6:

09D7:

****************************** Decrement line

09DD:

09E0:

09E1:

09E2:

09E3:

09E6:

09E9:

09EB:

3A

B7

C8

3D

32

21

CB

18

OC

OC

04

F6

E0

24

24

24

LD

OR

RET

DEC

LD

LD

SET

JR

A, ($240C) Get cursor line

A Set Flags

Z line 0! Don't do anything

A else decrement line pointer

($240C),A and note line

HL,$2404 Set Bit 6 to $2404

6,(HL) as OK-character

$09CD Calculate new

cursor position

a***************************** Column=0 Define column (+1)

09ED: AF XOR A Accu=0 for first column

09EE: 32 0B 24 LD ($240B) ,A and define column

09F1: 3A 0C 24 LD A, ($240C) Get line

09F4: FE 17 CP $17 Last line?

09F6: 28 0A JR Z,$0A02 Yes, then jump

09F8: 30 03 JR NC,$09FD Correct errors

199

Abacus Software C-128 CP/M User's Guide

0 9FA: 3C INC A Increment line by one

09FB: 18 E6 JR $09E3 and note

09FD: 3E 17 LD A, $17 Note line 23 (last

09FF: 32 OC 24 LD ($240C),A line)

0A02: 21 50 14 LD HL,$1450 Second line's start address

0A05: 11 00 14 LD DE,$1400 First line's start address

0A08: 01 30 07 LD BC,$0730 Copy 22 lines

0A0B: ED B0 LDIR Scrolling

0A0D: EB EX DE,HL Destination address

as source

0A0E: 11 31 IB LD DE,$1B31 Last line's 2nd character

0A11: 01 4F 00 LD BC,$004F Fill 79 characters

0A14: CD 24 0B CALL $0B24 Fll last line with

fill characters

0A17: 21 50 1C LD HL,$lC50 Second line's address

beginning (att ribute)

0A1A: 11 00 1C LD DE,$lC00 1st line's address

beginning (attribute)

0A1D: 01 30 07 LD BC,$0730 Scroll 22 lines

0A20: ED B0 LDIR Execute scrolling in color RAM

0A22: EB EX DE,HL 1st char of last line to HL

0A23: 11 31 23 LD DE,$2331 2nd character of last line

(color RAM)

0A26: 01 4F 00 LD BC,$004F Fill 79 characters

0A29: 3A 0D 24 LD A, ($240D) Get color for color RAM

0A2C: 77 LD (HL) , A set

0A2D: ED B0 LDIR and also fill the rest of the line

0A2F: 18 B5 JR $09E6 OK set

****************************** Move cursor left

A, ($240B) Get column position

A Set Flags

Z First column? Then end

A else move cursor left

($240B),A Store the new column

$09CD Calculate cursor address

0A31:

0A34:

0A35:

0A36:

0A37:

0A3A:

3A

B7

C8

3D

32

18

0B

0B

91

24

24

LD

OR

RET

DEC

LD

JR

200

Abacus Software C-128 CP/M User's Guide

a***************************** Move cursor right

A, ($240B) Get column

A and move it right

$50 Have we reached the

80th column?

NZ,$0A37 No, then store the

new position

else don't move the cursor

0A3C:

0A3F:

0A40:

0A42:

0A44:

3A

3C

FE

20

C9

OB 24

50

F3

LD

INC

CP

JR

RET

a***************************** set column = 0

0A45: AF

0A46: 18 EF

XOR A

JR $0A37

Erase accu and

store as column value

0A48:

0A4B:

0A4C:

0A4F:

0A52:

0A53:

0A56:

0A57:

0A58:

0A59:

0A5A:

0A5B:

0A5C:

0A5D:

0A5E:

0A60:

21

E5

CD

11

19

CD

79

A7

C8

C5

E5

54

5D

13

ED

18

CF

C2

00

B3

B0

1C

0B

OC

14

0A

LD

PUSH

CALL

LD

ADD

CALL

LD

AND

RET

PUSH

PUSH

LD

LD

INC

LDIR

JR

HL,$0BCF

HL

$0CC2

DE,$1400

HL,DE

$0AB3

A,C

A

Z

BC

HL

D,H

E,L

DE

$0A7E

Erase from cursor position

to line end

Return after

simulating $0BCF

Find out cursor pos and

rest of chars/line

Add offset for

80-character simulator

Set fill characters

rest of characters/line

Set Flags

No more characters

Save number

Save source address

Register pair DE

equals HL

plus 1

Erase up to line end

Also erase attribute

201

Abacus Software C-128 CP/M User's Guide

****************************** Erase from cursor pos to

end of screen

0A62: 21 OC OC LD

0A65:

0A66:

0A69:

0A6C:

0A6D:

0A6E:

0A70:

0A71:

0A72:

0A74:

0A75:

0A76:

0A77:

0A78:

0A79:

0A7A:

0A7B:

0A7E:

0A81:

0A82:

0A83:

0A84:

0A85:

0A86:

0A87:

0A8A:

0A8B:

E5

11 7F IB

2A 09 24

EB

AF

ED 52

F8

EB

28 3F

42

4B

54

5D

13

C5

E5

CD 24 OB

01 00 08

El

09

Cl

54

5D

13

3A 0D 24

77

ED B0

0A8D: C9

PUSH

LD

LD

EX

XOR

SBC

RET

EX

JR

LD

LD

LD

LD

INC

PUSH

PUSH

CALL

LD

POP

ADD

POP

LD

LD

INC

LD

LD

LDIR

RET

HL,$0C0C Simulate $0C0C as

return address

HL for the stack

DE,$1B7F The last line's last column

HL,($2409) Get cursor address

80-character-Simulator

DE,HL to DE, $1B7F to HL

A Erase carry for subtraction

HL,DE Find # of chars to

end of screen

M if negative, there is error

DEfHL else give result to DE

Z,$0AB3 If only one char, then fill

B,D else number

CfE into register pair BC

D,H and register pair DE

(destination)

E,L equals register pair HL

DE plus one

BC Push number to Stack

HL Push source onto Stack

$0B24 Fill text line with

attribute

BC,$0800 Offset for color RAM

HL Retrieve source address

HL,BC and add offset

BC Get number of characters

D,H Destination address equals

E,L source address

DE plus one

A, ($240D) Get color for

color RAM VIC

(HL),A and set color

fill the rest up

to screen's end

End of the routine

202

Abacus Software C-128 CP/M User's Guide

0A8E:

0A91:

0A92:

0A95:

0A98:

0A99:

0A9A:

0A9C:

0A9D:

0A9E:

0A9F:

OAAO:

0AA1:

0AA3:

0AA4:

0AA7:

0AA8:

OAAB:

OAAC:

OAAD:

OAAE:

OAAF:

OABO:

0AB2:

21

E5

CD

21

19

3D

28

54

5D

2B

C5

D5

ED

EB

CD

El

01

09

Cl

54

5D

2B

ED

C9

CF

C2

4F

17

B8

B3

00

B8

OB

OC

14

OA

08

LD

PUSH

CALL

LD

ADD

DEC

JR

LD

LD

DEC

PUSH

PUSH

LDDR

EX

CALL

POP

LD

ADD

POP

LD

LD

DEC

LDDR

RET

HL,$0BCF

HL

$0CC2

HL,$144F

HL,DE

A

Z,$0AB3

D,H

E,L

HL

BC

DE

DE,HL

$0AB3

HL

BC,$0800

HL,BC

BC

D,H

E,L

HL

Insert one space at

the cursor position

Copy line from RAM

to screen

as return address for Stack

Find out cursor pos and

rest of character

Add the last char of the

first line

to the cursor address

last column?

Yes, then jump

Else destination goal is =

source address

minus one

Save number to stack

Save destination address

to Stack

Move char behind Curs right

HL:=Cursor pos

Get fill characters

Retrieve destination addr

Add offset for color RAM

to source address

Retrieve number

Destination address equals

source address

minus one

Move color RAM also

End of the routine

****************************** ($2410) + $20 -> (HL); set

the fill characters

0AB3:

0AB6:

0AB8:

0AB9:

3A

C6

77

C9

10

20

24 LD

ADD

LD

RET

A,($2410) read address $2410

(Fill characters)

A,$20 Add $20=32 tp ot

(HL),A and store in (HL)

RETurn from routine

203

Abacus Software C-128 CP/M User's Guide

OABA:

OABD:

OABE:

0AC1:

0AC4:

0AC5:

0AC6:

0AC8:

0AC9:

OACA:

OACB:

OACC:

OACD:

OACF:

OADO:

0AD3:

0AD4:

0AD7:

0AD8:

0AD9:

OADA:

OADB:

OADC:

OADE:

21

E5

CD

11

19

3D

28

54

5D

C5

E5

23

ED

EB

CD

El

01

09

Cl

54

5D

23

ED

C9

CF

C2

00

EB

BO

B3

01

BO

OB

OC

14

OA

08

LD

PUSH

CALL

LD

ADD

DEC

JR

LD

LD

PUSH

PUSH

INC

LDIR

EX

CALL

POP

LD

ADD

POP

LD

LD

INC

LDIR

RET

HL,$OBCF

HL

$0CC2

DE,$1400

HL,DE

A

Zf $0AB3

D,H

E,L

BC

HL

HL

Erase

DE,HL

$0AB3

HL Get

BC,$0801

HL,BC

BC

D,H

E,L

HL

Erase a character in

Cursor position

Give $0BCF as return

address to stack

insert extra

Get cursor address/

rest of characters

Add offset for

80-character simulator

to Cursor address

Test number/character

If zero, then jump

else destination address =

source address

Save number

Save source address

Source address is equal to

source address+1

char in cursor position

Cursor address to HL

Set fill character

source address

Add offset for color RAM+1

Get # of chars from Stack

Destination address equals

source address

plus one

Also move color RAM

End of routine

0ADF:

0AE2:

0AE3:

0AE6:

0AE8:

0AEA:

0AEB:

21

E5

3A

FE

28

DO

CD

OC

OC

17

31

C2

OC

24

OC

LD

PUSH

LD

CP

JR

RET

CALL

Insert 1 line at

cursor position

HLf$0C0C Insert return address $0C0C

HL push to stack

A, ($240C) Get cursor line

$17 line 23 (last)?

Z,$OB1B Yes, then just erase

NC Mistake, then end

$0CC2 Get cursor address/

204

Abacus Software C-128 CP/M User's Guide

OAEE: 21 00 14 LD

0AF1:

0AF2:

0AF6:

0AF7:

0AF8:

OAFB:

OAFC:

OAFE:

OAFF:

0B00:

0B03:

0B06:

0B07:

0B09:

0B0A:

OBOD:

0B10:

0B12:

0B13:

0B14:

0B15:

0B16:

0B19:

0B1B:

0B1E:

0B21:

0B24:

0B27:

0B29:

0B2A:

19

E5

19

EB

21 80 IB

AF

ED 52

44

4D

21 2F IB

11 7F IB

C5

ED B8

Cl

21 2F 23

11 7F 23

ED B8

El

54

5D

13

01 4F 00

18 09

21 30

11 31

IB

IB

01 4F 00

3A 10 24

C6 20

77

ED BO

ADD

PUSH

0AF3: 11 50 00 LD

0B2C: C9

ADD

EX

LD

XOR

SBC

LD

LD

LD

LD

PUSH

LDDR

POP

LD

LD

LDDR

POP

LD

LD

INC

LD

JR

LD

LD

LD

LD

ADD

LD

LDIR

RET

rest of characters

HLf$1400 Add offset for

80-character simulator

HL,DE to it

HL Save source address

to stack

DE,$0050 Add offset for the

beginning of the next

HL,DE to start address

DE,HL Result to (DE)

HL,$1B8O Last line's address

A Erase carry for subtraction

HL,DE Find out number chars to

end of screen

B,H Number comes from

C,L HL to BC

HLf$lB2F last column of

second-to-last line

DE,$1B7F last column of last line

BC Save number to stack

Insert a line on

the cursor line

BC Retrieve number

HL,$232F Color RAM's address

DE,$237F Color RAM's address

also move

HL Get source address

D,H DE equals

E,L source address

DE plus one

BC,$004F 79 characters

$0B24 Erase new line

HL,$lB30 Only erase the last

DE,$1B31 line

BC,$004F because cursor is

on last line

A, ($2410) Get fill character

A,$20 add 32 (blank character)

(HL),A and set fill character

fill the rest with

fill characters

and end the routine

205

Abacus Software C-128 CP/M User's Guide

0B2D:

0B30:

0B31:

0B34:

0B36:

0B38:

0B39:

0B3C:

0B3F:

0B40:

0B41:

0B44:

0B45:

0B46:

0B49:

0B4A:

0B4C:

0B4D:

0B4E:

0B4F:

0B50:

0B51:

0B52:

0B53:

0B55:

0B58:

0B59:

0B5A:

0B5B:

0B5C:

0B5D:

0B5E:

0B60:

21

E5

3A

FE

28

DO

CD

21

19

E5

11

19

EB

21

AF

ED

44

4D

EB

Dl

C5

E5

D5

ED

01

El

09

EB

El

09

Cl

ED

18

OC

OC

17

E3

C2

00

50

80

52

BO

00

BO

B9

OC

24

OC

14

00

IB

08

LD

PUSH

LD

CP

JR

RET

CALL

LD

ADD

PUSH

LD

ADD

EX

LD

XOR

SBC

LD

LD

EX

POP

PUSH

PUSH

PUSH

LDIR

LD

POP

ADD

EX

POP

ADD

POP

LDIR

JR

HL,$0C0C

HL

Erase cursor line

and move screen

Push return address $0C0C

to stack

A, ($240C)Get cursor line

$17

Z,$OB1B

NC

$0CC2

HLf$1400

HL,DE

HL

DE,$0050

HL,DE

DE,HL

HL,$1B8O

A

HL,DE

B,H

C,L

DEfHL

DE

BC

HL

DE

BC,$0800

HL

HLfBC

DE,HL

HL

HL,BC

BC

$OB1B

Last line?

Yes, then only erase

the last line

On NC error and end

Calculate cursor address/

rest of chars

Add offset for

80-character simulator

to cursor address

Save source address to stak

Add offset for start of

the following line

Result to DE

address status line

Erase carry for subtraction

Find number of chars to

end of screen

number

to BC

Start address->HL

Get Start addr cursor line

Save number to stack

Save source addres to stack

Save goal address to stack

and erase line

Add offset for color RAM

to the

source address

Result to DE

Get start address of

second-to-last line of

color RAM

also add offset

Get number

and also move color RAM

Erase last line

206

Abacus Software C-128 CP/M User's Guide

•••a************************** :off, <C>:turned on Bits

of character color

0B62:

0B63:

0B65:

0B66:

0B67:

0B69:

0B6A:

0B6D:

0B6E:

0B6F:

0B70:

0B71:

0B74:

0B75:

0B77:

78

E6

47

79

E6

4F

3A

2F

BO

2F

Bl

32

17

E6

32

70

70

OD 24

OD 24

80

10 24

LD

AND

LD

LD

AND

LD

LD

CPL

OR

CPL

OR

LD

RLA

AND

LD

A,B

$70

B,A

A,C

$70

Cf A

A, (

B

C

($2

$80

($2

0B7A: C9 RET

Turned on Bits to <A>

Erase Bit 7 und Bits 0-3

Result to

Get the set Bits

Also erase bitsO,l,2,3f4,7

Result to C

A, ($240D) Get attribute complement

set to

erased characteristics

complement again and

set to set characteristics

($240D),A Note the new attribute

shift 6th Bit into 7th

Reverse char and mask

($2410),A Values $00 thru $80 as

fill characters

End of routine

a*****************************

0B7B:

0B7C:

0B7E:

0B80:

0B82:

0B84:

0B87:

0B88:

0B89:

0B8A:

0B8B:

0B8C:

0B8D:

0B8F:

0B90:

0B92:

0B94:

0B96:

78

D6

FE

38

0E

CD

D8

7E

OF

OF

OF

OF

E6

80

FE

38

FE

38

20

30

0E

30

E5 0C

OF

10

29

20

0B

LD

SUB

CP

JR

LD

CALL

RET

LD

RRCA

RRCA

RRCA

RRCA

AND

ADD

CP

JR

CP

JR

A,B

$20

$30

C,$0B90

C,$30

$0CE5

C

A, (HL)

/2

/2-/4

/2=/8

/2-/16

$0F

A,B

$10

C,$0BBD

$20

C,$0BA3

Get output chars to<Accu>

Minus ASCII 32

smaller than 48?

Yes, then jump

else note 48 as the number

further coding

Everything clear

Get color

Masks Bits 4-7

and add to it again

Transfer into the high

value Nibble?

No, define new color

Frame or background color ?

Define background color

207

Abacus Software C-128 CP/M User's Guide

****************************** Set frame color

$0F Mask Bits 7-4

($240F),A and note frame color

BC,$D020 Address for frame color

(C),A Pass frame color to VIC

End of routine

0B98:

0B9A:

0B9D:

OBAO:

0BA2:

E6

32

01

ED

C9

OF

OF

20

79

24

DO

AND

LD

LD

OUT

RET

0BA3:

0BA5:

0BA8:

OBAB:

OBAD:

E6

32

01

ED

C9

OF

0E

21

79

24

DO

Set background color for

40-character

AND $0F Mask Bits 4-7

LD ($240E),A and note background color

LD BC,$D021 Address for background color

OUT (C),A Pass background color to VIC

RET End of routine

OBAE:

0BB1:

0BB2:

0BB5:

0BB6:

0BB9:

OBBA:

OBBC:

3A

47

3A

4F

3A

57

E6

C9

0E

OF

0D

OF

24

24

24

LD

LD

LD

LD

LD

LD

AND

RET

Get: :background,

<C>:frame,

<D>:character color

A,($240E)Get background color

B,A note in

A, ($240F)Get frame

C,A Note in <C>

A, ($240D)Get char color

D,A Note in <D>

$0F Mask unimportant bits 7-4

End of routine

****************************** Define new color

B,A Code to

A, ($240D)Get old color

$F0 Get Bits 0 to 3

B and new color

($240D),A Store new color

HL,($2409)Get cursor address

DE,$0800 Add offset for

RAM attribute

OBBD:

OBBE:

0BC1:

0BC3:

0BC4:

0BC7:

OBCA:

47

3A

E6

BO

32

2A

11

0D

F0

0D

09

00

24

24

24

08

LD

LD

AND

OR

LD

LD

LD

208

Abacus Software C-128 CP/M User's Guide

OBCD: 19

OBCE: 77

ADD

LD

HL,DE

(HL),A Set new color

****************************** Copy line from RAM

to screen

OBCF: 3A 04 24 LD A, ($2404)Marker for output

0BD2: 47 LD B,A into

0BD3: B7 OR A Set Flags

0BD4: FC 3C 0C CALL M, $0C3C If bit 7 is set,

then pay attention

0BD7: 3A 02 24 LD A, ($2402)Get column considered

OBDA: B8 CP B equal to 80-char column?

OBDB: 32 04 24 LD ($2404) ,A mark column

OBDE: 20 2C JR NZ,$0C0C different, then jump

0BE0: CD C2 0C CALL $0CC2 Calculate cursor position

0BE3: 21 00 14 LD HL,$1400 Add offset $1400

0BE6: 19 ADD HL,DE

0BE7: EB EX DE,HL and mark in DE

0BE8: 2A 02 24 LD HL, ($2402) add the column

being considered

0BEB: 19 ADD HL,DE gives destination address

0BEC: E5 PUSH HL save to stack

0BED: 3A 0C 24 LD Af ($240C) Get line

0BF0: 6F LD L,A and into <L>

0BF1: CD 70 0C CALL $0C70 Calculate line start

for 40-char

0BF4: EB EX DE,HL and note in DE

0BF5: El POP HL Get address considered

0BF6: E5 PUSH HL and save again

0BF7: D5 PUSH DE save line beginning

0BF8: 3E 01 LD A,$01 Copy 1 line

0BFA: CD 27 0C CALL $0C27 Copy ($1400+SP) to screen

0BFD: El POP HL 40-character address back

0BFE: 01 00 E4 LD BC,$E400 Offset for color RAM

0C01: 09 ADD HL,BC Add offset

0C02: EB EX DE,HL and note in DE

0C03: El POP HL Get source address

0C04: 01 00 08 LD BC,$0800 Offset screen color RAM

0C07: 09 ADD HL,BC Add to source address

0C08: 3E 01 LD A,$01 1 line

0C0A: 18 IB JR $0C27 and copy

209

Abacus Software C-128 CP/M User's Guide

******************************* copy 40-character screen

OCOC:

OCOF:

0C12:

0C13:

0C14:

0C17:

0C18:

0C1B:

0C1E:

0C1F:

0C20:

0C23:

0C24:

2A

3A

E5

F5

11

19

11

CD

Fl

El

11

19

11

02

08

00

00

27

00

00

24

24

14

2C

OC

1C

10

LD

LD

PUSH

PUSH

LD

ADD

LD

CALL

POP

POP

LD

ADD

LD

HL,($2402)Get cursor address

Af ($2408)

HL

AF

DE,$1400

HL,DE

DE,$2C00

$0C27

AF

HL

DE,$lC00

HL,DE

DE,$1000

Number represented

character/line

save Cursor address

save number/character

Add offset for 80-character

simulation

Videoram

Copy line

Get number

Get source address

Add offset for color RAM

color RAM address

(being considered)

******************************* (HL) -> (DE) 40 characters

in screen <A> lines

0C27: 32 03 FF LD

0C2A: 01 28 00

0C2D: ED B0

0C2F: D5

0C30: 11 28 00

0C33: 19

0C34: Dl

0C35: 3D

0C36: 20 F2

0C38: 32 01 FF

0C3B: C9

($FF03),A PCRC as configuration's

byte

LD BC,$0028 Copy 40 characters

LDIR (HL) -> (DE)

PUSH DE Save destinationaddress

LD DE,$0028 40-characters to be copied

ADD HL,DE add to source address

POP DE Get destination address

DEC A Decrement the counter

JR NZ,$0C2A one more line to copy

LD ($FF01),A else PCRA as

configuration's byte

RET End of the routine

******************************* Paying attention to column

0C3C: 3A 0B 24 LD

0C3F: D6 20 SUB

0C41: 30 01 JR

A, ($240B)Get column

$20 minus 32

NC,$0C44 No transfers occur

210

Abacus Software C-128 CP/M User's Guide

0C43: AF XOR A else erase accu (=0)

0C44: E6 F8 AND $F8 Mask Bits 0-2

0C46: 32 02 24 LD ($2402),A Note the column

being considered

0C49: C9 RET End of the routine

••a**************************** Copy line

0C4A:

0C4D:

0C50:

0C53:

0C54:

0C57:

CD

CD

3A

47

2A

7D

69

CF

02

0B

OC

0B

24

24

CA

CA

LD

LD

LD

LD

$0C69 Erase $2406

$0BCF Copy line

A, ($2402) Get column being considered

B,A Write in

HL,($240B)Get line/column

0C58: 90 SUB

A, L

B

0C59:

0C5B:

0C5D:

0C5F:

0C60:

0C62:

0C63:

0C66:

0C67:

0C69:

0C6C:

0C6F:

38

FE

30

4F

06

6C

CD

09

18

21

22

C9

0E

28

0A

00

70 0C

03

00 00

06 24

JR

CP

JR

LD

LD

LD

CALL

ADD

JR

LD

LD

RET

C,$0C69

$28

NC,$0C69

C,A

B, $00

L,H

$0C70

HL,BC

$0C6C

HL,$0000

($2406),

column into <A> for

subtraction

minus column being

considered

too small, then erase $2406

too big—bigger than 40?

then erase $2406

column into <C>

Erase Hi-Byte from BC

<L>=line

And calculate line■s

Start address

add column

and note the address

Start address is

1st Position

'Is note the Position

End of the routine

******************************* lineMO + Offset

0C70:

0C72:

0C73:

0C74:

0C75:

0C76:

26 00

29

29

29

54

5D

LD

ADD

ADD

ADD

LD

LD

H,$00

HL,HL

HL,HL

HL,HL

D,H

E,L

Erase Hi-Byte

*2

*2

*2=*8

write to DE

211

Abacus Software

0C77:

0C78:

0C79:

0C7A:

0C7D:

0C7E:

29

29

19

11 00 2C

19

C9

ADD

ADD

ADD

LD

ADD

RET

C-128 CP/M User's Guide

HL,HL *2

HL,HL *2=*32

HL,DE *32+*8 gives *40

DE,$2C00 Add offset from $2C00

HL,DE (beginning of text)

End of the routine

a****************************** Adapting ASCII—Code

for 40-character screen

character into <accu>

Is it ASCII 64 (@)

Yes, then Poke-Code=0

If smaller, then end

smaller than ASCII MZ"+1?

Yes, then return

Subtract 64

Is it an apostrophe?

Yes, then code

smaller than an apostrophe

minus ASCII 32

small letter's boarder

Smaller, then end

compare again

small ASCII "{"?

small "I"?

Yes, then code

small "}"?

Yes, then code

Is it "~"?

No, then return

else code 64

End of the routine

0C7F:

0C80:

0C82:

0C84:

0C85:

0C87:

0C88:

0C8A:

0C8C:

0C8E:

0C90:

0C92:

0C94:

0C95:

0C97:

0C99:

0C9B:

0C9D:

0C9F:

0CA1:

0CA3:

0CA4:

0CA6:

78

FE

28

D8

FE

D8

D6

FE

28

38

D6

FE

D8

FE

28

FE

28

FE

28

FE

CO

3E

C9

40

3C

5B

40

20

19

23

20

IB

IB

11

1C

10

ID

OF

IE

40

LD

CP

JR

RET

CP

RET

SUB

CP

JR

JR

SUB

CP

RET

CP

JR

CP

JR

CP

JR

CP

RET

LD

RET

A,B

$40

Z,$0CC0

C

$5B

C

$40

$20

Z,$0CA7

C,$0CB3

$20

$1B

C

$1B

Z,$0CAA

$1C

Z,$0CAD

$1D

Z,$0CB0

$1E

NZ

A, $40

******************************* ASCII-Code 126

0CA7: 3E 7E LD A,$7E 126

0CA9: C9 RET End of the routine

212

Abacus Software C-128 CP/M User's Guide

******************************* ASCII-Code 115

OCAA: 3E 73 LD A, $73 115

OCAC: C9 RET End of the routine

******************************* ASCII-Code 93

OCAD: 3E 5D LD A,$5D 93

OCAF: C9 RET End of the routine

******************************* ASCII-Code 107

0CB0: 3E 6B LD A, $6B 107

0CB2: C9 RET End of the routine

******************************* ASCII-Code 28

0CB3: FE 1C CP $1C ASCII 28?

0CB5: 28 06 JR Z,$0CBD Yes, then assign

0CB7: FE IF CP $1F ASCII 31?

0CB9: CO RET NZ No, then end with Flag

OCBA: 3E 64 LD A,$64 Else ASCII 100

0CBC: C9 RET End of the routine

******************************* Assign ASCII-Code 127

0CBD: 3E 7F- LD A, $7F 127

0CBF: C9 RET End of the routine

******************************* Erase <accu>

0CC0: AF XOR A Erase <Accu>

occl: C9 RET End of the routine

213

Abacus Software C-128 CP/M User's Guide

******************************* Calculate <C>:7 9-column

and Cursorpos.

HL,($240B)Get line/column

$0CCA continue

HLf ($2413)Get line/column

A, $4F integer 7 9

L minus column

C,A Note in <C> (other numbers

until 80)

******************************* Calculate cursor position

<H>:line, <L>:column

0CC2:

0CC5:

0CC7:

OCCA:

OCCC:

OCCD:

2A

18

2A

3E

95

4F

OB

03

13

4F

24

24

LD

JR

LD

LD

SUB

LD

OCCE:

OCCF:

0CD0 :

0CD2:

0CD3:

0CD4:

0CD5:

0CD6:

0CD7 :

0CD8:

0CD9:

OCDA:

OCDB:

OCDC:

OCDD:

OCDF:

0CE0:

0CE2:

45

6C

26 00

29

29

29

29

54

5D

29

29

19

EB

68

26 00

19

06 00

3C

0CE3: C9

LD B,L equals column

LD L,H <L> is now line

LD H,$00 Erase Hi-Byte

ADD HL,HL *2

ADD HL,HL *2

ADD HL,HL *2

ADD HL,HL *2=*16

LD D,H <DE> will be occupied by

LD E,L line times 16

ADD HL,HL *2

ADD HLfHL *2 gives *64

ADD HL,DE plus *16 gives *80

EX DE,HL line times 80 into <DE>

LD L,B column into <L>

LD H,$00 Erase Hi-Byte

ADD HL,DE and add line*80

LD B,$00 Erase Hi-Byte from <BC>

INC A <A>:=actual number of

possible characters

RET End of the routine

****************************** ASCII-Decoding Cont?d

0CE4: 78 LD

0CE5: 2A 0D FD LD

0CE8: D6 30 SUB

A,B character to <Accu>

HL,($FD0D)Table pointer

$30 Minus ASCII 48 "0"

214

Abacus

OCEA:

OCEB:

OCEC:

OCED:

OCEE:

OCEF:

OCF1:

0CF2:

0CF4:

OCF5:

0CF6:

0CF8:

0CF9:

Software

D8

B9

3F

D8

47

E6 OF

5F

16 00

19

78

E6 30

47

C9

RET

CP

CCF

RET

LD

AND

LD

LD

ADD

LD

AND

LD

RET

C

C

C

B,A

$0F

E, A

D,$00

HL,DE

A,B

$30

B,A

C-128 CP/M User's Guide

Smaller, then end

Else compare w/ <C>

(value taken off)

Negate Carry-Flag

and end if greater than or =

Else character into

Mask Bits 0-3

Lo-Byte equals <Accu>

and erase Hi-Byte

add to table basis

character again into <Accu>

Mask Bits 6,7 and 0-3

character again into

End of the routine

******************************* Ringing out the tone

0CFA:

0CFD:

0D00:

0D02:

0D04:

0D06:

0D09:

0D0A:

0D0C:

0D0E:

0D10 :

0D13:

0D15:

0D17:

0D19:

01 18 D4 LD BC,$D418 SID Register 24

2A 10 FD LD HL,($FD10)Get Attack/Decay/Volume

ED 61 OUT (C),H Total loudness

strength/Filter

C,$05 Define Register 5 SID:

(C),L Attack/Decay

HL,($FD12)Get Sustain/

Release/Frequency

C Register 6 of SID

(C),H Define Sustain/Release

C,$01 Register 1 of SID: Frequency

(C),L Define Frequency (HI)

0E 05 LD

ED 69 OUT

2A 12 FD LD

0C INC

ED 61 OUT

0E 01 LD

ED 69 OUT

2A 14 FD LD

OE 04 LD

ED 61 OUT

ED 69 OUT

C9 RET

HL,($FD14)Get turn off/on

C,$04 Register 4 of SID

(C),H Turning on the tone

(C),L Erase Bit to Sustain

End of tone ringing routine

******************************* will be copied to $noo

0D1A: 1100: A9 00

0D1C: 1102: 8D 00 FF

0D1F: 1105: 6C FC FF

LDA #$00 Set configuration byte

STA $FF00 (all ROM)

JMP ($FFFC)Reset the C-128-Mode

215

Abacus Software C-128 CP/M User's Guide

******************************** Will be copied to $3000

Read a disk block

Still aren't

any errors

Load the Block

Interrupt handicap

RAM and System I/O

as configuration byte

and turn on Z-80

Erase decimal flag

Set flag for vectors

erased?

Turn on ROM and System I/O

Erase IMR im VIC-Chip

Start up routine's Lo-Byte

and Hi-Byte the same

Lo-Byte as IRQ-Routine

Hi-Byte as IRQ-Routine

Lo-Byte as BRK-Routine

Hi-Byte as BRK-Routine

Lo-Byte as NMI-Routine

Hi-Byte as NMI-Routine

Continue on $30D7

0D22:

0D24:

0D27:

0D2A:

0D2B:

0D2D:

0D30:

0D33:

0D34:

0D37:

0D39:

0D3B:

0D3E:

0D41:

0D43:

0D44:

0D48:

0D4B:

0D4E:

0D51:

0D54:

0D57:

3000:

3002:

3005:

3008:

3009:

300B:

300E:

3011:

3012:

3015:

3017:

3019:

301C:

301F:

3021:

3023:

3026:

3029:

302C:

302F:

3032:

3035:

A9

8D

20

78

A9

8D

4C

D8

AD

DO

A2

8E

8E

A2

A0

8E

8C

8E

8C

8E

8C

4C

00

06

11

3E

00

DO

01

21

00

00

1A

63

31

14

15

16

17

18

19

D7

FD

30

FF

FF

FD

FF

DO

03

03

03

03

03

03

30

LDA

STA

JSR

SEI

LDA

STA

JMP

CLD

LDA

BNE

LDX

STX

STX

LDX

LDY

STX

STY

STX

STY

STX

STY

JMP

#$00

$FD06

$3011

#$3E

$FF00

$FFD0

$FD01

$3038

#$00

$FF00

$D01A

#$63

#$31

$0314

$0315

$0316

$0317

$0318

$0319

$30D7

******************************** Read form Block

(Track/Sector) and

load in memory

Copy Lo-Byte's

destination address

to $20 and

Hi-Byte's destination addr

to $21

Get track

and copy in disk command

Make out of <Accu>

ASCII "xx"

Ten's place Track and

one's place Track in

command line

0D5A:

0D5D:

0D5F:

0D62:

0D64:

0D67:

0D6A:

0D6D:

0D70:

3038:

303B:

303D:

3040:

3042:

3045:

3048:

304B:

304E:

AD

85

AD

85

AD

8D

20

8E

8D

18

20

19

21

03

BF

78

Bl

B0

FD

FD

FD

31

31

31

31

LDA

STA

LDA

STA

LDA

STA

JSR

STX

STA

$FD18

$20

$FD19

$21

$FD03

$31BF

$3178

$31B1

$31B0

216

Abacus Software C-128 CP/M User's Guide

0D73:

0D7 6:

0D7 9:

0D7C:

0D7F:

0D82:

0D85:

0D87:

0D8A:

0D8C:

0D8F:

0D91:

0D94:

0D97:

0D9A:

0D9C:

0D9F:

0DA1:

0DA2:

0DA4:

0DA7:

0DA9:

ODAA:

ODAC:

ODAF:

3051:

3054:

3057:

305A:

305D:

3060:

3063:

3065:

3068:

306A:

306D:

306F:

3072:

3075:

3078:

307A:

307D:

307F:

3080:

3082:

3085:

3087:

3088:

308A:

308D:

AD

8D

20

8E

8D

AD

DO

8D

A2

20

BO

20

20

20

AO

20

91

C8

DO

4C

A9

2C

A9

8D

4C

04

BE

78

AE

AD

08

2B

00

OB

C6

16

CC

31

99

00

CF

20

F8

CC

FF

OD

06

08

FD

31

31

31

31

FD

FF

FF

FF

31

31

FF

FF

FD

30

LDA

STA

JSR

STX

STA

LDA

BNE

STA

LDX

JSR

BCS

JSR

JSR

JSR

LDY

JSR

STA

INY

BNE

JMP

LDA

$FD04

$31BE

$3178

$31AE

$31AD

$FD08

$3090

$FFOO

#$0B

$FFC6

$30A7

$FFCC

$3131

$3199

#$00

$FFCF

($20),

$307A

$FFCC

#$FF

.Byte $2C

LDA

STA

JMP

#$0D

$FD06

$3008

Get sector number

Pass sector number for FSD

and wander in ASCII

Ten's place sector; also

one's place in command line

Test, if channel was opened

No, then jump to $3090

Set config byte on (ROM)

Define channel # 11 as

input channel

On error to $30A7

CLRCH; I/O normal again

Read Track/Sector

Channel 11 (#) as

input channel

Y-Index to zero

BASIN; get char from floppy

Y and put character in RAM

next Byte

End still not reached

CLRCH; I/O normal again

Block can't be gotten

Skip; jump the

following command

Recognition char for error

Set step

In Z-80 section again

******************************** Read data from file

Set ROM and System I/O as

config byte

Logical File number 15

Error channel as

output channel

jump on error

Output 6 chars

Y Get chars from table

Output chars through

error channel

Next character

Output further characters

0DB2:

0DB4:

0DB7:

0DB9:

ODBC:

0DBE:

0DC0:

0DC3:

0DC6:

0DC7:

3090:

3092:

3095:

3097:

309A:

309C:

309E:

30A1:

30A4:

30A5:

A9

8D

A2

20

B0

A0

B9

20

88

DO

00

00

OF

C9

EC

06

BC

D2

F7

FF

FF

31

FF

LDA

STA

LDX

JSR

BCS

LDY

LDA

JSR

DEY

BNE

#$00

$FF00

#$0F

$FFC9

$3088

#$06

$31BC,

$FFD2

$309E

217

Abacus

0DC9:

ODCC:

ODCF:

ODD2:

0DD5:

0DD7:

ODD 9:

ODDB:

ODDE:

ODEO:

ODE1:

0DE3:

0DE5:

0DE6:

0DE8:

ODEB:

ODED:

ODFO:

0DF1:

0DF3:

0DF6:

0DF9:

ODFB:

ODFC:

ODFF:

OEO1:

0E03:

0E06:

0E07:

OEOA:

OEOC:

OEOF:

OE1O:

0E13:

0E15

0E17

0E19

0E1C

0E1F

0E21

0E24

Software

30A7:

30AA:

30AD:

3OBO:

30B3:

3OB5:

30B7:

30B9:

30BC:

30BE:

30BF:

3OC1:

30C3:

3OC4:

30C6:

30C9:

30CB:

30CE:

30CF:

3OD1:

30D4:

30D7:

30D9:

30DA:

3 ODD:

30DF:

30E2:

30E4:

3OE5:

: 30E8:

: 30EA:

: 30ED:

: 30EE:

: 30F1:

: 3OF3:

: 30F5:

: 30F7:

: 30FA:

: 30FD:

: 30FF:

: 3102:

20 i

2C

AE

20

29

DO

AO

20

91

C8

DO

E6

CA

DO

AD

29

8D

60

A9

8D

4C

A9

18

20

A9

8D

A2

A8

20

A9

8D

AA

20

A9

A2

AO

20

20

BO

20

2P.

CC]

OD]

BD

4F

OE

Dl

00

4F

20

F8

21

EA

00

EF

00

OF

06

08

OF

C3

OF

08

08

BA

00

1C

68

04

B8

31

BD

CO

DO

i B7

FF

DC

31

31

31

DD

DD

FD

30

FF

FD

FF

OA

FF

FF

FF

FF

JSR

BIT

LDX

JSR

AND

BNE

LDY

JSR

STA

INY

BNE

INC

DEX

BNE

LDA

AND

STA

RTS

LDA

STA

JMP

LDA

CLC

JSR

LDA

STA

LDX

TAY

JSR

LDA

STA

TAX

JSR

LDA

LDX

LDY

JSR

JSP

BCS

JSP

ROI

$FFCC

$DC0D

$31BD

$314F

#$0E

$3088

#$00

$314F

($20),

$30B9

$21

$30B0

$DD00

#$EF

$DD00

#$0F

$FD06

$3008

#$0F

$FFC3

#$0F

$FD08

#$08

$FFBA

#$00

$OA1C

$FF68

#$04

#$B8

#$31

. $FFBD

L $FFC0

1 $30CF

I $FFB7

i A

C-128 CP/M User's Guide

CLRCH; I/O normal again

Test ICR

Number of data blocks

Get Data byte (Fast-mode)

Test Bits 1-3

Error step

Index to zero

Get Data byte (Fast-Mode)

Y Put characters in RAM

increment the pointer

Still not all the chars

Increment pointer's Hi-Byte

Decrement the block counter

Further Blocks

Get PRA CIA2

Mask CLK-Bit

and back again

End of the routine

Put Logical File number 15

in $FD06

Turn onZ-80

Logical file number

Erase carry as Flag

Turn off the channel

Logical file number

Note logical file number

Device address

15 as secondary address

SETLFS; Set the logical

file parameters

Turn off the

floppy's fast mode

Set both config. indices

for SETBNK to zero

Long File name

File name's Lo address

File name's Hi address

SETNAM; set

Filename parameter

OPEN the file

error walk, then jump

get Status byte I/O

Shift Bit 7 in Carry

218

Abacus Software C-128 CP/M User's Guide

0E25:

0E27:

0E2A:

0E2C:

0E2E:

0E2F:

0E32:

0E34:

0E36:

0E38:

0E3B:

0E3D:

0E40:

0E41:

0E44:

0E46:

0E48:

0E4A:

0E4D:

0E50:

0E52:

3103:

3105:

3108:

310A:

310C:

310D:

3110:

3112:

3114:

3116:

3119:

311B:

311E:

311F:

3122:

3124:

3126:

3128:

312B:

312E:

3130:

BO

2C

70

A9

18

20

A9

A2

A0

20

A9

8D

AA

20

A9

A2

A0

20

20

BO

60

CA

1C

26

OB

C3

OB

08

08

BA

00

08

68

01

BC

31

BD

CO

9F

OA

FF

FF

FD

FF

FF

FF

BCS

BIT

BVS

LDA

CLC

JSR

LDA

LDX

LDY

JSR

LDA

STA

TAX

JSR

LDA

LDX

LDY

JSR

JSR

BCS

RTS

$30CF

$OA1C

$3130

#$0B

$FFC3

#$0B

#$08

#$08

$FFBA

#$00

$FD08

$FF68

#$01

#$BC

#$31

$FFBD

$FFC0

$30CF

error walk, then jump

Test the Fast-Serial-Bit

Jump if it is set

Logical File number 11

Erase carry as flag

Close file 11

Logical file number 11

Device # 8

Secondary address 8

SETLFS; Store File data

LFN as not opened

Erase on $FD08

Both configuration indices

are zero; SETBNK

Length of the File name

Lo-Byte of the Filenamen

Hi-Byte of the Filenamen

SETNAM; set addr Filename

OPEN 11,8,8,"#"; open file

error walk

else End of the routine

Track/Sector

0E53:

0E56:

0E58:

0E5B:

0E5E:

0E5F:

0E61:

0E64:

0E67:

0E69:

0E6B:

0E6E:

3131:

3134:

3136:

3139:

313C:

313D:

313F:

3142:

3145:

3147:

3149:

314C:

20

A0

B9

20

88

DO

20

20

F0

A9

8D

4C

A4

0D

AB

D2

F7

CC

89

05

0D

06

CC

31

31

FF

FF

31

FD

FF

JSR

LDY

LDA

JSR

DEY

BNE

JSR

JSR

BEQ

LDA

STA

JMP

$31A4

#$0D

$31AB,

$FFD2

$3136

$FFCC

$3189

$314C

#$0D

$FD06

$FFCC

Set cmmnd channel to output

Output 13 character

tfUl:8 0 tt ss<CR>"

Y Get chars from table

and output

Decrement counter,

jump if ther are more chars

CLRCH; I/O is normal again

Open cmmnd channel for read

no error walk

Set Error

marker

CLRCH; I/O normal again

219

Abacus Software C-128 CP/M User's Guide

******************************** Wait until SDR

(Serial Data Register)

is done, then get data byte

Prevent interruptions

Get PRA CIA2

Negate Clock management

Negate run back

SDR full/empty-Bit

SDR isn't finished yet

Wait until timer is low

Get SDR (Serial Data Reg)

End of the routine

Erase Interrupt reg in CIAl

Erase Interrupt reg in CIA2

Erase Interrupt register

of the VIC-Chip

Remanufacture

configuration

Remanufacture

Y-Register

Remanufacture

X-Register

Remanufacture accu

End of the

Interrupt-Routine

******************************** Make out of<Accu> 2

ASCII-Codes

0E71:

0E72:

0E75:

0E77:

0E7A:

0E7C:

0E7F:

0E81:

0E84:

0E85:

0E88:

0E8B:

0E8D:

0E90:

0E91:

0E94:

0E95:

0E96:

0E97:

0E98:

0E99:

314F:

3150:

3153:

3155:

3158:

315A:

315D:

315F:

3162:

3163:

3166:

3169:

316B:

316E:

316F:

3172:

3173:

3174:

3175:

3176:

3177:

78

AD

49

8D

A9

2C

F0

AD

60

AD

AD

A9

8D

68

8D

68

A8

68

AA

68

40

00

10

00

08

0D

FB

OC

0D

0D

OF

19

00

DD

DD

DC

DC

DC

DD

DO

FF

SEI

LDA

EOR

STA

LDA

BIT

BEQ

LDA

RTS

LDA

LDA

LDA

STA

PLA

STA

PLA

TAY

PLA

TAX

PLA

RTI

#$DD00

#$10

$DD00

#$08

$DC0D

$315A

$DC0C

$DC0D

$DD0D

#$0F

$D019

$FF00

0E9A: 3178: D8

0E9B: 3179: A2 30

0E9D: 317B: 38

0E9E: 317C: E9 0A

0EA0: 317E: 90 03

0EA2: 3180: E8

0EA3: 3181: B0 F9

0EA5: 3183: 69 3A

0EA7: 3185: 60

CLD

LDX

SEC

SBC

BCC

INX

BCS

ADC

#$30

#$0A

$3183

$317C

#$3A

RTS

Erase decimal flag

Ten's place is now a "0"

Set carry flag

for subtraction

Subtract ten (test)

Too much subtracted

else increment ten's place

and do it again

Correct error and add

ASCII-Basis

End of the routine

220

Abacus Software C-128 CP/M User's Guide

******************************** Check if there are errors

in command channel

error walk in channel 15

Open command channel for

reading; CHKIN

error walk

BASIN; get character

Compare accu with "0"

(then OK)

End of the routine

0EA8:

OEAB:

OEAD:

0EB0:

0EB2:

0EB5:

3186:

3189:

318B:

318E:

3190:

3193:

20

A2

20

BO

20

C9

D7

OF

C6

F6

CF

30

30

FF

FF

JSR

LDX

JSR

BCS

JSR

CMP

$30D7

#$0F

$FFC6

$3186

$FFCF

#$30

0EB7: 3195: 60 RTS

******************************** Prepare channel 11 (#)

for reading

Error walk in channel 11

Set channel 11

to input; CHKIN

Error walk

End of the routine

0EB8:

0EBB:

0EBD:

0EC0:

0EC2:

3196:

3199:

319B:

319E:

31A0:

20

A2

20

B0

60

0A

0B

C6

F6

31

FF

JSR

LDX

JSR

BCS

RTS

$310A

#$0B

$FFC6

$3196

******************************** Channel 15(command channel)

to output

0EC3:

0EC6:

0EC8:

0ECB:

0ECD:

0ECE:

0ED6:

0EDE:

31A1:

31A4:

31A6:

31A9:

31AB:

31AC:

31B4:

31BC:

20

A2

20

B0

60

0D

20

23

D7

OF

C9

F6

73

38

01

30

FF

73

3A

00

JSR

LDX

JSR

BCS

RTS

20 74

31 55

00 00

$30D7

#$0F

$FFC9

$31A1

74 20

30 4C

30 55

Error walk in channel 15

Channel 15 as output chanel

Define through

CKOUT-Routine

Error walk

End of the routine

30 .ss tt 0

00 8:1UOL.

OU

******************************** will be copied to $FFDo

(8502-Code)

0EE5: ($FFD0) 78

0EE6: ($FFD1) A9 3E

0EE8: ($FFD3) 8D 00 FF

SEI Prevent interruptions

LDA #$3E Set config byte to $3E

STA $FF00 RAM and System I/O

221

Abacus Software C-128 CP/M User's Guide

OEEB:

OEED:

OEFO:

0EF1:

0EF4:

($FFD6) A9 BO LDA #$B0 Turn on Z-80

($FFD8) 8D 05 D5 STA $D505 in MCR

($FFDB) EA NOP Wait work

($FFDC) 4C 00 30 JMP $3000 Jump in next routine part

($FFDF) EA NOP Buffer

a******************************* Will be copied to $FFE0

Cut offInterruptions

Af $3E Set Configuration

($FF00),A byte

BC,$D505 Mode-Config.-Register

A,$B1 and turn on 8502

(C),A by setting Bit-0

Buffer work

$08 Jump into Z-80 part

0EF5:

0EF6:

0EF8:

0EFB:

0EFE:

0F00:

0F02:

0F03:

($FFE0)

($FFE1)

($FFE3)

($FFE6)

($FFE9)

($FFEB)

($FFED)

($FFEE)

F3

3E

32

01

3E

ED

00

CF

3E

00 FF

05 D5

Bl

79

DI

LD

LD

LD

LD

OUT

NOP

RST

•a****************************** Various tables

0F04:

0F0C:

0F14:

0F1C:

0F24:

0F2C:

0F34:

0F3C:

0F44:

0F4C:

0F54:

0F5D:

0F64:

0F6C:

0F74:

0F7C:

0F84:

0F8C:

0F94:

0F9C:

0FA4:

9E

08

09

30

66

00

18

30

18

OC

2A

00

5B

IE

44

31

OF

2D

45

4B

31

FF

07

06

18

00

00

00

60

18

06

66

00

39

07

62

17

63

17

68

34

0D

BD

0B

01

OC

00

00

00

30

18

OC

00

00

01

0B

2D

00

00

16

29

13

0D

58

04

05

06

00

00

00

30

18

OC

00

41

4E

68

18

0B

4F

69

18

OF

08

6F

02

03

03

00

7F

00

1C

18

38

00

7F

65

4B

12

59

2B

49

17

05

08

CE/00

0D 0A

0E/00

00

00

00

00

00

00

00

00

00

37

34

0B

72

05

25

07

4B

18

00

60

1C

18

38

00

00

00

06

17

63

2B

4C

17

OC

70

6C/0D

OF

OC

60

3C

00

30

30

18

OC

IB

00

F2

03

01

59

18

68

13

68

31

3F

Color table

adapted for a

40-character screen

222

Abacus

OFAC:

0FB4:

OFBC:

0FC4:

OFCC:

0FD4:

OFDC:

0FE4:

OFEC:

0FF4:

OFFC:

Software

7F 3E

00/00

OE

OC

OA

OC

OE

11

03

08

OE

13

11

OF

11

00

04

08

OD

02

7E

05

03

01

01

03

05

09

OD

01

07

BO

OA

08

06

06

08

OA

OE

00

06

OC

OB

OF

OD

OB

OB

OD

OF

01

05

OB

00

14

12

10

10

12

02

06

OA

10

00

04

02

00

02

04

07

OB

OF

04

01

09

07

05

07

09

OC

10

03

09

C-128 CP/M User's Guide

MMU Register layout

adapted Sector numbers

according to

different sectors.

In this manner

the layout of the disk will

be optimized

223

Chapter 10

The CP/M commands

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

COPYSYS

DATE

DEVZCE

DZR

DZRSYS

DUMP

ED

ERASE

FORMAT

GENCOM

GET

BFtLP

HEXCOM

ZNZTDZR

KEYFZG

10.16

10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

10.28

10.29

10.30

10.31

LZB

LINK

MAC

PATCH

PZP

PUT

RENAME

RMAC

SAVE

SET

SETDEF

SHOW

SZD

SUBMIT

USER

XREF

Abacus Software C-128 CP/M User's Guide

10.1 COPYSYS

This command normally copies the system tracks and CP/M3 . SYS to a
diskette.

Input format: COPYSYS

Description:

To boot from a CP/M 3.0 diskette, both the system tracks and the

CPM+. SYS file must be present. Disks that are not used to boot CP/M do

not require either. With the '128, it's quite easy to change the actual format

of the COPYSYS command, since the system can be transferred by copying

with PIP. If you use the COPYSYS command, a message is displayed

telling you that this command is nonfunctional.

227

Abacus Software C-128 CP/M User's Guide

10.2 DATE

Displays the date and time, and allows them to be changed.

Input format: date

DATE CONTINUOUS

DATE SET

DATE mmlddlyy hh:mm:ss

Description:

This program lets you enter the date and time into your system or to recall

that information.

Uses:

If the DATE command is entered, the date and time are displayed:

Tue 05/06/85 23:49:17.

This is a static display. To display the time continously, enter the command

DATE with the option C. The time is displayed until you press any key.

The date and time may be entered in either of two different ways. The SET

option is used to enter the values for each, one after the other. The other

method looks like this:

DATE 05/06/85 23:49:17

Enter a time that is a few seconds ahead of actual time. Then press the space

bar when the times are sychronized to activate the new time..

If your computer does not have a battery-powered clock (the '128 does

not), the time must be re-entered each time the computer is turned on. This

minor annoyance can be minimized by placing the DATE SET command in

the PROFILE . SUB file.

By entering DATEC, you can avoid having to use the DATE command

followed by the C option. The source file for the DATE program is saved on

the system diskette. Observing its operation may teach you a lot.

228

Abacus Software C-128 CP/M User's Guide

10.3 DEVICE

Displays and alters the devices used to access the peripherals.

Input format: device names

DEVICE VALUES

DEVICE LST:=XXXXXX[NOXON, 1200]

DEVICE CONOUT: =xxx,xxx

DEVICE CON:[PAGES]

DEVICE CON: [COLUMNS=tttt, LINES=mm]

Description:

This program is used to display and assign input and output devices to the

operating system. The names of the three logical devices are: CON:, LST:,

and AUX:. A logical device can also be set to several peripherals. For

instance, data may be sent to a printer and the monitor at the same time.

DEVICE also controls the # rows/columns displayed on the monitor.

Uses:

The names of the output devices are predetermined by the Commodore

CP/M system. If DEVICE is entered with the NAMES option, a list with the

names and baud rates of the individual is displayed. If DEVICE VALUES is

entered, the following is displayed:

Current Assignments:

CONIN:

CONOUT:

AUXIN:

AUXOUT:

LST:

= KEYS

= 40 COL (or 80 COL)

= Null device

= Null device

= PRT1

CON IN: and CONOUT: refer to console input (or keyboard input), and

console output (or keyboard output.) CON: alone refers to both input and

output. LST: stands for LIST DEVICE and refers to the printer. Using

the PAGE option, you can find out how many rows and columns are

presently being displayed by the monitor.

If a specific baud rate is entered in the format [nnn], the data-exchange

with the particular peripheral is executed at this speed. The command

DEVICE displays DEVICE NAMES and VALUES together.

229

Abacus Software C-128 CP/M User's Guide

A>DEVICE

Physical Devices:

I=Input, O=0utput, S=Serial, X=Xon-Xoff

KEYS NONE I 80COL NONE 0 40COL NONE 0

PRT1 NONE 0 PRT2 NONE 0 6551 9600 IOSX

RS232 300 IOSX

Current Assignments:

CONIN: = KEYS

CONOUT: = Null Device

AUXIN: = Null Device

LST: = PRT1

Enter new assignment or hit RETURN

Note: The command DEVICE replaces the STAT DEV: command in CP/M

3.0. (The STAT command of CP/M 2.2 was divided, since it was too
complex).

230

Abacus Software C-128 CP/M User's Guide

10.4 DIR

Displays specified file names of the directory.

Input format:

Resident command: DIR

DIR A:

DIR DATEI.xxx

DIR AB*.*

Transient command: DIR [option]

DIR DATE I. xxx [option]

DIR AB* . * [option]

Description:

DIR disaplays the filenames on a diskette or hard disk drive. Wild-card

characters may be used to filter the filenames. The wild card characters are *

and ?. If no option is chosen, all non-system files will be marked for the

corresponding user area.

The DIR transient command is much more versatile. It displays files with

date stamps, can alphabetize them, etc. An explanation of the various

options, which must be entered in brackets, follows.

If the system files are in the directory, the following message will appear:

SYSTEM FILE(S) EXIST

231

Abacus Software C-128 CP/M User's Guide

Options:

Option

ATT

DATE

DIR

DRIVE=ALL

DRIVE=A

EXCLUDE

FF

FULL

LENGTH=n

MESSAGE

NOPAGE

RO

RW

SIZE

SYS

USER=ALL

USER=5

USER=(3,5)

Function

display user-defined file attributes

display data with time and date

display non-system files

display files in all drives

display files in drive A

display all files except the one specified

send form feed to printer

display files with complete description

send form feed after n lines

scrolling display of disk drives/USER areas

scrolling display

display read-only files

display read/write files

display size of each file

display only system files

display files of all USER areas

display files of the USER area that was specified

display files of the USER areas that were specified

232

Abacus Software C-128 CP/M User's Guide

10.5 DIRSYS

This command, lists files specified as SYSTEM files.

Input format: DIRSYS

DIRSYS B:

DIRSYS Filename.xxx

DIRSYS AB?*.*

Description

With the DIRSYS command, all SYSTEM files can be diplayed. This may

be accomplished using the DIR with options, but DIRSYS is much faster,

since it is a Resident command. The command can be abbreviated as D IRS.

The DIRSYS command also tells you whether any "normal" files exist

(CP/M refers to them as non-systemfiles). If there are no system files, this

message is displayed:

No File

233

Abacus Software C-128 CP/M User's Guide

10.6 DUMP

Displays non-text files in hexadecimal and ASCII format.

Input format: DUMP

DUMP Filename.xxx

Description:

DUMP displays the contents of a file in both hexadecimal and ASCII format

To display ASCII only text files you can use the TYPE command. But

COM, REL, or OVR files, for example should be examined using dump .

The lefthand columns contain the relative address of the file contents. The

middle columns contain the hexidecimal contents. The righthand columns

contain the corresponding ASCII characters. A character whose value

cannot be displayed is indicated by a period (.). You can also send the

display to the printer by pressing <CONTROL> P.

234

Abacus Software C-128 CP/M User's Guide

10.7 ED

The CP/M editor.

Input format: ED<filename> (. <file type>)

Description:

The built-in editor may be practical for very short texts, but it has a bad

operational reputation—for good reason. The editor is extremely

complicated and is difficult to operate, even for experienced users.

When the file name is entered, ED checks if it presently exists. If it does, the

file is loaded into the ED buffer and a backup file is created. If the file does

not presently exist, the following message is displayed:

Enter Input file

After you enter the file name, it displays:

Enter Output file

To exit the editor, even when saving the data, simply enter the command E.

Here's a list of all of EDfs commands:

Command Function

nA append n lines from original file

to memory buffer

0A append file until buffer is one half

full

#A append file until buffer is full (or

end of file)

B, -B move cursor position to the

beginning (B) or bottom (-B) of

buffer

235

Abacus Software C-128 CP/M User's Guide

nC, -nC

nD,-nD

Ystring <CONTROL Z>

H

I<RETURN>

Istring<COKYROL> Z

move cursor position n characters

forward (C) or back (-C) through

buffer

delete n characters before (-D) or

from (D) the cursor position

save new file, return to CP/M

find character string

save new file, re-edit, use new

file as original file

enter insert mode

insert string at cursor position

Jsearch_str<COKTROL> Z ins_str<CONTROL>Zdeljo_str

switch strings

nK, -nK

nL, -rtL, OL

nMcommands

n,-n

n:

:ncommand

n string<CONTROL> Z

0

delete n lines from the cursor

position

move cursor position n lines

execute commands n times

move cursor position n lines and

display that line

move to line n

execute command through line n

extended find string

return to original file

236

Abacus Software C-128 CP/M User's Guide

nP, -riP move cursor position 23 lines

forward and display 23 lines at

console

Q abandon new file, return to

CP/M-86

R<CONTROL>Z read X$$$$$$$.LIB file into

buffer

lfilename<CONTROL> Z read filename into buffer

Sdel. string<£ONTROL>Z insert substitute string

/IT, -/IT, OT

U, -U

V, -V

OV

rfW

ow

nX

type /i lines

upper-case translation

line numbering on/off

display free buffer space

write n lines to new file

write until buffer is half empty

write or annend n linespp

.LIB

/iX/z/e/iame<CONTROL> Z write /i lines to filename; append

if previous X command applied

to same file

0X<CONTROL> Z delete file X$$$$$$$.LIB

0Xfilename<CONTROL> Z delete filename

nz wait n seconds

Note: the cursor position points to the character currently being

referenced in the edit buffer. Use a <CONTROL> Z to separate

multiple commands on the same line.

237

Abacus Software C-128 CP/M User's Guide

10.8 ERA (SE)

Resident command to erase one, several, or all files on a diskette.

Input format:

Resident command: ERASE

ERASE Filename.xxx

ERASE AB?*.*

Transient command: ERASE Filename.xxx [CONFIRM]

Description:

The ERASE command will erase a specified file, if that file is not a
read-only file, or write-protected. You can erase a file only within the same

USER area. If you specify a filename containing * or ?, you are asked to

confirm the command by entering Y or N.

Uses:

ERASE may be abbreviated to ERA. The option CONFIRM can be

abbreviated to C.

238

Abacus Software C-128 CP/M User's Guide

10.9 FORMAT

Formats a floppy diskette.

Input format: FORMAT

Description:

All diskettes used with the C-128 must be formatted properly. All previous

data on a diskette is lost during formatting. FORMAT is not a standard CP/M

program.

Uses:

After a diskette is FORMATed, you are asked the question format

another disk? This allows you to format several diskettes, one after

the other.

Note: Several diskette formats are possible with the Commodore 128.

Because of this, when you format, you will be asked whether you want to

format the diskette as single-sided or double-sided. With the FORMAT

command, diskettes may only be formatted in drive A.

239

Abacus Software C-128 CP/M User's Guide

10.10 6ENC0M

Generates a special version of CP/M 3.0.

Input format: GENCOM

Description:

Is used by programmers to adapt a CP/M version, or to integrate additional

program-routines in CP/M.

240

Abacus Software C-128 CP/M User's Guide

10.11 GET

Gets data from a file instead of the keyboard.

Input format:

GET CONSOLE INPUT FROM FILE Filename, xxx

GET CONSOLE INPUT FROM CONSOLE

GET FILE Filename, xxx [NOECRO]

Description:

The GET command enables you to read data from a particular file instead of

the keyboard.

Uses:

In the first example, CP/M retrieves commands from a file named

Filename.xxx. If there are no more commands in the file, CP/M reverts to

keyboard input.

The the second example, CP/M retrieves commands from the keyboard.

In the third example, CP/M retrieves commands from the keyboard.The

(NOECHO) option ispecifies that the commands are not displayed on the
screen.

241

Abacus Software C-128 CP/M User's Guide

10.12 HELP

Provides information about the individual CP/M commands, with examples.

Input format: HELP

HELP Keyword

HELP Keyword (abbreviation)

HELP Keyword [option]

HELP (abbreviated) Keyword

HELP [option]

Description:

The HELP . COM command displays information about the CP/M commands

and programs. HELP cannot be used while a program is running. HELP

[EXTRACT] creates a HELP. DAT file that can be edited with an editor.

Uses:

The HELP command displays information based on keyword. The keyword

may be abbreviated to two characters. If the information is longer than 23

lines, the display stops when the screen is filled. To continue, simply press

the space bar. If <CONTROL> P is activated beforehand, all information is

sent to the printer.

The available keywords are:

C128_CP/M

DIR

GET

LINK

RMAC

SUBMIT

COMMANDS

DUMP

HELP

MAC

SAVE

TYPE

CNTRLCHARS

ED

HEXCOM

PATCH

SET

USER

COPYSYS

ERASE

INITDIR

PIP(COPY)

SETDEF

XREF

DATE

FILESPEC

KEYFIG

PUT

SHOW

DEVICE

GENCOM

LIB

RENAME

SID

242

Abacus Software C-128 CP/M User's Guide

10.13 HEXCOM (Additional Utilities)

Creates a COM file that can be executed.

Input format: EEXCOM<Filename>

HEXCOM

Description:

This command converts a HEX file to a COM file. You do not have to specify

the file extension, since HEXCOM adds . HEX to the filename.

Don!t use HEXCOM to change RMAC. HEX files into COM files. . HEX files

created by RMAC (the relocatable code-producing assembler),must be

processed by the LINK command.

243

Abacus Software C-128 CP/M User's Guide

10.14 INITDIR

Prepares a diskette's directory to accept a time and date stamp.

Input format: INITDIR B:

Description:

CP/M 3.0 lets you mark files with a time and date stamp. This information

is stored in a separate part of the directory. Because of this, the directory

must be prepared by using INITDIR. The nature of the file types may be

controlled with the command SET.

Uses:

It is best to use INITDIR on a new diskette, since timestamps require

diskette space. If you are using INITDIR on a diskette containing data,

make a backup of that diskette first. If INITDIR were interrupted, the data

on that diskette may be lost.

244

Abacus Software C-128 CP/M User's Guide

10.15 KEYFIG

KEYFIG enables you to reassign the values of each key, and lets you define
the function keys.

Input format: KEYFIG

Description:

The KEYFIG command is menu-oriented. KEYFIG provides you with

HELP screens. The command lets you assign any ASCII value to any key,

using <SHIFT> or <CTRL>. It also lets you define colors, and lets you
assign special functions to keys (such as rebooting of the system, etc.).

Finally, KEYFIG allows you to define function keys such as the HELP key.
Thus this command proves to be very helpful.

245

Abacus Software C-128 CP/M User's Guide

10.16 lib (Additional Utilities)

Produces and changes a "library" of subprograms.

Tnputformat: LIB Filename.XXX[OPTIONS]

Description:

Many compilers and the assemblers RMAC and MACRO-80 use the method

of subprograms, which usually have the extension REL or IRL. Listing of

important subprograms in a library is done by using LIB.

246

Abacus Software C-128 CP/M User's Guide

10.17 link (Additional Utilities)

Produces a file which can be executed from subprogram modules.

Input format! lINK Filename,Filencane2^ilename3,...[OPT IONS]

Description:

Many compilers and the assemblers RMAC and MACRO-80 create REL or
IRL programs, link lets you combine these files into a single COM file.

247

Abacus Software C-128 CP/M User's Guide

10.18 MAC (Additional Utilities)

A macroassembler in 8080-mnemonic and restricted for Z-80 and

6502-mnemonic.

Tnput format: MAC Filename

MAC Filename $OPTIONS

Description:

The macroassembler creates three files. The extension of the source

program is ASM. The extension of the library is LIB. The assembled

program code (object code) has the extension HEX, the symbol schedule
with the extension SYM, and the printable listing the extension PRN. Options

are marked with a dollar sign ($) instead of the usual brackets.

More detailed information about the MAC assembler is found in Chapter 7.

248

Abacus Software C-128 CP/M User's Guide

10.19 PATCH

Installs changes in CP/M 3.0 or other programs

Input format: PATCH Filename

PATCH Filename n

Description:

You can use the PATCH command to make program changes in existing
CP/M transient programs. This process is known as patching, patch
automatically enters the changes in the specific program, and if several
patches are made, they are identified with reference numbers (n). The
reference numbers start with 1.

249

Abacus Software C-128 CP/M User's Guide

10.20 PIP

Copies files and transfers files between peripherals.

Input format: PIP

P IP Destinationfile=Sourcefile [options]

PIP B:^Filename.XXX

COMBFILE .CtfKTEXTl .TXT, TEXT2 .TXT...

PIP AB1?*.*=AB2?*.*[option]

Description:

PIP is easily the most powerful command in CP/M. It lets you copy files,
not only from one diskette to another, but also between various user areas.
It can combine several files into one, protect files, convert text to uppercase,

renumber lines, and change the 8th bit to zero. Chapter 6 contains more

detailed information on P IP.

Uses:

P IP can be used with or without options. The P IP prompt is an asterisk is
displayed (*). The Destination file as an exact duplicate of the Source file,
unless changed by an option. The brackets must immediately follow the
filename without spaces. If several versions of a file are to be copied, or if
there are unknown characters in the filename, you may use ? for unknown

characters or * for all characters. The default disk drive is the logged drive .

Here are some examples:

PIP B:^Filename.xxx [V]

This particular command copies the file Filename.xxx from drive A to drive

B, and verifies that copy.

P IP B: ^Filename. * [V]

This command copies a series of files with the name Filename, regardless of

extension, from drive A to B.

250

Abacus Software C-128 CP/M User's Guide

PIP B=*.*[V]

This copies all files of a diskette to the other drive. The copy is also
verified.

PIP FILENEW.XXX=FILEOLD.XXX

This command reproduces the file FILEOLD as FILENEW on the same
diskette. Both files will then exist on that diskette.

PIP COMBFILE.TXT~TEXT1.TXT,TEXT2.TXT,...

All specified files will be copied into one file, COMB. TXT.

PIP B:[G] =TEXT.TXT[G5]

The command copies TEXT. TXT to drive B, form drive A, user area 5.

A Archive function. Copies only those files that were created

or changed since the latest archive update. The time and
date stamp function must be set

C Confirm. CP/M will check after each file to confirm that it
may be copied.

Dn Erase after n columns. PIP will erase all characters

positioned after n columns in the file. Used for text files
only.

E Echo text on the monitor. The content of the files being
copied are displayed on the screen. Not to be used with the

parameter N. Used for text files only.

F Form feed. Some printers require a <CTRL> L to feed the

next page. If this is not the case, use F to erase them.

251

Abacus Software C-128 CP/M User's Guide

Gn Get a file from user area n. This option must be positioned
directly after the first filename and should be the only thing

written there. For example:

PIP B:[G5]=TEXT.TXT.TXT[G1]

will copy the file TEXT . TXT from USER area 1 to USER

area 5,

H Transfer hexadecimal data. This option should always be

entered if you want to copy HEX files. P IP will then check

the file content for correct INTEL format.

I Ignore the end-of-file marker in HEX files. Enter this
option for every file except the last one. Along with the

option I, the option H is entered by P IP. For the last file

use the parameter H:

PIP Filename.HEX=PROG1.HEX [I] , PR0G2 .HEX [H]

K Suppress the display of filenames during copying.

L Change all capital letters to lowercase. Use this option only

for text files, and be sure to use the parameter z for

WordStar files.

N Numbers the lines of a file continuously. The numbers
start with 1 in the first line, and increase by 1 for each line.
The numbers can have a maximum of 6 digits. Unused
digits will appear as spaces. The numbers will be followed

by a colon and a space. Do not use with the options E or N.

Choose parameter z for WordStar files.

N2 Numbers the lines for a BASIC program.

O Transfer of object-files. Used to transfer non-text and

non-COM files. Do not use for text files.

Pn Sets page length. Default is 60 lines per page. Enter the F
option to erase any <CTRL> L (form feed) markers that

may exist. Use only with text files.

252

Abacus Software C-128 CP/M User's Guide

Qxxxx<CTRL>Z

Quit copying after this character string. PIP will copy a

file up to and including the specified character string. Use

the command in command lines so that the string will not

be changed to capital letters. Use only for text files:

PIP

CON : =TEXT . TXT [Hamlet]

If command is one line, the entry appears in capital letters.

R Copy system files. These files are not listed by DIR, and

pip does not usually copy them. R will cancel these

restrictions.

Sxxxx<CTRL>Z

Start at this character string. PIP will begin copying at this

character string. Be sure to write the command in two

lines, otherwise the text is changed to all capital letters.

Use only with text files.

Tn Set tab. Normally CP/M operates with an 8-space tab. This

is not the case for hardcopies, and thus the tab must be

defined, n specifies the number of spaces the tab is set.

Use with text files only.

U Capitalize. Changes all lower case characters to upper case.

Use only with text files. When used with WordStar, be

sure to use the option z.

V Verify. This parameter verifies files copied by PIP. It

ensures that the new file is identical to the old one.

W Write over read-only files. These files may normally be

read, but not changed or erased. The w option causes these

files to be erased without recall.

Z Erase the 8th bit. ASCII uses only seven bits, and the 8th

bit is utilized by many applications programs for various

functions. The z option is not necessary when copying

ASCII data, such as COM: or LST:.

253

Abacus Software C-128 CP/M User's Guide

10.21 PUT

Redirects data intended for the monitor to printer or a file.

Input format:

PUT CONSOLE OUTPUT TO FILE Filename.xxx [option]

PUT PRINTER OUTPUT TO FILE Filename. xxx [option]

PUT CONSOLE OUTPUT TO CONSOLE

PUT PRINTER OUTPUT TO PRINTER

Description:

Normally CP/M sends data to the monitor. The PUT command allows you

to write the data to a file or the printer.

Uses:

The first examples direct CP/M to open a file and write all output intended

for the screen or printer to that file. Once the operation is ended, CP/M will

return to its normal mode. The last two examples terminate the PUT

command. For example, these could be used if you had a SUBMIT file

using the PUT command, and should subsequently return to normal mode.

The display of the data on the monitor can be terminated with the command

ECHO. The option filter changes all control characters into printable

form.

The option SYSTEM causes the commands to be saved along with the data

in the new file.

254

Abacus Software C-128 CP/M User's Guide

10.22 REN (AME)

Renames an existing file.

Input format: rename

RENAME Filename!. xxx=Filenamel. xxx

RENAME AB?*2=AB?*1

Description:

The command RENAME does not change the data, only the filename. The

content of the file will remain intact

Uses:

If the file is not on the default drive A, you may specify the drive along with

the rename command. Should the RENAME command be entered without

options, the program asks which drive to use.

If, during the RENAME operation, the old file is to be overwritten, then the

program asks you whether that old file should be erased. If you answer no,

the RENAME operation is halted.

255

Abacus Software C-128 CP/M User's Guide

10.23 FMAC (Additional Utilities)

Macroassembler for programming in assembly language. Creates the

relocatable object code, which must be processed by link.

Input format: RMAC Filename

RMAC Filename $ options

Description:

The RMAC macroassembly produces three files. The source program is

listed with the extension ASM, and the library with the extension LIB. The

assembled program code is listed with the extension REL, the symbol

schedule with SYM and the printable listing with PRN. The command link

creates a file from the REL file which can be executed.

Uses:

Instead of the usual brackets, dollar signs ($) are used to indicate options.

The option must be preceded by a space.

256

Abacus Software C-128 CP/M User's Guide

10.24 SAVE

Saves the data (program) currently in memory onto a diskette.

Inputformat: SAVE

Description:

The SAVE command lets you create a file on diskette. To use this command,

you enter SAVE <RETURN>. SAVE then makes preaparation so that CP/M

will be able to save the subsequent program.

Uses:

SAVE is automatically placed at the upper end of the memory, and returns
control to CP/M after it is located there. Next enter theprogram name of the

program to be saved. After it is loaded, SAVE will regain control and you
are asked for the filename and the starting and ending addresses.

257

Abacus Software C-128 CP/M User's Guide

10.25 SET

Sets the file attributes, enables the input of a password, assigns disk labels,

and chooses the format of the time and date stamps.

Input format: SET Filename. xxx[option]

SET AB?* .*[optiori]

SET B-.[option]

SET[option]

Description:

The SET program serves several purposes. Its most important tasks are:

setting the archive mode and declaring diskettes or drives as read-only or

write-only.

Each diskette can be assigned its own name, and passwords can be assigned

to the whole diskette and/or individual files. The diskette labels may be

displayed using SHOW.

Also, such files may be equipped with time and date stamps.

SET filename. COM [SYS] allows the file to be accessed from any user

area.

For more detailed information, see Chapter 5.

258

Abacus Software C-128 CP/M User's Guide

10.26 SETDEF

Displays and defines the order of disk drive search and turns the screen

output on or off.

Input format: SETDEF

SETDEF B:

SETDEF[option]

Description:

Normally, transient programs are started by typing the name and pressing
<RETURN>. If the program is to be loaded from a different drive, a drive

must be specified along with the name.

For instance, if you always work on drive B and your CP/M system files

are on drive A, you can tell CP/M on to search drive B first. This is known

as specifying a search order. This way you can tell CP/M to seach first on

drive A, then on drive C:, and only then on the default drive.

259

Abacus Software C-128 CP/M User's Guide

10.27 SHOW

Displays the options of a diskette.

Input format: SROW[option]

SHOW B-.[option]

Description:

SHOW displays the technical data of a diskette directory. The disk's free

space, the number of entries in the directory, the number of active USER

areas, and the chosen USER area number, the total diskette capacity, block

size, sector size, and number of sectors per track, and the name of a diskette

are displayed.

SHOW is actually a useful addition to DIR. With SHOW you can also find out

if the diskette and/or individual files are protected by passwords.

Options are:

SPACE

LABEL

USERS

DIR

DRIVE

260

Abacus Software C-128 CP/M User's Guide

10.28 SID (Symbolic Interactive Debugger)

A debugging program to load, change, and test assembler programs.

Input format: SID

SID Filename.xxx

SID Filename.xxx TEXT. SYM

Description:

SID lets you load COM and HEX files into memory, and then view and edit

them. The program may be run with enhanced control if a SYM file is

loaded. SID can also change executable programs into INTEL 8080

mnemonics.

Unfortunately this program is available only on the Additional Utilities

diskette. S ID is a further development of the DDT program in CP/M 2.2.

261

Abacus Software C-128 CP/M User's Guide

10.29 SUBMIT

Enables command input from a file, instead of the keyboard

Input format: SUBMITfilename, parameter l,parm 2...,parm n

Description:

A series of commands usually entered through the keyboard can also be

written to a SUBMIT file, and then be executed automatically. When the file

of commands is completed, control is returned to CP/M.

With each power-up, CP/M checks a file called profile . SUB and

automatically executes any commands in that file (if the file is found).

Uses:

To write a SUBMIT file with your text program, simply write the desired

commands each on a line. The extension for this file must be

SUB—otherwise it not recognized by SUBMIT.

262

Abacus Software C-128 CP/M User's Guide

10.30 USER

Changes the current user area.

Input format: USER

USERn

Description:

Each diskette may be divided into 16 different user areas. Thus you can

have separate user areas for various jobs, in which the necessary files and
programs are stored. System files, located in the user level 0, may be read
from any user area.

Uses:

The current user area is displayed in the CP/M prompt (1B>), and may be

changed with the USER command. If you do not specify the new area, the

program will ask you for it. The program SHOW will display the active user
areas.

263

Abacus Software C-128 CP/M User's Guide

10.31 xref (Additional Utilities)

Creates a cross-reference listing for assembler programs.

Input format: XREF Filename

XREF Filename $P

Description:

The MAC and RMAC assemblers produce an alphabetical list of all symbols

used and their values in a program. XREF is more practical, since in

addition to the symbols it displays the program lines those symbols are

found in. XREF requires SYM files and PRN files. XREF produces an

assembler list called <Filename>. XRF (similar to <Filename>. PRN) and

includes a detailed listing of all symbols present, and the line numbers at

which those symbols appear in the program.

264

I Appendices

Appendix A: ASCIIand Number Conversion Table
Appendix B: CP/M Control Codes

Appendix C: pip's parameters

Appendix D: set's parameters
Appendix E: 8080 Instruction Set
FOG: The CP/MExpert

Abacus Software C-128 CP/M User's Guide

Appendix A: ASCII and Number Conversion Table

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Hexa
decimal

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

12

13

14

!5

16

17

18

Binarv

000 0000

000 0001

000 0010

000 0011

000 0100

000 0101

000 0110

000 0111

000 1000

000 1001

000 1010

000 1011

000 1100

000 1101

000 1110

000 1111

001 0000

001 0001

001 0010

001 0011

001 0100

001 0101

001 0110

001 0111

001 1000

Ascn

NUL

SOH

STX

ETX

EOT

ENQ

ACU

BEL

ES

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

AAK

SYU

ETB

CAN

267

Abacus Software

Decimal

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Hexa-

decimal

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

C

Binarv

001 1001

001 1010

001 1011

001 1100

001 1101

001 1110

001 1111

010 0000

010 0001

010 0010

010 0011

010 0100

010 0101

010 0110

010 0111

010 1000

010 1001

010 1010

010 1011

010 1100

010 1101

010 1110

010 1111

Oil 0000

Oil 0001

Oil 0010

Oil 0011

-128 CP/M User's Guide

ascii

EM

SUB

ESC

FS

GS

RS

VS

SP

j

#

$

%

&

i

(

)

•

+

f

-

•

/

0

1

2

3

268

Abacus Software C-128 CP/M User's Guide

Decimal
Hexa
decimal Binary Ascn

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

Oil 0100

Oil 0101

Oil 0110

Oil 0111

Oil 1000

Oil 1001

Oil 1010

Oil 1011

Oil 1100

Oil 1101

Oil 1110

Oil 1111

100 0000

100 0001

100 0010

100 0011

100 0100

100 0101

100 0110

100 0111

100 1000

100 1001

100 1010

100 1011

100 1100

100 1101

100 1110

4

5

6

7

8

9

:

•

<

=

>

e

A

B

C

D

E

F

G

H

I

J

K

L

M

N

269

Abacus Software C-128 CP/M User's Guide

Dprimal

Hexa-
decimal Binarv Ascn

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

100 1111

101 0000

101 0001

101 0010

101 0011

101 0100

101 0101

101 0110

101 0111

101 1000

101 1001

101 1010

101 1011

101 1100

101 1101

101 1110

101 1111

110 0000

110 0001

110 0010

110 0011

110 0100

110 1101

110 0110

110 0111

110 1000

110 1001

0

p

Q

R

s

T

u

V

w

X

Y

z

[

\

]

A

a

b

c

d

e

g

h

•

270

Abacus Software C-128 CP/M User's Guide

Hexa-

—Decimal decimal Binary Ascn

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

110 1010

110 1011

110 1100

110 1101

110 1110

110 1111

111 0000

111 0001

111 0010

111 0011

111 0100

111 0101

111 0110

111 0111

111 1000

111 1001

111 1010

111 1011

111 1100

111 1101

111 1110

111 1111

j

k

1

m

n

o

P

q

r

s

t

u

V

w

X

y

z

{

;

}

DEL

271

Abacus Software C-128 CP/M User's Guide

Appendix B: CP/M Control Codes

Control Character

<CONTROL> A

<CONTROL> B

<CONTROL>C

<CONTROL>E

<CONTROL> F

<CONTROL> G

<CONTROL> I

<CONTROL> H

<CONTROL> J

<CONTROL> K

<CONTROL>M

<CONTROL>P

<CONTROL> Q

<CONTROL> R

<CONTROL> S

Function

moves cursor one character to the left

moves cursor from beginning to end of command

line and back without affecting command

stops executing program when entered at the

system prompt or after <CONTROL> S

forces a physical carriage return without sending
command to CP/M

moves cursor one character to the right

deletes character at current cursor position if in the
middle of a line

same as the TAB key

delete character to the left of cursor

moves cursor to the left of the command line and

sends command to CP/M 3. Line feed, has same
effect as carriage return

deletes character at cursor and all characters to the
right

same as carriage return

echoes console output to the list device

restarts screen scrolling after a <CONTROL> S

retypes the characters to the left of the cursor on a

new line; updates the command line buffer

stops screen scrolling

273

Abacus Software C-128 CP/M User's Guide

<CONTROL> U updates the command line buffer to contain the
characters to the left of the cursor; deletes current

line.

<CONTROL>W recalls previous command line if current line is
empty; otherwise moves cursor to end of line.
<CONTROL> J,-M,-R,-U and <RETURN>

update the command line buffer for recall with

<CONTROL> W.

<CONTROL> X deletes all characters to the left of the cursor.

274

Abacus Software C-128 CP/M Userfs Guide

Appendix C: pip Command

Options Function

A Archive function. Copies only those files that were created or

changed since the latest archive update. The time and date
stamp function must be set

C Confirm. CP/M will check after each file to confirm that it
may be copied

Dn Erase after n columns. PIP will erase all characters

positioned after n columns in the file. Used for text files only

E Echo text on the monitor. The content of the files being
copied are displayed on the screen. Not to be used with the

parameter N. Used for text files only

P Form feed. Some printers require a <CTRL> L to feed the

next page. If this is not the case, use F to erase them

Gn Get a file from user area n. This option must be positioned
directly after the first filename and should be the only thing
written there. For example:

PIP B:[G5]=TEXT.TXT.TXT[G1]

will copy the file TEXT . TXT from USER area 1 to USER
area5

H Transfer hexadecimal data. This option should always be

entered if you want to copy HEX files. PIP will then check
the file content for correct INTEL format

I Ignore the end-of-file marker in HEX files. Enter this option

for every file except the last one. Along with the option I,

the option H is entered by PIP. For the last file use the
parameter H:

PIP F/ferttfme.HEX=PROGl.HEX[I] ,PR0G2 .HEX [H]

275

Abacus Software C-128 CP/M User's Guide

K Suppress the display of filenames during copying

L Change all capital letters to lowercase. Use this option only

for text files, and be sure to use the parameter z for

WordStar files

N Numbers the lines of a file continuously. The numbers start
with 1 in the first line, and increase by 1 for each line. The
numbers can have a maximum of 6 digits. Unused digits will
appear as spaces. The numbers will be followed by a colon

and a space. Do not use with the options E or N. Choose

parameter z for WordStar files

N2 Numbers the lines for a BASIC program

O Transfer of object-files. Used to transfer non-text and

non-COM files. Do not use for text files

Pn Sets page length. Default is 60 lines per page. Enter the F
option to erase any <CTRL> L (form feed) markers that may

exist. Use only with text files

Qxxxx<CTRL>Z

Quit copying after this character string. PIP will copy a file
up to and including the specified character string. Use the
command in command lines so that the string will not be
changed to capital letters. Use only for text files:

PIP

CON:=TEXT.TXT[Hamlet]

If command is one line, the entry appears in capital letters

r Copy system files. These files are not listed by DIR, and
PIP does not usually copy them. R will cancel these

restrictions

Sxxxx<CTRL>Z
Start at this character string. PIP will begin copying at this
character string. Be sure to write the command in two lines,
otherwise the text is changed to all capital letters. Use only

with text files

276

Abacus Software C-128 CP/M User's Guide

Tn Set tab. Normally CP/M operates with an 8-space tab. This is

not the case for hardcopies, and thus the tab must be defined.
n specifies the number of spaces the tab is set. Use with text
files only

U Capitalize. Changes all lower case characters to upper case.
Use only with text files. When used with WordStar, be sure

to use the option z

V Verify. This parameter verifies files copied by PIP. It

ensures that the new file is identical to the old one

W Write over read-only files. These files may normally be read,

but not changed or erased. The w option causes these files to
be erased without recall

Z Erase the 8th bit. ASCII uses only seven bits, and the 8th bit
is utilized by many applications programs for various

functions. The z option is not necessary when copying

ASCII data, such as COM: or LST:

277

Abacus Software C-128 CP/M User's Guide

Option

RO

RW

SYS

DIR

ARCHIVE=OFF

ARCHIVE=ON

Appendix D: SET Command

Attributes

sets the file attribute to Read-Only

sets the file attribute to Read-Write

sets the file attribute to SYS; means that the file is

available from any USER area

sets the file attribute to DIR

means file has not been backed up (archived)

means that the file has been backed up (archived).

The Archive attribute can be turned on by SET or

by PIP when copying a group of files with the

PIP [A] option. SHOW and DIR display the

Archive option

turns on or off the user-definable file attribute Fl

turns on or off the user-definable file attribute F2

turns on or off the user-definable file attribute F3

turns on or off the user-definable file attribute F4

turns on CREATE time stamps on the disk in the

default or specified drive. To record the creation

time of a file, the CREATE option must be turned

on before the file is created

turns on ACCESS time stamps on the disk in the

default or specified drive. ACCESS and CREATE

options are mutually exclusive; only one can be in

effect at a time. If you turn on the ACCESS time

stamp on a disk that previously had CREATE time

stamp, the CREATE time stamp is automatically

turned off

F1=ON|OFF

F2=0N|OFF

F3=0N|0FF

F4=0N|0FF

CREATE=ON

ACCESSION

279

Abacus Software C-128 CP/M User's Guide

UPDATE=ON

PROTECT=ON

PROTECT=OFF

PROTECT=READ

turns on UPDATE time stamps on the disk in the

default or specified drive. UPDATE time stamps

record the time the file was last modified

turns on password protection for all the files on

the disk. You must turn on password protection

before you can assign passwords to files

Disables password protection for the files on your

disk

The password is required for reading, copying

writing, deleting or renaming the file

PROTECT=WRITE The password is required for writing, deleting or

renaming the file. You do not need a password to

read the file

PROTECT=DELETE The password is only required for deleting or

renaming the file. You do not need a password to

read or modify the file

PROTECT=NONE No password exists for the file. If a password

password exists, this modifier can be used to

delete the password

280

Abacus Software C-128 CP/M User's Guide

Appendix E: 8080 Instruction Set

This is a summary of the 8080 instruction set, listed alphabetically, to assist

you when programming with the Additional Utilities diskette.

For a complete listing and explanation of 8080 mnemonics, we suggest you

purchase one of the many excellent 8O8O/Z-8O assembly language reference

books.

Letters A,B, c,D, E, H, I, L,L,IX, iy, R, andSP are the standard

register names. The symbols BC, DE, and HL are used for the register pairs.

The symbol nn signifies an 8-bit constant, and the symbol nnnn signifies

a 16-bit constant.

Hex

CE nn

8F-8E

AC I

ADC

Mnemonic

nn

A-M

Add

with

Add

Notes

nn to accululator

carry

memory byte

87-86

C6 nn

A7-6

E6 nn

pointer to by register

to accumulator with

carry

ADD A-M Add register given

to accumulator

without carry

ADI nn Add the immediate

byte to the

accumulator

ANA A-M Logical "and11 reg

with A, as above

ANI nn Perform logical AND

with accumulator & nn

281

Abacus Software C-128 CP/M Userfs Guide

CD nnnn

DC nnnn

FC nnnn

2F

3F

BF-BE

D4 nnnn

C4 nnnn

F4 nnnn

EC nnnn

FE nn

E4 nnnn

CALL nnnn

CC nnnn

CM nnnn

CMA

CMC

CMP A-M

CNC nnnn

CNZ nnnn

CP nnnn

CPE nnnn

CPI nn

CPO nnnn

Unconditional

subroutine call to

address nnnn

Conditional

subroutine call to

address nnnn, carry

flag set

Conditional

subroutine call to

address nnnn, sign

flag set

Perform one's

complement on

accululator

Complement carry flag

Complare byte pointed

to by register with

accumulator

Conditional subroutine

call Carry flag set

Conditional subroutine

call Zero flag reset

Conditional subroutine

call Sign flag set

Conditional subroutine

call Parity flag set

Compare nn to

acculumator

Conditional subroutine

call Parity flag reset

282

Abacus Software

CC nnnn

27

09-39

3D-35

0B-3B

F3

CZ

DAA

DAD

DCR

DCX

DI

nnnn

B-SP

A-M

B-SP

O1Z5 tr/M users uuiae

Conditional subroutine

call Zero flag set

Decimal adjust

accumulator

Add specified double

register

Decrement register

Decrement double

register

Disable the

interrupt system

FB

76

DB nn

3C-34

03-33

DA nnnn

El Enable the interrupt

system

HLT Halt the 8080

processor

IN nn Load register A with

data from port e8

INR A-M

INX B-SP

Single precision

increment register

Double precision

increment register

pair

JC nnnn Conditional jump to

address nnnn where

carry flag set

FA nnnn JM nnnn Conditional jump to

address nnnn where

sign flag set

283

Abacus Software C-128 CP/M User's Guide

D2 nnnn

C2 nnnn

F2 nnnn

EA nnnn

E2 nnnn

CA nnnn

3A nnnn

0A-1A

2A nnnn

01-31 nnnn

7F-75

JNC

JNZ

JP

JPE

JPO

JZ

LDA

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

LDAX B-D

LHLD nnnn

Conditional jump to

address nnnn where

carry flag reset

Conditional jump to

address nnnn where

zero flag reset

Unconditional jump

to address nnnn

Conditional jump to

address nnnn where

parity flag set

Conditional jump to

address nnnn where

parity flag reset

Conditional jump to

address nnnn where

zero flag set

Load register A from

specified address

Load register A from

computed address

Load HL direct from

specified location

3E-36 nn

LXI B,SP,nnnn Load sepicified

double register with

nnnn

MOV A,A-M, LMove data to

leftmost element

from rightmost

element

MVI A,nn-M Loar register with nn

284

Abacus Software C-128 CP/M User's Guide

00 NOP No operation is

performed by the CPU

B7-B6 ORA A-M Logical "and" reg

with A

F6 nn ORI nn Perform logical OR

with the accumulator

& the byte nn

D3 nn OUT nn Send data from

register A to

specified port

E9 PCHL Fill program counter

with data from HL

Cl-Fl POP B-PSW Load register pair

from stack, set SP

C5-F5 PUSH B-PSW Store register pair

into stack, set SP

17 RAL Rotate carry/A

register to left

IF RAR Rotate carry/A

register to right

D8 RC Conditional return

from a

subroutine,carry

flag set

C9 RET Return from a

subroutine

07 RLC Rotate bits left,

set carry as a side

effect

285

Abacus Software C-128 CP/M User's Guide

F8 RM Conditional return

from subroutine,

sign flag set

DO RNC Conditional return

from

subroutine,carry

flag reset

CO RNZ Conditional return

from subroutine,zero

flag reset

FO RP Conditional return

from subroutine,sign

flag reset

E9 RPE Conditional return

from

subroutine,parity

flag set

EO RPO Conditional return

from subroutine,

parity flag reset

OF RRC Rotate bits right,

reset carry as side

effect

C7-FF RST 0-7 These restart

instructions

generate one-byte

subroutine

calls,given in the

Z-80 operand.

C8 RZ Conditional return

from subroutine,

zero flag reset

286

Abacus Software C-128 CP/M User's Guide

9F-9E

DE nn

SBB A-M Subtract specified

register from A with

carry,as defined

above

SBI nn Subtract immediate

byte, the carry flag

from accumulator

22 nnnn

F9

32 nnnn

37

02-12

97-96

SHLD

SPHL

STA

STC

STAX

SUB

nnnn

nnnn

B-D

A-M

Store HL direct to

location el6

Fill stack pointer

with data(from HL

Store register A

into memory at el6

Set the carry flag

to 1

Store register A to

computed address

Subtract specified

EB

AF-AE

EE nn

E3

register from

A without carry

XCHG Exchange DE pair

with HL pair

XRA A-M Perform exclusive OR

with

accumulator,byte

XRI nn Perform logical

exclusive OR with

accumulator,the byte

XTHL Exchange byte at stack

pointer, register L

287

Abacus Software C-128 CP/M User's Guide

FOG—THECP/MEXPERT

YouVe read the book and now will have a good, solid working knowledge
of your Commodore 128. As you become more experienced, you will find
out how much you can do with CP/M (and how much it can do for you) on

your Commodore. But working with computers is never plain sailing. If

you find you need any more help or clarification, there's an organization

with a specialist's knowledge of CP/M—FOG.

FOG is a users' group for people using or interested in computers. The
bulk of its support is to the CP/M operating system. More than 16,000
people worldwide subscribe to the monthly publication FOGHORN, which
regularly runs to 80 pages and is wholly devoted to CP/M. Reprints of all
back issues are available for a varying charge (depending on the issue) and
two "best of volumes have been compiled. Each year will see the release of

a new "best of issue.

A membership in FOG is $24 per year, and gives you access to all FOG
services. As well as receiving the FOGHORN each month, members can
draw from an extensive FOG/CPM Disk Library containing more than 300

disks and thousands of public domain programs. Other services include an
RCP/M network that has more than 40 RBBS-RCP/M systems in operation,

most of which accept both 300 baud and 1200 baud. In addition, a network

of FOG-affiliated local groups meet at more than 300 locations. Special

interest groups organized to augment the local group meetings cover such

areas as dBASE n, ham radio operators, and Personal Pearl.

Another valuable FOG service is its technical hotline—a phone service

provided by FOG's computer experts who give advice and assistance to

callers. The hotline operates Monday to Friday 10am to 5.30pm PST. The

phone number is (415) 755-2000.

FOG was founded in October, 1981 by a small band of early buyers of the

Osborne 1. The primary purpose was to organize a library of public domain

software to run on the O-l. A newsletter (which developed into the

FOGHORN) was quickly became the focal point for the group's activities.

Today, as MS-DOS systems become more prevalent in the business world,

and as many members have diversified their interests to both CP/M and

MS-DOS operating systems, FOG recently began supporting 16-/32-bit

systems through a new publication, the FOGLIGHT, and another disk

library.

289

Abacus Software C-128 CP/M User's Guide

FOG is headquartered in Daly City, near San Francisco. The postal address

is:

FOG

Box 3474

Daly City CA 94015-0474

The office location is:

FOG

295 89th St.

Suite 304

Daly City CA 94015.

290

I Index I

Abacus Software C-128 CP/M User's Guide

292

Abacus Software C-128 CP/M User's Guide

Additional Utilities diskette, 123

archive flag, 93

ASCE code, 13,95

changing value/keyboard, 109

conversion table, 267

assemblers (mac/rmac), 124

asterisk, 37, 41-42

backups, 15

automatic, 93

BDOS, 22, 142

routines, 145

binary, 10-11

BIOS, 22, 142

bit, 12

8th bit, 95

booting, 23

carriage return (CR), 26

COM files, 45

command, 27,46

Commodore 128 (under CP/M), 101

computer, 4

concatenation, 89

Console Command Processor, (CCP), 142

CONTROL codes, 273

COPYSYS, 227

CP/M, 21

commands, 225-264

version 2.2, 22

version 3.0, 22

CPU, 13

daisywheel printers, 8

DATE, 228

DEVICE, 229

Digital Research, 124-125

DIR, 51, 231

directory, 26

displaying, 36

DIRSYS, 233

293

Abacus Software C-128 CP/M User's Guide

disk drives, 14, 72-75

1541 and 1571, 101, 106

dot matrix printers, 7

DUMP, 234

echo, 105

ED, 235

end-of-file indicator, 88

ERASE, 55

extensions, 38-340

files, 39

merging,89

non-text, 88

overwriting, 94

text, 88

filenames, 38-39

floppy diskettes, 14, 74

copying, 86

formats, 106

MFM format, 105,115

FOG (CP/M resource), 289

FORMAT, 239

format (printer page), 92

formatting, 15, 32, 35

function keys, 111

special functions, 115

GENCOM, 240

GET, 241

hardcopy, 96

hard disk drive, 16

HELP, 79, 242

HEXCOM, 243

INITDIR, 244

ink-jet printers, 8

keyboard, 4, 107

KEYFIG, 245

294

Abacus Software C-128 CP/M User's Guide

keys, 4

designations, 4

function, 111

values, 107-111

changing with KEYFIG, 116

kilobyte, 12

labels, 64

laser printers, 9

LIB, 246

line numbering, 90

LINK, 247

lowercase characters, 90

MAC, 248

machine language, 20

programming, 123-141

mass storage, 14

MBASIC®, 95

memory, 10

layout, 142

mnemonics, 124

monitor, 6

operating system, 19, 21

option, 46

overwriting files, 94

parameter, 46

passwords, 66-68

PATCH, 249

PIP, 27, 33, 37, 85-98, 250-253

pound key (£), 114

printers, 7

printing files, 92, 96

program, 13, 19

prompt, 25

psuedo-opcodes, 133

PUT, 254

question mark, 41-42

295

Abacus Software C-128 CP/M User's Guide

read errors, 24

RENAME, 57, 255

RESET, 23

resident commands, 31,45

RMAC, 256

ROM (C-128), 153

important addresses, 155

listing, 157-223

RS-232, 143

SAVE, 257

screen, 6

colors, 107

changing background/foreground, 108

memory location, 154

search path (disk drive), 72

sectors (diskette), 14,105

SET, 258, 280

SETDEF, 259

SHOW, 260

SID, 141,261

software, 19

status line, 25,105

string searches, 91

SUBMIT, 262

system diskette (backup), 31

double-sided, 101

system files, 54

copying, 95

tracks (diskette), 14,105

thermal printers, 9

time stamping, 69

Transient Program Area (TPA), 24,142

transient commands, 47, 61

transient programs, 45

296

Abacus Software C-128 CP/M User's Guide

uppercase characters, 90

USER, 263

USER areas, 49

copying between, 88

verifying commands, 38

virtual disk drive, 37,103

Wordstar®, 95

write-protect tab, 15

XREF,264

Z-80 processor, 21, 124, 153

1571 disk drive formats, 106

40/80-column mode, 23, 97

6502 code, 124

8080/8085/8502 processors, 21,153

8080 code, 124

8080 instruction set, 281

297

C-128 REQUIRED
Ztwr READING

Detailed guide presents the 128's

operating system, explains graphic
chips. Memory Management Unit, 80
column graphics and commented
ROM listings. 5O0pp $19.95

Get all the inside information on
BASIC 7.0. This exhaustive hand

book is complete with commented

BASIC 7.0 ROM listings. Coming
Summer'86. $19.95

Filled with info for everyone. Covers

80 column hi-res graphics, win
dowing, memory layout, Kernal

routines, sprites, software pro

tection, autostarting. 300pp $19.95

Insiders' guide for novice & ad-

vanced users. Covers sequential &
relative files, & direct access com-

mands. Describes DOS routines,

Commented listings. $19.95

Learn fundamentals of CAD while

developing your own system. Design
objects on your screen to dump to a

printer. Includes listings for '64 with

Simon's Basic. 300pp $19.95

Introduction to programing; problem Presents dozens of programming Essential guide for everyone inter-
analysis; thorough description of all quick-hitters. Easy and useful ested in CP/M on the 128. Simple
BASIC commands with hundreds of techniques on the operating system,

'" ' "" tk it thexamples: monitor commands; util

ities; much more. $16.95

q pg y,

stacks, zero-page, pointers, the
BASIC interpreter and more. $16.95

explanation of the operating system,

memory usage, CP/M utility pro

grams, submit files & more. $19.95

ANATOMY OF C-64 Insider's guide to the

'64 internals. Graphics, sound, I/O, kernal,

memory maps, more. Complete commented

ROM listings. 300pp $19.95

ANATOMY OF 154X&DRIVE Best

handbook on Vft^^Krolaiias all. Many
examples and QM»H»*ffly commented

1541 ROM listings^ 500pp $19.95

MACHINE LANGUAGE C-64 Learn

6510 code write fast programs. Many sam

ples and listings for complete assembler,

monitor, & simulator. 200pp $14.95

GRAPHICS BOOK C-64 • best reference

covers basic and advanced graphics.

Sprites, animation. Hires, Multicolor,

lightpen, 3D-graphics, IRQ, CAD, pro

jections, curves, more. 350pp $19.95

TRICKS & TIPS FOR C-64 Collection of

easy-to-use techniques: advanced graphics,

improved data input, enhanced BASIC,

CP/M, more. 275pp~ $19.95

1541 REPAIR & MAINTENANCE

Handbook describes the disk drive hard

ware. Includes schematics and techniques

to keep 1541 running. 200pp $19.95

ADVANCED MACHINE LANGUAGE

Not covered elsewhere: • video controller,

interrupts, timers, clocks, I/O, real time!

extended BASIC, more. 210pp $14.95

PRINTER BOOK C-64/VIC-20 Under

stand Commodore. Epson-compatible print

ers and 1520 plotter. Packed: utilities; gra

phics dump; 30-plot; commented MPS801

ROM listings, more. 330pp $19.95

Abacus

SCIENCE/ENGINEERING ON C-64 In

depth intro to computers in science. Topics:

chemistry, physics, biology, astronomy,

electronics, others. 350pp $19.95

CASSETTE BOOK C-64/VIC-20

Comprehensive guide; many sample

programs. High speed operating system

fast file loading and saving. 225pp $14.95

IDEAS FOR USE ON C-64 Themes:

auto expenses, calculator, recipe file, stock

lists, diet planner, window advertising,

others. Includes listings. 200pp $12.95

COMPILER BOOK C-64/C-128 All you

need to know about compilers: how they

work; designing and writing your own;

generating machine code. With working

example compiler. 300pp $19.95

C-128 and C-64

Adventure Gamewrlter's Handbook

Step-by-step guide to designing and writing

your own adventure games. With automated

adventure game generator. 200pp $14.95

PEEKS & POKES FOR THE C-64

Includes in-depth explanations of PEEK,

POKE. USR, and other BASIC commands.

Learn the "inside" tricks to get the most out

of your "64. 200pp $14.95

Optional Diskettes for books

For your convenience, the programs

contained in each of our books are avail

able on diskette to save you time entering

them from your keyboard. Specify name of

book when ordering. $14.95 each

of Commodore Business Machines Inc.

ram Software
P.O. Box7219 Grand Rapids, Ml 49510 - Telex 709-101 - Phone {616) 241-5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)

241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping

per order. Foreign orders add $10.00 per book. Dealer inquires welcome-1400+ nationwide.

^ ULAR

The complete compiler

and development pack
age. Speed up your pro

grams 5x to 35x. Many

options: flexible memory

management; choice of

compiling to machine

code, compact p-code or

both. '128 version: 40 or

80 column monitor output

and FAST-mode opera

tion. '128 Compiler's ex
tensive 80-page pro

grammer's guide covers

compiler directives and

options, two levels of
optimization, memory usage, I/O handling, 80 column hi-res graphics, faster,

higher precision math functions, speed and space saving tips, more. A great
package that no software library should be without. 128 Compiler $59.95

64 Compiler $39.95

For school or software

development. Learn C on

your Commodore with our in-

depth tutorial. Compile C pro

grams into fast machine

language. C-128 version has

added features: Unix™-like

operating system; 60K RAM

disk for fast editing and

compiling Linker combines

up to 10 modules; Combine

M/L and C using CALL; 51K

. available for object code;

Fast loading (8 sec. 1571, 18 sec. 1541); Two standard I/O librarys plus

two additional libraries—math functions (sin, cos, sqrt, etc.) & 20+ graphic

commands (line, fill, dot, etc.). C-128 $79.95

C-64 $79.95

Remarkably easy-to-use

interactive drawing pack
age for accurate graphic
designs. New dimension

ing features to create

exact scaled output to all

major dot-matrix printers.
Enhanced version allows

you to input via keyboard

or high quality lightpen.

Two graphic screens for
COPYing from one to the

other. DRAW, LINE, BOX,

CIRCLE, ARC, ELLIPSE

available. FILL objects

with preselected PAT-

TbHNS; add TEXT; SAVE and RECALL designs to/from disk. Define your own
library of symbols/objects with the easy-to-use OBJECT MANAGEMENT
SYSTEM-store up to 104 separate objects. C-128 $59.95

C-64 $39.95

<•

(

iPRIC

\M
A\
>\\\
M

JRnH

w
1/

!ED

-4

LJGE

^.

••X. «1 •

uM*tdir.«l

EC

Mut.

) i

l4V.(10SH-o*iiuwMO.

nUukca

0-cMrO.

V v

/inn

A,—

.t*,lul.l«h0.

• >

Compiler and Software

Development System

Not just a compiler, but a

complete system for develop

ing applications in Pascal

with graphics and sound

features. Extensive editor

with search, replace, auto,

renumber, etc. Standard J &

W compiler that generates

fast machine code. If you

want to learn Pascal or to

develop software using the

best tools available-SUPER

Pascal is your first choice.

C-128 $59.95

C-64 $59.95

Easily create professional

high quality charts and

graphs without programming.

You can immediately change

the scaling, labeling, axis,

bar- filling, etc. to suit your

needs. Accepts data from

CalcResult and MultiPlan.

C-128 version has 3X the

resolution of the '64 version.

Outputs to most printers.

C-128 $39.95

C-64 $39.95

OTHER TITLES AVAILABLE:
Technical Analysis System

Sophisticated charting and technical analysis system for

serious investors. Charting and analyzing past history of a

stock, TAS can help pinpoint trends & patterns and predict a

stock's future. Enter data from the keyboard or from online

financial services. C-64 $59.95

Personal Portfolio Manager

Complete protfolio management system for the individual or

professional investor. Easily manage your portfolios, obtain

up-to-the-minute quotes and news, and perform selected

analysis. Enter quotes manually or automatically through

Warner Computer Systems. C-64 $39.95

Xper

XPER is the first "expert systerrt' for the C-128 and C-64. While

ordinary data base systems are good for reproducing facts,

XPER can derive knowledge from a mountain of facts and help

you make expert decisions. Large capacity. Complete with

editing and reporting. C-64 $59.95

C-128 and C-64 «e trademarks of Commodore Business Machines Inc.

Unix is a trademark of Bel Laboratories

fSoftware
P.O. Box7219 Grand Rapids, Ml 49510-Telex709-101 -Phone(616) 241-5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)

241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping

per order. Foreign orders add $12.00 per item. Dealer inquires welcome-1400+ nationwide.

PowerPlan

One of the most powerful spreadsheets with integraded

graphics. Includes menu or keyword selections, online help

screens, field protection, windowing .trig functions and more.

PowerGraph, the graphics package, is included to create

integrated graphs & charts. C-64 $39.95

$39.95

$39.95

$39.95

COBOL Compiler for the C-64

Ada Compiler for the C-64

VideoBasic Language for the C-64

Abacus

REQUIRED READING

INTERNALS

Essential guide to learning the

Inside information of the ST.

Detailed descriptions of sound

& graphics chips, internal

hardware, various ports, GEM.

Commented BIOS listing. An

indispensible reference for

your library. 450pp. $19.95

GEM Programmer's Ref.

For serious programmers in

need of detailed information

on GEM. Written with an

easy-to-understand format. All

GEM examples are written in

C and assembly. Required

reading for the serious pro

grammer. 450pp. $19.95

TRICKS & TIPS

Fantastic collection of pro
grams and info for the ST.

Complete programs include:
super-fast RAM disk; time-

saving printer spooler; color

print hardcopy; plotter output

hardcopy. Money saving tricks

and tips. 200 pp. $19.95

GRAPHICS & SOUND

Detailed guide to understand

ing graphics & sound on the

ST. 2D & 3D function plotters,
Moire patterns, various reso

lutions and graphic memory,

fractals, waveform generation.
Examples written in C, LOGO,

BASIC and Modula2. $19.95

BASIC Training Guide

Indispensible handbook for
beginning BASIC program

mers. Learn fundamentals of

programming. Flowcharting,

numbering system, logical
operators, program structures,

bits & bytes, disk use. chapter
quizzes. 200pp. $16.95

PRESENTING THE ST
Gives you an in-depth
look at this sensational

new computer. Discusses

the architecture of the
ST, working with GEM,

the mouse, operating

system, all the various

interfaces, the 68000
chip and its instructions,

LOGO. $16.95

MACHINE LANGUAGE
Program in the fastest

language for your Atari

ST. Learn the 68000

assembly language, its

numbering system, use

of registers, the structure

& important details of the
instruction set, and use of

the internal system

routines. 280pp $19.95

LOGO
Take control of your
ATARI ST by learning

LOGO-the easy-to-use,

yet powerful language.

Topics covered include

structured programming,

graphic movement, file
handling and more. An

excellent book for kids as

well as adults. $19.95

PEEKS & POKES
Enhance your programs

with the examples found
within this book. Explores

using the different lang
uages BASIC, C, LOGO

and machine language,

using various interfaces,
memory usage, reading

and saving from and to

disk, more. $16.95

BEGINNER'S GUIDE
Finally a book for those

new to the ST wanting to

understanding ST basics.

Thoroughly understand

your ST and its many

devices. Learn the funda

mentals of BASIC, LOGO

and more. Complete with

index, glossary and illus

trations. +200pp $14.95

BASIC TO C

If you are already familiar

with BASIC, learning C

will be all that much

easier. Shows the trans

ition from a BASIC

program, translated step

by step, to the final C

program. For all users

interested in taking the

next step. $19.95

The ATARI logo aid ATARI ST ere fratemwks of Atari Corp.

AbacusliaSoftware
P.O. Box 7219Grand Rapids, Ml 49510-Telex 709-101-Phone (616) 241-5510
Optional diskettes are available for all book titles at $14.95

Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add

$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or

write for your free catalog. Dealer inquiries welcome-over 1400 dealers nationwide.

