

n n n n n n n n n n n
For example,

10 REM
20 REM
30 REM
40 A=10
50 B=30
60 1%=6
70 PRINT A,B,I%
80 REM
90 LOAD

will output the values 10, 30, and 6, so quickly you cannot see
them, before the screen blanks to load in the next program. If the
next program on the tape is

70 PRINT A,B,I%

then the values 10, 30, and 6, are again output.

LOG(X) This function calculates the natural logarithm (Le. to
base e) of any positive, non-zero expression. This function is the
reverse ofEXP (see above).

The function first tests for zero or negative values ofthe
expression, and ifthe result is zero or negative then it produces an
?ILLEGAL QUANTITY ERROR. The result of the expression is left
in FPA #1, and so ifthat value is too large (e.g. lE39) there is an
?OVERFLOW ERROR.

The function is evaluated by use of a short series, whose
constants are held in the BASIC ROM.

MID$(S$,IO%,I1%) This function selects a substring from the
string S$. The starting position is given by 10%, and the length of
the string is given by 11 %.

If the length is not provided, or is greater than the number of
characters to the end of the string, then all characters to the right
are returned. This makes it similar to RIGHT$ (see later).
LEFT$(Sl$,13%) is equivalent to MID$(Sl$,1,13%).

46

n n n n n n n n n ~ n

Admissible values for 10% are from 1 to 255, and values outside
this range give an ?ILLEGAL QUANTITY ERROR. All values
within the limits 0 to 255 are admissible for 11 %, and outside this
range they produce the same ?ILLEGAL QUANTITY ERROR.

The default value for the third parameter is 255, unless the
parameter (Le.I1%) is set to a value (obviously, no string can be
longer than 255 characters). The correct substring is then found by
manipulation of the string pointers, which are pushed on the
stack. (Effectively, the LEFT$ routine is used.)

Ifthe string is S$='''' then MID$(S$,1,255) is not an error, just a
null string, and if the middle parameter is changed to any value
then a null string is returned. This is true for any string for which
the value of the middle parameter is greater than the length of the
string.

This does not make sense, and can be shown by

10 A$ = ""
20 PRINT MID$(A$,2,255)
30 A$="#"
40 PRINT MID$(A$,2,255)

which does not produce any errors but is idiotic. To show how
idiotic, try

10 A$=""
20 PRINT MID$(A$,0,255)
30 A$ = "#"
40 PRINT MID$(A$,0,255)

which gives an ?ILLEGAL QUANTITY ERROR IN 20. In line 20,
A$ does have a 0 length, but-as with ASC-the coding of the
string routines seems to be rather suspect.

NEW This appears to erase the program from memory, but really
it only changes a few pointers (see CLRJ, so that they point either
to the start of BASIC or the end of BASIC memory. The actual
program is unaltered and can be examined by changing some
pointers back (a tedious task).

The changing of pointers is the basis for most systems or tool
kits which have an OLD command.

47

nnnnnnnnnnn
NEXT X Signals the limit of a loop. Control is either passed back
to the corresponding FOR, or-ifthe counter is now greater than
the loop limit-to the next statement.

The command has an optional parameter, WHICH SHOULD
NEVER BE OPTIONAL. As BASIC can become rather confused,
any assistance in debugging (such as telling the system which
loop is which) should not be ignored. To leave out the loop
counter from a NEXT statement is exceedingly untidy, and very
silly.

Not to use a loop counter after a NEXT does speed up the
program, but if the program does not work then debugging will be
that more difficult. The program

10 FOR 1=1 TO 10
20 FORJ=l TO 10
30 REM
40 NEXTI
50 REM
60 NEXTJ

is wrong, as is this program

10 FORI=l TO 10
20 FORJ=l TO 10
30 REM
40 NEXT
50 REM
60 NEXT

The first program will not run, but the second actually will­
change those REMs for active statements and the second program
is a recipe for disaster.

ON 1% GOTO ... ON 1% GOSUB The ON command is a
switching command. The value ofthe variable which follows the
word ON directs which of the lines to follow GOTO or GOSUB is
to be used.

48

nnnnnnnnnnn
ON can be used in two forms (in either program mode or

immediate mode);

10 ON X GOTO 200,300,400,500
20 ON Y GOSUB 2000,3000,4000,5000

and the value of the expression following ON has to be within the
limits 0 to 255.

Above, if X is 0 or greater than 4, then control passes to the next
line (as there are only 4 lines from which to choose). Negative
values for the expressions give ?ILLEGAL QUANTITY ERROR. If
there is no such line number as one in the list, then there is
?UNDEF'D STATEMENT ERROR IN 50 when a jump is made to
that line.

The alternative form GO TO cannot be used, yet another reason
to ignore it.

OPEN F%. D%. A %. S$ This command sets up details of a file,
its corresponding device number, and secondary address, in
tables in memory, each often entries.

The first table extends from locations 601 to 610, and contains
the logical file numbers as assigned by the OPEN command (i.e.
F%). The table is given the label LAT in PREG (page 316).

The second table has ten entries, each of which corresponds to a
logical file number. This table (FAT, PREG (page 316)) extends
from locations 621 to 630, and contains the device numbers (i.e.
D%) which correspond to the file numbers.

The final table (called SAT by PREG (page 316)) contains the
'secondary' address for each file number, and device. The table
extends from locations 621 to 630. Each location (i.e. A%)
corresponds with a file number, and device number.

At this point

PRINT PEEK(601), PEEK(611), PEEK(621)

to which the response is 0, 0, and o. The initial value for each
table is O.

49

n n
'-- - !

Now enter

OPEN 3

n n n n n n n n I ,

be told PRESS PLAY ON TAPE, and then discover FOUND XCXC,
where XCXC is the name of some program. If we then LIST, we
find that the program has not been loaded.

This method reads the next header on cassette, without actually
having to read in the whole program. To continue to read headers,
CLOSE 3, and OPEN 3 again. OPEN 3, without CLOSEing,
produces ?FILE OPEN ERROR.

To enter

PRINT PEEK(601), PEEK(611), PEEK(621)

produces the output 3,1, and 96, and to enter

PRINT PEEK(184), PEEK(185), PEEK(186)

results in the output 3, 96, and 1. These three locations (LA, SA,
and FA according to PREG (pages 314-315)) are the current values
of the latest OPENed file.

OPEN 4,0,0
PRINT PEEK(602), PEEK(612), PEEK(622)
PRINT PEEK(184), PEEK(185), PEEK(186)

and the result is 4, 0, 96, from the first PRINT and 4, 96, 0, from the
second.

OPEN F% is equivalentto OPEN F%, 1, 0, ''''. Where 1 is the
default second parameter (and corresponds to cassette number 1);
o is the default third parameter (and corresponds to an injunction
to the cassette to read a file); and u" is the default fourth parameter
(and corresponds to no title for the file).

For each device there are secondary addresses, and the
secondary addresses control the device's use.

50

nrn n n n [lnnn'1

For example,

OPEN 8,1,1,"+++++"

produces the response PRESS RECORD & PLAY ON TAPE, and
something is sent to tape. To catalog the tape by

CLOSE 3 : OPEN 3

produces SEARCHING and then FOUND + + + + +. The fourth
parameter gives the title to a file, if the secondary address
indicates that the device is open for writing.

Device Number Secondary address
Keyboard 0 None
Cassette #1 1 0 = Read, 1 = Write to file plus

Cassette #2
Screen
Printer
Modem
Disk Drives

2
3
4
5
8

end-of-file marker, 2 = As 1 plus
end-of-tape marker when CLOSEd
As for cassette #1
None
Varies with printer
None
0= Directory read, 1 = Directory
write, 15 = Error channel

All other device numbers (up to the maximum 15) are unassigned,
and secondary addresses take values from 0 to 15. To read or write
data to a disk requires, therefore, the use of secondary addresses 2
to 14 (inclusive). As different disk systems vary, it is usual to
make the string parameter contain disk commands, concerning
reading and writing.

PEEKing at the secondary addresses, shows that they start at 96
and extend to 111. To obtain the proper value for the secondary
address:

PRINT PEEK(621) AND 15

will give the correct answer (as will PEEK(621) - 96).

PEEK(X) This function provides the value ofthe contents of a
byte at the location specified within parentheses. The value is
returned as a decimal number within the range 0 to 255. The
location has to be within the limits 0 to 65535, otherwise an
?ILLEGAL QUANTITY ERROR is produced.

51

!lnnflnnCJ~nnn

When used. the routine takes the value stored in locations 20
and 21. and pushes that value on the stack. These locations.
known jointly as LINNUM (PREG page 311). are used for temporary
storage of line numbers. and the pushing of the value is a
safeguard.

LINNUM is then loaded with the value ofthe parameter (it is
converted to a two-byte integer from FPA #1). Routines are then
called to load the value from that memory location into FPA #1.
The original contents of LINNUM are popped off the stack and
returned.

The need for the saving of the contents of LINNUM on the stack
are shown when we consider the twin of PEEK. that is. POKE.

POKE X,I% The POKE command replaces the contents of the
location specified as'the first parameter. by the value specified in
the second parameter.

POKE 56334.0

and the keyboard will not respond to your attentions. The only
way in which you can recover is to hit STOP and RESTORE
simultaneously. Entering the value 0 into location 56334 stops
Timer A. and Timer A controls the scanning of the keyboard.
Stopping the timer makes the keyboard dead.

Another way of achieving the same result is to

POKE 56334. PEEK(56334) AND 254

which leaves all bits except bit 0 unchanged. and changes bit 0 to
the value O. It is bit 0 which controls the timer. and so the
keyboard becomes dead again. Notice that the same line number
appears twice in the same statement. See above. concerning
logical operators. for more details on this use of PEEK and POKE.

If the value to be POKEd (i.e. the second parameter) is outside
the bounds 0 to 255. we have the ?ILLEGAL QUANTITY ERROR.
and we produce the same error if the location is outside the range
o to 65535.

52

The routine works by storing the value of the address in
LINNUM (Le. memory locations 20 and 21), evaluating the
expression following the comma, and storing the result of the
evaluation at the address given by LINNUM.

POS(X) This is a fairly pointless function. When called, it
returns the value of the current cursor position on the screen. For
example

FOR 1=1 TO 255: PRINT "#";: NEXT I: PRINT POS(O)

will output a stream of #s, and then the number 15. The number
15 is calculated by 255 = 3*80 + 15, and if the line is altered to

FOR 1=1 TO 239: PRINT "#";: NEXTI: PRINT POS("")

the answer is 79. Note that the value in parentheses is immaterial.
The strange way in which this function produces its results seems
to be left over from 80 column PETs.

PRINT This is probably the most complex of all C64 BASIC
commands, and it prints information on the screen.

It is possible to print strings:

A$ ="123": FOR 1=1 TO 100: PRINT A$: NEXT I
FOR 1=1 TO 100: PRINT A$, : NEXT I
FOR 1= 1 TO 100 : PRINT A$; : NEXTI

where the first line prints the string 123 on separate lines, the
second prints four examples of 123 per line, and the third prints
12312312 to the end of each line and continues, where it left off,
on the next line.

One can print numbers:

A=123 : FOR 1=1 TO 100: PRINT A: NEXT I
FOR 1=1 TO 100: PRINT A,: NEXTI
FORI=l TO 100: PRINT A;: NEXT I

and for the first two examples the result looks the same as for the
string-but not quite.

53

n r n n n n ~ n ~ n ~

In the second example, the number 123 starts in by one space,
and

PRINT -123

shows why. The first column is used by the sign of the number, a
sign which does not appear if the number is positive.

In the third example the numbers 123 do not appear next to
each other as with the strings 123, for there are two spaces in
between. A string has no leading or trailing spaces; entering

PRINT A;A$

there is one space between the number 123, and the string 123.
Each number is led by a space and followed by a space.

B = -10/9: FORI=l TO 100: PRINTB,: NEXTI
FORI=l TO 100 :PRINTB;: NEXTI

shows that-in the first case-there are only two numbers per line
(the number being -1.11111111). because there is not enough
room for four numbers of this length on a screen line at one time.
Each number (including the minus sign) is eleven digits, and thus
it is physically impossible to have four eleven-digit numbers on a
forty-column screen.

In the second case the numbers -1.11111111 are printed out
continuously, with a space between and wrap round.

Consider also the following

Instruction
PRINT A A
PRINTAA
PRINT 123. 9
PRINT 123.9.
PRINT 123 .. 9
PRINT 123(9)

produces

54

Result
o
123123
123.9
123.9 0
123 .9
123 9

n n n n n n n n n n ~

A A is considered to be AA, which by default has the value 0; A$
A$ is considered to be the equivalent of A$;A$ and thus 123123 is
output (note that this is also true for integer % and array ()
terminators); 123. 9 is considered to be 123.9; 123. 9. is
considered to be 123.9 and. (and. is considered to be 0); 123 .. 9 is
considered to be 123 and .9; and 123(9).is considered to be 123 9,
because (is also a separator.

If graphics symbols follow a double quotes (compare INPUT)
they do not act immediately, but only operate when the string is
printed. Note that if a double quote is the final character on PRINT
line, it may be omitted.

The operation of the routines involved in the activation of the
PRINT statement is rather complex.

PRINT# F%. This is used to send information to devices such as
printers, disk or tape (see OPEN for device numbers).

The file has first to be opened, in the correct mode, before the
information is PRINT#ed. The first parameter, the file number
(between 1 and 255) is always followed by a comma. After the
comma is the list of items to be output.

The format of the list following the PRINT# is the same as that
of PRINT. As particular devices have their own particular
characteristics, it is not possible to give a general format-the
documentation for the printer has to be examined.

For non-Commodore devices, e.g. parallel printers, secondary
addresses can be rather important, as they are often used to
control the character set [Le. SET lor SET 2, MUM Appendix E).

PRINT# activates the device, prints, and then deactivates the
device. PRINT#21, ; does not print anything to the device. but it
does deactivate the device. It is only if this is followed by CLOSE
21, that the file details are erased from the file tables. To use
PRINT#21, therefore, means that file 21 is not 'listening', but the
file 21 can be used again.

CMD activates the device, prints, and leaves the device active.
CMD 21 ; also prints nothing but leaves the device active. To
follow this command by CLOSE 21 erases all details, but the file is
still active. PRINT# is the only way to 'unlisten', but leave the
device on-line.

With printers it is often better to use PRINT#, rather than CMD
and PRINT. In fact. in the PRINT# routine. calls are made to both
CMD and PRINT.

55

n n n n n n n n n n n

READ This command reads in information from DATA
statements (which see), and conforms in general principles to the
INPUT statement (which see). Some of the quirks of the INPUT
command are not repeated. For example,

1 FORI=l T05
2 READY
3 PRINTY
4 NEXTI
5 DATA"",

produces a string of Os, but to change line 5 to

5 DATA 1/2"",

gives a ?SYNT AX ERROR IN 5, whereas with INPUT you would
have been asked to redo.

REM This statement allows comments to be made in the
program. Anything which follows the REM (even a colon) is
treated as part of the comment. Like IF, the jump is to the next line
number, not the next statement.

Try a line which starts with 10 REM followed by SHIFT +,
then list.

RESTORE Sets the pointer which indicates the present DATA
item back to the beginning of the text (locations 63 and 64 for the
line number, and locations 65 and 66 for the current DATA item
address, PREG page 312).

The same information can be read and re-read.
RESTORE is automatically called by any other command which

sets pointers (e.g. NEW, RUN, orCLR).

RETURN Indicates the end of a subroutine, see GOSUB for more
details.

RIGHT$(S$,I%) Produces the 1% rightmost characters of the
string S$ (compare LEFT$ and MID$). The value ofI% can vary
from 0 to 255, and what is returned is the lesser of 1% or the length
of the string S$.

56

n n n n n n n n n n n
This function is related to LEFT$ and MID$, and

A$="1234567890" : L=LEN(A$)
FOR 1= 1 TO L : PRINT LEFT$(A$,I) + RIGHT$(A$,L- I) :
NEXT I

gives a series of copies of A$. We have taken the left portion and
the rest (the right portion). added them together, and produced the
original string.

The routine works by evaluating the string, taking the parameters
from the stack, modifying the lower parameter, and then using the
routine for LEFT$.

RND(X) This function generates a 'random' (Le. unpredictable)
value between 0 and 1. No sequence of numbers generated by a
fixed formula is truly random, because the sequence repeats after
a certain period.

There are three classes of value for the parameter. Negative
values for the parameter (whichever value they are) always
produce the same random number. Positive values for the
parameter follow a determinate sequence, once the initial value
has been chosen.

If the parameter value is zero, then the random number takes its
value from a real-time clock. This provides a random start to any
sequence (the start is called a 'seed') but being based on a regular
clock, the values tend to repeat. To provide an unpredictable
sequence of numbers, it is best to start with RND(O) and then
RND(l) or any other positive parameter.

RUN Starts the execution of a program from the beginning, or
from any specified linenumber. Pointers are reset, so all previous
information is effectively lost.

The command can be used in immediate and program mode,
e.g.

RUN 5000

200 INPUT "DO YOU WANT ANOTHER GO "; A$
210 IF A$="YES" THEN RUN

If there is a linen umber to follow the RUN command, it is
evaluated as with GOSUB and GOTO (etc.). so RUN RUN is the
same as RUN O.

57

n n n n n n n n n n n
SAVE S$, F%, D%, A% This command saves the content of a
portion of memory (usually a BASIC program) onto some device.
SAVE has the same parameters as LOAD, and shares many
common characteristics (see LOAD for full details of the meaning
of the parameters).

SGN(X) This function gives the sign of the arithmetic expression
within parentheses.

The sign is calculated by first examining the exponent of the
expression in FPA #1. If the exponent is zero, then the sign is
zero. If the exponent is non-zero, then the sign byte is tested and
provides the sign.

One of the bug tests can be modified

10 T = -1
20 T = T/2 : PRINT SGN(T) : GO TO 20

and produces a long stream of -ls, a final 1, and then Os.
SGN is short for SIGNUM.

SIN(X) This function gives the sine of the angle (in radians)
corresponding to the expression in parentheses.

The SIN is the function calculated to produce the COSine
function (see above). Beyond a certain angle, which you may care
to investigate, SIN always gives the answer O.

SPC(I%) This function prints a number of spaces on the screen
or printer. This function is used within a PRINT list of items.

The parameter can take values from 0 to 255, and it is used for
formatting output. (See TAB, later.)

SQR(X) Finds the square root of the arithmetic expression in
parentheses.

The value ofthe square root is worked out as a special case of
the power operator i (see earlier). The square root of X is
evaluated as X t .5. This value is not always totally accurate to
machine precision, and the best estimate is given by

10 DEF FNS(X) = (SQR(X) + X/SQR(X))/2

58

n n n n n n n n n ~ n
and a test is given by

20 FORI=l TO 10
30 PRINT SQR(I) - FNS(I)
40 NEXTI

For those few values there are two errors of9.31322575E-10. For
maximum accuracy. therefore. use FNS.

ST is a reserved variable (one ofthree) and it provides a record
of the status of the system after any input or output operation. The
full name of ST is STATUS.

Many of the errors which are more difficult to detect are not
treated by ST. and when one has reached the stage where one is
bothered about such problems. there are better ways.

ST is stored in RAM as one byte in a special location. not with
the other variables (location 144).

STEP Part of the FOR ... NEXT loop control structure. see FOR.

STOP Stops a program and indicates at which line the program
has halted. The program can be restarted using CaNT.

The operation of the routine associated with this command is
almost identical to that of END. with added information about the
line number.

STR$(X) This function converts the numerical expression within
parentheses into a string value. One of the principal uses for this
function is in formatting.

The routine is fairly good. for example.

PRINT STR$(1234500000000)
PRINT STR$(.OOOOOOOOOOOOOOl)

produce 1.2345E+12 and 1E-15. Note that the routine inserts a
leading space.

59

n n n n n n n n n n n

SYS X This command transfers control to a machine code
routine starting at the address following the command. The
machine code routine runs until a return from subroutine
instruction is encountered (usually an RTS instruction).

The range of values for the arithmetical expression must be
within the limits 0 to 65535, and parentheses are not needed.

To try

SYS 40960

completely kills the system, and the only way to recover is to
switch off. Location 40960 is the start of the BASIC system (held
in ROM) and SYS 40960 jumps to the start (where it should not
start).

TAB(I%) This is a print formatting command (compare SPC) but
one which cannot be used with a printer.

Unlike SPC, which moves a certain number over spaces forward
from the present position, TAB moves to an absolute position.
Unfortunately if the absolute position is backwards, the character
is printed in the next available position.

This is illustrated by

PRINTTAB(3);"$#";TAB(2);"!"

which leaves three spaces, and then prints $#!.

TAN(X) Gives the tangent of the angle in parentheses where the
angle is treated as being in radians.

The value is calculated as SIN(X)/COS(XJ, which effectively
means (see COS) that there are two calls to the SIN routine.

TI and TI$ Also known as TIME and TIME$, these reserved
variables give a reading ofthe internal clock.

TI gives values in 'jiffies', i.e. 1/60 second, and to calculate in
seconds (say in timing a program) use TII60. It is not possible to
assign values to TI. and a ?SYNTAX ERROR is produced.

TI$ measures time in a different manner, and also TI$ can have
values assigned. The values assigned must be strings of 6
characters in the form HHMMSS, where any hours value greater
than 23 (e.g. 590000) is set to 000000.

60

n n n n n non Q n n
The jiffy clock is stored at locations 160 to 162 (called TIME in

PREG page 314). and all three locations are set to zero when the
machine is switched on. There are various routines to calculate
TI$ from the TI value. and various input/output routines will
cause the jiffy clock to lose time. (Technically. the jiffy clock
counts interrupts. which are sometimes disabled for input/output.)

USR(X) This is an arithmetical function which uses special
machine code routines. Not to be used other than by the expert.

When called by say

Y = USR(4)

there is an immediate jump to locations 785 and 786. and these
locations point to the start of a machine code routine. The value in
parentheses is used by the routine to which the jump is made. The
parameter is placed in FPA #1 and the routine picks up that
value.

VAL(S$) We have already met VAL in many guises (see GOTO.
GOSUB. INPUT. amongst others). VAL takes a string expression
and tries to convert it into a number.

The null string is set to zero. and the conversion continues until
the first non-numeric character (except E). VAL uses the CHRGET
routine at locations 115 to 138 (PREG page 313). Most other
routines to interpret characters use CHRGET. and this is why
there are so many family problems.

VERIFY S$, F%, D% This command verifies the accuracy of the
saving of a stored portion of memory.

In most respects VERIFY behaves like file input/output
commands (which see). and actually uses a very similar routine.
The main difference is that the program is read but the bytes input
are compared with the contents of memory. If they do not agree.
ST is altered. and-more useful-?VERIFY ERROR is printed.

WAIT X,IO%, 11% This is a mostly pointless command. The C64
waits until the result of NOT(PEEK(X) OR NOT(11 %)) AND 10%
does not equal zero. If 11 % is not present then the check is against
PEEK(X) and 10%.

61

~:::{·~o~.:u. tJ:.U.Y.L.LJ:.t- .LJuW.u .:.:
- "."

J

nnnnnnMnr1nM

Other programming books available from Pitman

BASIC: A Short Self-instructional Course
M J Datey and C Payne

FORTRAN Reference Manual
P F Ridler

Introduction to BASIC
J B Morton

Methodical Programming In COBOL
R Weiland

Pascal (second edition)
W Findlay and D A Watt

Pascal for Science and Engineering
J McGregor and A Watt

Principles of Programming: An Introduction with
FORTRAN
E B James

Simple Pascal
J McGregor and A Watt

Structured BASIC and Beyond
W Amsbury

Structured Programming: A Self-Instruction
Course
R Thurner

The diagram shows,
how to arrange the
Pocket Guide in an
upright position.

Bend at score mark
indicated by arrow.

