

I --
Pitman Programming Pocket Guides

Programming
BASIC
COBOL
FORTRAN
Pascal
FORTRAN 77

John Shelley
Roger Hunt
Ray Weiland
Philip Ridler
David Watt
Clive Page

w w

Programming for the BBC Micro
Assembly Language for the 6502
Assembly Language for the zao
Programming for the Apple

Neil Cryer and Pat Cryer
Bob Bright
Julian Ullmann
John Gray

The Sinclair Spectrum Steven Vickers
The Commodore 64 Boris Allan

This series of pocket size reference guides provides you with
reliable descriptions of the salient features of all the important
languages and micros.

The Pocket Guide Programming is intended for those who have
had no programming experience and provides you with the lead
in to the other programming language titles.

The Publishers would welcome suggestions for further
improvements to this series. Please write to Alfred Waller at the
address below.

PITMAN PUBLISHING LTD
128 Long Acre. London WC2E 9AN

Associoted companies
Pitman Publishing Pty Ltd. Melbourne
Pitman Publishing New Zealand Ltd. Wellington
Copp Clark Pitman. Toronto

Consultant Editor: David Hatter

First edition. 1984

© Boris Allan 1984

All rights reserved.

Printed in Great Britain at The Pitman Press. Bath

ISBN 0 273 02125 7

Index

How to use this Pocket Guide

AND truth table 21
Arithmetical bugs 3,16
Arithmetical evaluations 18
Arithmetical operators 15
Arraying information 10

BASIC keywords 24
BASIC pointers 27
BASIC syntax 15
BASIC variables 1

Cataloguing on cassette 50
Classes of values 2
Computing values 5

File secondary addresses 51
File tables 49
Function names 9

Garbage collection 33
GOSUB bugs 35
GOTO and GO TO bugs 36

ii

INPUT bugs 38
INT and two's complement 41

Keyboard buffer 34

LIST bugs 42
LOADing details 44
Logical functions 20
Loops and UNTIL 31

Nested expressions 13

OR truth table 21

POKEs and logical input 22

Stacking information 13
String bugs 46

Two's complement arithmetic 24,
41

Types of expression

Variable information 6

ODD 0 0 0 DOn DO

~-- ~- ~ __ J....o

How to use this Pocket Guide

To understand the workings of the Commodore 64 (henceforth
shortened to the C64), the user needs a solid understanding ofC64
BASIC. This Guide gives the essential knowledge necessary for
that understanding.

The Guide starts with a discussion of the way in which
variables and functions are stored in C64 BASIC, and in so doing
enables us to investigate some ofthe arithmetical procedures of
the computer. In this investigation certain errors appear within
the C64 BASIC system.

After the discussion of variables and arrays, there is an
examination of arithmetical operators, relational evaluations, and
logical connectives. When we discuss logical connectives we also
examine the form of computer arithmetic known as 'two's
complement' .

The main part of the text examines in detail each keyword in
C64 BASIC, to show the limitations and potential of the C64. For
some keywords other bugs are discovered, and knowledge of these
bugs may help explain some of the strange results one sometimes
produces on the C64.

The abbreviations MUM and PREG are used extensively
throughout the guide. MUM is the MicroComputer User's Manual
you get together with the C64, and PREG is the Programmer's
Reference Guide for the C64, produced separately by Commodore.

Variables in C64 BASIC

It helps in the study ofC64 BASIC to clarify the nature of the items
with which the language deals. The term 'item' is deliberately
vague, and the purpose ofthis Guide is partly to make the nature
of this vague term rather clearer.

An item or a collection of items is known as an 'expression', of
which there are three main types.

Types of expression

(a) Constants are actual values in the line of program, such as 3,
3.4, or "HELP". They are-as the name implies-constant, and do
not vary: "HELP" is always "HELP".

1

(b) Variables are names given to receptacles for storing values,
where the values may alter. The 'assignment' X=3 stores the value
3 in the receptacle called X. X is an example of a variable, and a
new assignment X=4 changes the value stored in X.

Variable names can be up to two characters long, with the first
character being a letter, e.g. Y, yy, and Y1. A variable name which
is more than two characters will have the rest ignored after the
first two characters-COULD and COLD will be treated alike, as
will COLOUR1 and COLOUR2. Three variable names are reserved
(ST, TI, and TI$), and no variable name may contain within it the
name of a BASIC keyword (e.g. DANDY, which would be
considered by the system to be D AND Y).

(c) What we will term 'mixtures' are combinations of constants
and variables (e.g. X/5), and are not to be confused with
expressions which are merely complex (e.g. X * X * Y/R-T is
complex, but is not a mixture, as it only contains variables).

Generally speaking, mixtures or constants produce programs
which run more slowly. Impressive differences in speed can be
obtained by making as many expressions as possible use only
variables. It is also simpler to alter programs with many variables
than those with many constants, especially if the same variable
can stand for many constants of the same value.

Classes of values

Independently of the form of the expression there are four classes
of expression. To help recognize the type of expression, generally,
later, an integer is often shown as 10% to 19%, real numbers by XO
to X9, logical expressions by LO% to L9%, and strings by SO$ to
S9$.

(i) Integer values are whole numbers with no fractional part.
Integers are stored as whole numbers in two bytes (Le. 16 bits),
and integer constants might be shown as 3 or as -4567E3, for
example, where each value is stored exactly, with no
approximation. Integer variables are shown with a % suffix, e.g.
X% or TJ%. Integers take exact (i.e. non-fractional) values from
-32768 to 32767.

2

I
~

(ii) Real values are numbers wifh fractional parts, so note that
3.0 is a real number, whereas 3 is an integer. 1.23456 and 1234.56
are both real numbers, and can be written as 1.23456EO and
1.23456E3 respectively. The portion before the E is sometimes
called the 'mantissa', and the portion after the E is called the
'exponent'.

Real values are stored in the C64 in a similar manner. The
number is stored as a mantissa offour bytes (32 bits, i.e. an
accuracy of about 9 digits), and an exponent of one byte (8 bits, i.e.
from about E-39 to E+38). One of the 32 mantissa bits, is devoted
to holding the sign ofthe number (1 for negative and 0 for positive
numbers).

Real numbers take positive values ranging from
2.93873588E-39 to 1.70141183E+38. Negative values are rather
stranger.

Try the short program

10 T=1
20 T=T/2: PRINT T : GOTO 20

and watch the succession of values as T becomes steadily smaller.
Eventually we reach

5.87747176E-39
2.93873588E-39
o

and all is fine. Try running

10 T=-1
20 T=T/2: PRINT T : GOTO 20

which reaches

-1.17549435E- 38
-5.87747176E-39

2.93873588E-39
o

and we have discovered a bug in the C64 BASIC system. Half of
-5.87747176E-39 is not (as we all know) 2.93873588E-39.

3

We can produce some further errors:

T=4.25352959E+ 37
PRINTT*2

produces an ?OVERFLOW ERROR. whereas

PRINTT+T

gives the result 8.50705917E+37, not an error. T * 2 is exactly the
same as T+T: thus we have discovered another bug in C64 BASIC.

Continuing with

T=T+T: PRINT T: PRINT T + T

produces the value 8.50705917E+37 for the first PRINT, and an
?OVERFLOW ERROR for the second PRINT.

PRINT 8.50705917E+37 + 8.50705917E+37

gives the answer 1.70141183E+38. To multiply by 2 (and not to
add) gives an ?OVERFLOW ERROR again.

Some ofthe C64 BASIC routines for real arithmetic are incorrect
at the extremes, and may possibly be so for less extreme examples.

(iii) Logical values are -1 (for 'true') and 0 (for 'false'). Logical
values are used for evaluating the outcome of certain sets of
conditions, e.g. 'If this is true and that is not true, then do this ... '.
When a logical comparison is made, both sides of the comparison
are effectively turned into 16-bit integers.

Logical values can result from logical comparisons or
operations, but-as they also have numerical values-logical
values can be treated as integer or real values, depending on the
context.

(iv) String values are ordered collections of characters, where
normally characters are distinguished from variables or constants
by being enclosed in quotes. "X" is a character, but X is a variable;
"X/2" is a string, whereas X/2 is an arithmetical operation; and
"222222" is a string, but 222222 is a constant.

4

Each character (e.g. "X" or "/" or "2") has associated with it two
codes. The first code. the ASCII code. relates to how each
character is stored in one byte of memory (most computers use
ASCII codes); and the second code. the Screen Display Code.
relates to how each character is presented on the display screen
(these code values are specific to the C64). The two types of code
should not be confused.

String variables are distinguished by a $ suffix. e.g. A$ or THIS$
(the latter is equivalent to TH$).

Computing values

Unless constrained otherwise. the C64 always behaves as if the
numbers with which it is working are all real values. These are
stored in memory as four bytes for the mantissa (31 bits plus 1 bit
for the sign of the number). and one byte for the exponent (as we
noted above).

Because all the computations are made in floating point mode
(Le. real values). there have to be procedures for converting from
one type of value to another.

Examining PREG (pages 310-313) shows that at locations 3 and
4 there is a pointer (ADRA Y1) to the routine which converts
floating point numbers to integers. and at 5 and 6 there is a pointer
(ADRA Y2) to the integer to floating point routine. The need to
convert from integer to floating point values explains why the use
of integer variables usually slows down programs.

At location 13 there is a flag (VAL TYP) indicating whether the
current data type is string or numeric. and. if numeric. location 14
(INTFLG) indicates whether the number is integer or floating
point.

There are two floating point accumulators (#1 and #2). and the
floating point numbers stored in these locations are held in a
different manner to normal floating point values. Floating point
accumulator #1 is held at locations 97 to 102. and a value is
stored as thus:

LOCATION
97
98-101
102

DESCRIPTION
Exponent
Mantissa
Sign byte

5

and the order is exactly the same for floating point accumulator
#2, which extends from location 105 to location 110.

You will observe that this differs from the way in which
numbers are stored in memory by the addition of an extra byte, the
'sign' byte. There is also one byte given over to storing any
overflow digits from #1 (at location 104), and one byte used for
rounding of the value in #1 (iocation 112).

After using the accumulator, the resulting number is deemed to
be negative ifthe sign bit for the number, and the sign byte, both
indicate a negative result. In the coding of the mathematical
routines on the C64 (and the VIC-20) errors have been made with
checks on overflows and underflows. These errors have resulted
in the sign comparisons being corrupted.

This is the probable source of some of the C64 BASIC bugs, and
other bugs may be due to the ways in which floating point values
are stored in and retrieved from variables.

If you

PRINT 2'(-128)

the answer is zero, but

PRINT 2'(-127)/2

will produce the result 2.93873588E-39, but this is effectively the
same, because 2'(-128) = 2'(-127)/2.

Though these bugs might seem trivial. they do cast doubt on
some of the other mathematical routines used in the C64. If the
C64 is to be used for serious purposes these bugs need eradicating.

When the C64 is programmed using machine code, the floating
point routines will not affect the results of machine code
programs, unless the BASIC floating point routines are used from
within machine code.

Variable information

To store one floating point variable X (with its value) requires
seven bytes of memory on the C64.

6

I

!ooooO

The number of bytes needed can be built up quite simply. As X
is a floating point variable which stores the value in five bytes,
five bytes are needed to store that value. As any variable can
possibly have up to two characters in its name, and one byte is
required for each character, that is two bytes to store the name.

Five bytes plus two bytes gives the seven bytes to store any
floating point variable, including both its name and its value.

To store one integer variable, X%, also requires seven bytes on
theC64.

Now, obviously, at least two bytes are necessary to store the
name of the integer variable, and in fact BASIC requires no more.
When the variable name for an integer variable is stored, the
character value stored is modified, to distinguish between an
integer name and a floating point name.

The BASIC translator does not store the % suffix. What happens
is that 128 is added on to the ASCII value of each character in the
name (see MUM Appendix F concerning ASCII). For example, the
ASCII code for X is 88, and that is how the character X is stored for
floating point variables. 88+128 is 216, and that is how the
character X is stored for an integer variable.

In the case of integer variables both ASCII values are increased
by 128, whereas for strings only the second value is increased by
128. If there is no second character in the variable name then the
value stored is 128. For floating point variables of only one
character the second value is O.

In this way, each type of variable can be unambiguously
recognized.

Returning to integer variables, two bytes from seven bytes
leaves five bytes. However, as we have noted, integers only
occupy two bytes (and range from -32768 to 32767). To drive this
point home, enter

p = lE16
P%=p

to which the response is ?ILLEGAL QUANTITY ERROR.
Whatever is attempted, it is not possible to squeeze more than

two bytes into an integer variable. What happens to the other three
bytes?

7

What happens to the other three bytes is that they are wasted,
they do nothing. After the two bytes of the variable name, and the
two bytes of the integer value, there are three bytes which contain
zero.

The use of integers does not, therefore, save space, but rather
the same space is used, and the program runs more slowly (the
values have to be converted to floating point numbers, and vice
versa).

To store a string variable X$ also takes seven bytes. Two bytes
are again taken up by the name ofthe variable (modified to
distinguish X$ from X or X%), which leaves five bytes.

The first ofthe remaining five bytes is taken up by the length of
the string (thus a string may be of length 0 to 255, compare MUM
'Quick Reference Card'). The next two bytes act as a pointer to the
location in memory at which the string starts.

The final two bytes are both set to zero.
All variables are stored at the end ofthe BASIC program, and

locations 45 and 46 act as a pointer to the start of the BASIC
variables. To find where the variables start, therefore, enter

PRINTPEEK(45) + PEEK(46)*256

and, if you subtract the start of BASIC (normally 2049) from this
number, you can discover the extent ofthe BASIC program text.

When the BASIC translator comes across a variable name in a
program line it has to find out the value stored in that variable,
and to find out the value ofthe variable it has first to find the
variable.

To do this the translator takes the pointer at locations 45 and 46,
and then starts checking the variable names, commencing at the
location to which 45 and 46 point.

If the first variable name does not match, the translator then
moves to the next variable name, and it knows exactly where to
look-it looks in steps of seven bytes at a time. C64 BASIC is a
style of BASIC called 'Microsoft' BASIC, and a decision was made
by its designers to speed up the search for variables at the expense
of some wasted memory.

As the translator always starts from the beginning of the list of
variables, programs can be speeded up by having the most
commonly referenced variables defined early in the program.

8

If X is used before X$ then X will be before X$ in the list of
variables. If, however, X$ is used far more frequently than X then
(particularly in a more complex program) it makes sense to have
X$ before X in the list of variables.

A short examination, of the way in which the variable names
are stored, reveals that each of the two bytes given over to the
name can either be 'high' (Le. +128) or 'low' (Le. +0). This gives
four possible combinations. We have only three distinct types of
variables, and so one of the possible combinations is not utilized.

The fourth combination is devoted to user-defined function
names. Instead of a suffix (e.g. % or $), the functions are
distinguished by a prefix (Le. FN). The name and 'value' ofa
function together take up seven bytes.

The name of the function (stripped ofFN) is stored in two bytes
as usual, with the first byte containing the ASCII value +128. The
second byte is the straight ASCII value. This is the fourth
combination. To add any more data types requires a complete
rewriting of the translator.

The next two bytes point to where the function is defined in the
program. This is why the function has to have been defined
within the program as it has run. If the ftillction definition has not
yet been reached, then an error will be generated.

10 DEF FNX(Y) = Y
20 W = FNX(8)

will work (and W will take the value 8), but

10 W = FNX(8)
20 DEF FNX(Y) = Y

will not work, because the name of the function will not be found.
The next two bytes also act as a pointer, in that they point to the

variable which is used in the definition as the parameter (Le. in
FNX(Y), Y is the parameter). The final byte is unused.

9

The breakdown of the variable types. and the unique method by
which the name is stored for each type. is

ASCII value
Byte 0 Byte 1
+0 +0
+128 +128
+0 +128
+128 +0

Variable type
Floating point
Integer
String
Function definition

For the first three types. if a reference is made to a variable before
it has been given a value. then that variable is set to a null value.
For floating point and integer variables the null value is zero. and
for strings the null value is the empty string.

For a function definition there is no null value. so an error is
generated.

To

PRINT x. X%. X$. FNX(X)

with no program in memory. produces O. O. a nothing (the empty
string X$). and then ?UNOEF'O FUNCTION ERROR. So be careful
with functions.

This is why it is a good plan to put all the functions in one
subroutine. which is called before anything else is carried out. In
this way. all functions are initialized.

Arraying information

An array is an ordered collection of values. all of the same type. all
called by the same general name. The collection is ordered in such
a way that individual items within the collection are selected by
their numerical position. (Compare MUM pages 95 to 98. and
PREG pages 8 and 9.)

When the name of a variable is used. followed by an arithmetical
expression in parentheses. the BASIC translator assumes that the
name refers to an array. If the array has not been dimensioned.
then the array is initialized to a null value.

10

The null value of each item within the array depends upon the
type of array (i.e. floating point. integer. or string). The nullldefault
number of items is set automatically to eleven. for all types of
array. It is as ifthere was a default declaration

10 DIMX(10)
20 DIM X%(10)
30 DIM X$(10)

or-alternatively-

10 DIM X(10). X%(10). X$(10)

Arrays can have more than one dimension (up to the magical
255), and the number of items in each dimension can be up to (the
equally magical) 32767. How an array of 255 dimensions. each
with 32767 items. can be stored in memory is another problem.

Arrays are stored in memory with two bytes for the name of the
array. It is possible to have an array called X as well as an ordinary
variable X. because arrays are stored in a distinct portion of
memory. The location at which arrays start (and variables have
ended) can be found by

PRINT PEEK(4 7) + PEEK(48) * 256

and the end of arrays (plus 1) is at

PRINTPEEK(49) + PEEK(50) * 256

Following the two bytes for the name (with +0 or +128.
depending upon type), there is a two byte pointer to the start of
the next array. The pointer is needed because-unlike simple
variables-each array will be of a different length. After those four
bytes is one byte which gives the number of dimensions of the
array (with the maximum being 255). The meaning of these five
bytes is the same for all arrays.

11

The next two bytes contain the number of elements in the last
dimension ofthe array. In the case of

DIM HW(l,900)

this will be 901. If there is more than one dimension, then the
number of elements in the last but one dimension is contained in
the next two bytes. This continues until there are no more
dimensions.

It is at this point that the storage requirements for each type of
array begin to diverge.

The arrays store the separate elements for each dimension in
order, so that the values for all elements in the first dimension
(commencing with element 0) are stored in succession. For
example, in the case ofHW, the elements are stored in the order
HW(O,O), HW(l,O), HW(O,l), HW(l,l), ... , HW(l,898), HW(O,899),
HW(l,899), HW(O,900), HW(l,900).

In the case of floating point arrays each element occupies five
bytes, as do ordinary floating point numbers.

Integers, however, only occupy two bytes and do not have the
three spare bytes which one finds with ordinary integers. Storage
for arrays of integers is thus more economical than for the storage
of collections of ordinary integer variables.

Three bytes are needed for each element of a string array (apart
from the contents of the string itself). One byte gives the length of
the string, and two bytes act as pointer to the start of the string, in
high memory. In the normal storage of strings there are then two
spare and unused bytes, but for arrays there are no wasted bytes.

PREG (page 9) gives a way of calculating storage requirements
for arrays, but without explanation. Allow five bytes for the name,
length, and number of dimensions; two bytes for each dimension
size; and then analyze the type of array.

For each element in a floating point array, allow five bytes; for
each element in an integer array, allow two bytes; and for every
element in a string array, allow three bytes for the length and
pointer, plus one byte for each character in the string corresponding
to that element.

The storage requirements for a string array can vary as the
program proceeds, whereas the storage requirements for
numerical arrays are fixed.

12

Stacking information

There are only two fixed locations (FPA #1 and FPA #2) where
temporary floating point values may be stored, though the system
needs rather more than two such locations. BASIC operates on
two numbers at a time, but we often want to combine more than
two numbers.

The problem of storing this information, information which is
not needed immediately, but information which will be needed at
some time, may be solved by storing values in temporary locations
in main memory. To say BASIC will store values in main memory
is not sufficient, for it has to keep track of where the values are
stored.

To keep track of where the values are stored could be a major
task in itself, so the system needs some automatic mechanism to
keep track of the locations. We keep track by use of the 'stack'. On
the C64 the stack is fixed in memory at locations 256 to 511, and it
fills with values from location 511 downwards. There are,
therefore, 256 locations which make up the stack.

The locations from 256 to 511 are common to all computers
which use the MOSTEK 6502 microprocessor, though the C64
uses an improved version of the 6502 called the 6510.

Consider how the system will treat this arithmetical expression:

PRINT (1+(1 +(1+(1+(1+1)))))

After examining the PRINT command, the system then examines
the following expression to decide what has to be output.

First it meets the (, and it stores that information on the stack (it
'pushes' the information on to the stack). By the end of the
evaluation of the expression, the routine expects to find a
matching), otherwise there will be a ?SYNT AX ERROR. Next in
the line is a 1, and the 1 is loaded in FPA #1.

When the + is encountered an addition routine is called, ready
to add two numbers together. However, it is not a number which
is next, but a (. The value from FPA #1 and the pointer to the
addition routine are pushed on the stack, together with the (
token.

13

u w u

This process is continued until the first) is encountered. At this
point the two numbers and the operation are loaded from the
stack (Le. 'pulled' or 'popped') and the calculation performed.
Successive encounters with) cause more information to be
popped off the stack to be combined with information already in
the floating point accumulator.

The stack is used not only for storing intermediate information
for the evaluation of arithmetic expressions. but also for any
circumstance in which the system needs to store temporary
information, and where the order in which the information is
stored is important.

These circumstances obviously fit for the evaluation of
arithmetical expressions, but they also fit saving information
about FOR loops and GOSUBs. For the latter two examples see
later, when BASIC keywords are discussed.

The mathematical expression

PRINT 1+1+1+1+1

is not the same as

PRINT (1+(1+(1+(1+1))))

where the system is concerned. The second version takes much
longer to process, because the stack is used extensively. The
difference in time taken can be quite dramatic.

Run this program: .

10 FORI=l TO 2000
20 X = 1+1+1+1+1
30 NEXTI
40 PRINT "#########"

which takes about 18.5 seconds from pressing RETURN to the
output of #########. Modify the program slightly

10 FOR 1=1 TO 2000
20 X = (1+(1+(1+(1+1))))
30 NEXTI
40 PRINT "#########"

14

I
~

and the time now taken is about 21. 7 seconds. To use the more
complicated assignment to X takes up about 17% more time.

According to PREG (page 15) there cannot be more than 10 sets
of nested parentheses within an arithmetical expression. before
there is no more room left on the stack. This is not quite true.

Enter

PRINT ((((((((((((1 +1)+1)+1)+1)+1)+1)+ 1)+1)+1)+ 1)+1)
+1)

and the answer is given as 13. though there are twelve sets of
nested parentheses. However.

PRINT (1 +(1 +(1 +(1 +(1 +(1 +(1 +(1 +(1 +(1 +(1 +(1 +1)+1)
+ 1)+ 1)+ 1)+ 1)+1)+1)+1)+1)+1)+ 1)

gives an ?OUT OF MEMORY ERROR. The BASIC system has not
run out of memory. as such. rather it has run out of memory
locations on the stack. This example shows that where two
parentheses are adjacent (e.g. U((") the routine used to evaluate
arithmetical expressions acts differently from where they are
separated by a value (e.g. U(l +(").

The C64 (and other machines using similar versions ot tlA::ilLJ
is thus fairly restricted in its ability to tackle complex
mathematical expressions. Such expressions have to be analyzed
into simpler component parts. and then combined to produce the
result.

BASIC syntax for the C64

Arithmetical operators

There are only a few arithmetical operators in C64 BASIC. of
which the most commonly used is the assignment operator (or
·equals·. =).

It is called an 'operator' because it is a directive to do something
store the value of the expression on the right-hand side in the
variable named on the' left-hand side. For example. X = Y takes
the value on the right-hand side. Y (which might be a complex
expression). and stores that value in the variable named X. which
is a simple variable.

15

- - -
The item on the left-hand side cannot be anything other than a

simple variable, such as X, X(3,7), X%, X$(I), or X(I * 2+1). The
type of variable on the left-hand side has to be compatible with
the result of the expression on the right-hand side. Possible
assignments are

X=I%
XO=Xl
I%=X
10% = 11%
50$ = 51$

and even then there are restrictions. If X is greater than 32767, or
less than -32768, then the assignment to 1% produces an
?ILLEGAL QUANTITY ERROR.

Certain assignments which should be admissible are not
admissible because of bugs. Consider the sequence

V = 1.70141183E+38: PRINT V
V = (V/2)*2: PRINT V

which prints out the correct value for V for the first PRINT, but
gives a ?OVERFLOW ERROR for the second assignment-never
reaching the second PRINT.

The meaning of the other arithmetical operators is fairly simple
to divine, as their meaning is conventional. This simplicity is

, slightly misleading, because T+T is not (for example) the same as
T*2or2*T.

Though these two processes are identical in arithmetic, they are
not identical in operation on the C64. The addition sign is an
operator, and it operates on two numbers to produce a result. The
operation of adding two identical numbers together, however,
does not always produce the same answer on the C64 as
multiplying the number by two.

Multiplication is another operator, which does not work by
repeated addition. In ordinary arithmetic our multiplication and
addition operations are consistent with each other, but on the C64
(and many other computers) there are slight differences. For the
C64, the differences can be dramatic.

16

___ _ ____ _l....s

The only arithmetical operator which is not totally obvious is
the exponentiation operator, the up arrow i . Try this

PRINT 15*15

to which the response is 225. Now

PRINT 15 i 2

to which the response is also 225, and this indicates that the
second value (Le. that after the t) is the number of the times the
first number is multiplied together. In other words, the number
after the t indicates the power to which 15 is to be raised.

Compare

PRINT 15*15*15,15 i 3

and both answers are 3375. Moving to a higher power,

PRINT 15 *15*15*15*15,15 t 5

results in the numbers 759375 and 759375.001. The lack of
equality is clear to see: the numbers differ by about .001. When we
enter

PRINT EXP(5 * LOG(15))

the number 759375.001 is output.
The power of a number is calculated by use of procedures

similar to the EXP and LOG functions, and this explains why the
answer is often slightly incorrect. The extent of inaccuracy may be
gauged by this short program

10 FORJ=l TO 10: FOR 1=1 TO 5: REMJ IS THE NUMBER
AND I IS THE POWER
20 N=l: FORK=l TOI: N=N*J: NEXT K: REM N IS NOW
J RAISED TO THE POWER OF I
30 PRINT 1.I,J i 1-N : REM J i 1-N GIVES THE ERROR
40 NEXT I : INPUT A$: REM WAIT TO SEE THE RESULTS
FOR J, THEN HIT RETURN TO CONTINUE
50 NEXT J : REM NEXT NUMBER

17

L... w
Apart from the numbers (Le. J)1, 2, 4, and 8 (all powers of2)

there are always inaccuracies. The C64 is no worse than most
other micros in this respect, but it has to be remembered that total
perfection in calculation is impossible, and that the C64 has some
extra little bugs.

Relational evaluations

The = symbol appears again when we discuss relational
comparisons. This time it does not indicate assignment, rather it
indicates an evaluation: does X equal Y?

To investigate the equality evaluation, try

1=567: PRINT 1=1, 113*3 = 1,113.7*3.7 = I

and the answers are -1, -1, and o. If the result of an evaluation is
'true' (e.g. 1=1) then the numerical value of the evaluation is -1. It
is true that 1=1 and 1/3*3=1 (which is why we printed out the
value -1 for both). It is not true (it is 'false') that 1/3.7*3.7=1, and
so the resulting numerical value is O.

If we

PRINT 113.7*3.7-1

the answer is -2.38418579E-07, and so we can either check for
equality by subtraction or by a relational evaluation (Le. =). In
line 30, above, J t I=N could have been used to check-though
the size ofthe difference would not have been given by the
relational evaluation.

The reverse of being equal is being not equal:

PRINT 1/3.7*3.7 <> I

gives the result -1. it is true that the two numbers are not equal.
This reversibility can save some complication in programming.
Compare

10lNPUTN
20 IF N=100 THEN PRINT "EQUAL"
30 IF N<>100 THEN PRINT "NOT EQUAL"

18

with this program

10 INPUTN
20 IF N=100 THEN 50

I
-.I

30 PRINT "NOT EQUAL"
40 GOT060
50 PRINT "EQUAL"
60 REM

and you can see that to use two IF statements makes the first
program easier to understand.

Another relational evaluation is > (Le. 'greater than'), used in a
manner such as

PRINT I > 1/3.7*3.7

to which the response is -1 ('true'). It is true that I is greater than
1/3.7 * 3.7. The reverse of> is not, however, < but rather itis <=.

If something is not greater than, it may be less than or equal. A
common error is to have checks for> and for <; and miss the
case when there are equal values.

As the result of a relational evaluation is a numerical value,
these values can be used in arithmetical expressions.

Consider two variables X and Y: if Y is greater than X then the
value of Y is stored in another variable Z, if X is greater than y,
then the value of X is stored in Z. In other words, store the
maximum of X and Y in Z. IfY is the larger

Z=Y

and if X is the larger

Z=Y-(Y-X)

which is a way of writing Z is equal to X. If X is greater than Y we
subtract (Y-X) from Y. To perform this subtraction why not

Z = Y + (X>Y)*(Y-X)

which, when X is greater than y, produces (-l)*(Y-Xj?

19

Techniques such as this can be quite useful, though sometimes
confusing to the uninitiated. In one line we have two lines

IF Y < X THEN Z = X
IFY >= X THEN Z = Y

where, notice, the reverse of < is >= (otherwise, when X=Y, there
might be no assignment to Z).

The relational evaluators also work with characters, where the
ordering on which the characters are evaluated is the ASCII code
values for the characters (MUM Appendix F). The result of

PRINT "A" < "B", "A" < ":"

is -1 and 0, because the ASCII code for "A" is 65, that for "B" is
66, and that for ":" is 58.

Examine the line

PRINT "A" < "AA", "AA" < "AB"

to which the response is -1, and -1. The ordering is not just
ASCII for the first character in a string, rather the evaluation
carries down the sequence of characters in the string until there is
the first difference.

Logical functions

C64 BASIC has three logical functions: NOT, AND, and OR. The
functions operate on two main types of input.

Examine this statement (where X is greater than Z)

IF X> Y AND Y>Z THEN MIDDLE = Y

and consider when the action MIDDLE = Y is activated. The
condition is true when (1) The value of X is greater than the value
ofY, and, in addition, (2) The value of Y is greater than the value
of Z. That is, the overall condition is only true when both
subconditions are true. If the overall condition is true, then Y is
the middle value.

20

This is illustrated by what is known as a 'truth table',

TRUE AND TRUE IS TRUE
TRUE AND FALSE IS FALSE
FALSE AND TRUE IS FALSE
FALSE AND FALSE IS FALSE

Which shows that when (and only when) both conditions are true,
the overall condition is true, Thinking of individual bits in the
computer:

lAND1=1
lANDO=O
OAND1=O
OANDO=O

The other main function is OR. The use of OR is shown by

IF X>=Y OR X>=Z THEN PRINT "X IS NOT THE SMALLEST"

Either if it is true that X is greater than or equal to Y and/or if it is
true that X is greater than or equal to Z, then we know that X is not
the smallest number, Note that the reverse of this condition is

IF X <Y AND X <Z THEN PRINT "X IS THE SMALLEST"

and try to work out why,
The truth tables for OR are

TRUE OR TRUE IS TRUE
TRUE OR FALSE IS TRUE
FALSE OR TRUE IS TRUE
FALSE OR FALSE IS FALSE

lOR 1 = 1
1 ORO = 1
OOR 1 = 1
OORO = 0

21

AND and OR seem to be the reverse of each other. If, in either bit
table, all the 1s were changed to Os, and vice versa, then one table
is the same as the other. This simple observation is codified as De
Morgan's Rules:

A AND B is the same as NOT(A) OR NOT(B)
A OR B is the same as NOT (A) AND NOT(B)

If the OR truth table for binary numbers is examined it will be
seen that to make any bit equal to 1, the corresponding bit has to
be ORed with 1. That is,

1 ORX= 1 (X=lorX=O)

To leave the value of a bit unaltered we OR with 0:

OORX=X (X=lorX=O)

To see how to use the OR function, enter

POKE 53265,PEEK(53265) OR 32

and funny things happen to the screen. The above line changes
the display to bit map mode-at the moment this does not help, so
hit STOP and RESTORE. To enter bit map mode, bit number 5 in
location 53265 is changed to a 1.

Locations contain bytes, which are eight bits, and if you

PRINT PEEK(53265)

under normal circumstances, you find that the number stored at
location 53265 is 27.

The decimal number 32 corresponds to the binary number
00100000. When we POKE into 53265, we POKE the value already
there (Le. PEEK(53265)) after ORing with 32. To OR with 32 is to
set bit 5 to a 1, and leave all other bits as they were:

bbbbbbbb OR 00100000 = bblbbbbb

To set bit 5 ofthe byte at location 53265 to a 1, is to activate bit
map mode (used for high resolution graphics).

22

Now use

\ I

POKE 53265,PEEK(53265) OR 32 : FOR 1=1 TO 1000 : NEXT I:
POKE 53265, PEEK(53265) AND 223

and the screen switches to the garbage for a short while, then it
switches back.

Looking at the bit truth table for AND:

lANDX=X
OANDX=O

(X=lorX=O)
(X=lorX=O)

To set a bit to 0, AND with 0, or to leave a bit unchanged, AND
with 1. To change bit 5 to 0, and leave the other bits unchanged,
AND with the binary number 11011111. This has the decimal
value 223 (most easily calculated by 255-32).

In the above line of program, bit map mode was entered (by
setting bit 5 to 1 by use of an OR), there was a short wait (the loop),
and then bit 5 went back to 0 by use of an AND. To understand
any PEEKs and POKEs, which include logical functions, remember
OR to set to 1, and AND to set to o.

In discussing floating point numbers, it was noted that they had
a sign bit. Integers also have a sign bit, but the ways in which the
sign bit works, though perfectly logical, seems strange at first.

An integer extends over 16 bits, and ifthe bit on the left (bit 15)
is 0 then the integer is positive. Ifbit 15 is a 1, then the number is
negative. As there are only 65536 different values from two bytes,
a decision has to be made about how to store the absolute size of
numbers.

Use two pieces of information:

-1 + 1 = 0

in normal arithmetic, and

65535 + 1 = 0

in two-byte arithmetic (something like a mileage register on a car,
ifthe register is 999999, then one mile on it is 000000). Therefore
-1 is equivalent to 65535 in internal arithmetic.

23

In binary arithmetic, 65535 is 1111111111111111, and as bit 15
is 1 (all bits are set to 1) this accords with the sign bit being 1. The
binary number 32768 is 10000000000000000, and, as bit 15 is 1,
the number is negative-it is equivalent to -32768. (Remember
the limits on integers were -32768 to 32767?)

This method of storing positive and negative numbers is called
'two's complement' arithmetic, and explains why 'true' is -1. If
some number is true then all bits should be true, and all those bits
should be 1. The number with all bits set to 1 is 65535, which is
treated as the value -1.

A bit is 'true' if it is 1, a value is 'true' ifit is -1, and both are
consistent with each other in two's complement arithmetic.

Remember that

NOT(-64) = 63
NOT(63) = -64

The number 63 is (as a sixteen-bit binary number) equal to
0000000000111111. To NOT every individual bit produces the
binary number 1111111111000000, which as a two's complement
binary number is equal to -64.

BASIC keywords

In the list of keywords which follows, there is no attempt to
replicate the descriptions given in MUM (Appendix C) or in PREG
(Chapter 2). The list does not give any of the logical function
keywords, because their nature and use have been discussed in
detail (above).

ABS(X) This function calculates the absolute value of the
arithmetical expression in the parentheses. The expression can be
floating point, integer, or logical, in nature.

ABS works by using the floating point accumulator #1 (FPA
#1), and the routine moves all bits in the sign byte one place right,
so that the sign byte then appears positive.

24

ASC(S$) Calculates the ASCII val ue of the first character of the
string S$. The ASCII codes used are those particular to the C64,
though for standard numbers, characters, and symbols, these are
the standard ASCII values. The string can be the result of any legal
set of operations to create strings.

The ASC function works by evaluating the string expression
(e.g. it forms uAB" first in finding ASquA,,+uB")) and the string
pointer (without name) is left on the stack. The ASC function
examines the pointer, and loads the first character of the string for
checking.

To apply the ASC function to an empty string (Le. ASqu "»
gives an ?ILLEGAL QUANTITY ERROR, another C64 bug and one
which seems to come from BASIC on other Commodore machines.
The null string (Le. U ") should have ASCII value 0, as can be seen
by

PRINT CHR$(O);U#"

when the null string is output, followed (in the first column on the
left) by #. (CHR$ is the reverse function to ASC.) However,

PRINT ASqCHR$(O))

and the answer is O.
The bug must arise from the use of the string pointers, because

u" has a zero length, and the routine cannot accommodate a (null)
string oflength zero. CHR$ (and see later) always sets up a string
oflength one, even if null.

ATN(X) This function calculates the angle (in radians) which
corresponds to a certain tangent value (the angle is called the
arctangent). The resulting angle is always in the range - PI/2 to
+ PI/2, and if it is known that the result should be outside these
limits, then modifications have to be made. (PI is the value ofthe
special symbol which is produced on using SHIFT and the up
arrow.)

4*ATN(1) should equal the value PI, and

PRINT4*ATN(l) - PI

produces the result 9.31322575E-10.

25

I ...
Twice the arctangent of infinity is also equal to the value PI, and

so

PRINT 2 * ATN(lE38) - PI

where lE38 is our approximation to infinity. The difference is
again 9.31322575E-l0, which shows that it is quite a close
approximation.

The ATN function routine uses a special approximation
formula, which works well in practice.

CHR$(X) This function converts any numeric expression,
within the limits 0 to 255, into the corresponding ASCII character
(if the expression is floating point, it is truncated by losing the
decimal part). The character created is a string of length 1 byte,
which is why the ASC function works successfully on CHR$(O).

The ASCII value for the character" is 34, and thus

PRINT CHR$(34); "DOUBLE QUOTES"; CHR$(34)

to have DOUBLE QUOTES in double quotes-Leo "DOUBLE
QUOTES".

CLOSE 1% Used to 'close' files on devices, this command
completes the full processing of a file, and deletes details about
the file from the three special 'file tables' held in RAM. For further
details see the keyword OPEN.

CLR This clears memory of variables, defined functions, strings,
files, and clears anything left on the stack.

The command works by resetting a collection of pointers:

Pointer
1. Start of BASIC program
2. Start of variables
3. Start ofarrays
4. End ofarrays (+1)
5, Start ofstrings
6. Temporary string storage
7. End of BASIC memory

26

Location
43-44
45-46
47-48
49-50
51-52
53-54
55-56

i I - I ; -
When CLR is activated, pointer 1 is not changed and points to the
same start to BASIC memory, and neither is pointer 2 changed,
because that is where the BASIC program ends in memory. The
temporary string pointer (6) points to the start of the last defined
string in memory, and that is not affected either. The end of
memory recognized by the BASIC system (Le. pointer 7) is also
left untouched.

Pointer 3 is set equal to pointer 2, and pointer 4 is set to one
more than pointer 2. Pointer 5 is made equal to the top of BASIC
memory (Le. pointer 7), and the upshot ofthese changes is that the
BASIC system is not aware of any variables or arrays.

The pointers can be investigated by a simple program

10 DEFFNP(I) = PEEK(I) + PEEK(1+1) *256
20 FOR T=43 TO 55 STEP 2
30 PRINT FNP(T)
40 NEXTT

which prints out all the pointer values in order. The addition of a
line

15 FOR T=1 TO 35: A$ = A$ + U!!!!!": NEXTT

alters the readings for the string pointers more than any others.
The bottom of string storage is now much lower, and the

difference between the two string pointers (5 and 6) is now
175-or the length ofthe last A$ (35*5). The space available for
strings is taken up with all the different copies of A$-35 of them,
starting with U!!!!!", then U!!!!!!!!!!", and so forth.

On entering

CLR : PRINT PEEK(51) + PEEK(52) * 256

we find the location is near to the top of memory again. Pointer 5
has been reset by the use of CLR. To PEEK at locations 53 and 54
shows that the preceding CLR has not affected the temporary
string pointer (number 6).

27

CMD 1%. S$ This command initializes device number 1% to take
all further output, instead of the output going to the screen. The
device has first to be activated by an OPEN 1%, D% command,
where D% is the actual device number, and 1% is the file number.
After the CMD command the screen is dead for output, until it is
reactivated by

PRINT# 1%, ; : CLOSE 1%

which causes the device with file number 1% to 'unlisten'.
PRINT# 1% allows printing to file number 1%, but will still (for
example) allow the program to be LISTed to the screen. CMD 1%,
however, takes any output (including a LIST) and sends it to the
device with file number 1%. (See PRINT# for further details.)

If the second (string) parameter is present then the contents of
the string are output to the file specified.

CONT This restarts a BASIC program after a STOP or END in the
program, or after the STOP key has been pressed. If a new program
line (with line number) has been entered, CONT will not work, as
pointers have been altered. They can also alter ifthere is a syntax
error, or a CLR command.

Not all commands alter pointers, and so it is possible to LIST
and then use CONT.

COS(X) This function calculates the cosine corresponding to the
angle X, where X is assumed to be in radians. If the angle is in
degrees, then it has to be multiplied by PI/lBO, e.g.

PRINT COS(DEGREES * PI/1BO)

The expression within the parentheses is evaluated, the result
stored in FPA #1, and then the SIN routine is called. The value of
COS (X) is equal to SIN(X + PI/Z) and so the SIN routine operates on
the expression plus PI/z.

DATA Frequently there are, within a program, certain pieces of
information which never change from one operation of the
program to another. For example, at the level ofthe machine code
routines to calculate the SIN, there are several fixed values which
are used each time the SIN function is called.

28

For the SIN, these fixed values are stored permanently in the
BASIC ROM (Read Only Memory) and looked at each time the
routine is used. In a BASIC program, use is made of DATA
statements.

There is a permanence about the use of DATA statements which
means that a mistake in the data is more easily rectified. To use
INPUT statements in the processing of statistical data, for
example, leaves the way open to errors of input. With DATA
statements one can rectify errors by altering the appropriate
statement{s).

An error in an INPUT part way through a program often means
that a completely new start has to be made.

The items in a DATA statement can be anything one expects to be
allowed in INPUT statements: the way in which DATA statements
are READ is by use of the same set of routines as INPUT, so the
same restrictions apply. An important point to remember (true for
both DATA and INPUT) is that a trailing comma is taken to be
either a number of value zero, or a (null) string of value"".

An important point to remember is that in the case of strings,
where the strings contain commas, the string as a whole has to be
enclosed in quotes. For example,

1000 DATA "A STRING, INCLUDING AN INTERNAL
COMMA"

Errors reported in DATA statements are usually mistakes in the
READ statement-but see later. Placing the cursor over a READY.
and pressing RETURN will produce an ?OUT OF DATA ERROR,
because the BASIC system thinks READY. is

READY.

DEF FNYZ(X) This is the way in which user-defined functions
are entered. The parameter has to be a floating point variable and
strings are not allowed.

To enter 10 DEF FNII{H%) = X and then RUN produces a
?SYNT AX ERROR IN 10. A ?TYPE MISMATCH ERROR is
produced if a string is used as parameter: it is invalid to define
DEF FNST{A$) = ASC(A$). Only one real variable is allowed as a
parameter to a function, and though the parameter may not be
used, there always has to be a parameter there.

29

DIM XO(Xl) This statement allocates space in memory for an
array of the specified name. with Xl + 1 elements. Array elements
are numbered from zero to the number in parentheses after the
array name.

The example shown is a floating point array. but integer and
string arrays are also possible.

The same array cannot be dimensioned twice in the same
program. For a more complete examination of the topic of arrays
see above.

END Ends a program. and prints READY. The program can be
restarted by CaNT. if certain conditions are fulfilled (see CaNT.
above). Compare to STOP.

EXP(X) Calculates e (2.718281828 ...) raised to the power of the
value ofX. For example.

PRINT EXP(l)

returns the value 2.71828183. and

PRINT EXP(2)

returns the value 7.389051.

PRINT EXP(l)*EXP(l). EXP(l) l' 2

returns the value 7.3890561 for both expressions.
Note that

PRINT LOG(EXP(X))

should give the value X. This program tries to check the accuracies
for various X values:

10 FOR X=o TO 10
20 PRINT x. LOG(EXP(Xll- X
30 NEXTX

and only for X= 3 does there seem to be any error. The error for
X=3 is the (ubiquitous) 9.3122575E-l0.

30

nnnnnnnnnnn
As a check of a different kind, it is worth remembering that

EXP(88) should equal EXP(87)*EXP(l). Try to

PRINT EXP(88)

and the result is 1.65163625E+38. The (numerically) equivalent
statement

PRINT EXP(87) * EXP(l)

produces-as might be expected-?OVERFLOW ERROR. The C64
BASIC arithmetical bugs strike again.

FOR XO = Xl TO X2 STEP X3 This sequence permits the
repeated processing of the lines of BASIC between this statement
and the corresponding NEXT XO statement.

The loop variable (i.e. XO in this example) has to be a floating
point variable, and not an integer. The values to start, finish, and
increment the loop variable (i.e. Xl, X2, and X3, in that order],
need only be arithmetical expressions.

The loop variable not only has to be floating point, but it has
also to be an ordinary variable-this means that X is admissible,
but the complex variable X(5) is not allowed. As the loop counter
is a floating point variable, there may be some errors of rounding.
For example,

FOR 1= 1 TO 2 STEP .0001 : NEXT I : PRINT I

gives the result 2.0000983, when the answer should be 2.0001.
The reason why the final value of I should be 2.0001, and not
2.0000, is made clearer by

FOR 1=1 TO 2: NEXT I: PRINT I

beca use the final val ue of! is 3.
When the BASIC translator meets a FOR statement it takes the

first value for the loop counter, and always executes the loop at
least once. In the case of!=l to 2 the value of! is incremented by 1
when the NEXT I statement is reached. This incremented value is
then checked against the loop limit, and if the loop variable is
greater than the loop limit the loop stops.

31

nnnnnnnnnnn
After one activation of the loop, 1=2 and this is not greater than

the loop limit (which is 2), so the loop acts again. NEXT time 1=3
and this is greater than the loop limit, so the loop ends-with I
equal to 3 and not equal to 2.

If the loop start is greater than the loop limit (Le. Xl> X2) then
we would suppose that the STEP value (Le. X3) must be negative.
However,

FOR 1=1 TO 0: PRINT I: NEXT I: PRINT I

outputs the values 1 and 2, and then the loop ends. Even ifby
some mistake the start and limit values are incorrect, the loop
always works once. The loop

FOR 1=1 TO 2 STEP 0: PRINT I: NEXT I

never ends, and a continual stream of 1s is printed. This is a way
of producing an endless loop, or a loop which operates until
something is the case. Here is a program which operates until the
F key is pressed.

10 FOR 1=1 TO 2 STEP 0
20 PRINT "#";
30 GETX$
40 IF X$ = "F" THEN I = 2
50 NEXT I

There is an endless loop from lines 10 to 50, which outputs #s
to fill the screen. At line 30 there is a check of the keyboard to see
if a key has been pressed, where the result ofthe enquiry is stored
as a character in X$. Line 40 is the equivalent of an UNTIL
statement.

IF the character stored in X$ is an F THEN the val ue of I is made
equal to 2. When the NEXT I statement is reached, I will equal its
limit parameter, and the loop will terminate.

A problem with this form of control statement is that it takes a
great deal of space on the machine's stack to store information
about each of the parameters (STEP is always included, even if it
is the default value 1). 'Nested' loops (i.e. loops within loops) eat
up stack space which will soon run out. One FOR ... NEXT loop
can use up to 18 bytes on the stack.

32

n n n n n n n n n n n
If there are too many FOR loops (or too many GOSUBs-see

later) there may be an ?OUT OF MEMORY ERROR. Memory has
not, in fact, run out, rather the stack is too full.

FRE(X) Calculates the number of bytes available to BASIC. It
takes the value of the pointer to the end of arrays (see above for
CLR), and the value of the string pointer, which points to the end
of strings.

Before examining the pointers, FRE clears out of memory any
strings to which there are no pointers from within the variables
and arrays. This means that if there are several strings which are
no longer active, only the active strings are considered, and kept.
The latest examples of the active strings are placed together, in
sequence, in memory from high memory down.

Enter

10 FOR 1=1 TO 2 STEP 0
20 PRINT "#";
30 N$ = N$ + "!!!!"
40 NEXTI

and then (after the program has stopped with ?STRING TOO
LONG ERROR IN 30)

PRINTPEEK(51) + PEEK(52)*256

will give some value around 30000 to 35000. To then enter

PRINT FRE(O). PEEK(51) + PEEK(52) * 256

will give a negative value for FRE(O), and the new end of strings
will be greater than 40000.

The difference in two values for the start of strings is an
indication of the space wasted by making successive copies of N$.
FRE(O) liberates that space, by a process krrown as 'garbage
collection'. The parameter for FRE is not used in any way.

The reason why the result of FRE is negative, is that FRE gives
the free space as a two's complement number. To change the
negative value into the correct positive value, we use the fact that,
ifFRE is negative, (FRE(O) < 0) is equal to -1. (For more details on
this use ofrelational evaluations see above.)

33

n n n

Use

PRINT FRE(O) - (FRE(O) < 0) * 65536

to work out the ordinary value, from the two's complement
version.

n

GET S$ This command tries to read one character from the
keyboard (e.g. see FOR program emulating UNTIL, above).

As characters are typed in at the keyboard, they are stored in a
portion of memory called a 'buffer' (from location 631 to location
640). As each character is used (stored as its ASCII value) all the
values move along one byte, and a new character can be stored in
the buffer.

In location 198 is stored the number of items in the keyboard
buffer, that is, values from 0 to 10-the maximum number of
values which can be stored in the buffer is 10. The number of
elements in the keyboard buffer can be altered by POKEing in
location 649.

PRINT PEEK(649)

normally gives the result 10.
The GET routine has a special facility which uses only the first

element in the keyboard buffer. INPUT copies elements from the
keyboard buffer into a system input buffer (from 512 to 600) and
waits until it finds an ASCII value 13 (Le. a carriage return). If the
GET command expects a number (e.g. GET X) and a letter is
entered, then there is a ?SYNT AX ERROR. This is why it is better
to GET S$, and then use VAL(S$)-see later. Ifno key is pressed
while the GET command is active either a null string, or a zero
numerical value, is returned.

GET# 1%. S$ Works very much like GET, but reads characters
singly from the file specified instead of the keyboard. The video
screen is device #3, and if this program is entered

1 OPEN 1,3
10 GET# l,S$: PRINT S$; : IF S$ <> "$" THEN 10

and the program listed, when the cursor is put at the top of the
screen, to RUN the program alters what is on the screen.

34

n.

n , , n n n n fl n n

Many duplicated letters and symbols appear where there were
characters on the screen. What has happened is that device
number 3 has been assigned to the logical file number 1 by the
OPEN command (see later). By positioning the cursor at the top of
the screen, and then typing RUN, the screen is treated as file, and
each position (in order) is examined.

As the content of the screen location obtained by GET# is then
printed out, one on from where it was found, the symbolsiepeat.
There are quite a few $ symbols in the listing of the program, and
one is almost certain to be encountered, but until a $ is found the
program repeats line 10.

GOSUB number This command jumps (like GOTO) to any line
in a program, but if the line number does not exist there is an
?UNDEF'D STATEMENT ERROR.

Unlike the GOTO statement, the GOSUB hands control over to
another portion of program, expecting that control will return to
the program statement following GOSUB. For the control to be
returned, there has to be a RETURN statement.

First enter

o PRINT"O"
1 PRINT"l"
2 RETURN

and then investigate the (theoretically nonsensical) calls

GOSUB
GOSUBX
GOSUBGOSUB
GOSUBOX

all of which are interpreted as subroutine calls to line 0, as is
indicated by both the numbers 0 and 1 being output. This action is
due to the fact that the operative routine to scan the number
following GOSUB is a close relative of the VAL function.

35

n n r. , I n

Enter

GOSUB 1/2
GOSUB1GOSUB
GOSUB1X

o n n
\' ! n

for which the response to each is 1. showing that all jumps are to
line 1. This is again as one would expect. given the behaviour of
VAL (see later). The routine which examines the content of the
line following GOSUB (called CHRGET. held at locations 115 to
138) stops at the first non-numeric character.

GOSUB uses up 5 bytes on the stack. which includes a pointer
to where the next character is to be read after the return. the
current line number. and a special token to indicate that a
subroutine has been called. To investigate how many subroutines
may be on call at one time. use

10 INPUTN
20 F = 1
30 GOSUB 100
40 PRINTF
50 END
100 IF N =0 THEN RETURN
110 N=N-l
120 GOSUB 100
130 N = N+l
140F=F*N
150 RETURN

The subroutine at lines 100 to 150 calculates the factorial ofN.
returning the result in F. The subroutine is recursive in that it
calls itseJf(at line 120). Values ofN from 0 to 22 work (and the
factorial of22 is 1.12400073E+21). but at an input value ofN=23.
there is ?OUT OF MEMORY ERROR IN 100.

The subroutine shows an interesting use of two RETURNs. This
is one way in which subroutines can be more flexible than
GOTOs.

GOTO and GO TO Both these are direct jumps to the line
number which follows the command. GOTO is not the same as the
two separate words GO TO. though the effect is the same.

36

n n n n

The BASIC translator treats GOTO as one unit but it treats GO
TO as two units. GO is counted as the keyword. and when treated
as a keyword it has to be followed by a space and TO. The internal
code for GOTO is different from the code for GO.

The evaluation of the line number following GOTO uses the
VAL style routine. as does GOSUB. Thus GOTO has similar
confusions to GOSUB.

With GOSUB. the program runs more quickly if we have the
most commonly used subroutines near the beginning of the
program. which is why many programs start with a GOTO too
near the end of the program. jumping over the frequently used
subroutines. As subroutines are designed to be used from many
different places in the program. it makes sense to try to pick the
best average position.

The optimization of the search for line numbers when using
GOTO. can have some interesting consequences-if taken to
extreme lengths.

Rule 1: never jump to a line number which is before the line at
which you make the call. The line number routine checks to see if
the line number to which the jump is made is before or later than
the present line. If the line number is later. then the search starts
from the present line. and not from the beginning of the program.

Rule 2: never jump to a line which is just before the present line.
jump to a line near the beginning. The closer the line is to the
start. the sooner the line is found.

Rule 3: do not take rules too seriously.
In association with the IF statement. there are three possible

forms of the GOTO command:

IF condition THEN GOTO linen umber
IF condition THEN linen umber
IF condition GOTO linen umber

and IF ... GOTO ... is faster than IF ... THEN ... ; but IF ... GO
TO ... is inadmissible (it produces a ?SYNTAX ERROR). This is
due to the different interpretations of GOTO and GO TO; and to
use IF ... THEN GO TO ... does not produce an error.

It is best to keep clear of GO TO. as this keyword seems to be an
afterthought. and prone to bugs.

37

n n n non n ~ ~ n n
IF . .. THEN This conditional statement has two principal
functions. First, it can be used to branch to a program line; or,
second, it can be used to execute statements on the same line as
IF. The accent is on 'the same line', so that the immediate
statement

IF X=X THEN: PRINT "#####"

will output the #####, as will

IF X=X THEN PRINT "#####"

In the first case, however, there is no statement to follow THEN, as
THEN is immediately followed by the statement separator (Le. the
colon). For a third case, try

IF X<>X THEN: PRINT "#####"

and nothing appears on the screen.
The routine associated with IF evaluates the expression

following IF, and then (provided there is also a THEN or a GOTO)
the exponent of the value in FPA #1 is checked. The value in FPA
#1 is the result of the expression after IF, and ifthe exponent is
zero, the result is zero, and control jumps to the next line number,
not the next statement on the same line.

If the condition is true, therefore, all the statements on that
program line will be activated; if it is false, all the rest of the
statements on that program line are ignored. (Compare case 1 and
case 3.) There need not be any statement to follow THEN.

INPUT Has many features in common with READ (below)
particularly the importance of commas, quotes, and colons.

Following the word INPUT, there may be a string to identify the
input required, e.g.

10 INPUT "TESTING "; A$

and two extra lines help to investigate the INPUT command

20 PRINT A$
30 GOTO 10

38

n n n n n n n n ~ n n
So try the following inputs

J
J,
.J
J:
J;
"J,

For the first entry J is printed. as with the second entry-though
with the information ?EXTRA IGNORED. The routine to accept
values for INPUT considers that the comma is a separator. and
thus the user has entered two values. Only one value is expected.
and so the extra value is ignored (it is not possible to store up
values for later INPUTs).

To the third entry a null string is printed. and the extra (Le. J in
this case) is ignored. As the first item the routine encounters is a
comma. it assumes a null input. The fourth entry shows that the
colon has a similar effect 10 the comma. as J is printed and the
extra ignored.

The fifth input (Le. J;) is output exactly as that (Le. J;). The
semicolon is not a separator. in fact it is treated as an ordinary
character.

The final entry shows the use of the double quotes to make the
routine aware that the following set of characters is just that, a set
of characters. If there is a comma (etc.) in the set. it is to be
counted. In this case the output is J,.

To illustrate a bug in the INPUT routines merely hit RETURN
after the last item. and the string output is J. again. Hitting
RETURN on input does not enter the null string. but the string
contains its previous value.

The use of quotes in INPUT allows the input of graphics
commands (for example) such as CLR. and in this respect the
situation has much in common with PRINT.

39

n n n n n n n n ~ n n

Change two lines in the program.

10 INPUT "TESTING ";A
20 PRINT A
30 GOTO 10

and then enter

1
2E3
2 •
. 8
5:
2/3

The first is non-problematical. and 1 is output; the second entry is
also without any problems. and 2000 is output. The third entry
gives ?EXTRA IGNORED. and then the answer 2 (the fifth entry 5:
is similar). The result of entering the fourth entry is ?EXTRA
IGNORED and the value of A output is o-the comma is read as a
null (Le. zero) entry.

The input 2/3 is illegitimate. and an error message ?REDO
FROM START is output. To then enter a valid value is to output
the valid value. If. however. 2/3 is entered (and the error flagged)
to then merely hit RETURN prints out the value 2.

This is yet another bug. What has happened is that the expression
2/3 had been evaluated as far as the 1 by CHRGET (in a similar way
to VAL or GOSUB/GOTOj, and then the error flagged. By hitting
RETURN. no value is sent to A and the already existing value (Le.
the 2 of 2/3) is treated as the proper value.

When a user is entering much information. it is very easy to
make such an error. and hit RETURN before the proper time.

Sometimes. when a CMD statement is operative. the INPUT
tries to take data from the wrong kind of device (e.g. a printer). and
?FILE DATA ERROR is output. If there is a message with the
INPUT (e.g. TESTING) then this message is sent to the device.
which may produce some complications.

INPUT# This command takes data from some device. in exactly
the format expected by the ordinary INPUT command. though
there is no message. The file must first be OPENed.

40

n n n n n n n n n n n
If the data has been sent to the device by PRINT#, the format is

exactly as desired because the two commands are consistent.
INPUT# is rather more touchy about data types and format than

ordinary INPUT, and, though there are no warnings, extra will be
ignored. The routines for INPUT and INPUT# are almost identical,
apart from the setting of the file for INPUT#.

Both INPUT and INPUT# use the 80-byte buffer (see GET and
GET#j, and this is why INPUT cannot be used in immediate
mode-immediate commands are stored in the same buffer.

INT(X) This function converts the floating point expression in
parentheses into the integer value which is less than or equal to
result of the expression. None of the standard restrictions on the
size of the floating point expression hold (Le. within the bounds
-32768 to 32767), because the result ofINT is still a floating point
number, though turned into a whole number.

Note the results of the following expressions

PRINT INT(3.1)
PRINT INT(-3.1)
PRINT INT(4.6 + .5)
PRINTINT(-4.1 +.5)
PRINT INT(1/2)
PRINT INT(-1/2)

which are 3, and then -4 (INT always rounds down); next are 5
and -4 (rounded to the nearest whole number); and the next pair
produce the answers 0 and -1 (note that the INT of -1 divided by
2is-l).

The rounding down is shown by reference to the integer
division

X%= -3: Y%=2 : Z%=X%/Y% : PRINT Z%

to which the answer is -2. The two's complement form ofthe
number -3 is 1111111111111101, and to divide a binary number
by 2 we move all bits to the right, inserting a 0 at the leftmost
position (e.g. 4 is 100 as a binary number and 2 is 010). Thus the
number becomes 0111111111111110.

41

n n n n n n n n ~ n n
This number is now a positive number and in two's complement

is 32766. It is a poor system in which half a minus number is a
plus number, so to divide the sign bit reinserted in the leftmost
position. The binary number formed from the division by 2 is thus
1111111111111110, and as a two's complement number is equal
to -2.

The actual INT routine works by taking the result from FPA #1,
converting it to a four-byte integer, and then converting the four
byte integer into a floating point number in FPA #1, keeping the
old exponent.

LEFT$(S$,I%) This function takes the string S$ and extracts the
first 1% characters of that string. The value ofI% can be from 0 to
255, and if it is greater than the length of the string all the string is
returned. For example,

PRINT LEFT$("1234", 6), LEFT$("1234", 2)

outputs the string 1234 and then 12. If the length is zero, then the
null string is output.

The routine works by taking the string pointers off the stack,
where they are pushed as part of any string evaluation. The length
ofthe string is compared to the value (1%) provided by the
function, and the lower value is taken. The string selection
routine then uses this information (which has been replaced on
the stack) to set up the new string.

LEN(S$) This function finds the length of the string S$ by
effectively using the byte which gives the length of the string. The
length byte is popped offthe stack.

LET Is not needed.

LIST This command shows the content of part or all of a
program, in a form which is similar to that in which programs are
entered.

There are the following alternative methods of LiSTing a
program:

LIST

will display all the program;

42

n n n n n n n n n n n
LIST 200

will display the content of line 200;

LIST 600-800

will display all lines from 600 to 800 (inclusive);

LIST-800

will display all lines up to and including 800; and

LIST 600-

will display all lines from 600 to the end of the program.
Ifa program has been STOPped in some manner, it is possible to

LIST and then to CaNT. However, ifthe LIST command is within
a program, e.g.

1 PRINT H$$$$$"
2 REM
3 REM
4 LIST
5 PRINT H#####"

to RUN this program, LISTs it out, but the program does not
continue to line 5 (and the PRINT). To use LIST within a program
stops all further computation. If you manage to STOP the listing
part of the way through (easier with a longer listing), CaNT then
moves control to line 5, but the rest of the LIST is lost.

When CaNT is used after the program has ended, the LIST is
reactivated, and the program is listed again. However, the whole
program is not re-run, because the first line of$$$$$ is not
output-only the LIST. The CaNT should start the program from
where it 'finished', but using LIST confuses the issue, and LIST is
repeated (and stops the program).

Ifline 4 is erased, and the program RUN, then to use CaNT does
nothing-apart from the system telling you it is READY. To alter
line 4 to

4 LISY

produces a ?SYNTAX ERROR IN 4; and then trying to CaNT,
gives ?CAN'T CONTINUE ERROR.

43

n n n n n n n n n n n
The reason for these peculiarities of LIST is that its use within a

program involves extensive use of pointers, and, if CONT is used,
CONT tries to use those same pointers. The status of the pointers
becomes unclear. This is another bug, not serious, but one which
should not happen with a clean BASIC.

It is possible to LIST to a device by OPENing a file and a device
and then using CMD (see above).

LOAD This command is the reverse of SAVE, and takes a stored
file (usuaJIy on disk or tape) and loads a copy of the file into
memory. NormalIy the copy will be a BASIC program, but it can
be a machine code program, or a copy of the high resolution
screen, or any other such continuous set of memory locations.

Some of the more complex SAVEs use one ofthe KERNAL
system routines, also known as SAVE. This routine is activated by
SYS(65496) in conjunction with other KERNAL routines. The
KERNAL is a set of machine code system routines which can be
used by the programmer, and to use them usuaJIy requires
knowledge of machine code.

To SAVE machine code and sets of memory locations therefore
requires rather more knowledge of KERNAL routines than is
possible to give here. There are more details given in PREG (pages
270 to 306).

With simple BASIC programs, the operation of LOAD can be
considered in two main areas: tape and disk. In the folIowing,
where there is a string in quotes, it is possible to use a string
variable (e.g. S$).

In the case of tape (Le. cassette) aJI that is needed is LOAD, but
there are variants,

LOAD
LOAD"PROG"
LOAD

the first example will LOAD the next program in order on the
tape; the second will LOAD the next program on the tape which
begins with PROG (e.g. PROG1, PROG2, or PROGRAM); and the
third example will also LOAD the next program on the tape.

44

n n n n n n n n n n n
The variants for LOAD, when using disk, are not that great in

number

LOAD "O:PROG" ,8
LOAD "1:*",8
LOAD "PROG * ",8
LOAD "1:PRO??",8
LOAD "PRo? *" ,8

Notice the compulsory ,8 parameter to indicate that disks are to be
used, and note the drive number parameter (Le. the number
followed by a colon, which precedes the name of the file).

The first LOAD takes a program called PROG from disk drive 0;
the second command takes the first file from disk drive 1. The *
means that any (or no) characters can be substituted in that
position, to form the file name.

The third LOAD is the equivalent to the simple "PROG" name
for tape, PROG1, PROG2, or PROGRAM, will satisfy the name
the first file in order on the disk, which starts with PROG, will be
used. As the disk drive number is not specified, it is assumed (by
default) to be drive #0.

The fourth command will accept PROG1, PROG2, PROZZ, or
PROBE, because they each have five characters beginning with
PRO-the first is taken. The final command will take a file off disk
drive 0, and will take the first file which starts with PRO, and has
at least four characters.

The LOAD command can be used both within a program, as
well as in immediate mode. In the case of LOAD being in a
program there are no instructions on the screen, unless the tape
unit is not on "play", in which case there is the message PRESS
PLAY ON TAPE. For disk there are no such messages.

The program is not only LOADed, it is also RUN: in this respect
it is like the automatic load and run given by SHIFT and
RUN/STOP. If the program which LOADs the other program is
longer than the program loaded, then it is possible to pass values
from one program to another, except strings and functions (for
obvious reasons).

45

n n n n n n n n n n n
For example,

10 REM
20 REM
30 REM
40 A=10
50 B=30
60 1%=6
70 PRINT A,B,I%
80 REM
90 LOAD

will output the values 10, 30, and 6, so quickly you cannot see
them, before the screen blanks to load in the next program. If the
next program on the tape is

70 PRINT A,B,I%

then the values 10, 30, and 6, are again output.

LOG(X) This function calculates the natural logarithm (Le. to
base e) of any positive, non-zero expression. This function is the
reverse ofEXP (see above).

The function first tests for zero or negative values ofthe
expression, and ifthe result is zero or negative then it produces an
?ILLEGAL QUANTITY ERROR. The result of the expression is left
in FPA #1, and so ifthat value is too large (e.g. lE39) there is an
?OVERFLOW ERROR.

The function is evaluated by use of a short series, whose
constants are held in the BASIC ROM.

MID$(S$,IO%,I1%) This function selects a substring from the
string S$. The starting position is given by 10%, and the length of
the string is given by 11 %.

If the length is not provided, or is greater than the number of
characters to the end of the string, then all characters to the right
are returned. This makes it similar to RIGHT$ (see later).
LEFT$(Sl$,13%) is equivalent to MID$(Sl$,1,13%).

46

n n n n n n n n n ~ n

Admissible values for 10% are from 1 to 255, and values outside
this range give an ?ILLEGAL QUANTITY ERROR. All values
within the limits 0 to 255 are admissible for 11 %, and outside this
range they produce the same ?ILLEGAL QUANTITY ERROR.

The default value for the third parameter is 255, unless the
parameter (Le.I1%) is set to a value (obviously, no string can be
longer than 255 characters). The correct substring is then found by
manipulation of the string pointers, which are pushed on the
stack. (Effectively, the LEFT$ routine is used.)

Ifthe string is S$='''' then MID$(S$,1,255) is not an error, just a
null string, and if the middle parameter is changed to any value
then a null string is returned. This is true for any string for which
the value of the middle parameter is greater than the length of the
string.

This does not make sense, and can be shown by

10 A$ = ""
20 PRINT MID$(A$,2,255)
30 A$="#"
40 PRINT MID$(A$,2,255)

which does not produce any errors but is idiotic. To show how
idiotic, try

10 A$=""
20 PRINT MID$(A$,0,255)
30 A$ = "#"
40 PRINT MID$(A$,0,255)

which gives an ?ILLEGAL QUANTITY ERROR IN 20. In line 20,
A$ does have a 0 length, but-as with ASC-the coding of the
string routines seems to be rather suspect.

NEW This appears to erase the program from memory, but really
it only changes a few pointers (see CLRJ, so that they point either
to the start of BASIC or the end of BASIC memory. The actual
program is unaltered and can be examined by changing some
pointers back (a tedious task).

The changing of pointers is the basis for most systems or tool
kits which have an OLD command.

47

nnnnnnnnnnn
NEXT X Signals the limit of a loop. Control is either passed back
to the corresponding FOR, or-ifthe counter is now greater than
the loop limit-to the next statement.

The command has an optional parameter, WHICH SHOULD
NEVER BE OPTIONAL. As BASIC can become rather confused,
any assistance in debugging (such as telling the system which
loop is which) should not be ignored. To leave out the loop
counter from a NEXT statement is exceedingly untidy, and very
silly.

Not to use a loop counter after a NEXT does speed up the
program, but if the program does not work then debugging will be
that more difficult. The program

10 FOR 1=1 TO 10
20 FORJ=l TO 10
30 REM
40 NEXTI
50 REM
60 NEXTJ

is wrong, as is this program

10 FORI=l TO 10
20 FORJ=l TO 10
30 REM
40 NEXT
50 REM
60 NEXT

The first program will not run, but the second actually will
change those REMs for active statements and the second program
is a recipe for disaster.

ON 1% GOTO ... ON 1% GOSUB The ON command is a
switching command. The value ofthe variable which follows the
word ON directs which of the lines to follow GOTO or GOSUB is
to be used.

48

nnnnnnnnnnn
ON can be used in two forms (in either program mode or

immediate mode);

10 ON X GOTO 200,300,400,500
20 ON Y GOSUB 2000,3000,4000,5000

and the value of the expression following ON has to be within the
limits 0 to 255.

Above, if X is 0 or greater than 4, then control passes to the next
line (as there are only 4 lines from which to choose). Negative
values for the expressions give ?ILLEGAL QUANTITY ERROR. If
there is no such line number as one in the list, then there is
?UNDEF'D STATEMENT ERROR IN 50 when a jump is made to
that line.

The alternative form GO TO cannot be used, yet another reason
to ignore it.

OPEN F%. D%. A %. S$ This command sets up details of a file,
its corresponding device number, and secondary address, in
tables in memory, each often entries.

The first table extends from locations 601 to 610, and contains
the logical file numbers as assigned by the OPEN command (i.e.
F%). The table is given the label LAT in PREG (page 316).

The second table has ten entries, each of which corresponds to a
logical file number. This table (FAT, PREG (page 316)) extends
from locations 621 to 630, and contains the device numbers (i.e.
D%) which correspond to the file numbers.

The final table (called SAT by PREG (page 316)) contains the
'secondary' address for each file number, and device. The table
extends from locations 621 to 630. Each location (i.e. A%)
corresponds with a file number, and device number.

At this point

PRINT PEEK(601), PEEK(611), PEEK(621)

to which the response is 0, 0, and o. The initial value for each
table is O.

49

n n
'-- - !

Now enter

OPEN 3

n n n n n n n n I ,

be told PRESS PLAY ON TAPE, and then discover FOUND XCXC,
where XCXC is the name of some program. If we then LIST, we
find that the program has not been loaded.

This method reads the next header on cassette, without actually
having to read in the whole program. To continue to read headers,
CLOSE 3, and OPEN 3 again. OPEN 3, without CLOSEing,
produces ?FILE OPEN ERROR.

To enter

PRINT PEEK(601), PEEK(611), PEEK(621)

produces the output 3,1, and 96, and to enter

PRINT PEEK(184), PEEK(185), PEEK(186)

results in the output 3, 96, and 1. These three locations (LA, SA,
and FA according to PREG (pages 314-315)) are the current values
of the latest OPENed file.

OPEN 4,0,0
PRINT PEEK(602), PEEK(612), PEEK(622)
PRINT PEEK(184), PEEK(185), PEEK(186)

and the result is 4, 0, 96, from the first PRINT and 4, 96, 0, from the
second.

OPEN F% is equivalentto OPEN F%, 1, 0, ''''. Where 1 is the
default second parameter (and corresponds to cassette number 1);
o is the default third parameter (and corresponds to an injunction
to the cassette to read a file); and u" is the default fourth parameter
(and corresponds to no title for the file).

For each device there are secondary addresses, and the
secondary addresses control the device's use.

50

nrn n n n [lnnn'1

For example,

OPEN 8,1,1,"+++++"

produces the response PRESS RECORD & PLAY ON TAPE, and
something is sent to tape. To catalog the tape by

CLOSE 3 : OPEN 3

produces SEARCHING and then FOUND + + + + +. The fourth
parameter gives the title to a file, if the secondary address
indicates that the device is open for writing.

Device Number Secondary address
Keyboard 0 None
Cassette #1 1 0 = Read, 1 = Write to file plus

Cassette #2
Screen
Printer
Modem
Disk Drives

2
3
4
5
8

end-of-file marker, 2 = As 1 plus
end-of-tape marker when CLOSEd
As for cassette #1
None
Varies with printer
None
0= Directory read, 1 = Directory
write, 15 = Error channel

All other device numbers (up to the maximum 15) are unassigned,
and secondary addresses take values from 0 to 15. To read or write
data to a disk requires, therefore, the use of secondary addresses 2
to 14 (inclusive). As different disk systems vary, it is usual to
make the string parameter contain disk commands, concerning
reading and writing.

PEEKing at the secondary addresses, shows that they start at 96
and extend to 111. To obtain the proper value for the secondary
address:

PRINT PEEK(621) AND 15

will give the correct answer (as will PEEK(621) - 96).

PEEK(X) This function provides the value ofthe contents of a
byte at the location specified within parentheses. The value is
returned as a decimal number within the range 0 to 255. The
location has to be within the limits 0 to 65535, otherwise an
?ILLEGAL QUANTITY ERROR is produced.

51

!lnnflnnCJ~nnn

When used. the routine takes the value stored in locations 20
and 21. and pushes that value on the stack. These locations.
known jointly as LINNUM (PREG page 311). are used for temporary
storage of line numbers. and the pushing of the value is a
safeguard.

LINNUM is then loaded with the value ofthe parameter (it is
converted to a two-byte integer from FPA #1). Routines are then
called to load the value from that memory location into FPA #1.
The original contents of LINNUM are popped off the stack and
returned.

The need for the saving of the contents of LINNUM on the stack
are shown when we consider the twin of PEEK. that is. POKE.

POKE X,I% The POKE command replaces the contents of the
location specified as'the first parameter. by the value specified in
the second parameter.

POKE 56334.0

and the keyboard will not respond to your attentions. The only
way in which you can recover is to hit STOP and RESTORE
simultaneously. Entering the value 0 into location 56334 stops
Timer A. and Timer A controls the scanning of the keyboard.
Stopping the timer makes the keyboard dead.

Another way of achieving the same result is to

POKE 56334. PEEK(56334) AND 254

which leaves all bits except bit 0 unchanged. and changes bit 0 to
the value O. It is bit 0 which controls the timer. and so the
keyboard becomes dead again. Notice that the same line number
appears twice in the same statement. See above. concerning
logical operators. for more details on this use of PEEK and POKE.

If the value to be POKEd (i.e. the second parameter) is outside
the bounds 0 to 255. we have the ?ILLEGAL QUANTITY ERROR.
and we produce the same error if the location is outside the range
o to 65535.

52

The routine works by storing the value of the address in
LINNUM (Le. memory locations 20 and 21), evaluating the
expression following the comma, and storing the result of the
evaluation at the address given by LINNUM.

POS(X) This is a fairly pointless function. When called, it
returns the value of the current cursor position on the screen. For
example

FOR 1=1 TO 255: PRINT "#";: NEXT I: PRINT POS(O)

will output a stream of #s, and then the number 15. The number
15 is calculated by 255 = 3*80 + 15, and if the line is altered to

FOR 1=1 TO 239: PRINT "#";: NEXTI: PRINT POS("")

the answer is 79. Note that the value in parentheses is immaterial.
The strange way in which this function produces its results seems
to be left over from 80 column PETs.

PRINT This is probably the most complex of all C64 BASIC
commands, and it prints information on the screen.

It is possible to print strings:

A$ ="123": FOR 1=1 TO 100: PRINT A$: NEXT I
FOR 1=1 TO 100: PRINT A$, : NEXT I
FOR 1= 1 TO 100 : PRINT A$; : NEXTI

where the first line prints the string 123 on separate lines, the
second prints four examples of 123 per line, and the third prints
12312312 to the end of each line and continues, where it left off,
on the next line.

One can print numbers:

A=123 : FOR 1=1 TO 100: PRINT A: NEXT I
FOR 1=1 TO 100: PRINT A,: NEXTI
FORI=l TO 100: PRINT A;: NEXT I

and for the first two examples the result looks the same as for the
string-but not quite.

53

n r n n n n ~ n ~ n ~

In the second example, the number 123 starts in by one space,
and

PRINT -123

shows why. The first column is used by the sign of the number, a
sign which does not appear if the number is positive.

In the third example the numbers 123 do not appear next to
each other as with the strings 123, for there are two spaces in
between. A string has no leading or trailing spaces; entering

PRINT A;A$

there is one space between the number 123, and the string 123.
Each number is led by a space and followed by a space.

B = -10/9: FORI=l TO 100: PRINTB,: NEXTI
FORI=l TO 100 :PRINTB;: NEXTI

shows that-in the first case-there are only two numbers per line
(the number being -1.11111111). because there is not enough
room for four numbers of this length on a screen line at one time.
Each number (including the minus sign) is eleven digits, and thus
it is physically impossible to have four eleven-digit numbers on a
forty-column screen.

In the second case the numbers -1.11111111 are printed out
continuously, with a space between and wrap round.

Consider also the following

Instruction
PRINT A A
PRINTAA
PRINT 123. 9
PRINT 123.9.
PRINT 123 .. 9
PRINT 123(9)

produces

54

Result
o
123123
123.9
123.9 0
123 .9
123 9

n n n n n n n n n n ~

A A is considered to be AA, which by default has the value 0; A$
A$ is considered to be the equivalent of A$;A$ and thus 123123 is
output (note that this is also true for integer % and array ()
terminators); 123. 9 is considered to be 123.9; 123. 9. is
considered to be 123.9 and. (and. is considered to be 0); 123 .. 9 is
considered to be 123 and .9; and 123(9).is considered to be 123 9,
because (is also a separator.

If graphics symbols follow a double quotes (compare INPUT)
they do not act immediately, but only operate when the string is
printed. Note that if a double quote is the final character on PRINT
line, it may be omitted.

The operation of the routines involved in the activation of the
PRINT statement is rather complex.

PRINT# F%. This is used to send information to devices such as
printers, disk or tape (see OPEN for device numbers).

The file has first to be opened, in the correct mode, before the
information is PRINT#ed. The first parameter, the file number
(between 1 and 255) is always followed by a comma. After the
comma is the list of items to be output.

The format of the list following the PRINT# is the same as that
of PRINT. As particular devices have their own particular
characteristics, it is not possible to give a general format-the
documentation for the printer has to be examined.

For non-Commodore devices, e.g. parallel printers, secondary
addresses can be rather important, as they are often used to
control the character set [Le. SET lor SET 2, MUM Appendix E).

PRINT# activates the device, prints, and then deactivates the
device. PRINT#21, ; does not print anything to the device. but it
does deactivate the device. It is only if this is followed by CLOSE
21, that the file details are erased from the file tables. To use
PRINT#21, therefore, means that file 21 is not 'listening', but the
file 21 can be used again.

CMD activates the device, prints, and leaves the device active.
CMD 21 ; also prints nothing but leaves the device active. To
follow this command by CLOSE 21 erases all details, but the file is
still active. PRINT# is the only way to 'unlisten', but leave the
device on-line.

With printers it is often better to use PRINT#, rather than CMD
and PRINT. In fact. in the PRINT# routine. calls are made to both
CMD and PRINT.

55

n n n n n n n n n n n

READ This command reads in information from DATA
statements (which see), and conforms in general principles to the
INPUT statement (which see). Some of the quirks of the INPUT
command are not repeated. For example,

1 FORI=l T05
2 READY
3 PRINTY
4 NEXTI
5 DATA"",

produces a string of Os, but to change line 5 to

5 DATA 1/2"",

gives a ?SYNT AX ERROR IN 5, whereas with INPUT you would
have been asked to redo.

REM This statement allows comments to be made in the
program. Anything which follows the REM (even a colon) is
treated as part of the comment. Like IF, the jump is to the next line
number, not the next statement.

Try a line which starts with 10 REM followed by SHIFT +,
then list.

RESTORE Sets the pointer which indicates the present DATA
item back to the beginning of the text (locations 63 and 64 for the
line number, and locations 65 and 66 for the current DATA item
address, PREG page 312).

The same information can be read and re-read.
RESTORE is automatically called by any other command which

sets pointers (e.g. NEW, RUN, orCLR).

RETURN Indicates the end of a subroutine, see GOSUB for more
details.

RIGHT$(S$,I%) Produces the 1% rightmost characters of the
string S$ (compare LEFT$ and MID$). The value ofI% can vary
from 0 to 255, and what is returned is the lesser of 1% or the length
of the string S$.

56

n n n n n n n n n n n
This function is related to LEFT$ and MID$, and

A$="1234567890" : L=LEN(A$)
FOR 1= 1 TO L : PRINT LEFT$(A$,I) + RIGHT$(A$,L- I) :
NEXT I

gives a series of copies of A$. We have taken the left portion and
the rest (the right portion). added them together, and produced the
original string.

The routine works by evaluating the string, taking the parameters
from the stack, modifying the lower parameter, and then using the
routine for LEFT$.

RND(X) This function generates a 'random' (Le. unpredictable)
value between 0 and 1. No sequence of numbers generated by a
fixed formula is truly random, because the sequence repeats after
a certain period.

There are three classes of value for the parameter. Negative
values for the parameter (whichever value they are) always
produce the same random number. Positive values for the
parameter follow a determinate sequence, once the initial value
has been chosen.

If the parameter value is zero, then the random number takes its
value from a real-time clock. This provides a random start to any
sequence (the start is called a 'seed') but being based on a regular
clock, the values tend to repeat. To provide an unpredictable
sequence of numbers, it is best to start with RND(O) and then
RND(l) or any other positive parameter.

RUN Starts the execution of a program from the beginning, or
from any specified linenumber. Pointers are reset, so all previous
information is effectively lost.

The command can be used in immediate and program mode,
e.g.

RUN 5000

200 INPUT "DO YOU WANT ANOTHER GO "; A$
210 IF A$="YES" THEN RUN

If there is a linen umber to follow the RUN command, it is
evaluated as with GOSUB and GOTO (etc.). so RUN RUN is the
same as RUN O.

57

n n n n n n n n n n n
SAVE S$, F%, D%, A% This command saves the content of a
portion of memory (usually a BASIC program) onto some device.
SAVE has the same parameters as LOAD, and shares many
common characteristics (see LOAD for full details of the meaning
of the parameters).

SGN(X) This function gives the sign of the arithmetic expression
within parentheses.

The sign is calculated by first examining the exponent of the
expression in FPA #1. If the exponent is zero, then the sign is
zero. If the exponent is non-zero, then the sign byte is tested and
provides the sign.

One of the bug tests can be modified

10 T = -1
20 T = T/2 : PRINT SGN(T) : GO TO 20

and produces a long stream of -ls, a final 1, and then Os.
SGN is short for SIGNUM.

SIN(X) This function gives the sine of the angle (in radians)
corresponding to the expression in parentheses.

The SIN is the function calculated to produce the COSine
function (see above). Beyond a certain angle, which you may care
to investigate, SIN always gives the answer O.

SPC(I%) This function prints a number of spaces on the screen
or printer. This function is used within a PRINT list of items.

The parameter can take values from 0 to 255, and it is used for
formatting output. (See TAB, later.)

SQR(X) Finds the square root of the arithmetic expression in
parentheses.

The value ofthe square root is worked out as a special case of
the power operator i (see earlier). The square root of X is
evaluated as X t .5. This value is not always totally accurate to
machine precision, and the best estimate is given by

10 DEF FNS(X) = (SQR(X) + X/SQR(X))/2

58

n n n n n n n n n ~ n
and a test is given by

20 FORI=l TO 10
30 PRINT SQR(I) - FNS(I)
40 NEXTI

For those few values there are two errors of9.31322575E-10. For
maximum accuracy. therefore. use FNS.

ST is a reserved variable (one ofthree) and it provides a record
of the status of the system after any input or output operation. The
full name of ST is STATUS.

Many of the errors which are more difficult to detect are not
treated by ST. and when one has reached the stage where one is
bothered about such problems. there are better ways.

ST is stored in RAM as one byte in a special location. not with
the other variables (location 144).

STEP Part of the FOR ... NEXT loop control structure. see FOR.

STOP Stops a program and indicates at which line the program
has halted. The program can be restarted using CaNT.

The operation of the routine associated with this command is
almost identical to that of END. with added information about the
line number.

STR$(X) This function converts the numerical expression within
parentheses into a string value. One of the principal uses for this
function is in formatting.

The routine is fairly good. for example.

PRINT STR$(1234500000000)
PRINT STR$(.OOOOOOOOOOOOOOl)

produce 1.2345E+12 and 1E-15. Note that the routine inserts a
leading space.

59

n n n n n n n n n n n

SYS X This command transfers control to a machine code
routine starting at the address following the command. The
machine code routine runs until a return from subroutine
instruction is encountered (usually an RTS instruction).

The range of values for the arithmetical expression must be
within the limits 0 to 65535, and parentheses are not needed.

To try

SYS 40960

completely kills the system, and the only way to recover is to
switch off. Location 40960 is the start of the BASIC system (held
in ROM) and SYS 40960 jumps to the start (where it should not
start).

TAB(I%) This is a print formatting command (compare SPC) but
one which cannot be used with a printer.

Unlike SPC, which moves a certain number over spaces forward
from the present position, TAB moves to an absolute position.
Unfortunately if the absolute position is backwards, the character
is printed in the next available position.

This is illustrated by

PRINTTAB(3);"$#";TAB(2);"!"

which leaves three spaces, and then prints $#!.

TAN(X) Gives the tangent of the angle in parentheses where the
angle is treated as being in radians.

The value is calculated as SIN(X)/COS(XJ, which effectively
means (see COS) that there are two calls to the SIN routine.

TI and TI$ Also known as TIME and TIME$, these reserved
variables give a reading ofthe internal clock.

TI gives values in 'jiffies', i.e. 1/60 second, and to calculate in
seconds (say in timing a program) use TII60. It is not possible to
assign values to TI. and a ?SYNTAX ERROR is produced.

TI$ measures time in a different manner, and also TI$ can have
values assigned. The values assigned must be strings of 6
characters in the form HHMMSS, where any hours value greater
than 23 (e.g. 590000) is set to 000000.

60

n n n n n non Q n n
The jiffy clock is stored at locations 160 to 162 (called TIME in

PREG page 314). and all three locations are set to zero when the
machine is switched on. There are various routines to calculate
TI$ from the TI value. and various input/output routines will
cause the jiffy clock to lose time. (Technically. the jiffy clock
counts interrupts. which are sometimes disabled for input/output.)

USR(X) This is an arithmetical function which uses special
machine code routines. Not to be used other than by the expert.

When called by say

Y = USR(4)

there is an immediate jump to locations 785 and 786. and these
locations point to the start of a machine code routine. The value in
parentheses is used by the routine to which the jump is made. The
parameter is placed in FPA #1 and the routine picks up that
value.

VAL(S$) We have already met VAL in many guises (see GOTO.
GOSUB. INPUT. amongst others). VAL takes a string expression
and tries to convert it into a number.

The null string is set to zero. and the conversion continues until
the first non-numeric character (except E). VAL uses the CHRGET
routine at locations 115 to 138 (PREG page 313). Most other
routines to interpret characters use CHRGET. and this is why
there are so many family problems.

VERIFY S$, F%, D% This command verifies the accuracy of the
saving of a stored portion of memory.

In most respects VERIFY behaves like file input/output
commands (which see). and actually uses a very similar routine.
The main difference is that the program is read but the bytes input
are compared with the contents of memory. If they do not agree.
ST is altered. and-more useful-?VERIFY ERROR is printed.

WAIT X,IO%, 11% This is a mostly pointless command. The C64
waits until the result of NOT(PEEK(X) OR NOT(11 %)) AND 10%
does not equal zero. If 11 % is not present then the check is against
PEEK(X) and 10%.

61

~:::{·~o~.:u. tJ:.U.Y.L.LJ:.t- .LJuW.u .:.:
- "."

J

nnnnnnMnr1nM

Other programming books available from Pitman

BASIC: A Short Self-instructional Course
M J Datey and C Payne

FORTRAN Reference Manual
P F Ridler

Introduction to BASIC
J B Morton

Methodical Programming In COBOL
R Weiland

Pascal (second edition)
W Findlay and D A Watt

Pascal for Science and Engineering
J McGregor and A Watt

Principles of Programming: An Introduction with
FORTRAN
E B James

Simple Pascal
J McGregor and A Watt

Structured BASIC and Beyond
W Amsbury

Structured Programming: A Self-Instruction
Course
R Thurner

The diagram shows,
how to arrange the
Pocket Guide in an
upright position.

Bend at score mark
indicated by arrow.

Pocket Guide

	Binder1.pdf
	back
	front

