

Issue number 10
July 2007

FREE to download magazine dedicated to all Commodore Computers available FREE at the

end of each month
from www.commodrefree.com

--- Forwarded message ---

I regret to advise the Commodore community that Jim Butterfield has
passed away. Jim died at 1:30 AM on June 29 after battling cancer

which infected many parts of his body.

His family advises that there will not be a funeral as such but a
commemoration of Jim's life is planned in the next month or two.

At the moment that is all the detail that I have to report.

We have all lost a truly wonderful friend and teacher.

Ernie Chorny

Commodore Free Magazine

 www.commodorefree.com Page - 2 -

Editor

Very sad news this issue with the passing of Jim
Butterfield on the 29th of June 2007, For many Jim
was an inspiration taking complex information and
changing it into a format many people found easier to
digest. I am sure he will be missed by a great many
people.

Jim`s Work should not be lost, we should pool our
efforts and create a website with all his works in one
place. Other younger users may not have read or
met Jim and should not have to go without his words
of wisdom.

I try to contact users and manufacturers that I would
like to read about as a Commodore user, for example
last month was an interview with worldlam about
potential purchase of CMD and why he is buying up
so much Commodore equipment. Some people felt
the interview wasn’t justified and a waste of time. I
disagree because it raises the question about CMD
and the problems Maurice is having in manufacturing
the products. Maybe Maurice should sell the
hardware and concentrate on the software side.

Many people feel angry to Maurice, I myself feel
some anger that Maurice took my money knowing full
well he could not provide the goods in the time scale
he promised. Also Maurice won’t answer any of my
emails, and requests for a refund of my money.

We need good companies supporting Commodore
but having a company take money and then have
problems providing the goods is just having a
negative effect on the community.

I was ready for some hate mail from the Worldlam
interview, although it wasn’t realy hate mail more that
people felt there were others who should have been
interviewed instead.

Ok interview them and send me the questions and
answers session, I will print the text in the magazine
remember the Commodore Free team is just ME, and
it’s a lot of work to produce in just 1 month, also
remember the amount of work that goes into asking
questions, some users agreed to interviews and I
would write the questions but never receive answers
for whatever reason, this is fine but it takes me more
time, I need your input and articles

Thanks
Nigel
www.commodore free.com

Can you help
If you are working on a project, hardware or software
based for any of the Commodore machines please
can you let me know, so I can include it in the
magazine.

Want to help but don’t know what to do and don’t
think you could write a review, just send a link, don’t
worry if I may have seen it or not, send the link so I
can contact the creator for more information

Thanks

Contents

Editorial and contents Page 2
News Page 3-5
Programming The great adventure Page 6-8
Interview Amiga hardware book Page 9-10
Interview Codebase64 Page 11-12
Hex files part 5 Page 13-14
Potrace F.A.Q Page 15-16
Interview Potrace Page 17-18
Interview Slang Page 19-20
Slang Quick Reference Page 21-22
Slang Tutorial Page 23-26
Interview HDD64 Page 27-28
Interview Jim Butterfield by Jim lawless Page 29-31

Commodore Free is a FREE to download magazine
in PDF TEXT D64 image and Html normally
produced at the end of every month

Commodore Free Magazine

 www.commodorefree.com Page - 3 -

NEWS

The Internet for Commodore C64/128 Users by
Gaelyne Gasson is now available as a PDF
download from the Commodore Central Market,
which now is part of our online store. We actually
have two PDF versions available. One is an exact
page-for page copy of the 3rd edition for those who
want the book completely as it was written and
formatted. The other PDF version has been edited to
include 'PDF bookmarks' for chapters and
subheadings, and references to other chapters have
been made into clickable links. Also URLs that are
still valid have also been made into links.

TIFCU is not just for Commodore users these days.
Several years ago we moved our servers to Linux,
and for the first few months we found TIFCU to be
invaluable for looking up how to do basic things on
our system. We've heard from several other people
who've found it useful for use with their Linux
machines as well.

The price is $10.00 Australian (about $8.50 US) and
once payment is received you can download the PDF
file immediately from the store.

We're running a special offer on the TIFCU book and
Homestead Plus Membership. If you purchase a
Homestead Plus Membership ($35 AU or about $29
US), you can receive the book at half price.
Homestead Plus is the name of our Telnet
memberships as it better reflects the fact it's used by
members of the Homestead mailing list. It's also quite
OK to have a membership without actually using the
Telnet services. Some folks have done this as a way
to donate to our cause of supporting Commodore
computing and naturally we are pleased with all our
Homestead Plus Members whether they make use of
it or not. :-)

The special offer for TIFCU at half price also applies
to Homestead Plus Membership renewals paid for via
our online store.

We've moved the Commodore Central Market into
the same shopping cart system that we use for other
items we have for sale (gameboy items, phone
covers, webcams, breath testers and other various
items). The C= Central Market has it's own area
which can be found at:
http://shop.vcsweb.com/index.php?main_page=index
&cPath=24

One of the features of our new online store is that
people can write reviews of products, and we're
looking to add more reviews to our various C=
Central Market items. If you've purchased something
from the market in the past and write a review of it,
we'll give you 10% off your next purchase. Just visit
any item in the store, click on the 'Reviews' link and
the next page will have a link to submit your review. It
will ask you to login or to sign up as a store member
before you can submit your review - this will make it
faster to place an order and allow us to give you the
10% discount.

Please come have a look at the new C= Central
Market today! The link is:
http://shop.vcsweb.com/index.php?main_page=index
&cPath=24

All the Very Best,
Gaelyne & Rod Gasson

High Voltage SID Collection Update #47
Date: June 07, 2007

Resulting Version: 47
Previous Version: 46

As usual, the update and the all-in-one packages are
available from http://www.hvsc.c64.org After this
update, the collection should contain 34,127 SID
files!

This update features (all approximates):

1127 new SIDs
19 fixed/better rips
8 fixes of PlaySID/Sidplay1 specific SIDs
8 repeats/bad rips eliminated
773 SID credit fixes
700 tunes assigned a sidmodel flag
15 UNKNOWN demo tunes identified
29 UNKNOWN game tunes identified

Main Composers featured in this update:
(Artists marked with NEW are either completely new
to the HVSC or they get their own directory in this
update)

A-Man - venturing into Pollytracker domain now!
Bart
Richard Bayliss
Bernhard Burgstaller (NEW)
Chantal Goret (NEW)
CRD - kindly donated his complete collection to us
Dexter (NEW)
Eco
Fanta - listen to his Desert Dream conversion!
Fox
Gop
Greg
Gregfeel
Harlequin
Heinmuck
Hukka
Image
MAC2
Mac / Radical
Merman
Moogle Charm (NEW)
Nastiness Inc.
Omoroca (NEW)
Pernet
Q-Man
Raze
Rio
Sax
Sharp
Skam (NEW)
Slayer
STP Sound System
Tonid (NEW)
Topaz
Vintaque
Zeta (NEW)

Commodore Free Magazine

 www.commodorefree.com Page - 4 -

HVSC News
Motion joined the HVSC Crew

Steppe retired from the HVSC admin post.
Rambones will take over, good luck!

The new directory structure requires a new update
tool. It got updated for Linux and Windows, so we
feel the majority of users won't have a problem.
For the exotic platform users: The source code of
update tool 2.8.4 ison the HVSC website in the
Downloads section. If you manage to compile it
on your specific platform, feel free to send it over!
And by the way: You can still run update #47 with
update tool 2.8.3.It will complain heavily that the
/Hubbard_Rob/ directory is not where it expects it to
be, thus assuming you did something fundamentally
wrong. Just ignore the warning, nod away the next
"y/n are you sure you're sure?" question and it will
work anyway.

SID related news bulletin
STIL Bonus released For all you STIL junkies out
there curious about some of the module tunes
mentioned in the STIL, the HVSC team now offers
the STIL Bonus:

 http://www.prg.dtu.dk/HVSC/STIL_Bonus/

 The STIL Bonus is a collection of MODs, XMs,
MP3s, and other assorted tunes referenced in the
STIL. This collection was previously available under
a different name (MCOT 64) but on a much smaller
scale. The collection is now 63MBs compressed,
and offers some very memorable game and scene
tunes from the Amiga, PC, and other sources.

 The collection was put together in order for the
HVSC team to verify several STIL entries for
correctness. We then thought it would be a nice
collection that the public may also enjoy. For some
of you, you may have never heard these tunes. For
others, it may be a trip down nostalgia lane. You may
even find that you actually prefer some of the SID
versions while for other cases the modules/MP3 will
be preferable.

PSID64 v0.8 is out!
The popular .sid->.prg converter saw another update.
New features include:

 * Built-in support for Exomizer.
 * Added support for a joystick in port two to control
the player.
 * Added clock to indicated running time.
 * Added -i option to override the initial song to play.
 * Added support for SID tunes written in BASIC.

 Grab it here: http://psid64.sourceforge.net/

Ebay News
Commodore FREE I managed to find this on ebay

Commodore 64 Disk-Rob Hubbard and Martin
Galway Music

You are bidding for a Commodore 64/128 disk
comprising of VERY RARE music demos by two of

the leading artists from the eighties, Rob Hubbard
and Martin Galway.

Side A is a very very rare music collection of Rob
Hubbards most famous tunes. You will be hard
pressed to find this demo disk anywhere nowadays,
very rare and highly collectable, I doubt you will find
this on any rom collection, this demo is not even
included on the TOSEC Commodore set which
includes 1000's of games, demos, compilations etc.

Simply load the disk into your drive and press keys
A-Y, some of the tunes on this disk include:

Crazy Comets
Monty on the Run
One Man and His Droid
Thing On A Spring
Zoids
Bump Set Spike

and much much more

Side B includes a great collection of Martin Galway
tunes from yesteryear, again this demo disk is very
hard to come by. Again, simply load in to your
Commodore and press keys A-O , Some of the tunes
include:

Highlander
Ccean Loaders 1-3
Parallax
Comic Bakery
Hyper Sports
Wizball
Rambo Loader

and much much more.

This disk is in full 100% working order. Bid with
confidence from a trusted eBayer!
Keep an eye on my auctions for more of this type of
material in the future.

Postage will be free if purchased with buy it now! (UK
ONLY)

Commodore Free
Selling price was £4.80 + 1.50 postage costs for what
looked like a new disk with colour picture of rob and
Martin on the Cover, but it looked like it was just
produced, couldn’t you just download the sid files
Free. Expect a large amount of these disks to appear
soon. To the buyer it must have been worth it, but I
remember years ago downloading some of these
compilations, and somewhere I must still have
around 10 disks with music files on, with a nice front
end press A for XXX B for YYY etc.

QVC
Qvc in the Uk is a shopping channel, it featured a pc
special with Commodore, the program started with an
about Commodore brand (of old) and theCommodore
64 and Amiga machines, The presenter confessed to
owning an Amiga

Then the presenter and Commodore Representative
went thorough the machines specifications and
different cases, the unit was available with monitor
keyboard and speakers or just as a base unit, They
have a retro design that looks like a Commodore 64,
very neat looking case, Maybe they should sell just
the case with no internals

Commodore Free Magazine

 www.commodorefree.com Page - 5 -

IDE64 V4
Prototype

As you can see in the picture the IDE64 V4 prototype
is ready. Although there are still some work need to
be done before it will be finished, we would like to
present one of the major improvement which is
increased performance.

The IDE64 V4 is faster by 16% than IDE64 V3.x and
even 37% faster than RamLink while loading the
same amount of data.We would like to thanks to all
C64 users (who asked us about IDE64 availability)
for the patience. We are sorry IDE64 is not available
at the moment.

posted by Josef at 5/21/2007

Commodore Scene
VGA project
terminated

Known as C=VGA

www.commodorescene.org.uk

Alan has recently informed me he has terminating the
Commodore VGA project. The project was to design
a self contained unit to connect Commodore 64 and
128 to standard VGA monitors, the unit would also
allow the use of 80 columns and all colours on LCD
and CRT monitors

Alan released a statement to me

“I didn't get anything although I did see the working
prototype many years ago. I've closed the project on
my web site so its common knowledge, so please
pass on this information. BUT, I am still going to try
this new device(s) as a matter of urgency and I am
ordering the parts today so I would appreciate any
mention of the C=VGA closing also mentions that I
am actively sorting out an alternative which I hope to
have completed by the end of July.”

Well the meeting in Florida didn't take place and so I
have had to make the decision to close this project.
All money will be refunded.

However, that is not the end of the Commodore/VGA
story just yet. Please pop along to
http://home.comcast.net/~kkrausnick/c128-vga/c128-
vga.html and see what is happening there. I am
ordering the components to make the same set up
myself and if all is well I will post a components list
and installation instructions up here during July

So closes another project, Alan has said to “watch
this space though” Alan has said will be refunded.
Lets hope Alan can arrange another suitable
alternative

.

Commodore Free Magazine

 www.commodorefree.com Page - 6 -

Programming The Great Adventure
of Creativity and Logic

by Dave Moorman

Come with us as we enter a strange world of symbolic
logic. Process Logic, to be exact. If you do those logic
problems found in puzzle magazines, you know Classic
Logic. If you found Geometry enjoyable in high school,
you know Proof Logic. And if you studied philosophic
logic in college, you are aquainted with Symbolic Logic.

Process Logic is a combination of Proof Logic and
Symbolic Logic -- plus three wonderful additional
features. Like Proof Logic, you will be arranging
statements and commands in a particular order -- not to
prove some truth, but to affect some action in the
computer. In the process, you will use Symbolic Logic to
manipulate values.

The three additional features are
1. symbolic value holders(called variables and arrays),
2. loops
3. conditional commands. It is the ability to make
conditional changes in the flow of logic that gives a
computer its ability to "think."

The C-64 includes a built in BASIC interpreter.
Computers are controlled with three types of language.
At its very heart, the computer processor recognizes
certain values as "instructions." This is built into the
machine itself, and is called Machine Language.
EVERYTHING the computer does is really done by
means of ML.

ML is nothing but numbers, that is, numeric values.
Remembering such values and the tasks they perform
can be extremely difficult for humans. We need at least
some easily recognizable code "words" to remind us
about what is going on. The ML programmer writes
these "words" and the computer uses a program to
ASSEMBLE that code into ML -- which is what the
computer actually understands. The code the
programmer writes is called ML, or more correctly,
Assembly Source Code.

But a computer can be smarter than that. Assembly ML
source code has a one-to-one relationship with the code
the computer understands. Each instruction does one
and only one very small task. Keeping it all straight can
be quite frustrating.

However, the computer can be programmed to read
words, numbers, and other characters and translate
them into complex groups of ML instructions. Such a
language is called Compiled. The program that
translates Compiler Code into ML Code is called a
Compiler. A compiler compiles an entire program or
routine at a time. If the programmer has made a mistake
the compiler cannot understand, it reports errors -- but
only after chugging through the whole source code. So
the programmer writes, compiles, debugs, recompiles,
executes, rewrites, recompiles, etc, etc. This is an
arduous task, to say the least. It was even more
frustrating back in the 1960's when the programmer had
to punch cards with each line of the program and take
the "batch" to the computer room. The operator would
run the batch and return a paper print-out to the
programmer in a few hours. Or days!

At that time, computers (big mainframes) were finally
becoming fairly fast and powerful. A terminal could be
directly connected to the computer so the programmer
did not have to wait. But the computer then did a lot of
waiting -- for the programmer's input. The concept of
time-sharing was developed, where the computer could

switch between many different terminals, running
different programs at apparently the same time.

 To take advantage of time sharing and to provide a
language that was easy for students to learn and use,
BASIC (standing for Beginner's All Purpose Symbolic
Instruction Code) was written (invented) in 1963, at
Dartmouth College, by mathematicians John George
Kemeny and Tom Kurtzas. The commands and math the
programmer typed looked enough like English, making
reading the code relatively easy.

But the big advantage of BASIC was that it was -- and is
-- an Interpreted Language. During the user's tiny slice of
processor time, a single BASIC statement would be
read, turned into the ML Code necessary to execute the
command, and processed. Then the processor turned to
another terminal and program to process. On the BASIC
program's next turn, the next BASIC statement would be
interpreted and executed.

The great thing about an interpreted language like
BASIC is that the program runs until an error occurs.
Then it stops and delivers an error message. The
programmer can fix the error and rerun the program.
This made BASIC very interactive. The programmer did
not have to get everything right before seeing how at
least SOME of the program performed. In December of
1974, the January issue of Popular Electronics published
news about the first home computer -- the Altair 8800.
Two Harvard students, Paul Allen and Bill Gates saw the
magazine -- and their future. They dropped out of college
and rushed to Albuquerque, NM, where the Altair was
being built.

They realized that these home computers needed an
"operating system" -- a simple way for users to interact
with the machine. Bill Gates wrote Altair BASIC using a
mainframe computer with an emulator that made it act
like the Intel 8008 microprocessor used by the Altair. His
BASIC included ML code to read the keystrokes and put
the BASIC program into memory. Other code would read
BASIC commands and jump to ML routines that
performed them. The whole thing fit in just 4 kilobytes of
memory (which doesn't seem like much today, but was
rather expensive at the time).

Gates and his newly founded company -- MicroSoft --
went on to write BASIC for nearly every home computer.
BASIC 2 used about 16K of memory, but was
remarkably powerful. Most anything a programmer
wanted to do could be done in BASIC. True -- it was
slower than straight ML. But is was easy to learn, faster
to write, and more-or-less portable between different
makes of computers.

When in 1978 Commodore Business Machines
produced the Personal Electronic Transactor -- the PET -
- they turned to Microsoft for BASIC. Commodore CEO
Jack Tramiel bought BASIC 2.0 outright for $10,000 from
cash-strapped Microsoft.

So, in the fall of 1981 when Commodore designed the C-
64, they already owned the BASIC 2.0 operating system.
The C-64 has color video and other features for which
BASIC 2.0 had no commands. But that was OK. Game
designers would certainly use fast ML for their code. And
BASIC 2.0 has commands which can directly read or
write information to places in memory that will control
these features.

Commodore Free Magazine

 www.commodorefree.com Page - 7 -

On the up side, the C-64 was designed to be modified
with ML code. Though BASIC 2.0 was in Read Only
Memory (ROM) and could not be changed, certain
critical jump locations were in Random Access Memory
(RAM -- which can be altered). By changing the jump
addresses, a programmer could add new commands to
BASIC and perform all sorts of miracles the designers
never dreamed of. The designers did include "paddle
controls" for then-popular games like Break Out. These
controls proved perfect for adding a mouse.

All in all, a C-64 was a fantastic machine in 1982 when it
was unveiled at the January Consumer Electronics Show
in Las Vegas. Its capabilities -- especially as a "game
machine," and its incredible price that dropped to less
than $200 in 1994, kept it in production through 1992.
Over its decade of manufacture, some 27 million units
were sold, making the C-64 the "Best Selling Computer
of the 20th Century," according to the revered Guinness
Book of World Records (2000-2001).

In the late 1990's, PC programmers who loved the C-64
began writing emulators to allow a PC to run C-64
programs. The best of these, the Versatile Commodore
Emulator, continued to be improved until it brings an
almost perfect C-64 to the world of Windows. With VICE,
all the great games published over the years on
LOADSTAR are now at your finger tips. And to top of a
remarkable (if often ignored) history, a C-64 Direct-to-TV
game joystick was marked in 2004 through QVC, the
shopping channel. Over 200,000 unites were sold
between Thanksgiving and Christmas.

Thanks to the designer -- Jeri Ellsworth -- the computer
inside the joystick is a real, honest-to-goodness C-64.
With nine wires soldered to the credit-card-sized board,
a user can connect a PS2 keyboard, Commodore disk
drive, and an external power supply.The Commodore 64
- more than any other first-generation, 8-bit computer --
has proved itself as THE computer for gamesters and
hobbyist programmers all over the world.

INSIDE the C-64
Every computer has three essential parts --

1. A processor which executes ML instructions and does
math and logic operations.
2. Input/Output capabilities -- for keyboard, mouse,
joystick, printers, and disk drives.
3. Memory -- "itty-bitty boxes" called bytes which can
each hold a value of 0 through 255.

 Today's computers can handle up to 8 bytes at a time,
making them incredibly fast. Such speed is necessary for
processing sound recording, photo-quality images, and
real-time videos.

The first generation computers (such as the C-64) had
processors that could handle only one byte at a time. A
byte is composed of eight bits -- little switches which are
on or off, 1 or 0 -- hence these are called "8-bit
computers." A two-byte value is used to point to a
particular byte in memory, which means that an 8-bit
computer is limited to 256 x 256 or 65536 bytes of
memory. One kilobyte is actually 1024 bytes, so
65536/1024 equals 64. Thus the name Commodore 64.
But the C-64 has more than 64K of memory. The ROM
which holds all the ML code to make BASIC wois
"banked" on top of RAM. By "flipping" certain bits in the
computer, an ML programmer can set ROM aside and
use the RAM "underneath."

As mentioned before, even though BASIC 2.0 is
powerful, ML programmers have created a number of
BASIC extensions and ML modules to add features for
BASIC programmers. In 2004, LOADSTAR featured
DotBASIC which adds 72 commands to BASIC 2.0 --
including full mouse control and Event Driven
programming. Other modules play music and sound
effects in the background, enable easy access to bitmap

graphics, and even let ordinary BASIC programmers
operate sprites (movable screen objects) and do split
screen effects.

THE LIMITATIONS
The 6510 microprocessor in the C-64 operates at 1
megahertz (millions of cycles per second) -- which is
slow compared to the 8+ Gigahertz (billions of cycles per
second) Pentiums now on the market. However, 1Mhz is
still 1,000,000 clock cycles per second (not slow, really)
and 6510 ML instructions are quite efficient compared to
Pentium instructions. The screen is comprised of 60,000
pixels -- 320 x 200. In multi-color mode, two bits
determine which of four colors will be displayed as
double-wide pixels (160 x 200). The result is a bit grainy.

Text characters are all 8 x 8 pixels in size, and can
display the character "cell" color or the background color.
In multi-color text mode, double-wide pixels can present
the character color or one of three "universal" colors. The
font includes 256 characters, but the programmer is not
limited to the two built-in fonts. With a font editor, one
can design characters as any 8 x 8 combination of
pixels. Moreover, the programmer has eight 24 x 21 pixel
sprites -- movable objects -- that can be designed and
displayed anywhere without disrupting the screen.
The whole screen can be nudged, pixel by pixel, in any
direction, enabling smooth scrolling effects -- especially
when combined with split screen capabilities.

Sound is limited to three synthesized voices. The
synthesizer has only Attack, Decay, Sustain, and
Release envelope parameters, but does include various
filters and resonance settings. Waveforms include noise,
sawtooth, triangle, and adjustable pulse. And, with some
cleverness, 4-bit recorded sound can be recorded and
played by the computer.

So while the C-64 has certain limits, it is crafted in such
a way that truly capable programmers can accomplish
most anything computational. I have seen real-time
three-dimensional displays (like DOOM, only very low
resolution), the MGM Lion roar, and hundreds of other
truly amazing sound and video effects. But most
important, anything one can do on any computer can be
at least MODELED on the C-64. The model may be
rough, but the concepts, skills, and personal satisfaction
in accomplishing effects are the same as with a big
computer.

The day may come when you will want to tackle C, C++,
C#, Java, Java Script, Perl, or Visual Basic on a PC.
EVERYTHING conceptual and logical learned on the C-
64 will apply to any other computer or language.

The C-64 is where one starts -- as did thousands of
today's professional software designers. And hundreds
of hobbyist programmers still find enough challenge to sit
up all hours of the night hunching over their C-64s, fixing
just one more thing!

ON TO BASIC 2.0
 When you turn on the C-64 (or launch VICE), the screen
displays some title information, then presents the word
READY.

 READY? Ready for what?

 Ready for anything you want to do! Type:

 PRINT "HELLO"

and press <RETURN>. (On VICE, the double-quotes are
<Shift-2>, and <RETURN> is the <ENTER> key.)

The computer immediately complies -- printing to the
screen:

 HELLO

Commodore Free Magazine

 www.commodorefree.com Page - 8 -

 Type: ? 5 + 7 * 10

(VICE: the plus is the <=> key, the asterisk is the <]>
key.) (Remember to press the <RETURN> which tells
the C-64 to go ahead and do it.)

 75
The question mark is short for PRINT. In the first
example, you printed a STRING, a group of characters in
order. You marked off the beginning and end of the
string with double-quotes.

In the second example, you printed numeric values,
multiplied and added according to mathematic rules
(multiply and divide are performed first, followed by
addition and subtraction). Both of these examples are
examples of Immediate Mode. The C-64 immediately
responded to your commands when the <RETURN> was
pressed.

 Now Type:
 10 ? "HELLO"
 20 ? 5 + 7 * 10

(pressing <RETURN> at the end of each line).

Nothing happened -- at least not obviously. But inside
the C-64 a lot has taken place. Type:

 LIST

and the lines appear again. You have written these lines
in Program Mode. The difference between Immediate
Mode and Program Mode is very simple ---

If a NUMBER comes first in the line, the line is put in
Program Memory. You can look at the program with
LIST. If a command comes first, the line is in Immediate
Mode and processed immediately.

 To run your program, Type:

 RUN

Wonderful! You have written your first program!
The number you use at the beginning of a Program line
determines where that line occurs in the program. Type:

 15 ? "WORLD"

and LIST

 10 PRINT "HELLO"
 15 PRINT "WORLD"
 20 PRINT 5 + 7 * 10

 Since every program line must have a number and will
be ordered by its number, it is a good idea to use 10's as
you start writing your program. Then, if you want to tuck
something in between two existing lines, you can -- just
like you just did.

VARIABLES
A variable is a "box" that contains something. Each
variable has a name, comprised of one or two letters or a
letter and a number. Longer variable names are OK
(unless they contain a BASIC command word), but the
computer will not "see" more than the first two
characters.

 Let's wipe out your first program. Type:

 NEW and LIST

 It's gone. Now Type:

 10 A1$ = "HELLO"
 20 A2$ = "WORLD"
 30 A1 = 5
 40 A2 = 7

 50 A3 = 10
 100 ? A1$ + A2$
 110 ? A1 + A2 * A3
 120 END

 We have two types of data -- string and numeric. So
we have two types of variables -- string and numeric. A
string variable has a dollar sign after the one or two
characters. A numeric variable doesn't. String variables
cannot be part of a math formula -- but a plus sign will
string two or more strings together. A numeric variable
cannot be strung onto a string -- but they can be part of a
math formula.

 The C-64 has the greatest programming interface ever
put on an 8-bit computer. If you want to change a
program line, all you have to do is put the line on the
screen (with LIST), move your cursor up to it, type your
changes onto the line, and press <RETURN>. To list one
line, include the line number after the LIST command:

 LIST 100

 Other list possibilities include:

 LIST -100 list everything up to line 100
 LIST 100- list line 100 and everything after
 LIST 30-50 list all line from 30 to 50

 As a list is scrolling, you can slow it down by pressing
the <CTRL> key (<TAB> for VICE), or stop it by pressing
<STOP> (<ESC> for VICE).

 List line 100:
 100 PRINT A1$ + A2$

and change it to
 100 PRINT A1$ + ", " + A2$

Press <RETURN> then RUN the program.

 Play around with this program for a while! Try all sorts
fo things. You can print strings and numerics together on
the same line:

 100 PRINT A1$ + ", " + A2$; A1 + A2, A3

 Use a semicolon to separate stuff you print. Use a
comma to tab items to columns.

 Try this:
 90 T = A1 + A2 * A3
 95 ? T;

and run the program. Or do this:
 80 A1$ = A1$ + A1$
 85 A2$ = A2$ + A1$

 Try every combination of variables and print you can
think of. It is YOUR program. And there is nothing you
can do from the keyboard that will hurt a C-64!
NOTHING!

ABOUT ERRORS
 You have surely seen some errors by now. Two things
about errors:

 1. The program stops short at any error, and

 2. The C-64 always says READY. after an error.

 List the line and try to figure out what is wrong.
SYNTAX means that something you typed is
incomprehensible to the stupid machine. Fix
it! Then try again.

[This is just the beginning! Do take time to play with all
the concepts presented. Only with play will you learn
how to apply the commands to your program.]

Commodore Free Magazine

 www.commodorefree.com Page - 9 -

Interview with Mario Misic
The big book of Amiga Hardware

http://amigahardware.mariomisic.de/index_e.html

Q - Please introduce yourself to our readers

Dear readers, I’m a 39 years old and I work as the
Managing director at a Tyre shop. Since the age of about
10 or 12 years old, i have used Commodore computers
and have learned to love them.

Q - What was your first experience with Computing and
especially the Commodore
Brand?

My first experience with
computers was in the Middle
of the 80's and the first
computer I played around
with was a VC20 later I used
a Commodore 64, before
eventually using the Amiga.
Unlike most people, I don't
play games on these
machines. From the start, i
asked myself: "why has the
Amiga (workbench)-window
4 corners and not six, eight
or even more?” “Why are
they rectangle and not
round?” “Why must I use a
machine in a certain way,”
“Why can't use the machine
in a way, which I WANT?”

Q- What Commodore machines do you own and which
of these are still actively used by yourself

Within my Commodore-time, I first used the VIC20, then
later the C64, Then moving to a C128 before I came to
the AMIGA. All machines have fascinated me for a long
time. I learned about an absolutely new technology and I
was very interested and keen to learn, all about how this
new technology worked. Now, in the 21st century, no
other computer has reached the so called “AMIGA
feeling.”

Q - Please tell our reader about the Big Book of Amiga
Hardware project, what is its main aim

The Big Book of Amiga Hardware (BBoAH) was created
by Ian Chapman over 8 Years ago. Over the years, Ian
tried to find some Users, to host a mirror of the BBoAH.
But no one had the power to keep a mirror running for
long. A few years ago I set up a German mirror for the
BBoAH and i was the first one to mirror the website,
Additionally to Ian's main BBoAH I established a mirror
and provide this "step by step" guide with an additional
part in the German language The main aim of the
BBoAH is, to support all interested people with
information about every piece of hardware created for
AMIGA computers. Without becoming a commercial
project.

Q - How many people contribute to the project will you
accept information from anyone

Over the last 9 years, hundreds of Users have
contributed the BBoAH with different kinds of information
about AMIGA related hardware. So many people have
supported the BBoAH, that it’s impossible to name them
all here. Some people have sent us Images. Others sent
us further information, documentation or special jumper
settings, manuals, install introductions or driver disks.
Without this support of the AMIGA community, the
BBoAH, today, would not be the resource it is.

Q - So anyone can send information, if our reader

Thinks he has some value to add to the project how
Would he contribute?

Everyone is welcome to send contributions to the
BBoAH. Behind the BBoAH there is a small team of
people, who will try to verify the contributions and do the

updates on the various items
of hardware. We try to give a
response to each contributor -
if his suggestion becomes part
of our database. But don't be
angry, when you don’t receive
a reply. Maintaining the
BBoAH is a lot of work and
time, more time than you can
imagine, and sometimes one
of the contributors could be
forgotten.

Q - So there images of the
products as well as text

We like to receive as much
information as possible for
each item of hardware. We try
to collect all information about
Amiga hardware. This could

be: Images, hardware descriptions, Jumper settings,
install disks and much more.

Q - Was it the projects intention to provide things
like driver disks and installation software

The main intention of the BBoAH is, to provide the
AMIGA Community with all information they would need.
This will include as stated earlier driver disks, installation
guides and manuals. Until just one year ago, you may
remember, a lot of those files were provided by the
BBoAH, for download, but For legal reasons, the
download area of the BBoAH had to be closed. In the
last year some copyright owners "attacked" the BBoAH
and forced them to close the download area. However
we continue to collect all related suggestions. But we
can't name a date, when download area becomes live
again.

The BBoAH Team is annoyed about copyright owners,
who actually support the AMIGA platform in NO WAY,
but "attack" the BBoAH with legal and copyright. The
BBoAH was and is still a hobby project and we don't
have plenty of money to pay lawyers to defend the
BBoAH against legal issues. The Users of the BBoAH
have no idea, how complicated the background of the
BBoAH is.There are a lot of complications we have to
consider. These things we try to keep away from our
users.

Commodore Free – Copyright yes I understand you’re
problems I have tread on this path myself

Q - Do you have images of the boxes the items came
Packaged in, is this something you would like to see
for the project

At the moment, we don't collect images, of boxes or
packages. Pictures of Boxes only have an individual
background and do not really affect the Hardware
information and hardware use.. The BBoAH won't be a
museum. It will be a guide for those users, who use the
AMIGA's day by day.

Commodore Free Magazine

 www.commodorefree.com Page - 10 -

Q - What is documented, is it just make model serial
Number or are there things like instructions and
Installation guides etc
In past the BBoAH provide the hardware support with as
much information as was possible. But since we've
touched by legal reasons we've come together, to come
closer to the will of the right owners. We don’t want the
BBoAH getting in danger and having to be closed
because of legal reasons.

While Ian Chapman owns the BBoaH, the english law
was considerably. After Ian has given the BBoAh into my
hands, German law will take affect to the BBoAH. For
this reason i made a relationship with the geman
publisher “Amiga-Future". Amiga-Future is a German
Software publisher and also a German AMIGA related
print magazine, the magazine has been running for a
long time. My intention in this way was, that a
professional publisher with his Knowledge could help
with the running of the BBoAH.

Q - How are the entries verified does someone look
over them before they are placed on the website

Suggestions as they arrive will be verified by a lot of
Amiga experienced users worldwide, before they
become an official BBoAH-Update. The actual BBoAH
team is supported by some well known german
hardware developers who have been in the AMIGA
market for many years. Because of this, the BBoAH
team has a lot of knowledge, but cannot know all things.
To ensure that BBoAH has correct entries. People are
welcome to amend information, So the BBoAH never will
be complete and everybody was pleased, to Change
incorrect information.

Q - Is there a downloadable version of the project or
is it just a web only, was the project intended to be
a commercially printed book

Ian Chapman established the BBoaH As a HTML-based
project at first for many years until the early 2006. The
BBoAH until this date is available as part of the "kicktart
Archives on DVD" In 2006 the BBoAH has changed it's
structure from a HTML based to a database provided
site, which will provide the BBoAH with a lot of more
features. Actually this way provides the "Sort by
Manufacturer" or the "Sort by connection" -feature. Also
the multilingual BBoAH become available because of
that. At the Moment, the BBoAH is available in english
and german language. Because of the possibilities we
try to provide the BBoAH in other languages, too. If
someone would like us to provide the information in
another language please contact us, your mail is
welcome every time.

Q - Have you come across any problems while compiling
the list

Very often we get mails with new/additional information.
To keep them all up to date just in time alone is the
biggest "problem" we have. A massive problem in the
near past was, to convert the known HTML based
BBoAH into a MySQL based structure. Ian Chapman
solved this problems by himself, and most users would
not have noticed, that the BBoAH "structure behind was
changed".

Q - Is there any hardware you particularly want to know
the details of

We've a lot of hardware we don't know anything about.
For this reason, we've crated a category called "Mystery
Corner" in which we introduce unknown hardware to
collect information, until the mystery’s solved by the
community. In past, all our "Mysteries" have been solved
by some of our readers.

Q - what do you think personally of the current state
of Amiga, are things finally starting to look up again

for the machine

The current AMIGA state is quite complicated.
It's not possible to say where the AMIGA will go in future.
I have a dream that the AMIGA would again reach the
status, that it had in the past. But I’m old enough to let
this dream be a dream. Today, is another time and the
technical side is another matter all together time moves
on and a machine from The early 80's would need
updating, for the AMIGA to have a real chance of a
comeback.

Q - What in your personal view is an amiga, for
example is it just the software (operating system)

In my mind, the AMIGA is NOT hardware and NOT
software. AMIGA is more a feeling, which is much more
hard to explain like the feeling of LOVE. Amiga was and
is a feeling you have to live to experience. The Amiga is,
for those people, who are in my generation, a machine
which came out at the right time in the right place.

Q - when will the project finish, will this project run
indefinitely, and how will you know when all hardware is
documented

I don't think that the BBoAH ever will be finished.
There is so much very old hardware, which is not listed
in our database, because no one has any information
about this item. From time to time we get new info about
interesting old hardware AND complete the database
with the new info.

Also the AMIGA community worldwide develops more
new and interesting hardware. These items are also
listed in the database we need more information for
them. For example I’d like to name the A500-Clockport-
card for example. The idea for this item was born in a
german Amiga community. It takes a lot of months to
discuss this item and the users wrote down their wishes
for the device. Also a lot of german AMIGA hardware
developers are users of this forum. At last, one of the
hardware developers produced the hardware for the
community. As you can see, you can see no end of the
BBoAH.

Q - What question would you have liked me to ask

As a german, I’ve heard nothing about your great
magazine. I feel this is harming the community; we need
to establish much more communication between AMIGA
and Commodore users all over the world. Especially: I
would like to ask what is the thinking of your British
readers about the "German krauts"? Is this a justified
prejudice?

That's a really silly question, i know. But it was a
question I’m very interested in, because we German
AMIGA'ns have fewer contacts with British AMIGA users
than we would like to have.

Q - If you were given 1 million GBP pounds what would
you spend the money on

If i have 1 million GBP, i'd like to spend them in the same
way as i'll spend the money, which Ian has collected with
BBoAH donations as I announced some month ago. If
anyone had an absolutely new idea for any amiga
related hardware, the BBoAH would like to be involved in
the project, helping the idea. If the most of the People
prefer that idea, the collected money will be transferred
to this project.

Thank you very much for this interview and I wish you
many success for your magazine in the future.

Kindest regards,
Mario Misic

http://amigahardware.mariomisic.de/index_e.html

Commodore Free Magazine

 www.commodorefree.com Page - 11 -

Interview with Frantic
Codebase 64

http://codebase.c64.org/

Q - Please introduce yourself to our readers

In the c64 demo scene I am known as (not necessarily
well known) Frantic. Member of a demo group called
Hack'n Trade and sole organiser of the C64 parties
known as LCP (Little Computer People) from 1998 to
2005, and then together with other people, organiser of
BFP (Big Floppy People) last year, and also this
summer, in July. I live in southern Sweden in a city
called Lund. I spend my days as a PhD student in
Linguistics /cognition /interaction (working with gestures
and such things), being with my wife and kid, and coding
C64.

Q - What is your first experience of Commodore

I've had a C64 since I was a kid. I think I bought it 1987.
Playing lots of turbotape games and so on. Later on I
bought an Amiga 500 when that was hot and fresh, and
it was first on the A500 I started creating my own things,
like music and some simpler code.

Q - How did you learn to program

I didn't start coding "seriously" until later on when I
moved from A500 to PC, and eventually got quite bored
with the sterile feel of the PC computers. That's when I
kind of turned back to the computers of my childhood
with a new take on them. This time around I din't play
games on them but rather all the other things that I never
did back then and never really understood how to do
until I got a little older.

Q - what advice would you give would be programmers

Take your time to think about what you are interested in
REALLY. For example.. If you think about coding some
RPG game for the C64. Are you just longing for that
perfect RPG that no one else never did, or are you
actually longing for travelling the road that leads to this
game? That is, the actual coding part of it. If the answer
is no to that, I think you better stay away from coding.
Although you get a kick out of finished products of
course I think the main drive behind coding necessarily
needs to be fondness of the activity of sitting by your
computer and just code.

The same thing applies to the process of becoming a
coder. Again you can't just long for the "finished
product", that is, being a skilled coder. You have to like
the road leading there too. Beginning with simpler things
and moving one step at a time. Reading some docs,
some tutorial, trying out some assembler, and so on.

Q - From various users feedback, it seems actually
getting the time to sit down and read about coding is
difficult with real world (jobs, children etc) can
you comment

Well, in one sense I don't this has much to do with me or
with C64 coding per se, but of course people have "real
lives" to. But you gotta decide what you want to do in life.
Do you want to spend time coding c64 or not? Or do you
rather focus on something else? (Little of everything =
nothing done at all.) If you want to do that, it's up to you
to make it happen by prioritizing and so on, and you can't
blame the wife/work/kid for that.

Q - Do you still own any commodore machines

Yes.. 6-7 C64 (among them the original machine I got as
a kid), my old A500 and a A2000. I also had an example
of that rare C65 machine, but sold it since I rather
needed the money than a rare machine. I am satisfied
with the common ones... C64 primarily.

Q - Please tell us about the website and project "C64
Codebase" what do you hope to achive

The codebase is a wiki (a site users edit themselves, like
wikipedia) on the topic of C64 coding. I think a place like
this has been lacking before, and thus I decided to set it
up when a discussion on the CSDb forum made it clear
for me that a lot of other C64 coders also thought that
was a good idea and actually felt inspired to add content
to such a site. ...which they did too. I am quite satisfied
to see that so many different people actually involved
themselves to add some coding routines/articles already.

Of course there is the website called the The Fridge,
which is very nice and a bit similar to the codebase wiki.
There is also some forums and various coding articles
spread all over in C= magazines and so on. All these
forms of information structures have their pros and cons,
but I think a wiki have some possibilities lacking before.
For example it is a better way to store focused
information, compared to forums which are nice and very
useful but tend to spread information all over different
threads/posts and interleave the relevant information
with a lot of small talk. The wiki concept is also a bit
more flexible than "static" magazine articles which are
not improved upon after being published in case
someone finds errors in it. Wikis got all this. Focused
information spots, but still the dynamics of forums and
other editable media. Also, the overall information
structure on a wiki is editable, which makes it possible to
make sure that it won't just grow into a mass of
information where it is impossible to find what you look
for. I do not have a clear goal with the site other than
trying to keep it in shape. The content is supposed to
come from all of us, rather than just from me. (Even
though I of course encourage people to add things every
now and then.) I will probably put up a forum there, so
discussing specific articles/sources become possible. I
think that is needed. It will not be a general coding forum
though. I think the coding forum on CSDb is more
suitable for that.

Q - How many people are working on the project

Just me, concerning the site itself. However, I guess
something like 15 people have contributed contents so
far. Also thanks to Icon for the web server hosting and to
Slaygon for the URL.

Q - Is this similar to "the secret society of commodore
coders website"

I guess there is some similarities, but obviously one of
them is a forum and the other one is a wiki. Forums are
needed too of course.

Q - Will this website teach people how to code

It will do whatever people make it do. So far there is no
coding tutorial there from step A to Z, but on the other
hand there is a good collection of selected links on the
external links section that may prove valuable for
beginners. As the wiki grows I think everyone will

Commodore Free Magazine

 www.commodorefree.com Page - 12 -

find something of value there, beginner or expert...

Q - Is the website purely assembler and machine
coderoutines or are Basic programmers welcome Basic

programmers are welcome too, even though I guess
most serious programming on the C64 is actually done in
machine code for obvious reasons.

Q - Do you think there is really a need for people to
Learn Basic anymore

Not really.

Q - Some sample routines are available on the website
are these copyrighted or can anyone use them

The contents of the site may be used in your own
productions. People wouldn't add the contents there if it
was secret or non-useable for others. The wiki concept is
all about sharing.

Q - the items on the website have they been contributed
by the authors or did you contact them or they contacted
you

The wiki concept builds on users contributing material
themselves, and that is what they have done. However,
in some cases I have asked people for stuff, and in some
cases I helped a little with the process of adding the
material.

Q - Who can contribute, lets say our reader has
something how would they contribute to the project

Everyone who feels they have something C64 coding
related that at least one other person in the world may
find interesting is very welcome to add it. I don't see it as
a huge problem if people start adding a lot of contents
not interesting for the broad masses. That is better
handled by having a good structure on the site, than not
adding the stuff at all. With a good structure it is easy to
find what is there and to find what you look for anyway.
So, don't hesitat. Go there and contribute! It may really
be anything from small snippets to complete programs or
articles about this and that.

Q - I notice most of the example are turbo assembler,
is there a preferred assembler

Historically it is the most used assembler on the C64, but
in these days more and more people use PC cross
assemblers of course. This has had the effect that most
turbo assembler sources work with minimal modifications
in other assemblers, as a kind of prototypical middle
point of asm syntax. (ACME use a ! instead of . as the
beginning marker of directives such as .byte and .word,
and KickAssembler uses // for comments instead of ; and
so on. So the syntactic distance between ACME and
KickAssembler is larger than the syntactic distance
between Turbo Assembler and these two.) However,
apart from that, I think that actually quite a bunch of the
sources on the site ARE written in other assemblers like
ACME, CA65, KickAssembler and others, so I am not
sure I agree with you.

Q - What subjects are covered in the coding is the
site designed for anything c64 related

Yes, for example it is not only intended to cover demo
coding. Tools, games and other things are also
welcome. But, as said before, the contents depend a lot
on what people contribute, so it is open ended in
that sense.

Q - Do you follow the Commodore demo scene

Yep I do, and as I said before I am the organizer of the
previous LCP parties and one of the organizers of BFP,
so I guess I am quite involved in the demo scene.

Q - Some coders want to hide there code only giving
out various demos why share code with others?

I can understand this. It is part of the competitive aspect
of the demoscene I guess, which is kinda fun. However, I
think the kind of tricks and code that you find on
codebase is more of the kind that is in the frontline of the
VIC trickery, and thus most people wouldn't feel like it
was "giving away" something secret to add this stuff
there.

Q - From looking at some of the recent Commodore
demos like the crest "krestage 3" it appears there is still
a lot to learn about the machine would you like to
comment

Yes, I guess there will always be more to do/find out.
However, at the same time I think that most of the new
tricks uncovered tend to be less useful for general
purposes than tricks discovered longer ago. For
example, opening the borders are a lot more useful than
adding two extra grey pixels to a sprite as in Krestage 3,
even though its a nice hack.

Q - Will Codebase 64 look into some of the various
VICbugs, that are used in new demos

Once again.. It is up to the users what information that
will end up on the wiki. In case people are interested in it
and want to share/discuss it, I guess it will appear there.

Q - Do you think anyone can write computer code,

Most should be able to learn at least a bit.

Q - So what next for the website more code snippets
and hints or are other changes due to happen

Hopefully the contents of the site will continue to grow in
the same speed as it did until now, and I'll add a forum
there too, so people can discuss specific articles/sources
there. Ask questions or discuss them in general.

Q - Some reader may be put of by websites that are
best viewed with this and that browser can you
commenton codebase website design

Basically it is just the default look of the DokuWiki
engine, slightly modified colorwise and a logo was
added. It should work good in all mozilla browsers and
also in internet explorer, and I guess that covers 99% of
the internet users. Although the wiki has some layers
and such things it is mostly text based contentwise, so I
think it should look the same in all browsers as it for all
practical purposes.

Q - final 2 questions, if you were given an unlimited
amount of time and money what would you create, this
can be none computer related

I think I would just take it quite easy. :) Continue doing
roughly what I do, but in a improved way. ;) But I dunno.
It's hard to say really. I guess a lot of ideas would pop up
if things were as you say. Maybe I would save the world!

Q - If you won 1 million Uk pounds what would you
spend the money on and why

I would not buy a lot of things. I would start working half
time and such things instead. That is quality for me. I
already got most of what I need I think.A dishwasher
would be nice. I don't have that. ;)

Q – Have you any comments you would like to add

Thanks to everyone who contributed to the codebase so
far, and to the rest of the world, go there you too and add
what you've got lying around hidden on your harddrives
so that others can benefit from it.

Commodore Free Magazine

 www.commodorefree.com Page - 13 -

HEX files Part 5
By Jason Kelk

www.Oldschool-Gaming.com

Righto, time for some more code writing
entertainment! Now, where were we?

Ah yes, the challenge from the previous instalment;
your mission, if you decided to accept it was to
change the text colour to light blue and the sprite
colour to dark blue. The text colour is altered by
changing the LDA #$0F on line 25 of the source to
LDA #$0E or indeed any colour you want. To change
the sprites look at line 62. It reads LDA #$0C and to
make them purple use LDA #$04. All sorted now?
Good, lets get back to dissecting the remaining code,
starting from line 71;

main lda #$fc
rashold cmp $d012
 bne rashold

Now our friend the raster has been introduced to us a
couple of installments back, and the principle
remains the same; the C64 projects the screen to the
TV a line at a time and this loop waits for line $FC,
which is just off the bottom of the standard screen.
From here onwards the term "frame" will denote one
complete scan of the screen by the raster, so one
frame is a 50th of a second.

 ldx scrlcount
 inx
 stx scrlcount
 cpx #$08
 bne dontmove

Right, we've already discussed using labels as
places to keep numbers. scrlcount is our smooth
scroll counter, it's counting how many frames have
passed up to a maximum of eight to delay our
scroller since moving it every frame would be far too
fast to read. It's also used to work out what value
should be in $D016 later on, but I'll explain that when
we get there.

 ldx #$00
scrlmove lda $05e1,x
 sta $05e0,x
 inx
 cpx #$27
 bne scrlmove
 ldx messcount
 lda scrolltext,x
 sta $0607
 inx
 stx messcount

Well, this section has covered before too and it's
basically the same scroll shifting routine we had
moving so quickly previously. This time, however, we
are reading from our own message in the computers
memory at wherever the label scrolltext is. That gets
defined later, don't worry.

 ldx #$00
 stx scrlcount

Because we've just finished a "move" of the scroller
we now have to reset our counter so that the
machine will wait another eight frames before doing it
again. Okay, now earlier we branched to dontmove if

we were not going to move the scroll, so lets see
where that leads us.

dontmove txa
 eor #$07
 sta $d016

Okay, this is just a little bit of trickery to set the
smooth scrolling up for our message. TXA we have
already covered, but EOR is new. EOR (or Exclusive
OR) is what is known as a logic gate. There are three
regularly used gates, ORA (known as just an OR
gate, but called ORA because all 6510 commands
are three letters long, so we add an A for
accumulator), EOR and AND. ORA works like this:

 LDA #$64
or in binary %01100100

 ORA #$C7
or in binary %11000111

 Leaves A as #$E7
or in binary %11100111

Why? Well, look at the first column of binary
numbers. The first two are a 0 in the top row and a 1
in the second and the "rule" is that if either the first
OR the second number (or indeed both) is a 1 the
answer, in the third number in the column will also be
1. If both numbers are a 0 the answer will be a 0, just
like the fourth and fifth columns.

AND works on a similar principle, except that the first
number AND the second number must be a 1 for the
outcome to be a 1, otherwise the answer is 0. If only
one of the numbers is a 1 then the answer is a 0,
meaning that if the ORA above is replaced with an
AND the binary answer will be %01000100.

Now for our little friend EOR. The result of our above
example after using EOR instead of ORA would be
%10100011 because EOR works by a different
means. Again, it compares the columns separately,
but if the second number is a 1 it takes the first
number and toggles it, changes it from a 0 to a 1 or
vice versa. If the content of the second number is a 0
nothing changes, and the content of the first passes
straight through. So the result of EOR #$07 on our
counter, which runs from $00 to $07 is to basically
invert it so that it goes from $07 to $00 and we can
then put this into $D016 for the smooth scrolling.

Okay, so now we've sorted out the scrolling and the
smooth scroll, it's time for the sprite positions.

 ldx #$00
 ldy sineposx
setsprx lda sine_curve,y
 sta $d000,x
 tya
 clc
 adc #$20
 tay
 inx
 inx
 cpx #$10

Commodore Free Magazine

 www.commodorefree.com Page - 14 -

 bne setsprx

Right, this is a fairly normal copy loop (as we've done
before) but with an unusual twist. Before I explain
how it works, I'll just quickly explain sine and cosine
curves a bit more, which are used when demo
programmers want to make things swing back and
forth. At $0E00 and $0F00 are two tables of data,
each 256 ($100) bytes long. If you were to examine
the data you'd find that it contains the co-ordinates
for a sprite, starting from the right hand side of the
area it covers, accelerating towards the middle and
decelerating at the left hand side of the area, then
moving back in the same way.

The above loop reads the curve at $0E00 using the Y
(which contains another counter) and puts it into
$D000. It then adds a value of $20 to the Y,
increments X twice (so that it only writes to the sprite
X values, $D000, $D002 and so on) and then, if it
hasn't reached $10 and therefore done all eight
sprites goes back.

Why do we add $20? Well, it's to make all six sprites
read from different points on the curve to produce
that swirling effect. Try changing that value to $00
and they all appear with the same X position.

 ldx #$00
 ldy sineposy
setspry lda sine_curve_2,y
 sta $d001,x
 tya
 clc
 adc #$1c
 tay
 inx
 inx
 cpx #$10
 bne setspry

This is basically the same loop as we've just looked
at, except that we are using sineposy, reading from
$0F00 (the vertical sine table, slightly different to the
horizontal one) and writing the values to $D001,
$D003 and so forth for the vertical sprite positions.
The ADC #$1C is different to the previous loop
merely to make the curves a bit more interesting. It
can quite happily be $20 or indeed any other value,
so why not try playing with it and its fellow to see
what you can do?

 lda sineposx
 sec
 sbc #$03
 sta sineposx

 lda sineposy
 sec
 sbc #$02
 sta sineposy

Okay, this just moves the counters around for the
sprite movement. Again, the $03 and $02 can be
altered to change how fast the sprites swing around,
a value of $00 will cause them to stop dead and a
value of $FF will make them go backwards on one
axis slowly.

 jsr $1003
 jmp main

As explained last issue we are using an external
music routine. Every frame we have to call the

routine to keep the music playing and here's the JSR
call for the tune we're using. And the JMP completes
our loop, as we go back to main and wait for raster
position $FC on the next frame.
 * = $2000
message .scrl "welcome to the scrolling
message! "
 .scrl "this little demo-ette was
coded for "
 ...

And to finish off this block of code, here's the
previously mentioned label message and another
new assembler directive to go with it. The .scrl
command simply writes the text in quotes to the
memory (at $2000, as specified by the * command
above) in a format our routine can use, the letter A is
represented as $01, B is $02 and so on. The text
included in the source (of which only a part is
reproduced here) is exactly 256 bytes long because
the scroll routine can't handle any more or indeed
less.

Right, all done and this time I don't have a challenge
for you, just some "play" suggestions. The values in
the two sprite setup loops ($20 and $1C) and the
mover ($03 and $02) can be altered.

Why not try putting different values in and seeing
what happens to the sprites. Some interesting ones
to try are replacing $20 with $82, which causes each
sprite in turn to read its position from opposite ends
of the curve, or replacing $03 and $02 with $04 and
$05. Go on, have a play with the numbers and I'll see
you next time with something new to look at! As
always, email me if you have any queries, comments
or suggestions.

The source code for the routines above (they're the
same as Hex Files 4) can be downloaded here

www.Oldschool-
Gaming.com/files/c64/hex_files/part_6_files.zip

© Jason Kelk
RE-printed with the permission of the copyright
holder

www.Oldschool-Gaming.com

Commodore Free Magazine

 www.commodorefree.com Page - 15 -

“Potrace” Open source tracing application
Frequently Asked Questions

My first name for this program was "pbm2eps", which
was very lame and also inaccurate, because both the
input and output file format might evolve over time.
So I started looking for a cooler name.

Since this program does tracing, I wanted a name
with the word "trace" in it. I did a Google seach for
each combination "atrace"..."ztrace" of a single letter
plus "trace". Believe it or check for yourself: every
single one of them was already taken by some other
software!

Most of them were something boring, like the name
of a function in some obscure statistics package
written in Fortran. If I remember correctly, the only
exception was "ytrace", which brought up a foreign
language porn site called "sexo con perros".

I am not sure what "ytrace" might mean in some
foreign language, but I have a pretty good idea what
"sexo con perros" means, and so I didn't want to take
any risks giving this name to my program.

So I started looking for 2-letter combinations. It so
happens that "potrace" didn't yield any hits on
Google, except a few sites that had misspelled the
word "podrace" (as in pod-racing) from Star Wars
Episode I.

This was okay, I thought, and would not attract any
trademark infringement suits. So I settled for the
name Potrace. I particularly like this name because it
can also mean "polygon-based tracer", which actually
describes quite accurately what Potrace does.

By the way, it is pronounced "po-trace", not "pot-
race". If it conjurs up mental images of people
running around a track with cooking pots, then you
are not pronouncing it correctly.

Question: Is there a mailing list? How can I be
notified of new releases?

Answer: There is currently no Potrace mailing list.
However, Potrace has a project page at
Sourceforge.net. This page provides a discussion
forum, as well as a mechanism for reporting bugs. To
be automatically notified of new Potrace releases, go
to the Potrace project page on Sourceforge.net, find
the section on "Latest File Releases" and click on the
little envelope icon under "Notes/Monitor".

Basic usage and errors
 Question: Can you show me the options used to
generate the examples pictures on the Potrace
website? I tried to do it myself, but failed.

Answer: All the examples were generated with the
default settings. The EPS files were generated by the
following command:

 cat file.pbm | potrace > file.eps

but the following also works:
 potrace file.pbm

The input to Potrace in each of these examples was
a PBM file. But since most browsers can't display
PBM, I posted the images in PNG format on the
website, and I also scaled them. You need to shift-
click on the left-hand side image to download each
original PBM file.

The greymaps were generated by this command:

 cat file.pbm | potrace -gx2

This generates a PGM file. Again, for posting on the
web, I have further translated this to the PNG format
by piping the output through pnmtopng.
For experts only: If you want to know exactly how I
processed these files, you can look at the Makefile
that I used.

Question: I installed and ran Potrace, and it did not
work. I got the error message: sh: line 1: compress:
command not found. What am I doing wrong?

Answer: This error occurs only with Potrace version
1.3 or earlier. When this happens, you should either
install the newest version of Potrace, or else run your
existing version with the -c option, and everything
should work fine.

Question: How can I improve the quality of the output
of Potrace?

Answer: The most effective way to do so is to
improve the quality of the input! This seems obvious,
but not everybody thinks of this. Scan your image at
a higher resolution. Scan your image in greyscale,
and use a program such as mkbitmap to generate a
high-resolution bitmap to trace.

In some cases, it also helps to decrease the
resolution of the input image. If the resolution of your
input file is incredibly high, the output generated by
Potrace might be larger than necessary. This also
sometimes happens if the input is speckly or noisy.
Rather than trying to simplify the vector image, it
often helps to just downscale the input bitmap.

Question: How can I reduce the number of nodes in
the output of Potrace?

Answer: Potrace already makes an attempt to reduce
the number of nodes, and this behavior is controlled
by the --opttolerance parameter (or can be turned off
entirely with --longcurve). However, I have decided
not to sacrifice quality for quantity, and Potrace will
not reduce the number of nodes beyond what it
considers tolerable.

For many applications, the problem of reducing
output file size can be solved by reducing the
resolution of the input image. This sounds too simple
to be true, but can give surprisingly good results. One
of the most common "beginner's mistakes" when
using Potrace is to start with an image that contains
too much detail or noise. Blurring the input image can
also help, particularly with grey-scale images.

3. File formats

Commodore Free Magazine

 www.commodorefree.com Page - 16 -

 Question: Why can Potrace not read/write PNG
files? It is such a popular file format.

Answer: In keeping with the old unix philosophy
"write programs that do only one thing and do it well",
I am trying to avoid writing a front end for every
possible graphics file format known to mankind.
Instead, I provide support for a small number of
generic formats which are easy to convert to and
from.

The PNG format is relatively complex to implement,
and there already exist many excellent programs for
converting between PNG and the PNM format which
Potrace can read. See the next question.

Question: What programs can read/write PBM files
on Linux? Gimp does not seem to help me... How
can I convert PNG to the formats that Potrace can
read?

Answer: Gimp, unfortunately, cannot write PBM files
(although it can read them). However, Gimp can write
PNM files, as well as BMP files. Both file formats are
understood by Potrace version 1.1 or later. Note that
the files have to be bitmaps, i.e., they should only
use two colors black and white. All other colors or
grey values will be converted to black and white
before Potrace begins its processing.

A good program for converting anything to PBM is
the convert command line utility of ImageMagick. It is
invoked simply as "convert inputfile outputfile". It is
pre-installed on many systems, and can otherwise be
obtained from www.imagemagick.org. The output
format is determined by the filename extension, so
for converting to pbm, you simply type:

 convert image.png image.pbm

Another very useful such set of command line utilities
for converting different image formats are the
"netpbm" utilities, see netpbm.sourceforge.net.
Again, these tools are preinstalled on many popular
systems. They allow you to convert between file
formats on the command line. Particularly useful are
pngtopnm and pnmtopng, but you can also convert to
and from other formats using e.g. giftopnm,
anytopnm and so forth. You can use these
commands in a pipeline, for instance

 cat file.png | pngtopnm | potrace > file.eps

Question: I am working to add Potrace support to
another program, but the output of Potrace leaves
me a little stumped. How can I parse the output of
Potrace into some format which my program can
use?

Answer: To get parseable output from Potrace, I
suggest using the -q and -c options. The default
output is optimized for size, not readability. With
'potrace -qc', you should get exactly what you need.

If you use the output from Potrace for processing by
another program, I also recommend increasing the
output resolution, e.g., -u=100 or -u=1000, to reduce
the effect of roundoff errors. Note that the output
coordinates correspond to input (bitmap) coordinates,
multiplied by the unit length, then rounded to
integers.

4. Color

Question: Can Potrace handle color images?

Answer: The short answer is "no". Potrace can only
handle 2-valued images at the moment. It does not
matter whether the two colors are called "black" and
"white" or "on" and "off" - however, there can be only
two of them.

Question: Will color support be added to Potrace in
the future?

Answer: Maybe.

Question: How can I work around the lack of color
support?

Answer: There are many ways in which Potrace can
be useful in processing color images, with some
extra work. For example, you can trace an image to
SVG format using the --svg and --opaque options,
and then use e.g. Sodipodi or Inkscape to color it
manually.

Or you can extract individual color components from
your image using the Gimp or ppmcolormask (part of
the netpbm package), trace them separately, and
then overlay the pieces to get a multicolored image.
You can get pretty good results for posterized
images. I have used a command line similar to this:

cat img.gif | giftopnm | ppmcolormask #641b1b |
potrace

Recent versions of Inkscape have a built-in Potrace
engine that can handle color images via color
quantization or multiple scanning, thanks to the great
work of Bob Jamison and the Inkscape team.

Another interesting application of Potrace to color
images is described in the fascinating article
Automatic Generation of Stained Glass from
Scanned Photos by C. Scott Ananian.

Graphical user interface

 Question: I don't like command line utilities. Is there
a graphical user interface for Potrace?

Answer: Yes, there are now several graphical user
interfaces (GUI's) for Potrace, contributed by various
other people. There are GUI's for Linux and for Mac
OSX. I have not tried them myself, so I cannot say if
they work or if they have all the features you want. I
suggest to try them out. Please look under GUI's and
related software on the main Potrace web site.

BEFORE

AFTER

Commodore Free Magazine

 www.commodorefree.com Page - 17 -

Interview with Peter Selinger
Potrace creator

http://potrace.sourceforge.net

Q - can you please introduce yourself to our reader

My name is Peter Selinger. I am a professor of
mathematics at Dalhousie University in Halifax,
Canada. I develop open-source software in my free
time.

Q - How did you get involved with Commodore
machines and do you still actively use Commodore
machines

My brother had a C-64 when I was 12 or 13 years
old. I spent the next few years programming it in
Basic and assembler. It was the first and
only Commodore machine I ever used.

Q - Can you tell our reader about Potrace, what it
does and how it differs from similar applications?

Potrace is a utility for raster-to-vector conversion.
This means, it inputs a bitmapped black-and-white
image, such as you would get from a scanner or
digital camera, and turns it into a scalable vector
image using Bezier curves. The output can be further
processed with a vector graphics editor such as
Inkscape.

There is other software with similar functionality.
Most of it is commercial. In my opinion, none of it
gives output as nice looking as Potrace's.

Q - What machines and operating systems does the
application run on

Potrace was written with portability in mind, so it can
run on virtually any system that has a C compiler and
some POSIX-like library functions. It was developed
on Linux, and runs on every flavour of Unix,
Windows, and the Macintosh.

Alfred Faust ported it to the Amiga (OS4) and
Matthias Rustler to AROS, the Amiga Research
Operating System (which runs on Intel hardware).

Q - Any possibility of a GEOS or Wheels version for
Commodore 64 owners

The source code is available; with a C compiler and
some patience, I don't see why someone could not
compile it for the Commodore 64. Of course, some
expanded RAM will be necessary, as the Potrace
source code runs to about 260 kilobytes, not
including shared libraries.

Q - I notice the software is Command line only but
other users have added GUI versions, was your
intention to produce just a Command line version

Yes. Potrace adheres to the old Unix philosophy of
"doing only one thing, and doing it well". This is why I
call it a "utility" and not an "application". It has no
fancy user interface or add-on functionality. It can be
used in batch mode or scripts. Potrace also can only
read a handful of image formats. There are other,
much better programs for converting one image
format to another.

Q - Can you tell our reader who contributed to the
project and what they did

Potrace was almost entirely written by myself. Tor
Andersson wrote a backend for outputting PDF. Karol
Krenski contributed the logo, which he of course
created using Potrace. Many people have helped
with finding and reporting bugs.

Q - Our reader may not be aware of the "GNU
General Public License". Can you explain this does it
mean the software is free to use.

For a full explanation of the license, read the file
COPYING that is distributed with Potrace. The short
answer is: yes, under the GNU General Public
License (GPL), you are free to use the software.

However, much more is true: you are also free to
modify, recompile, and redistribute it. The primary
restriction is that when you redistribute (modified or
unmodified) versions of Potrace, you must again do
so under the terms of the GPL. This means that
nobody can integrate Potrace, or anything derived
from it, into a non-GPL program without my
permission.

Please note that "free" in this context refers to
freedom, not to price. There is lots of software that is
offered without payment, but that does not give you
any freedom. GPL software is not like that.

Q - What other software have you written, and are
you working on any other projects at the moment

I have written lots of software. The most popular
items besides Potrace are:

- Ccrypt, a simple and secure command-line
encryption program (ccrypt.sourceforge.net),
- Upprint, a printer frontend for n-up and double sided
printing. N-up printing means putting multiple pages

Commodore Free Magazine

 www.commodorefree.com Page - 18 -

on a single sheet of paper at reduced size. Most off-
the-shelf software does this very badly, by leaving
huge margins and making the text way too small.

Q - I like the Potrace mascot can you tell our reader a
little about it.

The mascot was designed by Karol Krenski, a Polish
artist who was an early and enthusiastic user of
Potrace. You can see some more of his works at

www.sgsp.edu.pl/inne/galerie/krenski/krenski.php

Q - what problems did you have creating the
software, was all the code created by yourself or did
you manage to find something similar and adapt it to
your needs

The largest challenge in writing this software was
designing the Potrace tracing algorithm. This is really
the heart of the software. I wrote all of it myself,
except for the PDF backend.

Q - I see this is a FAQ already but for our reader who
desnt read the FAQ`s - Can Potrace scan and
convert Colour files as well as mono images, are
there plans for the software to convert colour images

No, it cannot convert colour images. Perhaps I will
add this ability in the future, but I do not currently
have a concrete plan to do so. There is some
software, such as Inkscape (www.inkscape.org),
which is able to use Potrace on color images,
essentially by decomposing the image into a series of
bitonal images, tracing each of them separately, and
then putting the results together again.

Q - Does the software work equally well on text or
complex images

The best results are obtained on handwriting and
hand-drawn images such as cartoons. Potrace also
works reasonably well on text, provided that the
characters have been rendered at a high enough
resolution. Complex images are no problem, because
Potrace is quite fast even on most large images.
One thing that Potrace does not work too well on is
noisy images. It is important to prepare the input
image carefully to get best tracing results. I wrote
another program called "mkbitmap" that can help
doing this. It is distributed together with Potrace.

Q - What is the current version of the software and
are there further development charges planned

The current version is 1.8. Potrace is quite stable at
the moment, which means it works reliably and there
is no need to make lots of changes to the software.

Q - How can our reader help with the project

Use Potrace and tell others about it!

Q - is there a forum for people with problems using
the software, can users email you directly

For problems, users should first check the Frequently
Asked Questions

http://potrace.sourceforge.net/faq.html

and then use the Forum and

http://sourceforge.net/projects/potrace

 Q - what are the main problems converting the
software to other platforms, can you give a quick
how to on conversion to our reader, is there any help
on converting lets say an Amiga application to linux
or even the PC,

My main advice is to write the software portably in
the first place. Fortunately for me, within the Unix
community, there are some well-established
standards for the programming environment that any
Unix system should provide. One such set of
standards is known as POSIX. Since POSIX
environments are also available for Windows and the
Macintosh, porting to those platforms was for the
most part not very difficult.

Q - I presume that command line versions are quick
to convert to other platforms is this why you only
personally produced the command line
version of Potrace

No, portability was not a consideration in my decision
to produce a command-line tool. Actually, I use the
command line a lot. If I need to convert 200 images, I
would much rather write something like "potrace
*.pnm" than going through some graphical user
interface where I have to manually click, drag, and
drop 200 files. Tracing of images is not fundamentally
an interactive process. Pretty much there is an input
and an output, and a few parameters that one can
tweak along the way. So I never saw the need for a
graphical interface. However, others have written
such interfaces for Potrace.

 See http://potrace.sourceforge.net/#other

Commodore Free Magazine

 www.commodorefree.com Page - 19 -

Interview with Steve Judd
SLANG 6502 Programming Language

http://www.ffd2.com/fridge/slang/

Q - What first introduced you to Computing and
especially commodore

I bought a C64+1541 in 1984 -- in eighth grade -- for
$400 of saved up paper route money. I wanted to be
a programmer but I wasn't very good at it; all I ever
did were a few BASIC programs and eventually a few
simple assembly programs that I never got to work.
That left plenty of time for playing games, though. I
stopped using it around 1988. In 1993 I bought
a 128D, for old time's sake and to play games on,
and wound up getting interested in 3D programs.
This time however assembly language made
sense, and it became possible to make stuff work
and start having loads of fun.

I probably became interested in computers via video
games and computers in stores like Radio Shack;
there were also computers at school, Radio Shack
Model IIIs. Like a lot of other kids my age, I can say
that the C64 is what got me into the work I do today.

Q - Please tell our reader a little about slang what
it is and a general History of the project

Slang is a programming language for the C64, and
other 6502 computers. It's easy to learn and use, and
compiles to pretty decent machine language for
speed. It's meant to be used by everyone, from
programmers just starting out who want to move
beyond BASIC, to high-power assembly
programmers who want to take some of the tedium
away (writing a game engine, for example). Another
hope was that it would encourage more C64
programs to be written, by greatly reducing the
development time and effort required.

The project started around Jan 2004, and took some
1-2 years of pretty constant development. The code
was developed in modules, for example the parser
module, evaluating mathematical expressions,
subroutines, etc. The code is all built on top of Sirius,
an assembler that I wrote; that is, the compiler more
or less translates code into assembly language,
using the assembler to generate the code. (One
result of this is that assembly language is built-in to
Slang.) It looks like the very first beta version was
released in Jan 2005, after a year of work. There
were a lot of bugs, and missing features, so the
program was continually updated for at least a year
after that.

The code was written in assembly language, on a
SCPU-equipped 128D, using the Sirius assembler.
There is something like a half-megabyte of source
code, which is assembled to a file that is over 40k
large, i.e. over 200 blocks of code (i.e. no graphics or
music).

Q - was the software solely produced by yourself

Yes, but a number of people made great
suggestions, found bugs, and so forth. Jaymz Julian,
Majic Eyric, and Christian Lott come to mind, and
I apologize for others I've surely forgotten.

Q - why was the software produced what prompted
the project

Hard to remember now, but... the main issue was to
make it easier to write C64 programs. There are lots
of assembly programmers who never write games,
because game engines are such a pain in assembly.
There are many more unfinished projects, because
the development time is so long and involved. At the
other end of the spectrum, there were motivated
programmers who had a handle on BASIC but found
assembly too difficult.

The idea then was to create a language with a nice
C64 vibe, which would be fun to use, easy enough to
satisfy a BASIC programmer, and powerful enough to
take on the most advanced programming tasks,
making program development practical.

Q - you must still be actively use commodore
machines, what machines do you own and still uses
(you can list none commodore machines)

I'm afraid the 128 is in the closet these days. All we
have at home is a Mac which I use for very mundane
things like email.

Q - must the software be run on a SCPU equipped
Commodore machine

The cross-development version, xlang, runs on Linux
or Windows machines, and would probably run on a
Mac if someone compiled it. Xlang actually emulates
portions of the SCPU/C64 and runs the 65816 binary,
as opposed to being a duplicate program.

To develop on a real C= machine, however, a
SuperCPU with plenty of memory is required.

Compiled Slang programs run on a plain C64, and do
not require a SCPU.

Q - so is slang a new highlevel language like BASIC
or is it more a low level language like machine code

Both, actually. That is, it may be helpful to think of a
set of layers. At the top layer, Slang is a high level
language like BASIC, C, etc., and this is all a user
ever has to see to use Slang effectively. All the
usual high level features are present (variables,
subroutines, logic control, etc.), and there are
numerous C64-specific commands, such as
commands to control sprites and interrupts.

More advanced programmers, however, can take
advantage of lower layers, getting closer to the
hardware, writing new commands, and so forth.
At the very lowest layer, Slang recognizes assembly
commands, which may be mixed with regular Slang
commands and variables, for the ultimate in flexibility.
The web page contains example programs at these
various levels.

It should also be mentioned that Slang can
communicate with outside ML programs very simply.
For example, many years ago I wrote a set of ML
routines for doing 2D graphics, such as lines and
circles, to be called by other ML programs. With just
a few lines of code I can now call all those routines
as if they were ordinary Slang commands. This
means that programmers don't have to re-write code

Commodore Free Magazine

 www.commodorefree.com Page - 20 -

that they've developed over the years, but can just
plug it in.

Q - How would our reader start using the application,
Does it need "installing" or is it just a case of copying
a prg to a disk

Most people would probably just download xlang,
unzip the file, and be ready to go under Windows
(DOS) or Unix.

Q - the end code can it be run on none SCPU
equipped machines or will the code only run on
Commodore 64`swith a SCPU

The compiled code does not require a SuperCPU to
run. After all, the goal is to get more useful programs
written, which means run on a stock C64.

Q - Also is the code only Commodore 64 compatible
or could you work on any 6502 processor machine

Most of the code is plain 6502; only a few things,
such as printing, or the C64-specific commands such
as sprites, require a C64. Thus code may be written
for 6502 computers other than the C64.Moreover,
because of how the language is designed, it is
actually possible to create completely new
commands which are specific to other computers.
That is, there could be an Atari-Slang, an Apple-
Slang, and so forth. Nobody has been interested in
this yet, though.

Q - could you give an example of a simple program in
basic and then in slang so our reader gets an idea of
the syntax - although I will include the tutorial and
quick reference from the website (if this is ok with
yourself)

(fine by me to include anything -- everything on the
web site is freely redistributable)

Here is a short Slang routine, from the example file
grdemo.c.s. It uses the grlib graphics routines to plot
a sine wave:

x1=0
for x=0:60 step .1
 y1 = 100+50.0*sin(x)
 GrPlotAbs(x1,y1)
 x1=x1+1
next

As you can see, the syntax is pretty straightforward
and should feel familiar to anyone who has written a
BASIC, C, or other high level language program.As a
second example, here is some code from the
example program spritedemo.e.s. It sets up a raster
IRQ -- when raster line 50 is reached, the subroutine
"Scroll1" will be called:
;
; Init scroll IRQ
;
DisableTimerAIRQ ;shut down CIA timer IRQ
(kernal IRQ)
SetRaster(50)
SetIRQRoutine(Scroll1)
SetCol38 ;use 38 cols to make it smooth
EnableRasterIRQ
...
irq Scroll1()
;irq routine code goes here

While this is a fairly simple example, it demonstrates
some C64-specific

features of the language, and how easy it is to get up
and running quickly.

Q - The slang language uses libraries to compile the
final code is this because the use of libraries is more
efficient, can you explain libraries to our reader and
the advantages

Speaking very broadly, a library is a collection of
code routines. These are typically commonly used
routines -- the "print" routine is an example. One
advantage of using libraries is that they usually make
code smaller: instead of duplicating a routine many
times, a single subroutine is called each time.

A second advantage is that it's easy to update or
modify routines: instead of updating the entire
compiler, I can simply update the library routine.
Moreover, it now becomes possible for others to write
their own collections of routines, and share them with
others. Another, more technical reason, is that this is
one of the ways Slang can be used to write programs
for other computers: by writing an "Apple II" library,
and substituting it for the "C64" library, it becomes
possible to compile programs to other computers
fairly easily.There is a more advanced feature, using
the linker to create libraries, which are much closer to
being "true" libraries, but it's more complicated and
not worth going into here.

Q - could our reader write his own library for use
with slang, and is there a page to download more
libraries for use with slang

Certainly. Anyone can create libraries, or use
libraries already created. Every library that I am
aware of is available on the Slang homepage.

Q - Where next then for the language? do you
consider Slang to be stable so is it just a case of
optimisation and adding more features

Slang is pretty stable, and I haven't developed it for
some time. The major problem has been getting
people to use Slang. To date, I don't know of any
finished programs written in Slang, aside from the
example programs on the web page. Jaymz Julian
had written a pretty substantial program, a Wizard of
Wor clone, but it didn't get finished. (Life
responsibilities probably took over.) Heck, I wasn't
able to get even my friends to try Slang, or the
people who asked for it in the first place, and I've
received feedback from just two or three people.
There just doesn't seem to be much interest, for
whatever reason. So, I moved on to other things.

I do still support Slang though, and I'm happy to help
out anyone with questions.

Q - Is SLANG free to download,

Yes, Slang is free to download, and programs written
in Slang are yours feel free to sell them, or give them
away, or whatever, no different than using an
assembler.

Q - What support exists for users who need more
help

There is an online forum, and a mailing list, and you
can always email me directly.

> Q - Thanks for your time

Thank you!

Commodore Free Magazine

 www.commodorefree.com Page - 21 -

Slang Quick Reference guide

Numbers and misc

; ;comment
* ;comment when in 1st column

a=1234 ;base 10
a=$1234 ;base 16
a=%11010 ;base 2

a=a + & ;line continuation
 b
a$="Howdy" ;strings -- " or ' allowed delimeters
a$=!5"hola"!13 ;like chr$(5)+"hola"+chr$(13)
a$=!s"hey" ;!s -- use screen codes instead of
petscii
 ;!r – use regular (petscii) codes
 ;!n – negate (ora $80) following codes
 ;!z – do not null-terminate string

Slang is CaSe InSeNsItIvE

Variable types and declarations

byte, ubyte ;1 byte, signed/unsigned
int, uint ;2 bytes, signed/unsigned
float ;5 bytes, MFLPT format

byte blah@$d020 ;@-var: locate variable at $d020

int screen(25,40)@$0400 ;Create 2D array, locate at text
screen
int blah(3,3)=[[1 2 3] &
 [4 5 6] &
 [7 8 9]] ;Create 2D array and pre-initialize
values
ubyte str(50)=['..can also use strings to pre-initialize']

blah(2,0) = 1 ;Note that array indices start at 0

byte ^test ;Create 16-bit pointer to a byte
byte ^^test2(20,10) ;24-bit pointer to byte array
test=$c000 ;set point location: lda #$c000 sta zp
^test=10 ;set location value: lda #10 sta (zp),y
test2=$123456 ;set array base address
test2(3,5)=10 ;leading ^ not used with arrays

deftype foo ;Compound variable type declaration
 int .a ;note leading .
 byte .b(10)
 float .x
defend

type foo yak1, yak2 ;Create two variables of compound
type foo
yak1.a = 10 ;...which can then access individual
elements
yak.b(3) = -8
yak1.x = 3.1415926

VarBlock @$c000 ;Define following variables starting at
$c000
 ubyte t1
 int t2
EndVarBlock ;until the EndVarBlock

int b,c
c=#b+3 ;Set c to the _address_ of b plus
three

Strings

byte str(20) ;Strings are byte arrays, null-terminated
str(1) = 1 ;Treat as byte array
str$="Hey!!"!13 ;Using the $ sign treats as string

if str$(2:4) = "y!!" ;Can specify substring ranges
 str$(2)="blah" ;|H|e|b|l|a|h|00
Subroutines

note: <- indicates backarrow key; use _ (underscore) on
PC/xlang

sub blah() ;Subroutine with no input or output
variables
sub blah2(int x, byte r) ;Subroutine with two input variables
sub blah3(int z)<-byte s,int t ;Subroutine with one input
variable (z)
 ;and two output variables (s, t)

sub blah4(@ax) ;One input variable, in the .A (lo) and
.X (hi)
 ;registers. @x @a @xy @yx ->
@(lo)(hi)
endsub ;End subroutine (rts)

sub asm chrout@$ffd2(@a) ;Create subroutine
interface ;(for calling
external routines)
Usage:

blah3(10) ;Call subroutine on its own
a=blah3<-s ;Use subroutine variables in expressions
b=blah3<-t + a + 1
a=blah3(12)<-s ;can also combine operations

Operators
Note: comparison operators can be used with strings

=, +=, -=, *=, /= ;Assignment operator, e.g. a=1, c+=3
++, -- ;Increment/decrement, e.g. blah++

bitand, bitor, biteor ;bitwise operators
+ ;addition, string concatenation
- * / ^ % ;standard math operators. Note: int *
and /
 ;require core library; floats require
BASIC
<< >> ;shift operators (note: fixed only, not
float)
< <= > >= = != ;comparison operators. Returns 0 or
1
and, or, eor ;logical comparison operators. Returns 0
 ;or nonzero (true). Note: identical to
 ;bitand etc. but lowest
precedence
Functions

byte, ubyte, int, uint, float ;Type conversion
a = int(x)+c ;Convert x to type int, then add

floating-point functions: (BASIC ROM routines)
abs ;absolute value
atn ;arctangent (note: will rename as
atan)
cos ;cosine
exp ;exponential
trunc ;truncate
log ;logarithm
rnd ;random number
sgn ;sign
sqrt ;square root
tan ;tangent

misc functions:
not ;logical not (0->1, nonzero->0)

VIC functions: (may be used in expression)
SpriteColSpr(number) ;Check spr-spr collision. Returns
0/nonzero

Flow control, loops

Note: may be followed by a ! to execute the block when
false:

 if! ;ifnot -- if not true then...
 elseif! while! until! case!

May be followed by + to use branch instead of jmp (if+,
next+, …)
if (expr) ;standard if-block
 [code]
elsif (expr)

Commodore Free Magazine

 www.commodorefree.com Page - 22 -

 [code]
else
 [code]
endif

for x=start:end [step y] ;standard for-loop. step is optional
 [code]
endfor -or- next ;next is alias for endfor

while (expr) / endwhile ;standard while-loop
repeat / until (expr) ;standard repeat-loop
repeat / forever ;infinite repeat loop

testall ;test all of the following cases
(inclusive test)
testelse ;test cases like if-elsif-elsif (exclusive
test)
 case (expr) ;execute following code if (expr) true
 case (expr) ;multiple case statements may follow
endtest ;end statement

Printing and I/O commands

sprint [string] ;Simple print (String print) -- prints
strings.
sprintln ;Like sprint, but adds a CR at the end.
sprint(10,3) "yo!" ;Print to row 10, column 3

print ;Main print command. Requires core
library
print !5"Hey!"!13 ;strings…
print "x=" x " and y=",y ;mix and match, commas optional…
print(10,3) "b=" float(b+10*sin(x)) ;expressions, (row,col)
allowed
println ;Print, followed by CR

getchar b ;read a char, store in b. Does not
wait for char
waitchar b ;wait for keypress, store in b
waitchar ;wait for keypress

Input b$;input a string using kernal CHRIN,
store in b
InputStr(maxlen) b$;input using core library, max string
length
InputFloat x ;input float using core library
InputInt y ;input 16-bit, signed/unsigned,
dec/hex/bin

load "filename",dev,address ;load file to memory
save "filename",dev,start,end ;save memory to file

Misc

MemConfig number ;Set memory configuration (location
$01, 0-7)

poke ;similar to BASIC poke
wait address,value ;loop until address = value
wait $d012,255 ;wait for $d012=255

waitne, waitge, waitlt ;wait until address !=, >=, or <= value
waitbitsclear ;addr AND value (wait for bits to be
clear)
waitbitsset ;wait for specific bits to be set

fillmem(start,end,fill byte) ;Fill a range of memory with a
byte

done / donebrk ;end program (rts/brk)
endsub ;end subroutine (rts)
endirq ;end irq routine (rti)

put 'filename' ;PUT the file into code at current
location

saveobj "@0:testcode.o" ;auto-save object code after
compile
autorun ;auto-run program after compile

SetZPTemp address ;Set temporary ZP stack
(default=$02)
SetEvalTemp address ;Set temporary results
(default=$0110)

SetStrBuf address ;Set location for string buffer
(default=$0200)
SlangOut ;Compiler off (asm only)
SlangIn ;Compiler back on

Interrupts

irq name(varlist) ;irq is an alias for sub -- create an
IRQ routine
endirq ;...but end it with endirq instead of
endsub
jmpkernalirq ;or exit through the normal ROM IRQ

DisableInterrupts ;Disable Interrupts (sei)
SetIRQRoutine(name) ;Set IRQ routine ($0314)
EnableInterrupts ;Enable (cli)

EnableTimerAIRQ ;Enable CIA#1 timer A IRQ (system
IRQ)
DisableTimerAIRQ ;Disable
SetTimerA(value) ;set CIA#1 timer A value
AckTimerAIRQ ;Acknowledge timer A IRQ

EnableRasterIRQ ;Enable the VIC raster IRQ
DisableRasterIRQ ;Disable
AckRasterIRQ ;Acknowledge VIC raster irq
SetRaster(value) ;Set raster value for IRQ to occur at

VIC commands

UseSpriteStuff ;Enables below sprite
commands

SetSpriteX(#,xpos) ;Set X-position for sprite
number #
SetSpriteY(#,ypos) ;Set y-position
SetSpriteColor(#,color) ;Set color
SetSpritePtr(#,block) ;Sets the sprite pointer to block. Will
be
 ;updated in future to something more
useful
SpriteOn(#) ;Turn sprite number # on
SpriteOff(#) ;Turn it off

SetScrollX(value) ;Set the fine x-scroll value
(0-7)
SetCol38 / SetCol40 ;Set 38/40 columns
SetCharData(address) ;Set the character dot
data address
SetVideoMatrix(address) ;Sets the video (screen)
address
SetVICBank(bank) ;Sets the 16k graphics
bank to 0-3

Linker

REL - Assemble as RELocatable file. Placed at top of code.
ENT - Declare label/variable/subroutine as an ENTry point
EXT - Declare label/variable/subroutine as EXTernal

Editor/Jammon (SCPU environment)

Ctrl-h from editor brings up all available commands.
SYS54016 will re-enter editor upon reset, etc.
Please see the jammon docs (they're short!) for ML monitor
details.

Memory map

$0801-$A800 Slang core
$A800-$CE00 Compiler commands
$CE00-$CFFF Used by slang for temporary results
bank 2: Temp: code assembled to bank 2
bank 3: Temp: vartab, storage during
assembly
bank 8+: Editor text stored here
hi bank: Used to store slang environment

Upon exit:
- monitor in bank 0 at config.s address, if exited to monitor
- PPPatch at $CE80-$CFFF or so
- Re-entry code stored to $01d300 (SYS 54016 to restart)
- Editor text moved up in memory as high as it can
- Slang environment, etc. stored in highest available bank,
e.g. on a 16M system this will be bank $F5.

Commodore Free Magazine

 www.commodorefree.com Page - 23 -

A simple tutorial:
Transitioning to Slang from BASIC

If you're familiar with higher-level languages you can
probably skip this part. Some people however may be
familiar primarily with programming in Commodore BASIC,
and that's who this section is targeted at. This section
introduces some of the higher-level language features in
Slang you'll need to be aware of, in comparison with BASIC.

This is also a little tutorial on using Slang, so there are lots of
examples below to try out. Once you've gone through them
you should be well on your way to using Slang like a pro.

Note: If you find this tutorial useful -- or if you find it totally
confusing -- or if you find it anything at all -- please write me
or post a note to the forum, and let me know. I'd love to hear
from you. Heck, right now I'd love to hear from anybody! But
feedback is very important, and it helps me to know what
works and what doesn't.

Interpreted vs. Compiled
BASIC is an interpreted language, whereas Slang is a
compiled language. In BASIC, you write the code, then RUN
it, then errors are caught as they are encountered (Syntax
Errors, Overflow Errors, etc.). You can break a program
while it's running, have a look at some of the variables,
change things around, then CONTinue running the program.

In a compiled language like Slang you write the code, then
compile it into machine language, then run that machine
language program. You don't actually run the code you've
written -- the compiler converts the code you've written into
machine language, which you then run.

So there are actually two parts to the program, that you can
for example save to disk: the _source code_,which is the part
you write, and the _object code_, which is what the compiler
produces. The object code is what other people will run
whenthey run your program. In Slang, source code files end
in '.s', as in "spritedemo.e.s", and object files end in '.o', as in
"spritedemo.e.o".

As to errors, errors such as Syntax Errors are caught during
the _compile_phase, before ever running the program.
Other types of errors (called runtime errors) are never caught
at all -- in general if there are errors in your program it will
keep on running, or may lock up the machine entirely! But
Slang is designed to handle this, so that you won't lose your
program.

Tutorial lesson #1:
So here is the first thing to try: we're going to write a program
that will crash, so you can lose your fear right away of
causing some huge problem. To start up slang, load and run
the main program (slangb1.9.o or whatever it might be).
Once you've got the editor running, type in the following
program:

 sprint "here comes a crash!"
 donebrk

Then press F1 to compile the program. If there are no
errors, you will get a "compile successful" message. Now
press F4 to run the program --

crash, right? Go ahead and reset the machine (don't power
it down; just press the reset button). Then type
 sys 54016

and you should pop back into Slang. Slang stores itself up in
SuperRAM, so you don't need to worry about losing your
program because of a crash, and if you want to try
something just go ahead and experiment!

Variables
In BASIC variables are created on the fly -- you just say "10
a=1" and off you go. In languages like Slang, you have to
declare your variables before using them. Let's take a dumb
BASIC program, and convert it to Slang:

10 FOR B=1 TO 3:PRINT "BLAH ";:NEXT
 20 PRINT CHR$(13)+"PRESS ANY KEY"
 30 GET A$:IF A$="" THEN 30
 40 END

Obviously lines 20-40 are not needed, but I put them in for a
reason. Here's a Slang version:

 byte b

 for b=1:3
 sprint "blah "
 next

 sprint !13"press any key..."
 waitchar

 done

Tutorial lesson #2:
Go ahead and type this program into the Slang editor, press
F1 to compile, and press F4 to run. Easy! The first line of
this program _declares_ the variable. Part of the reason you
have to do this is that there are different _variable types_
available. In BASIC, you can have floating-point variables,
integers, and strings, and the name itself tells basic what
type of variable it is:

 a=10 ;numeric (floating point) variable
 a%=10 ;numeric (integer) variable
 a$="10" ;string variable

As you probably know, the only reason to use integer
variables is with arrays, to save memory, because an integer
array takes less memory than a float. Otherwise, a plain
integer variable takes exactly as much space as a regular
variable, and is actually slower for calculations because all
calculations in BASIC are floating-point calculations.

In Slang, this is not the case. The variable type not only
changes how much space is used but also how the variable
is manipulated. In Slang, adding integers is much faster than
adding floats together, and the integers take less space. For
example, if you change the line

 byte b

in the program above to

 float b

you'll find that the program becomes larger, and it's also
much slower (although you won't notice that in a simple
program like this).

Tutorial lesson #3:
Change b from a byte to a float, compile, and see
what happens. The different variable types available in Slang
are:

byte - 1 byte, signed numbers in range -128..127

ubyte - 1 byte, unsigned, range = 0..255
int - 2 bytes, signed, range = -32768..32767
uint - 2 bytes, unsigned, range = 0..65535
float - 5 bytes, signed, range = well, the usual BASIC
range

In general, the smaller variables are also faster, so you'll
often choose the simplest variable that meets your needs.
Just a few other things are worth noting. Unlike BASIC,
variables can also
have really long names, like:

 uint ThisIsAVeryLongVariableName

 b = b+ThisIsAVeryLongVariableName

Commodore Free Magazine

 www.commodorefree.com Page - 24 -

Note also that variables can mix upper and lower case (the
compiler is case-insensitive), and can mix variables of
different types (you can add a byte to an int, for example).
And once a variable is declared, that's it -- you can't re-define
a variable as a different type.

One other thing to notice is that there is only one statement
per line. Unlike BASIC, you cannot put multiple commands
on the same line.

Loops and such
As is apparent in the above program, the for-loop in Slang is
pretty similar to the BASIC for-loop. You can also put a
"step" in there:

 for b=1:10 step 3

There are two other loop structures available in Slang (and
many other lanauges): while-loops, and repeat-loops. Here's
an example:

 b=1
 while b<4
 sprint "blah "
 b=b+1
 endwhile

This program does exactly the same thing that the for-loop
does in the original program: while the expression b<4 is
true, it performs whatever
code is in-between the "while" and "endwhile" statements.
The repeat statement is very similar:

 b=1
 repeat
 sprint "blah"
 b=b+1
 until b>3

A repeat-statement always executes at least once, because
the expression check is at the end of the loop. The way to
think about all these things is pretty simple:

while [expression] While [expression] is true
[code] <------------- Execute this block of code
endwhile between the while and endwhile
statements

One thing that Slang does not have is a GOTO statement.
You can actually do gotos using assembly language, but it
turns out that you can handle all the things you might use
GOTO for using for/repeat/while-loops and the if-endif
structure discussed down below, and your programs will be
easier to debug.

Tutorial lesson #4:
Replace the for-loop in the example code with a) a while-
loop, and b) a repeat-until loop, but make it print out the text
five times instead of three. Compile and run each case to
verify that it works.

Ending a program
You'll notice that the program ends with the line "done". In
BASIC, putting an "END" in is optional. In Slang, it is
required. It tells the C64 how and when to exit the program.
If you'd like to see what happens when you leave it out, go
ahead and try it! Just remember that "sys 54016" will restart
Slang after you reset the computer.

We can now explain the last few lines as well. The
command "waitchar" simply waits for a key to be pressed.
Without this line, the program would immediately end and
return you back to Slang. The "waitchar" would not be
necessary if this program were being called from, say,
BASIC -- in thatcase, you would probably want control to
return to BASIC immediately.

But when running programs directly from the Slang editor,
you'll usually wantto put a line like this at the end of the
program.

Tutorial lesson #5:
As a test, go ahead and comment out that line (place a ";"
before the waitchar), re-compile, and see what happens
when you run the program!

Print
The little program above used the "sprint" command. There
are actually two print commands in Slang: print, and sprint.

Sprint -- Simple Print, or String Print -- is a simple print
command that only prints strings (not numbers). As we shall
see shortly, the regular print command contains certain
things in a _library_, which requires an extra step, and will
make your programs larger. For the moment though we can
focus on sprint.

Printing a string in Slang works much the same in BASIC,
with just a few little twists. Unlike in BASIC, you cannot
embed special characters inside the quotes, like

10 PRINT "{ctrl-2}{shft-clr}nice white text on a clear screen."

Instead, in Slang, you have to use the character codes
directly; in BASIC, you could also do the above as

10 PRINT CHR$(5)+CHR$(147)+"nice white text on a clear
screen."

In Slang, you simply use a ! instead of chr$, so this would
look like

sprint !5!147"nice white text on a clear screen."

The above command has one key difference from the BASIC
version, however :in BASIC, PRINT normally prints a
chr$(13) at the end of the line, whereassprint will not. It turns
out that there's actually two more print commands in Slang,
though: println and sprintln. These work exactly the same as
print and sprint, but print an extra [RETURN] character at the
end.

Tutorial lesson #6:
Go ahead and try replacing "sprint" with "sprintln" in the
example program,and see what happens.

Tutorial lesson #7:
Modify the example program to print out the text in cyan.
How about light green?

There's one more trick to print and sprint: you can specify
where on the screen to print:

 sprint(0,20) "some text"

will print the text at row=0, column=20.

Tutorial lesson #8:
Modify the program to print the text to the middle of the
screen. In contrast to sprint, print can print numbers and
strings, and you can stick them all together on a single line.
The catch is that manyof the routines needed to do this are
in a _library_. This library is a file on the disk, containing
special routines. In general, libraries can be source code,
object code, or a special kind of file (a relocatable
file) for use by the linker, which I won't talk about here.

Tutorial lesson #9:
What we are going to use is a simple source code file. Try
typing in the following code, and compile and run it:

 byte b

 for b=1:10
 println "b=" b
 next

 print "press any key..."
 waitchar
 done

 put 'putcore.e.s'

The two critical differences here are 1) we are now using
print instead of sprint, and 2) the "put" command at the end
of the file.

For now, instead of going into detail on PUT, let's just say
that you need that line at the _end_ of your code -- after the
done statement -- if you want to use the full print command.

Commodore Free Magazine

 www.commodorefree.com Page - 25 -

Notice that we have put both a string and a number on the
print line, similar to BASIC. You can also separate these
with commas, if you like:

 print "b=",b

It just depends on which way you think is clearer. You can
also print to
any part of the screen:

 print(b,20) "this is row "b

Tutorial lesson #10:
Replace the println statment with the above "this is row"
statement, and see what happens.

As you can see, print is much more powerful and flexible
than sprint, but the downside is that you need to PUT the
core library in there, which increases compile time and
makes the program much larger. Experience will help you
figure out when you want to use one or the other.

The core library
Above we used the core library, using the line put
"putcore.e.s" at the end of the program (whether you use ' or
" quotes doesn't matter, incidentally). This is a very
important library and is needed for more than just print.

Tutorial lesson #11:
Multiplication and division of bytes/ints requires this library,
and you will get an error if you don't include the core library.
(Print will also generate an error.) Try the following program:

 int b

 b=10
 b=b*2

 done

Now compile it, and you will get an error at the multiplication.
Then add the line

 put 'putcore.e.s'

to the end of the program, compile... and it will work. And
since you're including the core library anyways, you can go
ahead and print out b if you want to.

Why use a library? If you know BASIC, you know that a
command like "print" actually calls a routine in the BASIC
ROMs to do its thing. The BASIC ROMs are, for the most
part, one big library, but they are in ROM instead of in a disk
file.

Sometimes machine language programmers will call these
BASIC routines instead of writing their own. Similarly, in a
compiled language like Slang, sometimes it makes sense to
call a common routine to perform some task. A library is
nothing more than a collection of useful routines.

Arrays and Strings
We're just about done here. I'm not going to cover _all_ of
the available commands; the goal here is to get across the
major commands, and then youcan browse the slangref.txt
document to check out other commands. So I'll just touch on
the remaining topics at this point. Arrays in Slang work much
the same as arrays in BASIC. You declare them
very similarly to other variables:

 int b ;regular variable
 int c(20) ;array

This is similar to using the DIM statement, if that helps.
There's just one thing to remember: array indices start at 0.
In the above declaration,
you can address c(0), c(1), c(2), ... c(19), like

 c(19) = 1000

but

 c(20) = 1000

will be incorrect (and may cause a crash). There are 20
elements total: 0 through 19. If it's too confusing, then one
thing you can do is to add one extra element to any array --
like, use "int c(21)" -- and not worry about it.

Strings also are really similar to BASIC, but you're going to
have to get one thing straight in your head: strings are really
just bytes. There is no "string" type, like byte/int/float; strings
are just bytes.

You already know this, from BASIC:

 d$="a" ;treating letter "a" as a string
 d$=chr$(65) ;treating "a" as the number 65

The letter "a" is really just a number -- 65 in this case. This
works the same way in Slang:

 ubyte d

 d = "a" ;a "string"
 d = 65 ;a number

That's fine for just one character, but that's not a string. In
Slang, a string is just a byte array:

 ubyte d(20)

 d$ = "hello" ;treat as a string
 d(0) = "y" ;change string to "yello"
 d(0) = 67 ;change string to "cello"

In this example, d is a byte array. You can treat it as a
string, or as a list of numbers. As in BASIC, the "$" tells
Slang to treat the variable as a string -- I won't go into the
details about this, but I think the meaning is pretty clear from
the above example.

Tutorial lesson #12
Here's a simple program using strings to try out:

 ubyte d(20),i

 d$="hello"
 println "d$=" d$
 d(0) = 67
 println "d$=" d$
 for i=0:5
 println d(i)
 endfor

 waitchar
 done

Go ahead and play around with it -- try adding 1 to each
element of the string, etc. One important thing to note: when
you run the program, you'll notice that the last number
printed in the for-loop is a 00. With strings, the very last
element will be zero -- this is what tells Slang where the end
of the string is. If you overwrite this ending zero, you'll
generally get a whole bunch of garbage. So...

Tutorial lesson #13
Change the line

 d(0) = 67

to

 d(5) = 67

and see what happens when the string is printed. This
overwrites the ending zero byte, and should in general print
out a bunch of garbage. Sometimes,
if you're lucky, there will be another 00 somewhere in the
array!

If-elseif-endif
The if-then structure:

 if a=10
 do something
 elseif a=11
 do something else
 endif

Commodore Free Magazine

 www.commodorefree.com Page - 26 -

It's similar to the BASIC command, except that you have an
elseif or endif command to mark the block of code to be
executed, just like while and repeat.

Subroutines
In BASIC, you are familiar with GOSUB -- it calls a
subroutine, and then RETURN returns back to the place of
the subroutine call. Slang subroutines are more
sophisticated, but the idea is the same and overall they are
pretty similar.

A subroutine is like a mini-program: you can define variables,
have a bunch of statements, etc. The neat thing is that these
variables and statements are _local_ to the subroutine --
they "belong" to the subroutine, and do not interact with other
subroutines. This allows you to organize your programs
efficiently.

Just like a variable, you have to define a subroutine. And
you need to end the routine using "endsub".

With a subroutine, you can pass _parameters_ to the routine.
For example, the graphics library has a routine called GrPlot,
to plot a point. And it requires two parameters: the x- and y-
position of the point to be plotted:

 GrPlot(x1,y1)

Subroutines can also pass parameters _back_ to the calling
routine. Once you "get" the idea of parameter passing, and
of local variables, the rest is a cinch.

Tutorial lesson #14:
Type in and run the following program, which demonstrates
the idea of local variables within a subroutine:

 byte b

 b=1
 TestRoutine() ;Call the subroutine
 println "but in the main code, b is still "b
 waitchar
 done

 sub TestRoutine() ;Define the subroutine
 byte b ;create the _local_ variable b
 b=10
 println "in the subroutine, b="b
 endsub ;end subroutine

 put "putcore.e.s"

You can see what I mean about a subroutine being a mini-
program. Within the subroutine you declare variables, have
statements, and end it with an endsub. You don't really
worry about what other routines or the main program does;
the subroutine doesn't "see" them.

So, a few observations: the "sub" keyword defines a
subroutine. We _call_ the subroutine by simply typing the
subroutine name in the main program. Once the routine
finishes, the calling program continues executing where it left
off.

The subroutine declares its own variable b. Even though it
has the same name as the variable in the main program, this
is a _local_ variable; it "belongs" to the subroutine, not to the
main program.

Tutorial lesson #15
In this lesson, we'll try parameter passing.

 int x1,y1

 x1=12
 y1=20
 AddEm(x1,y1)
 println "the result was " AddEm<-result
 waitchar
 done

 sub AddEm(int a, int b)<-int result
 result = a+b
 endsub

 put "putcore.e.s"

(As before, <- is the backarrow key).

In this example, the subroutine AddEm takes two _input_
parameters, a and b, and has one _output_ parameter,
result. As before, all three of theseparameters are local to
the subroutine, so they could have the same name as
variables in the main program.

With the return parameter, what we are really doing is
making a subroutine variable _visible_ to outside routines.
Normally all variables and such inside a subroutine belong to
the subroutine, and are not available outside of the routine;
this is how to make specific ones available outside of the
subroutine. Just as with input variables, there can be a
whole list of output variables.

Back in the main program, this is just another variable called
AddEm<-result. You can use it in expressions, etc. just like
any other variable:

 x1 = x1 + 2*AddEm<-result

So in summary: a subroutine is like a mini-program, with its
own variables and statements. But, you can pass
parameters into the subroutine, and youcan retrieve
variables out of the subroutine, as needed. Subroutines are
really helpful in organizing and simplifying programs, so it's
well worth taking the time to understand them if you don't
already!

Saving object code
Once you've written a program, what do you do with it?
What we're going to do here is save the _object_ code, and
then load and run it.

Tutorial lesson #16
(always need some multiple of 16, right?)

Compile one of the example programs above (one that
works!). Once it compiles successfully, press F7 to enter the
disk menu. First, save the source code by pressing "s". Go
ahead and enter some filename; the program will
automatically append a ".s" to the filename.

Second, save the object code by pressing "o". You'll see the
same filename as default, so go ahead and press return. If
you now list the directory, you should see two new files: one
with a .s, the other with a .o. You can now load and run the
object code totally indepently from Slang.

Exit back to the editor. We are now going to exit to BASIC:
press shift-ctrl-<- (backarrow, to the left of the '1' key), and
you should be back at the BASIC prompt. If you'd like to try
your program from here, you can type "sys 4096".

Now reset the machine. Go to the disk directory, and load
your object file ,8,1.

Your object code is a machine language file, just like other
programs you may own or download. Once it's loaded, type
"sys 4096" to run it. (By default, Slang programs are located
at 4096, but it is easy to locate them elsewhere, such as
32768 or 49152, or even make it so you can RUN them from
the BASIC prompt.)

When you're done, type "sys 54016" to return to Slang.

And that's it! You should now be able to write, run, and save
Slang files and be well on your way to writing new programs.
If you have any problems or questions, don't hesitate to write
me or to post to the forum!

Good luck!

Commodore Free Magazine

 www.commodorefree.com Page - 27 -

Interview with Nick Coplan
Creator of HDD64

http://www.64hdd.com

Q - Please introduce yourself to our reader

Hi! I'm 38, a mechanical engineer by profession - but the
C64 lets me follow my true passion which is electronics and
programming. I first got a C64 when I was in high school,
aged ~16.

Q - What is it you do for the Commodore world

I'm probably most well known for 64HDD a PC program that
lets your C64 use the PC as a hard disk drive. I also provide
other tools and hardware stuff.

Q - Please tell our reader about DriveGhost and 64HDD

64HDD is a program which lets you use your PC as a hard
disk drive for the C64 and other Commodore computers with
a serial disk port such as the VIC20, Plus/4, etc. It emulates
the native protocol these machines use to talk to drives like
the 1541 so the computer doesn't need to be patched or
wedged in order for basic disk commands to work. It also
emulates the various Commodore disk drives at a
basic level allowing for various disk images to be used, for
example D64, D71, D81.

 It has some more powerful native modes and can support
commands which were part of the CMD product range. It
lacks a CPU emulation module and as such cannot run any
specialised disk commands which execute code "in the
drive". All that's needed is a XE1541 cable to connect the PC
and Commodore, the free software download and of course
a PC which can be booted to MSDOS (you can do that even
to modern PCs with a boot disk).

DriveGhost is a C64 program which works with the CMD
drives and 64HDD allowing data to be transferred between
these drives. The transfer is at the disk level (rather than file
level) and so it is an imaging or “ghosting” system. The idea
is to “image” the CMD drive to the 64HDD PC, from where it
can be burnt to CDROM as a backup. I’ve found it most
useful as a means of backing up my RAMLink and
restoring different projects to it either on a partition or whole
device basis.

Q - Isn't using a PC for backup and loading applications a
little like worshipping the devil

Some find it a wonderful irony to make a "modern powerful
machine" act as a slave to a humble 8bit machine from 25+
years ago ;)

Q - Has anyone commented about the use of a PC

A few do and some don't like the concept of having to have
the PC hardware (a second computer) next to their C64
setup for space reasons. On the other hand, many have
followed my example and build 64HDD into an embedded
system - that is a box that needs no screen or keyboard. You
can get those IDE2CF adaptors which means your PC box
can boot and run off a CompactFlash card making the whole
unit quite compact.

Q - Can the software work on anything else
Mac/Linux/Amiga

Unfortunately not, and I have no intent to reprogram it to
support these operating systems. The problem is that
because of the very critical timing protocol, so much of
64HDD's core is dependent on machine specific assembler
code.

Q - What started you programming

In a general sense? I guess I've always enjoyed creating
things, be that with Lego, wood, metal, design or art.
Programming was another way to "create" something. Back
when I started coding (the C64 was my first computer) I
coded mainly applications, but a few games. I’ve kept

programming ever since, but usually moved from project to
project once I’ve taken something to its finish.

Q - Why are people still producing hardware/software for the
Commodore 64/128 Hardware

It is fantastic that there is still new stuff coming out! The
market is not that big, but the users out there I feel want to
prove that their C64 is "still up to the task".

Q - Tell our reader about 64HDD Speed-Up Cartridges

These cartridges quite simply allow you to load programs
(including compatible multi-part programs) at speeds far
greater than the normal 1541/IEC protocol allows. They’re a
bit like the Epyx FastLoad cart was for the 1541, but
specifically for the 64HDD system.

Q - I have been looking to purchase on of the "64HDD
Speed-Up Cartridges" but the different configurations
confuse me can you explain what the different versions are
and what our reader needs to do, for example I think
originally you needed to check various chips within the C64
is this still the case.

Basically users have two choices - serial and parallel. The
serial speed-up (Turbo/XE) needs no special cable since it
works perfectly with the industry standard XE1541 cable.
The parallel options are far faster than the Turbo/XE, but
either require you build/buy a parallel cable or go for the
Pwr/Link option (which has the cable interface built-in).

The only time you need a special version chip of the carts is
if you have both a SuperCPU and RAM/Link - since this
combo reads the IO area of the expansion port at a faster
than normal rate. The cartridges are far easier to install than
the internal Kernal ROM upgrade which has been available
for a while. There’s a few other options, but that about
summarizes the basics…

Q - Commodore Gaming have introduce a new line of PC
systems with Commodore logos what are your views on this,
could it be a good thing.

It’s always great to see the Commodore name still in use, but
I must admit that I think of these being "just a PC". Gone are
the days that the Commodore brand
had a different OS and hardware architecture that meant you
could compare to your friend's Amstrad or Atari.

Q - We know the Commodore 64 had some interesting
design workarounds (some would say flaws) also revising
models and changing designs and revisions of the main
board, can you explain about problems you have
encountered getting your hardware and software to work.

The main challenges I've had have been due to the different
ROM configurations on the various build boards, and the lack
of consistency when it comes to whether these chips are
socketed or soldered. This makes it hard to upgrade some
C64s. It also some makes internal upgrades very different
from machine to machine. From a programming viewpoint,
the main problem I had was found years ago with some of
my early games and the screen clear bug which is different
between kernals v1 and v3.

Q - Did you work with Maurice Randall to produce the GEOS
extensions for the 64HDD

The original 64HDD-GEOS drivers were independently
developed on the reverse-engineered GEOS code produced
by YTM. The GEOS-XP drivers were re-written from scratch.
Maurice's articles in the Commodore World magazine
provided some helpful GEOS programming advice, but did
not directly help with building disk drivers. Maurice has an
example of a Wheels disk driver on his distribution, but I’ve
not tried any Wheels programming yet.

Commodore Free Magazine

 www.commodorefree.com Page - 28 -

Q - Maurice had a special version of GEOS for the 64HDD
what advantage does the 64HDD provide GEOS (apart from
speed)

The only difference between the versions of the drivers on
the CMDRKEY website and those on the 64HDD website is
that the former version is pre-keyed to the GEOS v2.0
distribution which Maurice provides for free download. Due to
GEOS licensing rights, Maurice does not allow these to be
hosted elsewhere, but has been kind enough to host them
for me. If users want to try the basic GEOS config and have
no extra licensed GEOS to key-in its easiest if they try these
D64s from Maurice’s site.

Q - Can you explain to our reader some of your other
hardware/ software products

Other than 64HDD and DriveGhost related… Hmm, well I’ve
built a number of smaller interfaces for things such as
controllers, etc. There’s the MegaCart – a 1MB cartridge
configured to store upwards of 64 Commodore cartridge
ROMs (in ROM not transferred to RAM). I’ve dabbled with
DTV, TurboProcessor, IDE64… The www.64hdd.com site
also has a bunch of tools I’ve developed over the years for
my needs which others might find helpful.

Q - Some of our reader may like to ask the question "selling
all this hardware and software must have made you very
rich" how big is the Commodore market

The Commodore market is not very big, its also seasonal – I
find people stock up just before the northern winter season
so they have something to do whilst coupled up inside . As
for the money, near all I’ve made has been re-invested in my
hobby – buying more Commodore equipment! It’s a classic
case of what comes around, goes around – I’ve bought
things from near everyone selling new Commodore
developments/projects as well as heaps from eBay.

Q - Mega Game Cartridge looks like a great idea, although
we have seen similar , what is special about your version.

At the time the MegaCart was released it was pretty much a
first of its kind. The difference between it and the followers,
for example the RetroReplay and MMC64 is that various
games are stored in read only memory (ROM) and the menu
system. Being in ROM, the CRT images do not need to be
patched for the copy protection code embedded into some of
them.

Q - Can the Mega Game Cartridge be programmed with your
own games, If so how is this done

The MegaCart can be reprogrammed, but must be done
using an EPROM programmer. The menu then requires a
little bit of reprogramming to setup titles and cartridge
settings such as /game and /exrom lines. Not exactly do it
yourself. Those that bought the few I made wanted games in
the original unpatched format in a format that saved on the
storage and wear-n-tear on their originals.

Q - What is the next project then?

Hard to say… there’s a lot on the go, but not ready enough
to promise. Also, of late family has taken priority. I can tell
you about some of the wacky-one-offs which probably won’t
see “mass production”. There’s an internal 16MB expansion
– being internal means the VIC chip can see all of it, unlike
with the SuperCPU in which the VIC is limited to the
standard 64k. There was the internal 65816 processor. USB
interface (hardware only, never got to the software)

Q - Maurice Randall seem to be over worked and very slow
to deliver orders, have you ever wanted to produce "similar"
products

I’ve thought about it, even offered to build them under licence
from Maurice – but that didn’t suit him at the time. Of the
CMD products, it’s mainly the SuperCPU which hasn’t been
matched or superseded by modern day alternatives.
Unfortunately for the SCPU, GEOS is the main reason and
very little alternative software has taken advantage of it.
Wings tried, and Clips looked promising, but was never
finished…

Q - Have you met Maurice, and have you asked him about
CMD

I met Maurice at the SWRAP expo back in 2001, and have
had correspondence with him before and since. I’ve not
specifically talked about CMD, other than to
offer support. He’s always been helpful.

Q - What is the design process for your hardware projects

Step 1 in the process is to begin with something I want. I
don’t usually design for what I think will sell as there’s no
guarantee that the project will ever get to that stage. If what I
build for me seems popular to others I consider the options
for making more than the 1-off.

Generally selling volumes are low, so hand built is the
usually production method. Things like the 64HDD speed-up
carts have proven more popular and so specialised PCBs
have been made allowing for prices to drop.

Q - How long did let’s say the MegaCart take from design to
finished product

That was one of the quicker ones… I’m guessing about
3months. The original was pretty quickly built by recycling a
SuperGames cart, but the more games / programs I found
the more quirks I found about the memory config these
programs expect at power-on and how they use this
information as a way of copy
protection.

Q - Are you ever 100% happy with your finished products or
do you think, I wish I had more time to implement xxxyyy or
tweak xxxaaa before having the item mass produced

Surprisingly I’ve had very few recalls or upgrades to existing
hardware products, which I guess means they were well
proven before release. Its part of the design philosophy of
building to satisfy my needs, before offering the item for sale.
I guess I must be my own “toughest” customer. Software
upgrades are a different thing, and that’s why both 64HDD
Professional and DriveGhost come with free upgrades.
Mostly the upgrades are new features, rather than bug fixes.

Q - After the prototype, who do you contact to create the
circuit boards, and how do you know the amount to order

I use a mail order company for the circuit boards, they’re
reasonably fast and happy to do small production runs. It is
hard picking a quantity to order. Order too many means
cheaper price per board, but I can’t afford to stock pile too
many. I usually design the boards to suit a number of
purposes by changing a few jumpers. This helps increase
their adaptability meaning I can use them for another
purpose if something is not a big seller. I usually order 20,
and if they get sold, another 20, and so on.

Q - Have you ever prototyped a design then taken it to be
mass produced and they have said "we can’t make that" or
"it will be to expensive"

The mail order place I use has an on-line quoting system so
I’m usually able to get that info worked out before going to
far… Because of the low batch sizes price per board needs
to be weighed against the only other option I would have
which is point to point hand soldering. Sometimes hand
building something works out cheaper than a simple board.

Thanks for the chance to “talk” to your readers…

Commodore Free Magazine

 www.commodorefree.com Page - 29 -

Jim Butterfield:
The Commodore Guru - An Interview
Copyright 1996, 1999 by Jim Lawless

.
This article originally appeared in Commodore Hacking #14.

http://www.radiks.net/~jimbo/art/c642.htm

My initial interest in the Commodore 64 computer
began in 1983. At the time, my primary source of
information pertaining to the C64 came from
Compute! and Compute!'s Gazette publications. One
author's name stoodfrom the rest; Jim Butterfield.

I used to turn to Jim's articles immediately when I
managed to get my hands on a new magazine. Mr.
Butterfield has the rare ability to describe complex
subjects in simple terms.

I'm certain that I'm not alone when I credit Jim with
having taught me a lot about the inner workings of
the Commodore 64. As important as the specifics of
writing code for the C64 was Jim's style. He would
often write code that was readily portable to multiple
CBM machines. His code had longevity and purpose.
The solidity of his programs left me with a lasting
impression pertaining to how software should be
developed. The following interview with Jim was
conducted via e-mail.

Q: What was the first programming language that you
learned?

A: In about 1963, an assembly language called
COGENT for a computer that few people have ever
heard of: a Collins Radio C-8401. That was shortly
followed by work on an IBM 1401, which had a
machine language that was alphanumeric. (Honest!
You could keypunch M/L directly!)

Q: Were numbers expressed in Base-36?

A: No. Decimal.

The basic machine had 1000 bytes (not 1K) of (7-bit)
memory (core, not RAM!) so addresses ranged from
000 to 999 (and were given in decimal, of course).
Expanded machines had 4K, then 16K ... the
addresses were slightly more complex in that case.
Thus, to move bytes from an area at, say address
123 to address 456 the instruction would be
M123456. I AM NOT MAKING THIS UP!!!!

Q: Did you guys have contests to spell out goofy
words as part of a program? (I know of a programmer
who used to regularly use the return code $0BAD to
indicate a problem...)

A: No (the addresses mixed in with the op codes
ruled that out), but you could do fun things on a 1401
if the system manager wasn't looking such as play
music.

Q: What was the first computer that you owned?

A: Not counting the TUTAC-1, which was powered by
rubber bands and was more correctly a logic
machine: The KIM-1, a single-board microcomputer
made by MOS Technologies, Inc., of Norristown PA.
MOS Technologies was subsequently acquired by
Commodore.

Q: When did you first encounter a Commodore
computer?

A: When Commodore acquired MOS Technologies,
the computer that I had owned for over a year
became a Commodore computer. Subsequently, an
employee of MOS Technologies, Chuck Peddle,
convinced Jack Tramiel of Commodore that they
should launch a personal computer called "The PET".
I got one of those not long after they started
production.

Q: Did you have formal training in computer
programming?

A: Yes, on that long-ago Collins C-8401. But this was
more a process- control machine; it didn't use of any
the newfangled (at the time) languages such as
Fortran and Cobol. So my training was in machine
language/assembler.

Q: What was the first book that you wrote?

A: A couple of enthusiasts and I collaborated on a
volume called "The First Book of KIM", a book
describing how to do things with the KIM-1 single
board computer. That computer was powered by a
6502,by the way; in fact the KIM-1 board itself was
designed as a engineering prototype for people who
wanted to try out the chip.

Q: Was it similar to the Altair where you had to
manually increment an address-counter before you
could throw the switches to set the byte at
that address?

A: No, the KIM-1 had an operating system in ROM.
That's one of the things that made all KIM users
"equal" and able to share programs, while the other
early micro owners had quite a scattering of stuff.

Q: What COULD you do with a KIM-1?

A: Hey, watch it! That's like saying, "What could you
do with a Commodore 64"? Although the KIM-1 came
with a hexadecimal keypad rather than a keyboard,
and output to a six-digit LED display, you could use
those to good advantage AND hook up extra stuff.
Play music? Play Blackjack? Hunt the Wumpus?
Skeet shoot? Unless you had the budget for a
printer, you'd have a hard time doing an accounts
receivable, of course. But this is the 6502 we're
talking about! And we all know it can do ANYTHING!

Q: What was the last book that you wrote?

A: It's probably the revised version of "Machine
Language For the Commodore 64, 128, and Other
Commodore Computers". In 1985 and 1986,
however, I did produce a "pocket diary" reference
guide for Commodore 8- bit computers.

Commodore Free Magazine

 www.commodorefree.com Page - 30 -

Q: Have you ever written articles or books on
subjects that are not
computer-related?

A: My first writing experience was a treatise on
transistor theory, published by Popular Electronics in
August of 1959. Not much else.

Q: Did you write commercial software for any of the
Commodore computers?

A: As a general rule, no. All my stuff is public domain.
At one time, I had written a simple spell-checking
engine that was incorporated into a word processing
package for a while.

Q: SuperMon was a tool that I used daily when
developing ML routines or exploring the C64. What
prompted you to write SuperMon?

A: In the early days of Commodore personal
computers, there were quite a few machine language
monitors around. They were partly based on some
publicly published code by Steve Wozniak (of
Apple!), and partly based on the MOS Technology
TIM monitor, from KIM-1 days.

Two variants of the basic monitor caught my eye:
NewMon, which added several useful features to the
basic Machine Language Monitor; and HiMon, which
sited the monitor in upper memory where it wouldn't
conflict with BASIC programs. I decided to put the
two together and generate a self-relocating MLM.
That was desirable in early PET/CBM days, where
some computers would come with 8K RAM, some
with 16K, and others with 32K; you couldn't assume
where the top of memory would be.

In those days, almost every Commodore computer
came with a small built- in MLM, and the first
Supermon was an add-on. Later, as Commodore
changed the style of the MLM packages they built
into newer machines such as the 128, I went back
and modified those earlier versions so that they
would work the same across all platforms.

Q: Did you ever expand the mini-assembler in
SuperMon into a full-blown assembler development
package?

A: No. I hustled Brad Templeton into writing PAL, so
that there would be an assembler available for those
who needed it. There had been a few assemblers
around before that - Commodore had one, and
another was the MAE system - but I was sure that
somebody like Brad could do better.

Q: Even Superman had to put up with Kryptonite.
Describe your worst experience as a software
developer / technical writer.

A: My first publication of SuperMon in Compute!
magazine had the wrong end-of-address supplied
(my fault). I got a LOT of mail and phone calls
on that one.

Q: I had heard a rumor pertaining to your software
development habits that indicated you would
approach a given project with full force. You would
focus your undivided attention on it until it was
complete. Is this rumor accurate?

A: Possibly. If I have a project under way, it "follows
me around" until

it's complete; I fret over it and can't put it away until
all the pieces are in place.

Q: If so, did you ever change this methodology?

A: Not to any great extent. A half-written program
bugs me, and I won't rest until it's finished .I might,
however, decide that I'm taking the wrong track, and
scrap a program completely in order to start over.
This isn't a loss: the first attempt can show you
what's really wanted.

Q: Your articles made you seem a bit omniscient.
You always had the inside info on the newest CBM
computers and always seemed to be able to explain
their complexities in a manner that would suggest
that you had a lot of time to study them. I don't know
a whole lot about your employment during the
mid/late 80's. Were you affiliated with CBM? A
beta-tester?

A: I had many friends in Commodore Canada, but I
never worked for the company, although I did
contract work for them on occasion.

The big problem was not getting information from
Commodore; it was learning to ignore most of it.
Commodore was bubbling over with ideas and plans
that never came to fruition. There was no point in
writing about projects that never happened (the
Commodore music box? the cash register? the
videotape/disk storage device?). I took the position:
"Don't tell me about it until it's a real product!".

Commodore Canada was an excellent source of
information, and I relied on them to keep me from
straying too far into technical speculation.

Q: Did you use any high-level languages on CBM
computers?

A: BASIC, of course. COMAL, a BASIC derivative
language from Denmark, was nicely constructed.
Played around a little with C, but that language
doesn't fit comfortably into an 8-bit environment.

Q: What was your favorite computer that CBM
produced?

A: I don't know that I have a single favorite. The early
PET/CBM machines were great "discovery"
platforms, where we could investigate these
wonderful new computers. The advent of the VIC-20
and the Commodore 64 brought color and sound,
which added to the charm of these home computers;
but they paid a penalty in slow disk access and
screen width limitations. Today, perhaps the
Commodore 128 ranks as the best, or at least the
computer with most general usability. But it wasn't
produced in quantities as great as some of the earlier
machines, and so the user community hasn't been
quite as furious.

Q: What kind of home computer do you currently
use?

A: C128 .. Amiga .. Pentium system. All three.

Q: Who were your influences as related to writing?

A: Nobody specific. Just tried to write it as I would
say it.

Q: Who were your influences as related to
programming?

Commodore Free Magazine

 www.commodorefree.com Page - 31 -

A: I've worked with a lot of sharp programmers over
the years. Not one I can pick out especially.

Q: If you could relive the CBM glory years, would you
do anything differently?

A: I don't think so. On another path, I could have
gone for big bucks; but making money carries a
responsibility to support and service, and
that would have taken the fun out of it.

Q: Is your current job computer-related?

A: I'm currently more or less retired.

Q: If you had not chosen a career in computing, what
field of endeavor would you most likely have
pursued?

A: Before computers, I worked in electronics and
telecommunications.

Q: What are your current hobbies?

A: Reading; travel; films; raising my daughter. (That's
a hobby???)

Q: What sort of technical literature do you currently
read?

A: Mostly reference material. Current magazines are
heavy on the "what's for sale" stream; to my mind,
that's not the fun part of computing.

Q: Are you surprised that a sort of "CBM
renaissance" has been taking place the last few
years (...availability of C64 emulators on multiple
platforms and such...the SuperCPU from CMD...).

A: It's a shame that Commodore wasn't able
to/interested in keeping the 8-bit line going. It's good
to see that is happening.

Surprised? A little. But enthusiasts and user groups
have always had a stronger effect than
manufacturers are willing to admit.

Q: What is your opinion on the way consumer
computing has evolved since the inception of the
early PET machines?

A: The average computer user today has a lot less
fun than we still have with the early machines. The
industry message today is "Buy it and use it, and
then turn it off .. don't worry or think about how it all
works". That's sure a lot less fun for tinkerers.

Q: What words of wisdom would you care to impart
on a new (or revitalized) generation of CBM hackers?

A: Enjoy what you're doing! If it becomes drudgery,
you're doing it wrong!

Taken from http://www.radiks.net/~jimbo/art/c642.htm
Commodore Free would like to thank Jim Lawless for
permitting the reprinting of his interview with Jim
Butterfield

