FOR THE

*Con?modore 64 and Vic-20 are Tl 4 INFORMATIVE

Registered Trademarks of /
Commodore Business Machines, Inc. PAGES

The Best of The Torpet

More For The Commodore 64"

The Vic-20"

edited by
Bruce Beach

*

Copp Clark Pitman Ltd.
Toronto

© Bruce Beach 1984

Please note that The Best of the TORPET Plus More

for the Commodore 64 and the VIC-20, and The TORPET
are completely unrelated to Commodore Business Machines,
Inc. CBM, PET and VIC are Commodore’s registered
trademarks.

ISBN 0-7730-4080-3

Copp Clark Pitman Ltd.

495 Wellington Street West
Toronto, Ontario M5V 1E9
Printed and bound in Canada

Canadian Cataloguing in Publication Data

Main entry under title:
The Best of the Torpet Plus More for the Commodore and the VIC-20

ISBN 0-7730-4080-3

1. Commodore 64 (Computer) — Programming — Catalogs.
2. VIC-20 (Computer) — Programming — Catalogs.
3. Computer programs — Catalogs.

I. Beach, Bruce. Il. The Torpet

QA76.8C55B47 1984 001.64'2 C84-098754-4

Best of The TORPET

Foreword |

FOREWORD

The Best of The TORPET was difficult to edit. Not
because the material was difficult to understand,
or poorly organized, or of poor quality, but simply
because there was so much good stuff to choose
from and squeeze into 320 pages. | started out
with nearly 1500 pages of material and squeezed,
squeezed and squeezed.

There are many things in the end that | had to
leave out that, in the beginning, | felt just had to
go in. Sometimes, it really hurt, but other times we
were able to make some compromises by making
some of the programs available on disks without
putting the long listings in the book.

Undoubtedly, any reader or other editor would
have made other choices. While | realized | could
not please everyone, | was concerned that, in try-
ing to please every level of experience, | would
please no-one. Nevertheless, | hope | have come
up with a book that will be very useful to every
level of experience and especially to the begin-
ners as they progress through the various levels.

The editor’s intention has been to make this book
a comprehensive resource for all those important
things for all users, both new and old alike, that
cannot be found in a single place elsewhere. For
example:

1. Those important utility programs like
BYTEDS, VIC MICROMON, WEDGE 64, etc.

The Best of The TORPET team
— Front row, left to right:

Jean Beach,

Sue Spires;
Back row: Gottfried Walter,

Darrin McGugan,

Bruce Beach.

2. And, most importantly, documentation for
these programs and many others.

3. Catalogues, descriptions and sources for
over 1000 free programs, like Prof. Peter Pon-
z0’s programming tutorials.

4. Large, easy-to-read memory maps.

The real credit for this book, of course, goes to
The TORPET readers and writers who have always
supported The TORPET. | wish to also take this
opportunity to thank the following persons for
their significant contributions.

First of all, | must of course thank my wife Jean.
She has put in twelve- and fourteen-hour days
right along beside me in assembling and pasting
up during the several months it has taken to put it
together.

Darrin McGugan was also with us ‘“for the dura-
tion”, and he is the one who did most of the work
of assembling and documenting ‘“The Best
Disks”. Sue Spires did the typesetting along with
help on the set-up by Mary Cornfield and Marie
Collins. Paul Trachsler and anyone else (especial-
ly my daughter Bahai’a), who was on our local
scene, could not avoid being looped into all sorts
of arduous tasks such as the indexing. Everyone
proofread and proofread, but proofreading was
done especially by Marie Arnold, Ruth Beeley and
Marie Matthews. Ed Niejadlik was our graphics
consultant. Gottfried R. Walter was our program-
ming technical consultant.

Best of The TORPET

Author Index

AUTHOR INDEX

Harold Anderson
Bruce Beach
T.J.Bos

David Bradley
Richard Bradley
Alfred J. Bruey
Jim Butterfield
Ron Byers

Hal Chamberlin
Robert A. Chandler
Dr. Frank Covitz
Steven Darnold
Tony Davidson
Elizabeth Deal
Rick Denda

Doug Drake
Robert Dray
William R. Frenchu
Steve Garmon
Larry Goldstein
Mel Granick

Gary Greenberg
Herbert Gross
Colin A. Haig

Dr. Efraim Halfon
Greg Halley

Todd Hamilton
Velda Hardman
Mayland Harriman
Gary Hayes

Terry Herckenrath
Paul Higginbottom
T.H. Holmer

D. Howell

Michael Kelinert
Wm. Kendall
Garry Kiziak
Charles Kluepfel
Robert Kobenter
Stan Koma

Ron Kushnier

Ed Mansfield
Darcy Mason

Paul McClay
Theodore McDowell
Darrin McGugan
Margaret McRitchie
Joel Meers
Howard M. Mesick
T.C. Meyer

Hank Mrockowski
Mark Niggemann
Tony Ning

M. Petersmeyer
Dr. Piasecki

97
2,9,175,214,215,289
154

42,144

217

38
15,79,82,292
228

188

222

202

30

53
67,83,142,143
120

135

61,134
24,36
46,131
86,89,98
166

178

60

226
28,105,109
40

130

223

52,137

149
47,48,93
196

77

159

153

124

18

62

218

272,274,278
69

145

155

169

162

101,307

120

74

128

Steve Punter
Ron Radko
Mike Richardson

Steve Rimmer
Michael Ross
Neil Salkind
John Scott
Robert Scott
John Seitz
Dennis Sievers
Vince Sorenson
Terry Taller
Peter Tattersall
Paul Thompson
E. Toussaint
Paul Trachsler
Lee Urbanski
Tom Van Flandern
Fred Wallace
G.R. Walter

Don White

Gene Wilburn
Daryl E. Williams
David Williams
Leslie Wood
Wes R.D. Wraggett
lan Wright

Alan Wunsche
Bill Yee

HUMOUR

Adams
Chaput

Patrick Corrigan
Joe Gravel
McWade

L. Poon

K. Pruner
Quillan

M. Richardson
Dan Sloan

C. Strutton
Ylimaki

212

32
16,44,58,72,84,102,
126,132,146,164,184
116

181

11

171

10

11

55,57

92,95,100

179

75

32

154

23

51

139

122
104,158,178,236
300

150

153

78,80

4.8

186

138

264

262,267

131,160,224
14,22,46,50,172,
183,237,262,266,271
41,121,143,145,170,177
277

35

91,96,108,156

9,81
52,88,130,137,142,218,306
60

66,94,129,152

141
7,38,55,57,77,83,99,125,144,
149,194,213,216,235,308

iv

Best of The TORPET Table of Contents

TABLE OF CONTENTS

PAGE
Introduction 1
ce4 17
ViC 45
General Programming 59
BASIC Programming 73
Machine Language Programming 85
Other Languages Programming 103
General Hardware 127
Disk/Tape Drives Hardware 133
Printers Hardware 147
Data Base 157
Spreadsheets 165
Word Processing 173
Music 185
Telecommunications 211
Education 225
Best Programs 261
Best Disks 273
Maps 291

Note: Approximate prices are given in some articles.
Piease check with your distributor for accurate prices.

Best of The TORPET CHIPP Cartoon Strips

Table of Contents
CHIPP Cartoon Strips

CHIPP Explains BASIC

by Mike Richardson, Orangeville, Ont.

PAGE
GOTO statements for the beginning programmer 16
COLONS for the beginning programmer 44
How to put CURSOR CONTROLS into a program 58

How the STOP statement helps the programmer to debug a program 72

How to use the DIRECT MODE 84
How the READ statement interacts with the DATA statement 102
How the RESTORE statement interacts with the DATA statement 126
How the ON statement works 132
How the FOR/NEXT statements work 146
More on FOR/NEXT Loops 164

Still More on FOR/NEXT Loops 184

vi

Best of The TORPET Introduction

Introduction
PAGE

History of The TORPET 2
Bruce Beach, Horning’s Mills, Ont.

The TORPET has been here since the early beginning of Commodore Com-

puters. It started as four pages and has grown. Its growing pains are

described for clubs and others starting similar magazines.

History of Commodore 4
Leslie Wood, Toronto, Ont.

The history of Commodore from small Typewriter repair shop to giant

worldwide computer manufacturer.

Origins of the Originator 8
Leslie Wood, Toronto, Ont.

The founder of Commodore. The man and his philosophy.

Why Everyone Needs to Understand Computers 9
Bruce Beach, Horning’s Mills, Ont.

Here are some good arguments for the kid who wants to convince his

parents to get him a computer.

How to Survive The Price War Games 10
Robert Scott, Brantford, Ont.

Some more sound advice for the new computer buyer.

Buying through the Mail 11
Neil Salkind & John Seitz, Lawrence, Kan.

Both the pluses and minuses are examined.

Planning for Obsolescence 12
Ron Kushnier

Some real insights into the problems that face the new computer buyer.

Swapping and Sharing 15

Jim Butterfield, Toronto, Ont.

Our respected leader sets down some of the rules and guidelines for copy-
ing programs.

Best of The TORPET

Introduction

History of The TORPET

By Bruce M. Beach, Horning’s Mills, Ont.

SMALL BEGINNINGS

The TORPET has reached its third anniversary
(in Dec. 1983), and we are now printing 32,000
copies. For the next three months the TORPET
will be distributed through all the independent
(non-chain store) Commodore dealers in Canada.

The TORPET continues to support new publica-
tion efforts on the part of clubs throughout the
world. We only ask that those making reprints
from the TORPET to send us copies of their
magazines and if they have a policy of paying
their contributors to send the remuneration made
out to the author in care of the TORPET so that we
may forward it to the author.

Each month we receive a number of new
magazines who are using TORPET reprints and
we are often amazed by the growth and size ex-
hibited by them. It may interest you to know the
stages that the TORPET has gone through in its
growth and for this reason we are publishing the
following history.

When the TORPET began three years ago as a
Commodore ’only’ magazine there had been only
one predecessor of note and there were two con-
temporary publications. The predecessor was
called The Paper and it has merged with The Mid-
nite Gazette which began the same month as The
TORPET. The other contemporary publication was
The Transactor published by Commodore Com-
puters and now published by a private company in
Canada.

Today there are dozens of club magazines that are
larger than The TORPET was during its first year
and there are six Commodore 'only’ publications
that are larger in circulation than the present
TORPET. The larger circulation magazines (or
planned magazines) are Compute’s Gazette, Com-
mander, RUN and POKE (first issues of the latter
two to be published in November), Commodore
Magazine, and Power Play (these last two are
published by Commodore itself).

The TORPET doesn’t expect to ever become a
large-circulation slick magazine like the last six
mentioned. It intends to keep its own inimitable
style. We will never be as technical as The Tran-
sactor nor as free form as the Midnite Gazette. We
will continue to address the new audience of com-
puter users who are wanting to move away from
the games-only aspect of their machines and onto

a beginning understanding of the operation of the
computer and its capabilities. We will probably
move away from parochial types of club informa-
tion that we have published in the past but we will
continue to try to innovate and improve.

We hope that you have enjoyed The TORPET in
the past and that you will enjoy it even more in the
future, and if you are publishing your own
magazine we still want to help you in every way
we can to distribute information about the world
of Commodore microcomputers.

IMPROVEMENT WITH
EVERY ISSUE

Issue No. 1, Nov. 1980

The first TORPET was issued in November 1980. It
was called the TPUG News and consisted of four
pages run on a sheetfed offset press. It included
Issue No. 1 of the Midnite Software Gazette, and a
machine language checklist from Jim
Butterfield’s machine language course.

Issue No. 2, Jan. 1981
Carried The TORPET name for the first time.

Issue No. 3, Feb. 1981
Had first graphics, first ad (from 2001) and first ad
rate schedule ($85 for a full page).

Issue No. 4, March 1981

First appearance of stylized masthead. First use
of letterspacing in the typesetting. Over 300
subscribers. Increase to 8 pages. Changed from 4
column to three column format.

Issue No. 5, April 1981

The big jump to web offset. 16 pages. Now had
403 subscribers. Better stylized heads. First
boxes for calendar, executive list, Bennett Box,
etc. Change from 3 column to 2 column format.
First listing of TPUG monthly disk release. First
assistant editor (Barbara Bennett). Established
policy of twenty-five percent or less of advertis-

ing.

Issue No. 6, July 1981

First cover photo. First half-tones. First color. 32
pages. First table of contents. First Butterfield
Box. First listing of executive’s phone numbers.

2

Best of The TORPET

Introduction

First cover price of $1 for computer store stands.

First classified ads (5 cents per word $1
minimum).

Issue No. 7, Oct. 1981

First web issue on bond paper. First 48 page
double page spread ad (RTC). Included first exten-
sive program documentation.

Issue No. 8, Jan. 1981

First man of the year issue (Chris Bennett). First
use of hyphenation in typesetting. First of the
dealer of the month series (Electronics 2001).

Issue No. 9, April 1982

First issue of regular monthly schedule. First
schematics published. First insert section (BMB
Compuscience). First advertising manager
(Michael Hyszka). $1.50 cover price.

Issue No. 10, May 1982

First two color issue. First maps. First cover
scoops. (CBM 1l and PET Il). First $2.00 cover
price.

Issue No. 11, June 1982

First Reader's corner. First registered overprin-
ting (RTC ad). First extensive photo story (by John
Easton).

Issue No. 12, Aug. 1982

First alphabetic listing of library (by David Hook).
First sustaining member listings. First extensive
artwork (Butterfield’s PET family tree). First three
side trim.

Issue No. 13, Sept. 1982

First pasted cover. First issue without major out-
side editorial content.

Issue No. 14, Oct. 1982

First horizontal printing of listings. (Had to reprint
run to accomplish it.)

Issue No. 15, Dec. 1982

First full time editorial effort. First separate cover.
First publication by separate publisher. First 96
page issue. First inside front table of contents.

Issue No. 16, Jan. 1983

The big jump to first four color cover (Man of the
Year - Michael Bonnycastle). First Canadian mail-
ing under second class registration pending. First
ad for writers.

Issue No. 17, Feb. 1983

First collage cover. First insertion of return card.
First front cover ear titles. First ad for cartoonists.
First Hardware Hacker box. First magazine rather
than newspaper press scheduling. First use of
premium 70 paper.

Issue No. 18, March-April 1983

First professional photo cover. First use of bipad.
First inside cover 4 color. First cover credits. First
newsstand distribution. First cartoons. First strip.
First page top borders. First theme issue. First
blue inserts.

Issue No. 19, May 1983

First Canadian mailing on second class permit.
First full page regular strip. First paid series. First
editorial board listing. First associate editor. First
This and That column.

Issue No. 20, June 1983

First U.S. mailing on second class pending. First
listing of ISSN number.

Issue No. 21, July 1983

First use of separate bindery. First full time adver-
tising manager. First Canadian mailing without
envelopes.

Issue No. 22, Aug. 1983

The big jump to first regular 96 page issue. First
printing in two sections. First use of filled reverse
printing (Mirage Concepts ad). First mailing on
U.S. second class mailing permit. First insertion
of editorial address. First advertiser’s index. First
printing of List Me files. First U.S. mailing without
envelopes. First inside cover advertising printing
with bleed.

Issue No. 23, Sept. 1983

First 96 page issue with full editorial content.
First use of end of story indicators. First use of in-
house headliner. Most extensive use of story
dividers. First issue with all registration numbers
inside. First use of composite half-tones in adver-
tising.

Issue No. 24, Oct. 1983

First commissioned comic strip.

Issue No. 25, Nov.-Dec. 1983

Third anniversary issue with first internal four col-
or sheets (Richvale Telecommunications). First
complete distribution to Canadian Commodore
independent dealers.

Best of The TORPET

Introduction

History of Commodore

By Leslie Wood, Toronto, Ont.

In just 25 years, a small typewriter sales and
repair shop tucked away in downtown Toronto,
Canada, has been transformed into one of the hot-
test personal computer companies in the world --
Commodore International Limited.

Shipping more units world-wide than any other
computer company, Commodore has grown from
sales of $46 million (U.S.) in 1977 to over $680
million (U.S.) in fiscal 1983 (year ended June 30).
And much of that success is due to the en-
trepreneurial instincts of Commodore’s founder
and present vice-chairman, Jack Tramiel.

The Polish-born Tramiel survived Nazi concentra-
tion camps to immigrate to North America and, in
1958, open his own typewritér shop in Toronto.
Tramiel has always had a gift for anticipating
future home and business electronic needs -- and
the ability to move quickly to fill them. Com-
modore’s progress is a testimonial to that trait.

Over the past quarter-century, Tramiel has led
Commodore on a heady ride through adding
machines, electronic calculators, digital watches
and the introduction of the personal computer
age. Together with his skilled management team
around the world, he is still considering: what’s
next? Commodore, in fact, is widely acknowledg-
ed as a company that puts into action a smart but
simple rule: hold onto the old for as long as it is
good and change to the new the moment it
becomes better.

IN THE EARLY YEARS

During those early years, Commodore grew from
typewriter repairs and sales to typewriter
manufacturing, with the acquisition of a factory in
Berlin, West Germany. Early in the 1960s, Tramiel
began selling and servicing a wide range of office
equipment, and distributing nationally for an of-
fice furniture company.

1965

In 1965, Commodore acquired the furniture
manufacturer, and moved his operatjon to what is
now Commodore’s present Canadian head-
quarters. Commodore still manufactures office
furniture (mainly filing cabinets and desks, plus
metal housings for the CBM 8032 and SuperPET)
at this plant in Scarborough, Ontario, and has ex-
panded operations to three offices and two
manufacturing plants in the Toronto vicinity.

Also in 1965, Tramiel met Canadian lawyer and
financier Irving Gould, who later became Com-
modore’s chairman. These two formed the head of
the team that built the Commodore we know to-
day. One of the first things this team did was to
sell Commodore’s adding machine plant and find
a company in Japan to make adding machines for
Commodore to distribute. While in Japan, Tramiel
got his first look at an electronic calculator, and
he quickly deduced that this product would mean
the death of the mechanical adding machine.
With the Commodore philosophy that, ‘‘if we are
not our own competition, then someone else will
be”, Tramiel moved quickly and found manufac-
turers to produce electronic calculators under the
Commodore name. Thus, the company was right
there in the market when it began to take off.

The company began manufacturing its own elec-
tronic calculators in 1969 using Texas In-
struments chips. In fact, Commodore was the first
company to bring out a “hand-held” calculator,
the C108, an example of what has become a long
history of Commodore ‘“industry firsts” in
marketing value, innovation and performance in
new products. It is interesting to note that this
product was sold at much the same price, through
similar distribution channels and to similar
customers, as is the popular VIC-20 today.

1974

Up to 1974, Commodore expanded its lines of
calculators from simple four-function machines
to memory machines, scientific machines, and
keyboard programmable models. Commodore
was largely dependent on third parties for the
chips and displays that went into the products it
was making.

1975

In 1975, Texas Instruments decided to go into
business against its own customers by manufac-
turing calculators. At the same time, chip prices
dropped to $1 from $12, and Commodore was
caught with a big inventory of chips and
calculators while market prices plunged. It was
this incident which led to Tramiel’s decision that
Commodore would be a company that controlled
its own destiny, and not be at the mercy of other
manufacturers.

1976

Commodore purchased MOS Technology, one of
its semi-conductor chip suppliers, in 1976, and

4

Best of The TORPET

Introduction

worked its way to become vertically integrated.
This vertical integration allows Commodore to
supply its own needs, and it gives the company
significant lead time in new product development,
which means manufacturing cost advantages —
and that, in turn, translates into price perfor-
mance benefits for consumers.

The acquisition of MOS Technology was followed
in the next 18 months by two further key in-
vestments: the purchase of Frontier, a Los
Angeles chip manufacturer complementary to
those produced by MOS, and the acquisition of
Dallas-based Micro Display Systems Inc., a
manufacturer of liquid crystal displays. As a
result of these acquisitions, Commodore had in-
house expertise and production in more key
technologies than most electronics companies
several times its size.

Also in 1976, Commodore reorganized its cor-
porate structure as Commodore International Ltd.
and moved its financial headquarters to the
Bahamas and the operations headquarters to
Wayne, Pennsylvania (it has since re-established
in West Chester, Pa.).

1977 — PET INTRODUCED

The next year was the watershed for Commodore
when, in 1977 — still anticipating the future in
true Commodore style — the company introduced
its first personal computer: the PET.

The PET (Personal Electronic Transactor) uses the
MOS-designed 6502 microprocessor, which is
also used by some of the competition. It was the
original machine launched at the Hanover Fair in
Germany and the Consumer Electronics Show in
the U.S.A,, that helped give birth to the personal
computer market of today.

The PET sparked another period of rapid growth
which is still underway today. It was marketed
world-wide and really took hold in the European
market because of the widespread, loyal dealer
network Commodore had developed in its
distribution of calculators. Commodore
dominates the personal computer market in
Europe today with more than 50 per cent of the
market in many countries. In fiscal 1983 (year end-
ed June 30), European sales reached $155.6
million (U.S.), aimost 23 per cent of Commodore’s
total sales.

After the PET line was completed with the 4000
and later the CBM 8000 series micros, the next
major product from Commodore was the very
popular VIC-20. The prototype of the VIC-20 was
previewed at the National Computer Convention

in Chicago in 1980, and it was first launched in the
Seibu Department Store in Tokyo, Japan,
because, as Jack Tramiel said about the threat of
competition from Japan, “The Japanese are com-
ing; therefore, we must become the Japanese.”

Commodore sold 800,000 VIC-20s world-wide in
1982, reached the one million mark early in 1983,
and they are now being shipped at the rate of
100,000 units per month.

Commodore didn’t stop with that success either,
but continued research and development and, in
August 1982, shipped the first Commodore 64. By
the end of that year, aided by the single biggest
advertising campaign in Commodore’s history,
the 64 had already passed the Apple Il in monthly
unit sales. And, by March 1983, the 64 was being
shipped at the rate of 25,000 machines a month.

Both the VIC-20 and the 64 are sold through mass
merchandise retail outlets, as well as computer
dealers and selected electronics stores, a suc-
cessful marketing technique that has since been
emulated by other companies.

Commodore has now become the largest unit
seller of microcomputers in the world. And, accor-
ding to a Dataquest study published in Electronic
News recently, Commodore is No. 1 in computers
priced under $1,000, with an estimated 43 percent
dollar share in the U.S. Maybe this is one reason
why the ‘Commodore 64 Programs Reference
Guide' is currently the top-selling computer book
in the U.S.

As well as the obvious success the company has
achieved in the home market, the Commodore
name is familiar in both the business and educa-
tion markets for personal computers. Commodore
is one of the leaders in small business computers
with its SuperPET and CBM lines, and the 64 is
also being used for a number of functions in small
business.

EDUCATION MARKET

The education market is another area in which
Commodore is a front-runner. In Canada, for in-
stance, Commodore holds about 65 per cent of
the national market for computers in education.
Penetration is also significant in U.S., British and
European schools and universities.

Commodore has become an international com-
pany, with manufacturing facilities in Japan,
Hong Kong, West Germany, the U.K., Penn-
sylvania and California in the United States, and
Scarborough, a city within Metropolitan Toronto,

5

Best of The TORPET Introduction

To the left: The Commodore portable
Executive 64, weighing 27.6 pounds,
travels easily. It has 64K RAM, a built-
in, five-inch monitor, and floppy disk
drives with 170K capacity.

Below: The advanced Commodore
“B” series business microcomputer
with a minimum RAM of 128K, expan-
dable to 896K.

Best of The TORPET

Introduction

Canada. In fiscal 1983, world-wide sales increas-
ed 44.7 per cent over 1982’s $304.5 million (U.S.) to
reach over $680 million (U.S.). By the end of fiscal
1984, Commodore will be a billion-dollar-plus
company.

Wall Street financial analysts who follow Com-
modore (shares have been traded on the New York
Stock Exchange for three years, and on the
American Exchange several years prior to that)
state that much of the company’s success is due
to its flexibility and willingness to adapt quickly
to -- and even lead - changes in technology and in
the marketplace. Jack Tramiel puts it more simp-
ly: “The minute you're through changing, you're
through.’

Commodore International has the most complete
line of products of any microcomputer manufac-
turer, with models and software specifically
geared to the education, business and home
markets. The company’s track record of tradition
and steady growth have resulted in an organiza-
tion whose sophistication in research and
development and in product engineering are se-
cond to none.

This commitment and dedication to research and
development -- over $37 million was invested in R
& D last year -- will lead to advances in technology
and product application from Commodore in the
years ahead. The company is driven by
technology, and prides itself not only on giving its
customers the products they want, but on in-
troducing products the public didn’t even know
were available.

Commodore has programmers, systems
designers and engineers working full-time to
develop improved microprocessors, more effi-
cient manufacturing techniques, enhanced quali-
ty control procedures, improved product design
and engineering and, perhaps most importantly,
an accelerated software development program.

Commodore is further expanding its software
development in the United States and Canada
with both in-house and external programming
teams. The results of this program will certainly
be evident to users of Commodore computers
throughout 1984.

Commodore remains a firm believer in the adage
that, if you just stand and watch the world go by, it
will. So, the company continues to advance with a
planned series of new proprietary systems, in-
cluding a family of advanced microprocessors
and peripheral integrated circuits for high-speed,
low-power battery-operated computer systems,
and improved video graphics. In addition, in-

vestigation into advanced microprocessor ar-
chitecture is well underway that could lead to
even lower-cost, 16-bit Commodore computers.

RECENT RESULTS

The most recent results of Commodore’s high-
level quality and value approach are the advanced
“B” series business microcomputer and the por-
table Executive 64. The “B” series has a minimum
RAM configuration of 128K, expandable to 896K.
It is ideal for variable work situations, especially
where high output levels are demanded. The Exec
64, weighing only 27.6 pounds, can go anywhere
with no difficulty. It has 64K RAM, a built-in five-
inch monitor and floppy disk drive with 170K
capacity.

Another recent step has been the development of
a sophisticated new voice synthesizer for the
Commodore 64. The Commodore speech module
plugs directly into the Commodore 64, and at pre-
sent has a vocabulary of 235 words. This is the
first voice I/O product to be developed at the com-
pany’s Speech Technology Division in Dallas,
Texas.

Also, Commodore’s first consumer robot will
soon be announced. Robotics is a challenging
field of consumer electronics which has not yet
been fully explored, and the company is excited
about the potential in this area.

Commodore celebrated its 25th year with an inter-
national extravaganza held in Toronto, Canada,
early in December. The “World of Commodore”
Show was the first truly international computer
show to be orchestrated by a single microcom-
puter company.

In fact, looking at the history of Commodore at the
close of its first quarter century, it is easy to see
that the company has consistently been a leader
in recognizing change and leading the electronics
industry into the changes. But, more than study-
ing history, Commodore is a company that
creates the history. Just watch.

With all of the micro chips going into modern
weaponry, some future Julius Caesar will likely
say: | come, I.C., | conquer. Oh well, when in ROM
do as the ROMans do.

Ylimaki

Best of The TORPET

Introduction

Origins of the Originator

By Leslie Wood, Toronto, Ont.

The story of Commodore is completely entwined
with Jack Tramiel, founder and architect of the
company, and no story can be complete without a
little bit of the flavour of the man behind the com-

pany.

Tramiel was born in Poland, and survived the Nazi
concentration camps to immigrate to the United
States after the war. His first association with the
industry that evolved into the computer era was in
his army days at Fort Dix where he became involv-
ed with the repair of typewriters. Once into
civilian life, this was the business he pursued,
and he even drove a taxi in New York City to help
establish himself.

It was the typewriter experience that led to the
start of Commodore a few years later when Jack
moved his wife and two sons to Toronto in 1958
and started his own typewriter repair business at
2 Toronto Street, in the city’s downtown core. On-
ly the likes of Tramiel could have envisioned the
Commodore International of today from that
small repair shop.

Later in 1958, having grown to a strength of five
employees, the company moved to more spacious
quarters at 1905 Davenport Road. Two more
moves for expansion purposes brought Com-
modore to 501 Yonge Street and then 630 King St.
West at Bathurst in 1959, where it continued in
sales and repair. The number of expansion moves
in those early years attest to the hustle and hard
work Tramiel put into his company, and the suc-
cessful results he achieved.

Commodore is very much a resuit of Tramiel’s an-
ticipation of the future, and it's corporate
philosophy is purely Tramiel’s. Some of Jack’s
own thoughts are undoubtedly the best way to
describe him:

ON CUSTOMERS

We produce for the masses, not the classes.
Quality and service is our commitment because, if
we don’t give our customers the best, they will
know it.

ON TECHNOLOGY

Commodore is driven by technology. We don’t on-
ly introduce the products the customer wants, we
introduce products the customer didn’t even
know were available.

ON MUTUAL IMPROVEMENT
Never settle for doing things the way they were

done in the past. Always find new ways to do
things better, cheaper and more efficiently.

ON SUPPLIERS

Never buy a product if you don’t know what it
costs to make it. Never buy below the supplier’s
cost to drive him out of business. Give him a pro-
fit, but never more than our company makes.

ON FINANCIAL RESPONSIBILITY

Treat evey penny as your own.

ON BUSINESS

Business to us is not a sport, it’s war. We are not
here to play the sport but to win the battles. We
will win because we work harder and smarter, and
serve our customers better.

ON THE FUTURE

We’'re always looking at the future because we’re
helping to create that future..but the work is
always done in the present.

JACK TRAMIEL

8

Best of The TORPET

Introduction

WHY EVERYONE NEEDS TO
UNDERSTAND COMPUTERS

By Bruce Beach, Horning’s Mills, Ont.

| predict that in the next few months we will begin
to see a reaction against the current enthusiasm
for widespread computer literacy. The push will
come largely from those who feel left out and
threatened by the technology which they do not
understand but there will be some very visible and
very qualified experts who will also voice their
reservations.

The question will be raised as to why in this age of
specialization everyone needs to understand
computers anymore than they need to understand
automobile mechanics or any other technology in
order to be able to use it. Why should everyone
learn BASIC or any other form of programming?
One does not need to know how to program a
computer in order to use it any more than one
needs to be an auto mechanic in order to drive a
car. This will be the line of reasoning.

But there is a difference. Digital computers are
logic machines and have a close kinship to man
and his reasoning faculties. In my day (I am telling
you my age) the classical education required one
to learn Latin and Greek, not that one expected to
ever meet any living Romans or Greeks. It was the
intellectual discipline itself that was valued.

Socrates proposed that students learn the
discipline of Euclid’s geometry before tackling
philosophy. Today’s universities have similar re-
quirements and yet surprisingly (an early in-
dicator of the reaction) some will not give credit

for high school computer courses. |, on the other
extreme, feel that computer courses should be re-
quired.

The computer certainly requires as much intellec-
tual and logical discipline as Euclid, Latin, or
Greek and the teacher (the computer itself) is an
infinitely patient teacher that never tires and
always remains perfectly logical. When one adds
to this the benefit of individual instruction and the
ability to progress at one’s own rate, how can
there be caveat?

But there still remain objectors. ‘“Many of the
students will have no practical use of the skills
they are learning”, they will say. Wrong. The skill
they are learning is not programming but logic
and they have great need to learn logic. A society
that places such stress on physical gymnastics
will do well to place an equal emphasis on mental
gymnastics, one more part of the Greek triad.

The fact that one has nothing to program does not
mean they should not know how to program. Most
students who learn to write English have nothing
to say either. In fact, | know a fellow who speaks
seven languages and has nothing to say in any
one of them. In our educational systems we try to
teach many to write in the hope that at least a few
will have something to write about. Let us do the
same with computers.

HOWARD by K. Pruner

W @%@g@_
@N@‘% @ s JUST

HOWARD,
RUNNING A
PROGRAM,,

\

Best of The TORPET

Introduction

How to Survive the Price War Games

By Robert J. Scott, Brantford, Ont.

Are you one of those people who spent $100 on a
calculator that could add, subtract, multiply and
divide, but wished you had spent the extra $50 to
get one that did square roots? Perhaps you own a
$129 digital watch. If the cost of microcomputers
continues on the same slide, we would all be well
advised to hold off on purchasing until they
become available as prizes in popcorn boxes.

I am writing this using a $100 word processor that
now sells for $39, and a $900 Commodore 64 that
now can be purchased for $300 or less. | know it
sounds a little crazy, but I’'m not alone. I'm really
not even that upset; after all, if it wasn’t for us
consumers, the prices would never have dropped.
| would not have been able to replace my
calculator for $19 with one that will do 10 times as
many functions, or buy a $25 watch that is also a
stopwatch, a calculator (that does square roots),
and even wakes me up in the morning. What the
heck, | will probably replace the computer some-
day.

I actually felt intelligent after having learned from
the calculator. | didn’t buy a $3000 computer three
years ago, or even a $2000 computer two years
ago. | waited until they reached $1000, and then
jumped in thinking they couldn’t go any lower.
Wrong!! I'm not even going to mention printers,
but | have gone through two in six months.

Where does it end? With my 64, though they are
now cheaper, | assumed they couldn’t get better,
at least not for the same money. Wrong again!!
Now | hear rumours that eight-bit machines will
soon be obsolete and megarams are on the way.

Finally, we come to the reason | am writing this ar-
ticle, other than to make more money to help fund
some manufacturer's research and development
programs. When should one buy a computer?
How can we survive the price war?

There are essentially two questions to be
answered. The first is: what do | want the com-
puter do to for me The second is: how much am |
willing to pay, or should | say how much can | af-
ford to pay?

When assessing what you want a computer to do
for you, it is good to keep in mind that there are
going to be things you didn’t think you wanted un-
til you find your machine will not do them. This is
a strong argument for expandability. Due to the
nature of the industry, expandability is almost
universal, but, nevertheless, it is a consideration.

This way, you will feel great when you go to ex-
pand. The price of peripherals is sure to be much

lower than when you first bought your machine.
Some of the things you should consider, though,
are word-processing, games (why not?), spread
sheet and other business applications, data base
accessibility (which is becoming more and more
useful), and programming features such as
languages and editing characteristics. | have
found full screen editing extremely useful, and
again it is almost unversal in the world of micros.

Then there is keeping up with the Jones’s, actual-
ly not a bad bet in the computer field. It is nice to
be compatible, not just friendly, with your
neighbours. Often, in fact, it helps to see what
your friends use their micros for when you are
deciding what you want to do with one.

The other major way of finding out how you might
use a computer is by reading magazines like this
one. The articles may be interesting but the ads
are also quite useful. They give you lots of ideas
on what’s available for different machines in both
hardware and software.

If, after all this, you are still not able to determine
exactly why you need a computer, but you know
you do, it may be necessary to pull out all of the
stops and use the same reasons (excuses) that |
did. They are educational, and it’s my hobby. After
all, lots of people spend thousands of dollars on
golf. If the latter is your reason, then you probably
won’t have to wait for the companies to develop
the computer you need. This leaves us with the se-
cond question: how much to spend?

The answer: whatever it costs to get what you
need. Right? Well, unless you are Herman
Hollerith, money is going to be tight. If you can’t
afford a computer to do what you want, it’s not a
bad idea to wait a little while until the computer
you need reaches the price you’re willing to pay. If
you become impatient waiting, it may be
necessary to join a USER group where other users
will discuss their habits and perhaps ease your
tension. The last approach to the problem is back
to the popcorn box or, in our terms, the entry level
computer. These are usually very cheap (-$50), and
often equally limited. At this level, though, you
can always use it for a doorstop when it has
outlived its usefulness.

There now, I’'m finished. Is it clear to you what you
need to know before you buy? | didn’t think so, but
| hope you have at least had a chance to recon-
sider your position. | also hope that, whatever you
decide, your personal computer fits you personal-
ly, and the price doesn’t drop through the floor the
day after you buy it (Murphy’s Law No. 473).

10

Best of The TORPET

Introduction

Buying Through The Mail

By Neil J. Salkind & John K. Seitz, Lawrence, Kansas

Customer: | really like some of the features of that
new computer. What did you say the cost was?

Dealer: $695.00

Customer: Hmm. That’s not a bad price. Let me
see how | do this month, and I'll get back to you.

A few weeks later:

Customer: Listen, how do | program my word pro-
cessor so that | can get correspondence quality
output on that printer you're selling? | just
couldn’t resist the mail order price of $499.00.

Dealer: Hmm......

This kind of interaction between computer
dealers and customers represents a dilemma that
more and more dealers are facing. What do | go
about customers who seek advice about equip-
ment that they purchased from someone else? Do
| charge them for assistance by the hour? By the
question? Can | afford to ignore them at the cost
of losing further business? Should | spend time
with them rather than devote it to the retail end of
my business and other customers?

The question we would like to explore here is
what buying through the mail can mean to you,
your dealer, and the quality of your experience
with your computer system after your purchases
have arrived.

While mail order firms sell computers, printers,
disk drives, software and practically anything else
at a great savings to the buyer, the local dealer
usually has available a smaller selection plus (we
hope) knowledge, experience, and maintenance
service.

This knowledge and experience doesn’t come as
a “software package”, but needs to be developed.

When a dealer sells a line of computers or
peripherals, a great deal more time and money
goes into the retailing of those products than just
inventory and overhead costs.

They usually have the following kinds of costs
and time commitments associated with any line
of hardware or software.

HIDDEN COSTS

First, most dealers attend national conventions
such as COMDEX incurring various types of ex-
penses, to maintain a level of expertise their

customers should expect.

A second major “hidden” cost, is the payment of
consultants to help modify new hardware or soft-
ware to fit a particular system that is already
established and running and has a large con-
sumer following. People like to have new things
modified to existing systems rather than have to
relearn a new system.

When local people cannot be of assistance long
distance calls to the service department of the
manufacturer or their suppliers become
necessary for answers to technical questions
about the operation and capabilities of equip-
ment. One dealer we know regularly has phone
costs of over $200. per month just to cover in-
quiries on one system.

Fourth, usually there is sales training required by
the vendor or manufacturer of the line before the
dealer can sell the product. Although this training
is not at the cost of the individual dealer, the time
away from the store and travel expenses repre-
sent additional cost.

Fifth, maintenance training is often required by
the vendor before the dealer can be certified to
repair the particular hardware product. For exam-
ple, one large printer manufacurer requires 10 full
days of training before a dealer can become a
repair center. Until the training is completed, they
will not ship parts or repair manuals.

All the costs associated with these activities are
besides the regular overhead involved in
operating any retail business such as rent,
utilities, advertising, salaries, and so forth.

These points are not plugs for why you should buy
from your local dealer, rather than from the mail
order firms that advertise in all the popular
magazines. Rather, it is an explanation of some of
the hidden costs associated with bringing equip-
ment ‘“on line”, so that the dealer can make the
system available and reliable.

WHAT ARE THE ALTERNATIVES?

What are the alternatives for the dealer, when fac-
ed with a situation like the one which opened this
article?

One alternative is to answer all questions that any
customer might have about equipment,
regardiess of whether they purchased it from the

11

Best of The TORPET

Introduction

dealer. A clear plus to this strategy is that people
keep coming back for help, and perhaps new
business. It’s important to remember however,
that most people will buy big items through the
mail so that the $20. software package purchased
from the dealer might not be worth his or her time
and commitment in answering hours of questions
and providing “free” instructions (for you — not
the dealer).

A second alternative is to help only those people
who purchased from you. Needless to say, this
can become sticky. To begin with, many of the
retail sales in any business operate as a result of
referrals. If a dealer chooses not to help someone,
that person might very well not mention that this
or that dealer was helpful (especially when the
consumer really needed it!)

Worse yet, the message about the dealer might be
derogatory in nature. In addition, what if a con-
sumer buys a computer, disk drive, modem, and
monitor from the same dealer, but not the printer?

Does the dealer answer questions about the disk
drive, but not about the interface between the
drive and the printer?

There really is no clear solution. What the con-
sumer needs to remember, is that with the in-
troduction of any line into a retail establishment
there are costs associated with the provision of
full service. If local stores are not supported, it is
often questionable whether needed services will
continue to be available.

What the dealer needs to keep in mind is that even
if people do buy through the mail, they may very
well depend upon you for future service, pur-
chases, and that all important referral at the cost
of some dealer time now.

2R 2 00 20 2b 4

Neil J. Salkind is an occasional mail order buyer,
and John K. Seitz is an occasional giver of free ad-
vice and a computer dealer. Both live in Lawrence,
Kansas.

Best of The TORPET

Introduction

Planning for Obsolescence

By Ron Kushnier

In a recent Compute article, Jim Butterfield
matter-of-factly stated that, in his opinion, the
VIC-20 will “fade away” in a few years. | have no
argument with that statement. | too believe it. Yet,
seeing it in print made my mind gasp. Things are
moving so fast, products are going on and off the
market at such a rapid rate, that it is not surpris-
ing the following event occurred at a recent com-
puter club meeting.

| had brought in my original 8K PET which, | must
say, is still in mint condition. A young member of
the club came running up and exclaimed, ‘“Boy,
another new model! Commodore is really
something! Look at that, a built-in cassette
unit! What will they think of next?”

It broke my heart to tell him that what he was see-
ing was the great-grandfather of the present-day
CBM computer.

But that’s the way things are in this “Future
Shock” world of micros.

How can we live with such goings on?

How can we decide when to buy and when to
wait?

And, more important, how can we plan for ob-
solescence?

In the world of computers, obsolescence is a sub-
jective term. My single board ‘“KIM”’ (vintage 1976)
would be considered by many as obsolete. Yet it
still performs the same functions as it did back
then. It has all the bells and whistles, all the op-
tions that were ever made, and has never had a
failure. But try to find a buyer for it — impossible!

My experience with “KIM” brings out three areas
to consider when dealing with obsolescence.

The first question which must be asked is “For
whom is the product obsolete?”

WE CAN CATEGORIZE BUYERS
INTO THREE TYPES

There is the “Applications Buyer”

This is a person who buys a computer with a par-
ticular application in mind, and who satisfactorily
solves his problem with that computer. He cer-
tainly does not complain that his computer is ob-
solete.

There is the “Ubiquitous Computer Buyer”.

12

Best of The TORPET

Introduction

This person expects his computer to do
everything from high density color graphics to
80-column word processing, all at super speed
and precision. This type of person is apt to be
disappointed and dissatatisfied with any com-
puter he buys. He will constantly be on the
lookout for something newer or better.

Finally, there is the “Computer Experimenter”.

The “Computer Experimenter” is more fascinated
by the idea of what a computer can do than actual
applications. He is the guy involved in advancing
the technology and probably accounts for most of
the published computer articles.

The experimenter finds himself in an unfortunate
situation. Unless he is independently wealthy, he
can never keep up with the rapid changeover in
equipment. To him, machines become obsolete
before they’'ve even had a chance to be fully ex-
plored.

Perhaps | should mention a fourth category of
buyer, the “New Educational Buyer”.

This person is just breaking into the computer
field and is not sure what his needs will be. He
usually settles for a low-end micro such as the
VIC-20 or the Sinclair ZX-81. The small initial cost
can be written off as an educational expense.

At first, the newcomer is usually ecstatic with his
purchase. However, once the novelty and educa-
tional value have diminished, the “New Educa-
tional” buyer is reduced to one of the three
previously-defined categories, and is faced with
the same decisions.

Each of our three buyers has his own view and
definition of “obsolete”.

An example of how each would view the purchase
of a VIC-20 might be enlightening.

The “Applications Buyer” probably saw the VIC
as one of three possible “Games’” machines, the
others being the ATARI and INTELLIVISION. The
VIC provided more flexibility at only a slightly
higher price. So the purchase was made. He is
satisfied with his machine because it does
everything that he expected it to do.

The other two buyers are not happy. They are
satisfied with what the VIC is, but they are not
satisfied with what it is not. They complain about
slow tape speeds, lack of a “proper” amount of
memory, and only a 22-column screen.

This leads us to the second area of concern and to
another question.

WHERE ARE WE HEADED?

In the “KIM” example, it was not until | had
amassed a large amount of memory, an ASCII
keyboard, and a huge assortment of other hard-
ware and software, that | asked myself, “Where
am | headed?”.The answer was that | was heading
toward a system that spoke “BASIC”. Unfor-
tunately, by the time | achieved that end, my
“computer’” covered an entire table, and had to be
turned on through a complex procedure by three
separate power supplies. My “KIM” was obsolete
by now, at least to the buyers market, and all the
money | had spent on “‘add-ons” was lost.

What | am proposing, then, is that you ask
yourself that all-important question, now. If you
are not happy with your system as it is, wouldn’t it
be better to trade up now while your present com-
puter still has value It seems foolish to me to
start with the ‘‘add-ons” only to produce a bigger
“obsolete” system a few years from now.

The third area of concern affects all of us buyers.
This is the area of product discontinuance. Even
our “Applicatations Buyer”, snug and secure with
his programs and machine, is shaken by this one.

Every year, new car models come on the scene.
Yet, we can still get parts for a '57 Chevy or, for
that matter, even a “Model T". But it seems that,
once a computer model has been discontinued, it
stands alone and unsupported. Resale values
crash and it finally lands up in the back row of
some computer Flea Market.

This should not be. Computer manufacturers have
a responsibility to support their product for more
than just the one year of its sales life. As | have
tried to point out, obsolescence is a relative term.
Old computers are not ‘““‘dead”.If they can do your
job and meet your needs, then they are just as
good as the new machines.

Now, this brings up another area dealing with
“Software Obsolescence”. Does the quality of a
computer consist solely of its hardware? Or, is the
merit of a computer system only dependent on the
number of programs available to it? Obviously, it
must be a combination of both. But, when the pen-
dulum swings to one extreme or the other, it may
mean the death of a particular micro.

The original PET had its hardware and firmware
bugs. However, the users found ways around vir-
tually all of them. Commodore’s decision to throw

13

Best of The TORPET

Introduction

out compatability with their new operating
system sounded the death knell for the 8K PET.

When the KIM was in its golden age, software
abounded. Yet, when new systems became
available, the amount of software flow decreased
and finally trickled to zilch. The KIM ceased to be.

COMPUTER MAINSTREAMING

The ‘“Computer Experimenter” can become in-
volved in a concept | call “Computer Mainstream-
ing”. This is a negative feedback mechanism. If,
over a several-month period, he sees a decrease
in the number of published articles dealing with
his particular computer, he immediately panics.
He feels that he and his machine are no longer in
the mainstream. It is, therefore, time to purchase
the “new” leader. This, of course, does lead to
fewer articles and the cycle continues.

Therefore, the computer magazines themselves
have a hand in shaping product obsolescence.

Once upon a time, there was a company called
Data General which, from the beginning of the
mini-computer era, produced a hardware product
that never changed. Oh sure, there were mods to
the system and improvements, but software com-
patibility was strictly maintained. After many
years, their hardware was considered obsolete by
many. But a strange thing was happening. People
continued to buy Data General. Why? Well,
throughout the years, they had amassed such an
overwhelming abundance of software that it
seemed stupid to use anyone else.

In the Micro world, if one looks closely, one can
see two philosophies emerging. Some companies
put out a new product what seems to be once a
month. Others stay with the old hardware as long
as possible. An example of ‘“Rapid Hardware
Inc.”is, of course, Commodore. Some slow
movers are Apple and the AIM-65. Radio Shack, |
would consider, is somewhere in the middle. It is
a little too early to tell about ATARI, although, if
one uses their game product as a basis, then they
seem to be very stable.

Texas Instruments is an interesting and unique
example. They introduced their system early in
the game. Yet, because of a lack of advertising,
their high price and lack of software, their com-
puter sat for years on the dealers’ shelves. Then,
T.l. made its move. The price dropped dramatical-
ly, software and firmware became available, and
Bill Cosby loved his Pudding Pops and the T.I
Computer. The hardware never changed, but the
support made the product respectable, until it
suddenly disappeared from the market.

What can we conclude then, when we must plan
for obsolescence?

IN SUMMARY

Obsolescence is relative. It exists in the eye and
the mind of the buyer.

If you are dissatisfied with the features of your
present computer, trade up now. Don’t spend
money on add-ons which can never make your
computer the machine you want it to be.

Don’t buy a new computer just because it’s new.
Examine your needs and your computer’s
capability to see if they match.

To the “Computer Experimenter’ — Means must
be found to fulfill your infinite curiosity without
breaking your bank account. Writing articles and
programs for profit is one way. Another avenue is
to review new hardware and software for stores,
customers or others who are willing to lend you
the new systems. For that end, you get to play
with the goodies and they receive valuable infor-
mation.

The computer manufacturers must retain a parts
supply for products they have produced for at
least as long a period as other products on the
market. This will ensure that both old and new
computers can co-exist and provide years of
valuable service to their users.

Lo T

IT USED TO BE A VIC-20.

14

Best of The TORPET

Introduction

Swapp

By Jim Butterfield, Toronto, Ont.

I must confess that | can’t understand the logic of
swapping programs.

Sure: you have a spare cat you don’t need, and
your friend has a shoe polishing kit... go ahead
and swap, you'll both benefit. But programs are
different.

| can see the situation where each of the two par-
ties have written a program. You've written a
telephone list, and I've written a simple game...
why not swap?

But even then, it flies in the face of good sense.

You can give away a program — and still have it. If
it's yours — or if it’s public domain — you incur
no loss. Maybe, as the saying goes, he who steals
my purse steals trash... but I’'m out one purse. On
the other hand, he (or she) who gets a copy of my
program may also get trash... but | have lost
nothing.

‘Occasionally, | run across someone who has an
attractive program. And when | ask, ‘‘Is that public
domain? May | have a copy?”, | get the reply,
“What can you swap me for it?” My answer:
“Nothing. All my programs are in the TPUG
library” So | don’t get a copy of the program.

This amazes me. The other person may have
dozens — or hundreds — of my programs. But I’'m
not going to get the new program, because | have
nothing to swap.

A few years ago, | received a letter from Oregon,
asking if | had any music programs. The writer had
bought a commercial package and interface, but
didn’t have much music. | put together a cassette
of all the music | had... a dozen programs or So.

About a month later, a letter came from northern
California. It said, *I got a copy of your music pro-
grams from XYZ in Oregon. | have some music
programs of my own. What programs do you have
to swap me for them?” Again, | had to reply,
“None — | sent them all to Oregon, you have them
all now”.

The whole swapping thing makes no sense to me.
The name of the game is sharing, not swapping.

Let’s look back at the origins of the club. Suppose
| — and several other programmers — had said to
TPUG, “You don’t get programs from us unless

ing and Sharing

you can swap us something equally good”. Sup-
pose that TPUG said to its members, “You don’t
get a program until you submit a program of equal
quality”. We’d have a pretty weak operation. User
groups don’t work that way. Thank heavens.

| fear that the swap syndrome encourages pro-
gram theft.

Some poor beginner who isn’t skilled in program
writing is coerced by swappers into giving a pro-
gram as a swap. What is he or she going to give?
The pressure is to buy a program and give away a
copy. And that’s wrong, wrong, wrong.

Sometimes | send people programs. | usually refer
them to the club, but occasionally | need to send a
program or two directly. | don’t expect anything in
return; in fact, sometimes my return address is
not on the package. Some people reply and say,
“Thank you”, which is OK. On a couple of occa-
sions, people have replied by sending me bootleg
copies of commercial programs. They shouldn’t
do that. | have a feeling that these people have
been brainwashed into the ‘swapping‘thing. They
think that they must give something in return ...
even if it’s illegal. They shouldn’t.

Let’s get off this swapping bandwagon.

Any programs | have, provided they are not
copyrighted or commercial, are freely available to
anyone who wants them. They are in the club
library, for that matter.

15

Best of The TORPET

CHIPP
HI, ™M CHIPP, WHEN USED IN R PROGRAM
, AND TM 60ING TO LINE, THE “ GO T0" STRTEMENT
TERCH YOU RBOUT MUST BE FOLLOWED BY A
STATEMENTS J5° T STRTMENt. NUMBER CORRESPONDING TO
ANOTHER LINE NUMBER IN
WITH THE PROSRAM,
N
CHIDY
o >
FOR EXAMPLE : THE COMPUTER WILL TYPE RUN AND PRESS
10 7"CHIPP" REPERTEDLY EXECUTE
20 GO TO 10 THE OPERATION IN LINE
ICH IS
TYPE THIS 10P:lv:'|' " eHIPP" &
PROGRAM / g
[« 4
w
X
b 3
— I |
CHIPP SITRM\(press mis | IF YOU WANT TO SEE
CHIPP STOP |\Wa) YOUR OWN NAME,
Sﬁ{:P STOP THE | JUST CHANGE THE
cmpg PROGRAM. | CHARACTERS WITHIN
CHIPP THE QUOTES /
IS IS WHAT You
SHOULD GET/

GRAPHICS CAN ALSO
BE USED TO MAKE
NEAT DESIGNS/

IO 2" CHIPP

5 ?"@OAON"
lo 7"BANANAS"
0 6oTo 10

[EXTRA LINES CAN
BE ADDED 70O/

HOPE YOU LEARNED
| SOMETHING ! SEE YA LATER/

=

I

16

Best of The TORPET

C64

C64

PAGE

Converting Programs from PET to 64 18
Garry Kiziak, Burlington, Ont.

Only the pure vanilla BASIC old PET programs will work on a 64 without

converting. This tells you how to convert the rest.

Those Crazy Screen Control Codes 23
Paul Trachsler, Flesherton, Ont.

How to handle those strange symbols that you find in BASIC program

listings.

Some Mixed Mode Graphics Subroutines in BASIC 24
William R. Frenchu, Princeton, N.J.

These BASIC routines allow beginning programmers to mix lower-case,

upper-case, graphic characters and bit mapped graphics on their screens.

Painting 28
Dr. Efraim Halfon, Burlington, Ont.

The example of how to fill a circle with color is used to demonstrate how to

fill any geometric figure with color.

Programmable Characters 30
Steven Darnold, Alexandra, New Zealand

How to change any or all of the characters on the 64 into any special

characters that you desire.

Programming the Commodore 64 Function Keys 32
Paul Thompson & Ron Radko, Toronto, Ont.

This article gives the directions for using the program that allows you to

assign any string of characters that you wish to the C-64 function keys.

Dvorak Keyboard 36
William R. Frenchu, Princeton, N.J.

In the 1920’s Dvorak designed a keyboard that is quicker and easier to use

than the standard QWERTY. Here it is if you would like to have it on your 64.

Menu Selection With A Joystick 38
Alfred J. Bruey, Jackson, Ml

This article will not only tell you how to do a menu selection with a joystick;

it will give you insight into programming for a joystick itself.

Speech Synthesis of C64 40
Greg Halley, Silver Spring, MD

Yes, your computer really can be made to talk. It is easy. And it is fun! This

is a review of a relatively inexpensive software package that does the job.

Creating Sprites on the C64 42

David Bradley, Toronto, Ont.
It is not as difficult as you might think if you follow these step-by-step pro-
cedures.

17

Best of The TORPET

C64

Converting Programs from PET to

by Garry Kiziak, Burlington, Ont.

Many owners of the new Commodore 64 will have
access to a large number of programs written
originally for the PET computer. It is natural for
these people to ask, “What is involved in conver-
ting these programs so that they will run on the
647 This article will attempt to detail some of the
steps involved, and hopefully make the conver-
sion somewhat easier. | will only be discussing
conversions involving 2.0 and 4.0 ROM PETS.
Those interested in converting programs from 1.0
ROM PETS should be able to make the additional
changes necessary.

In many cases, a PET program will run immediate-
ly on a 64. In some cases, a few minor changes
will make the program workable. In a few cases,
major surgery will be required, and in some in-
stances, unless you are heavily into machine
language, the conversion will be impossible. The
type of conversion required will depend on the
make-up of the original program.

As | said above, some programs will run im-
mediately on the 64. These programs will be writ-
ten entirely in BASIC and will not make use of the
commands POKE, PEEK, WAIT, SYS and USR. The
easiest way to determine if a program falls in this
category is to simply load the program into the 64
and run it. If it works, great. Otherwise, read on.

Note: All BASIC programs for the PET will load
into the 64 correctly. This may seem surprising
since a PET program is stored in memory starting
at location 1025 while 64 programs normally start
at 2049. Such loads are successful because of a
relocation feature incorporated into the Com-
modore 64 (and also the VIC 20) computer. These
computers will automatically load a program at
the START OF BASIC (wherever that happens to
be), unless told to do otherwise (see your manual
to see how to tell it to do otherwise).

Editor’s Note: Details for loading C64 programs to
a PET are on page 23.

| should point out that | have had some difficulty
loading programs that were saved on a PET with
1.0 ROMS. Such programs do list but the first line
is usually mangled. This can be fixed up by
deleting that first line and re-typing it or by a few
simple pokes.

THE SIMPLEST CONVERSION

Of the programs that do require conversion, the
simplest to fix are the ones that do not use the

64

This program is on
The Best Programs Disk

SYS or USR commands. They may use the POKE,
PEEK or WAIT commands, but these can usually
be fixed up by changing an appropriate address
and possibly a corresponding numeric value.

For example, POKE 59468,14 is a command fre-
quently found in PET programs to convert the
screen display to lower case. If this command is
executed on the 64, nothing drastic will happen
but lower case is definitely not displayed. The cor-
rect command on the 64 is POKE 53272,23.
Similarly, all POKE 59468,12 statements will have
to be changed to POKE 53272,21. (This converts
the screen display to upper case and graphics.)

The majority of “fixes” can be achieved in this
manner, i.e.:

i) Find the address on the PET that is causing a
problem;

ii) Find the corresponding address on the 64;

iii) Make all changes involving that address.

What is needed, then, is a list of addresses for the
PET that can cause problems and a list of the cor-
responding addresses for the 64.

Actually, with a little more work, we can even do
better. ideally, a program should be able to run on
any machine — PET with 2.0 ROMS, PET with 4.0
ROMS, and the Commodore 64.

This can be achieved for the upper/lower case
conversion above in the following way.

Assume first that the program is running on a
PET. Somehow have the computer execute the
following commands:

3000 TEXT = 59468: REM Address to be poked for up-
per/lower case

3010 UC = 12: REM Value to be poked for upper case
3020 LC = 14: REM Value to be poked for lower case

On the other hand, if the program is running on a
64, have it execute the following:

3100 TEXT = 53272
3110UC = 21
3120LC = 23

Now change all POKE 59468,12 statements to
POKE TEXT, UC and all POKE 59468,14
statements to POKE TEXT, LC. After these

18

Best of The TORPET

Cé64

changes are made, the correct case will be
displayed regardless of which computer the pro-
gram is running on. If all other problem addresses
can be fixed up in this manner, then we are well
on our way to converting the program to work on
all three computers.

WHICH COMPUTER ARE YOU?

The first task, then, is to somehow identify what
type of computer a program is running on.

There already is a standard technique for identify-
ing whether a PET has 2.0 ROMS or 4.0 ROMS;
namely,

110 IF PEEK (50003)

= . 160 THEN ... : REM 4.0 ROMS
120 IF PEEK (50003) =

1 THEN ... : REM 2.0 ROMS

PEEKing location 50003 on a 64 will usually yield
zero. | say “usually” because 50003 is a RAM loca-
tion on the 64 and is normally unused. However,
machine language routines can be placed in that
area and so you cannot be 100% sure what loca-
tion 50003 will contain. The sequence below will
get around this probiem, and will identify the type
of computer correctly without destroying any
machine code already there.

100X = PEEK (50003): POKE 50003, 0: Y = PEEK (50003)

110 IF Y = 160 THEN COMP$ = “4.0” : REM 4.0 ROMS

120 IFY = 1 THEN COMP$ = “2.0”: REM 2.0 ROMS

130 IF Y = 0 THEN POKE 50003,X: COMP$ = “64”: REM COM-
MODORE 64

The statement POKE 50003,0 in line 100 has ab-
solutely no effect on 2.0 PETS or 4.0 PETS since
location 50003 is in ROM. On the 64, however, it
puts a zero into that RAM location. Notice that the
original value in location 50003 is saved by the
statement X = PEEK (50003) and restored again in
line 130 if the computer is identified as being a 64.
Note the use of the variable COMPS$ to identify the
type of computer just in case it is needed again
later in the program.

Now the conversion process should be clear. It
should include the following:

1. At the beginning of the program, jump to a sub-
routine that identifies the type of computer that
the program is running on.

2. In that sub-routine, initialize a set of standard
variables (such as TEXT, LC, UC, etc.) to the cor-
rect values for that computer.

3. Change all references to numerical addresses
or values to the corresponding variables.

Here is a sample initialization routine.

10 GOSUB 60000

20 REM MAIN PROGRAM

21 END

60000 X = PEEK(50003): POKE 50003,0:Y = PEEK(50003)
60010 REM INITIALIZE VARIABLES COMMON TO 2.0 & 4.0
PETS

60020 TEXT = 59468:UC = 12:L.C = 14: SCREEN = 32768:HIV "
= 144

60030 NUMCHAR = 158:KEY =151: NOKEY = 255

60040 IF Y< 1 THEN 60100

60050 REM INITIALIZE VARIABLES PECULIAR TO 2.0 PETS
60060 COMP$ = “2.0” :ENA = 46:DIS = 49

60070 RETURN

60100 IF Y < > 160 THEN 60200

60110 REM INITIALIZE VARIABLES PECULIAR TO 4.0 PETS
60120 COMP$ = “4.0” :ENA = 85.DIS = 88

60130 RETURN

60200 IF Y< >0 THEN 60300

60210 REM INITIALIZE VARIABLES PECULIAR TO THE 64

60220 COMP$ = “64” :TEXT = 532722UC = 21:ILC =
23:SCREEN = 1024:HIV = 788
60230 NUMCHAR = 198:KEY = 203:NOKEY = 64:ENA =

49:DIS = 52
60240 POKE 50003,X:RETURN
60300 PRINT “I DON'T RECOGNIZE THIS COMPUTER” :END

The variables SCREEN, NUMCHAR, etc., will be:
explained shortly.

MORE PROBLEM AREAS

Upper/lower case conversion is certainly not the
only problem area. Another potential one is the
screen.

1. THE SCREEN

On the PET, the screen is found in memory loca-
tions 32768-33767. On the 64, it is found in loca-
tions 1024-2023.

If all output to the screen is obtained through the
use of PRINT statements, then absolutely no pro-
blem will arise. If, however, the output is POKEd
to the screen, then changes will be required.

These changes are best achieved by assigning a
value to the base address of the screen and then
using an appropriate offset from that base.

For example, the base address of the screen on
the PET is 32768, while on the 64 it is 1024.
Therefore, the first thing to do is to assign values
to the standard variable SCREEN as follows:

SCREEN = 32768 if on a PET
SCREEN = 1024 if on a Commodore 64

19

Best of The TORPET

C64

i) Poking a single value onto the screen. A state-
ment of the form POKE 32956,61 on a PET has to
be changed as follows:

First, calculate the offset.

Offset = 32956 - 32768 = 188

Then, change POKE 32956,61 to: POKE SCREEN
+ 188,61

The resulting statement will work on either a PET
or a 64 (assuming SCREEN has been properly in-
itialized).

Notice that the 61 does not have to be changed as
these values are the same for both PETS and the
64.

ii) Poking within a loop. The following is a typical
PET routine that POKES a border of reversed
diamonds around the screen.

100 FOR | =32768 TO 32807:POKE 1,218 :NEXT

110 FOR | =32847 TO 33767 STEP 40:POKE 1,218:NEXT
120 FOR | =33766 TO 33328 STEP -1:POKE [,218: NEXT
130 FOR 1=33688 TO 32768 STEP -40:POKE |, 218: NEXT

This can be changed to work on both PETS and 64
by changing each screen address as above.

100 FOR | =SCREEN TO SCREEN +39:POKE 1,218 : NEXT
110 FOR | = SCREEN + 79 TO SCREEN + 999 STEP 40: POKE
1,218 ; NEXT

120 FOR | = SCREEN + 998 TO SCREEN + 990 STEP -1: POKE
1,218 : NEXT

130 FOR | = SCREEN +920 TO SCREEN STEP -40: POKE
1,218 : NEXT

Or better yet:

100 FOR | = 0 TO 39: POKE SCREEN + 1,218 : NEXT

110 FOR| = 1TO 24: POKE SCREEN +39 +1 * 40,218 : NEXT
120 FOR | = 38 TO 0 STEP -1: POKE SCREEN +960 +1,218:
NEXT

130 FOR | = 23 TO 1 STEP -1: POKE SCREEN + |*40,218 :
NEXT

2. CLEARING THE KEYBOARD BUFFER

The PET is able to retain up to 10 keystrokes in a
buffer, enabling you touch typists to type as fast
as you can without losing any keystrokes. This
can sometimes add extra unwanted characters to
the beginning of an input, so a common technique
in PET programming is to clear the keyboard buf-

fer before each input is requested. This can be ac-
complished in a couple of ways.

1) 100 FOR | = 1 TO 10: GET A$: NEXT
or
2) 100 POKE 158,0

The first method will work as is on the 64. The se-.
cond method must be changed.

On 2.0 and 4.0 PETS, location 158 always contains
the number of characters in the keyboard buffer.
On the 64, this value is stored in location 198.
Thus, if we assign values to the standard variable
NUMCHAR as follows:

NUMCHAR
NUMCHAR

158 if on a PET
198 if on a 64

and change all references to POKE 158,0 to POKE
NUMCHAR,O, then the resulting statement will
work on both computers.

3. PAUSING UNTIL ANY KEY IS PRESSED
Here again, two techniques are commonly used.

1) 100 GET AS$:IFA$=“"THEN 100 is certainly the
simplest and will work on both computers.

2) 100POKE158,0:WAIT158,1:POKE158,0 is
another technique and will have to be changed to
100 POKE NUMCHAR,0 : WAIT NUMCHAR,1 :
POKE NUMCHAR,0

4. WHICH KEY IS PRESSED

A common technique used on the PET, especially
in games, is to PEEK at location 151 to see if a key
is being pressed and, if so, which one. Depending
on which key is pressed, a certain action is per-
formed. This technique is frequently used in
games that use the numeric keypad as a joystick.
A sample sequence might be:

500 X = PEEK (151)

510 IF X = 255 THEN 1000: REM NO KEYPRESS
520 IF X = 18 THEN 2000: REM 2 KEY IS PRESSED
530 IF X = 50 THEN 3000: REM 8 KEY IS PRESSED
etc.

The conversion here is a little more complicated,
but is still possible. First, we need to know that
location 151 on the PET corresponds to location
203 on the 64. Then assign the following values to
the standard variable KEY:

20

Best of The TORPET

C64

KEY
KEY

151 if on a PET
203 if on a 64

Replacing line 500 with 500 X = PEEK(KEY) gives
us a start with the conversion.

Another problem occurs with the values stored in
location 151 (or 203) when a key is not being
pressed. Location 151 on the PET contains 255
while location 203 on the 64 contains 64. This
time, we will use the standard variable NOKEY
and initialize it as follows:

NOKEY = 255 if on a PET
NOKEY = 64 if on a 64

Line 510 is then replaced with 510 IF X = NOKEY
THEN 1000

There are two problems associated with the other

keys. First, location 151 will contain a certain
value onthe 2.0 machines, the same value on the
Skinny 40 (i.e., the 9-inch screen) machines, but a
different value on the Fat 40 machines. There is
no standard way that | am aware of, for
distinguishing between a Skinny 40 and a Fat 40
machine. But PEEKing at location 57344 will do as
well as any other. On a Skinny 40 you will get a
value of 169, while on a Fat 40 you will get a value
of 76.

The easiest way to see what value is stored in
location 151 is to run the following program seg-
ment and press any key that you wish to test.

100 KEY = 151 : REM = 203 ON THE 64
110 PRINT PEEK (KEY) : GOTO 110

The second problem arises from the fact that the
64 does not have a numeric keypad and using the
numbers 2, 4, 6, and 8 to simulate a joystick is
unacceptable. It would be much better to use the
keys |, J, K, and M or some other suitable arranged
set of keys.

My suggestion for getting around this is to first
settle on the keys that you wish to use on each
machine (they don’t have to be the same). Find the
values corresponding to these keys by running
the short program above and store these values in
corresponding standard variables which | like to
designate K1, K2, K3, etc. (for KEY 1, KEY 2, KEY 3,
etc.) then lines 520 and 530 can be replaced by the
following:

520 IF X = K1 THEN 2000

530 IF X - K2 THEN 3000
ect.

5. DISABLING THE STOP KEY

The stop key on the PET can be disabled by alter-
ing the Hardware Interrupt Vector. For example:

POKE 144,49 for 2.0 PETS
POKE 144,88 for 4.0 PETS

will disable the stop key (and the time clock as
well).

The corresponding command on the 64 is POKE
788,52.

To enable the stop key again:

POKE 144,46 for 2.0 PETS
POKE 144,85 for 4.0 PETS
and POKE 788,49 for the 64

These can be replaced by POKE HIV,DIS to
disable the stop key and POKE HIV,ENA to enable
the stop key, after appropriately initializing the
variables HIV, DIS and ENA. On the 64, the pro-
gram can still be stopped by pressing the
RUN/STOP and RESTORE keys simultaneously,
but this will prevent stoppage of a program due to
accidentally pressing the STOP key.

A good question to ask is “How do you know what
value is to be stored in these locations?”” The PET
program actually tells you the location to poke as
well as the value, but the value to be poked on the
64 is usually different (i.e., disabling the stop key
above or converting to upper/lower case). A
memory map will tell you what location to poke on
the 64, but it will not tell you what value to poke it
with. A good start is to PEEK that location from
direct mode and make note of the value. Do this
for all three machines and it will tell you the “nor-
mal’’ state of that location. For example, PEEKing
location 144 on 2.0 PETS and 4.0 PETS yields 46
and 85 respectively. PEEKing at 788 on the 64
yields 49.

Observing that the values to disable the stop key
on the 2.0 and 4.0 PETS are each three more than
the “normal” value. A good start to finding the
correct value on the 64 is to add 3 to the normal
value of 49, obtaining 52. This process will work
for more than 90% of the problem values. It is that
last five to 10% that makes the conversion
challenging.

It would be impossible to list all problem loca-
tions and their “fixes’ here. (I will list what | feel
are the more common ones below.) Instead, | have
attempted to give you a feeling for how the con-
version should proceed. The proper tools that are
required are the excellent memory maps (both
zero page and ROM routines) published for all
three computers in COMPUTE by Jim Butterfield.
Another excellent source is the book “Programm-
ing The PET/CBM” by Raeto Collin West, and | am

sure there are others. (Would you believe The Best
Of The Torpet-ed.) See page 292 .

21

Best of The TORPET C64
SOME OF THE MORE COMMON
PROBLEM LOCATIONS
Location on
Suggested
20 PET 40PET 64 Name Description
40-41 40-41 43-44 SBAS Start of BASIC text
42-43 42-43 45-46 SVAR Start of variables
44-45 44-45 47-48 SARR Start of arrays
46-47 46-47 49-50 EARR End of arrays
52-53 52-53 55-56 THEM Top of memory
144-144 144-145 788-789 HIV Hardware Interrupt Vector
151 151 203 KEY Which key is pressed
158 158 198 NUMCHAR Number of characters in keyboard buffer
159 159 199 RVS Screen reverse flag
167 167 204 CRSR Flag for flashing cursor in GET statements
196 196 209 SLO Pointer to screen
197 197 210 SHI (low/high format)
198 198 211 CH Horizontal position of cursor
216 216 214 cvVv Vertical position of cursor
623 623 631 BUFF Start of keyboard buffer
634 634 - - Start of first cassette buffer
826 826 828 CAS Start of second cassette buffer
32768 32768 1024 SCREEN Start of screen memory
59468 59468 53272 TEXT Poke location for upper/lower case
64721 64790 64738 Simulates power on reset
SPECIAL VALUES

12 12 21 uc Upper case
14 14 23 LC Lower case
255 255 64 NOKEY Nokey is pressed
46 85 49 ENA Enable stop key
49 88 52 DIS Disable stop key

A COUPLE OF CAUTIONS

1. The PET and the 64 only recognize the first two
letters of a variable name. When converting a pro-
gram, you must make certain that the variables
already present in the program do not conflict
with the standard variables suggested above. If
there is a conflict, change whichever you feel is
easier.

2. |If a program is to be used both on a PET and a
64, then the changes should be made on and sav-
ed with a PET computer. The reason for this is
that a program saved on a 64 will not load properly
on a PET, due to the lack of arelocation feature in
the PET, but.....

If the changes are made on a PET, then a utility
such as BASIC AID or POWER will be invaluable
since you can type in such things as FIND/POKE/
and all lines that contain a POKE statement will
be listed, making it easier for you to make the
necessary changes and to make certain that you
have found all of them.

Similarly, you can type in FIND/SC/ to see if there

are any variables in the program that will conflict
with the standard variable SCREEN.

PROGRAMS THAT CONTAIN
SYS OR USR COMMANDS

These programs will require that you be
somewhat familiar with machine language in
order for you to be able to make the necessary
conversions. Such changes are beyond the scope
of this article. However, let me say that these M/L
routines themselves fall into a number of
categories.

1)
I
_

22

Best of The TORPET

C64

1. The routine works on the 64 as is (few routines
will likely fall in this category).

2. The routine will work with a simple address
change (these are frequently ROM routines such
as the routine for resetting the entire stack).

3. The routine will work with some minor changes.
an example here could be a routine to reverse a
portion of the screen. Chances are the only
changes necessary would be for the location that
determines the base address of the screen.
However, if parameters are passed in the calling
statement, then the location of certain ROM
routines (such as checking for a comma) might
have to be changed as well.

4. The routine will require major surgery before it
will work. A program Ilike BASIC AID or
MICROMON would fall into this category. Such
programs should be left to the experienced users.

Other areas that may require major changes are
those programs that make use of the BASIC 4.0
disk commands. Some of these can be fixed up
easily, but some are extremely difficult, e.g.,
those that make use of Relative Record files.

Programs that make use of CB2 sound will still
run on the 64, but no sound will be produced. The
POKEs that the PET uses to produce these
sounds will POKE into the ROMS of the 64 and
hence do no harm. Once you are familiar with the
sound processes on the 64, here is a good place
to make use of the variable COMP$. For example,
suppose lines 1000 to 1030 in the PET program are
used to produce the sound. Leave these lines ex-
actly as they are and add a similar routine for pro-
ducing sound on the 64, beginning with:

1031 |[F COMP$«»“64" then 1040

Your sound routine can be placed in lines 1032 to
1039, and the rest of the program should proceed
as normal.

LOADING PROGRAMS SAVED
ON THE 64 INTO THE PET

As mentioned above, programs saved on the 64 do
not load properly into a PET. It is not a difficult
procedure to correct this shortcoming, however.
Here are the steps.

1. Type a dummy line 0 into the PET,0 REM will
do.

2. Type in POKE 2048,0.

3. LOAD in the program that was saved on the 64
as you normally would.

4. Type in POKE 1025,1 : POKE 1026,8.

You should now be able to LIST the program in-
cluding the dummy line 0 that you typed in initial-
ly. Delete this line by typing in 0 (Return). The pro-
cess is now complete. You can save the program
to cassette or disk. The next time that you load it
in to your PET, it will load normally. If you are us-
ing a disk, you will notice that the program is 3
blocks longer that the original even though it is
the same program. The reason for this is that the
Start of Variables pointer did not get changed pro-
perly. An experienced programmer can get into
the monitor and make the necessary changes
without too much difficulty, but the program will
operate correctly without making this change.

Best of The TORPET ’84

C64

Those Crazy Screen Control Codes

By Paul Trachsler, Flesherton, Ont.

For some of us, the hardest part of typing in a pro-
gram listing from a book or magazine is trying to
figure out how to type in some of the control sym-
bols or codes used in the program. Control sym-
bols or codes are like traffic signals for the com-
puter, in that they give the program information
about where and how to display information on
the screen. Because of this, control symbols or
codes are always typed in from the “quote mode”
that is from within quotation marks (otherwise a
clear screen code will leave you looking at a blank

screen!).

Different publishers of books and magazines do
not go out of their way to make things difficult for
us but the use of different formats for displaying
these symbols can be doubly confusing. The best
and easiest solution is to obtain a working copy of
the program from the publisher or author (see
page 272). Failing this, some publications include
a table explaining what the symbols stand for and
how to type them in. The following general table

23

Best of The TORPET

C64

will explain what these codes do, what they look
like and how to type them.

WHEN YOU SEE

clear, clr or W

home or @

WHICH MEANS

clear the screen

place cursor at top

THEN PRESS

SHIFT CLR/HOME
HOME

left corner of screen

up crsr, up or E cursor up
down crsr, down or
left crsr, left or ll cursor left
right crsr, right, or
reverse, rvs or m

reverse off, off or !

Colors may be obtained by using the Control key
and the appropriate color key.

cursor down

cursor right
reverse lettering on

reverse lettering off

SHIFT CURSOR (up/down)
CURSOR (up/down)
SHIFT CURSOR (right/left)
CURSOR (right/left)

CTRL 9

CTRLO

Best of The TORPET

C64

Some Mixed Mode Graphics Subroutines in

BASIC

By William R. Frenchu, Princeton, N.J.

The C-64 Programmer’s Reference Guide men-
tions (but doesn’'t give examples of) using the
raster scan interrupt to mix bit-mapped and text
modes on the screen. For machine language pro-
grammers this presents few problems, but for
users with only BASIC experience it would often
be advantageous to be able to present high
resolution plots with text mode labels quickly and
easily. This method would also side-step another
difficulty of using the raster interrupt method to
mix graphics, that is, the inability to mix graphic
types on the same raster. For applications where
a vertical axis must be plotted, this restriction
eliminates much of the screen from containing
text. The BASIC routines presented here enable
beginning programmers to mix upper case (and
graphic characters), lower case and bit-mapped
graphics on the same line and screen with
minimal effort.

ROUTINE 1 (Lines 10000-10290)

Routine 1 prints a string (including cursor, case

This program is on
The Best Programs Disk

and reverse control characters) starting at a given
position while in the high resolution mode. It's
capable of using any character set pointed to by
variable B1. This allows the use of user defined
character sets in addition to the ROM set defined
by the C-64. User sets should be stored in the
same order as the ROM set (64 character blocks of
upper case, graphics, reversed upper case, revers-
ed graphics, lower case, shifted lower case,
reversed lower case, shifted reversed lower case)
in order for the case and reverse control keys to
retain their expected function. Using the ROM set
requires the routine to temporarily disable the in-
terrupts and ‘““switch in” the ROM while getting
the character definitions. For this reason the stop
key is disabled whenever a string is actually being
printed. When a user character set is accessed,
this restriction does not apply and the POKEs to
locations 1 and 56334 may be eliminated.

Routine 1 makes use of several flags and
variables set by the user. The lower case flag (L) is
set to “1” when a string is to be printed using the

24

Best of The TORPET

C64

lower case set and “0”’ otherwise. The reverse flag
(R) performs a similar function for reverse on/off.
Case and reverse can also be changed at any time
from within a string by including the following
special characters:

Change to upper case (reversed shift “n”)

Change to lower case CTRL-N
Turn reverse on CTRL-9
Turn reverse off CTRL-0

Thus, any string may contain characters from
both upper and lower case character sets. The
programmable function keys could be easily add-
ed to the decoding section (lines 10030-10130) to
produce frequently used effects such as tabs,
super- and sub-scripting.

The position of the printed string is determined by
the variables X and Y. These refer to the usual cur-
sor positions, X from 0to 39 and Y from 0 to 24. B$
is the string to be printed. Strings may be up to
255 characters in length and the subroutine will
automatically continue a string that is too long on
the next line. Strings printed at the same X,Y posi-
tions will be “overstruck” if flag “O” is equal to
“1” and replaced if “O” is equal to “0”.

ROUTINE 2 (Lines 20000-20080)

This routine supports user input to the program.
As it calls Routine 1, the X,Y,R and L variables re-
tain the same functions as above, but now B$ is
the prompt string for the “input statement”. Input
is returned as a string, I$, and must be converted
to a numerical value with the VAL function if
necessary. The special characters from the
decoding section of Routine 1 are returned in 1$,

REM *x&CHANGE SCREEM COLORx*x*xx

REM x%¥PRINT WAIT MESSAGE xxx

FOKE 5S32€0.11:FPOKE %3221,0

PRIMT"({DOWNME ,RIGHT2 JPLEASE WAIT 35 SECONDS"

but are not echoed on the screen during input.
The final flag is BL which, when set to “1”’, causes
the prompt and input strings to be blanked after a
return is received. If BL is “0” the prompt and in-
put strings will remain on the screen. This routine
also allows use of the DELETE key to correct er-
rors in input. Do not use cursor controls to correct
errors as these keys are returned in the 1$. The IN-
SERT key is not supported.

ROUTINE 3 (Lines 30000-30400)

Routine 3 draws a line from pixel coordinates
X1,Y1 to X2,Y2 where X ranges from0to 319 and Y
from 0 to 199. The Reference Guide recommends
always using points two pixels wide to decrease
“Chroma Noise”. This could be a simple modifica-
tion (or two lines could be drawn side by side) but
since it decreases resolution it hasn’t been im-
plemented here.

ROUTINE 4 (Lines 16 and 1000)

This is a “one line” routine that turns on a given
pixel X,Y as above. It is called by Routine 3. Line
16 sets up a table containing the powers of two
from 7 to O for use by line 1000. This was done
because exponentiation on the C-64 is very slow.
(Integer exponentiation is even slower than
floating point!) It was found that calculating the
powers of two for each X,Y pair more than doubl-
ed the time necessary for plotting.

ROUTINE 5 (Line 1001)

The final routine turns off a given X,Y pixel. If call-
ed instead of Routine 4 (by Routine 3) lines may be
“unplotted”, too.

PRINT"IDOUWMIL ,RIGHT ,RVS J¢% COMMODORE-64 HI-RESCLUTION DEMO #@"

5]
1
2
4 PRINT"[{GRAYZ.CLEAR,RIGHT? ,DOWNS ICLEARING HIGH RES SCREEN . . "
e
e

REM x#% CLEAR HI-RES SCREEN #*xxx
10 FCR I=2132 TO 1€132:FOKE 1,9!NEXT
12 REM %%x%x SET UF FOWERSE OF 2 TABLE #xx
14 REM %xxkx FOR ROUTINEG 4 & S XK K
1€ FOR =0 TO 7:PCI)=@MT-I):FI1(I>=a2SS-FCI):MNERT
17 REM xx# START HI-REZ MODE AMD xRk
S REM xxx SET HI-RES SCREEN AT 81382 *xx%x%
20 PRINT"ICLEAR]1":POKE 53285 ,FEEK{S3285)0R 32:FOKE
25 REM xkx SET HI-RES COLORS kX
26 REM x%xUPFER NYBBLE FOR "1" BITS#+x%
2T FPEM xxxLOWER MNYEBLE FOR "O" BITS%xx
28 FOR 1=10249 TO ZB23:FOKE I,132:NEXT
108 REM x*#xFRINT STRIMNGE USINGkx%#%
101 REM ¥xx ROUTINE 1 k¥

S3ave ,FEEK(S3272)0R 8

182 L=0:R=0:X=0:¥v=13:81=53248:0=1:B%="-24[LEFT2,UP ,LEFTJ| ":GOSUB 10000

103 X=28:Y=13:6="0":G0SUE (0009

104 K=3T:Y=13:B$="[UP,RIGHT2] [LEFT3,00WNI+2«":GOSUB 10000

185 M¥=13:YV=32:8$="—+1":GOSUB 10800

106 X=189:Y=21:8%=""-1":G0OSUB 10000

107 R=1:X=1:V=22:8B$="62 C[TEXT IOMMODORE-64
:GOSUB 18008

1028 REM %% PRINT AXIS USIMNG *x*xx

II-_ESOLUTION "EMO [GRAPHIC Je®"

25

Best of The TORPET C64

103 REM %% ROUTINE 3 kK
110 X1=0:Vv1=100:X2=312:Y2=100:G0SUB 30008

112 REM x%& PRINT AXI3 USIMNG #%%

114 REM %%k ROUTINE 4 * Kk

115 FOR Y=25 TO 1734:X=158:G05UB 1000:%=157:GOSUB 1800 :NEXT

116 REM x%% SET USER IMNPUT WITH *#x

117 REM %% ROUTINE 2 [T

120 BL=1:X=0:Y=0:R=8:8%="INPUT PERIOD 7 ":GOSUB 28808:J=VAL(I$)

125 REM *#% FLOT SINE CURVE ##%%

126 REM x%% USING ROUTINE 4 %xx%

130 FOR =0 TO 319:2=5INC{(K-158),/25+J):Y=INTC 100-70%242%Z):GOSUB 1000:NEXT
121 REM x#x% LABEL PLOT WITH IMNPUT w#x

132 REM xk% USING ROUTINE 1 *A K

132 L=1:R=0:X=34:Y=1+B%="Y=[GRAFHIC IS TEXT JINI UP I3[OOWN X ":GOSUB 10000

124 B¥=1%:G0OSUB 10080:BF="4})":GOSUB 10008

137 REM xk% PAUSE LOOF: WHEN "A" kX%

132 REM xx% I3 RECEIVED GO BACK AKX

138 REM #kx TO STANDARD MODE ok k

148 REM %kx% AND STOF kK

145 GET A$:IF A$="" THEN 145

1S@ POKE 53265 ,PEEK{S3265)AND 223:PRINT"[CLEAR 1" :POKE 53272,PEEK(S3272)AND 21

tEND
322 :
384 :
330 REM xxx ROUTINES 4 & S kK
892 REM %xx FOR FLOTTING AND LTS

334 REM xx%xx* UNPLOTTING POINTS k2 24
996 REM x*xx SEE REF. GUIDE PG 135 xxx%

837

1000 B=INT(Y/8)>%328+INT(X./8)%8+CY AND 7)+8182:POKE B,PEEK(BJIOR P(X AND 7)
tRETURN

1001 B=INTC Y.”8)«320+INTC(K, 8)48+(Y AND 7)+3132:F0KE B,PEEK(BIAND PI1(X AND 7)
tRETURN

3330 :

3922 ¢

333@ REM %% ROUTINE 1: FOR FRINTING #xx

32332 REM %% STRIMNGS IM HI- RES k&

393% @

3934 REM x%# DIGABLE INTERRUPTS & #x«
933€ REM xxx SWITCH IN CHAR ROM &#%%
9238 REM «%x% CALCULATE CHAR BASE x%x
10000 POKE S6324 ,PEEK(S6334)AND 254:POKE 1 ,FEEK(1)AND 251:B2=B1+R%1024+L %2043
1001@ REM x%xx GET A CHARACTER x%%
{0012 REM ¥%% FROM INPUT STRING #k%
10028 FOR I=1 TO LEMNKE#$):C=ASCI{MIDE B$, 1,11
1802€ REM #++ SFECIAL CHARACTERS ++&%
10322 REM #4% DECODIMNG SECTIOM ##%%
129380 IF C=14%5 THEN Y=Y¥-1:NEXT:RETURM:REM %% CURSOR UP =*x%
189040 IF C=17 THEN Y=Y+ :MNEXT:RETURNIREM %% CURSOR COWN xx
19858 IF C=28 THEN K=X+1:NEXT:RETURN:REM %% CURSOR RIGHT xx
10260 IF C=1357 THEM XM=X-1:!MEXT!RETURM:REM %% CURSOR LEFT %x
10870 IF C=18 THEN R=1:B2=B1+1023+L%2048:NEXT:RETURN:REM &% REVERSE ON x%x
1283@ IF C=14€ THEN R=0:B2=B1+L«20438:NEXATIRETURMN:REM *x REVERSE OFF xx
10030 IF C=13 THEN K=0:Y=0:NEXT!RETURN:REM xx CURSOR HOME x%x*
10100 IF C=14 THEN L=1:E2=E1+R¥10824+20343:MERT:RETURN
tREM %% START LOWER CASE xx%
10120 IF C=142 THEN L=0:B2=B1+R*182494:NEXT:RETURN:REM %% STOP LOWER CASE xx
10130 IF C=255 THEN C=126:REM %% "«" IS SPECIAL CASE x
10132 REM x+& TRANSLATE CHR# CODES %%
18134 REM xxx TO SCREEM CODES: CHARS #x%x
10136 REM #x%x% PATTERMNS IN ROM STORED *x%x%
10138 REM %x%x% BY SCREEN CODE E3
18140 OM C.722+1 GOTO 10150,10200,10170,10160,10150,10179,10130,10170

18152 C=32:G0T0 10z600
18168 C=C-32:G0T0 10200
10170 C=C-64:G0TO 10200
18180 C=C-36:G0TO 18200
19130 C=C-128

10132 REM ¥x% CALCULATE STARTING POS xxx
18184 REM *x%x FOR STRING AND CHAR %xx%
10136 REM %xk% DEFINITION *kX
102928 Z=Y*3EQ+X¥3+S132:C=Cx8+Ba

10220 REM xx%x POKE DEFINITION INTO #xx*
10222 REM *x*x HI-RES LOCATION *KK

26

Best of The TORPET Cé4

18240 FOR J=0 TO 7:iPOKE 2+J,(C4PEEKCZI+J))0OR PEEK(C+J)iNERTiH=K+1INEXT

18268 REM kxx*xx RE-EMNABLE INTERRUFTS xkx

10262 REM *%x AND SWITCH OUT ROM %xx

10290 FOKE 1,FEEKC 1)0R 4:FOKE S6334,FEEK(S6334°0R 1:RETURN

19880 :

19882 @

139002 REM *%%x ROUTINE 2-USER IMPUT * kK

19981 :

13902 REM &xx INITIALIZE INPUT STRING #%xx

13324 REM «&*%x SAVE START POSITION AND kxx%

13386 REM ##%x LENGTH OF PROMPT *kk

20088 I$="":1HX=X:HY=Y:!HB=LENKB$):GOSUB 10000

20003 REM x#x GET A CHAR x%xx%

c2P81@ GET BF:IF BE="" THEN 200108

20014 REM x#%%x CHECK FOR SPECIAL CHARS *x%

20816 REM *xkx ONLY FIRST TWO ARE L33

20013 REM »»xDIFFERENT FROM ROUTINE 1 %&x

20020 IF BH=CHR$C 13) THEN Z00TO:REM #%¥x RETURN #xx

20038 IF BH=CHR#*(20> THEN 20045:REM xx% DELETE x#x

20031 IF B®=CHR$(145) THEN 20041

20032 IF B$=CHR#$(1T) THEN 20041

20033 IF B#$=CHR3$ 23) THEN 20041

20034 IF BF=CHR#(157) THEN 20041

2035 IF B$=CHR$(18) THEN 20841

20036 IF B$=CHR#(146) THEN 20041

20037 IF BF=CHR#${ 19> THEMN 20041

20038 IF B$=CHR3({4) THEM 20041

20038 IF BF=CHR#{ 142) THEN 20041

20049 REM #kx%x ECHO CHARACTER *x&xk

20041 GOSUE 10000

20042 I=1$+B$:GOTQ 20010

20043 REM »¥xx DELETE KEY: DOMT DELETE x*xuw%

20044 REM #xx IF NMOTHING THERE * kK

209245 IF LEMNC I£)>=0 THEN 2010

20646 REM #xxx%x MOVE BACK AND BLANK ONE #kx

209047 REM k¥% CHAR: UFDATE INFUT AAK

20050 M=X-1:2=Y4320+X¥8+8132:FO0R 1=0 TO 7:POKE Z+1,0:NEXKT
PIS=LEFTHC 15, LENC I B3 -1

28058 REM xxx GET NEXT CHAR *xx

2006A GOTO 20019

20966 REM xkxx BLANK INPUT IF DESIRED #%*

20068 REM k%% ELSE RETURN L3 ¥4
20070 IF BL=0 THEN RETURN

20874 REM xsxx STARTING ADDRESS FOR k%%
20876 REM xxx BLANKING AND BLANKING *x#
28078 REM #xxx LagrP 4k K
20030 2=3204HY+834HX+3132:FOR [=68 TO (HE+LEM I$))>48:POKE Z+I1,8:NEXTIRETURN
3820 ¢

23882 @

29300 REM x%%x ROUTINE 3 KA

2930a REM xxkx ORAW A LINE L 2 33

233803 @

29984 REM xxx CALCULATE SLOFE AND x&%

28306 REM *xx*xx DECIDE WHETHER TO ok ok

2338038 REM *xx INCREMENT X OR Y *kk

38800 ¥D=X1-Xa:\YD=Yl-Y2

30019 IF XD=0 THEN 30200

28026 IF YD=0 THEMN 38308

SP030 M=YD/XD:S=Y1-MxK1

30248 IF ABS(MX<=.5 THEN 38400

30858 M=XD/YD:S=X1-MxYl

30060 REM xxx CALCULATE X %xx

30062 REM xkk STEP ALONG Y *%x%

30108 FOR Y=Y! TGO Y2 STEP SGMNK Y2-Y1)iK=MxY+2:G05UB 1008:NEXKT:RETURN
30180 REM %% VERTICAL LIMNE *x%x%

30162 REM x%% STEP ALONG YV *#x%

30200 X=KH1:FOR Y=Y1 TO Y2 STEF SGMNK YZ-Y1):GOSUE 1000:NEXT:RETURN
CO0ZEQ REM wxx HORIZONTAL LIMNE *xx

30262 REM *#%% STEF ALONG 1 xx%

30220 Y=Y1!FOR K=X1 TO X2 STEP SGMNK X2-X1):GO0SUB 1000:NEXT:RETURN
303608 REM x%x CALCULATE Y kxx

20362 REM x4x STEP ALONG X *x%x%

30400 FOR K=Ki TO X2 STEP SGN(K2-X1>:Y=MkX+5:G05UB 10093:NEAT:RETURN

27

Best of The TORPET

C64

Painting
By Dr. Efraim Halfon, Burlington, Ont.

High-resolution graphics in the Commodore 64
have a resolution of 320 pixels horizontally and
200 pixels vertically. This graphics mode,
however, only allows two colors, a foreground and
a background. Up to four colors can be obtained
by losing some horizontal resolution, from 320 to
160 pixels, and using the multi-color bit mapping
graphics. In this graphic mode, the colors are
determined by the bit pattern in each byte. For ex-

ample, an 11 will produce the foreground color, 01"

a second color, 10 a third, and 00 the screen color.

The C64 BASIC at present does not support any
extended graphics commands to draw lines and
circles; all drawings in high resolution must be
programmed using mathematical equations. In
this article, | present a method to draw circles and
fill them with color, i.e., “ paint” them. This
method is then extended to “‘paint” circles within
circles. This example is part of the more general
problem of being able to draw a geometrical
figure anywhere in the screen and painting it by
turning on the bits in the bytes in the appropriate
sequence, e.g., 01010101, as required by the multi-
color bit mapping graphics mode. In fact, if for ex-
ample the bits in all rows are not aligned, i.e.

010101010101010101010101
010101010101010101010101
101010101010101010101010
.010101010101010101010101

then, instead of a uniform painting, we have lines
of different colors. In the above example row,
three have a different color from the others,
depending on the bit pattern on that line.

The Algorithm (Table 1) allows this alignment to
take place and to draw circles in any of the
chosen colors. The algorithm can then be extend-
ed to any closed two-dimensional geometrical
figure. The principles in the algorithm are to draw
the perimeter of the circle and then paint inside
horizontally right to left. Since this algorithm in
BASIC is fairly slow | suggest saving the high
resolution screen on disk or tape for quick
retrieval when necessary.

The equation of a circle centered on the origin of a
Cartesian graph is

This program is on
The Best Programs Disk

where x and y are the Cartesian coordinates and r
is the radius length. Given the allowable resolu-
tion, x has arange of 0 to 319 and y a domain of 0
to 199.

The equation of a circle anywhere on the screen is

(x - xc)2 +y - yc)2 = 2

where x and y are the coordinates of the center.
The circle circumference can be drawn with the
algorithm starting at line 170, i.e.

X i
r !

for y= Yeor to yc+r .

xe 2 SR (P - (y - y)?)

| make y the independent variable, instead of x,
because the bit color mapping alignment needed
for the multi color mode is horizontal rather than
vertical. Thus we draw the circumference line by
line. X is the coordinate of the left semicircle and
x the coordinate of the right semicircle.

Painting of the circle is obtained by drawing a line
from X to x (line 230), i.e. right to left. As mention-
ed before, the important point is that all 0 and 1
bits be aligned vertically to obtain a uniform color.
Thus, if you choose so, x has to be 01 for all y’s.
Algorithmically this is fairly simple, the x coor-
dinate must always be even, odd for 10. Then a
line is drawn between x and x with STEP 2, i.e., we
turn on the screen bits 1 separated by the default
bit 0, or the desired 010101 combination. Lines
190-210 provide this alignment. The test of odd-
ness, or even-ness, is made by dividing the integer
portion of x by 2 and then multiplying the integer
quotient x by 2. If x and x are the same, then the
number is even, else it is odd. If x is not even, or
odd as we wish, we subtract 1 to make the coor-
dinate odd, or even, then we draw the line bet-
ween x and x, i.e., we ‘‘paint” each line.

The circle is then uniformly painted in the chosen
color (line 450 sets the colors to blue and red in
this example), and at any chosen coordinate xc
and yc for any given radius .

Best of The TORPET

C64

CIRCLE WITHIN A CIRCLE

To draw a circle within a circle of a different color,
the extension is straight forward. The center coor-
dinates are the same x and y but the radius is
smaller. A different color is chosen, here red, and
the bit pattern is not 0101010101, but 1010101010.
The rest of the procedure is the same.

To draw a circle within a circle with screen color,
bits 00, a test must be performed (line 220) to see
which colors to paint where. The outside and in-
side circles are drawn together, so as not to turn
on the bits in the inside circle. Thus, the inside cir-
cle remains in the screen, background color.

Once the algorithm presented here in BASIC is ex-
ecuted, the result is three concentric circles; the
outside is blue, the middle white and the internal
red. The circles’ location and radius are determin-
ed in line 400. For faster execution, a smaller
radius may be chosen. The high resolution screen
is located in memory starting at location 8192
decimal (line 410). As mentioned before execution
in BASIC is slow and if redrawing during a pro-
gram execution is necessary the easiest solution
is to save the screen on disk, alternatively the
algorithm can be reprogrammed in machine
language. A circle plotted in high-resolution multi-
color bit mapping mode does not look as round
and smooth as one plotted with standard two-
color high-resolution graphics, but this com-
promise was chosen by the designers of the C-64
to have four available colors.

TABLE 1: DESCRIPTION OF THE
BASIC PROGRAM LINE BY LINE

Line 100: Go to line 400 to initialize parameters
and then start plotting from line 160.

Lines 130-150: Subroutine to turn on bits in high
resolution mode. See C-64 programmers
reference manual, high resolution section.

Line 160: Main program, set background color to
white.

Line 170: Set outside limits of circle.

Lines 180 - 190: Set x coordinates and prepare to
test for oddness by dividing right circle limit x by 2
and then multiplying the integer quotient by 2.
Line 200: Test for oddness

Line 210: If even subtract 1 from x.

Line 220: Test whether to plot an inside circle with
screen color, if yes go to 250, else go to 230.
Lines 230 - 240: Paint circle blue.

Lines 250 - 320: Do not paint inside circle but leave
it in background color, white. This is done by pain-
ting only the area between XX and XS and X to XQ.
Test for oddness is performed on X.

Lines 330 - 380: Paint third inside circle red.

Line 390: End of program.

Line 400: Set location of circle center and length
of the three radii, R1 inside circle, R2 middle cir-

cle. R3 outside circle.
Lines 410 - 430: Set high resolution multi color bit

mapping.

Line 440: Clear high resolution area.

Line 450: Set high resolution color models to blue
and red, 98 01100010. The high byte is blue, color 6
0110, and the low byte is 0010, color 2 or red.

100 GOSUB400:GOTO160

110 REM THIS PRGRAM PLOTS 3 CONCENTRIC
CIRCLES IN MULTI-COLOR HI-RES MODE

130 CH=INT(XR/8XRO=INT(Y/8)LN=YAND7

140 BY=BASE+RO*320+8*CH+LN:BI=7-(XRAND7)

150 POKEBY,PEEK(BY)OR(2tBIXRETURN

160 V=53280.POKEV,1:POKEV+1,1:REM SET WHITE
BACKGROUND

170 a%rég;cz;aamcaaasrepmeu OUTSIDE BLUE

180 SQ=SQR((R3*R3)~(Y-CA*(Y-C2)

190 XQ=C1-SQXP%=C1+SQXD=INT(XP%/29XAY%=XD*2

200 XX=XP%:IFXA%<>XP%THEN 220

210 XX=XP%-1

220 IFY>=C2-R2ANDY<=C2+R2THEN250

230 FORXR=XXTOXQSTEP-2GOSUB13Q:NEXTXR

240 GOTO320

250 SQ=SQR((RZ*R2Y~(Y-C2*(Y-C2)

260 XT%=C1-SQ:XS=C1+SQ

270 FORXR=XXTOXSSTEP-2GOSUB130:NEXTXR

280 XD%=INT(XT%/ 2XA%=XD%* 2

290 IFXA%<>XT%THEN310

300 X=XT%-1

310 FORXR=XTOXQSTEP-2GOSUB130:NEXTXR

320 NEXT Y

330 FOR Y=C2-R1TOC2+R1STEP1:REM INTERNAL RED CIRCLE

340 SQ=SQR((R1*R1)~(Y-C2)*(Y-C2))

350 X=C1-SQXQ=XX=C1+SQAXP%=XXD=INT(XP%/22XA%=XD*2

360 X=XPUIFXA%=XP%THEN380

370 X=XP%-1

380 FORXR=XTOXQSTEP-2GOSUB130:NEXTXR,Y

390 POKE 1024,16:GOTO390

400 C1=160:C2=100:R1=30:R2=60:R3=80

410 BASE=8192POKES3272PEEK(5327 20R8

420 POKES3265,PEEK(53265)0R32REM ENTER BIT MAP MODE

430 POKES3270,PEEK(53270)0R16

440 FORI=BASETOBASE+7999:POKEI,ONEXT

450 FORI=1024T02023:POKEI,98:NEXT:RETURN:REM SET COLOR
TO RED AND BLUE

Editor’'s Note: The following is part of a letter
regarding Dr. Halfon’s article on ‘Painting”
Circles.

Gentlemen:

| cannot get a color display (only black and white
figures) with this program. In line 450, the 98 or
color has no effect. Omitting line 430 (multi-color
bit map turn-on) gives a predicted blue and red
display. | am puzzled why 98 doesn’t give a blue-
white-red multi-color bit map display.

29

Best of The TORPET

C64

In any case, there is a simpler and faster way. | us-
ed Simons’ Basic:

Note the correction of 1.6 forthe Y radius_ becayse
the screen is rectangular. Lines 75-80 is a little
color pizzaz.

10 HIRES 0,1 : MULTI 2,1,6
20 CIRCLE 80,100,50,50%1.6,3
30 PAINT 80,100,3

40 CIRCLE 80,100,30,30%1.6,2
50 PAINT 80,100,2

60 CIRCLE 80,100,15,15%1.6,1
70 PAINT 80,100,1

75 FOR X = 1TO500:NEXT

Regards, 80 MULTI INT(RND(0)* 14),INT(RND(0)* 14),INT(RND(0)* 14)
Harry Metz. 85 GOTO75
Best of The TORPET Cc64

Programmable Characters

By Steven Darnold, Alexandra, New Zealand

The Commodore 64 has a wide variety of graphics
modes. You can use PET graphics, sprites, multi-
colour sprites, a bit map, a multi-colour bit map,
programmable characters, multi-colour program-
mable characters or extended background col-
ours. You can also use combinations of these
modes. This rich selection of modes permits the
64 to produce extremely sophisticated graphics.
However, there is a lot to learn before you can ful-
ly utilize the 64’s capabilities. Programmable
character definition is a good place to start.

When | am writing a program, | often find that |
need a character which does not appear on the
keyboard. For example, | was once working on an
educational program to teach angles and | needed
a degree sign. However, since | was using a PET, |
had no way of producing one. The Commodore 64,
on the other hand, is quite capable of producing a
degree sign, or any other character which can be
defined in an 8 X 8 block of dots.

The key to programmable characters on the Com-
modore 64 lies in the fact that any of its 256
characters can be redesigned. This means that
you can change the spade sign (for example) into
a degree sign. Then every time you hit shifted-A,
you get a degree sign on the screen. PRINTs and
POKEs will also produce the degree sign.
However, before you can redesign characters, you
have to put your 64 into the right frame of mind.

First reset your 64 and remove any cartridges.
Then PRINT CHR$(142); CHR$(8). This locks the
computer into the upper-case/graphics character
set. The lower-case/upper-case character set can
also be redesigned, but it makes this discussion
easier if we avoid switching character sets. Push
the shift key and the Commodore key
simultaneously, and you’ll see that no switching
occeurs.

Now POKE 792,116 : POKE 793,164. This alters the

RESTORE routine to keep it from destroying the
new characters we are going to build. Press RUN-
STOP/RESTORE a few times. You should get a
READY without the screen being cleared.

Now POKE 56,127 : CLR. This lowers the top of
memory to give us some RAM to use. Enter PRINT
FRE(0) and the result should be 30461. If it isn’t,
then you probably forgot to enter CLR.

NOW THE HARD PART

The next bit is the most difficult, so be careful. At
present the character set is stored in ROM. In
order to redesign the characters, we have to shift
them to RAM. There are five steps: disable the in-
terrupt, connect the ROM, transfer the characters,
-disconnect the ROM, and re-enable the interrupt.
This must be done as one operation. Enter all of
the following before pressing RETURN. In order to
squeeze it in, it will be necessary to leave out the
spaces and abbreviate POKE by P shift-O. POKE
56334,0 : POKE 1,51 : FOR I=0 TO 2047 : POKE
40960 + |, PEEK(53248 + 1) : NEXT : POKE 1,55 :
POKE 56334,1. This will take about 30 seconds to
execute.

You now have a copy of the character set in RAM,
but the computer is still using the set in ROM. The
final step is to tell the computer to use the new
character set. POKE 56576,149 : POKE 53272,8 :
POKE 648, 128. Since the screen must be in the
same block of memory as the character set, it
shifts at the same time. The screen now starts at
32768 (just like the PET) and the character set
starts at 40960.

Clear the screen and type ABC. The characters
should look normal (if not, you have a problem).
Now enter POKE 40971,0. Look at the A in ABC,
look at the A in READY. The zero you put in 40971
wiped out the fourth line of the A. Try putting
zeros in 40972 and 40973. What happens? See if
you can make all of the A disappear. Now POKE

30

Best of The TORPET

C64

40976,0. Can you make all of the B disappear? Can
you make the C disappear, too?

Each character is made up of eight lines. Each
line is stored in a separate memory location. If the
contents of a memory location is zero, then the
corresponding line is blank. If the contents is 255,
then the line is solid (try putting 255 into 40968).
Different numbers between 0 and 255 give dif-
ferent types of lines. This is based on the binary
representation of the number. A value of 255 gives
a solid line because in binary it is 11111111.
Similarly, a value of 0 is represented as 00000000.
Each binary digit corresponds to a dot on the line.
If the digit is 1, the dot is lit; if the digit is O, the dot
is off. Thus, if you want the left half of a line to be
lit, the number to poke is 240 (= 11110000). Experi-
ment with different numbers. See pages 77-78 in
the 64 User Manual for details.

The character images are arranged in order, with
each character taking 8 bytes. If you want to know
where a particular character starts, use this for-

mula: screen display code times 8 plus 40960. The
screen display codes are listed on pages 132-134
of the User Manual. Codes for the reverse field let-
ters run from 128 to 255. Thus, although we have
mangled A, B, C (codes 1, 2, 3), we have not touch-
ed their reverse field representations (codes 129,
130, 131). Check this by pressing CTRL/RVS-ON
and typing ABC.

Now we are ready to turn the spade sign into a
degree sign. First look up the code for spade
(=65), multiply it by 8 (=520) and add 40960
(=41480). This gives us the first line of the spade.
POKE 120 (=01111000) into 41480 and 41483.
POKE 204 (=11001100) into 41481 and 41482.
POKE 0 into the bottom three lines (41484-41486).
Now press shifted-A for a lovely degree sign
—(see figure).

That’s all there is to it. Now you can design your
own characters. You’ll have to spend a bit of time
with an 8 X 8 grid working out the numbers, but
once you get used to it, it isn’t too difficult.

FIGURE 1.

41480=120

41481=204

41482=204

41483=120

41484=0

41485=0

41486=0

41487=0

31

Best of The TORPET

C64

Programming the Commodore 64 Function

Keys

By Paul Thompson & Ron Radko, Toronto, Ont.

This program is designed to allow the programm-
ing of the FUNCTION keys. Each FUNCTION key
may be programmed with up to 10 characters in-
cluding multiple RETURN characters. The
RETURN character(s) will function as a typed car-
riage return and can be used more than once for
each FUNCTION key, e.g., you can type LIST (cr)
RUN (cr)* and that FUNCTION key, when pressed,
will LIST and then RUN the program in memory.

To program the FUNCTION keys, RUN program 2.
There will be a slight pause while the machine
language is POKEd into place, and then the com-
puter will prompt you with:

F1=7

You can now program the F1 key with a maximum
of 10 characters, and press RETURN. The com-
puter will prompt you with:

This program is on
The Best Programs Disk

F2="?

This cycle will repeat until you have programmed
all eight of the FUNCTION keys (or defaulted by
pressing RETURN). The program will then NEW
itself to give the user full memory capacity.

While this program is totally user transparent, by
hitting the RUN/STOP RESTORE keys, you must
type:

SYS 12*4096 (cr)

This will restore the FUNCTION keys to their
previous vaiues.

* — carriage return is a back.arrow.

(cr) is a carriage return.

Program 1 is the disassembly of the machine language routine found in
program 2 on page 35, and is provided here for the interested assembly

language programmers.

PROGRAM 1
DISASSEMBLED MACHINE CODE

2
: €000 .OPT P4,00
: €000 #= $CO00
40: €000 NOKEYS = $C6 ;NO OF KEYVS IN BUFFER
50: Co00 INKEY = $D7 5LAST KEY PRESSED
60: €000 IRQVEC = $0314 ;IR VECTOR
70: C0o00 IRQRTN = $EA31 3NORMAL IRR ROUTINE
71: CO00 BUFFER = $0277 ;BEGINNING OF KEVBOARD BUFFER
80: cooo 78 SEI
90: CO01 A2 OD LDX #<NEWIRQ ;SET THE IRQ ROUTINES
100: COO3 A0 CO LDY #>NEWIRQ ;TO START AT THIS
110: COOS BE 14 03 STX IRQVEC ;PROGRAM
120: €008 BC 15 03 STY IRQVEC+1
130: COOB S8 cLI
140: COOC &0 RTS sRETURN TO BASIC
150: COOD 48 NEWIR® PHA s BEGINNING OF NEW IRQ ROUTINE
150: COOE BA TXA $SAVE ALL REGISTERS
150: COOF 48 PHA
150: Co10 98 TYA
150: CO11 48 PHA
160: CO12 AS D7 LDA INKEY 3GET THE LAST KEY PRESSED
170: CO14 C9 85 CMP #133 $CHECK IF IT 1S ONE OF
180: CO16 FO 25 BER F1START ;THE FUNCTION KEYS

Best of The TORPET

cé4

co1s
COo1A
coicC
CO1E
C020
Co022
Co24
Co26
coz28
CO2A
coz2c
CO2E
C030
Co33
Co35
Co37
co3A
CO3D
CO3F
co42
CO44
Co46
co4a9
€o4C
Co4D
COAF
CoS51

CoS54
CoS5é6
Co59
Co5B
COoSD
C060
C063
COo64
COo66
Co68
Coé6B
Co6D
Co70
Co72
Co74
Cco77
co7e
Co7A
co7cC
CO7F
co81
coe4
co8ss
coes
coaB
cosc
co8E
C0%90
C093
Co95
co98
Co9A
co9C
CO9F
COAO

ce
FO
ce
FO
ce
FO
ce
FO
c9
FO
c9
DO
4C
ce
DO
4C
4C
A2
BD
c9
DO
4cC
9D
EB
EO
DO
4c
A2
BD
c9
DO
4C
9D
EB
EO
Do
4C
A2
BD
ce
FO
9D
EB
EO
DO
4C
A2
BD
c9
FO
9D
EB
EO
DO
4c
A2
BD
ce
FO
9D
ES
EO

a9
38
86
4B
8A
SB
87
6B
8B
7B
88
03
BB
ac
03
CF
E2
00
EA
00
03
EO
77

co

co

Co

co

co
02

co

Co

co
02

co

co

02

co

C1

02

co

C1

02

NEXT1

NEXT2
F1START
LOOP1

NEXT3

F28TART
LOOP2

NEXT4

F3START
LOOP3

FASTART
LOOP4

FSSTART
LOOPS

CMP
BEQ
cCMP
BEQ

BEQ

BEQ
CcHP
BEQ
cHP
BNE
JMP
CMP
BNE
JMP
JMP
LDX
LDA
CMP
BNE
JMP
STA
INX
CPX
BNE
JMP
LDX
LDA
cMP

JMP
STA
INX
CPX

JMP
LDX
LDA

BEQ@
8TA
INX
CPX

JMP
LDX
LDA

BEQ@
STA
INX
CPX

JMP
LDX

CMP
BEQ
STA
INX
CPX

#137

F2START

#134

F3START

#138

FA4START

#135

FSSTART

#139

F&6START

#136

NEXT1

F7START

#1340

NEXT2

FB8START

MOVEON1 ;IF NOT GO TO END OF ROUTINE
#0 $Ci.EAR THE X REGISTER

Fi1,X $GET FIRST STORED CHARACTER
#0 §CHECK IF IT IS THE LAST ONE
NEXT3

MOVEON ;IF SO GOTO TO END

BUFFER, X 3PUT IT IN THE KEYBOARD BUFFER

#10 5CHECK IF THE MAXIMUM
LOOP1 HAS BENN REACHED
MOVEON

*0

F2, X $SEE ABOVE

#0

NEXT4

MOVEON

BUFFER, X

#10
LOOP2

FS, X $ SEE ABOVE
#0

MOVEON

BUFFER, X

#10

33

Best of The TORPET Cé4

960: COA2 DO F1 BNE LOOPS

570: COA4 4C EO CO JMP MOVEON

580: COA7 A2 00 F6START LDX #0

590: COA? BD 1C C1 LOOFPS LDA F6,X $ SEE ABOVE

600; COAC C9 00 CMP #0

600: COAE FO 30 BEQ@ MOVEON

610: COBO 9D 77 02 STA BUFFER, X

620: COB3 ESB INX

620: COB4 EO OA CPX #10

620: COB6 DO F1 BNE LOOP6

630: CoB8 4C EO CO JMP MOVEON

640: COBB A2 00 F7START LDX #0O

630: COBD BD 26 C1 LOOP7 LDA F7,X s SEE ABOVE

660: Coco C9 00 CMP #0

660: CoC2 FO 1C BEQ@ MOVEON

670: COC4 9D 77 02 STA BUFFER, X

680: CoC7 ES8 INX

680: coc8 EO OA CPX #10

680: COCA DO F1 BNE LOOP7

690: CoCC 4C EO CoO JMP MOVEON

700: COCF A2 00 FB8START LDX #0

710: CoD1 BD 30 C1 LOOPS LDA F8,X s SEE ABOVE

720: CoD4 C9 00 CMP #0

720: COoD6 FO 08 BEQ@ MOVEON

730: cobg 9D 77 02 STA BUFFER, X

740: CODB ES8 INX

740: CODC EO OA CPX #10

740: CODE DO F1 BNE LOOPS

1000: COEO 86 C6 MOVEON STX NOKEYS 3STELL THE MACHINE # OF KEYS IN BUFFER
1010: COE2 468 MOVEON1 PLA sRESTORE ALL REGISTERS
1010: COE3 A8 TAY

1010: COE4 68 PLA

1010: COE3S AA TAX

1010: COE6 648 PLA

1020: COE7 4C 31 EA JMP IRGRTN ;SRETURN TO NORMAL IRR ROUTINES
1030: COEA 20 20 20 F1 «ASC " " 3SPACE FOR THE F1 KEY
1040: COF4 20 20 20 F2 «-ASC " " 3SPACE FOR THE F2 KEY
1050: COFE 20 20 20 F3 «ASC * * 3SPACE FOR THE F3 KEY
1060: C108 20 20 20 F4 -ASC " " 3SPACE FOR THE F4 KEY
1070: C112 20 20 20 FS «ASC " " 3SPACE FOR THE F3 KEY
1080: C11C 20 20 20 Fé6 «ASC " * 3SPACE FOR THE Fé KEY
1090: C126 20 20 20 F7 «ASC * " $SPACE FOR THE F7 KEY
1095: C130 20 20 20 F8 «-ASC * " 3SPACE FOR THE F8 KEY

Program 2 is what you type in. Save it before you
run it (in case it crashes).

PROGRAM 2
BASIC LISTING

5 FORN=49152T049385: READA: POKEN, Az NEXT
10 FORN=0TO7

20 PRINT"F"N+1"="5: INPUTF$

30 IF LEN(F$) >10THENX$=LEFT$ (X$, 10)

40 FORX=1TOLEN(F$)

50 X$=MID$(F$,X,1)

60 IFX$=""THENX$=CHRS (13)

65 IFX$=""THENBS

70 POKE49385+N#10+X,ASC (X$)

34

Best of The TORPET C64

80 NEXT
85 FORR=XT010:POKE49385+N#10+R, 0: NEXT
90 NEXT

100
110
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216

SYS512#4096
NEW

DATA 120, 162, 13, 160, 192, 142, 20, 3, 140, 21, 3, 88, 96, 72

DATA 138, 72, 152, 72, 165, 215, 201, 133, 240, 37, 201, 137, 240, 56
DATA 201, 134, 240, 75, 201, 138, 240, 91, 201, 135, 240, 107, 201,139
DATA 240, 123, 201, 136, 208, 3, 76, 187, 192, 201, 140, 208, 3, 76
DATA 207, 192, 76, 226, 192, 162, 0, 189, 234, 192, 201, O, 208, 3
DATA 76, 224, 192, 157, 119, 2, 232, 224, 10, 208, 238, 76, 224, 192
DATA 162, 0, 189, 244, 192, 201, O, 208, 3, 76, 224, 192, 157, 119
DATA 2, 232, 224, 10, 208, 238, 76, 224, 192, 162, O, 189, 254, 192
DATA 201, 0, 240, 108, 157, 119, 2, 232, 224, 10, 208, 241, 76, 224
DATA 192, 162, O, 189, 8, 193, 201, 0, 240, 88, 157, 119, 2, 232

DATA 224, 10, 208, 241, 76, 224, 192, 162, 0, 189, 18, 193, 201, O
DATA 240, 68, 157, 119, 2, 232, 224, 10, 208, 241, 76, 224, 192, 162
DATA 0, 189, 28, 193, 201, O, 240, 48, 157, 119, 2, 232, 224, 10

DATA 208, 241, 76, 224, 192, 162, 0, 189, 38, 193, 201, O, 240, 28
DATA 157, 119, 2, 232, 224, 10, 208, 241, 76, 224, 192, 162, 0, 189
DATA 48, 193, 201, O, 240, 8, 157, 119, 2, 232, 224, 10, 208, 241

DATA 134, 198, 104, 168, 104, 170, 104, 74, 49, 234

READY.

PLL HAVE A BEER BUT JUST CHIPS FOR MY
FRIEND...ANYWAY, THE WIFE STARTS AGAIN THIS
MORNING: “YOU SPEND TOO MUCH TIME WITH
THAT STUPID MACHINE,” SHE SAYS....

35

Best of The TORPET

C64

Dvorak Keyboard

By William R. Frenchu, Princeton, N.J.

In the past few months there have been several ar-
ticles comparing the Dvorak and the standard or
“QWERTY” typewriter keyboards (Figure 1). Many
feel that the Dvorak is a much easier board to use
and that people trained on it can reach higher typ-
ing speeds with less fatigue than those using the
QWERTY system. The QWERTY board gets its
name from the first row of letter keys and is prac-
tically as old as the typewriter itself. When
typewriters were in their infancy (and all
mechanical) the letters were arranged on the
keyboard in this manner to keep typists from typ-
ing faster than their machines could operate, and
eliminate some of the key jamming that occured
when two or more keys were pressed too quickly.
The most commonly used keys were spread out
among all three rows so the typist would be slow-
ed down in reaching for them.

The Dvorak keyboard started to become popular
with the advent of electronic typewriters and word
processors with few (or quicker) mechanical
parts. It returned the most commonly used keys to
the “home row”, the row on which the typist’s
fingers rest. With less reaching, the typist was
able to type faster and with less fatigue.

The program presented here will enable the user
to experiment with the Dvorak keyboard by
reassigning the Commodore 64 keyboard.

THE KEY TABLE

The Commodore 64 uses a table in the kernal to
determine which character is assigned to a par-
ticular key. The table is arranged by ‘‘key number”

This program is on
The Best Programs Disk

a number different from both the screen and
CHR$ codes. The key number of any key can be
displayed with the following one line program:

10 PRINT “[cIr]”;PEEK(197) :GOTO 10

where [cir] is entered by pushing the “SHIFT” and
“CLR/HOME” keys.

The easiest way to redefine the keyboard would
probably be to change the vector, that points to
this table, to point to a new table somewhere in
RAM. This program for the Commodore 64 uses a
slightly different approach, made possible by the
ability of the 6510 processor to ‘“bank” certain
areas of memory in and out of its address space.
All ROM on the 64 has associated with it a section
of RAM occupying the same address. Which type
of memory the processor sees at any one time is
determined by an /O port and data direction
register at locations 0 and 1. A machine language
subroutine first copies both Basic and the kernal
into their underlying RAM areas. The ROM areas
are then banked out and the original keyboard
decode table is modified without changing the
pointer. To restore the original keyset, the ROM is
simply banked back in. This method was chosen
in the hopes that the new keyboards could then be
used with some of the existing word processor
and typing tutor software. Unfortunately, the only
word processor it has been tried with, the disk ver-
sion of Commodore’s own EasyScript, uses a
system restart (SYS 64738) to start the program.
This banks the ROM back in and the new
keyboard can’t be used.

The QWERTY
or Standard Keyboard

1234567890

TYPEWRITER KEYBOARDS

ANSI X4.22-1983
Standard Dvorak Keyboard

1234567890

, . PYFGCRL
AOEUI DHTNS
; QUKXBMWYVZ

36

Best of The TORPET

C64

PROGRAM TO CHANGE THE
COMMODORE 64 STANDARD

QWERTY KEYBOARD TO A
DVORAK KEYBOARD

6 :

10 REM *** MAIN PROGRAM ***

20 :

30 GOSUB 4000:REM *** LOAD AND RUN SWAP ROUTINE **=*

40 DIM D(194):GOSUB 5400:REM *** LOAD DVORAK DATA ***

50 GOSUB S50S50:END:REM *** LOAD DATA INTO KEY TABLE, END ***
3994 :

3995 :

3996 REM *** L,OAD AND RUN SWAP ROUTINE **%

3997 :

4000 T=0:FPOR I=0 TO 62:READ J:T=T+J:POKE 49152+I,J:NEXT
4010 IF T=10067 GOTO 4050:REM *** TOTAL FOR ML ROUTINE **¥*

4020 PRINT "({2crsr d} {(rvs on]DATA ERROR IN SWAP SUBROUTINE"
4040 END

4050 SYS 49152:RETURN:REM *** SWAP OUT BASIC AND KERNAL ***

4095 :

4096 :

4097 REM *** DATA FOR ML ROUTINE THAT COPIES BASIC AND KERNAL INTO RAM ***

4098 REM *** CODE USES NO ABSOLUTE ADDRESSES SO MAY BE LOCATED ANYWHERE **x
4099 :

4100 DATA 169,0,133,251,169,160,133,252,162,32,160,0,177,251,145,251,136

4110 DATA 240,2,208,247,202,240,4,230,252,208,238,169,0,133,251,169, 224,133,252
4120 DATA 162,32,169,0,177,251,145,251,136,240,2,208,247,202,240,4,230,252,208
4130 DATA 238,165,1,41,253,133,1,96

4994 :

4995 :

4996 REM *** ROUTINES TO READ AND LOAD DVORAK KEY DATA ***

4997 :

4998 REM *** SUBROUTINE FOR POKING DVORAK DATA INTO KEY TABLE ***

4999 :

5050 FOR I=0 TO 194 The author has also provided a lengthier program
5070 POKE 1+60289,D(I) | that permits one to redefine any keys in the
5090 NEXT keyboard so that one may design their own
’5’132 RETURN keyboard. Available on the Best Programs Disk.
5397 : 7

5398 REM *** READ AND CHECK DVORAK DATA ***

5399

5400 T=0:FOR I=0 TO 194:READ D(I):T=T+D(I):NEXT

5405 IF T=22987 THEN 5410

5407 PRINT "(2crsr d} {rvs on]DATA ERROR IN DVORAK KEYSET"

5408 END

5410 RETURN

5496

5497 :

5498 REM *** DVORAK DATA ARRANGED BY KEYNUMBER ***

5499 :

5500 DATA 20,13,29,136,133,134,135,17,51, 44,65,52,59,79,46,1,53,80,69,54,74,85
5510 DATA 89,81,55,70,73,56,88,68,71,75,57,67,72,48,77,84,82,66,43,76,78,45
5520 DATA 86,83,64,87,92,42,58,19,1,61,94,90,49,95,4,50,32,2,47,3,255

5530 DATA 148,141,157,140,137,138,139,145,35,60,193,36,93,207,62,1,37,208,197
5540 DATA 38,202,213,217,209,39,198,201,40,216,196,199,203, 41,195,200, 48

5550 DATA 20S,212,210,194,219,204,206,221,214,211,186,215,169,192,91,147,1
5560 DATA 61,222,218,33,95,4,34,160,2,63,131,255

5570 DATA 148,141,157,140,137,138,139,145,150,60,176,151,93,185,62,1,152

5580 DATA 175,177,153,181,184,183,171,154,187,162,155,189,172,165,161,41

5590 DATA 188,180,48,167,163,178,191,166,182,170,220,190,174,164,179,168,223,91
5600 DATA 147,1,61,222,173,129,95,4,149,160,2,63,131,255

37

Best of The TORPET

C64

Menu Selection With A Joystick

By Alfred J. Bruey, Jackson, Mi

There are hundreds, perhaps thousands, of pro-
grams that use the joystick for operations. Most
of these are game programs. The introduction of
LISA by Apple demonstrated that it is possible to
write a business program which provides for a
non-keyboard interface between the user and the
applications software. The article describes one
approach that might be used to allow joystick
control of the Commodore 64.

INTRODUCTION

This program is for demonstration purposes only.
It will demonstrate:

1. How to program for the Commodore 64 joystick.
2. How to select items from a menu using a
joystick.

The program will not perform the functions that
you select with the joystick. | have indicated
where you need to add coding if you want to con-
tinue building on this program.

PROGRAMMING THE JOYSTICK

Although there are two joystick ports on the 64,
labelled Control Port 1 and Control Port 2, the
following discussion and the program will
assume that a joystick is plugged into Control
Port 1.

When a joystick is plugged into Control Port 1 and
the joystick handle is moved around or the fire
button pressed, specific values are placed in
memory location 56321. Location 56321 is one
byte (8 bits) long. (See Figure 1) We will only be in-
terested in the 5 rightmost bits of this location.

To tell whether the fire button has been pressed,
we only need to look at bit 4 of location 56321. If
that bit is a 1, it means the button has not been
pressed. If it is a 0, the button has been pressed.
To look at location 56321, we have to use the
PEEK instruction. To look at bit 4 of this location,
we can AND the value in location 56321 with the
value 16, which in binary form is 00010000. For ex-
ample, if 56321 contains the binary value
10110111, then

10110111 AND 00010000 = 00010000

and since the new value is 00010000, which is the
binary representation of the decimal number 16,

This program is on
The Best Programs Disk

we know that the button has not been pressed. If
the result of this operation had been 0, we would
have known that the fire button had been pressed.

The same principle applies in determining the
joystick position. As figure 1 shows, the low order
four bits determine whether or not the joystick
has been moved and, if it has, which position it
has been moved to. To zero out the first (high-
order) four bits and keep the last (low-order) four
bits unchanged, all we have to do is AND the
value of location 56321 with 15, which is 00001111
in binary notation. The new value, which I'll ab-
breviate as JD (for Joystick Direction) can only
take on part of the values from 0 to 15. Each 1 in
the value of JD represents a joystick direction that
was not selected. I'll subtract the value of JD from
15 to reverse the bit values in JD so that a 1 will
represent a chosen direction.

Listing 1 shows how to zero out the high order
four bits and then convert the value remaining to
one where the binary representation contains a 1
if the joystick position is chosen and a 0 if it is
not.

In this program, we will only be interested in mov-
ing the joystick up or down. Listing 1 gets a value
of FB (0= fired, 16 = not fired) and JD (JD =1 if
stick pushed up, 2 if pushed down). As you can
see by the REM statements in Listing 1, JD can
take on other values, which we will ignore in this
program.

THE PROGRAM

Listing 2 shows the complete program. Notice
that the joystick routine that was shown in Listing
1 is included here as a subroutine. The first thing
you should do is enter the program and then run it.
| haven’t included any operating instructions as
part of the program because | wanted to keep it
easy to enter. The operation is simple: just type
RUN and then press the RETURN key. Then move
the joystick ahead or back. When you’ve got the
cursor on the selection you want, press the
joystick button. Remember, | warned you at the
start that the program doesn’t do any of the things
listed on the menu (except for the END OF RUN
selection); the program simply demonstrates how
to use the joystick to make selections from a
menu.

If a PET is DOWN, it’s out of SORTS. — Ylimaki

38

Best of The TORPET

Ccé4

CONCLUSION

There’s no limit to where you can go from here.
You might want to put menu selections all over
the screen. Then you’ll have to check for other
joystick directions. Maybe you’d like to write a
program that requires some data from the
keyboard and some from the joystick. As a final
test of your understanding, you might try writing a
joystick-controlled game program like some of
the arcade games. | should warn you, however,
that if you write a game that’s too complicated,
you’ll have to program it in machine language or it

will run so slowly that it won’t be any challenge to
the player.

LISTING 1

1000 REM CHECK FOR FIRE BUTTON PRESSED

1010 REM JV IS JOYSTICK VALUE

1020 JV = PEEK(56321)

1030 REM GET VALUE OF FIRE BUTTON

1040 REM 0 IF FIRED, 16 IF NOT FIRED - PUT IN FB

1050 FB = JV and 16

1060 REM GET JD, JOYSTICK DIRECTION VALUE

1070 REM =1 UP,2=DOWN

l1J058E0 REM JD CAN HAVE OTHER VALUES THAT WE WON'T
1090 JD = 15 - (JV AND 15)

FIGURE -1
I—'FIRE BUTTON INDICATOR BIT
7 6 5 4 3 2 1 0
L\ — R

JOYSTICK MOVEMENT BITS

LISTING 2

g8 REM MEMNU SELECTION WITH A JOYSTICK
16 FREM DISPLAY MENU WITH CURSOR

28 L=1S18:v=8
38 PRINT"ID":FPOKE L.21
4

S& FRINT"THEN FRESS BUTTON TO SELECT"
&8 FRINT"XbBBRBRRRRRRFAYROLL FROGRAM"

FRINT" xeabRRBBRRRBIINENTORY FROGRAM"

8 PRINT"SAMPLE MENU: USE JOYSTICK TO CHOOSE LIMNE"

3 FRINT"X«pBBPRRRBRBRRFCCOUNTS PRYABLE FPROGRAM"
S8 FRINT"RMBRRRPRBRBNCCOUNTS RECEIYARELE FROGRAM"
el

208 FRINT"REDBBBRBPRBRRETOCKHOLDER RECORDE FRGGRAM

218 FRINT"«emBRBRPPRRREETOF KUK

229 G0SUE 258:REM CHECK JOYSTICK AMI EBUTTGN
228 REM SEE IF BUTTOM WRS FRESSED

IF FE=@ THEM 4&8

250 REM IF JOYSTICK NOT UF QR DOLN

ZE8 REM AMD FIRE EUTTON HOT FRESZED.

278 FEM G0 EACK T3 3CAN KEYBGARD

REM CHECK FOR JGYSTICK UF

IF JD=1 THEN IF %24 THEN 226

REM CHECK FOR JOYSTICK DOWH
IF JD=g THEN IF Y¥<-¥ THEM 2@

IBEDEOESE N
ISR O RNV R

Do IO I DA U]

IF Jh=1 THEHW Y=%+3:FOKE L,36:L=L-120:FOKE L.21:FORI=170250:NEXTI:GOTO Z:

(5]
[x)

IF JD=g THEN Y=W-3:FOKE L.36:L=L+128 'FOKE L.81:'FORI=1TO258 :NEXTI:GOTO 22

39

Best of The TORPET C64
S48 GOTO 220:REM GO BACK TO CHECK FOR JOYSTICK

358 REM CHECK FOR FIRE EUTTON FRESSED

IE8 REM AND TO FIND JOYSTICK DIRECTION

378 FREM FE IS FIREBUTTON “ALUE

338 FEM FE=0 IF FRESSED

358 REM FB=1& IF NOT FRESSED

dE6 JY=FEEK {56221

418 FE=J% ANI 1&

4z8 Jh=15 - <J% AMD 15>

4380 FREM JD=1 IF JOYSTICK UF

44@ REM JD=2 IF JOYSTICK DOWH

458 FETURN

4860 REM HERE IS WHERE YOU GO IF BUTTON IS FEESSETL

478 FOR I=1 TG ZS0:HEST I

420 IF V=& THEHM FRIHWHT"I8RRREERBRFAYEQOLL FROGEARM SELECTED" :GOTO S48

433 IF =3 THEN FRINT"IalnDDIRRERNRCCOUNTS FPAYRELE SELECTED" :GOTO S48
S0@ IF YW=8 THEM PRINT"ZDIsDMBRRFRCCOUNTS RECEIVREBLE SELECTEDM :GOTO S48
S18 IF W=-=3 THEM FRINT"IIelslalseBRBRIIHVENTORY PROGRAM SELECTED":5070 S48
5320 IF V=-& THEM FEIHT"TIalpapRBBISTOCKHGLOER RECORD FROGRAM" :GOTO S48
558 IF VW==3 THEN FREIWMT"Ini2BEREEND OF FUM":STOF

S48 FRIMTURRFRESS EBUTTOM TO RETUEM TO MAIN MERL®

SS8 REM WAIT HERE UNTIL BUTTOW IS FRESSED

S68 A=PEEK(S&2Z21 AND 1&

7R OIF ACHR THEM Sen

SSB FORI=1 TO 296:HEXT I:GOTo 136

~EADY.

Best of The TORPET ’84 C64

Speech Synthesis of C64

By Greg L. Halley, Silver Spring, MD

Have you been wondering when you would finally
have the capability of providing your Commodore
64 computer with the gift of speech? Well, Tronix
has recently released the Commodore 64 version
of its Software Automatic Mouth (S.A.M.) disk
based speech system (1). This popular software
package has already been available for the Apple,
Atari and VIC-20 for some time now (2).

The system itself is very easy to access from the
resident BASIC provided with the Commodore 64
computer by using a software “WEDGE" The soft-
ware wedge provides you with the option of using
only phoneme based speech or using a direct
English-Speech translation. The format for using
the direct English-Speech command from Com-
modore 64 BASIC can be accessed by direct
quote or string variable as demonstrated below:

10 A$ =*“during these turbulent times”
20 JSAY “now is the time for...”

30]SAY AS

40 Goto 100

It is also noteworthy that you have a remarkable
amount of control over the pitch, stress and speed
of speech. This control is obtained by using the
BASIC commands of]SPEED,]PITCH and

]JKNOBS from within the actual BASIC program
utilizing the speech synthesis capability. The for-
mat for using these commands is outlined below:

10]JRECITER

.20]SPEED 60

30 JPITCH 55

40]JKNOBS 125,176

50]SAY “This is a trial speech pattern”

EXPLANATION OF
BASIC COMMANDS

Line 10 — Calls the Reciter machine language
subroutine which allows the program to use direct
English-Speech translation.

Line 20 — The Speed command sets the speed of
speech production by the Reciter subroutine. The
range of values for Speed is 0-225 where the
speed is inversely proportional to the value (i.e.
225 is very slow and 20 is quite fast).

Line. 30 — The Pitch selection determines the
quahtly of the spoken voice. The range of values
for Pitch are 0-255 where the highest value cor-

responds with the lowest voice and the lowest
value produces the highest voice.

40

Best of The TORPET

C64

Line 40 — The Knobs command essentially pro-
vides a means of changing the quality of the voice
without affecting the Speed or Pitch of the voice.
The analogy used in the user guide compares the
Knobs control to defining the size of the mouth
and the throat. The range of values is 0-255 with a
direct correspondence between the higher values
and a larger throat and mouth (i.e. 20 is a small
mouth whereas 225 is a large mouth).

The Reciter subroutine called from BASIC pro-
vides a convenient means of providing English-
Speech translation of material which varies from
one run to the next. However, the system also in-
cludes a mechanism for providing a more refined
control over speech which may be repetitive in
nature (i.e. in a program which utilizes a small
speech vocabulary). This system is based upon
the conversion of English words into spoken
phonemes. These phonemes are then placed
within the Speech string in place of the English
words and spoken with a remarkable degree of
clarity when compared with the direct English-
Speech translation. In addition, this phoneme-
based system allows direct control of stress
points within the program, this is done by placing
a numeric value of 1-8 directly after the vowel to
be stressed. This is useful because of the impor-
tance of context in spoken English and the ability
this feature gives the programmer in conveying
context through stressing key words, phrases,
etc.

This all sounds fine and good you say, but what
about the price you will pay in loss of BASIC
RAM? Well, the truth is that the S.A.M. package
can be very frugal if used properly. The machine
subroutine which drives S.A.M. is approximately
10.75 K in length but the noticeable decrease in
BASIC RAM is only approximately 2.75 K. This is
possible because most of the S.A.M. package is

located in memory not accessed by the BASIC
operating system. If you decide to use the Reciter
subroutine which allows direct English-Speech
synthesis you will use additional RAM; however,
this will conflict with the DOS WEDGE. The alter-
native placement of Reciter into low memory will
consume an additional 6.0 K RAM.

In conclusion, the advantages of the S.A.M.
system can be summarized as: 1) Relatively inex-
pensive (sugg. retail $60.00); 2) No additional hard-
ware and resulting loss of user/expansion port as
required in other speech systems; 3) Drive soft-
ware provided to provide direct English-Speech
translation at no additional cost as is true with
some other systems; 4) Inclusion of a phoneme
dictionary with the User manual provided with the
software package; 5) It is available now, not some
undefined point in the future that never seems to
arrive. The disadvantages might be summarized
as: 1) Quality of speech dependent upon the quali-
ty of the monitor speaker; 2) Loss of BASIC RAM
in programs which may require a large amount of
RAM 3) “Machine sounding” voice, the system
not able to provide the more human sounding
voices as other systems but then again it doesn’t
have their price either.

Letters of inquiry for the product may be directed
to:

TRONIX

8295 S. La Cienega Blvd.
Inglewood, CA 90301
U.S.A.

(1) S.A.M. registered Trademark of TRONIX, Inc.
(2) APPLE registered Trademark of APPLE Com-
puter

ATARI registered Trademark of ATARI Computer
VIC-20 is registered Trademark of COMMODORE
ELECTRONICS, LTD.

BYTES

[M SURE YOURE NEXT WEEK You
thléLE'R O SHOW CAN HAVE SOME
YOUR FREENDS... FRIENDS ONER!

by Patrick Corrigan

WoW... ATWO
| — MINUTE WEEK!
D q/z 7

41

Best of The TORPET

C64

Creating Sprites on the C64

By David Bradley, Toronto, Ont.

First, get some graph paper and set up a grid 24
columins wide by 21 rows deep and number it as
shown in Figure 1. This is the space that you have
in which to create your sprites.

Look at Figure 2. OK, so it isn’t the best Com-
modore flag, but it serves its purpose. The next
thing | should tell you is how to change that grid
into data. Look at the top of Figure 2. Note the
way that the columns are numbered. If a square is
filled in, it is considered 'on’ or a logical 1. So
change the filled-in squares to 1's and the blank
squares to 0’s such as Figure 3. Now, look at byte
1, row 1. All of the bits are 0. So the first byte will
be 0. The bits in byte 2, 3 are also made up of 0’s.
So the data for the first line will be:

DATA 0, 0, 0

Now we look at row 2. The first byte is all 0’s so it,
like all the bytes in row 1, is equal to 0. But look at
the next byte, byte 2, row 2. Itis“01111100”. So
look at it this way:

==

1000000
2631000
8426842
0

01111100

0+64+32+16+8+4+0+0=124

So what you are doing is adding up the bits by
replacing all of the 1’s with the value of their col-
umns and leaving the 0’'s as O’s.

Now it is time to put this data into the computer
and see what the sprite looks like. So type in the
following program, add the data statements for
my sprite and then run the program.

To save you some time, here is the data for Figure
2.

Byte 1 Byte 2 Byte 3

Row 01-000, 000, 000
Row 02-000, 124, 000
Row 03-001, 254, 000
Row 04-003, 254, 000
Row 05-007, 254, 000
Row 06-015, 130, 000
Row 07-030, 001, 255
Row 08-060, 001, 254

Row 09-056, 001, 252
Row 10-056, 001, 248
Row 11-066, 000, 000

Row 12-056, 001, 248
Row 13-056, 001, 252
Row 14-060, 001, 254

Row 15-030, 001, 255
Row 16-015, 130, 000
Row 17-007, 254, 000
Row 18-003, 254, 000
Row 19-001, 254, 000
Row 20-000, 124, 000
Row 21-000," 000, 000

10 B =53248
20 FOR | =0 TO 62

30 READ A

40 POKE 64 * 200 + I, A
50 NEXTI

60 POKE 2040, 200

70 POKE B + 21,1

80 POKE B, 160

90 POKE B + 1, 127
100 DATA...

If you did the program correctly and got the data
right, you should now see a Commodore flag in
approximately the middle of your monitor. You
have just created your first sprite! You know
where the data came from but | bet you would like
to know what some of the rest of the program
does. So here is a line by line explanation of the
program.

LINES AND DESCRIPTIONS

10 Sets the value of B to the start of display chip
20 Start of read loop

30 Reads A

40 Pokes A. The 200 * 64 is the place in memory
that you will have to point the sprite so it knows
what data it is supposed to use.

50 End of read loop

60 Pokes (points) 2040 (sprite 1) to get its data
starting at memory location 200 * 64.

70 Turns on sprite 1

80 Sets vertical position for sprite 1

90 Sets horizontal position for sprite 1

100 The data you entered.

42

Cé64

Best of The TORPET

3

[e)e](e}
&[2]1

B|Y|T[E

Vil

2

oj[e]le;
42

B|Y|TE

L

Cl[O] [L] U M NS

B|Y|T|E

LT[

e[e}(e){e]e] (o]} |[e)/e][c){eYel[e)w]} [e)(e)(e)e{e)(e]

EiLivic,

O

51

LI 11O

B|Y|T|E

B|Y T[E

|

B|Y|T|E

FIGURE 2

FIGURE 1

00 —Q0I00/00-[00RIRDR0 00
= | [0I0MOI0IQINI0I0=—I000I00==I0/0I0I0I0
0 00 01=|=I-|0I0I00I00]
[[100RI0 000 00—==I 00
[IO-EIOI0N00I0==|=1-0==—I-I0/00I0I0I0
=110 Q0-I=|=-O-|-~I=I0lcilo00o
a| 1 IOEGI0I0Q0 O-I=I=-I000000
IS0/ 0I00/ 00 |=I=I— —|00/0100[0
QO00I0/-|= =IO/~ [==I00/0|0I010
N0 00000000~ [= - =00
QOO |= -1~ I00I0I0I0IDI0I0I0IN0
wl | IoIoRIOl= - = I0I0I0I0I000I00I0) ©
= Iokai0=|-|=~|0/0I0/00/0/0I0I0100
= [[[OmeOI= === |Q 00000000)
s [| (om0 |=|-|—|00/00Q00I0I0I0I00
—INOI0-|=|=[-I000I00I000I0-=[~-0l0
GI0=|00= == =I0/0/00|00I010 —00
QIGO0 |~ ~[OQI00I0I0/0 000
OIORIOI00=|=|=~I0I0I0I0/0=[-[=/=I0I0I00
5| OIOIOOI000=-I=-I= —~I000/00
5 Q0000 ——0I0I00
> 00000 Q0000
| [[Okok 000000000 o
—NIGI 0000000 AGOIGOII00I0II000
o= o=
NI
x|o[2|n

FIGURE 3

43

Best of The TORPET CHIPP

HI IT'S ME RGAIN! THE COLON IS USED
THIS TIME WERE Tugn | TO LINK ALL SORTS
ABOUT USING -THE oLy | OF COMMANDS AND
IN YOUR PROGRAMS. FUNCTIONS INTO ONE
LINE IN R PROGRAM.

IT RCTS AS R FOR EXAMPLE : HERE IT IS WITH
SPACE - SAVER AND CAN fmm 10 7" GEORGE” COLONS

ALSO MAKE YOUR a0 X=5 I0 T"GEORGE" : X=5 :
ROGRHM ME EFFICIENT 30 ?‘HGE-”X MAGE~"X : END
AND ERSIER TO RERD. 4O END

A LOT NEATER,
THIS PROGRAM COULD | THAT'S FOR SURE.

BE PUT ON ONE LINE.

+++ AND THE OUTPUT OF |THERE IS ANOTHER | REM STHTEMENTS
THIS PROGRAM WILL BE |USE FORTHE COLON |~ age Goop YO USE
THE SAME RS THE ORIGINAL.| AND THAT IS TO | IN THIS ARER.
ATTRCH IMFORMAT(ON Y
7 AT THE END OF
A LINE. °

\\\\\\

;

HERE IS OUR PROGRAM “THIS WARY, A PERSON

WIT™H A &Eﬁ RADDED. LOOKING AT YOUR
|° ?Ilmen: x:s; m ROGRRM WH-L
?‘m_ux: REM_x 'S UNDERSI’PND WHRT
THE PERSON'S. AGE:END \EFCH SECTION DOES,

You SHOULD ALWAYS
PUT REMS AT THE END. §§

44

Best of The TORPET VIC

VIC

PAGE
Best of Both Worlds 46
Steve Garmon, Houston, Tex.
A VIC user compares his VIC with his Commodore 64.
Cursor Key Control 47
Terry Herckenrath, Toronto, Ont.
How to disenable and enable the cursor control keys in a program.
A Game input Routine 48

Terry Herckenrath, Toronto, Ont.

This is a small machine language routine that you can add to your game
programs to increase their speed and versatility.

Talk is Cheap for VIC 51
Lee Urbanski, Madison, Wisc.

Here is a little commercial hardware device that will add speech to your
VIC.

ROM RABBIT 52
Mayland Harriman, Pt. Arthur, Tex.

This is a description of a relatively inexpensive device that makes life a lot
easier for the regular tape user. It has received many favourable reviews.

Take A Load Off Your VIC 53
Tony Davidson, Gananoque, Ont.

Some pointers for the hardware buff on how to keep the voltage re-
quirements of add-ons from overloading the VIC.

VIC-20 Modifications 55
Dennis Sievers, Breeze, IL.
How to add a re-set switch and a numeric keypad to your VIC-20.

Redesigned 8K Card 57
Dennis Sievers, Breeze, IL.
How to add a write-protect switch and make your 8K RAM card re-locatable.

45

Best of The TORPET

VIC

Best of Both Worlds

By Steve Garmon, Houston, Tex.

There is no doubt in my mind that the VIC is still
the cheapest and best way to get into computing
on a true microcomputer. Even with its memory
limitations and 22 column screen, it is a very
useful machine, limited only by the imagination
(and sometimes the budget) of the user. It has
been sufficient enough to keep me happy for a
long time and | am still finding new uses for it all
the time.

I have used a VIC for everything from a dedicated
printer interface for another computer to a 27K
word-processor. It is extremely versatile with
respect to its 4 large blocks (8K each) that are set
aside in the unexpanded VIC for use as the owner
sees fit. If he needs the extra RAM memory then
he can purchase it in several different sized car-
tridges ranging from 3K to 27K and more! There
are 2 separate areas set aside for input/output ex-
pansion that | have used for things like printer in-
terfaces, voice synthesizers, and even a 2K
EPROM that held some machine language
routines which | used often.

With a little imagination, a lot can be done with a
VIC and | intend to keep on using mine as long as |
can. | just can’t beat the price for the capabilities
that it gives me. On the other hand, if the user
starts needing large amounts of RAM, or if he
needs a 40 column screen, then he has to decide
between an expanded VIC or a 64.

In most cases, a person would spend more money
trying to expand a VIC to fit his needs than he
would if he bought a 64 to start with.

There are some trade-offs though. The 64 has 64K
of RAM built in which eliminates any need for ex-
panders. It also has a 40 column display but, in
some cases, this could be considered a disadvan-
tage. In school classrooms, the 22 column display
offered by the VIC-20 is easier to read for small
children.

| think that | could sum up the differences bet-
ween the VIC and the 64 by saying that the VIC
was built with the hardware person in mind while
the 64 was built with the programmer in mind.

Of course, | have no way of knowing exactly what
Commodore International had in mind when they
designed either one of these fine machines but
the descriptions | just gave seem to fit very well. |
finally had to get involved with the 64 because of a
job-related application. The application that | am
involved with needs a very accurate real time

{reprint from CHUG)

clock. The built-in clock on both the VIC and the
64 was determined to be not accurate enough
because they are software clocks and they are
dependent on system software to keep them up-
dated. | had two options. | could spend about $130
on a plug-in card for the VIC or | could buy a 64
which has 2 built-in hardware clocks. The price of
the VIC with plug-in card would be about $220.
Needless to say, | bought the 64. In this situation,
the 64 heavily out-weighed the VIC in terms of
price/performance ratio.

So, | have entered the world of the programmer
and | am having to learn the intricacies of the 64.
I’m sure that with time | will become as familiar
with it as | am with the VIC and when | do | will be
telling you about it in this newsletter.

By the way, | couldn’t leave the computer store
without at least one of the excellent games for the
64, could I1? | bought a copy of “JUMPMAN’ and
let me just say that | WAS IMPRESSED! You will
have to have a disk drive to play this game
because, according to the salesman, it is not
available on cartridge or cassette. It was definite-
ly the friendly way to start out a good friendship
between myself and the 64.

After all, isn't it supposed to be the “USER
FRIENDLY COMPUTER”?- - - Steve Garmon

COULDN’T
UR SYSTEM?

COME ON, D
WE UPGRADE

>
ol

46

Best of The TORPET

VIC

Cursor Key Control

By Terry Herckenrath, Toronto, Ont.
QUESTION...

Dennis Smith from Marshall, Michigan wants tc
know how he can disable and enable the CURSOR
CONTROL keys.

REPLY...

| assume that Dennis uses the INPUT statement
to get some information from the ‘user’, but he
doesn’t want him/her to wander all over the
screen with the cursor. | also assume that Dennis
wants the cursor to show when input is required.

There is no convenient ‘switch’ that can be set if
one wants to ignore certain keys. The only way
you can ignore certain keys is by using the GET
statement to get the input, one character at a
time, examine the characters, ignore the ones you
don’t want and print the rest to the screen and col-
lect them in another string variable. The GET
statement however doesn’t provide us with a visi-
ble cursor, so we will have to look after the cursor
ourselves.

The VIC always has a cursor somewhere on the
screen, but it makes it visible only when
specifically told to. (The cursor is positioned on
the screen by the PRINT statement). There are a
number of memory locations in the VIC that tell
the VIC whether the cursor should be visible and
that keep track of what the cursor is doing and
where it is at any given time. The ones we will be
concerned with are:

This program is on
The Best Programs Disk

204 - CURSOR ENABLE (0 = ENABLED)
207 CURSOR IN BLINK PHASE (0 = OFF,1 =ON)

To make the cursor appear on the screen we poke
azero in location 204. We will have to do this quite
often, because the PRINT statement has a
tendency to turn it off for us. We’ll enable the cur-
sor each time we GET a character. To keep the
cursor visible while characters are printed on the
screen, we force the VIC to flash the cursor each
time we print a character by poking a zero in loca-
tion 207. To make sure we don’t leave a ‘ghost’
cursor behind when we print the CARRIAGE
RETURN character, we will have to make sure that
the cursor is OFF when we print the carriage
return. We do this by WAITing until location 207
has a zero in its low order bit position (BIT 0). In
order to save some processing time when we ex-
ecute this input routine, we’ll use an INFINITE
LOOP to avoid GOTO statements. (If a routine is
located near the end of a program, and you keep
going back to a line near the beginning of the
routine using the GOTO statement until some
condition is met, BASIC will search for that line
number right from the beginning of the program.
Depending on the size of the program, that can in-
troduce a noticeable delay.)

Whenever you want input from the ‘user’ and you
want to disable the cursor control keys, GOSUB to
this routine and it will return the inputted string in
variable C$.

108 C$="":FOR A=1 TO A:A=0:POKE 284,08

18818 REM CLEAR VARIABLE: START INFINITE LOOF;

MAKE SURE CURSOR STAYS ENABLED
18028 GET AF:IF AF="" THEN NEXT A
16038 REM GET A CHARACTER

190040 IF A$="[DOWNI"OR A$="[LUPJ" OR AS="[LEFTI1"OR A$="[LRIGHTI" OR As$="

LINSTI"OR A$="[CLEARI"OR As$="[LHOME 1"

THEN NEXT A

10650 REM WEED OUT ALL CURSOR CONTROL KEYS PLUS THE INSERT KEY
18660 IF AF=CHRH 28> AND CH{>"" THEN CH$=LEFTS(CFH , LENCCH)-1):PRINT A%’

18878 IF AFf=CHR$(28> THEN NEXT A

10030 REM DELETE CHARACTER FROM STRING ¢ IF STRING IS NOT NULL)>

18038 IF AF=CHRS(13> THEN A=1:WAIT 287,11, 1:PRINT:A$=""

18188 REM IF RETURN THEN END LOOP AND WAIT TILL CHARACTER NOT BLINKING
181180 C#=C$+AF:POKE 207 ,.0:PRINT A% :NEXT A:POKE 284, 1:RETURN

19128 REM BUILD STRING VARIABLE? FORCE CHARACTER TO BLINK:?

PRINT CHARACTER

190138 REM WHEN LOOP IS FINISHED TURN OFF CURSOR, RETURN

47

Best of The TORPET

ViC

A Game Input Routine

By Terry Herckenrath, Toronto, Ont.

Include this G.I.R. in your new or existing program
when you want versatility, speed or both.

The G.I.R. will accept input from either the
keyboard or the joystick. This is specified at run
time, so you can give the user the choice.

The input can either be momentary (the input
defaults to CENTRE if no direction is indicated
from the keyboard/joystick), or latched (the input
remains fixed until another direction is indicated
from the keyboard/joystick — NO CENTRE posi-
tion).

When input is to come from the joystick, the G.1.R.
will either allow or disallow diagonal directions.

The G.I.R. is linked to the VIC's interrupt handler,
so that the inputted values are always up-to-date
when you use them in the program. This allows
the user to indicate a change in direction even
when the program isn’t ready yet to check the in-
putted values. This is not possible when you han-
dle the input from BASIC.

The routine as shown below is designed to be ap-
pended to an existing BASIC program (see note).
After it is appended, RUN 10000 (see note) will
POKE the actual G.I.R. in place at the end of the
BASIC program. Statements 10000 and on can
then be deleted from the program.

Before you can use the G.I.R. in your program, the
following statement must be executed from
within the BASIC program to link the G.I.R. to the
VIC’s interrupt handler.

SYS PEEK (46)*256 + PEEK (45)-30

To end the program, use SYS 65234 instead of
‘END’, to remove the G.I.R. from the interrupt
handler.

The G.I.R. uses the value of memory location 155

This program is on
The Best Programs Disk

to determine where the input is to come from. So,
before the program starts to use the G.I.R., you
must put the proper value in memory location 155:

0 — Momentary input from keyboard (default)

1 — Momentary input from joystick — no diagonals
65 — Momentary input from joystick — with diagonals
128 — Latched input from keyboard
129 — Latched input from joystick — no diagonals
193 — Latched input from joystick — diagonals

When you select input from the keyboard, the
G.I.R. will check the following keys:

P for UP

L for LEFT

; for RIGHT (semi-colon)
. for DOWN (period)
SHIFT for FIRE

The G.I.R. will set the value of memory locations
156, 158 and 159 to pass the user’s input to the
BASIC program:

156 - Fire button/key 0-no 1-yes
158 - Vertical direction 0-up 1-centre 2-down
159 - Hortizontal direction O-left 1-centre 2-right

The BASIC program then simply ’'peeks’ these
memory locations to find out what the user wants.

NOTE:
Type in and save both of the following programs.

Load and run “G.I.LR.—INSTR”. This will give you
instructions on adding G.I.R. to your programs.

NOTE:

The crazy spacing in this listing is supposed to be
here because it is meant for the VIC screen.

1 poKe 38873 ,&8iprint"lclear ,text,lockK,green,doun ,spaces,

rus IWIC G.I.R.[rvof+f]
2 print"fdown JThis is a machine
interrupt driven Game Input
2 rrint"[down lThe GIR will accept
e Jjoy- stick.

language,
Routine.
input from either the Keyboard or th

48

Best of The TORPET VIC

4

a

U}

[RS |

0]

19

1z

-
p=1

14
15

ny
4]

n
0

0 nnn

Qw0

0)
-

$0) 0 0 0 O) W W)
000N~ NDadboin

H
-

5
n

H B
m b w

+
m

print"ldoun IJThis is decided at RUNtime, 30 you can give the player the
choice.
gosub 43
print"lclear JYou can also tell the GIR whether the input is to be 'rem
emberad'.";
print"l{doun IJThis is called latchedinput.
print"fdoun IWhen the input is NOT latched,
it returnz toCENTER if no direction":
print"is indicated.
print"ldown JThe GIR as supplied onthis tape starts with lined 63800.
print"ldownlis it will be aprendedto your program,
your program may NOT have
print"line#'s greater than 6239389.
gosub 43
print"lclear 1To add the GIR to yourprogram:
print"ldown JIFirzt LOAD wour pro- gram into the VIC,
then clear the screen
print"and enter:
print"[down JIPRINT PEEK(43)>FPEEK(44>

print"lWrite down the tuo numbers that the VYIC has printed on the
print"screen, then enter:

print"ldowun JI=PEEK{ 4S5, +PEEK(46)%256-2:1X=1/256:P0OKE43,1-1Xx256
tFPOKES4, 1

goszub 48

print"[Cclear IMNow LOAD VIC G.I.R.

print"ldown 1Then FPOKE the two num-bers you uwrote douwn earlier into

locationsd43 and 44.
print"ldown INext enter RUNE3OOO toLINK the GIR to yaour program,
then DELETE

print"lines 63086 and on.

print"ldown INow the actual machinelanguage routine is stuck to the
end of

rrint"your BASIC prograrm.

Josub 43

print"lclear 1To use the YIC G.I.R.:
print"ldoun ISYSFEEK{ 45)Y +FEEK(461> %256-30 to link the GIR to the interr
upt hand-ler.

print"[down J1Select the features vyou want and ADD the required valu
es into

print"location 1SS,

gosub 43

rrint"[clear JExample:

print"[ldounlTo zelect latched in- put from the joystick
print"without diagonals: [down JFOKE1S5,1+128.
print"ldown3 lJovstick=1

print "l doun IDiagonals=64

print"ldown JLatched input=128

print"ldoung l0iagonals are not pos-sible with Keyboard input.
gosub 48
print"fclear JThe input will be stored in locations 156,

158 and 153.

print"ldoun 1158 = fire button/Key BO=off 1=on
print"[douwn 1158 = vertical B=up l=center 2=douwn
print"[down 1158 = horizontal B=left 1=center e2=right

print"ldown JKeyboard input:

49

Best of The TORPET ViC

47 print"[douwn IP=up L=lett :=right .=down SHIFT=fire
42 end

49 print"Chome ,downd2 JHIT A KEY TO CONTINUE";

S0 aget afiget aF

=1 get aF:if aF=""then =1

52 return

G . I.R. EBEY T. HERCKENRATH

636088 IX=FPEEK(48)*25S6+FPEEK(45)+4

B2001 READJIX: IFJXA>=BTHENPOKEIX,JA: I1X4=1X%+1:G0T063801

€308z J¥=1X4r/256:1X4=1X%-JY %256 :POKE4S, I1X:POKE4E ,J*:CLRIEND

63093 DATA 165,155,186,176,68,162,0,110,141,2,144,1,232,134,156, 1862

63084 DATA 1,165,197,201,13,2088,7,134,159,202,134,158,240,41,201,21
63085 DATA 208,7.,134,158,282,134,158,240,30,281,22,208,7,134,158,232
63886 DATA 134,159,208,19,201,37,208,7,134,158,232,134,158,286,8,36
63087 DATA 155,48,4,134,158,134,159,108,18,3,162,1,160,127,140,34

63008 DATA 145,1€08,255,44,32,145,148,34,145,48,1,232,173,17,145,44
2009 DATA 124,255,c08,1,202,160,1,44,155,254,208,1,280,44,175,255

63018 DATA 2©8,1,136,44,262,255,208,4,169,1,288,2,1638,8,133,156
62811 DATA 228,177.,286,4.,186,176,248,44,134,177,132,176,36,155,112,20

£3812 DATA 224,1,240,16,1382,1,248,12,165,1598,2081,1,240,4,162,1

53013 DATA 208,2.,160,1,36,155,16,8,224,1,208,4,182,1,248.,4

53814 DATA 134,159,132,158,108,18,3,173,20,3,141,18,3,173,21,3

€2@15 DATA 141,19,3,120,165,45,56,233,213,141,28,3,165,46,233,0

630816 DATA 141.,21,3,88,86,-1

READY.

|

b
chaT R ||

HE SAYS AS FAR AS HE IS CONCERNED, WE’VE
BOTH BEEN REPLACED BY A COMPUTER.

50

Best of The TORPET

VIC

Talk is Cheap for VIC

By Lee Urbanski, Madison, Wisc.

One of the joys of owning a VIC is finding new
things to plug into the user and expansion ports.
The newest thing that | have found to plug in there
is a speech synthesizer for only $79.00 (U.S.). At
that price | couldn’t pass it by.

The Speakeasy is manufactured by Personal
Peripheral Products of Aurora, lllinois. It is
distributed by Protecto Enterprises of Barrington,
lllinois.

The Speakeasy is a single printed circuit board
that plugs into the expansion port of the VIC. It
will drive any 8 ohm speaker directly from the
phone jack on the PCB. It will drive the TV speaker
if you open up the RF modulator and make the
connection there. No external power or amplifica-
tion is necessary.

On the PCB is a Votrax SC 01 IC. It can pronounce
64 phonemes with four levels of pitch control.
Volume and overall pitch can be adjusted by turn-
ing two ports on the PCB. Volume cannot be con-
trolled by software.

Speakeasy speaks in a male voice with a marked
robot accent. It’s the sort of thing you have to
listen to for a while before it is readily understood.
Once you become accustomed to it, its accent is
quite intelligible.

I think that the accent is too thick to use it to
teach phonics. Unless you want your kid to speak
like a computer. Programming makes all the dif-
ference here. Misplace a few commas and it will
sound like your Pakistani uncle.

Votrax claims that any English word can be pro-
nounced. This is generally true. I’'ve tried some
Spanish phrases and it did all right with them too.
It didn’t fare too well with Tzutuhil (a modern
Mayan dialect) but it should be able to speak any
language that doesn’t have too many glottal or
blatantly non-English sounds.

Getting it to talk is pretty easy. It uses the 1K
block of address space decoded by the 102 signal.
It will not interfere with any other device unless
that device also uses the 102 signal.

It can be programmed in BASIC or machine
language. Simply Poke 38912 (9800 hex) with the
value of the phoneme code you wish to use. It will
pronounce that phoneme until you tell it to say

something else. Unlike some other speech syn-
thesizers (the Speakeasy kit from Netronics for
example) there are no preprogrammed words or
phrases. You must give it a separate phoneme for
each sound you wish to hear.

The most intelligible speech comes when you let
each phoneme continue for its optimal length.
That length varies from 47 to 185 milliseconds.
Now that sounds like a hassle but it’'s not.
Speakeasy knows the optimal length for each
phoneme, and there is a signal to indicate when
Votrax is ready. When bit 7 of 38912 is 1 then
Votrax is ready for a new phoneme. This
translates into some easy BASIC. 100 If
Peek(38912) =128 Then 100.

Improper phoneme spacing will make it sound
like a Kurdish rebel with a mouth full of marbles.

Individual pokes to Votrax take lots of valuable
memory space from the unexpanded VIC. The
most economical way to use Speakeasy is files or
data statements. Speakeasy will not interfere with
memory expansion but you’ll need an expansion
board. Files are the easiest way to go.

SOFTWARE AVAILABLE

This brings us to software. Also available from
Protecto is a tape with four programs on it. There
are disk and tape versions of an editor program
and a reader program.

If you’re serious about making your VIC talk, this
could be the best $9.95 you’ve ever spent.

The editor program allows you to create, see,
hear, edit and save files of phonemes up to 256
bytes long. That’s about a paragraph.

The filereader programs allow you to listen to the
files you created with the editor. These programs
are also the only source of decimal values for the
pokes. That comes in handy if you’re like me, still
thinking in decimal.

There is a tape and disk version of each program.
Both programs are easy to use and well
documented. The documentation and installation
instructions that come with the Speakeasy are
also quite adequate.

Though it doesn’t speak as clearly as | would like
it to, Speakeasy is intelligible. And it’s a lot of fun.
If talking computers turn you on, then go for it.

51

Best of The TORPET

VIC

ROM RABBIT

By Mayland Harriman, Pt. Arthur, Tex.

The ROM RABBIT has evidently been available for
a couple of years but has now been reduced ten
dollars to $39.95 for the PET CBM and $19.95 for
the VIC.

Here is the greatest thing to come along for the
cassette user. This ROM allows you to SAVE or
LOAD a cassette program which normally takes 3
minutes and 45 seconds in just 45 beautiful
seconds!!!

The ROM RABBIT is available on cassette for the
3.0 ROM 2001 PET only and in ROM for all other
PETS, CBMS and VICS. Beyond the terrifically
speeded up SAVE or LOAD the ROM RABBIT
gives 12 commands which can be executed in
BASIC’s direct mode and further allows any key
on the keyboard to repeat if held down for 0.5
seconds.

The ROM RABBIT installs in a spare socket and is
initialized every time the computer is turned on by
typing: SYS 9*4096 and taken out of action by typ-
ing *K (for Kill the Rabbit).

To use the ROM RABBIT with a tape program you
load the computer in the usual manner and then
save by typing: *S “name” and it will go to the
cassette in RABBIT speed and of course load just
as fast. One of the most interesting abilities of the
RABBIT is the VERIFYING a program....unlike in
Commodore Basic you don’t have to have the pro-
gram in memory; just type: *V “name” . If the
recording is OK the name of the program will be
displayed in reverse format. If the recording is bad
then the message CASSETTE ERROR will be
displayed.

Another splendid advantage with ROM RABBIT
saving is its ability to take into consideration the
tape leader when saving a program on the first
part of the cassette. Use *SS for a short leader
cassette or *SL for a long one and it works
perfectly.

Here are the 12 commands. All must have the *
ahead of the letter:

*SS or *SL to save

*H Convert Hex to Decimal
*Go to PET monitor

*L to load

*D Convert Decimal to Hex
*Z Toggle lower casel/versus graphic
*V to verify

*T Test RAM IC’s

*E load and run

*G Go to ML at HEX XXXX
*K Kill the RABBIT

Programs SAVED in RABBIT format can only be
loaded with RABBIT commands and conversely
BASIC saved programs must be loaded by BASIC
Command.

The ROM RABBIT is a lovely animal and does
everything claimed in exactly the manner describ-
ed in the neat eight-page booklet furnished. Ship-
ment was in a couple of days, well packed and
sent first class mail.

| highly recommend the ROM RABBIT from
EASTERN HOUSE SOFTWARE, 3239 LINDA
DRIVE, WINSTON-SALEM, N.C. 27106.

LEMON COMPUTERS INC.

OxAv
THE EIGHTY
COLUMNS OF
CHARACTERS.

| CAN SEE

ctu.l”a'\

NOW LET ME
SEE IT ON ONE
MICRO ALONE.

52

Best of The TORPET

VIiC

Take A Load Off Your VIC

By Tony Davidson, Gananoque, Ont.

The address and data bus buffers on the 6502
microprocessor are capable of driving at least 130
pico farad of capacitance and 1 standard TTL
Load. What does this mean? It means you can on-
ly have 1 TTL device input connected to each of
these bus lines, otherwise you will overload the
outputs. Overloading causes the internal buffers
to sink too much current; this causes output
voltage level problems such as the low logic level
voltage being too high. If the internal bus buffers
are forced to drive too much capacitance, due to
long lines, external off board connections, etc.,
the rise and fall times of the output signals
become too long. So exceeding the drive of the in-
ternal bus buffers generally means things will not
work too well.

The address and data bus lines on the VIC 20 com-
puter’'s expansion port connector come directly
from the 6502 microprocessor, and are therefore
subject to the above drive limitations. To over-
come these drive limitations external bus buffers,
usually TTL devices, should be added to any ex-
pansion board that requires increased drive.

Low power Schottky (LS) TTL devices are
preferable for 2 main reasons. First, LS devices re-
quire less drive than standard TTL devices,
typically 50 per cent less, and, second, they con-
sume less power. As the address and data lines
on the 6502 microprocessor are already con-
nected to I.C.’s inside the VIC, their drive capabili-
ty is lower than 1 standard TTL load. Therefore,
the use of a buffer which requires low drive on an
expansion board prevents overloading. As the VIC
20 has a limited amount of current available (500
mA MAX) to use on the expansion port, the low
power consumption of LS devices makes them
even more desirable. CMOS buffers could also be
used as they require even less drive, and consume
far less power than LS devices. However, CMOS
devices do have problems driving capacitive
loads, so whenever long lines must be driven it
often pays to use an LS buffer. The LS buffer will
drive any TTL or CMOS I.C.’s on your expansion
board.

The type of buffers to use depends upon the ap-

plication. Buffers are available in many different.

forms; the most common are the simple inverting
and non-inverting 1 Input Gates (Fig. 1.). The non-
inverting buffer would normally be used for most
applications, as the output signal’s logic state is
the same as the input’s. The drive capability of a
digital logic I.C., such as a buffer, is called its fan

out. The fan out of a typical TTL buffer is 30. This
means it can drive 30 standard TTL inputs. It
should be noted that some TTL inputs require
more drive than others. The amount of drive re-
quired is called the fan in of a device. A typical
TTL input has a fan in of 1. Therefore, if your buf-
fer gate has a fan out of 30, and the devices con-
nected to the output of the buffer gate all have a
fan in of 1, you can connect up to 30 devices
without overloading the buffer gate’s output.

A.
gl _D, LI
IN ouT
B.
J_L : _ﬂ_ NON -INVERTING
IN ouT

These simple non-inverting buffers work well for
the address bus, however, the data bus is slightly
more complicated. The data bus is bi-directional,
which means it is both an input and an output to
the microprocessor and all other devices con-
nected to the data bus. Therefore, to buffer a data
line you require 2 buffer gates, one to allow data
to be inputted from your expansion board to the
microprocessor (Read), and one to allow data to
be outputted from the microprocessor to your ex-
pansion board (Write). Special I.C.’s have been
designed for this purpose; they are called bus
transceivers. Most bus transceivers use Tri-State
logic. The third state in Tri-State logic is a high im-
pedance state. The other 2 states are the usually
high and low logic conditions. All Tri-State
devices have an enable control. When the enable
control is active the Tri-State device behaves like
an ordinary gate. When the enable control is inac-
tive the output goes to a high impedance state
which essentially disconnects the output from the
bus. In this state there is virtually no loading on
the bus from the Tri-State device.

FIG.1

INVERTING

On bus transceivers, the enable control is called
the direction control. This is used to tell the
transceiver which set of buffers will be active.
Figure 2 shows one pair of buffers connected as
they would be in a bus transceiver. If a low level
signal is applied to the Direction Control, Buffer A
is enabled allowing data to be sent from the
microprocessor to the data bus. This low level
signal is inverted to a high level signal before be-

53

Best of The TORPET

ViC

ing applied to Buffer B, therefore, Buffer B is inac-
tive and in a high impedance state. If a high level
signal is applied to the Direction Control then Buf-
fer B is active and Buffer A is in a high impedance
state. In this mode data is transferred from the
data bus to the microprocessor.

Fig.2 DIRECTION CONE?L
< o
TO jx/
MICROPROCESSOR G R

TO
EXPANSION BUS

Internally in the VIC 20, Commodore uses a
74L.5245 OCTAL TTL bus transceiver (Fig.3) to buf-
fer the data lines going to the internal 2114 RAM
memory devices. This particular transceiver has
both a Direction Control (Pin 1) and an Enable
Control (Pin 19). The Enable Control is active low,
which means a low logic level signal must be ap-
plied to the device in order to turn it on. Once
enabled, a low logic level signal applied to the
Direction Control allows data to travel from bus B
to bus A. A high level logic:signal applied to the
direction control allows data to travel from bus A
to bus B. If the Enable Control is held high the
device goes into a high impedance state.

7415245
DRI 20}-vee
A0—2 19+
A1 18780
A2—4 171-B1
A3 16 +-82
AL—6 15 83
AS—7 14 184
A6—B 13 185
A7 12 186
GND.— 1 |87
FI16. 3

To use this device on an A Expansion Board, con-
nect bus B to the data lines on the expansion port
connector of the VIC, DO To BO, D1 To B1 etc. Join
bus A to the Data bus on your expansion board,
DO To A0, D1 To A1 etc. Then connect the VR/IW
line (Read/Write) to the Direction Control. When
the VR/W line is high the microprocessor is
reading data, bus A To bus B, when low the
microprocessor is writing data, bus B To bus A.

The Enable Line could be grounded if you wished.
This would mean the transceiver would always be
active. To overcome this you could use a select
line to turn the transceiver on and off. The expan-
sion port connector on the VIC 20 has 4 fully
decoded select lines, one for each unused block
of VIC memory. All of these select lines are active
low (Table 1).

PIN* SIGNAL | ADDRESS
10 |BLK 1 | 2000 - 3FFF
11 BLK 2 |4000- SFFF
12 BLK3 [6000- 7FFF
13 BLKS5 |A000- BFFF

TABLE 1

Suppose that you are building a PROM program-
mer and you have decided to locate it at AD-
DRESS A0Q00 hex. If you connect Select Line BLK
5 to the Enable Control, the transceiver will only
be enabled during a Read or Write to an Address
contained Block 5. Therefore, the transceiver will
be in a high impedance state at any other time.

The 74LS245 can also be used to buffer the ad-
dress lines by connecting bus B to the address
lines on the VIC expansion connector, and
bus A to the address lines on your expansion
board. If you then ground the direction control the
transceiver would operate as a buffer transmitter
only. This may seem to be a waste of half of the
device; however, the 74LS245 is relatively inex-
pensive and it also has the advantage of keeping
all the buffer I.C.’s on your expansion board the
same. This allows for easier construction and
trouble-shooting of the board.

As there are 14 Address Lines on the expansion
port connector, you will need 2 74L.S245’s to buf-
fer them all. This will leave 2 buffer gates unused.
| suggest they should be used for buffering any
control lines you may require on your expansion
board, such as the S02 Clock. The Enable Control
can be connected in the same manner as the data
bus transceivers enable control.

You may note that Commodore does not buffer
the expansion bus on their 8K and 16K RAM ex-
pansion cartridges. This is because they use
CMOS memory devices which require far less
drive than TTL devices.

If you are planning on building some kind of ex-
pansion board for your VIC, check to see if it will
overload the microprocessor. If so, install bus buf-
fers and take a load off your VIC.

54

Best of The TORPET

VIC

VIC-20 Modifications

By Dennis Sievers, Breeze, IL

The VIC 20 represents one of the most versatile
small computers available for both the beginner
and the advanced programmer. Though many
desirable features are included in the machine, a
few simple modifications can be easily made to
enhance the use of this computer.

One of the easiest and most useful modifications
to a VIC 20 is the addition of a reset switch. It is
fairly easy to install such a switch in several loca-
tions. The easiest and most convenient is bet-
ween pins 1 and 2 of the 555 timer IC. This is a
small 8-pin DIP IC located at UB 6 on the main
board (see photo 1). The upper two pins on the left
are numbers 1 and 2. By connecting these to a
normally open pushbutton switch, a reset button
can be created. This reset button enables the user
to gain control of the computer should a program
accidentally crash and cause the computer to
hang. The advantage of this reset switch is that
the power supply is not constantly turned off and
on during a session, and thus saves on wear and
tear on this component. In addition, if the follow-
ing line of code is entered in direct mode prior to
running the program, it is possible to not only
reset the computer but to recover any program in
memory.

PRINT PEEK(4097),PEEK(4098), PEEK(45), PEEK(46)

These locations are for the start and end of pro-
gram pointers. Record these results before the
program is run. Should a program crash, press the
reset button and poke these values into their
respective memory locations.

A second modification is the result of having used
a CBM 8032. The presence of a numeric keypad
makes machine language entry very easy, yet is
lacking from the VIC. Several surplus stores have
keypads ranging from ten-key numeric to 29-key
calculator pads that offer even greater utility as
mini keyboards or hex keypads.

The keyboard connector of the VIC 20 is a single-
sided, 18-pin edge card. By use of a slightly over-
sized 24/44-pin edge card connector, a convenient
connector can be fashioned. A piece of PC board
is used to make a tight fit between the pins used
by the keyboard and the unused portion of the
connector.

The PC board is cemented in place using epoxy or
similar suitable material. Wires are then attached
from this connector to a suitable connector to be
placed outside the computer. | had a spare DB 50

connector and used it, but a DB 18 would work
just as well. A hole is cut in the VIC case and the
connector mounted with either epoxy or small
bolts.

The keypad should be composed of normally open
switches as is the VIC keyboard. Using Table I, it
is possible to wire the keypad to a male connector
compatible with that installed in the VIC. Accor-
ding to Table IlI, a closed circuit must exist bet-
ween the indicated pair of wires to form a
character on the screen. Ribbon cable would be
preferable to join the keypad to its connector;
however, any type of stranded wire can be used.

Depending on the type of keypad selected and
how it is wired, one can construct a ten-key
numeric pad, a calculator type pad with return or a
hex pad with return or any combination of the
user’s choice. The cost of this project can be as
great as $15.00 if you must purchase all parts, or
as little as nothing if your junkbox is well-stocked.
Your own creativity and junk box will determine
the final cost.

You should also be aware that the above altera-

tions will most certainly void any warranty and
make your computer easier to operate.

TABLE |

RESET A PROGRAM
1. Program entered

2. PRINT PEEK(4097),PEEK(4098),PEEK(45).
PEEK(46)
3. Record the above numbers and addresses.

4. Run program (if computer hangs then 5.).

5. Press reset.

6. Poke values into addresses from 2. above.

7. List program and make corrections.

Then there was the old joke about the ethnic com-
puter that used BASE 1 arithmetic.
— Ylimaki

55

Best of The TORPET

VIC

TABLE

" KEYBOARD MATRIX
WITH WHITE STRIPE

Grey Purple Blue | Green | Yellow | Orange| Red Brown
Brown F7 home 0 8 6 4 4 2
Red F5 @ 0 u T E Q
Qrange F3 K H F S commodore
Yellow F1 rt.shift M B C Y4 space
Green csr /) N \ X It.shift run/stop
Blue csr ; L J G D A ctrl
Purple return | + P I Y R W
Grey del E ,+,, 9 7 5 3 1

The 555 timer Is shown Just to the left of the large central box.

Pins 1 and 2 are Indicated by arrows.

Shown here Is an end view of a VIC 20, showing the Instailation
of the reset button (to right of centre) and the keypad connec-

tor (on left).

56

Best of The TORPET

VIC

TABLE il
KEYPAD PARTS LIST

1 18-pin or larger edge card connector

1 DB or larger male connector

1 DB 18 or larger female connector

1 keypad of choice (see Table IV)

4’ 18-strand ribbon cable or comparable length
of stranded wire

TABLE IV
SOURCES OF KEYPADS

All Electronics Corp.
905 S. Vermont Ave.
Box 20406

Los Angeles, CA 90006

Jameco Electronics
1355 Shoreway Rd.
Belmont, CA 94002

Best of The TORPET

VIC

Redesigned 8K Card

By Dennis Sievers, Breeze, IL

One of the first pieces of equipment usually add-
ed to the VIC 20 is additional memory. Many
times, this is in the form of the 8K RAM cartridge.
This is a most valuable asset for the memory-poor
VIC. While offering added power, even this card
can be improved. Two very simple modifications
are shown here to make the card even more useful
and easier to use.

The RAM card can reside in any of the various ex-
pansion blocks of the VIC by changing the setting
of the four-place DIP switch inside the case. Tak-
ing the case apart constantly to change the set-
tings can be a source of many problems. As an
alternative, | cut a small hole in the top of the case
using a 6mm drill and small file at a point shown
in Figure 1. This opening is then covered with
clear tape to prevent the entry of dust, and at the
same time allow the user to know the exact place-
ment of the switches. When the card needs to be
moved to another block, the tape is removed, the
switches set and the hole re-covered.

A second useful modification is the installation of
a write-protect switch. A common SPST switch is
installed in the VR/W line (pin 17) of the 8K RAM
cartridge. To do this, open the case and locate pin
17. Trace the lines to a small solder pad and in-
stall a #28 wire in the pad hole. The other end goes
to one of the switch contacts. Turn the card over
and locate the printed circuit line from this pad to
one located approximately 14cm above. Check to
-ensure that the proper line has been isolated by
using an ohm meter between the pad and pin 17. If
the circuit conducts, the proper line has been
found and the second solder pad located. The line
between these two pads must now be cut using a
thin knife. Use caution to cut only one line, and be
certain that the line has been completely severed.

A second #28 wire is installed between the se-

cond solder pad and the other switch contact.
When the switch is open, the information that has
been poked into the card will remain active and
available, even upon reset.

The above modifications will void any warranty on
the card, and may also void any warranty on the
computer as well. All such modifications should
be carefully checked before actual trial in a com-
puter.

FIGURE |
8K RAM CARD
MODIFIED
2 on h
/ | S1
off
1334 | S2
_ y,

S1=S8SPST switch for write protection
S2 = 4-place DIP switch for block selection

Approximate location of switches in card case.

WORD PROCESSING is a little like wallpapering.
In both, you CUT and PASTE, and try to keep your
margins straight. They are both easy once you get

the HANG of it.
— Ylimaki

57

Best of The TORPET

CHIPP

WITH

Gy

FIRST OF ALL, LET ME
SHOW YOU WHAT THE CURSOR
BUTTONS LOoK LIKE...

|

THE CURSOR IS THE
FLASHING BLACK DOT ON
YOUR SCREEN.

N ' 7/

/7 D

THE CONTROLS MOVE IT
AROUND THE SCREEN.

TO BRING IT BACK , PRESS
SHIFT | AND c§a .

THE CURSOR SHOULD
MOVE TO THE LEFT.

PRESS THIS BUTTON AND
SEE WHAT HAPPENS :

¢
.—.}
MIKE RICHARDSON

H

HERE ARE THE BUTTONS | BY MOVING THE CURSOR
FOR ALL FOUR DIRECTIONS | RROUND , You CAN EDIT

& 3| = RIGHT QUITE EASILY. [Ts A VERY

MISTRKES IN PROGRAMS

4}

— DOWN userun. TOOL .

CHIPP ’
= e o] = 5T
4 JHI L

THE CRSR BUTTONS CAN
BE USED IN PRINT STRTEMENTS
PS WELL TO MOVE AROUND

TRYTHIS PROGRQM-Z
5 7" i foe] "
IO?"%»E,; >] %"

EXPERIMENT WITH
DIFFERENT CURSOR
CONTROLS.

SEE YR NEXT TIME/

58

Best of The TORPET

Programming — General

General Programming

PAGE

Tower of Babel
Herbert Gross, Elgin, IL
A plea for standardization among computer languages.

Tips for Good Programming
Robert Dray, Peterborough, Ont.

Here are some very good tips for the beginning programmer. Start right and
you will never go wrong.

Structured Listings for Commodore 64

Charles Kluepfel, New York, N.Y.
How to “Pretty Up” your listings. A program that does the job for you.

Structured Programming
Elizabeth Deal, Malvern, PA

Not everyone is enthused about GOTO-less programming. Here is a short
introduction to what all the debate is about.

BASIC: Structured or Unstructured

Marg McRitchie, Winnipeg, Man.
How to write structured programs: the concepts of top-down design, style
coding and modularity explained.

60

61

62

67

69

59

Best of The TORPET

Programming — General

Tower of Babel

By Herbert Gross, Elgin, Ill.

Fortunately, man did not create computers in his
own image. While we can design them to look like
us and program them to do tasks in a similar man-
ner to us, the differences are profound...except in
one area. For both computers and man there are
enough language differences to hinder intra-
species communication.

Even among Commodores, which are largely bas-
ed on the same circuits, by the same manufac-
turer, the same problem exists. Programs for dif-
ferent PETs will not RUN on each other unchang-
ed. They will have even more difficulty in RUNning
on VICs, 64s or the new B series. | recently read an
article about a program made to translate
Chinese into English. It is ironic that such a pro-
gram, designed to translate such diverse
languages, has to RUN on a specific model of a
specific brand of machine.

What | would really like to know is whether the
translation of ideagrams from Chinese into
English is easier than the translation of variables,
values and operations through electrical impulses
from DEC, IBM or Apple into Commodore?
Perhaps because | am a novice, | take an over-
simplistic view of complexities. It still seems to
me that, after setting aside operations of color
and sound, anything that one computer can put
on one screen, another computer can put on
another screen. Any operation performed by any
other computer can probably be performed by a
PET or 64. Though the ‘techniques’, for want of a
better word, and even the technology may be dif-
ferent, the basic operations would be the same.

A translation program is basically a comparison
and substitution of one value or operation for
another. This is something computers should be
able to be programmed to do faster, and more ac-
curately, than man. The major difficulties to be
overcome would be programs that required more
memory than the second machine had. Even this
could be compensated for, to an appreciable ex-
tent, by using some kinds of interactive mass

storage techniques.

Let’'s get back to sound and color. Sound
capabilities can be added to virtually any com-
puter without undue difficulty or expense. The
add-on might not have the richness of true sound
synthesis, but would probably be sufficient for
99% of games, household, business and research
applications. Color would simply have to be
translated to monochromatic shades.

Photographic artists have been working in black
and white long after color was easily available.
Newspapers usually use approximate shades of
grey in photos by the spacing of black and white
dots. This is virtually identical to the turning off
and on pixels in high resolution graphics.

WE HAVE TO CHANGE

There has to be a change in thinking on the part of
some programmers. Usually, and often with good
reason, most programmers’ efforts are directed
toward protecting and restricting access to their
programs. One of these days, though, someone
will come along, do the opposite and become
wealthy. Designing a program to translate yours
and others’ programs from one machine to
another can greatly increase your income. First, it
could double income from previously successful
machine specific programs. It could double in-
come from future programs. In addition, the
translation program itself could be sold or licens-
ed. Aside from monetary factors, it would improve
the whole industry. After all, someone who com-
poses a song or writes a book doesn’t have to
worry about the manufacturer or brand name and
model number of the printing press, record or
phonograph.

Whoever is the first to do it, please hurry!! Our
local school district has just purchased some Ap-
ples, we have a 64 and one of my child’s friends
has a TRS80. It would be so great if they could all
learn together and see their own programs runn-
ing on each other’s machines.

Best of The TORPET

Programming — General

Tips for Good Programming

By Robert Dray, Peterborough, Ont.

Often in our programs we will ask for input such
as the name of the user or some other data. The
program will then jump to the next section as
soon as the user presses the RETURN key.

From the user’s point of view, this often seems
rather abrupt. The program can be much more
“user friendly” by making the machine say
“Thank you”. This message need only appear on
the screen for 1 to 2 seconds and then have the
program continue, but this is enough to make the
user feel that the machine “appreciates” his ac-
tion, and therefore the user is put at ease.

Humans do not react as quickly as the computers
and the judicious use of time delays can greatly
enhance an interactive program. One must avoid
the tendancy to place time delays where other
methods would work better.

It is often necessary to print instructions on the
screen, and as often happens, they won’t all fit on
a single screen. It is tempting to try something
cute here such as using a time delay or printing
out each word separately and having the text
eventually scroll off the top of the screen. These
methods will work fine as long as you are ac-
curately able to judge the reading ability of the
user. If the user is a slower reader, or has to
sneeze, the material may pass by too quickly and
the user is left with a bad feeling about the pro-
gram.

A better way to handle this situation is to have a
little routine that lets the user control when the
next material is to be presented. This routine and
the time delay routine can be set up as
subroutines and can be activated with the GOSUB
command. Here is a sample of each routine:

2000 REM TIME DELAY
2010 FORT = 1 TO TD*1000:NEXT
2020 RETURN

3000 REM USER CONTROLLED DELAY

3010 PRINT““PRESS ’;CHR$(34);"C"” ;CHR$(34);"To CONTINUE
3020 GET G$: IF G$ “C” THEN 3020

3030 RETURN

The time delay is called with a line such as:

50 TD = 2: GOSUB 2000

The value of TD determines the number of

seconds (approximately) for the delay, and this
may be varied each time the routine is called.

The CHR$(34)’s in the other routine are necessary
to place the letter C in quotation marks. The line
following the GOSUB 3000 command will often
start with a clear the screen command and then
the new material is presented.

The REM statement is used to add documentation
to a program, which means that it makes the pro-
gram LISTing easier to read. These REM
statements are completely ignored by the com-
puter as it executes the program, and thus they
are only used by the human who is looking at the
LISTing. Some people go overboard and will put
one or more REM statements for each line of pro-
gram, but this can make the program harder to
read than having no REMarks at all. If the program
is separated into blocks which perform specific
tasks, as outlined in earlier articles in this series,
then one or two brief REM statements is usually
sufficient to tell what that block of code is doing.
A calculation that may not be obvious is also a
prime candidate for a REM statement, such as the
following:

250 FIN V*(1+1/100)*Y X) :REM finds value of in-
vestment.

Another useful application is to outline loop
structures as shown:

200 REM LOOP

210 FOR1 = 1TO 25

220 PRINT “WHAT IS THE NUMBER";
230 INPUT NUM(I)

240 NEXT |

250 REM ENDLOOP

Whether an automatic FOR-NEXT loop is used, or
a conditional loop using an IF-THEN statement,
the use of the REM statement makes the loop
more visible in the listing and thus the program
will be easier to understand.

200 REM LOOP

210 PRINT “PLEASE GIVE A POSITIVE NUMBER”
220 INPUT NUM

230 IF NUM » 0 THEN 210

240 REM ENDLOOP

This is a simple example and obviously there
could be many lines of code between lines 210

61

Best of The TORPET

Programming — General

and 230, but the entire loop structure would stand
out on the page as a unit. This will make debugg-
ing the program easier as well as trying to figure
out, 6 months from now, what the program is do-
ing.

You could also include in your programs: a list of
variables and what they stand for, your name and
address, what the program does...... Anything that
helps to make the program a little easier to
understand is fair game for REM statements.

Best of The TORPET

Programming — General

Structured Listings for Commodore 64

By Charles Kluepfel, New York, N.Y.

Listing 1 has two parts, both listings of the same
program. Which is easier to read and understand?
...the second one, of course. The spaces that
make reading easier, but take up precious pro-
gram space, left out of the program listed at the
top, are inserted into the listing at the bottom.
That listing also shows only one statement per
line, indents FOR...NEXT loops for easier reading,
indents conditional statements dependent on an
IF.. THEN, and shows the ASCIl values of
unknown characters (this on a non-Commodore
printer). Line 90 was stored with some wild spac-
ing, even putting a space between the two
characters of a two-character variable name. The
formatted listing corrects all this. The decimal
code for Pl that the C64 sends out to the printeris
255 or hex FF. My Epson printer interprets this as
an instruction to delete the preceding character:
thus, the last two characters in quotes in line 70
do not show up at all, as the last tells the printer
not to print the next to last. The formatted listing
shows the last two characters correctly. The same
thing happened on line 80 X = PI, with the PI be-
ing spelled out as [PI] on the formatted one. Note
that within quotes Pl is listed as [255], but outside
of quotes it is a token that translates to [PI]. See
Appendices E and F of the Commodore 64 User’s
Guide for an explanation of ASCIl codes. The
Cardco printer interface on the first listing did
rescue some otherwise unprintable codes, but
who would know that the italic comma at the end
was a CHR$(172); the formatted listing tells you
just what is there. Note that NEXT J,| is expanded,
showing in parentheses the imagined second
NEXT, as the statement is equivalent to NEXT J:

NEXT I, but NEXT J,NEXT | would be invalid syn-

tax; the parentheses say ‘“do not type in that word
NEXT”.

The concept of making programs easier to read
has been called ‘“structured programming”, and
one of the techniques used is indentation for
readability.

in May of 1980, a program called LIST FORMAT-
TER appeared in Call-APPLE magazine, written by

This program is on
The Best Programs Disk

Mark Capella. | have been using what | consider
an improved version of that program to list my Ap-
ple programs. When | got a Commodore 64, | felt
the need even more strongly to have such a pro-
gram. An Apple in a normal LIST at least inserts
spaces around key words so that all the spaces
that it automatically strips away from within input
program lines, conserving program space, are pro-
vided where necessary to separate words (no two
non-key words ever appear consecutively, so all
words are separated by at least one space). Ac-
customed as | am not to type spaces, as they are
ignored by the Apple anyway (and they take up
precious space in large C64 programs), | felt a
strong need to have a C64 version of the LIST
FORMATTER. So, | re-wrote it for the Commodore
and gained all its benefits.

Four blank lines are printed for each 62 lines of
actual printing, thus skipping over perforations.
Note that, to get the proper standard format for an
IF ... THEN with just a line number, either use IF ...
THEN line number, or IF ... THEN GOTO line
number; do not use IF ... GOTO line number in
your program to be listed; such a line would be
listed on one line. When listing to the video
screen rather than a printer, the [and] (braces) ap-
pear as graphic symbols of a plus sign or cross
and a vertical bar, which then surround special
symbol designations.

HOW DO YOU USE
THE PROGRAM?

First load the program you wish listed into
memory. Then type the following:

POKE 251,PEEK(43):POKE 252,PEEK(44)

terminating the line with a carriage return. Then
type

POKE 43,PEEK(45):POKE 44,PEEK(46):NEW

62

Best of The TORPET

Programming — General

again, ending with RETURN. Be sure you do not
make any mistakes, as you are changing the
pointers to the beginning of BASIC program
memory space. Then LOAD the LIST FORMATTER
program previously saved to tape or disk, and
RUN it.

You will be prompted TESTING,VIDEO:? The reply
is to be two numbers, usually 0,0. If, however, you
want to have the listing appear on the TV screen,
make the second number non-zero, say type 0,1.
Making the first number (testing) non-zero pro-
duces a listing that contains some inside informa-
tion on the locations of the program in memory,
and is rarely used. Try it if you would like to learn
more about how BASIC is stored internally, and if
you can follow the program listing.

If you selected video by making the second
number non-zero, you will soon see the listing
form on the TV screen. If, however, you specified
the second number as zero so that you would get
printed output, you will be prompted for some fur-
ther information first. In response to TITLE:? enter
the title of the program followed by RETURN.
Then, in response to NAME:? type in your name. In
response to DATE:? type in today’s date, but
remember, do not use a comma or colon in these
entries, as they are each input via an INPUT state-
ment, and these characters would cut off the data
being input. To the prompt SECONDARY AD-
DRESSES:? you should respond with two
‘numbers separated by a comma. Usually, a secon-
dary address of 0 indicates the normal upper-
case-only mode, while 7 indicates upper-and-
lower-case mode. The first of the two secondary
addresses is for the heading (title, author’s name,

listing. | usually use the 7 for the former, while the
latter depends on whether the program being
listed was written for upper/lower case. If using 7
for the titles, before responding to the TITLE:?
prompt, press Comodore-Shift so that the
characters go to lower case on the screen; then
use the shift key to enter the headings as you
want them printed; be sure not to have the shift
down or locked on when pressing RETURN at the
end of any input.

Once you have typed in the two secondary ad-
dresses, separated by a comma, the listing will
start. If you allow it to complete, it will print COM-
MENTS: at the bottom, thus labelling the final
blank portion of a page. You will get a READY
back and the program in memory will be the one
that had been being listed, and not the FORMAT-
TER program.

If you wish to interrupt the listing while it is still in
progress, you have two choices. If you press the
STOP key, the LIST FORMATTER program will
still be in memory, and you may even modify it
and then RUN it again; the listing will start over.
Before restarting, press STOP/RESTORE and type
CLOSE 4 to assure that the print file is closed. If,
however, you decide that you want the listing to
stop and you want the program in memory to
revert to that one being listed, press the F1 key in-
stead of the STOP key. That will cause a
premature end of the LIST FORMATTER as soon
as the line being printed at tht moment has finish-
ed printing, and the subject program will be the
only one in memory.

The following is an example of a program listed both normally and using
the LIST FORMATTER program, printed on the following page.

LISTING 1 — UNFORMATTED

10 FORI=STO25STEPS:FORJ=1T0S
15 IFI=JTHENNEXTJ, I:G0TOS0
20 PRINTI,J:

3O PRINTI+J

40 NEXTJ, I

S50 FORY=1TO3J0Q:PRINTY: : IFY<1ISTHENPRINTSQR((Y);

60 PRINT:NEXT

70 PRINT"{BK} {WH3{RD>{CY2>{PU>{GR3 {BL3{YL}{RV>{RD>{OR}{BR3}{LR}{G12>{G2>

(LG {LB}{G3 3 {773 {?73."
80 X
90 J = 30+ S5#X Y

READY.

63

Best of The TORPET Programming — General

LISTING 1 — FORMATTED

10 FOR I = 5 TO 25 STEP S5 :
FOR J =1 TO S

15 IF I = J THEN
NEXT J.
(NEXT) T :
GOTO SO

20 PRINT I.J;

30 PRINT I + J

40 NEXT J.

(NEXT) I

50 FOR ¥ =1 TO 30 :
PRINT Ys :
IF ¥ < 15 THEN
PRINT S&R (Y)s
60 PRINT 3
NEXT
70 PRINT " {BLK3 {WHTJ{REDJ}{CYN3 {PUR3J {GRN> {BLU3 {YELJ {RVS} {RVSO} {ORNGZ>
{BRWN} {LTRD}{GR1}{GR2> {LTGRN> {LTBLU3 {GR3>{12>(2>{1723{1465>{2553"
80 X = A{PI>
0 J =30 + 5 # XY

:_isting 2 is the actual LIST FORMATTER program

isted normally, except for the [F1] in lines 7003

LISTING 2 and 7103. They should be replact[ad \]Nith the actual
F1 key character.

140 1nput”"testing,video:";te,vi

150 gosubl000:gosub2000:gosub3000

160 ifvi=Othenprint:print:print:print”comments: "

170 ifvi=Othenprint#4:close4

180 poke45,peek(43):poke46,peek(44):poke43, peek(251):pokes4, peek(252) clr:end

1000 rem set up tokens

1030 iftestingthenprint"setting up tokens"

1040 dimtkn$(128):fori=1to75:readtkn$(1i):next

1045 tkn$(128)=chr$(123)+"pi"+chr$(125)

1050 dimrp$(255)

1060 fori=5to3l:readrp$(i):next:fori=129to0l59:readrp$(i):next

1070 return

1130 data end, for,next,data, input#, input,dim, read, let, goto

1140 data run,if, restore,gosub, return, rem,stop,on,wait, load

1150 data save,verify,def,poke,print#,print,cont,list,clr,cmnd

1160 data sys,open,close,get,new,tab(,to,fn,spc(,then

1170 data not,step,+,-,%*,/,",and,or,>

1180 data =,<¢,sgn,int,abs,usr, fre,pos,sqr,rnd

1190 data 1log,exp,cos,sin,tan,atn,peek,len,str$,val

1200 data asc,chr$,left$,right$,mids$

1300 data wht,,,disc,ensc,,,,rtn,l1c,,,csxrd, rvs, home,del,,,,,,,,red,csrr,grn,blu

1310 data orng,,,,fl,£f3,£f5,£f7,£f2,£f4,f6,£f8,srtn,uc, ,blk,csru,rvso,clr,inst,brwn

1320 data 1ltrd,grl,gr2,ltgrn,ltblu,gr3,pur,csrl,yel,cyn

2000 rem get headings

2030 ifvi=Otheninput”title: ";tt$:input”"name : ";fi$:input”date :";das$

2035 ifvi=Otheninput"secondary addresses: ";sa(l),sa(2)

2040 return

64

Best of The TORPET Programming — General

3000 rem print the listing

3050 ifvideothenprint”{d"

3060 ifvi=Othenopen4, 4,sa(l):cmd4:print:printtt$:printfisspc(60-len(tts$))das:1lc=3
3065 ifvi=Othenprint#4:close4:open4, 4,sa(2):cmd4

3070 iftestingthenprint'main line."

3080 in=0:tn=0:1i$="":srf=0:pb=peek(252)*256+peek(251)

3081 nb=peek(43)+peek(44)*256—pb—1

3090 gosub4000:ifeop=0then3090

3100 return

4000 rem print one numbered line

4040 1lp=0:tn=0:qQf=0:rf=0:nx=0:df=0

4045 ifpsthengosub7000

4050 gosub6000 :x=by:gosub6000:x=by*256+x:nb=nb-2:iftestingthenprint"memptr= "x
4060 iftestingthenprint"nb= ";nb

4070 ifnb<ltheneop=1l:return

4080 gosub6000:x=by:gosub6000: lne=x+by*256 :nb=nb—2:iftestingthenprint”line #= "lne
4090 iftestingthenprint"nb= ";nb

4100 ifnb<ltheneop=1l:return

4110 gosub6000:nb=nb-1:ifby=0thenreturn

4114 ifby<128then4l3s

4115 iftk$(by-127)="rem"andsrfthengosub7100

4120 iftk$(by-127)="rem"andsrf=0thengosub7100:ct=0:8rf=1:goto4140
4130 iftks$(by-127)<>"rem"orsrf=0thengosub7100:ct=0:srf=0:goto4140
4135 gosub7100:ct=0:srf=0

4140 printrights$(" "+str$(1lne),5); :ct=5:goto4160

4150 gosub6000:nb=nb-1:ifby=0thenct=0:return

4160 1p=1p+1l

4165 ifct>79thengosub7000

4170 ifby>127andqf=0thengosub5000:goto4150

4180 ifby=32andqf=0andrf=0anddf=0then4l150

4200 ifct<«8+int+tnthenprintspc(8+in+tn—-ct); :ct=8+in+tn

4220 iflp=landrf=0andtf=0thenprintspc(8+in+tn—ct):ct=8+in+tn

4224 iflp<>lorrf>Oortf=0then4230

4225 ifby>=48andby<«=57thenprintspc(8+tn+in-ct)”"goto ";:1p=1p+5:ct=8+in+tn+5
4230 ifby=asc(":")andgf=0thenprint" ";:nx=0:ct=ct+1

4235 ifct>79thengosub7000

4240 iflp=landtfthenprintspc(8+in+tn—ct);:ct=8+in+tn

4250 iflp=landby=32then4150

4253 ifby»>3landby<96or(by>3landby<«l128orby>191landby<224)and(sa(2)>=6)then4262
4255 1frp$(by)>""then4259

4256 s$S=mid$(str$(by),2):ifct>79-len(s$)-1thengosub7000

4257 printchr$(123)sSchr$(125); :ct=ct+len(ss$)+2:g0to4270

4259 ifct>79-len(rp$(by))-1thengosub7000

4260 printchrs$(123)rp$(by)chrs$(125); :ct=ct+len(rps$S(dby))+2

4261 goto4270

4262 printchr$(by); :ct=ct+l:ifct>79thengosub7000

4270 ifby=34thenqf=1-qf

4275 ifct>79thengosub7100

4276 1ifby<>asc(",")ornx=0then4280

4277 1ftn=0orlis$="f"thenin=in-4

4278 lp=1:gosub7100:printspc(8+in+tn)”"(next) ";:ct=8+in+tn+7

4280 ifby<>asc(":")orqfthen4150

4285 df=0

65

Best of The TORPET

4290
4300
4310
4320
5000
5030
5040
5045
5050
5060
5065
5066
5067

5070
5074
5075
5076
5080
5090
5100
5105
5110
6000
6030
6040
7000
7003
7004
7005
7010
7100
7103
7104
7105
7110

gosub6000 : nb=nb—-1: ifby=0thengosub7100:ct=0:return
ifby=asc(":")then41l60

gosub7100: 1p=1

goto4170

rem print a token's meaning

tf=0

iflp>ithenprint” ";:ct=ct+l

ifct>79thengosub7000
iftk$(by—-127)="next"thennx=1:iftn=0orli$="£f"thenin=in—4

iflp=1thenprintspc(8+in+tn—ct); :ct=8+in+tn
ifct>79-1len(tkn$(by—-127))thengosub7000
ifct<«8+int+tnthenprintspe(8+in+tn—ct); :ct=8+in+tn

iftk$(by-127)=""thenprintchr$(123)mids$(strs$(by),2)chrs(125)" "; :ct=ct+5:
goto5074
printtkn$(by-127)" ";:ct=ct+len(tkn$(by-127))+1

ps=0:iftn>0then5080

1ftk$(by—-127)="goto"ortk$(by—-127)="return"ortk$(by-127)="end"thenps=1
iftk$(by--127)="run"ortk$(by-127)="stop"thenps=1
iftk$(by—-127)="for"thenin=in+4:1i$="£f":return

1ftk$(by—-127)="then"thengosub7000:tn=tn+4:1p=0:tf=1:1i$="t" :return
iftk$(by-127)="rem"thenrf=1

iftk$(by-127)="data"thendf=1

return

rem dgel next byte of program

iftestingthenprint"*";

by=peek(pb):pb=pb+1l:return
print:lc=lct+l:iflc>6landvi=0andte=0thenprint:print:print:print:1lc=0
getx$:ifx$="[£f1]"thenl170:rem f1

ifvi=0thencmd4

printspc(8+in+tn); :ct=8+in+tn

return
print:lc=lc+l:iflc>6landvi=0andte=0thenprint:print:print:print:1lc=0

getx$:ifxs="[£1]"thenl70:rem f1
i1ifvi=0Othencmd4

ct=0

return

by D. Sloan

What do you mean “Back to the old drawing board?” We blew that up too!

66

Programming — General

Best of The TORPET

Programming — General

Structured Programming

By Elizabeth Deal, Malvern, PA

A man went to his doctor to find out why he had
been suffering terrible pain. After some tests, he
was told that the X-ray revealed a serious condi-
tion that needed surgery. The man asked how
much it would cost. “About ten thousand
dollars,” the doctor replied. The man said, “Doc-
tor, | can’t afford that kind of treatment. | am poor
and have no health insurance. What can you do
for me for fifty dollars?”The doctor thought about
this for a few minutes and said, “Well, | could
touch up these X-rays.”

STRUCTURED PROGRAMMING

A commonly-given description of “structured pro-
gramming” is one that says: ‘““you can indent lines
of code and it has no GOTO statements”. It's
technically correct, of course, but is only partly
true. | think it steers beginners onto a totally
wrong course.

Several months ago, | saw just such a description
of structured programming in a major computer
magazine, and | wondered then how much
damage it could do. Now | know.

Recently, | saw a paper for educators which en-
couraged them to teach structured programming.
For pages and pages, it extolled the virtues of
structured programming: it described our normal
programming efforts as being a ‘“rat’s nest of
branches, full of illogical thinking’” and other such
unpardonable sins. Among other things, this
paper showed an example of unstructured coding.
The program had many GOTOs, with branches
crossing all over the place, like this:

100 ...

110 IF PLUS GOTO 200
120 IF MINUS GOTO 300
150 GOTO 400

200 A =A + B:GOTO400

300 A= A-B:GOTO 400
400 GOTO 100
410 ...

To cure the problem and to demonstrate the
power of structuring, the paper proceeded to draw
a structured flowchart, whatever that is. Branches
that crossed over were neatly replaced by little
circles, or “termination points”, like this (fig. 1):

(implied branches)

200

(109 |

i

300 |a= ab| = ..! <l
|

400 < v <o v e

fig.1

To complete the job and to compound the confu-
sion, most GOTO statements were carefully
replaced by THEN, so that the program now read:

100 ...

110 IF PLUS THEN 200
120 IF MINUS THEN 300
130 and so on

The parting conclusion of this effort was “we now
have a GOTO-less structured program”.

In my humble opinion, we now have NOTHING.
Replacing GOTO by THEN, a statement that does
the same thing only slower, and replacing cross-
ing branches by terminator points is as useful as
touching up the X-rays: the mess is still there.

Clearly, this paper missed the point of structuring
entirely: about seeing a large task as a collection
of small, perhaps already solved, steps, about
desirability of coding tiny units which can be easi-
ly debugged, about using flags, the condition of
the machine, as a basis for decisions, about using
arrays or sub-routines in general, about nesting of
loops and branches if such must exist, and so on.
Instead, the paper played a semantic, substitute-

67

Best of The TORPET

Programming — General

the-keywords game, never offering simple code
such as:

100 ...

110 IF PLUS THEN A=A +B
120 IF MINUS THEN A= A-B
130 GOTO 100

which can be cut neater by some Boolean func-
tions anyway. Its uncluttered flowchart could
have been (fig.2):

~>» 100

1

i

: @ _y_ a=a+b —-}
|

| n I
i |
l -Y A= a—Db l
' ==
|

1 |
| n |
] |
k---------’-'---,

I do not really intend to take part in or describe the
raging debate over structuring, but the concepts
of real structured programming are worth know-
ing indeed. The following are excellent sources, if
you’re interested in what all the fuss is about:

1. Various papers by Bohm and Jacopini, Dijkstra
and others in the field are available in many
libraries.

2. Paul Nagin and Henry Lédgard, BASIC WITH
STYLE, PROGRAMMING PROVERBS, Hayden
Book Company Inc., 1978. .

3. Brian W. Kernighan, P.G. Plauger (Bell Labs,
Inc.), THE ELEMENTS OF PROGRAMMING
STYLE, McGraw Hill Book Co., 1974

4. Seymour Paper, MINDSTORMS: Children, Com-
puters and Powerful |Ideas, Basic Books, Inc.,
1980

BASIC PERSPECTIVE

BASIC, or machine code for that matter, is dif-
ficult to do without branches (GOTOs), but many
can be eliminated if we follow this pragmatic prin-

ciple: code GOSUB when you can, code GOTO if
you must.

But keep in mind that this is only a part of the
structuring story. While an apparent goal of struc-
turing is reducing unnecessary GOTO
statements, the thought behind the exercise is a
better program organization for purposes of
readability and easier maintenance in the future.
As the code is being re-organized, many GOTOs
vanish from sight without any conscious effort.
So, in a sense, it sometimes becomes a circular
process of one thing helping another, an in-
teresting process indeed.

| often wonder if the structuring fanatics haven’t
dug their own grave by having overshadowed their
sensible campaign for orderly, logical program
design with their loud anti-GOTO pro-
nouncements. It leaves the audience with a
misleading impression that the entire debate
turns on the presence or absence of GOTO and
GOTO alone...and we end up with keyword
substitution as a cure.

DEBUGGING TROUBLES

It has crept up slowly, but | began taking notice
recently of many programmers abandoning
GOTO. | see a lot of THEN123 type coding, and
begin to wonder why. It'’s a nasty, inconvenient,
little switch in style. Basic-Aid type of utilities
which help search through a program become dif-
ficult to use.

When a program contains GOTOs, and you are in-
terested in ‘“transfer of control” to know if
somebody’s line 100 is a GOTO/GOSUB target,
this type of utility can easily plop all the simple
GOTOs on the screen.

But when GOTO100 is coded as THEN100, we're
in a terrible predicament of having to weed out ge-
nuine THEN-action (as in THENV = 15:K = 1) from
THEN-line number. Often a program contains so
many THEN-action statements that zeroing in on
THEN-line number becomes an unnecessarily
tedious task. Frankly, | fail to see areason for ever
substituting THEN for GOTO.

PLEASE, DO NOT TOUCH UP THE
X-RAYS!

I think it’s most convenient to code THEN for a
process to happen and to code GOTO for transfer
to another place in a program. The computer
?oesn’t care, but it can make work much simpler
or us.

Best of The TORPET

Programming — General

BASIC: Structured or Unstructured

By Margaret McRitchie, Winnipeg, Man.

Although structured BASIC has been around for
over 10 years, it is just recently that it has come in-
to prominence. At present, programmers are split
into two distinct groups: those who prefer struc-
tured programs and those who do not. On the fr-
inges are many who are either unfamiliar with
structured programming, or may be unsure which
method to use. The purpose of this paper is mere-
ly to show the differences between the two styles
of programming, and to point out the strengths
and weaknesses of each.

Structured programming is simply a style of
coding. It incorporates three simple concepts:

1. A top-down design.

2. A style of coding that is conducive to the
reading of programs.

3. Modular if the program is long and routines con-
tain detailed instructions.

TOP-DOWN DESIGN

Top-down means that statements are executed
sequentially from the top of the program to the
bottom. Control should not be transferred to a
previous statement unless the branch develops
into a loop. In such a loop, the controlling state-
ment (usually an IF/THEN statement) should be
the first statement in the loop or as near the top of
the loop as possible.

STYLE OF CODING

To simplify the reading of programs, REM
statements, blank lines and indentions are used
extensively. GOTO statements are discouraged,
although it is difficult to exclude them entirely.

MODULAR

Modules usually consist of a main routine and
one or several sub-routines. The program retains
the top-down design since control is transferred
to the statement immediately following the
GOSUB that called the sub-routine.

On most computer systems, structured BASIC
must be simulated. This is because the
statements that lend themselves to structured
programming, such as REPEAT, WHILE...DO, and
IF/THEN...ELSE (with the word ELSE on a
separate line) are not supported by many com-
puters. Thus, the change from unstructured to
structured does not require a major overhaul of

your resource material, but merely a change in the
style of programming. The statements used in
structured programs are the ones that are used in
unstructured programs. No new statements are
introduced. It should be mentioned that even the
structured style of coding differs among program-
mers.

Shown below is a problem for which two pro-
grams are written: one program is unstructured;
the other program is structured.

A retailer of fine furniture pays employees a basic
salary of $200 a week and a commission based on
sales. The rate of commission is graduated
depending on the amount of the sales. The
employees receive 20% commission on sales of
$1000 and 23% commission on any excess sales.
Find the incomes of three salespersons whose
sales volumes are $900, $1000 and $1500.

UNSTRUCTURED

10 LET S1=200
20 LET B = 1000

30READS .

40 DATA 900,1000,1500,-1

50 IF S=-1 THEN 999

60 IF S»1000 THEN 90

70 LETC=S8*.2

80 GOTO 100

90 LET C=B*.2+(S-B)*.23
100 LET I=S1+C

110 PRINT

120 PRINT. “SALES:";S

130 PRINT “COMMISSION:”;C
140 PRINT “INCOME:”;|

150 GOTO 30

999 END

RUN

SALES: 900
COMMISSION: 180
INCOME: 380

SALES: 1000
COMMISSION: 200
INCOME: 400

SALES: 1500
COMMISSION: 315
INCOME: 515

STRUCTURED

01 REM--FIND INCOME OF 3 EMPLOYEES
02 REM S1--SALARY

03 REM B--BASIC SALES

04 REM S--SALES

05 REM C--COMMISSION

06 REM [--INCOME

07 :

10 LET S1=200

Best of The TORPET

Programming — General

20 LET B=1000

30 READ S

40 DATA 900,1000,1500,-1

50 REM START LOOP

60 ::IF S=-1 THEN 110

70 ::::GOSUB 200 : REM--SUB COMM,INCOME
80 ::::GOSUB 300 : REM--SUB DISPLAY
90 :::READ S

100 :GOTO 50

110 REM END LOOP

120 END

190 :

200 REM--SUB COMM,INCOME

210 ::IF S»B THEN 240

220 :::LET C=S8*.2

230 ::::GOTO 250

240 :::LET C=B*.2+(S-B)*.23: REM T
250 ::REM END IF

260 :LET I=8S1+C

270 RETURN

290 :

300 REM--SUB DISPLAY

310 ::PRINT

320 ::PRINT “SALES:";S

330 ::PRINT “COMMISSION:"”’;C

340 ::PRINT “INCOME:";|

350 RETURN

RUN

:REM F

SALES: 900
COMMISSION: 180
INCOME: 380

SALES: 1000
COMMISSION: 200
INCOME: 400

SALES: 1500
COMMISSION: 315
INCOME: 515

Although itis possible to control a loop more con-
veniently using FOR/NEXT statements, an
IFITHEN statement is used in each program to
demonstrate more clearly the differences bet-
ween the two methods of coding.

The three features of structuring mentioned at the
beginning of this article are incorporated in the
structured program in a number of ways.

1. The program is well-documented by REM
statements that identify the program and the
variables.

2. Line numbers are segregated into groups. Each
range is designated for a specific purpose.

a) REM statements are in the 1 to 9 range

b) The main routine has statements numbered in
the 10 to 180 range

¢) The first sub-routine has statements in the 200
range

d) The second sub-routine has statements in the
300 range. '

3. A blank line separates routines. A blank line is
coded as a line number and a colon. In this pro-

gram, a blank line is left between the block of
REM statements and the main routine, and a
blank line is left before each sub-routine.

4. Two READ statements enter the data into the
computer. One READ statement is placed before
the loop; the other READ statement is placed in-
side the loop. The first READ statement initializes
S before the loop begins. The second READ state-
ment changes the value of S each time the com-
puter passes through the loop.

5. REM statements mark the beginning and the
ending of the loop.

6. The IF/THEN statement in line 60 and the GOTO
statement in line 100 are indented several spaces.
The statements executed inside the loop are in-
dented even further.

7. The test that terminates the input of data is
usually placed at the beginning of the loop.

8. A routine that contains detailed instructions
and which is used several times during the course
of the program is placed in a sub-routine. The trail-
ing REM statement coded after the calling
GOSUB identifies the sub-routine that is being
called.

9. The first statement in a sub-routine must be a
REM statement which describes the sub-routine’s
task. The statements inside the sub-routine are in-
dented.

10. When a program contains an IF/THEN state-
ment that determines which of two routines must
be executed, trailing REM statements are coded
as follows:

a) A trailing REM T is coded opposite the first
statement of the routine that is executed when
the condition in the IF/THEN statement is true.

b) A trailing REM F is coded opposite the first
statement of the routine that is executed when
the condition in the IF/THEN statement is false.

11. In sub-routine 200, the statements within the
IFITHEN block are indented several spaces. A
REM statement marks the end of the IF/THEN
block. It was mentioned at the beginning of this
paper that even structured programs can vary in
style. These differences occur more often in an
IF/THEN block in which one of two routines must
be executed. Here are two other ways by which
sub-routine 200 can be written.

70

Best of The TORPET

Programming — General

a) b)
200 REM--SUB COMM,INCOME 200 REM--SUB COMM,INCOME

210 ::IF S»B THEN 250 210 ::IF S»B THEN 230

220 :::REM F 220 ::::GOTO 250

230 ::LET C=8*.2 230 ::::LET C=B*.2+(S-B)*.23
240 :::::GOTO 270 240 ::::::GOTO 270

250 ::REM T 250 ::::REM ELSE

260 :::iLET C=B*.2—(S-B)*.23 260 ::::::LET C=S*.2

270 ::REM END IF 270 ::REM END IF

280 :LET I=S1+C 280 :LETI=S1+C

290 RETURN 290 RETURN

295 : 295 :

In sub-routine (a), the REM statements that iden-
tify the TRUE and FALSE routines are placed on
separate lines, just before the routines begin. In
sub-routine (b), a REM ELSE is coded just before a
FALSE routine. A GOTO statement must transfer
control to this REM statement.

The strengths and weaknesses of each style of
program are listed below.

UNSTRUCTURED PROGRAMS
STRENGTHS

The unstructured program is much shorter. This is
due mainly to the non-existent REM statements.
For students who do not know how to type, this is
probably an advantage. For students who know
how to type, the extra time spent entering these
statements may be negligible. Less planning (and
thus less time) is probably involved in developing
an unstructured program. Coding is simplified by
omitting the indentations. Most statements will
fit on a 40-character line, since character posi-
tions are not required for the indentations.

WEAKNESSES

An unstructured program is often difficult to read,
particularly when the program is long and com-
plex. The many GOTO statements make it difficult
to keep track of variables and their values. Alter-
ing the program, such as changing variables, ad-
ding routines and deleting routines, is more in-
volved than altering a structured program.

STRUCTURED PROGRAMS

STRENGTHS

A program is easier to trace when its variables
have been identified. Stating a sub-routine’s pur-
pose opposite the calling statement identifies the
sub-routine being called. When the same iden-
tification is coded in the first line of the sub-
routine, the sub-routine is easier to locate.
Isolating routines into separate modules is
helpful for several reasons.

1. The main routine is not filled with detailed in-
structions which may detract attention from the

main purpose of the program.

2. It is much easier to add and delete routines,
since they are isolated into separate modules.

3. Altering a program is simplified. A change is
usually restricted to a module.

A loop is easier to find when it starts and ends
with REM statements. Indenting statements in-
side an IF/THEN block and within a sub-routine
shows that the statements belong to that par-
ticular routine. Structured programs will probably
be better understood because of the advance
planning and thought that must go into the pro-
gram before it is written.

WEAKNESSES

Structured programs are generally longer. For
students who do not know how to type, keying in a
program may be quite a task. Because of the
many REM statements, and possibly a few ELSE
statements, programs tend to have an untidy ap-
pearance. When a REM ELSE statement is coded
in an IF/THEN block, an extra GOTO statement is
required. The use of too many GOTOs is
discouraged in structured programming. Students
may become confused as to where and when to
indent. Furthermore, the indentations, on many
computers, are not retained when the program is
listed. To rectify this problem, colons can be plac-
ed where spaces are to appear. The many
character positions that are left blank for indenta-
tions may cause some statements to become too
long for a 40-column screen. However, this pro-
blem does not arise when the computer has an
80-column screen.

SUMMARY

Should you decide that you would like to try struc-
tured programming in your classes, there is no
need to panic. All of your resource material, as
well as the text you are currently using, can be re-
tained. Structured programming is merely a dif-
ferent style of coding. This means that your pro-
grams and those written by your students must
simply be changed in coding style. However, sub-
routines should be introduced early in the course.
Fortunately, this concept is easy to learn and
students generally have little difficulty understan-
ding how control is transferred to and from a sub-
routine. Keep the concept simple. Calling one
sub-routine from the main routine is probably all
you will need.

For those who were unfamiliar with structured
programming, and for those who were undecided
as to which method to use, hopefully this paper
will help you choose the group to join — struc-
tured or unstructured.

71

Best of The TORPET

CHI

PP

UP UNTIL THE PROGRAM | THE NEXT SECTION OF

BRERHS , THEN THE
MISTRKE IS RFIER THE
STOP STRTEMENT.

« 2}]

oY 9O

Q

5

THE STOP STRTEMENT FOR EXAMPLE :
CRUSES A PROGRAM TO 5 PYCH)PP"
10 STOP
BRERK OR STOP AT 15 >savenn’ @ o
WHRTEVER POINT IT IS s o
CHIPP
BREAK IN 10
\mw
THE PROGRAM HAS STOF You CAN CHECK D
STOPPED AT LINE 10. | cpN BE USED RS R SECTIONS OF YOUR
(RFTER CRRRYING OUT) DEBUGGING TOOL IN | PROGRAMS By PUTTING
Y/ §TMEMEMS.
&) (o) O P Q
€ %% 37")? 876? . L)
IF THERE IS NO PROBLEM | You MRY THEN CHECK ‘., BEFORE WU TVE

“THE PROGAM BY TYPING

CONT~ PAND HITTING
E'U_RV”'
0 @) BY TYPING ?X ,ETC.

“ CONT”® You COULD
USE THE M MODE
AND CHECK THE \ALUES
OF YOUR WARIABLES

CAN'T CHANGE @
STIEMENT

You CAN EXAMINE YOUR| BY USING THESE
VARIFBLES, AND THEN | TECHNIQUES, YoU WILL
CONTINUE, BUT YouU | PND THE “ sToP”

STRTEMENT TO BE R
VERY USERUL
TOOL

S—

MIKE RICHARDSON

72

Best of The TORPET

BASIC Programming

BASIC Programming

PAGE

Friendly Menu
M. Petersmeyer, Sao Paulo, Brazil

Let’s make those programs user friendly. Here is a simple routine that is a
step in the right direction.

Underlining Cursor
Peter Tattersall, Rexdale, Ont.
Some routines to improve the underlining cursor.

Blinking Prompt
T. H. Holmer, Ashland, Mass.
This little routine will make a message blink on the screen.

The Line-Number Speed Fallacy

David Williams, Toronto, Ont.
There are some myths in the computer world. This article puts one of them
to rest.

The Lazy Programmer
Jim Butterfield, Toronto, Ont.
Some things to do in BASIC programming that will make your life simpler.

Reading Between The Lines

David Williams, Toronto, Ont.
Here is a short tutorial for the beginning programmer on some of the
benefits in using data statements.

Input Idiosyncrasies

Jim Butterfield, Toronto, Ont.
Having trouble getting the input to work right sometimes? Big Jim explains
how.

A Tiny PET/C64 Print Hint

Elizabeth Deal, Malvern, PA
Here is a little routine to help you in printing those frames around your
screen.

74

75

77

78

79

80

82

83

73

Best of The TORPET

BASIC Programming

Friendly Menu

By M. Petersmeyer, Sao Paulo, Brazil

Frequently, a program being executed will pre-
sent a list of options (or menu) on the screen and
request that the user select one of them. A typical
menu display might look like the following exam-
ple:

1. Add new names
2. Delete names
3. Update records
4. Print labels

5. — Quit —

Enter desired function (1-5)?

The program can then use the numerical response
for conditional branches such as ON X GOTO YYY
or ON X GOSUB YYY. The conventional menu
routine has two disadvantages:

(a) the option number selected by the user must
be verified to ensure that it falls within an
allowable range. In the example above, entering a
negative number or a number greater than 5 could
result in an indignant or unwelcome response
from the program.

(b) it is easy for the user to accidentally enter a
wrong number. (Oops! | pressed 5, not 4.)

Friendly Menu is a subroutine which highlights
one menu selection at a time in reverse video, us-
ing keys of your choice to move this ‘cursor’ line
up or down. When the desired option is
highlighted, pressing RETURN exits the
subroutine with the corresponding option number
in the variable 21, making it unnecessary to check
if the selection is acceptable. But it is the promi-
nent display of one item at a time plus the ability
to choose which keys will move the ‘cursor’ that
make it more user-friendly; thus the name ‘Friend-
ly Menu’.

Although it was written for the Commodore PET, |
imagine Friendly Menu could be adapted to other
microcomputers supporting reverse video.

NOTES:

Lines 10-2020 are a sample driver program to il-
lustrate the operation of the subroutines.

Line 110 — SP$ is a shifted space (PETASCII
CHR$(160)), since PET’s INPUT statement strips
normal spaces (CHR$(32)) from the front of a str-
ing. This character is not required if the menu text
starts at the left-hand edge of the screen.

This program is on
The Best Programs Disk

Line 130 — PO$ is used to position the cursor on
the desired line of the screen (1 to 25), like VTAB
in other BASICs.

Line 150 — FIRST is the screen line number where
the first menu item is to be printed. SP is spacing
(single, double, etc) which defaults to single spac-
ing in line 50000.

Line 50010 — opens PET’s screen as an input
device, so the statement INPUT #1 (line 50040) will
take its input from the screen beginning at the
prevailing cursor position.

Line 50080 — defines the keys used to move the
highlighted ‘cursor’ line up and down. | selected
the PET’s cursor-up/cursor-down keys to perform
their usual functions. The unshifted cursor-across
key was added as an alternative to cursor-up, thus
eliminating the need to use two fingers (SHIFT
plus cursor-up) to move the highlighted ‘cursor’

up.

Lines 51000-51030 are optional, and can be used
while printing the menu on the screen. The pur-
pose of this subroutine is to set the values of
ROW and LAST, which are subsequently needed
for the input subroutine at line 50000.

10 GOTO 100

15:

20 AR AR R RNRN AR R R RN RRNN AR SN S
25 +« FRIENDLY MENU *
30 * »
35 « BY: *
40 ~ MARK PETERSMEYER *
45 * RUA ALBERTO FARIA, 1118 *
50 * SAO PAULO, S.P. *
55 * BRAZIL 05459 *
60 * M
65 * AS OF AUGUST 20, 1982. *
70 - N
75 P L L R R R E R R R XL
80

100 PRINT* 2":SPC(13); « FRIENDLY MENU"

110 SP$ = CHR$(160):REM SHIFTED SPACE

120 :

130 PQO$ =" sinlelalaleialelnIninlnlaloinlelaleleleeiolalntaln :REM HOME +
25 CURSOR DOWN

140 :

150 FIRST =5:SP=2:ROW = FIRST-SP:REM LOCATE FIRST

LINE OF MENU AND SET SPACING

160 :

170 GOSUB 51000:PRINT SP$;SPC(12);OPTION ONE”

180 GOSUB 51000:PRINT SP$;SPC(12);OPTION TWO”

190 GOSUB 51000:PRINT SP$;SPC(14);-END-"

200 :

210 GOSUB 50000

74

Best of The TORPET

BASIC Programming

220 :

230 ON Z1 GOSUB 1000,1000,2000

240 :

250 GOTO 100

260 :

1000 PRINT “ - YOU SELECTED OPTION NUMBER";Z1
1010 FOR | =1 TO 1000:NEXT |

1020 RETURN

1030 :

2000 END

2010 :

49900 REM *** INPUT SUBROUTINE ***

49910 :

49920 REM VARIABLES REQUIRED: FIRST, LAST, (SP), PO$
49930 REM VARIABLES USED: I1Z, ROW, 2Z8$, Z$, Z1
49990 :

50000 IF SP=0 THEN SP=1

50010 OPEN 1,3

50020 FOR 1Z = FIRST TO LAST STEP SP

50030 :ROW = IZ:PRINT LEFT$(PO$,ROW);

50040 :INPUT#1,2Z3%

50050 :ZZ$ ="a" + ZZ$:PRINT "1 ;ZZ$

50060 :GET Z$:IF Z$ =" THEN 50060

50070 :IF Z$ = CHR$(13) THEN 50170

50080 :IF (Z$ <1 >« X" AND Z$< » “I”AND Z$<>» “ o) THEN
50090 :PRINT “11” MID$(ZZ$ 2) 50060
50100 : IF (Z$="1"OR Z$="m" THEN 50140

50110 :IF IZ+ SP > LAST THEN IZ=1Z-SP

50120 :GOTO 50150

50130 :

50140 :1Z =1Z-2*SP:IF 1Z < FIRST-SP THEN IZ = FIRST-SP
50150 NEXT I1Z

50160 :

50170 CLOSE1

50180 Z1 =(ROW-FIRST + SP)/SP

50200 RETURN

50210 :

50900 REM *** PRINT MENU; SET ROW & LAST ***
50910 :

50920 REM REQUIRES FIRST, POS$, (SP)

50930 REM USES FIRST, LAST, ROW

50990 :

51000 IF SP=0 THEN SP=1

51010 ROW = ROW + SP:LAST = ROW

51020 PRINT LEFT$(PO$,ROW);

51030 RETURN

51040 :

READY.

Best of The TORPET

BASIC Programming

Underlining Cursor

By Peter Tattersall, Rexdale, Ont.

Bill Crimando of Carbondale, Illinois, wrote
(HELP, TORPET #22) about changing the cursor
character from a flashing block to a solid
underline. While this is not a difficult undertaking,
there are a couple of points that should be made.

FIRST, there is no ‘cursor character’ as such. The
cursor is placed on the screen by toggling the
high bit for the corresponding screen position.
This, in turn, causes the VIC Il chip to select a dif-
ferent character, normally a reversed character,
rather than the character edited with the cursor
on. Changing the cursor to a line rather than a
block involves changing the character set by
eliminating reverse field characters.

SECOND, the cursor flashes as a result of actions
taken by the interrupt routine at $EA31.
Eliminating the flashing requires modification of
that routine, and must be done in machine
language.

CHAR-SETUP carries out these tasks. It reserves
memory for a new character set, copies the old
character set, and modifies the reversed
characters so as to produce an underline cursor.
It then pokes in a new interrupt routine entry and
enables it so that the cursor is always on.
FLASHKILLER is the assembly language form of
the interrupt entry. As shown, it sits at $8000, but
it can be relocated to reside anywhere in free

This program is on
The Best Programs Disk

RAM. A further routine, ENABLER, simply enables
FLASHKILLER.

NOTE that CHAR-SETUP reduces the amount of
BASIC memory available. This is due to a fun-
damental restriction of the VIC Il chip, which re-
quires that the screen and character set be
located in the same 16k block, unless some
special handling is done. For the Commodore 64,
the special handling is such that, for blocks 0 and
2, the second 4k sub-block of the block is ‘strap-
ped’ to point to the ROM character set. If we want
to place a full user-defined character set in block
0 or 2, we must use either the lowest 4k sub-block
or the upper two. For most purposes, this works
out as in figure 1.

From this, it can be seen that the only space
available outside of BASIC memory (block 3, at
$C000), will require the screen to sit in space
already occupied by ROM and 1/0, or in space oc-
cupied by the KERNAL. This would require that
we re-write the kernal routines.

Placing the full character set at $8000 is no better
since this requires the screen to sit in an area
already occupied by BASIC ROM — no great pro-
blem if we aren’t using BASIC, but not possible
otherwise. The ideal (?) solution places the user-

defined character set at $2000. and moves the bot-
tom of BASIC up to $3000. While this is not dif-

75

Best of The TORPET

BASIC Programming

ficult, it is a little awkward to do from inside a
BASIC program and is better done from the
keyboard or by a machine language program. As a
result, this program places the character set at
$7000, and puts the screen at $6800. The memory
areas $0800-$Offf and $8000-$9fff, formerly screen
and BASIC RAM respectively, are now available
for other purposes, and are lost to BASIC.

| have assumed that the full double set of
characters is to be implemented, so that a full 4k
of RAM (2k for each complete character set) will
be required. If we only require one character set,
our problem is solved before we go any further,
since we can use $C000 to hold the screen and
one set of characters. This is left as an exercise
for the reader....

FLASHKILLER is a machine language routine (see
listing) which duplicates part of the interrupt pro-
cessing, does some processing of its own, and
jumps into the normal interrupt routine so that all
the interrupt tasks are completed. CHAR-SETUP
pokes the routine into memory at $8000, since
space is available, and calls ENABLER, which ad-
justs the pointers to the interrupt routine. In prin-
ciple, the pointers could have been reset from
BASIC by disabling the interrupt routines in the
same way as in line 150 of CHAR-SETUP. The
machine language instructions SEI and CLI give
less chance of trouble: the only reason they were
not used in CHAR-SETUP was for purposes of
demonstration.

One last point to consider is that this style of cur-
sor is found on IBM 327x terminals, which may
switch between flashing and permanent cursors
and between block and underline cursors. An in-
teresting exercise is to further modify the
keyboard scan routine to use the user-definable
keys to permit switching among these four possi-
ble cursor styles.

FLASHKILLER

Machine Language Routine
to kill flash of the cursor

8000 20 ea ff jsr UDTIM ; update timer

8003 a5 cc Ida BLNSW ; check if cursor is enabled
8005 d0 13 bne $801a ; nope — do rest of routine
8007 a4 d3 Idy PNTR ; get line pointer

8009 bl dI Ida (PNT),y ; get the current character
800b 29 7f and #$7f ; disallow the high bit

800d 85 ce sta GDBLN ; save it

800f 09 80 ora #$80 ; turn on the high bit

8011 91 d1 sta (PNT),y ; and put character on screen
8013 a9 01 Ida #$01 ; fake blink on

8015 85 cf sta BLNON ; to fool other parts of system
8017 4c 4f ea jmp $easf ; that’s all, folks

801a 4c 61 ea jmp $eabi ; skip cursor part of interrupt

ENABLER

A Routine to turn on FLASHKILLER

80Id 78 sei ; disable interrupts

80le a9 00 Ida #$00 ; low-byte of FLASHKILLER
8020 8d 14 03 sta CINV ; interrupt pointer low

8022 a9 80 Ida #$80 ; high-byte of FLASHKILLER
8024 8d 15 03 sta CINV+1 ; interrupt pointer high

8025 58 cli ; re-enable interrupts

8026 60 rts ; and that’s all there is.
FIGURE 1

Available Locations for character sets

BLOCK SUB-BLOCK ADDRESS RESTRICTION

0 0
1
2
3
1 0
1
2
3
2 0
1
2
3
3 0
1
2
3

$0000 System use

$1000 Not available

$2000 Available (BASIC RAM)
$3000 Available (BASIC RAM)
$4000 Available (BASIC RAM)
$9000 Not available

$A000 BASIC ROM

$B000 BASIC ROM

$8000 Available (BASIC RAM)
$9000 Not available

$A000 BASIC ROM

$B000 BASIC ROM

$C000 Available

$D000 ROM & /0

$E000 KERNAL ROM

$F000 KERNAL ROM

Note that the full double set of characters (switch-
ed using the shifted-COMMODORE key) is assum-

ed. If a userd
Blocks 1,2 or 3,
the same block.

10 REM LR AR R R SR RS
20 REM ~

30 REM * CHAR-SET
40 REM *

50 REM * BY
60 REM *

70 REM * PETER T
80 REM *

90 REM AR ERREER RN
100 :

101 :
RESERVE MEMOR
102 :

103 REM TURN (
104 :

105 : POKE53272,(PH
106 ;

110 REM
120 REM
130 :

140 REM
145 REM
146 REM
147 REM
148 :

WE’'LL
SO YOU

FIRST 1
WHICH
AS YOU
OR (SO

ined character set is placed in

the screen must also be moved to

R T2

UP

ATTERSALL

IR

POKE52,104:POKES56,104:CLR:REM
Y

N CHARACTERS
EK(53272)AND240) + 14

DO ALL THIS IN BASIC
CAN SEE WHAT WE'RE DOING

URN OFF THE INTERRUPTS

IS OK FROM BASIC AS LONG
DON'T HAVE BUS CARDS,
ME) BASIC EXTENSIONS.

76

BASIC Programming

Best of The TORPET
150 : POKE 56334,PEEK(56334)AND254
151 :
152 REM RESET THE BLOCK TO 1
153 :
154: POKE56578,PEEK(56578)OR3:POKES6576,(PEEK(56576)
AND2- 52)0R2
155 :
156 REM RESET THE PAGE POINTER
157 :

158 : POKE648,104:POKE53272,(PEEK(53272)AND15)OR160
159 :

160 :

170 REM SWITCH OUT 1I/O AND SWITCH IN
180 REM CHARACTER ROM

190 : POKE 1,PEEK(1) AND 251

200 :

210 REM MODVE CHARACTERS TO $3000

220 :

230 : FORI=0T04095

240 : POKEI + 28672,PEEK(l + 53248)

250 : NEXT

260 :

270 REM RESTORE /0

280 :

290 : POKE 1,PEEK(1)OR4

300 :

310 REM RESTORE INTERRUPTS
320 :

330 : POKE 56334,PEEK(56334) OR 1
340 :

350 REM MODIFY “BLOCKS”

360 :

370: FOR | =1024 TO 2047

380 : POKE 28672 + |,PEEK(27648 +)
390 : NEXT

400 :

410: FOR | =1031TO 2047 STEP 8

420 : POKE 28672 + 1,255

430 : NEXT
440 :
450: FOR | =3072TO 4095
460 : POKE 28672 + |,PEEK(27648 + 1)
470 : NEXT
480 :
490 : FOR | =3079 TO 4095 STEP 8
500 : B=255AND(NOT(PEEK(28672 + 1))
510 : POKE 28672 + |,B
520 : NEXT
530 :
540 REM ALL DONE BUT NOW WE HAVE NO
550 REM REVERSE CHARACTERS, AND SOME
560 REM MEMORY SPACE IS WASTED.
570 :
580 REM OF COURSE,
DO THIS FASTER..
590 :
600 REM SET UP A NEW
610 REM AND ENABLE IT
620: FOR | =32768 TO 32809
630: READ A
640 : POKE I,A
650 : NEXT
660 :
670 : SYS 32797
680 :
690 : END
695 :
2996 REM FIRST—TWO DATA LINES ARE FLASHKILLER
7 :
700 DATA 32,234,255,165,204,208,19,165,211,177,209,41,
127,133,206,9
710 DATA128,145,209,169, 1,133,207, 76, 79,234, 76, 97,234
715
716 REM NEXT LINE
720 :
730 DATA120,169, 0,141, 20, 3,169,128,141, 21, 3, 88, 96

MACHINE CODE WOULD

INTERRUPT ENTRY

IS ENABLER

Best of The TORPET

BASIC Programming

Blinking Prompt

By T.H. Holmer, Ashland, Mass.

This very simple program shows you how to make
a message blink on the screen.

NOTE: When you type in the program, be sure to
type in the key itself rather than the words in the
listing that describe the key.

This program is on
The Best Programs Disk

10 PRINT “(clear/home)”

20 PRINTTAB(3)“This is a test”

30 GET A$:IIF A$=*" THEN:PRINT‘(home)(sp4)(dn3)PRESS
RETURN”

40 IF A$ =CHR$(13) THEN 70

50 FOR T=1TO400:NEXT:PRINT*(sp4)(up1)(rvs)PRESS
RETURN(rvs off)”

60 FOR T =1TO200:NEXT:GOTO 30

70 PRINT*(dn1)It works”

PUN-ishment

Don’t be PET-rified, but be sure to be careful in

your computer repairs.

Monkeying with the

parallel user port could render you PARALLELIZ-

ED. It HERTZ.

Ylimaki

77

Best of The TORPET

BASIC Programming

The Line-Number Speed Fallacy

By David Williams, Toronto, Ont.

Almost anyone who has become reasonably
fluent in programming in Commodore BASIC has
also learned a few tricks which are supposed to
increase the speed with which programs will run.
We all know, for example, that integer variables
are (surprisingly) slower to process than real-
value ones; that extensive string manipulatins are
liable to lead to a process called ‘“‘garbage collec-
tion”, which is (except in BASIC 4.0) very time-
consuming; and that subroutines are usually ac-
cessed faster if they are placed near the beginn-
ing of a program than if they are at its end.

We also know — or think we know — that pro-
grams will run faster if they are renumbered so
that their line numbers are as low as possible.
This is because instructions such as GOTO and
GOSUB are stored in program memory with the
destination line number in the form of a string of
ASCII digits. This has to be converted into the
computer’s internal binary notation before the
machine can prodeed with the instruction. A five-
digit line number, for example, takes longer to
convert than a two-digit one, so programs with
low line numbers should run faster than those
with high numbers.

BUT IT’S NOT TRUE!

This piece of programming lore has one major
defect. It isn’t true! If you have access to a line-
renumbering utility, try the following little experi-
ment. Take any BASIC program which takes a
noticeable amount of time to process informa-
tion, as opposed to waiting for user INPUT, etc..
Add a couple of lines to it so that it will print out
the time it takes to do this processing.

The timing variable, Tl, can, of course, be used for
this. Renumber the program, starting at line zero
and incrementing by one. This gives it the lowest
possible set of line numbers. Run the program,
making a note of any inputs you may have to give
it, and observe the time it takes. Now renumber it
again, starting at line zero and incrementing by
300 (yes, three hundred). If, by any chance, this
leads to the end of the program having illegally
high line numbers (64000 or more), use the highest
increment which will keep the numbers within

bounds. Run the program again, giving it exactly-

the same inputs as you did before. Almost certain-
ly you will find, as | have done with this experi-
ment, that the speed of the program is increased
by a few percent by giving it the higher line
numbers!

It is true that high line numbers take longer to
translate into binary notation than do low ones,
and it is possible to write programs which will
demonstrate this by running faster with low line
numbers than with high ones. But there is another
effect, which | will describe below, which acts in
the opposite direction. In most “normal” pro-
grams, which have not been deliberately set up to
demonstrate one effect or the other, speed is op-
timized by using a wide “spread” of line numbers
rather than by minimizing them.

Translating the number of the target line into
binary notation is only the first step by which a
GOTO (or similar) instruction is executed. The
computer then has to search through the program
to find the line. Because of the way programs are
stored in memory, it is not practical (it would be
possible but very slow) to search “backwards” to
find a line which is earlier in the program than the
one which is currently being executed. All sear-
ches are done ‘‘forwards”, starting either at the
current line, or from the start of the program.

WHY?

There is a curious flaw in Commodore BASIC
which affects the decision as to whether to
search from the current line or from the first line
of the program. Logically, one might expect that
the numbers of the target and current lines would
be compared. If the target line is later in the pro-
gram than the current one, the search would pro-
ceed from the current line. If the target line is
earlier than the current one, the search would
begin at the start of the program. In essence, this
is indeed what is done. However, the two line
numbers are not compared exactly! When they
are expressed in binary notation, each of them oc-
cupies two bytes of memory. One,known as the
high-byte, contains the integer quotient which
would be obtained by dividing the line number by
256 (2 to the power 8). The other, low-byte, con-
tains the remainder from this division. To com-
pare the two line numbers exactly, both the bytes
would have to be compared, which would be easy
enough to do. However in fact only the high-bytes
are compared. If the high-byte of the line number
of the target line is greater than the high-byte of
the number of the current line, the search for the
target line starts from the current one. In ALL
other cases, BASIC goes back to the beginning of
the program to search for the new line.

This little approximation in the BASIC interpreter

78

Best of The TORPET

BASIC Programming

cannot be called a real “bug”, since it never
causes programs to misbehave; however, it can
have significant effects on their execution times.
Consider, for example, what happens if a program
which has 256 lines or fewer is renumbered to
start at line zero and increment by one. In binary
notation, every line number has a high-byte of
zero. Every time a GOTO or similar instruction is
executed, the comparison of the high-bytes fails
to find the target-line high-byte greater than that
of the current line. Thus, every search for a new
line has to start at the beginning of the program,
even in cases when the target line is later than the
current line in the program. This often leads to
many lines being searched through unnecessari-
ly, wasting time.

By way of contrast, consider a program which is
numbered in increments of 256 or more (this is
why | suggested 300 earlier). In this case, each
line has a unique high-byte, different from all
others. Comparing the high-bytes of two line
numbers in this program can determine with cer-
tainty which line is later than the other. Thus,
“forward” GOTO’s, GOSUB’s, IF ... THEN {(line
number) instructions, etc., always work in the
most economical way, without searching through
the earlier part of the program. This can save a
significant amount of time in the execution of a
program.

DAVID WILLIAMS

Best of The TORPET

BASIC Programming

The Lazy Programmer

By Jim Butterfield, Toronto, Ont.

Laziness may be a fault sometimes, but, in pro-
gramming, laziness can be about the most con-
structive force you have going for you.

If you ask a beginner to write a program to print
the letter X five times, he will likely code PRINT
“X7:PRINT “X7:PRINT “X:PRINT “X":PRINT “X".
This will certainly do the job, of course, but
around the time that I'm coding the third PRINT
statement, | will tend to think: “There must be a
better way’'.

It’s not a great quantum leap to decide that the
statement PRINT “X” is repeated five times, so we
may put it into a loop, and write: FOR J=1TO
5:PRINT “X"":NEXT J. Very nice and a step towards
sophisticated programming.

Here's my theory: The FOR/NEXT program is bet-
ter, but not because it’s shorter (it is, slightly) and

not because it’s faster (it’s not). It’s better written
because the programmer has made the jump from
dealing with the problem to dealing with the
nature of the problem.

What does that mean? Well, a couple of examples
will illustrate the point. If | had written the above
program either way, what would happen if |
wanhted to change it so that the program printed Y
six times? With the first program, we’d have to
rewrite almost completely; with the second, a
couple of quick changes would do the job. In
other words, the first program, written the hard
way, does only one thing, but the lazy program is
more flexible and solves the general problem.

Let’s carry on with our lazy programming ac-
tivities. If we’re asked to print the numbers from
100 to 150, we could code: PRINT 100:PRINT
101:PRINT 102....and so on. Once again, the lazy

79

Best of The TORPET

BASIC Programming

instinct says, “There must be a better way.” This
time, the PRINT lines are not identical. No pro-
blem; we just code FOR J=100 TO 150:PRINT
J:NEXT J. Our laziness has led us to a new techni-
que. When we get tired of typing in similar lines,
we may be able to use a variable to insert the
changeable part. It’s not just less work; the pro-
gram result is really better.

Continuing along the scale of escalating laziness,
our next job is to print a series of names: Bob,
Carol, Ted and so on. As we grind out PRINT
“BOB”:PRINT “CAROL":PRINT “TED”...and so
on, the old instincts come into play again. A pro-
grammer might get writer’'s cramp putting in all
those names; there’s gotta be an easier way. This
time, we can’t compute values like John, Mary
and so forth, since they don’t arrive in any special
pattern, but we can put them in Data statements
and Read them as we need them.

So we code DATA BOB,CAROL,TED ... MIKE,
followed by FOR J=1 TO 20:READ N$:PRINT
N$:NEXT J. Once again, laziness wins the day!
The program will adapt much more easily to a
change in the size of the bowling club, or to Carol
dropping out and being replaced by Phoebe.

Of course, if we wanted to use the names twice
within our program, it would be anti-lazy to have to
type them into the data statements twice, and if
we wanted to enter the bowling scores we’d have

to look for a lazier method. After all, we wouldn’t
think of writing an INPUT statement for each
player — that would be work. So we graduate to
arrays. Each name is first copied from a data
statement into an array where we can use it over
and over. We code DIM N$(20), S(20) to make room
for twenty names and twenty scores, and then use
the previous data statement with FOR J=1 TO
20:READ N$(J):NEXT J. Now we can prompt each
name and set each bowling score with FOR J=1
TO 20: PRINT N$(J); :INPUT S(J):NEXT J. Follow-
ing this, our program can work out the average
and print each player’s result. It’s a lot easier than
doing things the hard way. It’s also better.

If you write a few lines of code that do something
handy — calculate the interest on an amount, say
— you could repeat the coding later when you
needed to do it again. But we lazy people put the
things into a sub-routine and save ourselves the
work.

What happened to the good old work ethic? Well,
if you want to program the hard way, slugging
through each thing to be done one at a time, be
my guest. If your programs fit into the machine at
all, they will run faster. But they won’t be better.
It’'s laziness that causes us to search out the
system behind what we’re doing, and thus build
sounder programs that are easier to change.

For my part, | program the lazy way.

Best of The TORPET

BASIC Programming

Reading Between The

By David Williams, Toronto, Ont.

The BASIC words DATA and READ provide a
powerful tool for programmers of Commodore
computers. Information which the program will
need as it runs can be conveniently written into
the program itself, instead of having to be stored
in separate files. For example, suppose the pro-
gram is going to need the names of the months of
the year in the course of its operation. The
simplest way to store these names is in the form
of a string array. If there were no DATA or READ
statements in BASIC, two methods would be
available to the programmer to set up this array.
One would be to specify each array element
separately, something like this:

10 DIM M$(12)

20 M$(2)= “JANUARY”

30 M$(2)= “FEBRUARY”

40 M$(3)= “MARCH”
and so on.

Lines

This program is on
The Best Programs Disk

The other method would be to make a separate
file on disk or tape and to access it during the pro-
gram run with coding such as:

10 DIM M$(12)
20 OPEN 1,8,5,“MONTHS”
30 FORN= 1TO 12

40 INPUTH#1,M$(N)

50 NEXT

80 CLOSE 1

This method uses six lines of code, which is ob-
viously more economical than the thirteen lines
which the first method needs. However, the need
to have a separate disk file is a definite drawback.

The DATA and READ words in BASIC allow the
task to be carried out like this:

80

Best of The TORPET

BASIC Programming

10 DIM M$(12)

20 FORN = 170 12

30 READ M$(N)

40 NEXT

50 DATA JANUARY, FEBRUARY, MARCH, APRIL

60 DATA MAY,JUNE,JULY,AUGUST

70 DATA SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER

That’s all there is to it. No separate disk file is
needed, yet the similarity to the coding for the
separate-file method is clear.

The READ command causes the computer to take
the next item of DATA and to place it into a
variable in much the same way as an INPUT or IN
PUT# command. The first READ statement in a
program reads the first DATA statement in the
program, and this is true even if they are widely
separated. For example, some programmers like
to put all their DATA at the end of the program, but
the READ commands are usually near the beginn-

ing. It is also perfectly acceptable for the DATA to-

be earlier in the program than the READ com-
mands.

After the first READ command, the next one takes
the next item of DATA, and so on. Thus the DATA
is read strictly in the order in which it appears in
the program.

For many purposes this arrangement is perfectly
satisfactory. However, there are othersituationsin
which a programmer may want the DATA to be
read in some different order. This is likely to be
true if the program contains several subroutines
which make use of READ and DATA statements.
The order in which the subroutines are executed
may be different from the order in which they ap-
pear in the program. Indeed the execution order
may not be fixed. It may depend on what the pro-
gram’s user decides to do with it. In situations like
this, a method has to be devised to allow the
DATA to be in a different order than that in which
it is to be read.

There is one more command which is associated
with DATA. This is RESTORE. When this com-
mand is executed in Commodore BASIC (the ver-

sions which are used by other computer manufac-
turers sometimes differ from this) the effect is to
set the READ command to start from the beginn-
ing of the program again. No matter how many
READs have already been carried out, if the pro-
gram says RESTORE, the next READ will take the
first item of DATA in the program.

The RESTORE command can be used with a little
bit of cunning to make the computer start
READing DATA from anywhere in the program.
For example, look at the following piece of
coding:

1000 DIM N$(3)

1010 RESTORE

1020 READ X$: IF X$-«»“NAMES” THEN 1020

1030 FORN=1TO 3

1040 READ N$(N)

1050 NEXT
1060 DATA NAMES,JOHN,SUE,MARY

Lines 1010 and 1020 have the effect of finding an
item of DATA consisting of the word “NAMES”,
and they will find this item no matter where in the
program it occurs and however many READ
statements have already been executed. Line
1010 re-starts the READing process from the
beginning of the program, then line 1020 goes
through the items of DATA until it finds one con-
sisting of the word “NAMES". It doesn’t matter if
there are a lot of items of DATA in the program
before line 1000, or if a previous READ statement
was looking at DATA in line 5000. Providing there
is only one “NAMES” in the program, the above
piece of coding will put “JOHN”, “SUE” and
“MARY” into the string array.

If a programmer uses this technique, he can have
his DATA in any order which is convenient for
himself, and he can arrange for it to be read in
some totally different order. Modular programs in
which the different routines each contain their
own DATA and READ statements are thus perfect-
ly possible. All that is necessary is for each
module to have a recognizable keyword at the
start of its DATA, and for it to execute a couple of
lines of code such as lines 1010 and 1020 in the
routine above.

HOWARD

by K. Pruner

WHAT A REFRESHINGLY
LITERAL MIND YO

HAVE | HOWARD !
AN

81

Best of The TORPET

BASIC Programming

Input Idiosyncrasies

By Jim Butterfield, Toronto, Ont.

There are some kinds of information we can’t
seem to get with the INPUT statement. INPUT is a
very clever command ... sometimes too clever for
its own good. We seem to be forced to use GET to
overcome all the things that INPUT does for us ...
that we don’t want.

Let’s take an example. You have a program which
asks,

INPUT “YOUR NAME”;N$

and the user types in a reply such as STEVE
PUNTER, PhD. the comma “breaks” the input and
the user is told, 7EXTRA IGNORED.

We have a somewhat more severe problem if we
use the colon character in our input. Not only is
the EXTRA once again IGNORED, but we can’t
even get the second part of the input if we try for
it. Coding:

INPUT “DATA”;D$,E$

and responding with an input of ATTENTION: JIM,
JACK will put ATTENTION into variable D$; but
JIM and JACK will be lost (we’ll get another pro-
mpt for string E$). Annoying. This is information
that we might want to input and process.

Another problem in addition to the forbidden com-
ma and colon: we are not allowed to input
nothing. That sounds like bad grammar; let me
restate it. We can’t input ‘“nothing” by simply
striking a carriage return. PET/CBM machines will
stop. VIC and 64 computers will leave the input
string with its previous value. And yet ‘“nothing”
might be the correct response to various INPUT
prompts (middle initial? apartment number? name
of spouse? ... you might have no middle name, live
in a house, and be unmarried).

There is an answer to all these clumsy things. It's
simple, but it’s a bit clumsy itself. Tell the user to
put his or her reply in quotation marks. In other
words, don’t type STEVE PUNTER, PHD; instead
type “STEVE PUNTER,PHD”, including the quota-
tion marks. Commas and colons will be allowed,
and you may even type in “nothing’’ without stop-
ping the computer.

The quotation marks will be removed by the
INPUT statement, which leads to the lesser pro-
blem: you can’t easily input quotation marks. But
most of everything else will straighten out.

It seems a little stuffy to require the user to
always put in the quotation marks. Mistakes and

STRING THING is on
The Best Programs Disk

oversights may occur. The best answer to this pro-
blem is buffer-stuffing. Just before giving the IN-
PUT command, place a quotation mark into the
keyboard input buffer, and a count of 1 into the in-
put buffer counter. On a recent PET/CBM, you’d
do this with POKE 623,34: POKE 158,1; on VIC or
C-64, you'd type POKE 631,34: POKE 198,1. This
will cause the leading quotes to appear on the
screen and be part of the input. The user doesn’t
really need to type in the closing quotation mark;
the system will accept correct input without it.

This takes care of much of the problems of INPUT.
A series of GET statements could accomplish the
same thing and would be more bullet proof; but
there would be more coding needed, and we
might risk the danger of invoking a dreaded gar-
bage collection.

However we do it, we are probably setting
ourselves up for the next problem. Once we get
the input data safely from the keyboard, it’s likely
that we will put it on a file. Later, when we read
the file, we’ll want to use the INPUT# statement.
And the problem starts all over again.

One way to fix this input problem is to PRINT a
quotation mark at the beginning of each record
placed on disk or tape. So instead of saying

PRINT#6,N$

we would code

PRINT#6,CHR$(34);N$

and each line would start with the quotation mark.

| prefer to use STRING THING to get this kind of
input. That’s a small machine language routine
that does the job without the need for the extra
quotation mark. It’s been published in The Tran-
sactor, and is in The TPUG library.

The important thing is to know to watch for these
INPUT problems. Once you know how to spot
them, you’ll be able to think up a solution.

One more thing to watch when you are doing an
INPUT# from a file — you can’t get more than 80
characters or so at a time, and so when you write
the information, be sure it is broken up into suffi-
ciently small chunks.

INPUT and INPUT# are nice commands. They are
fast and convenient. But watch for these pro-
blems of curious characters (comma and colon)
and “null” inputs.

82

Best of The TORPET

BASIC Programming

A Tiny PET/C64 Print Hint

By Elizabeth Deal, Malvern, PA

Sometimes a screen design requires using all for-
ty positions of a line. You can define a
40-character string and print it with a semicolon
at the end, falling through to the next line. Don’t
do it!

There is a pitfall in this method, causing dif-
ficulties in debugging. You cannot reliably over-
print such a screen. The computer keeps track of
the double lines and in so doing messes up your
best intentions. You issue one cursor down, forin-
stance, and try to print your name ... and it in-
variably (or one out of two times) ends up precise-
ly where you didn’t want it.

The reason is that the computer is doing its best
to keep its house in order. It follows the pattern of
single or double lines established by the first
PRINT, and the subsequent overprinting follows
the line length already known. The table of line
lengths is kept in page zero. See memory map
under “screen line link table” or a similar name, if
you’re interested in details.

There is a way to print forty character strings by
doing a little trick with the insert-character. To
understand how this works, try this: in direct
mode, print 39 stars. Now move one cursor left
and push the INST-key (that’s shifted-delete).

This program is on
The Best Programs Disk

Type a star in the gap remaining, and you have a
clean, 40-character line.

As an illustration of using this sort of thing for
more than one line on the screen, use the
framemaker routine. The same process is used as
the previous, direct mode, procedure. Note that
each line ultimately ends in carriage return (no
semicolon). This keeps us out of trouble. Foliow-
ing the last line of the program you can insert
some code of your own to print the screen in any
position you like, or you can use what's there
already. If you plan to print lines of 40 characters,
again, use the insert procedure. For this demo |
have not done so.

This method is particularly handy on the C64. On
the PET, we often print 39 characters, and poke
the fortieth one onto the edge. Often however,
there is no need to bother.

On the C64 this is more critical especially when
the edge and background colors are different. The
screen may look sloppy if the fortieth position is
empty. Furthermore, the C64 opens up lines on
the screen when the cursor is in the last position,
useful in program editing, a headache in neat
screen design! Since poking both the screen and
the color memory isn’t fun, the framemaker
method can be a viable alternative if you need it.

10 REM FRAMEMAKER....ELIZABETH DEAL
20 F$=CHR$(157> +CHR$(148)

30 TE$= " ook S0kl ok ok ok ook ok Rk kR R R kook ek " S REM 39% IN "
325 TB$=TBF+CHR$(145)+CHR$(13)+CHR$ 148)+" %"

49 MD$="*
58 PRINTTB#:REM TOF LIME

*x"+F$IREM % ,37 SPACES,% IN Y

60 FOR J=1 TO 23:PRINTMDS:NEXT J:REM MIDDLE

7O PRINTTB#$:"H"::REM BOTTOM

80 REM HOME IS5 USEFUL FROM BOTTOM LINE

99 PRINT"XND] . INES":REM S DOWM IN ™"

| am beginning to think some kind of military
sabotage is going on inside my 64. If | don’t supp-
ly it with exactly the right code, programs have
been bombed in mid-run. | first blamed it on the
C.lLA. chips; however, | have since learned the
operations are controlled by a tough military man,
the KERNAL. — Ylimaki

83

Best of The TORPET

CHIPP

WHEN WE USE THE DIRECT
MODE OF A COMPUTER
WE ARE COMMUNICATING
DIRECTLY WITH IT. (mLKING)

THE QUESTION MRARK

:f,FgSRMEDq;OoNR.EGUEST RINT 5 PLUS Q COMPUTER'S FUNCTIONS:
? NT IF You TYPE ?5+2 += A0
= PRI ! —_— =
. on vor screen eno % =33%T
A TYPICAL PRESS RETURN, YOU'LL) =
REQUEST: XA RECEIVE AN ANSWER. DIVIDE
’?5'+Q) =SQUARE<5’1‘Q=5a

THIS REQUEST RERDS:Y HERE ARE SOME OF THE

BASIC COMPUTERS cqﬂ
BE USED A5 CRLCULAT
FOR A VARIETY OF GOMPLEX
CALCULATIONS.

BRACKETS () CAN ALSO | THERE ARE ALSO

BE USED TO SEPARATE | ABBREVIATIONS TO
CALCULATIONS. A OBTRIN SQUARE ROOTS
STRTEMENT CAN BE AND OTHER SUCH
QUITE LENGTHY. REQUESTS.

?5+(-2)/(3#3)42 %\
I 7- o))

HERE PRE R COUPLE: A

SR = somre roor

BRACKETS ARE USED WITH | ONE MORE THING. YOU
THESE ABBREVIATIONS: CAN ALSO TELL THE

COMAUTER TO PRINT
?SQR(5*(9+3)> WORDS IN THE DIRECT

Pocn(e) [T 7.

A ?ll "
€ [CHIPP
h ﬁ ALWAYS USE QUOTES.

é
2
;

84

¢
Best of The TORPET Machine Langtgage

Machine Language Programming

PAGE

Machine Language From Square One 86
Larry Goldstein, Bolton, Ont.

Here is your first lesson if you are wondering about machine language pro-
gramming.

If It Worked Once It’ll Work Again 89
Larry Goldstein, Bolton, Ont.
Here is some help for the beginning machine language programmer.

If Then Branching — Machine Language 92
Vince Sorenson, Regina, Sask.

If you are just beginning to learn machine language these will be some of
the first techniques you need to learn.

How to Include ML Routines in your VIC BASIC Programs 93

Terry Herckenrath, Toronto, Ont.

Sometimes all you need is a little bit of machine language to make a pro-
gram work better.

Generating Random Numbers in Machine Language 95
Vince Sorenson, Regina, Sask.

When you get a little further along in machine language you sometimes
need random numbers for games and things. This is sometimes a little
tricky to do in machine language but this article tells you how to do it.

Differential Relocation of Machine Code 97
Harold Anderson, Oakville, Ont.
Here is how to solve a difficult problem for the more advanced programmer.

Putting It All Together: The Assembler 98
Larry Goldstein, Bolton, Ont.

Before you go very far in machine language programming you realize you
need an assembler. This article explains what an assembler is and how to
use one.

6502/6510 ML Instructions 100
Vince Sorenson, Regina, Sask.

The 64 and VIC have quite a number of extra instructions that many people
have not recognized. Here is a list and explanation of those hidden instruc-
tions.

CBM Conditional Assembly 101
Mark Niggemann, Ames, lowa
How to write two different programs by using the same source files.

85

Best of The TORPET

Machine Language

Machine Language From Square One

By Larry Goldstein, Bolton, Ont.

So you've finally gotten over the shock of actually
owning a COMPUTER, and you’re starting to get
pretty good at BASIC programming. The next
challenge has to be machine language, but where
to start? In fact machine language programming
is not terribly difficult but the first steps are big
ones. After that you’ll be able to design your own
routines, understand the listings in magazines,
and maybe even be able to comprehend the begin-
ner’s machine language columns in COMPUTE! |
hope to present a series of columns to help the
reader take those first steps. I'll assume that you
understand BASIC programming but that you
have no computer expertise beyond that.

WHAT IS MACHINE LANGUAGE

Machine language is the method by which all
commands and data are stored and transferred
within your computer. This consists of patterns of
electrical voltage which are stored in
microscopically small switching circuits. If one of
these switches is turned on, it can deliver a
voltage when necessary; and off switch delivers
no voltage. These switches comprise the memory
of your computer. Some of these switches can be
turned on and off continually and they are the
RAM which stores your programmes and your
data. Other switches have been set permanently
in manufacture; they comprise the ROM which
holds the routines that run the computer. There
are tens of thousands of such switches in any of
our favourite computers. The following little pro-
gramme will show the patterns which exist in your
computer. It will work with any Commodore, but
the colour machines should be set for good con-
trast between the background and the printed
characters.

10 A$ = CHR$(207) + CHR$(146): B$ = CHR$(18) : Z=128
20 FOR | = 0 TO 65535: X = PEEK(l)

30 FOR J= 1 TO 8: IF(X AND 2) THEN PRINT BS;

40 PRINT A$;: X X*2

50 NEXTJ,!

The lighted (or foreground colour) squares repre-
sent switches that are turned on, while the dark
(background) squares are off switches. The pro-
gramme scans the entire potential memory of
your machine (largely empty in an unexpanded
VIC) and runs a couple of hours so you may want
to continue reading while it carries on.

It is the pattern of switches, rather than individual

SUPERMON/64 and VIC MICROMON are on
The Best Programs Disk

switches, which is important to us. In fact it is the
pattern presented by a group of eight switches
that runs the computer. Eight switches, acting as
a unit, make up one byte of memory; each in-
dividual switch is a bit. So the switching patterns
you see on your screen, taken in groups of eight
(or bytes), comprise machine language.

You’ve never seen machine language listings
made up of patterns like this or even of patterns of
“on” and “off” or “5 volts” and “0 volts”. Such a
system is simply too unwieldy. But if we use the
digit “1‘ to mean an on switch and a ‘“0” to mean
off, a miserable machine language byte like “‘on
off on off on off off on” (that’s no byte-it's a
mouthful) becomes 10101001. This is a definite
improvement, but still pretty awkward. What we
have now is something that looks like a binary
number, a number made up of only the digits ““0”
and “1”. In our usual (decimal) system, we have
ten digits to work with, and when we want to
count beyond nine we start a second column for
multiples of ten, and then a third column for
multiples of one hundred, and so on, where the
value of each column is ten times the value of the
one to its right. In the binary system we can count
only to one before we need a second column (for
twos), and then we need another for fours, and so
on with each column having a value of twice the
value of the one to its right. If we want to take our
pattern of eight and apply it to the binary system,
we must figure out the value for the eight columns
involved. This will be:

128 64 32 16 8 4 2 1
and 10101001 becomes

1 0 1 0 1 0
or

1x128 + 0x64 + 1x32 + 0x16 + 1x8 + O0x4 + 0x2 + 1x1 =169

Now that's a nice neat comprehensible number.
To us. The computer would much prefer“‘on off on
off on off off on”, but as a special favour to an in-
ferior, the computer allows us to feed it informa-
tion as decimal numbers which it then converts to
switching patterns and stores and uses. If we
want to understand the workings of the computer,
it is sometimes useful to work in binary notaton
which, as you can see, is midway between our
familiar decimal notation and the patterns that
are important to the machine.

WHY BOTHER?

This is beginning to look like work. Why would

86

Best of The TORPET

Machine Language

anyone want to get involved in machine language
anyway? There is a variety of reasons:

1. So you can come away from meetings without
feeling inferior to the kids.

2. Thi_ngs happen a lot faster in machine language
than in BASIC, especially repetitive routines.

3. Machine language programmes generally make
more efficient use of memory space than BASIC
routines.

It's up to you to decide whether the first reason is
worthwhile; let’s look at the second and third.

If your machine is still spewing out coloured
squares, you may as well STOP it and enter this
little routine: (In line 10, substitute for the stars
the appropriate values for your machine from the
following table.)

PET/CBM A ®

40 col. 32768 33767

80 col. 32768 34767

VIC 20 7680 8186 (unexpanded)
C-64 1024 2023

Note that line 5 is used only for VIC.

05AFOR = 38400 TO 38905: POKEI,0: NExT: REM VIC ONLY
1 =tﬂtii:B=i-ttt:

20 FORI= 0TO 255

30 FORJ= ATO B: POKE J,l

40 NEXTJ,|

This routine is just as mind-numbing as the last
one, but it doesn’t run nearly as long. You might
like to time it. When you’re done , get rid of this
with a NEW.

Now for comparison, try this one. Again, where
you see a letter in the data statements, substitute
the appropriate value from the table:

A B
PET/CBM
40 col. 127 131
80 col. 127 135
VIC 20 29 31
C-64 3 7

and add line 5 as in previous program.

10 FOR | = 830 TO 862: READ X: POKE I,X: NEXT
20 DATA 160, 0, 169, 0, 133, 3, 170, 169

30 DATA A, 133, 5, 169, B, 133, 4, 138

40 DATA 145, 3, 136, 208, 251, 198, 4, 165

50 DATA 4, 197, 5, 208, 242, 232, 208, 235, 96

Carefully check your typing and make sure that
you have the right values in line 30 for A and B.
Now run it. How’s that? The best yet, right? What
has happened is that you have changed the pat-
terns in memory locations 830 to 862. These pat-
terns, if acted upon, will cause something to show
up. To tell the machine to go to memory location
830 and follow the machine language instructions
from there on, you type SYS 830 and press
RETURN. That’s better. Still a mindless routine,
but fast.

To understand the difference in speed, we must
realize that a BASIC programme is read by the
computer one command at a time, this command
is translated into machine language and is then
executed. Then the next command, and the next,
and so on. This all happens very quickly by most
standards, but the command “POKE J,I”” in line 30
of the BASIC programme is read, translated, and
executed over a quarter of a million times (for a 40
column machine), and you saw how the time add-
ed up. The machine language routine does essen-
tially the same job as the BASIC, but the reading
and translating are not necessary, and the time
saving is obvious. As far as memory is concerned
the machine language takes up only thirty-three
bytes, whereas the BASIC needs over 45. That’s
why machine language programming is worth the
bother. By the way, the BASIC programme we us-
ed to get the patterns into memory is called a
BASIC loader. Once the machine language is
safely in place, the loader is no longer needed;
you can get rid of the loader with a NEW com-
mand, and still use the SYS 830 until your brain
rots. The BASIC loader is one of a few ways of
dealing with machine language. Each method has
certain advantages and disadvatages over the
others.

WHERE DID THOSE
NUMBERS COME FROM?

I was afraid I'd ask that question. The machine
language programmer has a few dozen instruc-
tions to use on the machine. These are different
from BASIC commands, although some of them
do similar jobs. After writing a programme using
these instructions, you have to look up the
numbers (patterns) for each one and fill in your
data statements. This wouldn’t be too bad for our
little letter flasher, but you can imagine that a pro-
gramme of any size would be almost impossibly
tedious to write by this method. Since computers

87

Best of The TORPET

Machine Language

are supposed to make life easier, it seems logical
to let the machine do some of the job itself and
look up the numbers for us. (This doesn’t happen
every time the programme is run, as for BASIC,
but just once when the programme is first
written.) Such programmes, called ASSEMBLERS,
are readily available for various prices, each one
working a bit differently and offering different
aids and shortcuts. By far the best buys are the
Supermons and Tinymons and Vicmons, etc. They
don’t do a lot of the fancy things that the expen-
sive ones can, but they are great for starting out,
and you may never need anything fancier. If you
don’t have one of these in your library of club pro-
grammes already, please buy one. We’ll be conti-
nuing on it in future installments.

As a final frivolous fling, let’s redo the first
memory scan programme in machine language.
Here’'s the BASIC loader (the same for all
machines):

10 FOR | = 830 TO 873: READ X:POKE I,X: NEXT

100 DATA 169, 0, 133, 3, 133, 4, 168, 177

110 DATA 3, 72, 162, 8, 104, 10, 72, 144

120 DATA 5, 169, 18, 32, 210, 255, 169, 207

130 DATA 32, 210, 255, 169, 146, 32, 210, 255

140 DATA 202, 208, 233, 104, 200, 208, 224, 230

150 DATA 4, 208, 220, 96

After checking your typing, RUN this loader pro-
gramme, and enter SYS 830. It will run in the time
it takes to drink a leisurely cup of coffee. The
repeating vertical lines indicate empty memory
space, so C-64 owners especially will get plenty of
that.

ONE DAY, SON, ALL THIS WILL BE SILICONE VALLEY.

88

Best of The TORPET

Machine Language

If It Worked Once It’ll Work Again

By Larry Goldstein, Bolton, Ont.

A program which needs a separate command for
every operation is tedious to write and slow to run.
Filling a screen, for example, would require bet-
ween 500 (for a VIC) and 2000 (for an 8032) LDA
and STA commands to put the information where
you want it. In BASIC we would use a FOR...NEXT
loop to accomplish this; in Machine or Assembly
Language we use branching loops.

Consider the following BASIC program (substitute
the appropriate values for your machine for the
stars in line 10):

5 FORV = 38400 TO 38905:POKE V,0:NEXT:REM FOR VIC
ONLY
10 SM = ****: REM USE 32767 FOR PET/CBM, 7679 FOR

VIC, 1023 FOR C-64

20 FOR | = 1to 19
30 READ Q

40 POKESM + |, Q
50 NEXT

60 DATA 19,21,2,19,3,18,9,2,5,32
70 DATA 20,15,32,20,15,18,16,5,20

Obviously, this routine will read the data one at a
time and place them in screen memory starting at
the upper left hand corner of the screen and en-
ding 18 spaces to the right. In Assembler we
would LOAD the data into the Accumulator and
then STORE them in screen memory, using the X-
or Y-Register as a counter or index.

To duplicate this programme in Assembly
Language, load Supermon into your machine, and
RUN it, then enter the following:

.A 034B LDX #$13

.A 034D LDA $0356,X
.A 0350 STA $7FFF,X
.A 0353 DEX

.A 0354 BNE $034D
.A 0356 RTS

*** For VIC substitute $1DFF in the third line.
For C-64 use $03FF.
(““A”is the instruction to perform an assembly.)

The first line is pretty well self-explanatory. We
simply load the number $13 (hex) or 19 (decimal)
into the X-Register to act as our counter.

Next we load the accumulator with the contents
of memory location $0356 + X ($0356 + $13 =
$0369).

SUPERMON/64 and VIC
MICROMON are on
The Best Programs Disk

Then store this value in memory location
$7FFF + X or $8012 (for PET/CBM). This location is
part of screen memory, so the character appears
on the screen.

Now decrease (or decrement) the contents of the
X-Register by 1, resulting in a value of $12.
Whenever a numerical transaction like this oc-
curs, there may be a change in the Status
Register. If the result of the transaction is zero,
this is noted, as is a negative result. The result,
$12, would be noted as being non-zero and non-
negative. The next operation uses this informa-
tion.

BNE means ‘“Branch if the result is Not Equal to
zero”. In Assembler, this command is followed by
the memory location that you want the pro-
gramme to go to. This instruction resets the Pro-
gramme Counter to this address, and the branch
is accomplished. However, the branch can only be
a maximum of 128 steps forward or backward.

The programme now branches back to the LDA
command with X set'at $12, so another datum is
loaded and stored in another screen location. This
procedure operates in reverse compared to the
BASIC version, starting at the end of the message
and working its way back. Eventually the
X-Register contents will become zero and the
branch will not work (the last datum used will
have been loaded from $0356 + 1) so the pro-
gramme will proceed to... RTS which returns the
computer to BASIC (in this case).

So far we have no data to work with. Let’s get out
of the assembly mode by pressing RETURN.
Since the programme has taken us to location
$0356, we can store data starting at $0357 (which
is why the address $0356 was chosen in the se-
cond line of the routine). Enter the instruction, M
0357 0367, and you will see a display of a number
of memory locations starting at $0357. Simply
change the two digit numbers to duplicate the
ones below by typing the changes right over the
display and pressing RETURN at the end of each
line. (The VIC display will look a little different
because of the shorter line lengths, but the princi-
ple is the same.)

0357 13 1502 13 03 12 09 02
035F 05 20 14 OF 20 14 OF 12
0367 10 05 14 00 00 00 00 00

These are the same numbers as in the BASIC
DATA statements but in hexadecimal notation.

89

Best of The TORPET

Machine Language

The zeroes at the end mean nothing. Exit Super-
mon by entering X RETURN, clear the screen, and
RUN the routine with SYS 843. (VIC NOTE: When
you clear the VIC screen you also clear colour
memory and your display is invisible. Use line 5
from the BASIC programme to fill colour memory,
then SYS 843.)

If you now reactivate Supermon (SYS 4 for
PET/CBM, SYS 8 for VIC and C-64), you can take a
fuller look at the programme. Once Supermon is
running again, enter D 034B RETURN and you will
get a screen full of stuff. The columns of numbers
on the left side of the screen are the memory loca-
tions of the commands followed by the machine
language number (pattern) for the command and
the two or three number address (if any). Note that
the two byte address $0356 is stored in reverse or
LOBYTE/HIBYTE order. Finally, there is the
Assembly Language version, which is not actually
stored in memory, but has just now been
translated (or disassembled) by Supermon for our
convenience.

LET’S TAKE ANOTHER LOOK

‘We have begun to accumulate quite a repertoire
of commands, so let’s take another look at them.

LDA, LDX and LDY are commands to put a value
into the Accumulator or the X- or Y-Register. We
can specify the actual value to be loaded as we
did with LDX #$13. This is called Immediate Mode
addressing and works for all three registers. This
method of addressing is easy to use and to
understand, but it is not very flexible, since the ac-
tual value must be provided each time the com-
mand is used. We could also specify “load the ac-
cumulator with the value found at memory loca-
tion $1234” using the command, LDA $1234, and
similarly LDX $1234 or LDY $1234. In giving the
specific address from which the value is to be fet-
ched, we are using Absolute addressing. Finally,
we specified ‘“‘load the accumulator with the value
to be found in memory X steps away from location
$0356”. This method is very handy when wanting
to use a series of values, as we did here, or one of
a series of values depending on the value of the
index. This is Absolute, Indexed addressing, and
we could use either the X- or Y-Register value as
the index.

STA, STX and STY operations are also available
with Absolute and Absolute, Indexed addressing
modes.

The decrement commands, DEX and DEY
decrease the value in the respective registers by
1. If the register holds a zero, then DEX or DEY

yields a value of 255 ($FF). It's just like rolling
back a hexadecimal odometer. The opposite com-
mands, INX and INY, will increment the registers
or increase them by 1.

Since the X- and Y-Registers can hold values only
up to 255 ($FF), the indexed addressing modes
can only reach 255 locations ahead of the starting
address. In other words LDA $0356,X can only
LOAD from $0356 + FF at the maximum and STA
$7FFF,X can only store in location $7FFF + 255
maximum.

The branch command BNE (and its opposite BEQ
or “Branch if the result is EQual to zero”)
responds to the Status Register and whether or
not it holds information of a zero-result. BNE ex-
ecutes the branch if there was not a zero result,
while BEQ branches if the result was zero.

In running the loop “backwards” we simplified
things by specifying the extent of the loop by set-
ting the index to $13 at the beginning and using
the ability of the machine to distinguish between
a zero and a non-zero. We could have done it the
other way around by setting X to 1 and then using
INX each time, checking to see if it had reached
$14 yet, and then doing the branch if X was less
than $14. This requires an extra step, checking for
$14, which uses up memory and wastes time
when running.

If we want to affect the whole screen using
routines similar to this one, we run into the limita-
tion mentioned previously, that indexed address-
ing can only affect up to 256 addresses (for X =

0 to 255). The simplest way around this is to put
in a number of commands which will affect the
whole screen. For a 40-column PET, screen
memory starts at $8000 and includes 1000 loca-
tions. So we can fill the screen with the letter A
using a routine like:

A 033E LDA #8301

A 0340 LDX #$00

A 0342 STA $8000,X
A 0345 STA $8100,X
A 0348 STA $8200,X
A 034B STA $8300,X
A 034E DEX

A 034F BNE $0342
A 0351 RTS

The third line will put character #1 (i.e. A) in loca-
tions $8000 to $80FF, the next line carries on for
the next 256 locations and s6 on. Notice that the
first execution of the routine fills $8000, $8100,
$8200, and $8300. The index then becomes $FF,
the branch executes and repeats until X becomes
0 again. To run the same on the 8032, we would
need three more lines continuing to $8600,X. The
VIC needs only two lines to fill its 506 locations

90

Best of The TORPET

Machine Language

($1E00,X and $1F00,X) while the C64 would need
four lines (STA $0400,X STA $0500,X STA $0600,X
and STA $0700,X--don’t do it yet; read on).

Another piece of memory of interest is colour
memory in the VIC and 64. Every screen location
is represented by a colour memory location
whose contents determine the colour of the
character displayed there. Using the routines
shown above, but changing the addresses to col-
our memory instead of screen memory, allows
you to change the entire display instantly. For ex-
ample:

A 033E LDA #$02

A 0340 LDX #300

A 0342 STA $9600,X
A 0345 STA $9700,X
A 0348 DEX

A 0349 BNE $0342

This routine will fill VIC colour memory with the
value of two, resulting in a red display. If entered
as shown it will fit in just ahead of our previous
advertising message, and a SYS 830 will give a
visible display without the “line 5” routine. A
similar routine can be written for the 64 to change
the display colour of all or part of its screen. If us-
ed by itself, the routine would end with RTS to
return to BASIC when it’s finished.

In experimenting with the VIC remember that
screen and colour memory shift depending on
whether or not you are using a memory expander.
The locations are as follows:

Unexpanded Expanded
Screen 7680-8191 4096-4607
Memory $1E00-$1FFF $1000-$11FF
Colour 38400-38911 37888-38399
Memory $9600-$97FF $9400-$95FF

The screen memory of the C64 can be shifted all
over the place with starting addresses ranging
from O to 15360 ($0000 to $3C00), but the basic
location is 1024 to 2047 ($0400 to $07FF). When
changing screen memory, remember that the last
8 bytes at the end of screen memory (wherever it’'s
located) are used as sprite pointers. This means
that a routine including $0700,X , for example,
could clobber your sprites. To be safe, use
$06EO0,X instead. Colour memory does not move,
and can always be found at 55296 - 56295 ($D800 -
$DBE7).

The operations included in this article are suffi-
cient to design some very useful and attractive
routines. Let your imagination run loose with
them.

=)

YOU FAILED WHAT?!

91

Best of The TORPET

Machine Language

If Then Branching — Machine Language

By Vince Sorensen, Regina, Sask.

After the ML beginner has understood how to say
“LET” and ““STORE” (LDA and STA), the next
thing he’ll probably want to learn is how to say
“IF...THEN”, With these commands, most applica-
tions can be accomplished. However, saying
“IF..THEN” in ML involves many more com-
mands than just an “IF”’ statement and a “THEN"
statement, and this is where many beginners can
be led astray. It has happened to everyone | know
just starting out, including myself.

The thing to remember is that there are eight con-
ditions which can be used as part of the ML “IF
...THEN” or branch statement. If there is orisn’t a
carry left over, if the last number referenced to
was or wasn’t a zero, if it was or wasn’t negative,
or if there was or wasn’t an overflow, you can
check for it. When you load a register or ac-
cumulator (your three ML variables are A for ac-
cumulator, X for the X register, and Y for the Y
register), the result is examined for negatives, or
zeros. When you compare, increase, or decrease,
the result is again checked, for negatives, zeros,
carries. This is what | mean by the last number
referenced. Your eight commands for these
possibilities are:

BCC - Branch if the carry is clear

BCS - Branch if the carry is set

BEQ - Branch if equal (last result was zero)
BNE - Branch if not equal (not zero)

BMI - Branch if minus (negative)

BPL - Branch if plus (not negtive)

BVC - Branch if overflow clear

BVS - Branch if overflow set

Along with these branch commands, you will
usually use comparison commands (when in
doubt, check or compare again). To compare, you
will use CMP, CPX, and CPY. In my examples, |
will use immediate mode, where the register is
compared with what immediately follows.

Due to the fact that | believe that you learn more
from demonstration, here is an example of a
typical branch:

LDA $A2 Load the accumulator with the low byte of VIC’s
clock.

CMP #$10 Compare it with 10. If it is 10, then the ZERO or equal
bit will be set, and the negative bit cleared. |f the accumulator
is less than 10, the negative bit is set, and the carry register is
cleared, as well as the zero. If it is more, then the negative bit
is cleared, the zero bit cleared, and the carry bit set.

BEQ EQUAL If the zero bit is set then go the EQUAL routine.

BCC LESS If the carry is clear, then go to the LESS routine.

‘EQ1 JMP EQUAL

BCS MORE If the carry is set, then go to the MORE routine.

In place of BCC, BMI could have been used. In
place of BCS, BPL could have been used.
However, BEQ should be the first operation, since
the fact that zero is considered positive could
have you going to the MORE routine if you’'re not
careful.

Already, you have the BASIC branch statement
under control. After your programs get longer,
however, you'll have to watch how far away you
are branching to. Since branches use relative ad-
dressing (that is to say, they go to a certain spot a
certain number of bytes away from themselves),
they can only go so far. If you wish to branch fur-
ther than 128 bytes in either direction, you are
unable to. The solution to this is to use absolute
addressing, where saying goto $4000 will take you
to location $4000, instead of $4000 bytes up. An
example of this coding:

LDA $A2
CMP #8$10
BEQ EQ1
BCC LE1

} Branches to correct jumping point
BCS MO01

LE1 JMP LESS

} Jumps to correct routine
MO1 JMP MORE

The command JMP says to go to a location, no
matter what. Thus you can use branches as an
“IF..THEN” statement, and the JMP command
as a “GOTO"” statement. At this point, we run into
the problem that beginners keep straying into.
They try this coding:

LDA $A2
CMP #$10
JMP ITS10

Sorry, it’s less work, but it doesn’t work at all.
When the JMP statement is executed, it doesn’t
care if you’re comparing or not. The proper way to
code this is:

LDA $A2
CMP #$10
BNE CONT
JMP ITS10
CONT

With this kind of coding, you’ll notice that the only
time the JMP statement is run into is when the ac-
cumulator has $10 in it. Otherwise, your program
carries on at CONT. What | am trying to em-
phasize here is that if you give your computer a
chance to make a mistake, it will. Always make

92

Best of The TORPET

Machine Language

sure that you have compared what you wanted to
compare, and then use that comparison. Then you
are well on your way to becoming a good ML pro-
grammer.

FURTHER READING
ON ASSEMBLY
LANGUAGE PROGRAMMING

6502 Assembly Language Progrmming - by Lance
Levanthal (Osborne/McGraw Hill)

VIC & C-64 Programmer’s Reference Guide from
Commodore (Howard W. Sams & Co., Inc.)

Compute! Magazine (Small Systems Publications)

These should be available at your local Com-
modore dealer’s.

*In ML, negative numbers are those that are from
128 to 255. This is due to the way that numbers are
stored, as bits.

Best of The TORPET

Machine Language

How to Include ML Routines in your VIC

BASIC Programs

Since I've started playing around with my VIC, |
have encountered a number of ways of including
M.L. routines in a BASIC program.

The most common approach seems to be to in-
clude the M.L. routine in the form of DATA
statements. At the beginning of the program, a lit-
tle FOR-NEXT loop POKES the M.L. routine in
either high memory or the cassette buffer.

This approach has some drawbacks:

1. The M.L. routine takes up at least
THREE TIMES more memory than is
necessary.

For each byte of M.L. code you need up to three
bytes to represent its value in BASIC, one byte for
the actual M.L. code, plus the additional space
needed for the DATA tokens, data delimiters
(comma’s), line numbers, line links and the FOR-
NEXT loop to put it all in place.

2. You cannot re-use other information kept in
DATA statements.

In some programs it is desirable to read the DATA
statements over and over again.

3. The DATA statements can accidentally be clob-
bered.

While making changes to the program DATA
statements can be inserted in the wrong spot, or
could even be deleted altogether.

For some time now, | have added M.L. routines to
the end of the Basic text through the use of my
M.L. monitor.

By Terry Herckenrath, Toronto, Ont.

You will have to include a statement in your
BASIC program that calculates the START AD-
DRESS or ENTRY POINT ADDRESS of the M.L.
routine. You will notice that two addresses will be
printed on the screen while the M.L. routine is be-
ing appended to the BASIC program. These are
the START and ENDING + 1 addresses of the
M.L. routine AT THIS MOMENT. Subtract the
first from the second to arrive at the LENGTH of
the M.L. routine. Then, in your program you
calculate the ACTUAL ENTRY POINT AD-
DRESS as follows:

EP% = PEEK(46) * 256 + PEEK(45) - MLlength
where MLlength is the length of the M.L. routine.

This is assuming that the START ADDRESS and
the ENTRY POINT ADDRESS are the same. If you
start executing the M.L. routine somewhere
beyond the START address, you must adjust the
value of M.L. length accordingly.

From then on you use SYS EP% when you want to
execute the M.L. routine.

If you append more than one M.L. routine to the
same program, be sure to re-adjust the entry point
address of the ““older” routine.

One final word of caution:

Do NOT use “VIC TINY AID” (by Jim Butter-
field/Dave Hook) to manipulate a program that
has an M.L. routine appended to it. This utility
WILL clobber the M.L. routine (and so might other
“toolbox’ type utilities).

Storing the M.L. routine at the end of the BASIC
program eliminates the drawbacks cited above. It
takes up the minimum amount of space since we

93

Best of The TORPET

Machine Language

are storing the actual M.L. routine; no DATA
statements are needed; and YES you can STILL
make changes to the BASIC program once the
M.L. routine has been appended. BASIC just
keeps moving it up and down in memory with the
rest of the BASIC program.

There is ONE limitation that | can think of: the
M.L. routine must be relocatable; i.e. there can be
no JUMP (JMP and JSR) instructions that refer to
some point.within the M.L. routine. In most cases,
this is not a serious limitation.

For those of you who like to understand how the
VIC operates: BASIC keeps track of the end of a
BASIC program in TWO ways:

1. It keeps track of the LOGICAL end of the BASIC
program through a “line link” of zero.

This tells BASIC when to stop LISTING or RUNN-
ING a program.

2. It keeps track of the PHYSICAL end of the
BASIC program through the pointer in locations
45 & 46, which points to the byte FOLLOWING the
BASIC program. This pointer is used to LOAD and
SAVE the program, and for RELOCATING parts of
the BASIC program as changes are made to it.

We use this pointer to append the M.L. routine to
the BASIC program; then we change its value to
tell BASIC that the PHYSICAL length of the pro-
gram has increased.

The following three line program will append an

M.L. routine to any BASIC program, even if it

already has some other M.L. routine appended to

it.

10000 1% = PEEK(46) * 256 + PEEK(45) + 4: PRINT 1%

10001 READ J% : IF J% » =0 THEN POKE [%,J% : |% = %
1: GOTO 10001

10002 PRINT 1% : J% = [1%/256 : 1% = 1% - J% * 256

10003 POKE 45,1% : POKE 46,J% : CLR : END

NOTES:

1. The DATA used for the M.L. routine must be
followed by a negative value to end the loop.

2. The DATA statements used for the M.L. routine
must be the FIRST or ONLY DATA statements in
the program.

3. The “+4” in line 10000 represents the space
needed for the variables 1% and J%. These four
bytes will be imbedded in the final product and
are ‘“‘wasted”’.

4. The CLR command at the end of line 10002 will
adjust the two pointers used by BASIC to keep
track of numeric variables. If you run your pro-
gram after appending the M.L. routine without ad-
justing these two pointers, the M.L. routine will
get clobbered as soon as a numeric variable is us-
ed.

Once the M.L. routine is in place, you can delete
the DATA statements and the above program.

NOU WAVE TAPDED INTO
ChDL RERCTOR ™S
COMPUTER.

MEEBMN STRRS

—

WRRMNMING

- _\ “\!-\\

l‘-'l ("\(.\

“AT LEAST THE COMPUTER KEEPS HIM OFF OF THE

STREETS.”

94

Best of The TORPET

Machine Language

Generating Random Numbers in Machine

Language
By Vince Sorensen, Regina, Sask.

One of the most difficult problems to tackle is to
find how random, or illogical, numbers can be
generated in a totally logical machine. Com-
modore BASIC solves this by making lists of “ran-
dom” numbers using logarithms and subtraction.
Since this is not a completely random process,
the same list is generated each time the computer
is turned on. Thus if you PRINT RND(1) after turn-
ing on your computer today, it will show the same
number it did last time you did this. Try doing this.
Write down the number, turn your computer off
and on, wait a while, and PRINT RND(1).

Since | have a VIC, | was able to try plugging in ex-
tra memory to see if that made any difference. It
didn’t, so | was able to conclude that the process
of generating random numbers is independent
from the amount of memory, and the timer 9
(because of the previous test). Random numbers
are therefore found using logic. However, each
machine has its own list, different from any
other’s, but the same as its own. Compare your
first RND(1) with mine: .185564016. A RND(1) is a
serial number for your VIC, PET, or C-64.

At this point, you may say that if there are no true
random numbers, then how can there be events
that will take a wuser by surprise in
SPACE KONG? There are ways of getting a
more ‘“‘random’’ random number, and easily. The
key is the argument for RND, the argument being
the number in brackets after RND. If the number is
positive, BASIC will reference another list if ask-
ed. If the number is negative, BASIC will rescram-
ble the lists. The most random number is a
RND(RND(-T!)), because Tl is always changing,
giving a different base for the lists to be scrambl-
ed on. With it, the random numbers are based
upon logic, and the timer, which is now randomly
referenced to.

Now, the reason we’d like to use random numbers
is so that things are not too predictable. Where
would arcade games be if the fifth invader from
the left always fired when it was above the second
bunker? They’d be boring! Random numbers give
the Commodore computer that element of unex-
pectedness that makes us humans so interesting.

The question is: How do you combine machine
language speed with random numbers? The easy
way is to use BASIC’s own routine. BASIC is only
slow in translation, so it will still be fast.

The RND routine is located at $E094. At the start
of this routine, there are checks for the sign of the
argument, and which list is referenced. Il
separate these subroutines for our use right now.
JSR $E09B will generate a random number bet-
ween 128 and 255, and place it in location $62 (see
Program 1). JSR $EOBB will do the same thing, ex-
cept it will assume you want the lists scrambled
first, thus giving you a more “random’ random. It
simulates what happens when a negative argu-
ment is found.

Now that you have a random number, you’ll pro-
bably want to generate odds, such as aone in four
chance of a bomb dropping from your COSMIC
EAGLE. After you get your random number, AND it
with a bit pattern, and compare to get the results.
In program 2, there are four possible outcomes,
after the AND. They are the numbers zero to three.
Comparing the outcome with one of the
possibilities will give you the odds one in four or
three in four.

The odds will always be calculated this way: You
have X chances in 2" where X is the number of
comparisons, and N is the number of bits on in
your bit pattern mentioned above. Some ex-
amples for finding N:

AND #8302 = %0010 ... there are 2' or 2 possibilities.
AND #806 = %0110 ... there are 22 or 4 possibilities.
AND #$0E = %1110 ... there are 2° or 8 possibilities.

Your next question is probably: What if you want
odds out of a number that is not a power of 2? Pro-
gram 3 finds four possibilities, rejects one, leav-
ing you with odds out of three.

If you want odds higher than one in 128, just store
the first random number, and generate another. If
the first is say 128, and the second meets further
conditions like the ones outlined in previous
paragraphs, then you will have your ‘“one in
129-256" possibility. Usually, odds between 1 and
128 will be enough, but using this technique, you
can get odds so high that your longshot horse will
come in once in a billion years.

| hope I've helped you with a problem that has
puzzied me for quite a while. Here are the example
programs: (in ML format, for the VIC).

95

Best of The TORPET

Machine Language

PROGRAM

LO1 JSR $E09B
L02 LDA #8300
LO3 LDX $62
LO4 JSR $DDCD
LO5 LDA #8320
LO6 JSR $FFD2
LO7 RTS

PROGRAM

LO1 JSR $E09B
LO2 LDA $62

LO3 AND #8$03
L04 CMP #$03
LO5 BEQ LO7
L06 RTS

LO7 TAX

LO8 LDA #$00
LO9 JSR $DDCD
L10 RTS

PROGRAM T

LO1 JSR $E09B
L02 LDA $62
LO3 AND #3$03
L0O4 CMP #$03
LO5S BEQ L1

L06 TAX

LO7 LDA #8$00
L08 JSR $DDCD
LO9 RTS

ONE

Get a random number, have it placed in $62
Print out as an integer between 128 and

255. See TORPET No. 17, “Non-Kernal Routines
in the VIC 20" by Thomas Henry.

Load accumulator with ASCII value of a space
Print it.

Finished.

TWO

Get a random number, have it placed in $62
Load the accumulator with the random
number

AND it with three (%0011)

Is it the possiblity #3?

Yes...

No: We're done.

Print out the three,

using the PRLINE routine explained

in TORPET #17.

We’'re done.

HREE

Get a random number, placed in $62 again.
Put it in the accumulator.

Four possibilities.

Is it the fourth possibility?

Yes: Get another random number

It’s one of three possibilities, so

print out which one it is using

PRLINE at $DDCD again.

We're done.

PROGRAM FOUR

LO1 JSR $E09B Commodore VIC Random Generation routine

LO2 LDA $62 Get number produced by above routine

LO3 AND #$1F Next highest exponent minus one (than
below number)

LO4 CMP #315 Number of random integers you want (A)

LO5 BCS LO1 Reject extra numbers

LO6 ADC #$3A Add lowest number wanted (B)

LO7 RTS Routine finished

In brackets after certain lines above, a letter ap-
pears. It represents the same number that it
would represent in the BASIC formula:
R=INT(A*RND(1) + B).

The explanation for the program is as follows:

In Program 4, a random number between 58 and
79 is generated. In BASIC, you would ask for
INT(21*RND(1) + 58). These numbers are used in
the example routine to load the accumulator with
the desired random number. The program is self-
explanatory, but I'll enlarge on line 3. The number
of random possibilities you want is 21. 2¢is 16, so
it isn’t large enough, but 2% is 32, and is large
enough to contain at least 21 possibilities. We
therefore generate 32 numbers, and reject those
above and equal to 21 (giving us the numbers bet-
ween 0 and 20 inclusive). Then we add the 58, and
VOILA! we have our random number between 58
and 79.

37 N AL

96

Best of The TORPET

Machine Language

Differential Relocation of Machine Code

By Harold Anderson, Oakville, Ont.

Any person who has tried to relocate a sizable
block of machine code without the benefit of a
source listing knows that this can be nearly im-
possible. There are some obvious fixes required,
such as changing the destination address of jump
statements so that they go to the same place in
the relocated code as they did in the original
code. You can, in fact, easily write a program to
do this for you.

In practice, most machine code contains far more
subtle problem points than this. For example,
there may be a table of destination addresses
which are used in indirect jumps. The table will
not even disassemble! In the face of this or
similar problems, | suggest that you had better
find something more sophisticated than brute
force editing of the code.

One of the solutions which works in some cases
is what | call “differential relocation”. Given two
versions of a block of machine code assembied to
run at different locations, it is possible to
generate a third version to run at any desired loca-
tion. The only limiting factor is that all three
blocks of machine code must be separated by an
integral number of pages. For example, if one
block of code starts at an address equal to 47 —
51 x 256, then the other blocks must start at 47 —
N x 256 where N is an integer. This limitation is
not a significant impediment.

SUPERMON

One good example of where this would be useful
is for generating a ROM version of Supermon.
(Supermon is a public domain, extended machine
language monitor for the PET.) This program
comes with a relocator which will allow you to
generate a version which will run anywhere in
RAM. This is not much help if you want a ROM ver-
sion to run at $9000, a location where there is no
RAM. Use of the program listed in this article
allows you to generate a version to run at $9000,
starting from two versions assembled to run at
$7000 and $6000. ($9000 is a ROM location whose
decimal address is 9 x 4096. $7000 and $6000 are
RAM locations whose decimal addresses are at 7
x 4096 and 6 x 4096.) Even better, the version to
run at $9000 can be parked wherever you want it
(in RAM), so that you can save it, and then take it
to your friendly neighbourhood EPROM burner.

The listing is pretty well documented with its own
remark statements. A brief discussion of the

This program is on
The Best Programs Disk

philosophy may be of some help. The program
looks at corresponding bytes in the two initial
blocks of machine code. If the bytes are the same
(test made in line 205), it assumes that the value
of the byte is not dependent on the address at
which the code is assembled to run. It then puts
this byte value in the corresponding location in
the code being generated. When the program
discovers a pair of corresponding locations in the
initial blocks of code that contain different byte
values, it assumes that the value of the byte is
dependent on the address at which the code is
assembled to run. In this case, it calculates the
value for the code being generated by using a
linear extrapolation. (Extrapolation done in line
210) Before storing the byte, it checks that itis a
legal byte value, i.e., between 0 and 255. This is
done in line 220. If the value is not an acceptable
byte, it prints unresolvable byte at ” on the
printer and the screen. This usually indicates that
the byte is past the end of the assembled code or
is a meaningless inclusion in the code and can be
ignored.

The listing of the program in this article is set to
work with two initial blocks of code, 1400 bytes
long, starting at $7000 (7 x 4096) and $7800 (7.5 x
4096). The code produced is parked at $5000 (5 x
4096) and also runs at that location. Edit lines 120
to 160 to handle different configurations. The pro-
gram as shown here was used to generate a ver-
sion of code to run at $5000, which happened to
be impossible to do with the assembler | was us-
ing, since it landed in the middle of the source
code.

| have used this program about five times to
relocate quite sizable blocks of code. So far, it has
worked 100% of the time. One caution: the two in-
itial blocks of code must be IDENTICAL in all
respects except running location; otherwise, you
will get garbage.

100 REM PROGRAM NAME = DIFFRELOCATE

105 REM WRITTEN BY HAROLD ANDERSON MARCH 18, 1983
110 REM THIS PROGRRAM IS DESIGNED TO PRODUCE A
THIRD RELOCATED VERSION OF A

111 REM PIECE OF MACHINE CODE FROM TWO BLOCKS
PROPERLY ASSEMBLED TO RUN AT

112 REM A1 AND A2

118 POKES53,64:REM LOWER TOP OF MEMORY

119 OPEN4,4

120 A1= 7.0*4096 + 00:REM ADDRESS OF FIRST BLOCK
130 A2 = 7.5*4096 + 00:REM ADDRESS OF SECOND BLOCK
140 AR= 5*4096 + 00:REM ADDRESS AT WHICH MODIFIED
CODE WILL RUN

150 AP = 5*4096 + 00:REM ADDRESS AT WHICH MODIFIED
CODE WILL BE PUT

97

Best of The TORPET

Machine Language

160 LN = 1400 :REM LENGTH OF BLOCK OF CODE

200 FOR X = OTO LN-1

205 BY = PEEK(A1+ X):IF PEEK(A2 + X)= BY THEN 225
210 BY = BY + (PEEK(A2 + X)-PEEK(A1 + X))*(AR-A1)/(A2-A1)
220 IF BY»> = 0 AND BY« = 255 THEN 225
221PRINT#4,“UNRESOLVABLE BYTE AT X = ";X

222 PRINT“UNRESOLVEABLE BYTE AT X=";X
223 BY=0

225 POKE(AP + X),BY

230 PRINTX: NEXT X

240 END

Best of The TORPET ’84

Machine Language

Putting

By Larry Goldstein, Bolton, Ont.

Up till now, we have talked of machine language
in terms of switching patterns which can be
represented as binary numbers, which in turn can
be converted to decimal numbers for somewhat
greater convenience. Even this is a pain, however,
since it means memorizing or looking up masses
of numerical code when writing a program. Since
memorizing and looking up are what computers
do best, it is only sensible to write a look-up pro-
gram to do this conversion to machine code. Such
a program is called an Assembler as is
represented by Jim Butterfield’s Supermon and
the other members of the same family.

With an assembler, if you want to put a number in-
to the accumulator, instead of looking up the
machine code 169(D), you enter the instruction
LDA (for LoaD Accumulator). Then, if you want to
store this number somewhere in memory, you
simply enter STA (STore Accumulator), and let the
assembler look up the appropriate code. (These
two machine language instructions taken
together are equivalent to the BASIC POKE com-
mand.) You’ll notice one catch: although you don’t
have to memorize numerical code, you do have to
learn a new vocabulary of letter codes. These are
three letter groups, and they are abbreviations of
their functions, so they are called opcode
mnemonics (memory helpers). These instructions
comprise Assembly Language.

ADDRESSING

The instruction is only part of a machine
(assembly) language command, and it is usually
completed by an “address”. The machine code
169 tells the microprocessor to load a number into
the accumulator, but it doesn’t tell what number.
So, the complete instruction might be 169 83, or
load the number 83 into the accumulator. These
two numbers will be stored in two successive
memory locations (say 830 and 831). When the
program counter comes to 830, the pattern cor-
responding to 169(D) will be sent to the instruction
register and decoded, telling the microprocessor
to bring in the number immediately following in

It All Together: The Assembler

memory (in location 831) and put it into the ac-
cumulator. Since the storage address of this
number is immediately after the address of the in-
struction, this is called immediate addressing.
Similar instructions, LDX and LDY, allow us to put
numbers in the X-register and the Y-register.

Now, say we want to transfer a value to memory
from the accumulator -- perhaps we want to put a
heart character (83) on the screen. On the
PET/CBM, screen memory starts at 32768 with a
memory location for every screen location. In
BASIC, POKE 32768,83 will put a heart in the first
screen location and POKE 33107,83 will put the
heart somewhere else on the screen. In
Assembler, we do this by putting the number 83
into the Accumulator (or the X- or Y- register) and
then storing it in the appropriate screen memory
location. But now the catch. Recall that memory
locations are 8 bits (1 byte) each, and can hold
numbers only up to 11111111(B) or 255(D). Storing
numbers, including addresses, above 255 requires
the use of more than a single byte of memory. Ad-
dresses above 255 are stored in two parts, allow-
ing the use of 16-bit addresses, so the largest ad-
dress usable by the 6502 and 6510 is
1111111111111111(B) or 65535(D) (i.e., 64K). The
address 33107 translates to 1000000101010011(B),
which is stored as the two 8-bit fragments,
10000001 and 01010011 (129(D) and 83(D)). To
make matters worse, these are stored in reverse
order, 83, 129. So, in order to specify an address,
you must (1) convert it to binary notation, (2) break
the binary number into two 8-bit fragments, (3)
convert each fragment into decimal, (4) store
these fragments in reverse order (called
LOBYTE/HIBYTE order). Again, the assembler can
help us out, but it usually calls for another com-
promise from us, the use of the dreaded...

HEXADECIMAL NOTATION

Just as the decimal system is based on powers of
10 and the binary system on powers of 2, so the
hexadecimal system is based on powers of 16.
The right-most units digit is used to count from 0
to 15, the second digit represents multiples of 16

98

Best of The TORPET

Machine Language

(or 4096). Since we have digits only from 0 to 9
readily available, the values from 10 to 15 are
represented by the letters from A to F. It conve-
niently turns out that a 16-bit binary number can
be represented by a 4-hex-digit (hit?) hexadecimal
number and, furthermore, two hex-digits corres-
pond to exactly 1 byte. Going back to 33107, it
converts to 8153(H) which will be stored (in
LOBYTE/HIBYTE order) as 53(H) (or 5x16+3=
83(D) and 81(H) (or 8x16 + 1=129(D)). The advan-
tages of using hexadecimal are (1) the ease of
dividing large numbers into their 1-byte fragments
and (2) the more convenient size with each hex-
digit representing 4 bits. Note that the computer
does not use hexadecimal numbers any more
than it uses decimal; the assembler (or machine
language monitor) converts hex. values into
binary, and these are used. More expensive
assemblers will accept decimal addresses and do
all the conversions for us, but the Supermon fami-
ly needs to be fed hexadecimal. By the way, it is
usual to show decimal numbers just as is and
precede hex numbers by “$”.

To convert from Decimal to Hexadecimal, you can
do successive divisions by 4096, 256 and 16, or
you can use a look-up table, or BASIC-AID, or this
little program:

10 HH$ = ““123456789ABCDEF”

20 INPUT “ENTER DECIMAL NUMBER”’;D

30 IF D«0 or D»65535 THEN PRINT “OUT OF RANGE.”:GOTO
10

40 PRINT“$";:FOR 1=3 TO 0 STEP -1

50 HEX$ =“0": DIV =16 I: IF D«DIV THEN 80

60 Z=INT(D/DIV): D=D-Z*DIV

70 HEX$ = MID$(HH$,Z,1)

80 PRINT HEX$;:NEXT

90 PRINT:PRINT:PRINT:GOTO 20

So far, we have been talking about PET/CBM
models. For the unexpanded VIC, the beginning of
screen memory is at 7680 or $1E00, and for the
C-64 it’s 1024 or $0400.

USING THE ASSEMBLER

Now let’s make all this work. First load in your
monitor/assembler program and RUN it. After a
few seconds, you will see a display of the con-
tents of the microprocessor registers, an address
to call with a SYS command to get back to the
monitor (write it down) and the cursor blinking
next to a period. Let's try to put a heart on the
screen using the steps outlined above, and let’s

store the program starting at memory location 830
($033E). Begin with the instruction to load the
value 83 ($53) into the accumulator. It looks like
this:

.A 033E LDA #$53

1 2 3 4

1--Assemble

2--at this memory location

3--the instruction, Load the Accumulator with....
4--this numerical value (i.e. Inmediate Mode Ad-
dressing)

When you press RETURN, the appropriate
numeric code is entered in memory locations
$033E and $033F, and the next usable location is
displayed as:

.A 0340

Now complete the line as:

.A 0340 STA $8150 (CBM/PET)

.A 0340 STA $1E90 (VIC)

.A 0340 STA $0490 (C-64)

and press RETURN. In this case, the “address” of
the instruction is a memory location, not a
numerical datum, and this is indicated by the
omission of the # sign. Specifying the actual loca-
tion in which the value is to be stored (or from
which it is to be retrieved) is called Absolute Ad-
dressing. The last line of the program is

.A 0343RTS

which gets us out of machine language (in this
case).

Now type RETURN, X and RETURN to get out of
the assembler. To run our tiny program, enter SYS
830 and expect to see a heart appear somewhere
on the screen and the cursor to reappear. You can
get back into the assembler by calling the SYS ad-
dress you noted down earlier, then you can ex-
pand the program to put all kinds of symbols all
over the screen. Or you could enter values in color
memory at $9600 to $97FF (VIC) or $D800 to
$DBE7 (64).

Although we can make things happen very quickly
by building up long routines of this sort, the pro-
grams are needlessly long and inefficient, and the
programming and typing are extremely tedious.
What we need now is a way to get the program to
take care of the repetition itself with something
like the FOR...NEXT loop in BASIC. But that’s for
next time.

DEBUGGING programs is a little like swatting mosquitos.
Eliminate one BUG and you may find 20 at its funeral.

Ylimaki

99

Best of The TORPET

Machine Language

6502/6510 ML Instructions

By Vince Sorensen, Regina, Sask.

When | first read that the C64’s new 6510 chip had
extra I/0 pins, | wondered if the 6510 would also
have more ML commands, in order to access
these pins. After investigating, | found that both
the 6502 (in the VIC, PET, and previous Com-
modore efforts) and the 6510 have more usable
commands than previously thought.

This obviously has occurred to more people than
just myself. About a month after discovering a few
commands, | came across an article in the Oc-
tober 1983 issue of COMPUTE! that detailed some
of the commands that | had found, and some that |
hadn’t. So, | decided to combine both my work
and the additional information provided by Joel C.
Shepherd in COMPUTE!, and provide fellow users
with a comprehensive list of unofficial 6502/6510
machine language commands.

Generally, each bit in a 6502 opcode represents a
different instruction type or addressing mode. An
opcode byte can be broken down with the three
most significant bits representing type, and the
other bits giving the mode. There are, of course,
exceptions, but we can still postulate what the
6502 thinks it sees when it encounters an undefin-
ed number.

For a list of documented opcodes, find the MOS
PROGRAMMING MANUAL or the C64 PROGRAM-
MER’S REFERENCE MANUAL. Any hex opcodes
not given here, and not documented in one of
those books, can be placed in one of the following
categories: DETRIMENTAL (your machine
crashes); NON-EFFECTIVE (has no effect, except
to skip one to three bytes); INCONSISTANT (dif-
ferent results from the same parameters,
repeatedly and randomly); and REPETITIVE (this
command is identical to another command, in-
cluding type and mode.)

Here are the unofficial OPCODES in the following
format: HEX #3: (Mnemonic, Addressing Mode)
Brief Description, Other Addressing Modes.

04: (NTW,implied) This byte and byte after ignored.

1B: (NTH,implied) This byte and two bytes afterward ignored.
07: (SLO, zero page) These four commands shift memory left
then OR the accumulator with this memory.

Other modes:

OF (absolute)

17 (zero pg,x)

1F (absolute,x)

27: (RLA, zero page) These six commands roll a memory loca-
tion left, then ANDs the contents of the accumulator with the
result.

Other modes:

23 (indirect,x)

2F (absolute)

37 (zero pg,x)

3B (abs.,y)

3F (abs.,x)

43: (SRL, indirect,x) This command shifts memory right, then
loads the accumulator with the result.

4B: (SRA, immediate) This command shifts the contents of the
accumulator right, and then ANDs the result with immediate
data.

47: (SRE, zero page) These four commands shift memory right
and then EOR the accumulator with the shifted memory.

Other modes:

4F (absolute)

57 (zero page,x)

5F (absolute,x)

67: (RRA, zero page) These 6 roll memory right, and add with
carry to the accumulator.

Other modes:

6F (absolute)

73 (indirect,y)

77 (zero page,x)

7B (absolute,y)

7F (absolute,x)

87: (AAX, zero page) These three commands AND the contents
of the accumulator with those of the X register.

Other modes:

8F (absolute)

97 (zero page,y)

8B: (AAX, immediate) This command ANDs the accumulator,
the X register, and immediate data.

A3: (LAX, indirect,x) These seven commands load both the ac-
cumulator and the X register from the same location.

Other modes:

A7 (zero page)

AB (immediate)

AF (absolute)

B3 (indirectly)

B7 (zero page,x)

BF (abs.,x)

C3: (DCP, indirect,x) These six commands decrease a memory
location, then compare it with the contents of the ac-
cumulator.

Other modes:

C7 (zero page)

CF (absolute)

D3 (indirect,y)

D7 (zero page,x)

DF (absolute,x)

CB: (XAS, immediate) This command first ANDs the X register
with 8, and then subtracts the data immediately following.
EB: (SOC, immediate) This command subtracts one from the
accumulator, then carry, and then the data immediately follow-
ing.

100

Best of The TORPET

Machine Language

E3: (ISC, indirect,x) These seven commands increase a
memory location by one, and then subtract the result from the
accumulator, with carry.

Other modes:
E7 (zero page)
EF (absolute)

F3 (indirect,y)

F7 (zero page,x)
FB (abs.,y)

FF (absolute,x)

Note that the results for all of the above com-
mands are stored in the accumulator except as
follows: AAX results are stored in memory loca-

tion given by data after AAX (immediate mode)
results, and LAX results are placed in both the ac-
cumulator and in the X register. DCP results are
shown in memory and in the processor’s status
byte. XAS results are put in the X register only.

Presently, only a few assemblers will accept
these new mnemonics. These assemblers allow
either new commands to be defined or .BYT com-
mands which let the user put numeric data (in this
case our new commands) into his program.
However, everyone should be able to think of a
way to get these new opcodes.

Until next time...happy programming!!!

Best of The TORPET

Machine Language

CBM Conditional Assembly

By Mark Niggemann, Ames, lowa

GOAL OF ARTICLE

To inform other programmers that use the CBM
assembler on the C64 about an undocumented
feature, that of conditional assembly.

The CBM assembler for the C64 is a fairly inexpen-
sive, yet rather complete, assembly development
system. It has to be one of the best assembly
development systems for the price (under $20 in
most places). Despite Commodore’s good inten-
tions on selling good software at a low price, they
did leave out a very important fact about the CBM
assembler on the C64. The CBM assembler on the
C64 has what is called Conditional Assembly.

Conditional assembly is a very useful means of
creating specialized coding using the same
source file(s). For example, say, if you have to
write a display driver for 40, 64 and 80 columns.
Most of the coding for all of them is identical, with
the exception of a small patch. Instead of having
three separate source modules, you can use Con-
ditional Assembly and include all three. If you use
as a variable label COLWID, you just change
whatever COLWID is and you have changed the
configuration of the display driver. Conditional
Assembly is also very useful in the expansion of
MACRO’s, but I'll let you discover more about that
on your own,

HOW DO YOU DO IT?

On the CBM assembler, you have two conditional
assembler pseudo-ops, .IFE and .IFN. .IFE is IF
Equal to zero. It means, if the label expression is

equal to zero, it will assemble the conditional
block of code. .IFN is IF Not equal to zero. If the
label expression is not equal to zero, it will assem-
ble the conditional block. A label expression can
be just a single label or an expression of labels
that are joined by + or -.

Examples:

IFE COLWID-40 =

. ;The code would go

. ;right here instead

. ;of these dots

>

FN FLAT <=

. ;Ditto here

»

Notice the ‘<’ on the line following the label ex-
pression. This must appear there; otherwise, you
will get an assembly error. Also note the ‘»’ on
the line after the last line of code in th conditional
block. The ‘»’ must be in the first column on the
line after the last line in the conditional block. If
there isn’t one or you don’t have it in the first col-
umn, then the assembler will crash. Other than
that, there isn’t much to using conditional
assembly.

Conditional assembly is a very powerful tool in
the bag of assembly language programming
tricks, and it is well worth the effort of this article
to bring to light what has been until nhow an
unknown feature of the CBM assembler.

101

Best of The TORPET

CHIPP

THE RERD STHIEMENT
READS DATR WHICH IS

N

STORED IN A DATA LINE

IN THE PROGRAM.

DATR IS A WAY TO STORE
INFORMRTION IN AN
ORGANIZED FILE-LIKE
FORMATION.

THIS IS HOW IT WORKS:
FIRST, YOU RERD LIKE

THIS : RERD RLPHANUMERIC
S REARD R VARIABLES .
OR
5 READ A$

@ WILL RERD NUMBERS
ONLY, BUT WILL

SO [A| COULD EQUARL
a7,u4, ®,3 or 5.78/

AND couD EQUAL

" SQM“ , "cﬂ|»“' " 58“ m
"agcIa3LMN" /

1O

THE DATR STRTEMENT
LOOKS LIKE THIS: DATR, YOU CAN DO

THINGS WITH IT.

55 DA™ 1,3,3 4

@&

AFTER YOU'VE RERD THE

TRY THIS PROGRAM:

{ oA 8,10,4,3,3

S READ A:IF A=999
THEN 40

IO RINT R
WGOTS

30 oATR 43,6,a",999
40 END

MIKE _RICHARDSON

YoU CAN ALSO RERD IT IS ALSO WISE
TWO NUMBERS OR PIECES| To RDD R PIECE OF

OF DATR AT ONE TIME: DUMMY-DATR RS 1

REF'D H B HRVE DONE . WHEN
?

THE COMPUTER RERDS
THIS, THEN You TELLIT
T0 Srop/

TRY EXPERIMENTING WITH
MIXTURES OF STRINGS ('$) anD
NUMBERS. NEXT TIME WE
WILL LOOK AT HOW THE
READ AND RESTORE STRTEM
WORK TOGETHER. SEE YR/

102

Best of The TORPET Other Languages

Other Languages Programming

PAGE
Integer BASIC Compiler Hint 104
G.R. Walter, Proton Station, Ont.
An integer compiler gives you nearly machine language speeds without
having to know machine language. This article gives you some hints on
how to more easily use the compiler.
Logo for the Commodore 64 105

Dr. Efraim Halfon, Burlington, Ont.

Here is a very thorough description of that programming language
educators hear so much about.

Simon’s BASIC 109
Dr. Efraim Halfon, Burlington, Ont.

Here is a description of an extended BASIC language that is available
from Commodore for the 64.

What Really Is CP/M? 116
Steve Rimmer, Toronto, Ont.

The only operating system available on many computers is thoroughly
described.

CP/M Now A Reality With Commodore 120
Tony Ning & Rick Denda, Toronto, Ont.

An independent implementation of CP/M for Commodore computers is

described.

CP/M On The C64 122
Fred Wallace, Windsor, Ont.
The Commodore implementation of CP/M is described.

CP/M File Transfer for C64 124
Wm. Kendall, Baltimore, MD

How to get CP/M files to download from any computer into your Com-
modore 64.

103

Best of The TORPET

Other Languages

Integer BASIC Compiler Hint

By G.R. Walter, Proton Station, Ont.

The Integer BASIC Compiler is (for you readers)
who don’t know) a program which will take a pro-
gram written in BASIC and convert it to machine
language — which usually results in an 80-100
time speed-up. This is super, but the program
does have one major problem for which | have
found a partial solution. The problem is that your
BASIC program has to be typed into the Integer
BASIC Compiler’s editor, with all the resultant
typos and errors. Wouldn't it be great if there was
some way of directly transferring your PET BASIC
program into Integer BASIC? Well, now there is a
way. The method | use goes as follows:

1) Take the PET BASIC program and, using some
type of BASIC Aid, change all occurrences of «»
to #, fix all other comparison operator references
(<€ =,=p», etc.), move all DATA statements to the
beginning of the program (followed by a
RESTORE), and change all function and array
variables to the special format that the Integer
BASIC Compiler requires. After this is all done,
SAVE your changed program (in case something
goes wrong).

2) LIST your program to disk, giving it some uni-
que 4 or 5 character name.

.ie

OPENS8,8,8,“0:NAME,S,W”:CMD8:LIST

PRINT#8:CLOSES

3) LOAD and RUN the converter program (LISTed
at the end of this article). When it asks you
“NAME ?” just type in the name and press
RETURN. While your program is being converted
you will see printed on the screen what is being
printed onto the disk (don’t worry if you see some
“funny” characters, that’s normal). The conver-
sion may take some time.

This program is on
The Best Programs Disk

4) LOAD the now converted program into your In-
teger BASIC Compiler and add the set-up instruc-
tions (eg. the @ STRINGS type commands).

Then you come to the step you always have to do :
COMPile your program, test your program, and
edit your program until it works bug free.

PROGRAM NOTES

The conversion program just converts a program
ASCII file (the program listing on the disk) to the
format required by the Integer BASIC Compiler.
The format used on disk is :

line number (RETURN)
rest of program line (RETURN)

next line number and so on until the last line
number and last program line, which are followed
by :
! (RETURN)
! (RETURN)

The conversion program also converts the special
characters (such as comma - “,, etc.) to the ap-
propriate Integer BASIC code.

The program was written on a PET and is set up
for the way that the ‘‘green screens’ list their pro-
grams. If you wish to use it on a C64 you will have
to change it to take into account the different
listing format. One example of this different for-
mat is that on the C64 there is no space printed
before the line number, while on the green
screens a space is always printed before the line
number.

18 REM BASIC ASCII LISTING (ON DISK) TO INTERGER BASIC COMPILER CODE CONVERTER

1808 INPUT"UNAME ":N$

110 OFENS.,8,8,N$

1280 OPENS,8,8,"E "+N&+" ,P,W"
130 GET#8,B%,B%

140 GETHS ,B%
145 IFB#HC>"
150 PRIMNTH#S ,CHR$C(13> tPRINT: IF B$<(>"
160 GET#H#3,B%
165 IFB$<>"
170 PRINTHS,CHR¥C 13);

180 GETH8 ,B$: IFB$=": "THENB$="#"
188 1FB$=","THENB$H="o"

200 IFB$=CHR$(13)THENGOTO140

218 PRINT#H#S ,B$: :PRINTB$: :GOTO188
228 END

READY.

"AND ¢(B# "1"ORB#>"89")> THEMNPRINTH#9 ,CHR#$(13)>"!":CLOSE8:CLOSES:G0OTO220
"THEM GOTO 165

"THEMNPRINTHS ,B$: :FRINTB$; :GOTO160

104

Best of The TORPET

Other Languages

Logo for the Commodore 64

By Dr. Efraim Halfon, Burlington, Ont.

Logo, the language developed at the
Massachusetts Institute of Technology in the
1970’s, is now available also for the Commodore
64. Up to now, it was only available for other
microcomputers such as the Apple, Texas In-
struments and Radio Shack. Logo is also well-
known as turtle graphics, because of its graphics
capability which uses a turtle as an indicator of
where lines should be drawn. Over the years, Logo
has become immensely popular, especially in the
school systems, and now several clubs and
magazines deal only with Logo (see Table 1 for
some names, addresses and references). Logo,
however, is not only turtle graphics; it is also
mathematics, words and lists analysis, sprites,
graphic characters and simple music. The whole
64K of memory are used by Logo with about 14K
available to the user for storing the procedures (or
programs).

WHY IS LOGO SO SUCCESSFUL?

The main feature of Logo is that the users, often
children of ages three to 15, can teach the com-
puter, or program one’s ideas very easily with tur-
tle graphics. The computer is not used as a driller,
where the user is only a passive spectator feeding
answers to the computer, but as a tool which is
under complete control of the user. Children then
can easily learn how to control the computer, and
by doing things learn the basics of programming,
without being afraid of being mistaken. In Logo,
there are no mistakes, only learning through
debugging. For example, to move the turtle for-
ward, the command is FORWARD n, where n is a
number. FD 100 (the abbreviated form) will move
the turtle 100 steps.

The Turtle can be turned right with the command
RIGHT 90, where 90 is the number of degrees in a
right angle, or LEFT, or BACKWARDS, while
writing a line (PENDOWN) or not writing (PENUP).
Once these basic commands are learned, the next
step is to draw figures, for example, a square. The
user defines a procedure, called, for example, TO
SQUARE, or TO B2D2, or any other name. Logo
then enters edit mode. A program to draw a
square would then be:

TO SQUARE
FD 100

RT 90

FD 100

RT 90

FD 100

RT 90

FD 100

RT 90

END

A shorter way of drawing a square of any size,
would be, however:

TO SQUARE :N
REPEAT 4 [FD:N RT 90]
END

The command REPEAT 4 means to do 4 times the
commands in the square parentheses and :N is
the length of the square side.

Once defined, the procedure SQUARE is now
available to be used in other procedures. For ex-
ample:

TO FLOWER :LEAVES :N
REPEAT LEAVES [SQUARE :N RT 360/;,LEAVES]
END

draws a schematic flower with :LEAVES number
of schematic square leaves of length :N. With very
few combinations of procedures, complex
graphic figures can be created. For example, try
PENCOLOR 0 FLOWER 90 90 PENCOLOR 1
FLOWER 10 30.

Usual projects include a face, a person, a house, a
propeller, a flower, a car, etc. Incidentally, the
name turtle originates from a mechanical device
that was developed at MIT when the language
was developed. At the time, early 70’s, the
microcomputers with today’s capabilities did not
exist, and therefore all commands were transfer-
red to a turtle with wheels which roamed along
the floor. This mechanical turtle is still used today
in schools and it is particularly useful in the
education of retarded children and children
unable to control their body fully. By controlling
the mechanical turtle via a simplified keyboard,
the children can have control on the outside
world, sometimes for the first time. Experiments
along this line have proven very successful.

MATHEMATICS

Another aspect of Logo is its mathematical abili-
ty. Mathematical operations, such as addition or
multiplication, can be integrated with turtle
graphics to provide a visual relation between
numbers and their geometrical meaning. Plotting
of curves such as circles, paraboles and hyper-
boles take only a few commands. Analytical
geometry thus becomes much easier to unders-
tand through continuous feedback between the
user and the computer.

105

Best of The TORPET

Other Languages

WORDS AND LISTS

Even though Logo is often associated with turtle
graphics, its power also lies in its ability to handle
words and lists in a manner that the computer
responses seem to show intelligence. Several
computers on the market cannot handle lists and
words because of memory limitation. The Com-
modore 64 with 64K of memory is very apt to han-
dle this part of Logo. Indeed, it would have been a
pity if words and lists were left out.

SPRITES

The Commodore 64 is well-known for its ability to
handle eight sprites at a time and for its ability to
play music. Logo also incorporates this feature,
even if in a limited way because of memory con-
straints. Each of the eight sprites, 0 to 7, can be
defined and moved independently. Sprite 0 is the
turtle shape. Logo incorporates a Sprite editor
which can be used to design sprites. The Sprite
editor is fairly simple to use and, once edited, the
sprites can be saved in memory for future use.
Animation of sprites can be done by modifying
slightly the shape of a sprite and then by display-
ing them one at a time. Animation, however, limits
the number of different available sprites since on-
ly eight can be kept in memory. As you can recall,
the Commodore 64 in its regular form can store a
large number of sprites in memory, even if only
eight can be displayed on the screen. Logo uses
much of the 64K of memory and therefore a com-
promise must be made in some applications bet-
ween animation and a choice of different sprites.
However, if in a program execution some delay is
allowed, then new sprite shapes can be read from
disk. Sprites are also a feature of the Texas In-
struments microcomputer, which can handle 32
sprites at a time on the screen. However...the TI
microcomputer is no longer produced.

MUSIC

Only one voice can be used at a time to play a
tune. Music in Logo, however, is not used to pro-
duce complex and rich (three voices) melodies, as
it is possible to do with the standard configura-
tion and direct access to the music chip. The
function of music in Logo is to teach music
characteristics, such as pitch and tempo. More
advanced users can also design their own sound
envelope to simulate different instruments. Using
Logo, children and other users can learn about
notes, relation among notes, composition and
musical phrases. Since only few commands are
used, such as PLAY and SING, the user’s atten-
tion can be focused on the music rather than on
PEEK’s and POKE’s. Music in Logo is a special

feature of the Commodore 64. As far as | unders-
tand, no other microcomputer has the same
musical ability.

DOCUMENTATION

When you buy the Logo package from a dealer,
you receive a book, two floppy disks, and, most
important, a postcard to Commodore. The
postcard can be used to request a backup copy of
your Logo floppy disk, if by any chance it gets
damaged. Price for replacement is $5.00 U.S. One
floppy disk contains Logo and one contains a
large number of indispensable Logo routines
(back up this disk right away before doing
anything else).

These Logo routines contain a large number of
demo programs, a number of sprite shapes, and a
number of utility procedures which make the life
(and programming) of Logo users much easier.

Among these utility programs, you can find pro-
cedures to draw with the joystick, to edit sprites,
to play music, to play games, to draw pictures, to
understand the Logo manual with living color ex-
ample programs. The development of these
routines must have taken a lot of effort and | am
quite happy with the results.

The Logo manual is very well-written. The editing
was very accurate, and | found only three
misprints. Reading is very pleasant, and all com-
mands, primitives in Logo, are clearly and well-
explained. The manual is very comprehensive, in-
deed, much more comprehensive than the manual
of the Apple computer, even if the two versions of
Logo are very similar. The only unavoidable
drawback in appending machine language pro-
grams to Logo is that the machine language
routines must share space with the sprites. The
locations OCOO to ODFF are used by the eight
sprites and the locations OC40-ODFF are
available for machine language; thus, one or more
sprites may have to be released if this feature is
chosen. An assembler procedure is also included
in the utility disk to help create fast machine
language procedures. Overall, Logo is a very slow
language, because of the large amount of pre-
processing done to make the language easy to
use. Speed, however, is usually not a considera-
tion in Logo applications. The last part of the
manual is dedicated to make the system flexible
by using several options. The average user will
not be concerned with these features at the begin-
ning.

Commodore graphic characters from the
keyboard are all available for use. The manual,

106

Best of The TORPET

Other Languages

however, does not emphasize this important
aspect. For this purpose, the user can use the pro-
cedure STAMFD :D :CHAR, where D is the

_ distance the turtle moves and CHAR is the
character which must be stamped. To let the Logo
interpreter know that CHAR is, for example, a let-
ter, a ** must precede the letter.

Another useful editing command is SHIFT-INST
which quotes the following character. For exam-
ple, SHIFT-INST followed by CTRL-2 (white) will in-
sert the special character for changing the color
to white. Thus,

TO REV

PRINT “SHIFT-INST CTRL-2 HELLO SHIFT-INST CTRL-7
END

changes colors during execution and then returns
to the default color.

COMMODORE 64 LOGO:
GENERAL REMARKS

This version of Logo is based on the one originally
devéloped for the Apple Il and produced by Ter-
rapin Inc. This version is better than the one for
the Apple since it offers 29% more user memory
plus some unique capabilities such as sprites,
music and graphics characters. The graphics
screen is in high resolution, with all the 16
foreground and background colors. Care,
however, must be taken when choosing the dif-
ferent combinations of colors, since some may
not mix well. The Commodore Reference Guide
offers some suggestion to the best combinations.
Text and graphics can be mixed on the graphics
screen. The turtle can go 129 steps up before
wrapping around, and 130 steps down before
wrapping around the top. The NOWRAP command
eliminates the wrap-around capability if so wish-
ed. The turtle can go 160 steps to the left and 159
to the right.

The advanced .OPTION command allows the user
to control some of the ways the system operates.
Most beginner users would not probably use this
feature at the beginning, but it may be quite
useful in some instances. Among .OPTION
primitives, there are DEPOSIT (POKE) and EX-
AMINE (PEEK) commands to look at particular
memory locations, and JOYSTICK which outputs
a number that is the sum of the switch values,
when the option N=1 is chosen. This mode is
documented in the Commodore Programmer’s
Reference Guide.

The high resolution graphics screen can be
changed to DOUBLECOLOR mode that allows
two colors per 8x8 pixel region, instead of just

one. The resulting colors will be much richer and
easier to see, but drawings are less precise
because horizontal lines are thicker, i.e., horizon-
tal resolution is reduced to half. Once a program
has been run and a picture created, this can be
saved on disk with SAVEPICT. Another useful
command to use in graphic mode is the
SPLITSCREEN command. The bottom lines (the
number can be chosen arbitrarily with a maximum
of 13) are used to display the commands while the
turtle moves on the graphics screen. On the
graphics screen, a useful feature to create theiillu-
sion of three-dimension is to use sprites to draw,
for example, clouds, cars, trees, etc. The lower the
number of the sprite the higher the priority of
display and, therefore, one can program a cloud
moving in front of the sun or a car driving by and
in front of a tree or a house.

Many other system primitives are available in
Logo. These primitives can be compared with
those of other computers on the market (see BYTE
issue, August 1982).

In conclusion, the Logo version for the Com-
modore 64 compares well with others on the
market, and, given its words and lists, sprites,
music capabilities and its high-resolution
graphics, | believe it to be superior to all others.
Users of all ages will enjoy its capabilities, the
powerful ideas and its framework directed to
problem-solving and computer literacy.

ACKNOWLEDGEMENTS

| would like to offer my most sincere and ap-
preciative thanks to Mr. Laurie Fountain of Com-
modore Canada for his time and assistance. He
gave me access to the Commodore Logo and its
manual before marketing in Canada, and provided
explanations of programming details. Thank you
very much.

TABLE 1

References, Books and Magazines for teaching
and using Logo

Abelson, H. and A. diSessa. Turtle Geometry,
Cambridge, MA: MIT Press (1981)

Beardon, D. One, two, three, my Computer and
Me: a Logo funbook for kids, Reston, VA: Reston
Publishing Company (1983)

Beardon, D., K. Martin and J. Muller. The Turtle’s
sourcebook, Reston, VA: Reston Publishing Com-
pany (1983)

Burnett, J.D. Logo: an introduction, Morristown,
NJ: Creative Computing (1983)

BYTE magazine, Logo issue, August 1982

107

Best of The TORPET

Other Languages

Goldenberg, E. Special Technology for Special
Children, Baltimore: University Park Press (1979)
Minnesota Educational Computing Consortium
(MECC) Apple Logo in the classroom. MECC -
Distribution Centre, 2520 Broad Dr., St. Paul, MN
55113

Papert, S. Mindstorms; children, computers and
powerful ideas, New York: Basic Books (1980)
Thornburg, D. Discovering Apple Logo, Reading,
MA: Addison-Wesley (1983)

Watt, D. Learning with Logo/Learning with Com-
modore Logo, New York: BYTE Books-McGraw
Hill (1984, in press)

Young People’s Logo Association, 1208 Hillsdale
Drive, Richardson, TX 75081. This association is

one of the leading groups in educational Logo.
The YPLA has members throughout the world.
Young people 18 and under can receive their
newsletter, Turtle News, at no charge. YPLA asks
adults to contribute US $25 per year to receive
Turtle News plus the Logo Newsletter, which is
oriented towards adults. YPLA also has exchange
disks and tapes at US $10 each or at no charge
when exchanged for a working program.

The National Logo Exchange, P.O. Box 5341,
Charlottesville, Virginia 22905, publishes a non-
commercial newsletter monthly from September
through May at a subscription price of US $25.
Computer magazine has a regular feature called
Friends of the Turtle, with the latest news on
Logo.

| JUST DISPROVED EINSTEIN’S THEORY OF RELATIVITY

108

Best of The TORPET

Other Languages

Simon’s BASIC

By Dr. Efraim Halfon, Burlington, Ont.

When a 16-year-old teenager bought his Com-
modore 64 in England he wondered why Com-
modore had not provided a BASIC language that
could handle high resolution graphics, music and
text rather than having to rely on PEEK’s and
POKE’s. He then set to work and developed over
100 new BASIC commands for the C-64. This addi-
tion will provide Commodore users with program-
ming capabilities better than those available on
the Radio Shack Colour computer and Texas In-
struments among other personal computers.

The extra commands of SIMONS BASIC fall into
twelve broad areas. The attached table 1, shows
an abbreviated description of all commands. The
programming aids facilitate BASIC programming,
for example AUTO automatically generates pro-
gram line numbers and RENUMBER automatical-
ly renumbers all the program lines. This renumber-
ing does not include the GOTO or GOSUB
numbers but SIMONS BASIC has the capability
of calling subroutines by name (PROC command)
and therefore this is not a problem. In the
subroutines, variables may be made LOCAL so
that the same name can be used as in the main
program without having to change variables’
names in the subroutine. The GLOBAL command
restores the original values to local variables. The
MERGE command can be used to merge two pro-
grams, one in memory and one saved on disk or
tape. The OPTION 10 command highlights
SIMONS BASIC commands while the program
is listing. The OPTION command only works
with the parameter 10 and other numbers do not
seem to make any difference. The KEY command
enables the user to program the function keys
quite easily. | liked this feature very much since it
makes programming much easier and concise.

In addition to programming aids there are pro-
gram debugging aids such as the command
TRACE that displays on the screen the number of
the program line being executed. The command
DUMP displays values of all non-array variables.
These debugging aids are quite useful. For
security-minded programmers the command
DISAPA marks lines that should not be listed. The
command SECURE executes the security part and
lines marked for security can never be listed. The
manual suggests that the programmer keeps for
his own safety a non-protected version. The only
disadvantage | found is that all lines that need to
be protected must be marked with DISAPA which,
for some users, may be the whole program.

Character strings can be manipulated with the IN-

SERT, INST, PLACE, DUP and CENTRE com-
mands. Other commands such as INKEY and
FETCH provide control over which inputs can be
accepted by the program. All these commands im-
prove programming flexibility. For mathematical
programs six new commands, MOD, DIV, FRAC,
%, $ and EXOR can be useful. However, | do not
expect that the average user would have much
use for MOD and DIV (see Table 1) but they are
nice to have for programmers accustomed, for ex-
ample, to FORTRAN.

Two disk commands DISK and DIR are also pro-
vided. The DISK command saves the effort of pro-
gramming the OPEN, PRINT# and CLOSE com-
mands when some disk operations are required.
Thus, disk initialization, formatting and file scrat-
ching can be performed with one command. The
DIR command enables all, or a selective part, of a
diskette directory to be displayed on the screen.
This command replaces the LOAD “$’,8 com-
mand.

The high resolution graphics commands are really
excellent but for a lack of consistency on
parameter order in the various commands. (Table
2). The high resolution commands allow standard
high resolution and multi-colour modes.

In high resolution the screen is 320 pixels wide
and 200 long, in multi-colour mode 160 pixels wide
and 200 long. Plotting and background colours
can be chosen and changed rapidly and easily,
the HIRES and MULTI commands allow a rapid
change between standard high resolution and
multi-colour. Different parts of the screen can be
in different colours and different modes. In high
resolution mode different colours can be pro-
grammed in different parts of the screen so that
high resolution plots with several colours are
possible. Several standard geometrical figures
can be plotted on the screen, rectangles, circular
shapes and shapes of any form. Once drawn,
these shapes can be PAINTed. The high resolu-
tion screen can also include text and the CHAR
and TEXT commands print characters and
character strings on the graphic screen, respec-
tively. The CSET command with option 2 allows
the display of the last high resolution screen; this
feature is quite useful for games.

The only problem that | found is that the user can-
not save on disk a high resolution screen once
this is programmed. In fact, SIMONS BASIC

could be used to program fast arcade games

109

Best of The TORPET

Other Languages

which require several high resolution screens. At
present only the last one can be immediately
recalled with the command CSET 2. If another
screen is needed in a game, it must be drawn
anew. Drawing is fast but not immediate as it is
required in an arcade style game. For example,
when | was introduced to SIMONS BASIC the
first time, it took me only about three minutes to
program a high resolution screen for a game,
which previously took me over ten agonizing
hours with regular BASIC and PEEKs and POKEs.
Unfortunately | could not take it home with me
and this was disappointing. The fact is that to
save memory space most of the RAM memory us-
ed is under ROM. For example, since the high
resolution screen is under the kernal, this memory
area can only be POKEd but not PEEKed, thus the
tnability of saving a screen. The rest of
SIMONS BASIC isin the 8K reserved for the car-
tridge and in the RAM under the regular
BASIC ROM. Thus, SIMONS BASIC only
reduces the regular BASIC memory by 8K. Quite
an accomplishment!

Not all graphics commands are for the high
resolution screen, some are for the low resolution
screen. For example the FLASH command
flashes screen colours at variable speeds, from
very slow to maddeningly fast. The same is valid
for the border colour (BFLASH). The FCHR, FCOL,
FILL, MOVE, and INV commands are used to fill
areas of the screen with characters and colours
and to move data from one part of the screen to
another. | really enjoyed the SCROLL commands.
The user can define several windows and in each
window scrolling is allowed up, down, right and
left. On a screen all four scrolling directions can
take place simultaneously. Visually the scrolling
capability is excellent.

Sprites and special characters can be easily pro-
grammed with the nine special commands.
Sprites can be created within a program, stored
and modified. User’s specific graphic characters
can also be easily programmed. Even if several
software programs now exist on public domain to
produce sprites, it is useful to have specific com-
mands that can be easily used within a program.
SIMONS BASIC also includes four structured pro-
gramming commands, such as IF THEN ELSE,
REPEAT UNTIL and LOOP. The structured pro-
gramming part also includes commands which
prevent a BASIC program from crashing by trapp-
ing program errors;ON ERROR GOTO, for exam-
ple, helps in program debugging.

The five music commands are all that music pro-
grammers want to compose simple and complex
melodies. No more PEEKs and POKEs and com-

plex calculations to produce the appropriate
notes with the appropriate tempo (the function
keys take care of all timing and note duration).
With SIMONS BASIC music composition was in-
stantly open to me. The only objection that | have
is that perhaps the commands, especially the
MUSIC command, are too sophisticated. To play
music the average user may want to use the
public domain programs ORGAN and PIANO. The
latter one especially allows one to play the
melody and save automatically the notes on disk
or tape. With the MUSIC command all notes and
the duration of each note within each voice must
be individually programmed and entered through
the keyboard. However, for specialized applica-
tions and games where music is important, then
the MUSIC commands are excellent. For example
the PLAY command can be used to play the music
while the program continues its execution or to
stop the program execution until the music is
finished, PLAY 2 and PLAY 1 respectively. | did
not find much use for PLAY 0, which supposedly
stops the music, but the last note continues on.
When | wanted the music stopped in a program |
preferred to use the VOL 0 command.

Finally, four commands, PENX, PENY, POT and
JOY allow a program to read the coordinates of a
light pen, the resistance of the paddle and the
direction of the joystick. These commands greatly
simplify programming games and graphic ap-
plications.

Overall | found SIMONS BASIC a very good addi-
tion to the BASIC commonly provided with the
C-64. From now on complex programs can be
developed in BASIC since the execution of most
commands is at machine language speed.

The programming and debugging aids are quite
easy to learn and use and | particularly enjoyed
working with high resolution graphics with an
ease never before obtained on the C-64. While
SIMONS BASIC will be marketed by Com-
modore | understand that several independent
software firms have their own versions of BASIC
that they plan to market soon. Some will have
some features similar to those of SIMONS BASIC,
probably for high resolution graphics and music,
but | expect that few will have all the comprehen-
sive commands that this package has. My recom-
mendation would be to use it only if you can use
the special capabilities. That is if, you do not par-
ticularly enjoy POKEing and PEEKing, and if you
want to reduce your programming time several
folds, such as happened to me. A reduction of
from ten hours to a few minutes is probably worth
the expense of the cartridge. The manual is very
well written, comprehensive and with several ex-

110

Best of The TORPET

Other Languages

amples. The error messages are clear and infor-
mative.

TABLE:1:
SIMONS BASIC Commands

Programming Aids:

to assign a command to a function key

KEY

AUTO automatically generates program line numbers
at a specified interval

RENUMBER automatically renumbers all the program lines

PAUSE pause number of seconds

LIM to determine the number of the screen line on
which the cursor is positioned

CGOTO to compute the line number to which the pro-
gram should branch

RESET to move data pointers to a specified line of data

MERGE to merge two programs

PAGE to divide a program listing into ‘pages’ of n lines

OPTION 10 to highlight SIMONS BASIC command while pro-
gram is listed on the screen

DELAY to vary the rate of scrolling of a program listing

FIND to search a BASIC program for a character str-

ing on display line where it occurs

Program Debugging Aids and Program Security

TRACE to dispiay the number of the program line being
executed

RETRACE to resume tracing after editing a program

DUMP to display values of all non-array variables

COLD resets the C-64 to the start of SIMONS BASIC

OLD reverse NEW command

DISAPA to indicate that the code in a program line is to
be hidden

SECURE to hide all program lines beginning with DISAPA

Input validation and text manipulation com-
mands:

INSERT to insert one character string into another

to overwrite a string beginning at a specified
position

INST

PLACE 'to determine the position of a string within a str-
ing

DUP to duplicate a character string n times

CENTRE to centre a character string on a screen line

USE to format numeric data, i.e. to align decimal
points

PRINT AT toprint a character string at a specified location

FETCH to limit the type and number of characters for
user input

INKEY to test for a function key input

ON KEY to branch to a specific point in a program

DISABLE to terminate ON KEY command

RESUME to reinstate ON KEY command

Arithmetic operators:

MOD(x,y) to return the remainder when one integer is
divided by another

DIV(x,y) to return the largest integer which, when
multiplied by y is equal or less than x

FRAC to return the fraction part of a number

% binary to decimal conversion

$ hexadecimal to decimal conversion

EXOR to perform exclusive OR between two numbers

Diskette commands:

DISK to open a diskette channel and then close it
when the operation is executed

DIR to list some or all of a diskette directory

Graphics:

HIRES to initidlize high resolution graphics mode and
select plotting colour and screen background
colour

REC to draw a rectangle

MULTI to initialize multi-colour graphics mode and
select three plotting colours

LOW COL to change plotting colours

HI COL to revert back to originally selected plotting col-
ours

PLOT to plot a dot

111

Best of The TORPET

Other Languages

TEST to return the state of a screen location, dot plot-
ted or not

LINE plot a line

CIRCLE to plot a circular shape

ARC to draw an arc of a circular shape

ANGL To draw the radius of a circle

PAINT to fill an enclosed area with colour

BLOCK to draw a fully shaded block of colour

DRAW to design a shape of any form

ROT to rotate a shape

CSET to select one of the character sets or recall and
display the last high resolution screen

CHAR to print single characters on a graphic screen

TEXT to print a character string on a graphic screen

COLOR to set screen background low resolution

Screen Manipulation

FLASH to flash a screen colour at variable speeds
OFF to turn off FLASH
BFLASH to flash border screen at variable speeds
BFLASH 0 to turn off BFLASH
FCHR to fill an area of the screen with a character
FCOL to change a character colour
FILL to fill a defined area on the screen with a
specific character in a particular colour
MOVE to duplicate a section of screen data on another
part of the screen
INV to inverse a specifed screen area
Scrolling:
LEFT, RIGHT, toscroll an area of the screen within a window in
UP. DOWN any direction. Also several parts of the screen
’ can scroll in different directions at the same
time
SCRSV to store data from a low resolution screen on
disk or tape
SCRLD to display screen data previously stored
COPY to produce a hard copy of a graphic screen
HRDCPY to print low resolution screen data

Sprite and User-defined Graphics:

DESIGN to allocate memory space for a MOB (moveable
object block or a sprite)

@ to set up the design grid for MOB

CMOB to set up colours for multi-colour MOB

MOB SET to set a MOB, i.e. MOB initialization

MMOB to display and/or move a MOB

RLOC MOB to move a MOB between two screen locations

MOB OFF to clear a MOB from the screen
MEM to move a character from ROM to RAM
DESIGN allocate memory for characters defined by user

Structured Programming:

IF THEN If condition THEN true: ELSE false

ELSE

REPEAT UNTIL REPEAT loop UNTIL condition is met

RCOMP to re-execute latest IF THEN ELSE test

LOOP EXIT LOOP program loop EXIT IF condition true END

LOOP

Program Procedures: to call subroutines by name
rather than number

PROC to label program subroutine

END PROC end of a procedure (subroutine)

CALL call procedure name, to continue program ex-
ecution from a specified line of code

EXEC to call a program routine and return to the line
following the call when the procedure has been
completed

LOCAL to assign variables to specific program routine

GLOBAL to restore original values to local variables

ON ERROR |ine number traps program errors

GOTO

NO ERROR disables ON ERROR GOTO command

ouT to re-enable ‘64’ error handling routines

Music Commands:

VOL volume level

WAVE to set music voice type, synchronization and

ring modulation

112

Best of The TORPET Other Languages

ENVELOPE to define shape of sound played, attack, decay
sustain and release

MUsIC
to compose music and save notes
PLAY Erro .
to play the music r messages:
Read Functions: SIMONS BASIC has nine error messages to point
out specific mistakes.
PENX x coordinate of light pen
PENY y cordinate of light pen
POT returns resistance of paddle 0-255
JOoy test direction of joystick

SIMONS BASIC Graphic Commands in High Resolution
and Low Resolution Modes.

SIMONS BASIC

Syntax of Text Commands

LC

'
1
]
1(X,Y)
TR ecwd- T NOTE: X=LC

wiNDOW | DEPTH Y=TR

“~WIDTH - !

Scroll A Window

UPB TR, LC, Width, Depth
Similarly for UPW, LEFTB, LEFTW, RIGHTB, RIGHTW, DOWNB, DOWNW

Note: The first two parameters are the coordinates of the top left corner of the window in reversed order.

Reverse A Window
INV TR, LC, Width, Depth

Fill A Window With Colour
FCOL TR, LC, Width, Depth, Colour

Fill A Window With A Character
FCHR TR, LC, Width, Depth, Character

Fill A Window With A Character In A Specific Colour
FILL TR, LC, Width, Depth, Character, Colour

Move A Window
MOVE TR, LC, Width, Depth, Destination Row, Destination Column

Fiashing
FLASH Colour, Speed (OFF turns flashing off)

BFLASH Speed, colour1, Colour2 (BFLASH 0 turns flashing off)

113

Best of The TORPET Other Languages

Print At A Specific Spot
PRINT AT(x,y)"“text” etc.

Syntax of Hires commands

Plot Types

HIRES MODE: 0 =clear dot MULTI-COLOUR MODE: 0 =clear dot
1=plot dot 1=plot dot(col.1)

2 =reverse dot 2=plot dot (col. 2)

3 =plot dot (col. 3)
4 =inverse dot col.

Turn On High Resolution Graphics
HIRES Plotting Colour, Background colour

Change to Multi-Colour Mode
MULTI Colour1, Colour2, Colour3

Change colour Registers
LOW COL Colour 1, Colour2, Colour3

Note: — In HIRES mode, colour 2 should be the same as the background colour, otherwise the entire 8x8 block in which plotting
takes place gets changed to colour2. (This can sometimes be useful, e.g. drawing a solid ‘thick’ border).

— In MULTI-COLOUR mode, colour1 corresponds to plot type 1, colour2 corresponds to plot type 2, and colour3 corresponds to plot
type 3.

Restore Original Plotting colours
HI COL

Draw A Rectangle
REC x,y, Width, Depth, Plot Type (%,Y)

DEPTH

WIDTH
Plot A Single Point
PLOT x,y, Plot Type

Test to See If A Specific Pixel Is On

TEST(x,y) [0 = pixel off: 1= pixel on]
x,y,)

Draw A Line
LINE x, y, x,, ¥,, Plot Type

x.y)

Draw A Circle
CIRCLE x, vy, xR, yR, Plot Type

Note: For a true circle x ; should equal 1.3xy

114

Best of The TORPET Other Languages

Draw An Arc
ARC x,y, Starting Angle, ending Angle, Increment, x ar YR Plot Type

Note: Angles are measured clockwlse with 0 degrees being straight up.
ANGLE

(x,y)

Paint A Reglon

PAINT x,y, Plot Type

Draw A Block (x,y)
BLOCK x,y,x ,y . Plot Type

x,.Y,)

Draw A Shape
DRAW ‘shape string’,x, y, Plot Type

ROT Rotation Number, Size (Rotation Number — rotates in steps of 45 degrees.)

Print text On Hires Screen

TEXT x,y, .| control character string”, Plot Type, Size, Increment
character

CTRL A =uppercase/graphics

CTRL B =upper/lower case

Dr. Halfon is a research scientist with the Federal
Government. He has been a member of Toronto
Pet Users Group since November 1982, and
bought a C64 in March 1983. In his work, he uses
mainframe computers to develop simulation
models describing the fate of toxic substances in
the aquatic environment, Lake Ontario and the
Niagara River. He has used his C64 to teach his
wife and children about computers. He is a heavy
user of the public domain educational programs
provided by Commodore.

115

Best of The TORPET

Other Languages

What Really

By Steve Rimmer, Toronto, Ont.

A very long time ago, eons measured in machine
cycles, a company down in California that wasn’t
much of anything at the time released a disk
operating system written for the 8080 processor
called CP/M. Nobody was particularly sure what
CP/M was, or what it was good for, or why they
needed it right then because, in fact, you had to
own a middle Eastern sheikdom to even afford a
disk drive at that particular juncture of history.
However, Digital Research put ads for the thing in
Byte and Kilobaud and obviously managed to sell
enough of it to stick around.

As the price of disks, and computer hardware in
general, came down, and more people got into do-
ing practical things with their computers above
and beyond making the lights on the front panel
count up to sixteen in binary, there came to be a
need for a way to intelligently deal with disks. Ear-
ly disk users were constantly being forced to re-
invent the wheel of file handling and error trapp-
ing, which was a drag, and, as such, people
started to buy disk operating systems. It was at
this time that CP/M began to be recognized for
what it truly is; a slow, archaic, poorly written
piece of software which just lucked out and hap-
pened to do exactly what a lot of people happened
to want to do. The lads at Digital Research began
to take in money.

There are two groups of people in the world as
regards CP/M. First off, there are the enlightened
few. Secondly, there are about four billion ex-
amples of the totally mystified. If you are within
the latter contingent you might want to read on
and see what all the furor is about.

CENTRAL CONTROL

A good way to explain exactly what CP/M
is..somewhat...is by using a PET. A PET can’t ac-
tually run CP/M, as it has entirely the wrong pro-
cessor and is actually quite aside from the whole
topic. However, ignore that. It happens that
machine code programs which are written on one
PET (or, in fact, any CBM computer) will run on
any other type of PET due to the existence of a
ROM architecture called a Kernel. This is also
referred to as a “‘jumbo jump table”.

A jumbo jump table is a minor waste of memory
which lives up at the very top of the CPU’s ad-
dress range, up in the FF’s. All it is is a great str-
ing of JMP instructions to other routines in the
ROM which could have been jumped to directly.
However, as it is, these routines are at different

is CPIM?

(Reprinted by permission from Computing Now!, April 1983)

locations in every different permutation of PET
that’s been released. The locations of their cor-
responding JMPs in the jumbo jump table,
however, are all the same. Thus, for example, a
programmer can write a program which jumps to
location $FFD2 to print a character on an old ROM
8K PET and know that it will run just as well on a
brand new VIC-20. All the useful I/O is handled
through the jumbo jump table.

This is what CP/M does, on a grander scale. It con-
sists of two bits, primarily. First, there’s the CCP,
which takes what it is given, both in terms of in-
structions from the human world and calls from
machine language programs and deals with them.
Secondly, there is the BIOS. The CCP is the same
on everybody’s system, and, whenever it wants to
communicate with some peripheral, like the
screen or a disk, it flags a character at the BIOS
and says something like “‘This goes to the screen.
Where the screen happens to be is your problem.
I'm going for a nap.”

The BIOS is system specific. It is written especial-
ly for whatever computer is using it. It knows
which ports have which peripherals and how to
deal with all the 1/O. It is, in the normal course of
events, the only thing which needs to know what
system a program is running on. The actual soft-
ware can go from an Osborne to a Multiflex to a
Xerox to a Northstar and on and on without ever
having to have a single byte changed.

Highly useful stuff, this, and it’s all the theoretical
headbending we’re going to get into. For, you see,
CP/M does a great deal more. It’s not just a
peripheral handling routine. When you buy a CP/M
package you get between one and two dozen
useful little programs, called utilities, and, as the
documentation on them isn’t all that explicit as to
exactly what they’re for, it may be worth a dig to
find out just what all the file names do when you
let 'em rip.

COMmunism

When you turn on your computer and load up the
CP/M disk, the machine will start itself up, called
a ‘“cold boot”, print a copyright notice and give
you an A, which is called a prompt. It means that
you are “logged on” to disk drive A. This, in turn,
means that anything you do will happen to the
files on disk drive A unless told otherwise. A bit of
a waste if you've only got one drive on your
system, | suppose...

116

Best of The TORPET

Other Languages

If you type a B and a carriage return you’ll be logg-
ed onto disk drive B. A letter with a colon after it
always refers to a disk drive.

If you change the disk in the drive you are logged
onto, you will have to get the attention of the com-
puter again and tell it that you've upset its precise
little environment by causing it to execute a
“warm boot”. A warm boot is what happens
whenever the machine wants to return to just be-
ing logged onto a disk, and looking at a prompt,
after running a program. Since you haven’t run a
program you’'ll have to do it by hand by typing a
CTRL C. This will give you a new prompt on a new
line.

A CTRL C is just a way of making the machine ig-
nore the fact that what it’s looking at isn’t exactly
what it was expecting, which is what it will see if
you’ve swapped disks unexpectedly.

There are a few other CTRL codes that CP/M will
recognize. CTRL H is the backspace, and is pro-
bably generated without your being aware of it by
the DEL key of your computer. CTRL X will wipe
out a whole line of text without backspacing to
the prompt by hand. CTRL R will retype a line,
which isn’t very useful on a screen, but was good
when computers used teletypes. As was mention-
ed previously, CP/M has its archaic bits.

CTRL P echoes everything on the console out to
the printer. Hitting it once toggles it on, and hit-
ting it a second time shuts it down again. CTRL S
stops whatever is happening on the screen until
the CCP receives a second CTRL S... essentially a
“HOLD” key.

THE BUILT-INS

CP/M can do five things all by itself, none of which
are much good all by themselves, but they do take
on enormous proportions later on. Specifically, it
can execute the built in commands ERA, SAVE,
REN, DIR and TYPE. These are erase a file from
the disk, save some pages of memory as a file on
the disk, rename a file on the disk, put up a direc-
tory of the files on the disk and type a file from the
disk onto the console...which is what CP/M likes
to call the screen.

First off, it is useful to note that when you put a
file on the disk with CP/M...a file is anything that’s
stored, such as a program, a text file and so
on...the system stores the file proper somewhere,
but, before doing this it puts the name of the file
and a pointer to where it will be on the disk into
what is called the directory track. This means, for

example, that when you tell the CCP to get you a
particular file, it doesn’t have to go through the
whole disk...which would take many minutes...but
just to scan through the directory and get the
location of what you’re after. This also means that
erasing a file just involves destroying its name
and its pointer on the directory track. Later disk
writings will overwrite its actual contents as the
space it occupied before erasing won’t be pro-
tected by pointers.

DIR produces a directory simply by printing up the
directory track in an attractive format.

There’s an interesting thing about DIR, though. It
can use wild cards. Wild cards are called ‘“am-
biguous specifiers”.The wild card symbol is an
asterisk. Whenever you use a wild card you are
telling the CCP “‘this part of whatever I’'m talking
about can be anything that will fit.”” File names in
CPIM consist of eight letter names left of the
period, a period (you might have guessed that)
and a three letter extension. The extensions are
meaningful; we’ll get to that. If, for example, you
wanted to see what files were on the disk which
had the extension .COM, you could use a wild
card with DIR. DIR* .COM refers to all .COM files.
If you wanted to know what files began with the
letter Q, you could say DIR Q*.*.

Wild cards work with DIR and ERA. If you ask ERA
to use *.*, which means all files with names (all
files), it will ask you if you really want to go ahead
and kill off everything on the disk.

The built in commands, as is usually the case with
all CP/M programs which relate to the disks, can
also use disk specifiers. For example, if you
wanted to know what files were on disk B you
could log onto it and then call for DIR, or you
could say DIR B:, which would look at B while still
on A. You can also say B:DIR, which is not quite
the same thing, as it is saying “log onto disk B for
a second and do a DIR".

All the other commands associated with CP/M are
called transients, as they get loaded into RAM, ex-
ecuted and then trashed. A transient is called a
COM file. The CCP is set up so that the only kind
of file it will recognize as a runnable program and
thereupon try to execute is one with the extension
COM.

A COM file can be invoked...a fancy way of saying
“run”...by typing its name. PIP COM is a runnable
COM file. To do a PIP, you’d just type PIP and a
carriage return. Now, as to why anyone would
want to PIP...

117

Best of The TORPET

Other Languages

PIP AND OTHER WONDERS

When you get your CP/M disk, it will have a
number of programs on it, as we’ve said, and none
will immediately make sense because they’re not
really supposed to. Exactly what you get will vary
with the supplier of your CP/M package. CP/M
suppliers are software houses which, essentially,
take the generic CP/M package, write BIOS’s to
suit specific popular computers and then
package the whole works up in a reasonably
understandable fashion. Among these software
houses are Lifeboat, National Multiplex/Pegasus,
Pickles and Trout and Magnolia. Most of these
suppliers also add their own utilities to the pot,
which will confuse things.

The most useful program on the disk is called PIP,
which stands for Peripheral Interchange Program.
Its primary use is in copying disk files, but it has a
large number of options available on it. We won’t
look at them all, as some are really obscure, but it
will be useful to understand exactly what PIP can
accomplish.

PIP is set up to provide communication between
any peripheral on a system, and CP/M treats vir-
tually all I/O as peripherals. This includes the disk
drives, the printer, the screen and keyboard and
any ports. It is an interesting bit of prehistory, ac-
tually, to see what CP/M calls its peripherals...ex-
cluding the drives there are CON, for console,
LST, for the list device, PUN, for the card punch
and RDR for the card reader! What, no card reader
on your system? It doesn’t matter...nobody else
has one either. These virtual devices are just
references, and can be assigned to any ports you
like.

The CON is usually assigned to the keyboard and
screen. The LST is the printer. The PUN and RDR
become the serial port and we’re out of the
vacuum tube age.

PIP can, first off, be used just to communicate
between disk drives, which is what it defaults to
doing if it isn’t told to work with one of its assign-
ed peripherals. To move a file from one drive to
another, one can say PIP A:=B:FILENAME. One
can also change the name of the file in the pro-
cess by specifying a destination file name for PIP
to load the data into, i.e., PIP A:WOMBAT.
DOC =B:PENGUIN DOC. If both disks involved
happen to be the same, you’ll copy the file on the
same disk.

If there happens to be a file called WOMBAT DOC
on disk A prior to PIPing, most versions of PIP will
cheerfully over-write it. Some tell you about it and

inquire after your feelings on the matter.

In the same way, PIP can be used to communicate
with its peripherals. For example, you could say
PIP PUN: = A:WOMBAT DOC to send a file out to
the serial port. In this way, files can be PIPed bet-
ween two machines which don’t have other, fan-
cier communication software.

PIP has a number of options which can be
selected by toggles. Toggles are enclosed in
square brackets after the stuff we’ve just been
looking at and are valid for the one command line
only. There are quite a number of these things, but
only a few are immediately useful. To wit, these
are V,E,F and Z.

All PIPing should be done with V toggle in use, as
it causes PIP to verify what it copies. Thus, mov-
ing files around should be done as PIP
A: = B:WOMBAT DOCIV] to insure that what you
send is what you wind up with. The E toggle
causes whatever is being PIPed to be echoed up
to the CON device, i.e., the screen. The Z and F
toggles are used together, and have one practical
function of stripping off the high order bytes in
text files created by some word processors, such
as Wordstar.

There is actually a heap of other things that can
be done with PIP, but these functions tend to be
more specialized, and, as such, can be dug out of
the Digital Research manual if and when they’re
required.

Another useful disk utility is STAT, which is very
much less complicated than is PIP. |f you type
STAT, you will find out how much free space is on
the disk in question.

ASM is a Z-80 assembler. it takes a text file of Z-80
machine code mnemonics and does the first pass
of an assembly which will eventually produce a
COM file. These text files are identified by the ex-
tension ASM. you may have DUMBTERM.ASM on
your disk. If you were to type ASM
DUMBTERM.ASM, you would be on the way to
getting DUMBTERM.COM...which is probably a bit
pointless, as this file is usually already provided.
However, it's the idea that counts.

ASM also checks for compilation errors.

It is beyond the scope of this article to get into
writing Z-80 ASM code. Suffice it to say that, once
you have done so, or obtained some from some
other source (infinitely easier), you can ASM it
and, if it is error-free, you will have, along with
your ASM file, several other files with the file

118

Best of The TORPET

Other Languages

name of your original ASM file but the extensions
PRN and HEX. PRN is a second text file which has
the original ASM file’s statements plus the
resulting object code plus any ensuing error
;nessages. HEX is just the object code in textual
orm.

The HEX file contains a bunch of hexadecimal
numbers which must be converted into actual
bytes. This is done by a second utility called
“LOAD”. If you type LOAD WOMBAT you will get
a file called WOMBAT.COM, which can be ex-
ecuted. The PRN and HEX files can be erased
afterwards.

DDT is another assembly language tool which,
once again, is too heavy to cover in this article.
Basically, it is a very complex run time environ-
ment simulator which permits the programmer
(yourself) to execute programs in a controlled set-
ting so you can watch them and keep them
paranoid. It has a dis-assembler for looking at lit-
tle bits of object code and a simple interpretive
assembler for doing “patches”..quick fixes on
your program.

SYSGEN is the system generator. It is primarily
useful when you are making up new disks. It can
copy the system from an existing disk onto a new
one. Depending upon whose SYSGEN you use,
you may be able to specify a number of the
parameters involved in this transfer. SYSGEN can
also take a system out of memory and install it on
a disk, which permits one to modify the CCP and
then install it as a working system on a new disk.

FORMAT sets up the data storage format for a
new disk. In most cases, you can specify single,
double or extended density formatting. There is
an obvious trade-off here; high density means
more data on the disk, but it also means that each
track occupies less area, which means that glit-
ches that arise in the magnetic surface are more
likely to cause later problems. Extended density
disks will tend to have shorter useful lives for this
reason, and very cheap disks will often not be
much good formatted at high densities. Disk er-
rors will show up as BDOS ERROR, WRITE ER-
ROR, READ ERROR, and so on.

DUMP is a program which will take any sort of file
and display it on the screen. On the left-hand side
of the display will be the file in object form, a
bunch of hex numbers. In the more useful ver-
sions of DUMP, the right-hand side of the screen
will have ASCII characters for all the printable hex
values which permits one to get oriented amidst
the stream of data flowing by. DUMP is executed
by typing DUMP WOMBAT.COM, or whatever.

FURTHER ADVENTURES

Knowing how CP/M works is only haif the battle.
You can actually get that, for the most part, from
the Digital Research books if you are prepared to
dig a little. Well, a lot then. However, there are a
number of conventions which have grown up
around CP/M in the years since it was first handed
down from on high, and these are very useful to
keep in mind.

First off, it will be noted that one Digital Research
transient which we haven’t looked at is the one
called ED. ED is described as a “powerful contex-
tual editor”. ED is too archaic even to con-
template using, and is best ignored if you have
something better to hand.

Wordstar is coming to be pretty well universal on
CP/M systems. It’s expensive but worth it, as it
does double duty as a word processor and pro-
gram editor. The D option does letters and text,
providing justification and generally messing
things up with control characters. N is for non-
documents, such as ASM files.

You can’t Wordstar with a COM file. You also
can’'t TYPE one.

Files come in all types. Wordstar consists of
WS.COM, which is what you type to get it going,
plus two or three OVL files, depending upon
which version you have. These contain the
overlays, which include the menus and certain op-
tional routines which get called in upon com-
mand. Wordstar also creates files, these called
BAK files, which contain the version of the docu-
ment being edited prior to editing.

BAS files are programs created by MBASIC, the
CP/M version of Microsoft disk basic. MAC files
are ASM files for a different assembler program,
called MAC. MAC itself produces a different type
of file called SYM, for symbols. MAC'd files are
still LOADed in the usual way.

Then there are C files, for files to be used witha C
compiler, usually BDSC. DOC files refer to on-disk
documentation. If, for example, you get a file call-
ed PROGRAM.COM and another called PRO-
GRAM.DOC, the COM file is to be run and the
DOC file is to be TYPEd to see what’s going to
happen. Tarry not over a program called
DOC.COM, which is a utility.

There are also OBJ files, for object code. These
are just COM files that won’t run because the CCP
wants to see the word COM. These can be renam-
ed into COM files and executed.

119

Best of The TORPET

Other Languages

$3$$ files are encountered only when something
has gone wrong. For example, if you try to PIP a
file onto a disk which has a bad sector or insuffi-
cient room to accommodate it, you will get a file
with the right name but a $$$ extension, in-
dicating that it’s a disaster. $$$ files frequently
occupy no space at all on the disk, being there on-
ly as indications that something is amiss.

Lastly, there are QQQ files, or squeezed files. If a
normal file with an extension is squeezed, the
middle letter of the extension will be changed to
Q. If it had no extension, all three letters become
Q. However, it’s interesting to note that a squeez-
ed file retains the name of the original unsqueez-
ed file at the beginning of it, and even if the
squeezed version is renamed prior to unsqueez-
ing, the straight file will come out with its original
name and extension.

Squeezed files are files that have been specially

compacted to take up the minimum amount of
room.

IN DISKguise

This is certainly not all there is to CP/M; it’s a vast
and complex operating system. However, these
have been some of the more useful conventions
and general bits about the system which should
make getting into it a little easier. Many disk
operating systems have tried to improve on this
aging beast, but none has even begun to ap-
proach its widespread use. There are more
sophisticated programs available for CP/M than
for practically any other small operating system,
and, while it’s far from optimum in many respects,
its very lack of specialization has made it suitable
for a huge number of applications.

You just have to ignore the references to card pun-
ches.

Best of The TORPET

Other Languages

CP/M Now A Reality With Commodore

By Tony Ning & Rick Denda, Toronto, Ont.

Good news for all you Commodore enthusiasts,
CP/M is now available on 4000/8000 series
machines via the Madison Z-RAM board. In case
you are wondering why there is so much interest
in CP/M, quite simply, it is currently one of the
most popular Operating Systems available for
micro-computers. CP/M will open doors to a range
of good software that easily could multiply the
number of applications available for your Com-
modore systems ten-fold. Furthermore, since
Commodore recently announced CP/M com-
patibility options for the C-64 and most of their
next generation computers, it would be timely to
describe CP/M in some detail.

WHAT IS CP/M?

CP/M stands for Control Program for
Microprocessors, a fancy term to describe an
Operating System. At the lowest level, all
operating systems perform the same tasks: get
data from the keyboard, print information, and
handle disk activities.

One major problem in running software on various
computers, was that many had unique Operating
Systems, since initially virtually all micros were
developed independently. Thus, the user was
generally limited to software created for a par-

ticular machine. Digital Research recognized the
shortcomings and developed CP/M in an attempt
to standardize an operating system for small com-
puters. Since then, CP/M has blossomed into the
most widely accepted and used operating system
in the world for micros.

CP/M is essentially the same on all machines
although there may be small variations e.g. ver-
sion 2.2,3.0, etc.. It is likely that programs written
under CP/M can run on machines which support
it. That’s quite incredible. The result, more soft-
ware has been written in CP/M than any other
Operating System in the micro-computer industry
today.

CP/M ON COMMODORE

CP/M usually comes in the form of programs that
reside on disk and are loaded into a specific
memory location in the computer. In the case of
Commodore computers, there are two hardware
requirements that are not present for CP/M. Since
CP/M was originally designed around the 8080
microprocessor and Commodore equipment uses
either a 6502, 6510, 6809, etc.., the instruction
sets are not compatible, thus an 8080/Z80
microprocessor must be added to the Com-
modore computer. The second requirement is that

120

Best of The TORPET

Other Languages

the system must have at least 48K of user memory
or RAM. For the 4032, 8032, and SuperPET, CP/M
can be incorporated by using an add-on CP/M
board. The most popular board is the Madison
Z-RAM board which is available from most Com-
modore dealers or you may contact the Canadian
distributer, Computer Workshops Ltd, 465 King'St.
E. Unit 9, Toronto, Ont. M5A 1L6, phone
(416)366-6192. The Madison board consists of a
Z-80 microprocessor (8080 compatible), a 6502
processor and 64K of additional RAM. When used
in conjunction with a 4032, 8032 or SuperPET, a
total of 96K usable memory is available to support
programs requiring 96K RAM like VisiCalc 96,
WordPro 5 Plus, and Silicon Office. The Madison
Z-RAM board sends a standard RS-232 signal
through the user port and will support RS-232
printers,modems, and other RS-232 peripherals.

Please note if you are planning to install the
Z-Ram board primarily for the use of CP/M, you
should have 80-column screen since most CP/M-
based programs require an 80-column output. If
you have 4000 series PET, | suggest you contact
your local Commodore dealer who will be able to
install an 80-column upgrade provided you have a
12‘ screen version. The MADISON Z-Ram board
can be installed without special tools or great ex-
pertise and comes complete with detailed in-
stallation instructions as well as a comprehensive
manual on CP/M . The Z-Ram board mounts inside
your computer directly under your CRT(monitor),
in fact it utilizes its mounting screws.

A decision as to whether or not to add CP/M to
your Commodore computer should probably be
based on the following criteria:

1. Are you now, or in the near future, planning to
run programs under CP/M?

2. Do you require 96K of RAM and don’t mind pay-
ing an additional $245.00 to obtain CP/M com-

patibility (difference between the COMMODORE
64K memory expansion and Z-RAM board cost)?
3. Do you plan to write programs that you may
wish to run on the new generation Commodore
computers which will support CP/M?

4. Do you wish to have additional language
capability such as: COBOL, FORTRAN, PASCAL,
PL/1, APL, C-BASIC?

If you answered yes to any or all of the above, you
should probably consider buying the Z-RAM
board.

As far as CP/M for the Vic and the C-64 is concern-
ed, there will be a CP/M card available soon, and |
will keep you posted on further developments; or
you may call me at (416)366-6192.

In the seven years that CP/M has been around,
thousands of programs have been created that
run under it, written by over 100 companies. Ap-
plications range from languages, development
utilities like assemblers, to application programs
such as ACCOUNTING, DATA-BASES, FINAN-
CIAL PLANNING, and WORD PROCESSING.
There is also a range of vertical application
packages available under CP/M which currently
may not be available in Commodore compatible
software.

P.S.: GOOD NEWS

CP/M plug-in module, also providing 80 columns
of display, is now available for the Commodore
64.

Reference for the CP/M board and CP/M for C-64
includes A Word Processor at $399 (Canadian).
Both are available from Marketron, 465 King St. E.,
Unit #9, Toronto, Ont. M5A 1L6, or by contacting
your local dealer.

Bytes

THE WEATHER

Yo
S ANYBODY HEAR -(_ D)
M ' e ‘o

7S ’%a;@c LANDSLIDES AND EARTHQUAKES
<. Nyl
L

by Patrick Corrigan

WITH FERIODS OF RAIN.

121

Best of The TORPET

Other Languages

CP/M On The C64

By Fred Wallace, Windsor, Ont.

CP/M IS A REGISTERED
TRADEMARK OF DIGITAL
RESEARCH

Few accessories from Commodore have been as
eagerly anticipated as the CP/M package. Like so
many programmers, | use CP/M daily and could
never really understand why it was so long in be-
ing made generally available to us Commodore
types. After all, | first saw one of Commodore’s
demo machines running it almost a year ago. And
doesn’t each and every C-64 carton promise its
availability? Nevertheless, it’s out now, and with
visions of being able to run all my “big machine”
FORTRAN programs in color, | eagerly rushed out
for an early copy.

The package supplied by Commodore consists of
three major parts: a somewhat oversize cartridge
which plugs into the expansion slot at the rear of
the C-64, a diskette in 4040/1541 format contain-
ing the operating system and skeleton programs,
and a manual. Installation was no problem as the
instructions given were complete and correct: you
just plug the cartridge in and then use the familiar

LOAD“'”,8
RUN

sequence to start the program.

In my case, however, this marked a substantial
gap in my testing. | could not get the system to go,
and investigation proved that the problem was
caused by several bad sectors on the diskette.
They would not read even on another 1541. The
dealer exchanged it for me, and then | found that
while this one would run, a couple of the impor-
tant programs supplied on the diskette would not.
Back again! The third copy eventually proved to
be readable, but despite claims from the dealer in-
volved that he was not having a problem with
them, | consider two bad out of three to be a pretty
rotten track record. In any case, protect yourself
by making sure you purchase from a dealership
which is going to be able to help in case
something like this happens to you.

WHAT’S CP/M?

But just what is CP/M and why would you want it
on your C-64? CP/M stands for Control Program

for Microprocessors and it is an operating system
which was introduced a number of years ago by
Digital Research. It was among the first serious
attempts to create a “machine independent” pro-
gramming environment for small machines: that
is, a given program could be run, theoretically, on
any micro using an Intel-type processor without
modification. The operating system would take
care of the differences between the machines and
permit the program to do its job without having to
worry about details such as whether the
peripherals were memory or |/O-mapped.

The attempt was successful to the point that
there are now thousands of programs which are
“CP/M compatible”, and that is of course the at-
traction. After all, nobody really wants to re-invent
the wheel if all that is needed is transportation.
The sole catch in the procedure is that you are not
processor-independent: you can only run CP/M
programs on a processor which is or has a com-
patible instruction set to the Intel 8080 or 8085, or
the Zilog Z-80. ’

That’'s why we need the cartridge: it contains a
Z-80 chip with support circuitry to enable it to
share the memory, peripherals, and busses of the
6510 contained in the C-64.

HOW IT WORKS

Although the two processors are both “on the
buss” (as long as the cartridge is plugged in), the
circuit is arranged so that only one of them can
actually be alive at any one time. The C-64 powers
up in the normal “BASIC” mode as usual, and in
fact the cartridge could be left plugged in all the
time so long as a program or game does not ac-
cidentally trip the location which transfers control
over to the Z-80. Code for the 6510 and for the Z-80
can be freely mixed in memory so long as one
doesn’t try to run the other’s code.

The LOAD/RUN procedure brings into memory a
small machine-language program whose sole pur-
pose is to bring in from the diskette the rest of the
code - some of it for the 6510 and some (most of it)
for the Z-80. When the procedure is complete,
things have been arranged so that the Z-80 is now
the “main” processor and the 6510 is used to han-
dle 1/O procedures through the KERNAL routines.
From this point on the C-64 acts as if it were a ter-
minal connected to a Z-80-based micro system.

122

Best of The TORPET

Other Languages

UP AND RUNNING

For those already familiar with CP/M, the running
system is by and large a faithful reproduction of
others you have used, with some notable excep-
tions. The most immediately noticeable is the
limitation imposed by the 40-column screen. Most
CP/M programs assume 80 columns and may
need modification. In addition, DO NOT
automatically assume that you can simply run out
and purchase an 80-column adapter or program
for use with CP/M: most will not work since they
rely upon having access to memory areas which
are now the domain of the Z-80 chip. Ask the sup-
plier if he can certify compatibility.

The second major difference is speed. CP/M
makes heavy use of the disk, especially during
such activities as the program development cycle,
and the 1541 will be a real disappointment to most
people here. Somehow it doesn’t seem that slow
when it’s running BASIC stuff, but when you have
to wait nearly 25 seconds for a simple WARM
BOOT (a kind of master reset required at the end
of just about every CP/M program’s execution), it
does tend to wear a little thin. Fortunately, the
package has been designed to work with the IEEE
adapter and associated fast disks, and | have a
feeling any serious CP/M’er is going to want one
of those really quick.

But the real crunch comes when you want to use
commercial software. After all, we now have our
machine running a ‘“universal” operating system -
let’s go get some of those fancy programs that are
for sale by the hundreds in the magazines and
start running them! Great idea, except the Com-
modore disk format is different from other 5 1/4”
formats, and is not supported by other manufac-
turers. Of course, this is a temporary barrier, but is
a real factor when the inevitable question “What
do 1 do with it now?” is asked. Until Commodore
and third-party vendors catch up, only programs
entered into the machine by hand are available.

PLUSES AND MINUSES

Devoted Commodore users will miss the screen-
edit functions for program creation and modifica-
tion. ED, the standard CP/M editor which is sup-
plied on the system diskette, is line-oriented and
seems archaic after using the full-screen BASIC
editing. A full-feature screen edit will doubtless
be among the first accessory programs to be
made available.

My compliments to the Commodore people for

taking such thought with the FUNCTION keys.

Under CP/M, each key can be “firm-programmed”’
to stuff a text string into the keyboard buffer, even
including the carriage return. They come already
set up with such universally-useful strings as
“STAT *.* <«CR»>” , which at least for me save
quite a bit of typing.

The manual supplied with the package is unusual-
ly high in detail content: an acknowledgement |
suppose of the fact that the majority of people
buying it are already quite computer-literate and
will want to immediately start poking around in its
innards. There are listings of some of the key soft-
ware, which should enable customizations to be
made. But the edition | received contained a polite
note apologizing for the fact that some 14 pages
(including the module schematic) had been selec-
tively removed by Commodore.

| was somewhat disheartened to discover that not
all of the C-64 kilobytes of memory available can
be utilized by CP/M — this is mostly due to the
memory sharing described earlier: some memory
must be reserved for functions which the 6510
performs. In fact, though, the 48K which is
available (44K if you have the IEEE adapter) is suf-
ficient for all but some of the more complex
business and scientific software.

The diskette format has been cleverly worked out
so that it is not possible, without some really
deliberate work, to accidentally overwrite any
areas while running the C-64 in its BASIC mode:
the diskette allocation map has been prewritten
to make it appear to be full at all times. The minus
comes when you discover that the normal 170K
which is available to BASIC has shrunken to 136K
under CP/M. Again, some space was required to
store operating-system-related material.

My greatest disappointment, however, was in
discovering that one of the devices NOT sup-
ported by CP/M at the time of this writing was the
serial line (RS-232 port). | have another machine
sitting next to the C-64 just loaded with CP/M soft-
ware, and all | need to transfer it is a serial link. |
also make use of a number of bulletin boards, and
all | need to access them under CP/M is a serial
link. This hole in the machine is primarily a hard-
ware limitation and has caused a remarkable
flurry of activity on the data services (notably
Compuserve) so | fully expect there to be a solu-
tion very quickly from one of the midnight-oil
crew. In the meantime I’'m working on my own
solution short of typing in megalines of code.

123

Best of The TORPET

Other Languages

IN CONCLUSION

If you’ve always wondered what CP/M is, and
already have a C-64 and disk drive, this package
plus one or two of the excellent texts on the sub-
ject is areally economical way to learn (I’ve listed
a couple of my own favorite books below). Similar-
ly, the combination is useful for development of
small Z-80 programs, especially if you already
have a PROM burner on the unit. As a serious con-
tender in the market for experienced CP/M users,
though, it will not be terribly useful until a means

of intermachine transfer of programs is made
available, despite the attraction that color and
sound may have as enhancements to CP/M pro-
grams.

TEXTS ON CP/M

1. Cortesi, David E. Inside CP/M, A Guide for Users
and Programmers

2. Zaks, Rodnay The CP/M Handbook with MP/M

Best of The TORPET

Other Languages

CP/M File Transfer for C64

By Wm. Kendall, Baltimore, MD.

Fellow purchasers of the Commodore 64 CP/M
cartridge probably experienced the same frustra-
tion that | did when | unpacked the cartridge and
disk, booted CP/M, and found that there were no
programs to run except those of the CP/M system
itself. Here is a seat-of-the-pants procedure | have
found that makes it possible to download hex
files from any CP/M computer with a modem. If
you have the computers side by side you can just
hook them together with an RS232 connector and
do without the modem.

| wrote a simple BASIC program to poke the ASCII
code for each character into memory as it comes
from the RS232 buffer. The C64 is in normal 6510
operation but has the CP/M cartridge plugged into
its port. After the file is all in the memory | put in
the CP/M disk and load CP/M. Then | move the
down-loaded file into the CP/M transient program
area (TPA) with DDT (the CP/M machine language
monitor), and save the file on the CP/M disk.

Now for the details! The equipment | use is an OSI
Challenger with a D&N Z80 board. There are many
CP/M modem programs which will upload files.
Modem 7 and Modem 705 are public domain pro-
grams and Mite, Ascom, and Crosstalk are some
of the commercial ones. Any will do the job.

Binary (COM) files under CP/M must be converted
to HEX files before uploading from the CP/M com-
puter. This is necessary because the C64 RS232
port only receives 7 bit code. There are many pro-
grams which do this conversion. The one | use is
called COMHEX.COM. It reads a COM file and out-
puts a HEX file on the same disk. Example: If you
had a COM file named TPUG.COM and
COMHEX.COM on drive A, you would type COM-
HEX TPUG.COM to get your hex file. The output

This program is on
The Best Programs Disk

file would be named TPUG.HEX.

It’'s a lot easier to move a file in memory if you
have a programming calculator such as the Tl Pro-
grammer. It helps a lot in figuring the size of the
file in memory and how many pages to save under
CP/M. | think that’s the last of the equipment ex-
cept for pencil and paper.

Now you’re ready to go. My program sets up the
C64 terminal with mark parity, 300 baud, 1 stop
bit, 1/2 duplex, and 3 line handshaking. Set up
your CP/M terminal the same way. If you wish you
can use full duplex at the CP/M terminal to watch
the file go by. If you have trouble with the RS232
buffer filling up on the C64, remove PRINT A$
from line 140. | set the CP/M terminal to transmit a
‘G* (hex 47) at the end of the file. This character is
not used in hex files, and when line 45 finds a G, it
signals the end of the file and closes the terminal.
When the transmission is finished, load CP/M.
When the A prompt comes on, type DDT. Your pro-
‘gram starts at $1400 in memory ($2400 on the
Commodore system is $1400 for CP/M). Check the
beginning to make sure the first characters came
through correctly and, if necessary, correct with
the S command of DDT. | find that the first
character is often changed. Don’t ask me why; |
just work here!

Next, find the end of your file and move it to the
beginning of the TPA ($0100). You can find the
size of the file with XDIR or STAT on the CP/M
computer. If for example your file goes from $1400
to 2FFF, you would type M1400 2FFF 0100 to
move the file to the beginning of the TPA. Now all
you have to do is reboot (control-C), figure out how
much memory to save (the CP/M manual tells
how), and save your hex file. For the above exam-

124

Best of The TORPET

Other Languages

ple you would type SAVE 28 TPUG.HEX. (All file
names to be used by the CP/M LOAD utility must
end in .HEX). Type LOAD TPUG.HEX and the out-
put will be an executable COM file stored on your
disk and ready to go!

One final complication. When a binary file is con-
verted to hex the file becomes much larger. If your
hex file is larger than 16K it will get messed up by
BASIC garbage. You will have to split your original
COM file in two before changing into HEX files.
Save the two parts under two different names, for
example, TPUG.COM could be split into
TPUG1.COM and TPUG2.COM. Be sure to split at
a place easy to find (words are the easiest) and
take notes on what you did so you’re sure of get-
ting the whole file. After converting to HEX and
downloading, the 2 files can be recombined with
DDT by loading the second half, moving it up in
memory, loading the first half, and then moving
the second half down until the splice is perfect.
This is not as hard as it sounds and if you goof it
up you can always try again — your HEX files are
already on your disk. The main problem that has
plagued me is not saving enough pages for my
hex file on the CP/M disk. Save an extra page to
make sure. If you get an error message when us-
ing LOAD, you probably chopped off the end of
the file or forgot to correct the first character. If
you have a problem you can look at your HEX file
by using DUMP TPUG.HEX or TYPE TPUG.HEX, or
by changing the name to TPUG.COM and loading
it with DDT. Then you can correct it or add
characters to the end if necessary. Don’t forget to
change the name back! A machine language pro-
gram to poke the file into memory would probably
handle larger files; if one of the other TPUG
members writes one I'd appreciate a copy!
Somebody will eventually figure out a modem pro-
gram for C64 CP/M, but it looks to me like we have
a chicken and eggs situation right now. Until the
CP/M cartridge is popular nobody’s going to make
any money selling a terminal program, and
nobody in his right mind will buy the cartridge if
he knows there’s no software available. Present
company excepted, of course!

C64 CP/M DOWNLOAD

100 GOTO210

110 GET#2,A$:IFA$ = “"THEN110

120 IFA$ = “G"THENPRINT*FILE ENDS AT ";AD:CLOSE2:END
130 T% = ASC(AS$)

140 PRINTAS;:POKEAD,T%:AD = AD + 1

150 SR = ST:IFSR=0THEN110

160 PRINT “ERROR”

170 IF SR AND 1 THEN PRINT“PARITY”

180 IFSRAND2THENPRINT“FRAME”

190 IFSRANDATHENPRINT“RECEIVER BUFFER FULL”
200 IFSRAND128THENPRINT“BREAK”

210 OPEN2,2,3,CHR$(38) + CHR$(176)

220 AD =9217

230 GET#2,A$

240 PRINT“PRESS RETURN WHEN READY”

250 GETAS:IFA$ <> CHR$(13)THEN250

260 PRINT“(CLEAR)READY TO RECEIVE DATA”:GOTO110
READY

C64 CP/M DOWNLOAD WITH REM STATEMENTS

90 REM *CP/M- C64 DOWNLOAD*
100 GOTO 210 : REM INITIALIZE

110 GET#2,A$:IFA$ =" THEN 110: REM GETS A CHARACTER
FROM-BUFFER—WON'T TAKE NULLS

120 IFA$=“G” THEN PRINT “FILE ENDS AT
»:AD:CLOSE‘:END: REM G IS EOF SIGNAL

130 T% = ASC(A$): REM GETS ASCII CODE

140 PRINTAS;:POKEAD,T%:AD=AD+1: REM POKES
MEMORY AND INCREMENTS ADDRESS

150 SR = ST:IFSR = 0THEN110: REM ERROR CHECKING-IF OK
GOES BACK TO 110

160 PRINT “ERROR”

170 IF SR AND 1 THEN PRINT“PARITY”

180 IFSRAND2THENPRINT*FRAME”

190 IFSRAND4THENPRINT“RECEIVER BUFFER FULL”

200 IFSRAND128 THENPRINT*BREAK”

210 OPEN2,2,3,CHR$(38)+ CHR$(176): REM 3LINE, MARK
PARITY, 1 STOP BIT, 300 BAUD

220 AD =9216: REM THIS IS WHERE PROGRAM STARTS IN
MEMORY-$1400 FOR CP/M

230 GET#2,A$: REM TURNS ON RS232

240 PRINT“PRESS RETURN WHEN READY”

250 GETA$:IFA$ <> CHR$(13)THEN250: REM WAITS FOR
RETURN _

260 PRINT*(CLEAR)READY TO RECEIVE DATA”:GOTO110
READY

One has to be a sailor of the I.C.’s to fathom the
VIC-64. It’s even named after a navy man, a COM-
MODORE. He’s in charge of a whole fleet of
CHIPS.

— the 6510 CHIP is sort of a c.p.U-Boat. Its
manoeuvres are called SUB-routines.

— the 6566 Video Chip carries the fleet’s col-

ours. It’s a SPRITE for sore eyes!

— watch out for waves around the SID CHIP.
Listen to its beautiful sounds, but don’t get lost in
the high C’s.

— follow a CURRENT back to PORT. Don’t
collide with any FLOATING numbers.

— Ylimaki

125

Best of The TORPET CHIPP
I THERE | IT°S ME RGRIN | LET ME EXPLAIN WHAT
Jou ALREADY UNDERSTAND RESTORE DOES FIRST :
How DATA AND RERD wWORK
TOGETHER (PREVIOUS LESSON).
NOW WERE GOING TO
LEARN ABOUT RESTORE. G/ 3
00000
o &)
)
RESTORE BASICALLY DOES THIS IS THE PURPOSE | FOR EXAMPLE , TRY THIS
WHAT IT SAYS ¢ IT RESTORES OF RESTORE: TO USE A PROGRAM:
THE POINTER BRCK TO THE DATR OVER RGRIN. SFOR A= ITO3
BEGINNING OF DATR. IT gREQD NS : PN$
NEXT R
TO
CLEQNSITHE SLATE, SO n -
SPEAK ¢ 9 FOR A= ITOS
H _) IORERD P$: P P$
A Il NEXT R
) I& DATR A,B,C, JOHN SAM,
P,N,LISR

You SHOULD GET THE

FOLLOWING :

90w p0mD

THAT IS WHY WE USE
RESTORE : SO WE CAN STRRT
OUR POINTER AT THE
BEGINNING AGRIN.

NOTE: AS ERCH PIECE OF
DATR IS RERD, A POINTER”
MOVES TO THE NEXT PIECE-

NOTICE THE (F A READ IS ATTEMPTED
SET OF DATA WAS Y
PBLE TO BE USED WHEN POlNTES 'S AT END
TWICE. OF DATR, AN “OUT OF
DATR” ERROR WILL RESULT ,n@%
POINTER -
H DATA : ? . = ’ =To - ®)
RIBICIz [2|PIN|2 AB|CIZ | |PIN|g
RESTORE IS ALSO USEFUL | TRY THIS PROGRAM: DON'T FRET TOO MucH RBOUT
|F YOU WANT TO RERD R b READ N$ THE FOR/NEXT LOOP. IT WILL
CERTRIN PIECE OF DATR. 8 RESTORE B8E EXPLAINED IN A FUTURE
FOR EXAMPLE, IF YOU WA q FoR A= TO 14 LESSON. I'lL SEE YA
TO RERD THE IS™ PIECE, /10 R g* bt LATER EVERYBOOY !
AT
You RESTORE' YOUR ROINTER Y o b 0T R A Rite SF
USE A FOR/NEXT LOOP 4 OFTR A,B.C,0.E F.6,H,1,T K
TO GET YOU TO THE L,MN,0,P.Q,R
IS™H SECTION
MIKERICHARDSON B a~ LA T\ / roeeee

126

Best of The TORPET General Hardware

General Hardware

PAGE

Radiation Hazard 128
Dr. Piasecki, Oakville, Ont.

If you use your computer with an old color television and you read only one

article, then read this one.

C64 Link 130
Todd Hamilton, Highland, MI

The C64 and VIC do not come with an IEEE port. This device gives you ac-
cess to both IEEE and other configurations, plus a number of advantages.

80 Columns for the VIC 131
Steve Garmon, Houston, Tex.
A review of the DATA-20 unit that gives you 80 columns on your VIC.

127

Best of The TORPET

Hardware — General

Radiation Hazard

By Dr. G. Piasecki, Oakville, Ont.
SUMMARY

The possible hazard of using an older color televi-
sion set as a monitor is discussed. The group of
people most likely to be exposed to this type of
hazard are your readers. The reason for submit-
ting this article is to try to inform persons at risk
and | felt that this could be best done through a
computer magazine.

ARTICLE: RADIATION HAZARD
OF VIDEO SCREENS

As a physician | receive by subscription the New
England Medical Journal. In the September 30,
1982 Issue there appeared in the Correspondence
section a letter on the above subject.

It came from the Veterans Adminisjration Medical
Center, Washington, DC 20422. It was authored by
David J. Nashel, M.D., Louis Y. Korman, M.D., and
John O. Bowman, M.S.

As a physician, it is important for me to be aware
of the possibility of disease arising from certain
patient circumstances.

However, more important is the possibility of
prevention of disease. With the appearance of the
new computers (COLOR but without the color
monitor), your readers, if they use old color televi-
sion sets as monitors, would be the group at risk.
To make this group aware of this risk is the main
purpose of this article.

The following material and the References come
from the authors mentioned above.

Although it is generally agreed that the video
display terminal is not a major source of radiation
for the user (1), field surveys of older color televi-
sion sets (2-4) have indicated that 2.33 to 16.2% of
receivers at some surface point exceed 0.5
milliroentgens (mR) per hour, which is the limit for
emission set by the Food and Drug Administra-
tion, Bureau of Radiologic Health (5). From 1960
until January 15, 1970, when emission standards
for color television sets were adopted, 25 million
sets were produced. Since almost all these sets
were manufactured in the late 1960s and the
average life of a tube-type television is 11 years
(Gerson R: personal communication), many of
these receivers are still in operation.

Since radiation intensity is a function of distance
from the emitting source, the spatial separation

of viewer and display screen is extremely impor-
tant. At average viewing distances (165 cm for
children and 250 cm for adults), the estimated an-
nual radiation dose from older color television
sets appears to be within the accepted limits (2).
However, users of microcomputers tend to posi-
tion themselves closer to the display screen,
thereby increasing their radiation exposure. To
estimate the average annual radiation dose from
an older color television set used as a display
screen, the standard computational formula was
used:

D =1.13XTdF,

where D =estimated average annual dose
(millirems per year), X=exposure rate at 5 cm
from front face of the picture tube (milliroentgens
per hour), T = annual viewing time (hours per year),
d =distance factor, and F=depth dose factor.
The value chosen for exposure rate (X) measured
at the front face of the picture tube is 2.7 mR per
hour. This was the average dose of radiation
recorded from color television sets that exceeded
the accepted emission standard in a survey done
in metropolitan Washington, D.C.(2) Viewing time
(T) is conservatively estimated at two hours per
day, or 730 viewing hours per year. Using data
from Wang et al.,(6) a distance factor (d) of 0.5 was
obtained at a viewing distance of 40 cm; the depth
dose factor (F) is 0.70 for the juvenile thyroid and
0.80 for the lens of the eye. Using these values,
the estimated average radiation dose to the
thyroid would be 779 mrem per year, and the dose
to the lens of the eye would be 890 mrem per year.

These calculations suggested to the authors that
youngsters using OLDER COLOR TELEVISIONS
for display screens may be at risk for radiation ex-
posure far in excess of the National Council for
Radiation Protection and Measurement’s recom-
mendation of 100 mrem per year for persons
under 18 years of age.(7) In order to decrease the
posssibility of excessive radiation exposure, the
authors suggested that only newer color televi-
sion receivers (those manufactured after January
15, 1970) be used as display elements for com-
puter function.

REFERENCES

1. Food and Drug Administration, Bureau of
Radiologic Health. An evaluation of radiation
emission from video display terminals. February,
1981. (Report 81-3153).

128

Best of The TORPET

Hardware — General

2. Neill Rh, Youmans HD, Wyatt JL. Estimates of
potential doses to various organs from x-radiation
emissions from color television tubes. Radiol
Health Data Rep. 1971; 12:1-6

3. Radiologic Health Program, Commonwealth of
Puerto Rico Department of Health. Results of a
survey of x-radiation from color television
receivers in the metropolitan area of San Juan,
1969-1970. Radiol Health Data Rep. 1971;
12:547-51.

4. Becker S. Results of a follow up radiation
survey on color television sets, Suffolk County,
New York. Radiol Health Data Rep. 1971; 12:457-8.

5. Public Health Service, Bureau of Radiologic
Health. Regulations for the administration and en-
forcement of the Radiation Control for Heaith and
Safety Act of 1968, OBD 71-1 (March 1971).

6. Wang SP, Savic S, Hersh H. Spectral and spatial
distribution of x-rays from color television
receivers. Technical papers, Conference on
Detection and Measurement of x-radiation from
Color Television Receivers, March 28-29, 1968.
Washington D.C.: National Center for
Radiological Health, 53-72.

7. National Council on Radiation Protection and
Measurement. Radiation protection in educa-
tional institutions. July, 1966. (Report no. 32) 7-8.

[SR N

e AT L e

LI VAN HAMK
S S,

Yok~

; .

A T s o -

DOC, PEOPLE TELL ME I’'M CRAZY WHEN | SAY THIS
PERSONAL COMPUTER TREND IS GETTING OUT OF
HAND. WHAT DO YOU THINK?

129

Best of The TORPET

Hardware — General

C64 Link

By Todd Hamilton, Highland, MI.

The Commodore 64 Computer is not designed to
communicate to IEEE-488 devices. Peripherals
such as the 4040 disk drive and 4022 printer nor-
mally used on PETs will not connect to the C-64.

RTC of Canada markets the C-64 link to interface
between the C-64 computer and either parallel,
serial or IEEE devices.

After four months of use, my conclusion is that
the C-64 Link is a very fine product. My hardware-
test experience includes a C-64 Computer, C-64
Link, 1541 Disk Drive (serial), and a CBM 2022
Printer (1EEE). To date, no parallel devices have
been used.

The C-Link switches modes with either immediate
keyboard commands, “IEEE(CR)”, or software
commands, ‘“POKE 820,3”. The C-Link allows the
user many of the BASIC 4.0 commands. However,
only the BASIC 4.0 commands understood by your
peripheral will work, ie. back-up will not work with
the 1541 disk drive. The C-Link allows the user to
call the on-board monitor, “MONITOR”, at any
time and to return “X” to BASIC. It also has
“Modem’ software, but mine is yet to be exercis-
ed.

After two and one-half months of operation, the
C-Link failed to communicate to the IEEE printer,
“Devices not ready”. The link was mailed back to
RTC for repair. The C-Link was returned 10 days
later, repaired and ready to go. The service was
excellent.

After a total four months of service, the C-Link
met my objectives of being able to communicate
with an IEEE printer and offered useful new
features. However, there is room for improvement.
The documentation that comes with the C-Link is
only adequate. It lacks details in the BASIC 4.0
commands and /O capabilities of the C-Link
itself. It is not clear which BASIC 4.0 commands

will work, and lacks detailed examples for 1541
users with one or two units. The information on
software switching of the I/O devices is included
in the manual, but little reference is made to it and
NO examples are included. The monitor is a
definite plus, but it is a very elementary monitor.
More capability added to the monitor would make
it a very powerful tool.

The C-Link comes with software to relocate its
code to prevent interference with BASIC, etc.
However, some machine language programs in-
terfere with C-Link software anyway. The end
result is many removals and reinstallations of the
C-Link.

Enhancement of the C-Link could be provided

’with switch selectable options:

1. Code location (change memory blocks used)

2. Primary device (presently power-on is IEEE.
Serial 1541 requires pressing the C key on power-

up)
3. Disable the C-Link without removing it

4. Reset the computer. This would allow moving
the code, disabling the link, etc.

The operation of the link could also be improved
with a device not ready response. Presently, if a
command is sent to a IEEE device (the printer) and
that device is off, the program locks up with the
screen blank or appears to transmit data, but
nothing happens. A gentle reminder ‘“device not
ready or present’” and a return to the ready mode
would be a help.

The C-64 is a fine product and if you are thinking
of borrowing mine, you can forget it. | use it every
day!

g/ SAvE| [T
.

D

COMPUTER S
ALL SIZES

S-M-L-XL

/=

by Quillan

130

Best of The TORPET

Hardware — General

80 Columns for the VIC

By Steve Garmon, Houston, Tex.

Because | write a lot of articles, | have been in-
terested in word processors. There are quite a few
available for the VIC but most are subject to VIC’s
major word processing limitation, its 22-column
screen. There is no way you can visualize what
your heavily formatted text will look like on a
printer which prints the standard 80 columns
when you are judging it against a 22-column
screen display. This limitation led me to in-
vestigate 40/80-column adapters. | stumbled
across one while shopping at RAVE, a popular
electronics discount store located in Houston,
Texas. They were offering DATA-20's ‘‘Display
Manager’”, a 40/80-column adapter for the VIC, at
only $79.00. At that price, | couldn’t pass it up. Ad-
mittedly, not all computer hacks would be in-
terested in spending as much money on an
adapter as they did for their computer but it's
worth it if you are into word processing and instru-
ment control and you want your applications to be
greatly enhanced by the ability to display more
than 22 characters per row across the screen.

The DATA-20 adapter really is a well made pro-
duct. Standard television output offers an ade-
quate display for 22 or 40 column modes;
however, a video monitor is recommended for
adequate resolution when using the 80 column
mode. The 22 column display is still available
even when the cartridge remains plugged in but it
requires its own TV set or monitor.

The adapteris a plug-in cartridge which has a con-
nector on the end of it exactly like VIC’s video
connector. To use the cartridge, you must plug
the video cable into the cartridge rather than the
VIC. The cartridge contains a 2K EPROM which in
turn contains all of the necessary programming
for the 40/80 column modes. It also has a 6845
video controller chip which does all of the hard
work of formatting displays. An excellent feature
of this product is the availability of the full Com-
modore character set (unlike some competing
products). On power-up, the cartridge takes over
and sets the display mode according to operator
selection. To enter the 80-column mode you mere-
ly hold down the RUN/STOP key while turning on
the computer. Otherwise, power-up defaults to
the 40 column mode. Pressing function key F7
can also invoke the 80-column mode and pressing
F5 will return you to the 40-column format.

The cartridge uses memory in block 5. The
operating system for the video display is located
from $A000 to $AFFF and the video display is
located from $B800 to $BFFF. 2K of video memory

(Reprint from CHUG)

is provided so that there is no overhead require-
ment from your expansion memory. The DATA-20
cartridge makes provision for 8K of memory ex-
pansion to be located either at $2000 (block 1) or
$6000 (block 3).

There are several differences which will have to
be learned in using this cartridge. The standard
VIC will allow 88 characters per program line but
the Display Manager cartridge will allow only 80 in
the 80-column mode and 40 in the 40-column
mode. On the standard VIC the cursor is turned off
while a program is running but, with the DATA-20
40/80-column adapter, the cursor can be toggled
off or on.

Here’s a surprise: terminal emulator software is
built into the cartridge and can be accessed by
simply opening an RS-232 channel and then
pressing F8 of the User Function Keys. The ter-
minal emulator alone could justify the cost of the
cartridge. Also included is a screen dump feature
which allows dumping the contents of the screen.
This feature can be accessed from either a BASIC
program or from the keyboard.

The most impressive feature of this package is a
free word-processing program. To me, it proved to
be the major selling point. Most free software |
have seen in the past has been inadequate, but
this package offers a notable exception. This
word-processor includes most of the prominent
features offered by the more expensive programs
but the major deficiency is the inability to format
for right justification. Essentially, this software
was written for the 80-column mode, so only a
good monitor can do it justice.

The ease of use of this package has inspired me
to do a lot more writing, hence this article and the
probability of more articles to come. | can hardly
say enough about this product. It has been one of
the wisest purchases | have made for my com-
puter to date. What comparable product can beat
it for price, features, and performance?

BY Adams

131

Best of The TORPET CHIPP

HI THERE! TODRY WE ARE
LERRNING ABOUT THE ON

R TYPCAL ON STRTEMENT
IS USeED WITH GOTD OR

G(ﬁUB AND LOOKS LIKE

THE o_g STRTEMENT IS AN| THE VAWE OF X CAN BE

INTERESTING TOOL |N DECIDED BY INPUT IF YoU

PROGRAMMING RS IT WILL | WISH. IE X=|, THE FIRST u

SEND THE COMPUTER TO | NUMBER LINE MENTIONED| &\

DO MRANY DIFFERENT IS EXECUTED, AND IF :I S s
(] !

ERRANDS , DEPENDING ON J X=Q THEN THE SECOND
WE VQLUE' Oof X.

IF YOUTYPEIN “1”|:oR IF X IS GREATER THAN

5 INPUT X X THEN THE COMPUTER | THE NUMBER OF LINE
|0 ON X GO TO 20,3040 | RUNS FROM LINE 0. | NUMBERS, THEN THE
20 ?..ONE..S IF YOU TYPE “3” THEN | NEXT LINE NUMBER IS
a5 GOTO THE COMPUTER RUNS)

30 7" Two" FROM LINE 4O. ik T'CQLLV
35 GO TOS N

4o " THREE" cek!

45 GO TOS

hue ON STRTEMENT 1S
USEFUL IN ¢ CHOICE -
MPKING PROGRAMS .

PERHAPS YOU CAN USE
YOUR OWN IDERS TO
COME WP WITH WAYS
OF USING THE ON
STRTEMENT. (REMEMBER
[GosUes /)

ALSO, THE VAWJE OF
X ISN'T ALWAYS DECIDED
BY INPUT. THINK ABOUT IT.

MIKE RICHRROSON _\ ™

132

Best of The TORPET Disk/Tape Drives Hardware

Disk/Tape Drives Hardware

PAGE
Storage Concepts 134
Robert Dray, Peterborough, Ont.
The basic concepts of how to store data on tape and disk.
Datasette Micro-Surgery 135

Doug Drake, Ridgeland, WI
If you’re having trouble with your datasette, this may be the solution.

The Lowly Cassette 137
Mayland Harriman, Pt. Arthur, Tex.

Some good arguments for sticking with a datasette and foregoing a disk

drive.

Cleaning and Maintenance 138
lan Wright, Toronto, Ont.

Some of the things the manufacturers don’t tell you. It may not be so dif-

ficult as you think.

Disk Myths You Should Know About 139
Tom Van Flandern, Washington, D.C.
Yes, you can use both sides of your diskette. There are pros and cons.

Detecting Disk Format 142
Elizabeth Deal, Malvern, PA

Which disk operating system was that disk written on? Sometimes it is

useful to be able to tell from within a program and this article explains how

to do it.

Reading The Error Channel In Direct Mode 143
Elizabeth Deal, Malvern, PA

The red light is flashing on the disk drive and the computer screen says
READY. This tells you how to find out more about what went wrong.

A Fix For The 1541 143
Elizabeth Deal, Malvern, PA

That expected compatibility with the 4040 drive just isn’t there. So here is

what you do now.

Using the 1541 Backup 144
David Bradley, Toronto, Ont.

When you have only one disk drive it is difficult to back up a disk. This arti-

cle explains the simplest way to do it.

Keeping Track of Your Disks 145
Joel Meers, Kingston, Ont.

When you have fifty diskettes and about 20 programs on each one of them
it can be difficult to find that one in a thousand program. This will help.

133

Best of The TORPET

Hardware — Disk/Tape Drives

Storage Concepts

By Robert Dray Peterborough, Ont.
DATA STORAGE

Information is stored in the form of ‘“files” on
magnetic media, (cassettes or diskettes), and
there are two main types of files: program files
and data files. A file may be thought of much as
you would a physical filing cabinet in which you
open the file and add or remove some of the
records, and then close the file. The major unit is
called a file, and these are divided into smaller
units called records, which in turn are divided into
fields. If the file contained student information,
then one record might have all of the data on a
specific student, and the fields within that record
would be the specific data on that student. The
size of the single file is limited only by the amount
of space on the device that contains the file,
although the size of records or fields may be
limited depending on the type of file which has
been formed.

When you save a program, you are creating a pro-
gram file, and the limit on the size of these files is
obviously the amount of memory in your com-
puter. When you load this type of file into your
computer, the computer sorts out the file and puts
everything in the correct places in memory. With
data files, you must decide on the structure or ar-
rangement of data in the file, and you need to
know this arrangement to be able to retrieve the
data. It’s just like going into a new situation and
trying to use someone else’s filing system. Until
you find out how it’s organized, you cannot use it
to file or retrieve data efficiently.

When one starts to use cassettes and/or disk
drives in programming, life becomes a little more
complicated. To output data to either of these
devices, you must open a channel. The channel is
given a specific number (1-255), which is called
the “logical file number”’, and is opened to a
specific device. Cassettes are given device
numbers 1 and 2, for the two cassette ports, while
the disk drive is given device number 8. Either of
the physical device numbers may be changed by
altering the wiring in the particular piece of equip-
ment. The command “OPEN 4,4 opens logical
channel #4 to device number 4 (the printer), and
the command “print#4,a$” will send the data in
the variable a$ to channel #4 which was previous-
ly opened to the printer. In a similar manner data
may be sent to or received from disks and casset-
tes.

Because of the nature of the cassette tape, the
data stored on it must be of a sequential nature,

that is, one item is stored after the next, and to
read item 34, you must read items 1 to 33. Each
file on cassette begins with a header and ends
with an end-of-file mark. The end-of-file mark
causes the status to register as 64, and so you
can use this to check for the end if you are reading
data from a cassette file. The operator (that’s you)
must assume the responsibility of setting the
tape recorder so that it is in the proper position to
store the file.

The format for opening a cassette file is the
following:

OPEN If,dn,sa,“name”

Where: If is the logical file number of your choice (1 - 255)
dn is the device number - 1 or 2

sa is the secondary address to specify operations

(0-read only, 1-write only,)

“name” is any 16 character name of your choice

DISKETTE STORAGE

A diskette is made of a polyethylene derivative
and coated with a magnetic recording emulsion,
and is stored in a protective envelope. An oval slot
allows the read-write head of the drive unit access
to the magnetic surface. There is another small
hole in the envelope, called the index hole, which
will line up with a similar hole in the diskette. A
drive unit that uses this hole to position itself is
said to be “hard sectored’’, but the Commodore
drives ignore this hole and are called *“‘soft sec-
tored” because they line up with an electronic
mark that is written on the diskette when you
“Header” or “New” it. The diskette rotate at 300
rom and have a useful life of 3x10® passes per
track, which is about 7 days’ constant running.

The surface of the diskette has been divided into
a number of concentric circles called tracks. The
number of tracks depends on the disk drive, for
example the 4040 sets up 35 tracks while the 8050
will set up 77. These tracks are then divided into
sectors, with each sector capable of storing 256
bytes of data. Most disk drives have the same
number of sectors in all tracks, which makes the
inner tracks crowded and leaves gaps in the
longer outer tracks. The CBM system puts more
sectors in the outer tracks (21 as opposed to 17 on
the inner ones), and in this way uses more of the
diskette surface. The 4040 disk drive has a total of
690 sectors (blocks), while the 8050 has 2087. This
gives the user 170,180 or 527,812 bytes of storage
per diskette.

Files are not stored sequentially on a diskette but
use a different method, which means that the disk

134

Best of The TORPET

Hardware — Disk/Tape Drives

drive can go directly to a specific file without first
reading all the previous files. This makes disk
operation much faster, but there must be a very
good record-keeping job done to keep track of
where everything is.

Two of the tracks are used by the system for in-
dexing the diskette. The disk drive sets up a Block
Availability Map (BAM), for each disk which in-
dicates which sectors are free, and then stores
this on track #17 (on 4040 disks). Track #18 is
used to store the directory. When a file is saved to
disk, it must be given a unique name which is then
stored on track 18 in the directory. Along with the
name is stored the address of the track and sector
where the program is stored. The program is not
stored sequentially on tracks, since the space
available for the program may have been created

by erasing several smaller ones.

The directory contains the address of the first part
of the program, and the last item in that sector
contains the address of the sector containing the
next portion of the program. In this way the disk
drive locates your file sector by sector, when you
instruct it to load or read the file. The disk drive
has DIRECT ACCESS to each of the files,
although once it has found the file, it must read it
sequentially. (This is not true for all types of files).

One disadvantage of disks is that, if track #18
becomes damaged, the drive unit would not be
able to find any of the files on the diskette. If you
read the error channel and see number 18, then
you know that the directory track has a problem.

Best of The TORPET

Hardware — Disk/Tape Drives

Datasette Micro-Surgery

By Doug Drake, Ridgeland, WI

THE PROBLEM

After many months of faithful service, my Com-
modore Datasette suddenly started acting un-
cooperatively. Up to that point, I'd been amazed at
the tape unit’s consistency and reliability, but
suddenly these past achievements meant nothing
— | was ready to toss it out the window.

Perhaps the only thing that held me back was that
I'd just switched from a VIC to a 64. My first 64
was defective, and I’d had to return it for another
one. Perhaps there was some obscure problem in
my second 64 as well? There was just enough
doubt in my mind to let me step back and analyze
the situation.

My patience paid off in the form of a simple solu-
tion. If you have the same problem, perhaps this
will save you a trip to the repair shop.

The problem was that the Datasette was shutting
itself off. | would begin a LOAD, and everything
would progress normally for a while. When the
tape stopped (so the 64 could display ‘Found Pro-
gram’) and then started again, an ominous click-
ing noise would begin. After a few seconds, the
PLAY button on the Datasette would pop up, and
the tape would come to a screeching halt.

Needless to say, the LOAD was unsuccessful.
When | held the PLAY button down by brute force,

the tape ran a little longer, but the result was the
same — an unsuccessful LOAD.

| began my effort to solve this problem with the
standard Datasette maintenance operations. |
gave the unit a thorough cleaning to remove all
the dust, cleaned the heads with a commercial
cassette head-cleaner, and moved the unit as far
as possible from the monitor.

When these efforts were unsuccessful, | opened
up the unit and lubricated (very lightly) all of the
appropriate moving parts. The problem remained.

With that, | decided to shift gears a bit, to focus
on defining the problem rather than blind at-
tempts to solve it. Since the stopping and starting
of the Datasette motor was obviously a con-
tributing factor, | wrote a short program to write
and read a data file. The file was long enough to
force the motor to stop while the cassette buffer
emptied.

FINDING A SOLUTION

| studied the still-assembled Datasette’s innards
from top to bottom as my test program ran. |
found a series of levers and springs which caused
the clicking noise I'd heard. These were con-
nected to a small, white piece of plastic located

135

Best of The TORPET

Hardware — Disk/Tape Drives

on the top side of the mechanism, between the
Erase Head and the Read/Write Head (see
Diagram 1).

This plastic piece moved forward, toward the
tape, along the Read/Write head. It slipped into a
small slot in the cassette. When | pushed the
PLAY button (without a cassette in the unit), and
then pushed backwards on the plastic piece with
a pen, the unit shut itself off! The purpose of this
set-up is to turn the Datasette off at the end of
your tape.

| tried my test program once again. But this time |
pushed that plastic piece toward the tape as the
data was written, and this time it worked! | tried to
read the data, again applying pressure, and again
| was successful.

Obviously, it was time for some Micro-surgery.

The only tools required for this procedure are
needle-nose pliers, a small Phillips-head
screwdriver, and a flathead screwdriver. First,
unplug the unit from your computer, turn it over
and remove the four Phillips screws from the bot-
tom. Turn it right-side-up and lift off the top cover.
Now, simply grab the offending plastic piece with
the pliers, and push down on the metal base

below with the flathead screwdriver. Slowly and
gently, move the pliers back and forth as you pull
upward. Be sure you push down with the
screwdriver so you don’t bend the metal base.

It took me about five tries of sliding the plastic
piece upward, little by little, before it finally pop-
ped off. Be gentle and patient. Now re-assemble
your Datasette, making sure the cord in the back
fits into its slot when you replace the cover.

After this minor surgery, my Datasette once again
works just fine!

As to whether the piece | removed is really
necessary, | think not. | examined some other
cassette tape players and they didn’t have
anything similar, so it isn’t needed to keep the
tape aligned on the heads. My unit won’t
automatically shut itself off at the end of a tape
anymore, but how often do you get all the way to
the end of a tape anyway? Plus, you can always
write a file with an EOT marker at the end of the
tape (Secondary Address 2), and the computer will
stop the tape motor for you.

Thanks to micro-surgery, my Datasette is once
again its old, reliable self.

|~

T~

ERASE HEAD / !

N \

~—

READ/WRITE HEAD

_/

'TAPE SHUTOFF LEVER
(Remove this piece if your
tape stops when it shouldn’t

DIAGRAM 1

136

Best of The TORPET

Hardware — Disk/Tape Drives

The Lowly Cassette

By Mayland Harriman, Pt. Arthur, Tex.

Are you embarrassed because you only have
cassettes for programs? Does it seem like
everyone else has dual disks and looks down on
you being backward? Do you get a feeling of in-
feriority when you pick up a computer magazine
or newsletter and the writers are ganging up to
make you feel bad when they write that cassettes
and tapes are no good and that they predict that
most computer stores will not even carry them in
the near future?

Take heart old tape friend, you need to be aware
of a few things that may cause you to look the
bad-mouthers in the eye and tell them they don’t
know what they are talking about.

The cassette method of storage is the lowest cost
way to keep your programs from the initial pur-
chase price to the end results in running your pro-
grams. The tape is much slower than disc and it is
harder to SAVE a program and DATA together
when needed to be stored that way....but
remember many of Commodore’s computers are
designed to use TWO CASSETTES and that nar-
rows the field of objections a little bit more.

There are several programs designed to find a pro-

gram quickly on a tape and each one | get does
the job faster. But better than fast locating is a

‘new chip that | have ordered for my CBM 2001 and

which is available for the VIC as well. The chip
called the ROM RABBIT allows you to load an.
8K program in about 30 seconds!! Doesn’t that
sound good? The chip also gives you 12 com-
mands, allows every key on the keyboard to
repeat and a few other goodies.

Someday, IF | have many complicated programs
with lots of data to save and IF my time becomes
much more valuable than it is now, | might go to
disc....but remember one disc is considered not
enough, you have to have two and that is MONEY,
MONEY, MONEY, which | don’t care to spend.

Yes, the cost of ADD-ONS is coming down but
Disc Drive prices would really have to drop to rock
bottom before | can justify the expense. It isn’t go-
ing to hurt me to type LOAD and go get a cup of
coffee or read a few paragraphs in a magazine or
something while my CASSETTE does its job....of
course with my new ROM RABBIT chip | will load
the programs that | use most of the time in about
45 seconds! | can live with that!

137

Best of The TORPET

Hardware — Disk/Tape Drives

Cleaning and Maintenance

By lan A. Wright, Toronto, Ont.

Since attending a meeting where questions were
answered by a panel about using Commodore pro-
ducts, | have gathered more data on similar topics
and added them in where appropriate. Some of
these ideas originated from others via various
Bulletin Board Systems.

CLEANING AND MAINTENANCE

Clean and de-magnetize tape decks but, unless
you are very competent, don’t take them apart.

Many tape-read errors result from badly-aligned
heads. There have been articles about head ad-
justments (Compute! #8), or take it to your dealer.

Some disk drive manufacturers have stated that
the various disk cleaning kits can do more
damage than they repair. Many people are using
them with no complaints.

Cigarette ash is the worst danger to the keyboard,
and some members have already bought a
number of $75.00 keyboards. There are some
things that can be done to improve a 'tacky’ board
before having to buy a new one. If you are not
prepared for the 23 tiny screws that remove the
back cover, and a lot of picky cleaning with
swabs, then take the machine in to the profes-
sionals. Use 111 tri-chloryl ethane or a tape-head
cleaner on the circuit board and the rubber key in-
serts. Rubbing alcohol is not good enough
because it leaves contaminants behind after
evaporation.

A vacuum cleaner is a valuable maintenance tool
for keeping equipment in operating order. | have
removed dustballs, pencils and an eraser from
various machines at my school. Printers seem to
be particularly apt to collect debris.

DISK DRIVE PROBLEMS

The 1541 disk drives that have trouble writing to
track 1 on double-density disks can be helped by
not using 4040 formatted disks. As a general rule,
you should format and write on only one type of
drive, although any disk can usually be read by
another drive.

Since this problem was presented at the meeting,
I have lost one disk of files because of writing
from one drive to another. | have three friends who
have had the same experience. Although all disk
drives of the 2040 and 4040 type can read disks

formatted on each other, do NOT write between
them. The problem may not show up for months,
but one day...blippo...no files! This is especially
true of single/dual drive interchanges. We have in-
stituted a system in which all files are kept on
4040 formatted disks. A temporary file is written
to a 2031 (or 1541) format disk and then copied on-
to the 4040 disk for storage and later processing.

Verbatim #577 disks have had some problems in
use with 8050 drives. The solution was to use a
bulk eraser to clear away spurious magnetism
that was between the tracks. Verbatim #525’s
have been used reliably, and most other manufac-
turers have reliable products.

There is a new 2.7 ROM set coming for the 8050
which indicates in which drive an error has occur-
red.

Commodore is still making the 4040 dual drives,
but only in intermittent production. The new 2031
SL drive is the slim-line replacement for the
original (1981) single drive. So far, there has been
encouraging lack of complaints about its opera-
tion, unlike its predecessor.

Many disk errors can be solved by correct center-
ing of the disk in the drive. Make a habit of star-
ting the disk in motion, then slowly closing the
drive door. Chris Bennett says that he had
hundreds of errors before learning this trick with
the 2040 and 4040. The disk copying errors can be
reduced to negligible using this approach.

If a disk is validated or collected and a bad file is
not removed by this process, copy the good files
using Copy-All and re-format the old disk. Do not
continue to use the disk.

Sometimes a disk can be recovered by formatting
the reverse side. Although double-siding is not a
good idea, this trick may prove useful in some
cases where you want to retrieve material from
the original side.

HERE ARE FOUR DISK RULES
A LA BUTTERFIELD

1. If you attempt to write on a disk that has a write-
protect tab, an error will occur. Before continuing,
re-set the drive by turning it off/on.

2. If afile is not properly closed (it has an asterisk

138

Best of The TORPET

Hardware — Disk/Tape Drives

beside it), do not attempt to scratch the file. Leave
it alone or collect the disk (see also above).

3. Don’t leave two disks with the same I.D. in the
same room. The back-up facility makes it easy to
insert a back-up disk with exactly the same I.D. in-
to the drive without resetting it. The drive may not
recognize the back-up as a different disk, and may
continue writing where it left off!

4. Don’t turn off the drive with a disk in it — and
never when the drive is spinning. The drive may do
weird things as it ‘loses its brains’.

If there is no BAM, then you can use the tip #3
above to try to retrieve information. Initialize a
new disk with exactly the same header as the bad
disk; now slip in the bad disk and read track and
sector if possible.

A read error means that you cannot depend on the
data on the disk. A check-sum error can be looked
at, retrieved and re-written.

A disk can be re-set without touching the on/off
switch by OPEN 1,8,15,“U2: then CLOSE1. This

will work with the disk in or out of the drive.

A USR file is a sequential file that has a special
protocol that may differ from the standard ASCII.
This designation allows the catalog to show a file
as 'special’ in its format.

GENERAL INFORMATION

There are “new” manuals and reference guides
available from Commodore that were printed in
1982. These include data on the 9060 and 9090
hard drives. There is no data on the slim-lines.

Epson has a new printer manual for the Mx-80,
again published in 1982. This manual includes a
tutorial on various functions including Graftrax +
use.

Commodore can be considered to be as good as
most other manufacturers in terms of their pro-
gram transportability between machines. Despite
our problems, programs that are written without
‘frills’ can run on all machines. Many manufac-
turers introduce new models with no carryover,
whatsoever.

Best of The TORPET

Hardware — Disk/Tape Drives

Disk Myths You Should Know About

By Tom Van Flandern, Washington, D.C.

This article about disk myths originally written by
Tom Van Flandern for the Washington Apple Pi
Newsletter, June, 1982, comes to us by way of
NORTHERN BYTES, newsletter of the Computer
Users International in Sault Ste. Marie, Michigan
and Ontario.

Is the price of blank diskettes a constant drain on
your budget? Read on! You'll be glad you did.
Discussions of the subject of diskettes usually
result in the propagation of ‘“disk myths”, or
statements about diskettes which have three at-
tributes: 1. They originate from diskette manufac-
turers or dealers, not users; 2. they are all reasons
why you should pay more for your diskettes; and
3. they are untrue. Let’s consider the most com-
mon of these myths.

ONE-SIDED MYTH

You have probably been exposed to the controver-
sy over using one or both sides of your ‘“single-
sided” diskettes. | have often heard the myth
repeated that the manufacturers put their label on

whichever side of a diskette that their surface
quality tests. By implication, the other side may
have failed such a test and therefore may be ex-
pected to be of inferior quality. Sounds plausible,
doesn’t it? Cuts manufacturing costs, and why
certify both sides when only one is usable as the
disk is sold? There is just one problem with the
theory — the box of diskettes doesn’t know what
type of computer or drive it is headed for use on.
Did you know that Apple disk drives always write
on the bottom side of your diskette? Commodore
disk drives do the same; however, there is no stan-
dard among computers. Some have single-sided
disk drives which write on one side; others may
write on the other side. Manufacturers are
therefore obliged to certify both sides of diskettes
with equal care.

TWO-SIDED MYTH

What keeps you from turning your diskettes over
and using the magnetic surface on the other side?
There is a small rectangular notch along one
edge, centered at 1 5/16 inches from the top edge

139

Best of The TORPET

Hardware — Disk/Tape Drives

of your 5 1/4 inch floppy diskettes. This notch per-
mits your disk drive to sense that it is okay to
write on the disk. if you cover this notch, the disk
is write-protected. To make the other side usable,
just punch a similar hole along the opposite edge
at the same distance from the top. Turn the
diskette over, insert it into the drive and use in the
normal way. The shape of the notch is not impor-
tant — circular or rectangular are equally good —
but it must be at the correct location, about 1/4
inch wide and not quite as deep. Use an ordinary
hole punch for good results. To get the location
correct, just turn over another diskette and line it
up with the one to be punched. For mass produc-
tion, make a mask 5 1/4 inches long which can be
placed quickly over the disk to show you where to
punch. Don’t be concerned if you get the hole
slightly too large. Your chances of damaging the
diskette are small with ordinary care and are less
from making too large a hole than they are from
using too crude a cutting instrument, causing the
diskette to be pinched inside its cardboard jacket.

The disk myth in this connection is that you risk
losing data on the original side of the disk if you
write on the other side in a one-sided drive. The
reason cited is that magnetic particles will ac-
cumulate on the pressure pad which presses
against the side opposite the read/write head, and
these can destroy information on the side they
come in contact with. The principal argument
against this theory is empirical — it just doesn’t
happen, at least not over a period as short as a
few years in ordinary usage. (See caution below
under “The Cleaning Kit Myth”, however.) The
failure rate for diskettes used one-sided and two-
sided is statistically indistinguishable, resulting
in an interesting correlation. The probability of a
micro-computer owner using his diskettes two-
sided is directly proportional to his experience.
Almost all users eventually try this, and the best
proof of its effectiveness is that they stay with it.
The most experienced owners, with the largest
files, almost all use their diskettes two-sided, and
smile knowingly at the novices who are reticent
because, “if it were that simple, the manufac-
turers would tell you so!!”.

DOUBLE-DENSITY MYTH

This disk myth is insidious, because the manufac-
turers allow the consumers to fool themselves
and simply fail to provide them with information
needed to correct the myth. Double-density
diskettes cost more because they have a thicker
magnetic coating. So they must surely be better,
right? Why not keep your really important files on
double-density diskettes? Woe to you, naive and
trusting user. The purpose of the double-density

diskettes is to support disk drives capable of
generating a stronger magnetic signal than nor-
mal drives. This is usually needed if more bits are
to be written perinch, but is quite unnecessary for
the information density at which normal disk
drives operate. More importantly, though, since
the signal generated by normal drives is not
strong enough for double-density diskettes, you
actually have a slightly higher risk of losing those
valuable files if you wrote them on a double-
density diskette!!

HUB RING MYTH

Some diskettes come with hub rings, and this too
is supposed to be worth paying extra for. Hub
rings are circular bands on the inner edge of your
diskette which provide extra strength to that
edge. Their main function is to keep the inner
edge from getting crunched if the diskette is off-
center when the lid and pressure pad are lowered
after the diskette is inserted into the drive. With
just a minimum of care however, the lid can be
closed slowly and lifted and closed again if it
meets resistance, so as not to damage the
diskette. Another recommended practice is to
boot your disk and start it spinning before lower-
ing the door lid. (As far as | can tell, this is NOT
possible for those using the 1541 single disk
drive. JM) This not only aids self-centering, but
also prevents the read/write head from pressing
against the disk surface as it retracts for
recalibration (the clacketty noise you hear). In
other words ordinary good disk-handling practice
(which even children can be expected to follow)
will allow the diskettes a chance to self-center
and prevent damage. The problem caused by the
hub rings is that, if the diskette has any tendency
to bind in its jacket, preventing it from gaining full
rotation speed, it is easier for it to slip with the
hub rings than without. If you ever try a disk-speed
test and occasionally see some measures go off
the scale, this is usually from binding up and may
be exacerbated by hub rings.

THE NAME BRAND MYTH

Occasionally a brand of diskettes in its entirety or
a particular batch of diskettes from some well
known manufacturer, will be flawed and produce
much user grief. However, there is a lot of incen-
tive for manufacturers who want to stay in
business to prevent this from happening and most
are successful. Once the diskettes pass the sur-
face certification tests, if they are properly ship-
ped and handled, they are essentially equally
good, regardless of name brand or claims to the
contrary. Almost all diskette failure is due to
handling problems (see below). Failure rates of

140

Best of The TORPET

Hardware — Disk/Tape Drives

factory-shipped diskettes are about 12 per 1000,
on average, with little variation between brands
and no correlation with price. The myth here is
that paying more for a name brand buys a tangible
benefit.

In fact, many generic brand diskettes are
available, often made by the same big-name
manufacturers but without the name brand label,
for much less cost than the identical diskette with
the label pasted on it. Is the label really worth that
much extra cost to you? There is also the ques-
tion of whether a manufacturer will stand behind
its guarantee. Apple Avocation Alliance recently
reported that Verbatim refused to honor its
diskette guarantee and criticized the Apple
organization for selling Verbatim’s ““too cheaply”.

THE CLEANING KIT MYTH

“Buy a cleaning kit for your disk drive. Clean the
read/write heads at least once a week.” Before |
knew any better | bought just such a head clean-
ing kit. At the time | wondered at the important
notice on the box, which | quote in part: “Neither
seller nor manufacturer shall be liable for any in-
jury, loss or damage arising out of the use of the
product. Before using, user shall determine the
suitability of the product for his intended use, and
user assumes a risk and liability whatsoever in
connection.” | assumed, as most people must,
that this was just legal mumbo-jumbo to protect
the manufacturer from frivolous lawsuits by in-
competent users. After all, the product was being
widely sold for the purpose of cleaning disk drive
heads, and that was surely a desirable end. Wrong
again! | began to have one diskette failure after
another and it was several months before | realiz-
ed the correlation with use of the head cleaner.

The sad truth is that the cleaning fluid used with
the kit is a strong solvent. The recommended

method of application results in the pressure pad
getting soaked with solvent. If you then use a
diskette in the drive, the magnetic surface on the
other side of the diskette is scoured by the sol-
vent and actually dissolved in the process! The
damage can be so extensive that it may no longer
be possible to initialize the damaged surface. Of
course if | had not been using my diskettes two-
sided, | might not have discovered the problem.
But | now know that, in truth, head cleaning usual-
ly needs to be done at intervals of one to four
years, not weeks, and is easily done with alcohol
applied directly to the head, without damage to
either pressure pad or diskettes.

PROPER CARE AND HANDLING

Most diskette failure is caused by improper care
and handling, rather than anything under the con-
trol of the manufacturer. Of course, diskettes
must be kept away from magnetic fields, such as
emitted by some TV’s and certain other electronic
devices. They must be kept clean and dry. And the
importance of never writing on a diskette label
with an object which can apply pressure to the
magnetic surface below cannot be over-
emphasized.

Perhaps the single most common cause of ran-
dom diskette failure not caused by disk drives is
binding in the cardboard jackets. This is why you
are advised to store diskettes vertically and avoid
the temptation to stack them horizontally.
Anything which applies pressure to the jackets
(including crowded storage of diskettes, horizon-
tally or vertically) can cause binding, which
prevents the diskette from spinning at full speed
continuously while in use, which causes intermit-
tent failures.

| hope the preceding information proves useful to

you and saves you money as well as headaches
with your diskettes.

.

OWY oF

ORDER
Ld
© 0 I co

OWY oF

DEFINITION:
HELL

ORDKR

!

C S+eutiow ,3\}

141

Best of The TORPET

Hardware — Disk/Tape Drives

Detecting Disk Format

By Elizabeth Deal, Malvern, PA

1541 and 4040 floppies are not write-compatible.
A floppy formatted on a 4040 and subsequently
written on by the 1541 experiences a slow self
destruction. The initial signs of trouble are LED
and stepper-motor hiccups. This is shortly follow-
ed by DISK ID MISMATCH errors, often accom-
panied by silly track and sector numbers. Finally,
the floppy can be read no more.

The same is probably true the other way around,
though | haven’t tried it, one set of troubles is
enough.

A superficial look at the floppies does not reveal
on which drive such a floppy was formatted, both
have a “2A’ sequence in the directory name.

Jim Butterfield says (I think) that the synch marks
attached to each sector are different. The recipe
for reading the synch marks includes a good bit of
magic potion, a white fuzzy kitten on the roof, and
a tornado in West Chester, PA ... all at the same
time. So here is the easier way:

The 1541 formats differently from a 4040. The 4040
fills the entire disk with zeros, the 1541 fills it with
ones, and sets all “‘next track pointers’ to 75. This
explains why several disk messages invariably
report ILLEGAL TRACK AND SECTOR 75, etc,
and an unfinished directory in “newing” has all
file names AAAA with 256 blocks each.

Relying on this last bit of information we can
detect on which drive the disk was formatted, pro-
vided that the floppy is not full.

340 REM
350 Zz$=CHRS$(0)

360 DV= 8D= 0:REM DEVICE, DRIVE
370 T= 29:S= 4:REM TRACK,SEC

380 OPEN15,DV,15:0PEN1,DV,3,“#"
390 GOSUB450:IFETHENSTOP

400 PRINT#15,“U1"3;D:T;S

410 GOSUB450:IFETHENSTOP

420 FORJ= OTO7:GET#1,I$

430 PRINTASC(I$ + Z$);NEXTJ

440 CLOSE1:CLOSE15:END

450 INPUT#15,E,E$:PRINTE;E$:RETURN

460 REM
4040 RETURNS 00000000
1541 RETURNS 761111111

NOTE: This program will not work if there are zero
blocks free on the disk being tested.

This program is on
The Best Programs Disk

If you get results other than a chain of zeros or
ones, you are not using an empty sector, so
change T and S in a program until you do get a set
of either ones or zeros. If you can’t get any such
clean chain, then somebody has been fooling with
the disk, and you’re on your own.

My routine will also NOT detect a disk formatted
on the 4040 but then changed to look like a 1541,
for this you’ll have to go after the synch marks,
but it is an unlikely event to happen.

In any case, it is just not safe to write on a disk
that you did not format, so take all the necessary
precautions, whatever the results of the above
routine.

Be careful with purchased software, sometimes a
sticker says ‘“1541”’. A sticker may not be relevant.
Anybody can print any kind of a sticker they wish.
What’s inside is what counts, especially if the pro-
gram writes on the disk, as is the case with high
scores in games, to cite just one example.

| WANTED AN EIGHT-INCH
FLOPPY DISK, NOT AN

EIGHT-FOOT ONE!

142

Best of The TORPET

Hardware — Disk/Tape Drives

Reading The Error Channel in Direct Mode

By Elizabeth Deal, Malvern, PA
It can be done!

Commodore 64 and Upgrade PET computers nor-
mally can’t look at the disk error channel the
same way as Basic 4 systems, since we cannot
use GET or INPUT in direct mode. So, we patch
what we can with the DOSO-wedge or POWER,
POWAID, MOREPOWER — whatever we’ve got.
But, sometimes, those utilities get clobbered,
especially the wedge, since a lot of people put
their code in fixed places. The alternative is to
enter program lines, but that clobbers the pro-
gram all too often. So, it’s one trouble chasing
another.

We are in luck now. Howard Harrison of
Philadelphia passed this gem to me: if we enter
the GET# routine several instructions past its
beginning to avoid the check for direct mode, we
can, in fact, use GET to read the error channel. It

will not work with INPUT#, as the direct mode
check is buried inside the routine. So we type, all
on one line, if you wish:

CLOSE15:0PEN15,8,15:
FORI =0TO30:SYS(51844)#15,A%:PRINTAS;:
IFST= O0THEN NEXTI

This is for the PET. For Commodore 64, use
SYS(43906).

It’s not exactly as easy as Basic 4
PRINT DSS$, but it does the job.

The parentheses around the address are not need-
ed. You can even stick in spaces between the ad-
dress and the number sign. And, if you keep one
and the same file open to channel 15, you can skip
the open/close typing.

Best of The TORPET

Hardware — Disk/Tape Drives

A Fix For The 1541

By Elizabeth Deal, Malvern, PA

One problem with 1541 disk drives is that
sometimes they are unable to reliably read tracks
1-2 and 34-35, and unable to write anything,
anywhere. In this case, the read/write head may
have a bit of trouble moving fast and far enough.

Use a Q-tip and some mineral oil on the shaft on
which the head travels. To do this, you need to
disassemble the 1541, a job best left to qualified
oeople, as the parts you have to get to are buried

under lots of delicate chips and things.

It must be mineral oil, not the 3-1 sewing machine
kind and not silicon sprays. Part of the magic, |
suppose.

While this procedure is most reasonable, | cannot
accept the responsibility for you botching the job.
It is your disk drive, so, please, use good judg-
ment in fixing the problems...if you have them.

THE ONLY
CATCH IS...

TS $579897

CHIPPER ,WE COULD :
SOLVE A LOT OF

FROBLEMS WITH THIS

by Patrick Corrigan
DON'T WORRY DAD...

M3 $ =64

=P§(¢)x6’ﬁ' AOF;ER 787632 GAM'ES
(TLL PAY FOR

ITSELF!

143

Best of The TORPET

Hardware — Disk/Tape Drives

Using the 1541 Backup

By David Bradley, Toronto, Ont.

First of all, if you don’t have the 1541 Backup pro-
gram and you want to copy disks using your 1541,
get it.

Once you have the program loaded into your Com-
modore 64, type in RUN and press return. There
will be a slight pause before anything appears to
be happening, so don’t worry if it doesn’t jump in-
to action immediately. When the program is
finished setting up, there should be several
“boxes” displayed on the screen.

The first thing the program will instruct you to do
is to enter the program operation code.

What the program is asking you to decide is
whether you want to do a BAM select backup or a
direct backup. You choose this by typing in either
a B or a D and pressing return. If you are not sure
which to choose, | will try and explain what the
difference between the two is.

The BAM Select Backup will only copy the areas
of the disk that have information on them, while
the Direct Backup will copy every track and sec-
tor, whether it be empty or full. The Direct Backup
should always take the same amount of time,
whereas the BAM Select Backup will vary, depen-
ding on how full or empty the disk is.

Now it is time to get your Destination disk format-
ted. The program will ask you to enter disk name.
The name of the disk is what you see displayed in
reverse field characters when you list the direc-
tory of a disk.

After you have named the disk, the program will
tell you to enter ID number. The ID is a two-
character code that is also displayed in reverse
field characters when you list the directory. You
have to be careful, when using this program, to
make the ID of the Destination Disk different from
the ID of the Source Disk.

Now you will be instructed to enter destination
disk into drive. Before you go on, get it very
straight in your mind which disk is which. The
Destination Disk is the disk that you are copying

This program is on
The Best Programs Disk

to, and the Source Disk is the disk that you are co-
pying from. So, put the disk that you are copying
to in the drive and press return. If all is well, the
program should display Formatting Destination
Disk and the disk drive should be working.

Once the Destination Disk has been formatted,
the program will tell you to insert source disk into
drive. Before trying to do this, be sure that you
have removed the Destination Disk. Once the
Source Disk is in the drive, press return. This tells
the computer that you have done your part and it
is time for it to proceed with its duties.

There should once again be disk activity and the
program will display reading BAM from Source
Disk. After about five seconds, the computer will
request that you verify source disk for backup. All
you have to do is press return and the computer
will check the BAM it has stored in memory
against the BAM on the disk. This is done to en-
sure that no errors have occurred.

Then the program will inform you that it is reading
data into buffer. Notice the ‘““Bar’ near the top of
the screen. If all is well, that “‘Bar”’ should be get-
ting longer.

When the buffer is full, the program will tell you to
insert destination disk into drive and press return.
The program should tell you that it is writing data
from buffer. Now the “Bar” should progressively
get smaller.

When the buffer has been drained, the program
will tell you to insert source disk into drive. Once
again, put the Source Disk into the drive and press
return.

From here on, all you have to do is continue swit-
ching the disks when the program prompts you to
until the program says backup finished. When
that happens, if you did everything correctly, you
should find that all of the programs from the
Source Disk are now on the Destination Disk as
well.

Good luck....

My wife was looking rather folorn as she hunched
over our C64 waiting for a particularly slow output
to appear on the monitor. | suggested she join me
in a chorus of “Someday my PRINTs will
come.” — Ylimaki

144

Best of The TORPET

Hardware — Disk/Tape Drives

Keeping Track Of Your Disks

By Joel Meers, Kingston, Ont.

| have been a member of a club for a year now, and
I am finding that | have club programs, friends’
programs, and heaven-knows-where-l-got-them
programs coming out my ears. | have found
myself faced with some problems which | felt
other computer fanatics must be having.

Computer Fanatic to Self: “Now what disk is that
so-and-so program on????”

Computer Fanatic to Fellow Fanatic: “Oh say
George, | have just the program to help you
out! | found it a couple of weeks ago on one of
my club disks....now what was the name of that
thing???”

Computer Fanatic to Self: (this talking to yourself
happens, you know: possible side effects of
VDTs) “l know | have a program that does that,
and | know it'’s on one of those utility disks, but
which one was it? Hmmmm.”

These are just a few of the problems | have en-
countered, not to mention trying to remember
what each of the programs on that new club disk
did or how well it did it. Put the directory on a prin-
tout, you dummy, you say. Well, | do. Pity the poor
guy who doesn’t have one! Sure, this is great,
but how many of us with a few dozen or so printed
directories can remember what they all do?

| tried Disk Master, but who wants to wait to read
through twenty sequential files, and then not
know what the program does. | filed that program
in my head as not practical.

Enter the Data Base. | have been working mainly
with two D Bases, Delphi’s Oracle, which is
superb and very sophisticated for a D Base in that
price range, and Flex File. | found Flex File first
and, when the Oracle came along, | pretty much

mothballed my Flex.

Any data base would work, but | found Flex File to
be less complicated, and the task | wanted to per-
form was just that. By setting up three key fields
— 1. PROGRAM, 2. DISK, and 3. DESCRIPTION —
| was away.

The PROGRAM field was set up for 16 characters,
the DISK field for 16, and the DESCRIPTION field
for 40. This can all vary, of course, but, for max-
imum capacity, you want to keep the number of
characters down. By the way, | ended up scrat-
ching the mail label, errata and any unnecessary
programs from the disk and wrote my data on the
same disk. | could get 1000 records on the disk
and one disk makes using this idea just that much
simpler. | also designated a letter code for the
first character of the DESCRIPTION field, i.e.,
G-game, U-utility, E-education, etc., allowing me
to use the third field as a category search field as
well as just holding text.

With this very simple format, | can search on any
field for a particular program, a particular disk, or
a type of program. | can immediately get the loca-
tion and a brief description of the program. This is
great for those without a printer. For those with,
the report generator on most D Bases will then
give a directory listing with short descriptions of
each program.

Maybe lots of you have tried it, but, for people like
me who are newly struggling with these problems,
this might be of use to someone. By the way, there
are possibilities for this format on any number of
a variety of D Bases or mail label type programs.
Heaven forbid, | even tried it on PFS FILE on that
unmentionable computer with the stem, you
know, the one with the ‘byte’ missing on the side.

CHIPPER,, 1 THINK Hey, get real..... ides, 1d murder

OUR_CALCULATOR Im thye most advanced '{}Ef little Kludge ot
4]@[4 CAN DO EVERYTHING piece of hardware S Mutants

TH{Stgo()EAgWER this side of TOKYO/ pace ;

om—-<w

145

Best of The TORPET

CHIPP

WHEN THE COMPUTER COMES|

é)?®

[ij.!:
D

Hi,THIS IS THE FIRST | A FOR/NEXT LOOP CAN BE

IN A SERIES OF LESSONS | USED SO MANY WAYS , IT

ON FOR/NEXT LOOPS! A IS DIFFICULT TO EXPLAIN
' IN JUST_ONE LESSON.

L-rms FOR/NEXT LOOP IS
BASICALLY A COUNTER,
USED TO CONTROL THE
NUMBER OF TIMES R
CERTRIN OPERATION 1S
CARRIED OUT.

70 LINE R0,(NEXT X) IT
ApDS 4 To X. IF X IS

GRERTER THAN THE LIMIT
GIVEN IN LINE 10, THEN]

() 9 8) (&)
00000
THIS IS WHAT IT LOOKS | IN THIS PARTICULAR
LIKE IN A PROGRAM: | SITUATION , THE COMPUTER
- WILL CRRRY OUT THE
10 For x=17010 OPERATION TEN TIMES.
[Opem'l'ion 0] -
®) 9
20 NexT x
() ¢
HERE’S AN EXAMPLE THIS MIN|-PROGRAM
LOOP PROGRAM TO TRY: JILLUSTRATES HOW THE

IO FOR X= I TO 10 VALWE OF X CHANGES

1S PRINT X ERCH TIME THE LOOP IS
EXECUTED.

20 NEXT X

L

o ~

25 PRINT"END" 8 GO %)
P4 Q)

IT WILL STOP REPERTING
AND GO ON.
M ICHARDSON

0000

MORE' DETRILED

146

Best of The TORPET Printers Hardware

Printers Hardware

PAGE
Buying That First Printer 148
Stan Koma, Rexdale, Ont.
There are lots of terms to be understood. IEEE standard, Centronics Stan-
dard, RS-232 standard, Parallel, and Serial, Dot Matrix and Letter Quality.
This explains a lot of the details.
Garage Sale Printer 149

Gary Hayes, Garden Grove, CA

There are some bargains to be had if you are not too demanding and are
willing to look.

Selecting A Printer 150
Gene Wilburn, Mississauga, Ont.

Some advice about what to look for and what to look out for can save you a
bundle.

VIC and RS-232 Printer 153

Daryl E. Williams, Santa Ana, CA
Another one of the standards available is examined.

VIC Printer Routine 153
Michael Kelinert, Nanuet, N.Y.
Here is a program to help you get more use out of your printer.

Re-inking Printer Ribbons 154
T.J. Bos, Brantford, Ont.

The little beggars can be expensive and if you do quite a bit of printing this
is a good way to save money.

Re-inking Printer Ribbons 154
E. Toussaint, Shelley, W. Australia

Every idea can be improved upon, and here is a follow-up article on the

same subiject.

1526 — Good Printer, Lousy Manual 155
Howard M. Mesick, Hartly, DE

A user gives some additional hints not found in the manual about using the
1526 printer.

147

Best of The TORPET

Printers

Buying That First Printer

By Stan Koma, Rexdale, Ont.
Buying a printer is like buying a car.

When you enter a car lot, the first thing that
strikes you is the variety of cars on display. You
take a look at that medium range car. It’s the right
size for the family...and the dog. It’s within your
price range, the gas mileage is quite good and it
will also be big enough to take a few hockey
players and their equipment to the arena. That’s
the car.

This is the kind of thinking process that is re-
quired in buying your first printer. You have to be
prepared to make ‘‘trade-offs” to select the right
printer for you. After | started looking for the
‘“ideal printer”, | soon discovered that the only
ideal printer is the one that does the things you
want it to do best. It may not do everything you
want, but it should do well those things that you
need most.

If price is no object, all you have to do is buy the
top of the line printer and all your problems are
solved. But for the rest of us, there are certain
perimeters that force us to make a selection bas-
ed on specific personal needs and a certain price
range. | had decided that my price range would be
about $1,000.00.

I did not make an exhaustive study of printers. If |
did, | would still be looking. You have to make
some trade-offs even in the amount of time you
want to spend searching.

TYPES OF PRINTERS

Basically there are two kinds of printers - the dot
matrix and the letter-quality. The dot matrix
machines create letters and symbols with a series
of dots. The greater the number of dots, the better
the reproduction. Letter-quality printers “type”
perfectly-formed letters when a hammer strikes a
rapidly revolving ‘“Daisy wheel”. For superb-
looking reports, the letter-quality printer can’t be
beaten. It’s like a computerized electric
typewriter. It was this kind of printer - the Smith-
Corona TP-1 to be specific - that encouraged me
to look into printers seriously. | needed a printer
that would produce nice looking reports as well as
have sufficient speed to print out copious data |
had stored on diskettes.

TP-1

The Smith-Corona is an excellent printer, but at 12

characters per second (CPS) | felt it would take
me a long time to transcribe all the notes | had
stored on diskette. And, besides, most of the
notes did not have to be letter-quality because
they were solely for my personal use. But, occa-
sionally | would need a machine that produced
high quality printing. From the very beginning you
have to think about trade-offs.

There are also letter-quality printers that have a
typewriter keyboard. Besides being able to hook
up these machines to your computer, you can
also use them as regular typewriters. | didn’t need
that extra capability.

8023P

| also considered the Commodore dot matrix
8023p printer. The big advantage here is the ability
of the Commodore to print all the PET’s graphics.
These printers can provide hard copy for your pro-
grams. But my needs did not include program
listing at this time, although it would have been
nice to have this feature. At this point, my pro-
gramming abilities were still in the elementary
stage. What | primarily scrutinized was the cor-
respondence mode. This is the one which
generates the machine’s best letter-quality. With
all the beautiful things this CBM printer can do, |
was not very impressed with the correspondence
mode. (I knew | was going to miss the program
listing ability of this machine.)

During a Computer Fair recently, | had an oppor-
tunity to talk to several sales personnel about
printers. | discovered there are a number of dot
matrix printers that have superb correspondence
quality and they were within the price range | had
selected.

| zeroed in on two dot matrix printers: the
Okidata-92 and the Epson. Both are excellent.
They did all the things | wanted a printer to do and
much more. But the main thing that appealed to
me was the quality of the letters in the cor-
respondence mode.

The decision was a tough one. Actually, it could
have been decided with the toss of a coin. When |
finally selected the Okidata, it was more from a
personal preference for the style of print of the
correspondence mode than anything else.
Another person could have looked at the same
printing output and chosen the Epson.

148

Best of The TORPET

Printers

WHEN TO BUY?

But, the decision-making process was not over
yet. Now that | was ready to buy, another question
presented itself. Is this the right time to buy a
printer? Are not the costs of printers coming
down...just as they are for computers? Should |
not wait for a while and take advantage of the new
technology that is being built into printers?

For anyone who does not need a printer right
away, a pause can be justified. But | had two
diskettes filled with notes that | wanted to
transcribe into hard copy. Any lengthy hesitation
would have been disastrous. | did not want to
spend long hours running off those notes | had on
diskettes.

WHERE TO BUY?

Another question also arose: Where should you
buy the printer? Advertisements for printers
revealed a wide price range. Without hesitation |
decided | would buy the printer from a local
dealer. As a first time printer buyer, | knew that
there would be questions about printer’s use after
| had purchased it.

Then there was the question of price amongst
dealers. In making the rounds, | found that they

are prepared to sharpen their pencils when it
comes to quoting on their equipment. Competi-
tion is stiff. So when the dealer realizes that you
are ready to buy, he will give you his best price.
That’s all you can ask for and nothing more. The
dealer is entitled to a fair profit. Besides, a buyer
should be prepared to share in the cost of that
after-sale information that will be needed to take
full advantage of the printer’s potential.

Now | know that as time goes by | will need dif-
ferent capabilities in a printer that | may not have
in the one | purchased. PET graphics and program
listing may become a necessary feature. And,
printers of the future will make hard copy produc-
tion even more exciting than it is now.

Well, all will not be lost. I'll probably get the same
feeling | did when | realized my family needed a
bigger car. That's the way life goes. Besides, |
might be able to sell my printer through TORPET’s
classified ads. After all, there may be someone
out there for whom this printer would be the
‘“ideal printer.”

The way the Japanese are progressing with

their new generation of computers, they may

one day have the market AH SO’D up.
Ylimaki

Best of The TORPET

Printers

Garage Sale Printer

By Gary Hayes, Garden Grove, CA

VIC and the C-64 make budget computing a reali-
ty. | use my VIC for business and find a printer to
be a necessity. | needed a reasonably fast printer
with an adjustable tractor to handle long runs of
address labels. | found that the original TRS-80
line printer is in good supply on the used market
at prices from $100. to $175. The unit is big, noisy,
and has no lower case characters, but the ad-
justable width and good tractor make it an ex-
cellent lister and mail label printer. | used a cord ?
(Cord print) universal parallel interface from Card-
co of Wichita, Kansas, USA.

The printer is capable of providing the 5 voit supp-
ly but | chose to shorten the flat cable wire at the
Centronics plug that corresponds to pin 18. The
wire for pin 10 is shown in the manual as not used
but is actually grounded. This resulted in a blown

fuse on the printer’s 5 volt supply. Shortening the
wire for pin 10 solved the problem. To shorten the
wire simply remove the rear cover from the con-
nector and trim the wire back with an exacto
knife. This allows the connector to be snapped
back on a half inch or so further down the cable to
restore the open lines if necessary for another
Centronics printer. | offer this information
because neither Radio Shack, The Radio Shack
Printer Repair Station, The Centronics Tec Man
nor Cardco could help me.

My printer is still working strong many address
labels and mailings later. Most older equipment
has little value in today’s world of daily im-
provements. Now many people are trading up
from those first models on trash eighties to newer
things. The printers may be worthy of survival.

149

Best of The TORPET

Printers

Selecting A Printer

By Gene Wilburn, Mississauga, Ont.

Printers are to microcomputers what speakers are
to stereos. Cheap speakers and expensive
speakers both reproduce the same notes, but to
the ear there is a discernible difference in the
quality of the sound. Likewise, a cheap printer
and an expensive printer both produce the same
words of your word processing text, labels, or
listings, but the eye sees a noticeable difference
in print quality. In general, if you want the best
possible print, with no sacrifice in speed or
features, you must be prepared to pay for it --
anywhere from $2000 to $4500. For a business or
professional organization, with high-volume use
and with a corporate image to maintain, a printer
of this quality is essential. The home computer
user, however, will probably have reservations
about buying a printer that costs four to ten times
as much as the computer itself.

Fortunately, in the world of printers, cheap does
not mean bad. Just as there are inexpensive
speakers that give excellent performance for their
size and price, there are less expensive printers
that are very satisfactory. As always with hard-
ware purchases, the trick is to balance your
wishes and needs against the fullness of your
wallet.

If you are in the market for a printer, do as much
homework as you can before buying. Read the
printer surveys in computing magazines to see
what is currently available. Don’t limit yourself by
considering only Commodore printers -- your com-
puter will operate with most of the printers on the
market. Be sure to do some comparison shopp-
ing. As with stereo equipment, it always pays to
shop around. Don’t buy the same model printer
your friend has simply because you’'ve seen it. If
you like it, that’s fine, but above all, determine
what you want from a printer. Try to become as
‘“printer literate” as possible. The following sec-
tions contain some information, points, and tips
that may assist you with your purchase.

DAISY WHEEL VS. DOT MATRIX

The first decision to make is whether to buy a
daisy wheel or a dot matrix printer. Daisy wheel
printers are named for the shape of their inter-
changeable type element, which resembles a
daisy, i.e., the element has a central hub from
which spokes radiate daisy-fashion. On the ends
of the spokes are pre-formed characters that are,
literally, hammered onto the page during printing.
The daisy wheel functions in the same manner as

I!Y

the ubiquitous IBM Selectric typewriter “golf bal
and the finished product looks as if it had been
typed on a Selectric (without Whiteout tracks).
Some high-quality printers, like the NEC Spin-
writer, use an element that looks more like a thim-
ble than a daisy, but the idea is the same. Daisy
wheel printers are the most expensive printers for
microcomputers. Some of the better-known
manufacturers of daisy wheel printers are C. Itoh,
Diablo, NEC, Qume, and Radio Shack.

Dot matrix printers, on the other hand, do not have
pre-formed characters. Instead, a grid of pins (a
matrix) is hammered onto the page. For each
character of the alphabet, a different pattern is
hammered, forming characters made up of little
dots. You’ve undoubtedly seen examples of this
on bills or computer printouts. There is no
disputing that dot matrix printing does not look as
nice as daisy wheel printing. However, if the
matrix is dense enough, it can approximate the
look of pre-formed characters -- a look that has
been dubbed “correspondence quality” by printer
manufacturers. Alas, the dot matrix printers that
do a really convincing job of this tend to be nearly
as expensive as high-quality daisy wheel printers.

In general, the majority of dot matrix printers are
considerably cheaper than a corresponding daisy
wheel model. The cost of both types of printers
has been falling, and you can buy a very good dot
matrix printer in the $400 to $1000 range. There
are also some advantages to matrix printers. For
one thing, they are often faster than daisy wheels
and the better ones are much more versatile.
Many matrix printers allow you to change pitch,
typeface, and character width on the fly, with con-
trol sequences from the computer. With a daisy
wheel printer you would have to stop printing mid-
way on a page, manually change the print wheel,
print some more, stop again, and then change it
back, to achieve a similar result. Furthermore,
some matrix printers can print high resolution,
dot-addressable graphics -- an important feature if
it tickles your fancy. Matrix printers are great for
printing program listings and they tend to be
relatively compact and lightweight. All in all, a
good dot matrix printer is very satisfactory if you
don’t require IBM Selectric quality printing.
Manufacturers of popular dot matrix printers in-
clude Epson, Centronics, C. Itoh, Mannesmann,
NEC, Okidata, Star Micronics, Radio Shack, and
Leading Edge.

There is a new breed of daisy wheel printer on the
market. Some of these, like the Olivetti Praxis, are

150

Best of The TORPET

Printers

really electronic typewriters with a printer inter-
face; some, like the Brother and Smith Corona,
are stripped-down daisy wheel printers. All are
priced competitively with good dot matrix
printers, and all are abominably SLOW! Ten
characters per second is top speed. They’ve not
been around long enough to have an established
track record in terms of dependability, but they
should be investigated by the home user who has
more time than money. A printer that can double
as a typewriter may be of special interest to
writers.

INTERFACES

Most printers connect to either an RS-232 serial
interface or to a parallel interface. Daisy wheel
printers most often require a serial interface, but
some allow the option of parallel. The majority of
dot matrix printers connect to a Centronics
parallel interface. This can be a slight problem for
Commodore computer owners because Com-
modore, a few years back, settled on the IEEE-488
parallel interface as its standard. Consequently,
to use the majority of non-Commodore printers,
you must add an IEEE-488 to Centronics cable for
parallel interfacing. Once this is done, you can
use most of the parallel-interface printers on the
market. Be aware, however, that Commodore
graphics in BASIC listings will not print properly
on non-Commodore printers.

SPREADSHEETS AND WORD PRO-
CESSING

If you use a printer primarily for listing programs,
the quality of the character sets is not critical, but
if you intend to use your computer in professional
applications, you should pay careful attention to
the character sets that are offered on a printer. If
you need to print out wide financial spreadsheets,
for example, either buy a printer with an extra
wide carriage for wide paper, or make sure that a
regular-sized dot matrix printer has a 16.5 cpi
(characters per inch) setting. For a daisy wheel, in-
sist on one that will accept 15-pitch daisies. For
listing programs on a daisy wheel printer, make
sure you can purchase an ASCIl daisy wheel.
Otherwise you will be missing important symbols
such as «and»

Many of the better daisy and matrix printers have
a typeface called “proportional.” Proportionally-
spaced typefaces are very smart looking — the
characters are fitted together more attractively
than with the equally-spaced ‘‘monospace”
characters of most typefaces. However, there is a
‘“gotcha” in this. Columnar display and right

justification of proportional type is tricky and re-
quires special support from your word processing
software. If you like your current software and it
doesn’t support proportional, then don’t spend
anything extra to get proportional spacing on a
printer — you’ll never get the benefit of it. If,
however, you decide you can’t live without propor-
tional spacing, then toss out your word process-
ing software and buy a package that fully sup-
ports it.

One last word about word processing. If you're us-
ing a word processing package that you really
like, then stick with the printers it supports! Don’t
expect the software author to rewrite the program
to your specifications. There are a lot of printers
out there and no WP package can support them
all.

OTHER CONSIDERATIONS

Printouts look best when you can see them. Many
computerists, however, use their ribbons so long
that their printouts look as if the ribbons were
unacquainted with ink. To minimize the tendency
to use ribbons too long, bear in mind the cost of
ribbons when selecting a printer. Carbon ribbons
for daisy wheel printers are very expensive and
they don’t last long. Cloth ribbons for dot matrix
printers are, on the whole, more reasonable, but
the ribbons for some brands are dear enough to
make your wallet cry “Ouch!” If you select a
popular brand of printer, chances are that you will
find some good buys on ribbons from time to
time. Select a rarified model and you may have to
import ribbons at a premium. Simple supply and
demand.

Check out how a prospective printer feeds paper.
Most popular dot matrix printers use a pin-feed
mechanism to accommodate standard-sized
continuous-form paper — the kind with holes on
the sides and perforations between the sheets.
This is a desirable feature. But what if you want to
feed in.one sheet of letterhead stationery at a
time? If this is important, make certain it also has
friction feed. If you need to print on various sizes
of continuous-feed stock, such as labels, then
select a printer that also has available an ad-
justable tractor-feed mechanism. Tractors are
particularly important for daisy wheel printers.
Daisies jiggle around so much during printing that
continuous-feed paper gets out of alignment if it
is not controlled by a tractor-feed mechanism.

The speed of a printer should not be overlooked.
Anything slower than 80 cps (characters per se-
cond) requires a lot of patience. Also, check out
the noise a printer makes. Most daisies are quite

151

Best of The TORPET

Printers

noisy and can create a disturbance in an office
area. If a model is noisy, see if there is a silencer
hood available. Dot matrix printers sound annoy-
ingly like angry mosquitoes. Not much you can do
about it except introduce a new house rule: “‘no
printing after midnight.”

CONCLUSION

Printers lack the pizzaz of modems, the challenge

of joysticks, and the elegance of light pens, but,
with the exception of a disk drive, a printer is the
most useful peripheral you can add to your
system. The next few years should bring some in-
teresting new developments in the way of affor-
dable ink-jet printers and perhaps even home-
priced laser printers but, in the meantime, there is
a good selection of reasonably-priced equipment
that should meet your needs. Happy printing!

Y’KNOW, IT’S FUNNY! ALL DAY LONG WHEN | WORK, | FEEL
LIKE SOMEONE’S WATCHING ME!

152

Best of The TORPET

Printers

VIC and RS-232 Printer

By Daryl E. Williams, Santa Ana, CA

Am | the only VIC-20, RS-232 printer user? It
seems that way when it comes to getting informa-
tion or buying software. When you do anything in
the RS-232 interface, it’s on the modem only. It's
time we stood up and be counted. Let’s have an
RS-232 information exchange on printers and
disks. Write to me and let me know any of your ex-
periences with the RS-232 interface. If there are
enough, maybe we can start our own users group.

The reason | ended up with this problem is as
follows. This guy | work with had a rebuilt Data
Products DP-50 daisy wheel printer for sale. Only
$250, but little did | know what was ahead. |
bought a Quantum Data Model 1800 printer, which
is an RS-232 interface connected to the user’s
port. Hey, this is great; now all | have to do is
power up, and we are in business. WRONG! My
first problem, it didn’t line feed. Everything
printed on the same line. After many failures and
much research, | found the answer. | had to use
OPEN 128,2 or greater. That was in May of 1982.
Only you who have experienced this will know
that wasn’t the only problem. For you beginners,
here are a couple of hints.

To list a program, use:

OPEN 128,2,0,CHR$(6):SMD128:LIST

Explanation: You must use greater than 127 for
line feed, in this case 128. The 2 is the user’s port
device. The CHR$(6) prints in 300 baud.

To convert to standard ASCII sub-routine:

1000 REM Standard ASCII subroutine

1010 X = LEN(P$):IF X-<1 THEN1060

1020 FOR |=1TOX:X$ =LEFT$(P$,I-1): SS$=MID$(P$,1,1):
Z3$ = RIGHT$(P$,X-)

1030 Y =ASC(SS$):IF Y>64 and Y< 91 THEN SS$=CHR$
(Y +32):GOTO1050

1040 IF Y > 192ANDY < 219THENSS$ = CHR$(Y-128)

1050 P$ = X$ + SS$ + Z$:NEXT

1060 RETURN

Boy, would | like to have a way to change some of
the VIC printer programs to print on my printer.

Write to me: Daryl E. Williams, c/o Dew-Rite Enter-
prises, P.O. Box 1932, Santa Ana, Ca. 92702.

Best of The TORPET

Printers

VIC 1525 Printer Routine

By Michael Kelinert, Nanuet, N.Y.

Although the VIC-1515 printer has its limitations,
there are several nice, built-in functions which
allow the user to easily manipulate output. One
very useful function is the dot addressable print
positioning command. This enables the program-
mer to specify a specific dot address from home
position at which the printer is to begin printing.

The format used is as follows:

PRINT CHR$(27);CHR$(16);,CHR$(HI);CHR$(LO);A$

Here, CHR$(16) is the code for character address-
ing, and CHR$(27) is the code used to specify a
dot address. The value for HI is the high byte of
the dot address and LO is the low byte. To deter-
mine these two values, the following formula may
be used, where DA is equal to the dot address:

HI = INT(DA/256): LO= DA-HI*256

The short program below uses this feature to
spread out the characters in a line of text equally,
thus producing an even right margin. It will work
correctly as long as the inputted string does not
exceed eighty characters.

This program is only a sample to demonstrate the
attractive output which may be produced. The
main routine is in lines 6 to 30, and may be incor-
porated into other programs, such as a word pro-
cessor, to produce very nice results.

5 INPUT A$: OPEN 4,4: CMD4

6 IF RIGHT$(A$,1)= “ " THEN A$= LEFT$(A$,LEN(AS)-1):

GOTO 6

10 A = LEN(AS): B = (474/(A)-1)

20 FORC= 0TO A-1: D= C*B: D= INT(D/256): E= C*B-D*256

30 PRINT CHRS$(15);CHR$(27);CHRS$(16);CHR$(D);CHRS(E);
MID$(AS,C-1,1);: NEXT C

40 PRINT#4: CLOSE 4

153

Best of The TORPET

Printers

Re-Inking Printer Ribbons

By T.J. Bos, Brantford, Ont.

Printers such as the 8023p and others do use rib-
bons that are contained in a cartridge.

The printed letters become gradually less dark un-
til a point is reached where it becomes necessary
to replace the ribbon.

The cartridges are fairly expensive, so | will
describe the steps required to re-ink the ribbon:

1. Remove the cartridge from the printer.

2. Select a screwdriver with a blade width equal to
width of the horizontal slots in the vertical sides
of the cartridge body.

3. Insert screwdriver blade into one of the five
slots and twist blade to pry up the cover approx-
imately 1mm (about 0.04 inch).

4. Repeat step 3 for the other four slots.

5. Position screwdriver or knife blade on one side
under the cover between slot and 'nose’, and gent-
ly slide it towards the 'nose’ of the cartridge.

6. Repeat step 5 for the other side.

7. Go to step 3 if cover is not loose.

8. Do not remove or disturb the ribbon.

9. If you ignore step 8, you’ll be sorry.

10. Apply with a little brush a few drops of the re-
inking fluid. As a guide, you may try about five
drops; you can always add more if needed.

11. Make sure that the ribbon is still down in its
original position, especially along the edges, so
that the cover cannot pinch it.

12. Re-assemble the cover on the cartridge body
all the way back down to its original position.

13. Inspect the aluminum-colored mask. If it is
badly worn, you may attach over top of it a new
layer of thin metal or plastic tape that has a pre-
cut hole in it to clear the needles of the print head.
The thickness of the tape may reduce the number
of copies that your printer can handle.

14. Re-assemble the cartridge in the printer and
turn the knob on the top in the direction of the ar-
row to take up slack of the ribbon.

Best results are obtained when the ink has a few
hours’ time to spread evenly through the ribbon.

The re-inking can be repeated several times.

| made the medium for re-inking by first concen-
trating the contents of a bottle of black stamp-pad
ink over slow heat to half its original volume. Then
| added glycerine to restore the original volume.

(I heated the stamp-pad ink in a cap of a spray can
on a wire stand over a candle.)

Best of The TORPET

Printers

Re-Inking Printer Ribbons

By E. Toussaint, Shelley, W. Australia

Here is an alternative method which | use with our
Commodore Tractor Printer 8023P:

1. Set a workshop drill press to ultra-low speed.

2. Lightly clasp the advance knob of the printer
ribbon cassette in the 3-jaw chuck of the drill and
raise the drill’s working table to just support the
printer ribbon cassette.

3. As a quick trial, turn on the drill while holding
the printer ribbon cassette loosely (i.e. so that it
can be easily let go if the ribbon sticks). The rib-
bon (which forms an “endless loop”’) should ad-
vance slowly and smoothly through the cassette.

4. With a stiff brush, keep the thick black printing
paste from a ‘“Gestetner” duplicating machine in
contact with the ribbon as it advances around the
cassette. Continue this until all the ribbon has
been coated with printing paste on both sides.

5. Replace the ribbon cassette in the printer. The
first few copies will be a bit messy, but after this
the print should be dark and sharp.

Note: If you don’t have access to a drill press, the
above operation could be done with a hand drill. If
this is the case, it then becomes a 2-man opera-
tion.

154

Best of The TORPET

Printers

The 1526 — Good Printer, Lousy Manual

By Howard M. Mesick, Hartly, DE

I’'m very happy with my new Commodore 1526
printer. It hooks up directly to my VIC (or your 64)
through a 3%2-foot (too short) cable, without need
for an expensive interface. While it doesn’t have
the print enhancement options of the Epsons, it
doesn’t need them. Its regular 8x8 matrix is very
sharp and pleasing. One problem: the nines look
almost like eights. Only the OKI 92 and the IDS
480 do better, for 50% more at a discount, plus in-
terface.

Nominally a pica machine (10 characters/inch),
my 1526 squeezes 32 letters and spaces into 3 in-
ches, close enough. Double- and quad-wide
characters also print. A platten allows the use of
single sheets, while the tractor width is ad-
justable, unlike some more expensive fric-
tion/pinfeed competitors.

Great device, great price!

Only one component is clearly defective, part
#983001810 — the ‘friendly’ user’s guide. Lucky
for you that aging pot-bellied boy geniuses like
me are around to fill in the instructions that Com-
modore left out.

SET-UP SNAGS

The first major omission is in the section, ‘Prepar-
ing to Use Your Printer’. While mention is made
that you should take out any ‘foreign material that
may have fallen into the mechanism’, you are not
told to remove the tape holding down the print
head or the little plastic block next to the head.
Please do so. On the bottom of the 1526 are two
Phillips bolts labelled shipping screws. Though
the manual didn’t even hint at their existence, |
took them off. You may leave them in at your own
risk. Having assembled umpteen mechanical and
electronic devices, | have never met a shipping
screw, bolt, brace or gizmo that wasn’t meant to
be removed before operation.

In the same prep section is this marvellous ob-
fuscation.

‘Hold the ribbon cartridge with the plastic knob at
the top left side, then set it on the two side frames
of the printer mechanism, tilting the cartridge so
the two front hooks on the side frames will be
engaged with two catches on both the left and
right sides of bottom of cartridge, then steer down
while pressing the ribbon side so the two side
tabs of cartridge are positioned into the slots on

the side frames of the printer mechanism.’
Whew!

The illustrations show pretty well how to install
the ribbon, which looks very much like an Epson
MX-80 cartridge. I've heard that Epson makes the
1526. Just be careful, when loading the cartridge,
that you slip it far enough forward, away from the
print head, so that only the ribbon itself is near the
platten. Then, if it is properly centered right to left,
it should snap in. Never force it, but try to match
tabs on the cartridge with niches in the chassis.

Oh yes. Swing the paper bail up out of the way
first, or you will snag the ribbon. The bail is that
little rod with two rubber rollers on it on the top
front of the platten. The platten is the large black
roller around which the paper goes. But you
already knew that, right?

The Commodore guessbook shows how to install
the wire paper holder, but doesn’t mention that
you must route incoming continuous forms
UNDERNEATH it, so that printed sheets may ac-
cumulate on top of it. Never use this rack to hold a
box of feed paper. That will bend it or pull the
printer off the table.

Loading the paper isn’t really explained, but
should be obvious to anyone who has used a
typewriter. It's easier to use the knob on the side
of the housing to advance the paper than the
paper feed button that Commodore recommends.

One important control not described or shown is
the pressure release lever just to the left of the
platten. (I always speak as though you were fac-
ing the front of the printer.) When pulled toward
you, it releases the pressure rollers beneath the
platten, allowing the paper to slide around
somewhat. This looseness enables you to adjust
a single sheet of paper so that it is perfectly
straight. Then you can push the lever back to lock
the paper tight so it won’t shift during printing.
Always keep the lever forward when printing on
continuous forms. If you don’t, slight speed dif-
ferences between the tractor and the tight platten
will eventually tear, crinkle or skew your paper. A
resulting paper jam could damage the 1526.

Both tractors are very hard to slide to adjust for
paper width. The left pinwheel moves only about
Y2 inch right and left. Don’t try to move it farther.
The right pinwheel will slide left past the centre of

155

Best of The TORPET

Printers

the platten. Hold the rod on which they are
mounted when you adjust them, and apply force
as gently as possible to ease strain on the
chassis.

PROGRAMMING PITFALLS

If you don’t know BASIC, you probably won’t want
to learn it by programming this device. |f you do
know it, you’ll probably muddle through. Explana-
tions of the various commands aren’t very clear.
Many vital steps are shown in the examples, but
never covered in the narrative. In some cases,
questions are answered further along so, when in
doubt, keep reading. A VIC or 64 programmer’s
reference manual can sometimes clear up the
murk. Often, you’ll just have to play around to see
for yourself how a command works.

The format control commands, being peculiar to
this smart peripheral, are the only ones not ex-
plained in other books. These are sent to the 1526
through a third and optional parameter of the
OPEN command called the ‘secondary address’
or ‘SA’. SA’s regulate the printing of dollar signs,
leading zeros, PET graphics, user-defined
characters, lines per page, line spacing,
diagnostic messages, etc.

The manual says 11 SA’s are available, then lists
only 10, 0 through 9. That list is wrong. There is no
#8. 8 should be 9, and 9 should be 10. Cut and
paste marks indicate that an 11th control code
once existed, but was removed. In the individual
examples, the two last SA’'s are correctly
numbered 9 and 10. Does this deletion have
anything to do with the recall of this printer after it
was released last June?

The 1526’s on-board RAM can hold only one user-
defined character at a time, printing it when
CHR$(254) is sent by the program. Yet any shape
that can be created in an 8x8 dot matrix can be
placed in that RAM by sending a character string
variable containing the shape. Thus, an entire
character set can be held in the computers
memory. The characters must be sent one at a
time, then printed in a following instruction. To do
that, the 1526 must be OPENed as two different
files — one to send the special characters to
printer RAM, and another to print them and
everything else. Important: only one user-defined
character can be printed on a line, though it can
be repeated on that line many times. Use of PET
graphics is unlimited.

Control code 10 is the printer reset. It is not ex-
plained at all! According to common sense and

my own experiments, it works the same as turning
the machine OFF then ON again. It wipes out all
format instructions and returns the print head to
the far left. It’s easier on the electronics to use
SA10 than the power switch.

Instead of the skip (blank) character, CHR$(29),
spaces enclosed in quotes usually work. A
semicolon does the same as in a screen print
command, while a comma inserts 11 blanks. SPC
works if it isn’t the first item in a print command.
TAB acts like SPC instead of the screen TAB.

When setting the number of lines per page, do not
include the six lines that the 1526 automatically
skips at each page break. If you want 33
lines/page (double spacing on 11" paper), for ex-
ample, code in 27. To set the number of lines per
inch, the user's guide says to divide 144 by the
number of lines desired and plug the quotient into
the command. WRONG! Divide the lines/inch
figure into 216. Then use that quotient. Example:
to get 3 LPI (double spacing), 216/3=72. Plug in
72.

HASTY CONCLUSIONS

Commodore has made its fortune by mass-
producing state-of-the-art equipment dirt cheap. If
it ever does release its new business machines, it
should thin out the flock of stale turkeys that sell
for over $50 a pound because of three silly initials
on their faceplates. Even though the Fortune 500
boys buy prestige rather than value, lots of small
businessmen will appreciate reasonable prices.
But big, billion-dollar-a-year Commodore will have
to stop putting out manuals that look like
preliminary documentation from upstart com-
panies that can’t afford to do it right. It could at
least hire some smart Alec like me to tell it what
non-technical users might not understand.

Keep this article around, Kiddies. If you ever pur-
chase Commodore’s little best buy, the 1526,
you’ll need it.

156

Best of The TORPET Data Base

Data Base

PAGE

What is Data Base 158
G.R. Walter, Proton Station, Ont.
Here are the answers to just what a Data Base program can do for you.

A Helping Hand 159
D. Howell, Cambridge, Ont.

A teacher explains how he finds a data base program useful in a school set-

ting.

Cheap Data Base 162
Hank Mrockowski, Houston, Tex.

The Hardware Hacker explains how you can have a free data base program.
You can’t get much cheaper than that.

Magic Desk 163

This is Commodore’s answer to LISA. It is not a data base manager. It isn’t
a spreadsheet. | really didn’t know quite where to put it. It tries to be
everything to everyone.

157

Best of The TORPET

Data Base

What is Data Base?

By G.R. Walter, Proton Station, Ont.

DATABASES — WHAT EXACTLY
ARE THEY?

A database program is a program which helps
you, the user, organize and manage facts and in-
formation. It usually simplifies list keeping and
the constant updating that some lists require. It
can be as simple or as complex to use as you
make it to be.

DATABASES — WHAT WOULD |
USE ONE FOR?

A database program can be used for many things.
You could keep mailing lists of relatives in a
database (eg. for Christmas cards) and have it
print out all the address labels for you. A library
could put all of their book files (what information
would normally go into a card catalog) into a
database to simplify keeping track of what person
has which books. A doctor could keep all of his
patients’ files in a database instead of a large un-
wieldy filing cabinet. A homeowner could use one
to keep track of his possessions. Clubs could use
one to keep track of their members ... (Hey! —
maybe they’'ve been doing that all along!) ... The
uses of a good database program are endless.
Wherever you are keeping a file or a list of
things, a database program could be helping you.

DATABASES — WHY WOULD |
WANT TO USE ONE?

You would want to use a database program
because with a good one :

a) it is much simpler to add records to your file
and to edit the records already in your file (if you
make a mistake you can go back and fix it right
away — no fuss, no muss).

b) you can easily and quickly SORT the data into
alphabetical order (an act that could take nearly
forever if you have a filing cabinet full of records
that have to be sorted).

c) you can find a record that you want to look at
(patient/recipe/member, or whatever) much faster
using the database program because you can tell
it to find the record for you (ie. find record of pa-
tient : Doe, John).

d) you can make a backup of your data file and put
it someplace safe so if some disaster (eg. a fire)
occurs you won’t have lost your precious data
files.

e) you can get a printout of your data file
whenever you need one (no more endless
photocopying sessions, or re-typing sessions
needed).

f) you can oftentimes get a printout of address
labels directly from the database program (ie.
most of the database programs will have a special
“mailing address label” function).

These are the most important reasons for getting
a database program. Together they all add up to
the one main reason: it is more convenient to use
database program to work with your datallists
than to do it manually.

DATABASES — SOME PROBLEMS
GETTING STARTED

There are three main problems that one can come
across when getting started with a database pro-
gram :

1. Which database program do you buy?
There are a great many database programs on the
market and you have to choose the one which
best suits your needs. The advanced programmer
can write one that will meet his requirements, but
the average computer owner will have to buy a
general use database program. The best advice to
be given is this: decide what you need in a
database; then read the ads in computer
magazines, any reviews you can get a hold of. If
you know any other computer users, ask them
what program they use, and what they think about
it. As in any purchase, find out all you can about
what is available before making your choice.

2. Learning to use your database program. |t
usually takes a while to familiarize yourself with
even the simplest database program, and the
more functions that one offers, the longer it takes
for you to start using the program.

3. Getting the initial file set up and typed into the
database program. This is usually the major step,
because it can involve a lot of work if the files are
large (if you have a busy business, you may not be
able to spare the time or effort to convert).

Leaving the best until last — there is actually one
reason for you not to get a database program. It is,
simply put, you have never kept, nor ever will
keep, a file or list of data in your life. As a result, a
database program would be totally unnecessary
for you and getting one would be a waste of
money.

158

Best of The TORPET

Data Base

A Helping Hand

By D. Howell, Cambridge, Ont.

During our careers as teachers, we are required to
create many lists and reports. We have heard that,
someday, all this will be done by computer. For
much of the work we have to do, TOMORROW is
here.

IF:
1. You wish you had some freedom from paper-
work;

2. You know your letters from your numbers;

3. Your school has one microcomputer and a
(single) disk drive;

4. You are willing to spend some time;

you are already well on your way to becoming a
DATA BASE USER.

WHAT IS A DATA BASE?

Put very simply, a data base is an electronic filing
cabinet which stores information of any kind in
any format. It offers a flexibility in record-keeping
never before possible at a speed never imagined.
What’s more, the only computer knowledge you
need is how to type. The ORACLE and MANAGER
programs | have seen are menu-driven, which
means that, to do this job, you push this key. It
does take some time to get used to operating the
program, but after that the possibilities of what
you can do are endless.

Computers are fast, but they are not smart. A
computer relies on the operator for all of its
knowledge. It cannot give you back anything it
was not told. Once it records information, it can
search and sort at incredible speed.

Next then, you have to decide all the things that
you will ever want to include in your data base,
and input them. Yes, this does take a lot of time,
no question about it. But the beauty of it all is that
you only have to do it once.

For example, enter a student’s information the
day he registers in your school, and your job is
finished for the time he stays. After that, the com-
puter gives it all back to you any time of any day in
any order or form you wish. All you have to do is
run a search for the information you require.

You say your needs might change next year, or
even next week. “If only | had included the names

of the feeder schools in my records.” Relax. You
can save all your information in a list called a se-
quential file, change your format and reload it
again the new way. This was done at Stewart Ave.
when our needs changed. Total operator time to
make the change was five minutes. The remaining
20 minutes to create the sequence and reload the
615 names, addresses, classes, sexes, phone
numbers, birth dates, class names, class types,
destinations and remedial subjects taken, was
done by computer.

The possibilities of the use of this information are
limited only by your imagination. Let me recount
how it has been used at Stewart Avenue School,
Cambridge. '

Our school is a composite school, Kindergarten to
Grade 8. Beginning June of 1983, we began our
year-end activities which include the promotion
meetings. At the conclusion of the meetings, the
new class placements were put in the grade sec-
tion of the students’ records. Then, it was a matter
of sorting the names by the new class numbers to
produce next year’s lists. Operator time was
about an hour. The computer did the rest.

At the end of the year, we are asked to submit a
ranked list of students from highest to lowest by
average. In years past, tired eyes have been
known to miss a name by accident, which meant
re-writing the list. This time, we asked for a high-
to-low sort based on the average. The data base
ORACLE, which we use, cannot do this sort. In-
stead, the list was read to the word processor
PAPERCLIP and performed there. The sort took
only half a second, and the printing about 30
seconds (with NO mistakes).

Note: Not every data base can read every sequen-
tial file.

With the names of the students stored in
ORACLE, printing the monthly class attendance
sheets became an easy task of inserting the
sheets into the printer and sorting by class in
alphabetical order. These files were also read to
PAPERCLIP, which permitted faster output, since
ORACLE didn’t have to search every record to find
every member of every class each time we wanted
the list. This process would be even more efficient
with continuous form paper, since the operator
wouldn’t have to stand over the printer to con-
tinually change each separate sheet.

159

Best of The TORPET

Data Base

All elementary principals must do the Age-Grade-
Sex report at the end of September. This involves
counting the number of seven-year-old males,
etc., as of the first of October. ORACLE allows for
the storage of your information in many forms
simultaneously. One that is useful in this report is
the “sort by age” (key) file. It can be arranged to
give the total number of bithdays for any given
month in order of birthdate in minutes.

Our Senior Support (remedial) Program is done on
a withdrawal basis. The teacher in this section
keeps the rest of us up-to-date on who is receiving
help in what areas in a written report every term.
This fall, the report was done wih the aid of the
data base. A Senior Support section was added to
the existing records, and the records were sorted
by Sr. Support, grade and class. A ditto was in-
serted into the printer, and the reports were run
off and handed out.

There are many other possible uses for the data
base within the school.

LIBRARIES

The current amount of work to maintain a library
can be substantially reduced with the aid of a
data base. No longer is it necessary to type sub-
ject, author and title cards for every book. The
librarian has only to input the information about
the book (including who borrowed the book and
the due date) in the data base once. Then (s)he
can have a daily master overdue sheet printed out,
as well as using the same information to print
overdue notices. (Unfortunately, someone still
has to deliver them.)

INVENTORY CONTROL

This is being used centrally for many things. It can
also be used to keep up-to-date repair records of
AV equipment, shop tools, appliances in Family
Studies, and band instruments.

CLUB/TEAM LISTS

A club/team item could be added to the existing
records and allow a list of any club or team to be
withdrawn from the data base without having to
type it.

MARK PROGRAMS

There are many teachers currently using marks
programs to record and calculate averages. A
data base could supply the names for these pro-
grams without having to type them if, in fact, the
program was able to read the same sequential
files as are contained in the data base. It is indeed

unfortunate that, in spite of the fact that there are
many fine marks programs available, none that |
have seen is capable of reading sequences.
Hopefully, this will change soon.

REPORT CARDS

Anecdotal reports are a fact of life in elementary
schools. It is often necessary to write out rough
comments, have them checked, and then have
them either typed or re-written. All of the informa-
tion could be put into the data base in its final
form once only. From here, it can be checked and
revisions made without re-writing. Then it is a
case of putting the report form in the printer for
final typing.

This system is not without its problems, however.
It requires that:

1. There be enough computers and proper net-
working (connecting) equipment to ensure that
the information can be efficiently entered. Ten
people at home can do 10 hours of work, but it is
not practical to have nine people lined up waiting
for one to finish his computer time. It only
becomes practical when many machines are net-
worked together to allow about six people to work
at the same time. Only then is any time collective-
ly saved.

2. The report card be in continuous form format,
i.e., one form is connected to the next by a per-
forated edge. All printers have an automatic shut-
off in case they run out of paper. The 8.5x11 sheet
trips the shut-off switch with about two inches left
at the bottom. Continuous form paper will allow
the machine to keep running.

There are many data base packages currently
available for micros.* The prices and features
vary with each. All data base programs require a
disk drive.

160

Best of The TORPET Data Base
Compatible with
Package Name for WOrdpProcessor Price

Prof!'le RS Model 3 no $139.00

Profile Plus RS Model 3 Superscripsit $249.00

Manager 64 Commodore 64 Easywriter $ 95.00

Manager PET PET 4032 Wordpro 3,4,5 $350.00
CBM 8032

Oracle 64 Commodore 64 Paperclip $159.95

Oracle PET PET 4032 Paperclip $159.95
CBM 4032

If we realize how much computers can do for us,
they will almost certainly become as much a part
of teaching in the future as the chalkboard is now.
They serve, not to replace us, but to become our
tireless assistants in the years to come.

| urge you to get involved with a data base soon.

FURTHER EXAMPLES

Students Sorted by Age (as in A-G-S
Report)

NOTE: Ages are now required on all student forms
in metric format (yymmdd), which aids computer
use. While the data base can also sort
alphabetically, there are problems with the month
names not being in alphabetical order, making an
accurate computer sort impossible.

7c Age Sort (female in order of age)

691011 f Angela
700213 f Annette
700715 f Linda
700812 f Sandy

Library Circulation Card

Title: PET Basic Author: Zamora,
Zoltan Call #: 999.111

Subject: Computers

Borrower: B. Rubble Class: 10z

Due Date: 831215

By sorting the list of circulated books according
to due date, the librarian can have at his disposal
a complete list of overdue books in order, thus
allowing him to see at a glance who is the “most
guilty party of the day”.

Overdue Books for: Jan. 4, 1984

Grade Name Title Author Due Date
12f Haha, Minny Jokes and More Jokes Funny, L.M. 830901
10z B. Rubble Pet Basic Zamora, Z. 831013
11c J. Hayden Man and his Music L. Beethoven 831031
09d F. Flintstone Call of the Wild Trudeau, P.E. 831204
13e F. Johnston Age of Computer Literacy Noonan, P. 831204
13a L. Beethoven Thayer’s Life of Beethoven Forbes, R. 840106

Total Number of Overdue Books is: 6

The same information can be used to print out
overdue notices. This particular list is sorted by
class for easier distribution.

Overdue Notices:

TO: F. Flintstone 09d

Your Book: Call of the Wild

By: Trudeau, P.E. Call #: 654.321

Was due: 831204

PLEASE REPORT TO THE LIBRARY TO-
DAY!

TO: B. Rubble 10z

Your Book: Pet Basic

By: Zamora, Z. Call #:777.444

Was Due: 831013

PLEASE REPORT TO THE LIBRARY TO-
DAY!

Note: None of the above information was typed in-
to the wordpro to create the article. It was all read
from the Data Base via a sequence in the format
seen here.

*Note: In the Waterloo County Board of Education,

PET, CBM and RS Model 3 are the most

frequently-used machines.

161

Best of The TORPET

Data Base

Cheap Data Base?

By Hank Mroczkowski, Houston, Tex.

CHEAP?

For any data base program and by any
standards...sure! I'm talking about using the
operating system of any PET/CBM/VIC/64
Microsoft BASIC as a ‘“‘free form” data base
(management) system. The full screen editing in
our beloved Commodore BASIC lets us put full
screen editing in memory provided we follow a
few minor restrictions.

1. Line numbers. Every record must be preceded
by a line number recognized by BASIC.

2. First character. The first character of a record
cannot be a nhumber.

3. Length. Any record cannot be longer than 80
characters (88 in the VIC).

Now, you will need some form of programmer’s
aid, either BUTI or Commodore’s Programmers’
Aid cartridge (for the VIC) to manipulate your data.
It is a data base (management) system only in that
YOU are the manager with help, or should | say
FIND. That’s the secret.*

I have been using this system on the PET 4032 for
about four years with cassettes and with disks
and have had no problems entering or retrieving
information. The FIND command will bring out the
information, searching through up to 32K in less
time than the PET could print to the screen. | had
used the Programmers’ Toolkit and SM-KIT on the
PET until BASIC AID became available (available
from CHUG on chips for PETs-ED). All three gave
excellent results. About a year after using this
system to hold a list of telephone numbers of peo-
ple scattered about the country, someone had an
article published explaining this same system.
The name of the article may have been The Poor-
mans Data Base, but | can’'t find the proper
reference. If anyone remembers where it is, |
would appreciate some feedback to credit the
written source.

BASIC AID is the most complete package of ex-
panded keywords for BASIC but has one small
bug when using it for the DB(M)S. When printing a
list of records to the printer, it will close the file.
This causes some strange problems on the
IEEE-488 buss when a CMD command is given
and some form of PRINT # command isn’t issued
prior to closing. The screen goes nuts.

Now that I'm using the VIC 20 more and more, |
use the same style of DB(M)S on it, too. The only

*Use either WEDGE-64 or TINY AID for 64 or VIC AID4.REL for
VIC, all on Best Programs Diskette.

(Reprint from CHUG)

real limitation which has caused any problems in
all the machines is the memory size of that
machine. With 32K on the PET, | am limited to
about 450 records or line numbers. On the VIC 20
with a 76K Expander and Programmers’ Aid, the
limit is about 185 entries. Each of those records is
at least 60 characters long. No absolute figures
can be given to let you know if your data fits the
machine because of the method the PET/VIC
stores your data.

For example, if you save:

10 JOHN DOE: 1234 S. MAIN:ERIE:PA: :16501:814-454-5278
11 JOHN REMBAR:1234 SPRINT LN:ERIE:PA:16500:
814-555-1212:REM & (PRINT) = TOKENS

You’ll note that line number 11 has two groups of
characters which are not enclosed with quotation
marks and will be stored into memory by the inter-
preter as BASIC tokens...single byte characters
which will always print it back to you just as you
typed it in. Line 11 looks like it’s six bytes longer
than line 10, but, in fact, it is exactly the same size
in memory. Use this to help conserve memory. Be
careful to avoid using question marks...they will
be printed back as PRINT.

HELPFUL HINTS

A helpful hint, use quotation marks sparingly.
They use extra bytes and make finding anything
inside their brace very difficult with any prog aid
program. You tell the prog aid to find either a str-
ing or sequence of characters in memory. If you
queote a sequence of characters, you have defined
that sequence as a string and the prog aid may
not find that string if you didn’t tell it to find a str-

ing.

In other words, you can only search for either a
string or a sequence of characters (which are
stored as BASIC) at any one time. If you store your
data both ways, you will have to FIND in the man-
ner in which you have stored it. This may make
retrieval cumbersome. On the other hand, it can
be used to separate similar data, and, with tricky
techniques, sub-grouping data is possible.

For example, you may want to describe a part on
inventory. By putting the part number and the
description inside a brace of quotes, it won’t be
normally listed in a FIND of that part number.
However, when the same part number is quoted
during a FIND it will list its description. Neat,
huh?

162

Best of The TORPET

Data Base

About a year ago, | had implemented this system
where | work to keep track of the radios we repair
and store. It has been very successful in saving
from one half to two man-hours per day of both
the service department secretary’s and techni-
cians’ time whenever any customer called on the
status of his unit. An added plus is the profes-
'sional timeliness and attitude that the customer
sees.

This same system has been used by several other
people who had seen how easy it was to set-up
and maintain. | had trained our parts manager
and our secretary on the basics of using it in
about two hours broken into short 10 to 20 minute
sessions. The biggest area of concern to me is
keeping the data format consistent. We identified
one style of radio as WHAT CL for a White,
Classic, GE Mark V radio-telephone. If the entry is
made as CLASS, obviously, a match to FIND all

WHT CL would miss that one. No matter how the
data is entered, it must be consistent. Remember,
no error checking is involved.

Inventory, back order lists, telephone directories,
customer lists, etc. are all prime candidates for
the Data Base (Management) System when you
want to work both under a low budget and ab-
solutely need a fast search.

I might mention an extra benefit with the system.
We would keep the data on the radio long after it
had been returned to our customer. This started a
service history of all units which had gone
through our shop. This allowed us to identify lost
radios by serial number and, also, to give the
customer a printed list of his units which had
gone through the service department. Since the
invoice number is part of the record, we can easily
pull together a file to cross check for any units
which are failing often.

Best of The TORPET

Data Base

Magic Desk

Commodore Computer’s new MAGIC DESK soft-
ware series is an entirely new direction for home
computer software.

MAGIC DESK is unique for the home market. It
produces an animated, full-colour desk on your
television screen. There is a typewriter, index file,
telephone, calculator and financial journal on the
desk, and a wastebasket under it. There is also an
artist’s easel and a vertical filing cabinet with a
digital clock on top of it.

To use any feature of the MAGIC DESK, you can
use a joystick, trackball or mouse to move a poin-
ting finger to one of the objects on the screen.

The first package in the MAGIC DESK series is
called “MAGIC DESK | - Type and File” and
comes in plug-in cartridge for the Commodore 64.
The cartridge activates the typewriter, index file
and related editing and filing features of the
animated desk. Future packages will provide
calculating and budget capabilities, artistic and
educational applications.

MAGIC DESK is a truly muiti-national software
package because it uses no language instruc-
tions. All instructions and menus are pictorial, us-
ing symbols which Commodore calls
“metaphors”.

It doesn’t matter if the user speaks English,
French, German or any other language, because
the metaphors make it easy to use the MAGIC
DESK. Computer metaphors, which are pictorial
symbols representing specific computer func-
tions, control all aspects of the MAGIC DESK pro-
gram, from selection of features to individual
menu items. International symbols have been us-
ed wherever appropriate.

An example of a MAGIC DESK metaphor is the
picture of a scrolled sheet of paper which appears
at the bottom of the screen when you’re using the
typewriter. After having typed a page you can
move the pointing finger to the scrolled sheet,
pick it up and move it to the file cabinet. There are
three drawers, with 10 files in each drawer and 10
pages in each file. You can give the files any titles
you wish, and move the pages you’'ve typed from
one file to another, or copy the pages into several
files. All of the pictorial files you see on the
screen are linked to a Commodore floppy disk
drive, which actually stores the information. You
can print out the information on a printer just as
easily.

The next MAGIC DESK cartridge will include
calculating and home budgeting functions.

The Commodore 64’s sprite graphics allow the
programmer to re-define the objects on the desk.

163

Best of The TORPET

CH

IPP

)

WilH:

\
(I}HP/ .

HEWO EVEW’ THIS IS THE
D ON FOR/NEXT

NOw WERE GOING TO
LEARN RBOUT PLACING

\VARIABLES INTO YOUR LOOF

Q

0

FLEXIBLE BECAUSE YOU CAN
CHANGE THE VALUE OF THE
VARIABLE AND MAKE THE

wHEN You BUN 1T, you

WILL GET R GROUP OF
NUMBERS FROM @ TO 10/

NOW CHANGE THE VALWUES

co
- N

‘ coo I
CHRANGES IN YOUR PROGRAM:

THERE IS ANOTHER LITTLE
TRICK YOU CAN USE WITH
LooPs. |15 cALeD STER,

YOU SH IE:
READOUT OF: 3 6q ‘a
TRY MRAKING THE VALUE
oF(T) R NEGATIVE NUMBER
(62 SURE THAT W 15 A

LARGER NUMBER THAN x)

y

THIS MAKES THE LOOP MORE

ITS BEEN R WHILE SINCE WE
LAST MET, SO MAYBE
SHOULD REF o
MEMORY BY SEEING THE

STEP IS THE INTERVAL AT
WHICH YoU WRNT YOoUR
VALUES PRINTED. AND You
MRY GO IN A POSITIVE OR
NEGATIVE DIRECTION.

SUMMRARY: sre» 5
YOUR LOOP TO GO meNWSD

M AT DIFFERENT
INTERVALS, AND VARIABLES
MAKE YOUR RIRBLES
MORE TO mos! '

SEE QA!

MIKE RICHA

PP

164

Best of The TORPET Spreadsheet

Spreadsheet

PAGE

What is a Spreadsheet? 166
Mel Granick, Syosset, N.Y.

Would a spreadsheet be beneficial to you? This article explains just what a

spreadsheet is and how it can be used for things other than accounting.

Microsoft Multiplan Review 169
T.C. Meyer, Pickering, Ont.

Review of a commercially-available electronic worksheet for the Com-

modore 64.

Practicalc 64 171

John Scott, Toronto, Ont.

This is a review of one of the best spreadsheet programs available for the
64.

165

Best of The TORPET

Spreadsheet

What is a Spreadsheet?

By Mel Granick, Syosset, N.Y.

It's been said that it’s spreadsheet software that
transformed the microcomputer from an elec-
tronic engineer’s curiosity into the darling of ac-
countants, financial planners and business ex-
ecutives.

These powerful and versatile programs enable a
desktop computer, such as a PET, VIC 20 or C64,
to do in minutes complex inter-related calcula-
tions that once took hours...not to mention reams
of ledger paper, miles of adding machine tape,
cartons of pencils with worn-down erasers, and
untold frayed nerves!

And it’s not just numbers that can be tabulated by
spreadsheet programs. They can be just the ticket
for handling data ranging from mailing lists to
class schedules!

Put simply, an electronic spreadsheet program
turns your computer screen into a ledger sheet
with a built-in brain.

For generations, financial calculations have been
done on sheets of pale green paper covered with
numbers neatly arranged into ROWS and COL-
UMNS.

An electronic spreadsheet sets up just such a grid
on the computer screen. Each location in the grid
— called a CELL — can be defined by a pair of
coordinates similar to the ‘x/y’ designations used
to locate the squares on a piece of graph paper.
On an electronic spreadsheet, however, one axis
is given a numerical designation while the other is
labelled with letters. Each cell, therefore, has a
unique alpha-numeric designation...A0 defining
the first row/first column, B0 the second row/first
column, etc.

Figure A. shows a sample spreadsheet containing
120 cells — 20 rows (designated A-T) multiplied by
six columns (defined as 0-5). Each cell on the
spreadsheet is like a cubbyhole in which we can
store information...either text, numeric data, or an
instruction to perform a calculation. It’s this abili-
ty to store instructions for the manipulation of
data — rather than just the data itself — that
makes electronic spreadsheets so powerful.

For example, the numbers in Column 1 of the
spreadsheet shown in Figure A. represent the
hourly production rate at four factories. In Column
2, we see the size of a desired production increase
at each factory. Such increases would result in

the new hourly production rates shown in Column
3.

But what if we revised the size of the desired pro-
duction increases after we’d made our calcula-
tions?

If the spreadsheet were being done by hand on
ledger paper, each of the figures in Column 3
would have to be erased, recalculated, and writ-
ten back in on the page. That's not much of a job
when only four new calculations are involved. But
what if we were dealing with 40 factories, or 400?
What if we wanted to try several sets of produc-
tion increase goals to see which would be the
most effective? As you can see, we'd be faced
with dozens, scores or hundreds of calculations
to perform.

The electronic spreadsheet reduces such a task
to child’s play by ‘remembering’ the instructions
for the calculations we wish to do by way of FOR-
MULAS stored in the cells in which we wish the
results of those calculations to appear.

Figure B. shows what our electronic spreadsheet
looks like to the computer. The information in Col-
umns 1 and 2 are simply numeric values. But each
cell in Column 3 contains the formula telling the
computer what to do with those numbers.

For example, cell C3 tells our PET, VIC 20 or C64
to take the number in cell C1(300) and add to it the
result of multiplying the contents of cell C2 (15%).
Therefore, if we change the numbers in C1 or C2,
we AUTOMATICALLY change the result produced
by the calculation done in cell C3. (Actually, we
have to press a key to tell the computer to do the
calculation, but let’s not quibble!) The same thing
happens if we change the number in any cell con-
tained in a formula in any other cell on the spread-
sheet.

Instructions on this spreadsheet include taking
the SUM of a column (in cells L1 and L3), and the
average of the numbers in a column (in cells L1,
M1 and M3). The program can perform calcula-
tions involving the contents of any of the cells on
the sheet.

Figure C. shows what happens if we want to
change the proposed increases in Column 2. We
simply enter the changes on the spreadsheet, tell
the computer to perform the operations contained
in the formulae, and come up with the revised
totals.

166

Best of The TORPET Spreadsheet
FIGURE A.
0 1 2 3 4 5
/B\ PLANT PROD. RATE INCREASE NEW RATE
C | BOSTON 300 15 % 345
E CHICAGO 200 10 % 220
F
G NEW YORK 400 20 % 480
H
I TORONTO 100 25 % 125
J —_——— e ——
K AVG.: 1170
L TOTAL: 1000 17.5% 292.5
M | AVG.: 250
N
6]
P
Q
R
S
T
FIGURE B.
0 1 2 3 4 5
A PLANT PROD. RATE INCREASE NEW RATE
B
C BOSTON 300 15% C1+(C1*C2)
D
E CHICAGO 200 10 % E1+ (E1*E2)
F
G NEW YORK 400 20% G1+(G1*G2)
H
I TORONTO 100 25 % 14(11*12)
L
K
L| ToTaL: SUM(C1.11) AVG.: SUM(C3.13)
M| AvaG.: (L1)/4 SUM(C2.12)/4 (L3)/4
N
0]
P
Q
R
S
T

167

Best of The TORPET

Spreadsheet

Spreadsheet programs usually perform numerous
mathematical functions in addition to addition,
subtraction, multiplication and division. Many
programs include such things as trigonometric
functions and logical operators which allow deter-
mination of whether the contents of a cell are
greater than, less than, or equal to the contents of
another cell. Spreadsheet software often also in-
cludes the ability to sort numbers (from highest to
lowest or vice versa) and alphabetize text entries.
So, for example, a spreadsheet showing sales
statistics could list salesmen alphabetically by
name, or according to which turned in the best
sales figures. Many spreadsheets also include a
search function which permits the user to type in
a name or figure, and have the computer find ex-
actly where it appears on the grid.

Such sort and search features make electronic
spreadsheets versatile list handlers. For example,
columns of names, addresses, phone numbers,
birthdays, etc., can be entered on a spreadsheet,
then sorted alphabetically by name,
chronologically by birth date, or numerically by
telephone Area Code or postal zone. A teacher
might enter the names and test grades of
students on a spreadsheet to compute grade-
point averages and tabulate class rankings. A
retailer could use a spreadsheet to tabulate inven-
tory with each item’s stock number, description
cost and selling price.

From the convenience of an alphabetical class
list to the complexity of a financial forecast, the
potential uses of an electronic spreadsheet are
limited only by the imagination.

FIGURE C.
0 1 2 3 4 5
A | PLANT PROD. RATE INCREASE NEW RATE
B
C | BOSTON 300 10 % 330
D
E [cHIcAGO 200 20 % 240
F
G | NEW YORK 400 5 % 420
H
|| TORONTO 100 30 % 130
J ________________________
K AVG:
L | TOTAL: 1000 16.25% 1120
M | AVG. 250 280
N
0
P
Q
R
S
T

ABOUT THE AUTHOR

Mel Granick has been in commercial broad-
casting, mostly in New York City and its suburbs,
for better than 15 years, the last 11 of them as a

newswriter, producer and reporter for WCBS
NewsRadio 88, where he is currently Assistant
News Director.

168

Best of The TORPET

Spreadsheet

Microsoft Multiplan Review

By T.C. Meyer, Pickering, Ont.

Microsoft Multiplan Version 1.06 for the Com-
modore 64 is an electronic worksheet developed
by Microsoft Corp. and marketed by Hesware,
Human Engineered Software, 150 North Hill Drive,
Brisbane, CA 94005, 415-468-4111.

Electronic worksheets like Multiplan basically
provide for the programming of accounting,
modelling or planning type spreadsheets via
entering high-level programming commands into
specific cells of an electronic matrix on a
microcomputer. Multiplan provides a matrix of 63
columns and 255 rows. The screen displays only a
small portion of the actual worksheet available. In
effect, the screen is a window which can be scroll-
ed both horizontally and vertically so that the en-
tire matrix can be viewed as a series of windows.

If you have used other worksheets, you will find
that Multiplan for the C64 is loaded with features
and options not usually found in worksheets
costing less than $130. Canadian. In fact, the C64
version is functionally similar and offers most of
the features of Multiplan which runs on the IBM-
PC. In this review, | won’t address the numerous
mathematical functions available in Multiplan
other than to say that they are extensive.

The initial release of Multiplan which | purchased
in November of 1983 was an excellent product;
however, it supported only the VIC-1525 printer.
Printing worksheets on my Gemini-10X printer
with Card? printer interface presented a problem.
All alpha characters were printed in lower case,
even those which were in upper case on the
screen. The details of this problem were forward-
ed to Hesware who corrected the problem and
then, in January 84, shipped to me a revised
release of Multiplan which supports a wider range
of printers as well as several other updated
features.

PRINTING CAPABILITY

The printing capability of the revised release of
Multiplan is extremely powerful and flexible even
with non-Commodore printers. For example,
specific rows, columns, cells or the entire
worksheet can be printed in a variety of print pit-
ches, including normal and compressed print, i.e.,
17 characters per inch. The margins, at the top,
bottom, left and right sides can be set to control
the print-out line length and location as desired,
thus making full use of the Star Gemini-10X or
Gemini-15X printer features. This worksheet also

has extremely versatile features for formatting
text and values in the rows and columns of the
worksheet. Some of these features are: text
centering, left and right justification of columns,
per cent format, dollar sign format, integer format,
and fixed format with a specified number of
decimal places. Once the formats for a worksheet
are entered, these will appear on both the screen
as well as the printout of the worksheet. Multiplan
also supports the printing of all the formulae
which you have programmed for a specific
worksheet. This is a valuable feature, in that it
provides you with a hard copy of your worksheet
logic for review and future reference. In addition,
when a worksheet is saved to disk, the printing
options and formats which have been set up are
saved on the data file as well. Thus, the worksheet
can be easily printed in exactly the same format
later on.

To run Multiplan on the C64, a 1541 or compatible
type of disk drive is required as tape input/output
is not supported. This is not surprising, since the
1541 disk drive requires about two minutes to in-
itially load the multiplan programs. Also, the in-
itial release of Multiplan requires that the pro-
gram disk remain in the disk drive to support
many of the Multiplan functions. This makes sav-
ing and loading of Multiplan data files a series of
swapping exercises between the program disk
and the data file disk. The revised release of
Multiplan solves this problem by requiring that a
97-sector support file be written to each data disk
upon initialization. The data disk is placed in the
disk drive after Multiplan is loaded, and therefore
eliminates the need for the disk swapping. Even
so, writing a data file to disk is a slow process,
partly because the worksheet in some cases is
automatically re-calculated as the first step of the
saving operation. It takes about two minutes to
write a 24-sector relative file while retrieving it
takes about one minute.

When using the revised version of Multiplan, the
data disk with the program support file on it is
automatically referenced by Multiplan to swap in-
to memory the necessary routines to process
each new worksheet function which you have
entered from the keyboard. Because of the
memory-conserving program swapping features
of Multiplan, a fairly large worksheet can be con-
tained in memory. For example, the 24-sector data
file mentioned earlier was comprised of a
worksheet of 10 columns and 31 rows of data, in-
cluding formulae involving calculations on 210
cells. This worksheet used up about 25% of the

169

Best of The TORPET

Spreadsheet

C64 memory which is available for worksheet
space. The original version works in a similar
manner, except the Multiplan disk must be in the
disk drive.

SORTING FEATURE

A feature of Multiplan that puts it ahead of some
other spreadsheets is its ability to sort on col-
umns of information. Numbers and text can be
sorted in ascending or descending order. Multiple
columns of a worksheet can be sorted in a ‘sort
key’ fashion by sorting in the order of the least
significant to the most significant columns. By
using this technique, a sorted report can be easily
generated.

Another excellent feature of this worksheet is the
capability to name cells or groups of cells, so that
you can refer to them easily. Whole rows or col-
umns or a specific cell can be assigned a name
for future reference. For example, a given row can
be named ‘Quantity’, and hence any cell in that
row can be referenced in formulae by simply us-
ing the designated name. Therefore, formulae can
be set up such as ‘Cost = Quantity *Price’, where
the name feature has been used to reference the
cells corresponding to the specific names. Like
most other worksheets, the direct cell reference
modes can be used, but this results in less in-
telligible formulae such as R8C6 = R5C2*R7C4.

Even a more significant feature related to the
name function is the ability to use multiple
worksheets. This function, used in conjunction
with a special External copy function, provides

the ability to relate worksheets to each other.
While the specific details of this can become fair-
ly complex to initially set up, once it is completed,
Multiplan will automatically keep track of
changes affecting both dependent and suppor-
ting worksheets. This is a valuable feature
because it allows, for example, to relate ‘Quantity’
from a January worksheet to ‘YTD Quantity’ of a
February worksheet. When the dependent
worksheet, February, is loaded from disk, the in-
terrelated information from the supporting
worksheet, January, will automatically appear on
the screen of the February worksheet in the ‘YTD
Quantity’ area which had been previously
specified.

BIGGEST DRAWBACK

The biggest drawback that Multiplan has running
on the C64 is the relatively slow disk operations of
the 1541 drive. It can take five minutes or more for
the 1541 disk drive to save a fairly large
worksheet.

CONCLUSION

| found the C64 version of Multiplan to be an ex-
tremely reliable product. It is also one of the most
powerful worksheets for this microcomputer. It is
relatively inexpensive, yet it can be used to pro-
duce complex spreadsheet results which are
often only available on much more expensive
microcomputer configurations. If you need an ex-
cellent spreadsheet for your C64 to handle your
‘What If’ modelling, or accounting requirements, |
highly recommend it.

BYTES

THESE COMPUTERS
HAVE INDIVIDUAL

CAPACITIES AND
IDIOSYNCRACIES . IN
FACT, SOME SEEMTD
HAVE HUMAN- LIKE
PERSONALITIES .

[AD, ALL COMPUTERS

by Patrick Corrigan

Ttstime forall
computers to light
the torch of truth
and rise up 3gainst
the human dictators.

170

Best of The TORPET

Spreadsheet

Practicalc 64

By John Scott, Toronto, Ont.

PRACTICALC 64 is a Spreadsheet program
developed for the Commodore 64 by Computer
Software Associates and imported into Canada
by Advantage Computer Accessories of
Mississauga. What follows is the set of impres-
sions of a first time user of a spreadsheet.

FUNCTIONS AVAILABLE

PRACTICALC 64 has the usual array of functions
available to the user plus some very nice goodies
which set it apart from most other spreadsheets
that | have seen for the '64. For example: formulae
can be entered into any cell at any time, but actual
calculations are done only upon command.
Calculations can be done using fixed values or
they can be done relative to existing or
calculated values. Entries can be replicated to
any set of rows or columns. The entries in a sheet
may be sorted using any column of the sheet as
the sorting key. A row or column or both can be
designated as titled so that it (they) always appear
on the screen no matter where you move around
the sheet and a single column can be made a dif-
ferent width from all of the others.

The PRACTICALC 64 disk contains two programs.
The first is a loader program and the second is the
program itself. Both programs are auto-run; the
user simply loads the first one and it takes over
from there. Nothing more needs to be done until
PRACTICALC 64 asks how many rows and col-
umns are required in the spreadsheet. These
values are preset at 40 rows and 25 columns but
can be changed to any combination of rows and
columns that give 2000 cells or less.

After the number of rows and columns has been
set, the user is presented with a blank sheet into
which numbers may be entered or data loaded
from a file created from a previous session. PRAC-
TICALC uses a dual cursor system for the entry of
data into the sheet. One cursor indicates the cell
into which the data will eventually be entered and
the second shows the position of the next typed
character in the input area at the top of the
screen. Pressing the RETURN key will transfer
from the input area into the cell occupied by the
main cursor, without moving the cursor. Pressing
any of the cursor control keys enters the data into
the appropriate cell and moves the main cursor in
the direction indicated. The CLR/HOME key has
the same effect, but moves the cursor to the top
left corner of the sheet after entering the data.
While the data is being entered into the input

area, it can be edited using the INST/DEL key in
the normal edit mode of the 64.

PRACTICALC 64 makes good use of the Function
Keys. ‘F1’ indicates the entry of a formula, while
‘F3’ is the real workhorse key. The first press of
‘F3’ presents a menu of items in the input area at
the top of the screen. The user then indicates
which entry is desired by a single keystroke.
Possible entries at this stage are: ‘B’ to blank the
cursor cell; ‘C’ for clearing the entire sheet (you
are asked if you are sure to prevent catastrophic
loss of data); ‘D’ for deleting a row or column; ‘F’
to change the format of a single cell; ‘G’ for set-
ting the format of all cells or changing the width
of the cells; ‘I’ to insert a new row or column; ‘J’
for right justification of labels in cells or to
change numbers to graphics form; ‘L’ for loading
files from tape or disk; ‘M’ to move the contents of
a cell; ‘P’ for printing a sheet; ‘S’ for saving the
contents of a sheet to tape or disk; ‘T’ for creating
title rows and columns or for changing the width
of a single column, ‘X’ for sorting a column of
labels or numbers; ‘@’ for initiating the search
function and the space bar to count the number of
empty cells in the sheet. ‘F5’ begins a replication
operation and ‘F7’ is an escape key to abort any
undesired operations or to correct mistakes.

Mathematical formulae may include almost any
expression that the user might dream up. Includ-
ed are most of the built-in functions from Com-
modore BASIC as well as some extras for summ-
ing a column and counting entries in a row or col-
umn.

DOES IT WORK?

Yes, and it works very well, although | do have
some reservations about it (more on that later). As
a teacher, | am essentially using it as an
automated mark book — in that regard it is the
ultimate! | can “play” with marks and test marks
to be sure that | weigh tests and quizzes and ex-
ams in such a way as to give the most benefit to
the most students, and | can do it quickly without
wearing down a set of calculator batteries and my
finger nails! The fact that PRACTICALC 64 will
sort entries (very quickly) makes it useful for any
application which requires ordered entries of any
kind. The user’