
“Katja Woywood”

Vice snapshot with Vice palette

Made with the GIMP from a KW photo
and converted to C64 320x200

Hires Mode Bitmap
by Stefano Tognon

in 2007

“Late is late”
...

Free Software Group

1

SIDin 12
version 1.00
24 May 2008

2

SIDin Contents

General Index
Editorials...4
News...5

SID chip distortion simulation efforts...5
Polly Tracker v1.2+...6
X-SID v1.00...7
Goattracker stereo 2.59..7
Goattracker 2.6-2.67..8
CRD-Tracker64 Alpha...8
DMC Music Compo 2007..9
HVSC update 47..9
C64.sk SID Compo 7...10
Java SID Player Music Library V2...11
XSIDPLAY2..11
Rockbox...12
C64.sk Music Cover Compo..12
HVSC update 48..13
HERMIT 3SID-TRACKER 2008..13
HardSID 4U...14

Mihály Horváth (Hermit) Interview!..15
Tiny Sid 2 (part 3)..18

Plaster 512b..18
Back To Basics..23
Conclusion...25

Ripping Trivia Arcade..26
Starting...26
SID file...32
Conclusion...32

3

Editorials
Stefano Tognon <ice00@libero.it>

Hi, again.

In this number of SIDin there are the final two analysis of the entry to Tiny Sid Compo II.

The second article is about ripping a tune. This time I not disassembly and reassembly it as I
done in the past, but simple use the common way to isolate the music part and add the proper irq
routine. As usual I describe all the steps involved, so you can learn a complete way for ripping and
so you can try yourself with other tunes.

This is a very delayed issue and a very soft one. Sorry for that, but I have too many activity run-
ning. Lot of this activities are Sid related, for example I'm developing XSidplay2 at Sourceforge:
this is the second version of the historical Sid Linux player that was no more developed for some
years. Now it's time to make it growing (it already recognizes the player used by the song, sup-
ports SDL sound and is available for Windows system too).

HVMEC (High Voltage Music Engine Collection) is still active and with some contributions in the
last year it growing very well- Lot of new material to release is being processed.

Finally I'm developing a Java Tracker for composing music for the Sid. For sure it will be very
rastertime consuming, but I want to have the possibility to control all the sound in details (for ex-
ample an instrument definition can reach up to 2KB of data). More about this will be available in
the next number.

Bye
S.T.

4

mailto:ice00@libero.it

News

Some various news of players, programs, and competitions:

• SID chip distortion simulation efforts • Java SID Player Music Library V2

• Polly Tracker v1.2+ • XSidplay2

• X-SID v1.00 • Rockbox

• Goattracker stereo 2.59 • C64.sk Cover Compo

• Goattracker 2.6-2.67 • HVSC update 48

• CRD-Tracker64 Alpha • HERMIT 3SID-TRACKER 2008

• DMC Music Compo 2007 • HARDSID 4U

• HVSC update 47

• C64.sk SID Compo 7

SID chip distortion simulation efforts

In February 2007 Antii Lankila released a patch against ReSID engine in libsidplay2-2.1.1 to
make its sound closer to 6581R4 chip. Here it is reported lot of information about the project taken
from the main page:

Patch status:

● Applying the patch will break 8580 simulation because it modifies it like it was a 6581.
Solution: I need to extend resid internals + sidplay2 to bring all distortion tunables into
some kind of configuration file. 8580 can just have settings that make no distortion, then.

● The distortion term is not quite right. Brutal distortion is well emulated on some songs
(Mechanicus) but badly with some others (Filter). Lead sounds, as rule, seems to come out
alright (Cybernoid and Spijkerhoek). On the other hand, something is wrong with Land of Il-
lusions, the initial bass is maybe too distorted. Vendetta, Miami Vice and Gloria do not dis-
tort enough. I predict the largest difficulties are with combined filters.

● The delicate filter interplay in David Dunn's songs is only partially emulated. This is a
difficult case. I believe that I need to allow the distortion terms to permute the filter state in
order to emulate the effects and instruments on Dunn's songs.

● CPU usage does not increase much: the current situation is tolerable. The distortion now
eats some 20% of CPU or so of an AMD64 3200+. Because resid synthesises audio at 1
MHz frequency, only very cheap algorithms ought to be used. We'll see if the system can
be optimised as it nears completion.

Known nonlinearities in the SID chip:

● Filter distorts high volume sounds a LOT. I believe that this effect is caused by abrupt
nonlinear behaviour by the SID chip op-amps. I have modelled this by approximating the
voltage difference between the input and output of two main sid-chip op-amps, and distort-
ing the lowpass, bandpass and highpass outputs if the difference goes above a certain
threshold.

● Filter resonance frequency shifts up if the intensity of sound grows, up to roughly 1
full octave, or 2x the frequency. This is responsible for the sound of the initial "drums" in
Jeff's Hard Track. Jeff keeps filter CF value (Center Frequency) as constant for the dura-
tion of each hit, but the audible effect is still a filter sweep down as these hits fade. A simi-

5

lar case is Elite, which simply will never be emulated correctly unless the filter is made to
properly respond to these changes in sound intensity.
The linear filtering equation is as follows:

 Vhp = Vbp / Q - Vlp - Vi
 Vlp -= w0 * Vbp
 Vbp -= w0 * Vhp

I suspect that the filtering may be simulated by correcting the w0 terms with a term de-
rived from the absolute difference of the outputs, for instance the middle equation should
be something like:

 Vlp -= w0 * Vbp * distortion_function(Vlp, Vbp);

My current approximation of the distortion function calculates the absolute difference in
output, and then scales that (with clipping) to to range 1 .. 3.

Known bugs in sidplay2 removed by this patch:

● 6581 CF-to-frequency mapping is rather wrong for 6581R4. A replacement that match-
es closely with my 6581R4 is substituted instead. For instance, ReSID tables claim that CF
value of 1024 selects approximately 4.6 kHz resonance frequency, but my measurements
indicate it's approximately 1.1 kHz instead! This is a difference of roughly 2 octaves, and
needs to be corrected for 6581R4-like sound. This CF-to-frequency mapping is not better
than the one in resid in absolute terms (except that it has been sampled with higher accura-
cy), because there exists considerable variation between chips. The stock ReSID curve +
distortion patch seems quite appropriate for Terra Cresta, for instance.

● Filtered outputs are 4.5 to 6 dB quieter than unfiltered outputs. This difference can be
seen on any FFT plot from the chip when a low-volume sound is played without routing to
filter, and then with any of the filters enabled. The output level difference may arise from
the nonlinear properties of the filter itself.

● Filter calculation was done in incorrect order, resulting in excess treble for highpass
output. This bug has been confirmed by Dag Lem and fixed in ReSID upstream.

Check and download the patch from: http://bel.fi/~alankila/c64-sw/

Polly Tracker v1.2+

Aleksi Eeben in March 2007 has released a plus version on Polly Tracker with new 3 disks of
demo modules and an alternate Digimax version with 8-bit output:

✗ 4 sample channels
✗ 4-9 kHz sample rate on each channel (C-2 = 8000 Hz)
✗ 8-bit internal mixing
✗ 4-bit output on stock C-64 or 8-bit output with Digimax version
✗ Dynamic mixing based on polling the hardware timers, never skips a sample
✗ 48K reserved for sample data
✗ Loads 8-bit unsigned raw samples
✗ Edit options to adjust sample volume, trim sample end and octave upsample
✗ 6581/8580 ok, NTSC/PAL compatible and IDE64 friendly
✗ No SID voices used (except voice 3 output as sequencer sync)
✗ Standalone player, module-to-executable and module-to-SID tools included

Download at: http://noname.c64.org/csdb/release/?id=47686

6

http://noname.c64.org/csdb/release/?id=47686
http://bel.fi/~alankila/c64-sw/

X-SID v1.00

After a lamer had released some
incomplete and not to spread Jeff's
editors, Soeren Lund had decided to
release in April a more usable version
of X-SID, but that it still incomplete.

However, due to the action done by
the lamer, no further develop will be
done to this editor.

The editor looks very promising
and it's very sad it will not improved
anymore.

You will find the editor to download
here http://noname.c64.org/csdb/re-
lease/?id=47985 , and a thirty part relocator here http://noname.c64.org/csdb/release/?id=48017.

Goattracker stereo 2.59

On 12 April Cadaver had released a stereo experimental version of Goattracker 2.59

Download from http://covertbitops.c64.org/tools/gt2stereo.zip

7

http://covertbitops.c64.org/tools/gt2stereo.zip
http://noname.c64.org/csdb/release/?id=48017
http://noname.c64.org/csdb/release/?id=47985
http://noname.c64.org/csdb/release/?id=47985
http://noname.c64.org/csdb/release/?id=47985
http://noname.c64.org/csdb/release/?id=47985

Goattracker 2.6-2.67

Still in April news versions of Goattracker come out (and in May 2008 the last version):
v2.6
● Fixed pattern default length selection display when decrementing from a length of 100 or

higher.
● Fixed mouse selection of pattern when adjusting an adjacent channel.
● Fixed help screen instructions.
● Changed resolution to 800x600.
● Changed all songname rows to be displayed at the same time.
● Changed mouse control to allow pattern column selection even when left mouse button is

held down.
● Changed speed of PageUp/PageDown scrolling to be faster.
● Optimized graphics output.
● BME library is no longer needed.

v2.61
● Added the backquote key (top-left on keyboard) to select channel in pattern edit mode, and

to select table in table edit mode. Use with SHIFT to go backwards.
● Added SHIFT+channel number to mute channels in pattern edit mode.

v2.62
● Added possibility for realtime calculated note independent (hifi) portamento & vibrato.

Warning: has potential for huge rastertime increase.
v2.63
● Fixed note independent portamento & vibrato to use the last note set in wavetable for cal-

culations, instead of the last note in patterndata.
v2.64
● Fixed paste in table (SHIFT+V) working also without SHIFT pressed.

v2.65
● Fixed raw keycodes over 511 interpreted as some other keys in the 0-511 range.

v2.66beta
● Initial cycle-exact HardSID support (Win32 only)
● Permit running without sound.

v2.67
● Configurable cycle-exact HardSID buffer length (separate for inter-active and playback

mode, see /T and /U command line options)

CRD-Tracker64 Alpha

On 9 May 2007, Owen Crowley
had released his alpha version of a
music tracker: CRD-Tracker64.

You can event read the history of
this not finished editor by looking at
the creator Readme file that it in the
disk.

Download from cdsb:

http://noname.c64.org/csdb/get-
internalfile.php/39695/CRDTRACK-
ER64_ALPHA.D64

8

http://noname.c64.org/csdb/getinternalfile.php/39695/CRDTRACKER64_ALPHA.D64
http://noname.c64.org/csdb/getinternalfile.php/39695/CRDTRACKER64_ALPHA.D64
http://noname.c64.org/csdb/getinternalfile.php/39695/CRDTRACKER64_ALPHA.D64
http://noname.c64.org/csdb/getinternalfile.php/39695/CRDTRACKER64_ALPHA.D64
http://noname.c64.org/csdb/getinternalfile.php/39695/CRDTRACKER64_ALPHA.D64

DMC Music Compo 2007

In 2007 Richard lanch a music compo for DMC
editors (all the versions were allowed):

http://www.redesign.sk/tnd64/DMCcompo.html

Here the result:
1:

Name of song: Wot Da Funk
Author : Marcin Majdzik (Psycho)
Version : DMC V4 (Modified by Glover/Samar)
Duration : 2:15
SID Type :8580 (New)

2:
Name of song: Extreme - Part 2
Author : Surgeon/Vulture Design
Version : DMC V7.0 (Modified version of DMC V4.0 ;o))
Duration : 2:54
SID Type :8580 (New)

3:
Name of song: Tanker
Author : Rio/Rattenrudel
Version : DMC V7.0 (Modified version of DMC V4.0 IDE 64 Version)
Duration : 2:09
SID Type :8580 (New)

HVSC update 47

In July the new version of HVSC was released at http://www.hvsc.c64.org
After this update, the collection should contain 34,127 SID files! This update features (all ap-

proximates):
✗ 1127 new SIDs
✗ 19 fixed/better rips
✗ 8 fixes of PlaySID/Sidplay1 specific SIDs
✗ 8 repeats/bad rips eliminated
✗ 773 SID credit fixes
✗ 700 tunes assigned a sidmodel flag
✗ 15 UNKNOWN demo tunes identified
✗ 29 UNKNOWN game tunes identified

Main Composers featured in this update:
(Artists marked with NEW are either completely new to the HVSC or they get their own directory

in this update)
A-Man - venturing into the Pollytracker domain now! Bart
Richard Bayliss Bernhard Burgstaller (NEW)
CRD - kindly donated his complete collection to us Chantal Goret (NEW)
Dexter (NEW) Eco
Fanta - make sure to have a listen to his Desert Dream conversion!
Fox Gop
Greg Gregfeel
Harlequin Heinmuck

9

http://www.hvsc.c64.org/
http://www.redesign.sk/tnd64/DMCcompo.html

Hukka Image
MAC2 Mac / Radical
Merman Moogle Charm (NEW)
Nastiness Inc. Omoroca (NEW)
Pernet Q-Man
Raze Rio
Sax Sharp
Skam (NEW) Slayer
STP Sound System Tonid (NEW)
Topaz Vintaque
Zeta (NEW)

HVSC News
● Motion joined the HVSC Crew
● Steppe retired from the HVSC admin post. Rambones will take over, good luck!
● The new directory structure requires a new update tool. It got updated for Linux and Win-

dows, so we feel the majority of users won't have a problem. For the exotic platform users:
The source code of update tool 2.8.4 is on the HVSC website in the Downloads section. If
you manage to compile it on your specific platform, feel free to send it over! And by the
way: You can still run update #47 with update tool 2.8.3. It will complain heavily that the
/Hubbard_Rob/ directory is not where it expects it to be, thus assuming you did something
fundamentally wrong. Just ignore the warning, nod away the next "y/n are you sure you're
sure?" question and it will work anyway.

C64.sk SID Compo 7

The annual C64.sk compo was performed even this year, with lot of tunes:

Place Release / Scener Points
1 Darkening by Cadaver (1314 PTS)
2 There was a Light That Went Out by Randall (1167 PTS)
3 Autumn Symphony by Orcan (1152 PTS)
4 Danger Zone by Conrad (1150 PTS)
5 His Pearl by _V_ (1087.5 PTS)
6 Unsophisticated by Peace (1011.5 PTS)
7 Unforgivable by Dane (999 PTS)
8 Not A Jazz by Jammer (995 PTS)
9 immoral coil by dalezy (950 PTS)
10 y Little Daughter by PCH (930 PTS)
11 6581 Destinations by Stainless Steel (926 PTS)
12 November Echoes by The Syndrom (910.5 PTS)
13 The Sexy Hardrestart by Hein (887.5 PTS)
14 Girls'n Ghosts Ate Kleve by Linus (863 PTS)
15 The Sweet Odour Of Jesus Christ by Intensity (863 PTS)
16 Saturday (Laid Back) Weirdness by No-XS (813.5 PTS)
17 I Died Defending the Mothership by Uneksija (799 PTS)
18 Volcanoes of Passion by Sidder (788.5 PTS)
19 Unstoppable by PsycHo (732 PTS)
20 Mix 'Em Up 64 Style by Richard (694 PTS)
21 Sorry For The Delay by Peter Bergstrand (662 PTS)
22 Story About F Sharp by Jakim (628.5 PTS)
23 Ready by Surgeon (594 PTS)
24 Jammed With Arpeggios by Falciparum (560.5 PTS)

10

25 Gold Lux by Xiny6581 (412 PTS)
26 Print All Your Crap by Ed (409 PTS)

Visit the event here: http://www.c64.sk/files/sidcompo7/sidcompo7-results.html

Java SID Player Music Library V2

On December, kenchis released a port in Java of sidplay2 library and sidplay2 console player.
The library is very promising for all the Java fan. It improves day by day and it uses a even a

graphical interfaces over the classical console.

 +--+
 | Java SIDPLAY - Music Player & C64 SID Chip Emulator |
 | Sidplay V2.0.8, libsidplay V2.1.1 |
 +--+
 | Title : Against My Enemy |
 | Author : Kjell Nordbø |
 | Released : 1996 SHAPE/Blues Muz' |
 +--+
 | File format : PlaySID one-file format (PSID) |
 | Filename(s) : Against_My_Enemy.sid |
 | : |
 | Condition : No errors |
 | Playlist : 1/1 (tune 1/1[1]) |
 | Song Length : UNKNOWN |
 +--+

Download from http://sourceforge.net/projects/jsidplay2/

XSIDPLAY2

Developed at http://www.sourceforge.net/projects/xsidplay2, this is the second version of XSid-
lay (the historical Sid Linux player), that was no more developed by the author.

Version 2.0.0
Based onto xsidplay 1.6.5.2
● SidId v1.7 support
● Remove some memory related bug into TSID2 patch
● Remove a time related bug (about time resolution) when using libsidplay2

Version 2.0.1
● Clear list in SidId before

load a configure file
● Allow to compile correctly if

TSID2 is disable
● Add experimental support

for SDL sound library

Version 2.0.2
● Add LCD display for

songlength
● Allow to compile correctly

with libsidplay1

11

http://www.sourceforge.net/projects/xsidplay2
http://sourceforge.net/projects/jsidplay2/
http://www.c64.sk/files/sidcompo7/sidcompo7-results.html

Rockbox

Rockbox is an open source firmware for mp3 players, written from scratch. It runs on a wide
range of players:

● Apple: 1st through 5.5th generation iPod, iPod Mini and 1st generation iPod Nano
(not the Shuffle, 2nd/3rd gen Nano, Classic or Touch)

● Archos: Jukebox 5000, 6000, Studio, Recorder, FM Recorder, Recorder V2 and Ondio
● Cowon: iAudio X5, X5V, X5L, M5 and M5L
● iriver: H100, H300 and H10 series
● SanDisk: Sansa c200, e200 and e200R series (not the v2 models)
● Toshiba: Gigabeat X and F series (not the S series)

The interesting things about this project is that it play Sid file. Look at http://www.rockbox.org/

C64.sk Music Cover Compo

This was the first cover compo organized by www.64.sk

1 Elysion by Steven Diemer (A-Man/Xenon) (3:36) (738 PTS)
2 Cauldron II Sinus Milieu Studie by Linus (Sascha Zeidler) (4:05) (725.5 PTS)
3 Englishman In New York by Josep Barwick (Stainless Steel) (717.5 PTS)
4 Atlantic Reloaded Italo Disco by Randall (2:16) (650.5 PTS)
5 Galaxy Bounce (Tomb Raider Mix) by Kamil Wolnikowski (Jammer) (631 PTS)
6 Everybody Everybody by MSK Fanta Mitch (3:19) (626 PTS)
7 Dreamlights by Freedom (Marcello Marsetti) (2:43) (592.5 PTS)
8 Blitzzurueck Wahlmoeglichkeiten1 by Vincent Merken (_V_) (3:20) (584.5 PTS)
9 Mama by Stefan Uram (Orcan) (3:10) (520 PTS)
10 metroid_tune_5.sid by dalezy/triad (514 PTS)
11 The Great Destroyer by Stellan Andersson (Dane) (3:16) (502.5 PTS)
12 Burning Heat by Aegis501.5 PTS)
13 Could_You_Be_Loved by Rafal (Surgenon) (500.5 PTS)
14 Queen of Rain by Lars Hutzelmann (The Blue Ninja/DOS) (3:32) (488 PTS)
15 Nowhereland by Richard Bayliss (The New Dimension) (3:40) (470.5 PTS)
16 Daup of Pink Paint by Hein/Focus (Hein Holt) (0:55) (437.5 PTS)
17 Kate and Martin by Peter Bergstrand (3:40) (428 PTS)
18 Magnum Theme by Nico van der Zijden (Vai/Slash Design) (2:48) (379.5 PTS)
19 Chasing Cars by Andrew Fisher (Merman/POL/ROLE) (6.:10) (375.5 PTS)
20 Diamond in the Night by hukka (Joel Toivonen) (370.5 PTS)
21 Assault On Precint 13 by Andrew Lemon (Ne7/Triad) (350.5 PTS)
22 Intro A-team by Tim (bordeaux) (279.5 PTS)
23 Over The Rainbow by deizi (Tommi Lehtimäki) (1:32) (208.5 PTS)

More information can be found at http://www.c64.sk

12

http://www.c64.sk/
http://www.64.sk/
http://www.rockbox.org/

HVSC update 48

Update 48 of HVSC (www.hvsc.c64.org) was released in March 2008.

This time we have music from:
● Vandalism News 49
● Silesia party
● The 82 Ditties demo by Bluez Muz
● unreleased tunes by Adam Gilmore
● John Stormont (NEW)
● C64.sk SIDcompo 7
● Aegis (aged sweet 13 years old!) Jeroen Tel
● Linus
● Dwayne Bakewell
● Richard Bayliss
● Conrad (CRD)
● Froyd
● Adam Gilmore
● Goto80

After this update, the collection should contain 35,030 SID files!

This update features (all approximates):
 918 new SIDs
 42 fixed/better rips
 0 fixes of PlaySID/Sidplay1 specific SIDs
 12 repeats/bad rips eliminated
 370 SID credit fixes
 101 SID model/clock infos
 11 tunes from /DEMOS/UNKNOWN/ identified :-)
 37 tunes moved out of /DEMOS/ to their composers' directories
 15 tunes moved out of /GAMES/ to their composers' directories

HERMIT 3SID-TRACKER 2008

Hermit Soft releases in May 2008 a
new tracker that can handle 3 sid
chips.

It can control 3 SIDs simultaneously
on $d400,$de00,$df00 (yet). 9
polyphony, 3 filters. (no need arpeggio
to have chords)

The tracker itself is a modern fast-
tracker-like editor, which has addition-
al functions (for example: the edit cur-
sor and play-cursor,loop-play with
F7,etc.).

You can get it from here:
http://noname.c64.org/csdb/release/?id=66065

13

http://noname.c64.org/csdb/release/?id=66065
http://www.hvsc.c64.org/

HardSID 4U

The HardSID 4U is the most powerful SID
synthesizer since the legendary C64!

• Two CPUs and main memory
• Updateable firmware over USB
• Full automation of all VSTi parameters
• USB connection (compatible with both

2.0 & 1.1)
• Isochronous USB endpoint for low-la-

tency audio
• VSTi interface with 8000Hz update rate

on all SID registers (free)
• Wave-in VSTi pin for routing 8000Hz

signals to any registers (example: playing other VSTi's sound on the volume register)
• Superior sound quality (..it is a HardSID!)
• Support for up to four SID chips (6581/8580/6582 in any combination)
• Microsoft Vista compatible (drivers for Win2000/XP/Vista)

..and if you're a C64 fan
• Cycle-accurate playback of your favorite SID tunes
• Digitized sound + high-speed playback with low CPU utilization
• Seamless playback of .sid tunes while you work on your PC by providing a huge playback

buffer for non-VSTi applications
The HardSID 4U Studio Edition

• Full physical separation of the SIDs from the USB driven circuits
• 100% elimination of EMI (Electromagnetic interference) noise that may come from your PC

via USB

View all at: http://www.hardsid.com/hardsid_4u.php

14

http://www.hardsid.com/hardsid_4u.php

Mihály Horváth (Hermit) Interview!
by Stefano Tognon

This time I go to interview Hermit, that has released a tracker that can control 3 sid chips. Some-
thing very interesting...

Hello Hermit, could you introducing yourself and what you do in real life?

Hello, My real name is Mihály Horváth, I'm a 25 years old hungarian. I got electrical qualifications
in secondary school, and I'm a communications-technician. But I was always interested in arts, mu-
sic, painting, writing, and managed to get good competition results. Now the music is the first thing
(after my Telecommunication Operator job) in my life, and I play live music with bassguitar and
solo-singing in my Band. Any kind of music is preferred. In my free time I'm listening SID music and
Seal,Sting,MJ,Jazz... music. I love nature, I have a girlfriend.

When and how did you discover the Commodore great machine called C64?

When I was 14, my primary school started computer education with 386 machines. I wanted a
computer, and one of my friends sold me his C64 with a datasette. Lack of lot games made me to
entertain myself with BASIC program-writing, even I wrote a GHOSTBUSTER-game and utils in
BASIC in 1997. Then I started to learn the much more faster machine-code, and until 2000 I wrote
many other user programmes, games, music collections (Mirage I,II,III).And the Mortal Kombat that
is in the D64, wasn't completed... These "good times" ended, when I got my first 386 from a com-
puter-service for my work. Later I sold my C64 with the new floppy-drive. I then wrote music with
Fasttracker, then for some years I used IBM PC family to make music. On my last P4 is used
SONAR and many VST and recorded live instruments, but had always problems wit Wi...ws. So af-
ter 5 years I bought back my first C64 to compose my music with it. Started to write the HMT-
SYNTH,then the TRACKER.. Now I have 8 pieces of C64 already, and collect them ...

What is your actual way for creating programs for the commodore? Cross-develop into pc
or directly coding in it?

I prefer the real machine with cartridge and floppy-drive for program-developing, especially in mu-
sic editors, but if there isn't C64 near me I sometimes use the Vice to develop my programs.

Your 3-SID tracker is very amazing. When did your start to think to realize such a big chal-
lenge? It is very beautiful to have 2 sids into the C64, but 3 is absolutely fantastic.

Thanks. As I said before, I wanted to compose my live-musics on this safe-running C64 machine,
but the first problem was the only 3 tracks, so I was searching 2SID composers, but there is only
two yet: DMC 4.3 and Prophet64. DMC wasn't easy to make 2SID zaks, because of switching be-
tween SIDs. Prophet64 is a good thing, but I didn't manage to get it already, only the free demo
without sequencer-part. And double framespeed was important too for me. So I decided to write a
composer that's all in one for these desires. 3SID was the main new idea, and why not do it, if this
great C64 can cope with it. I started it in Januray this year, finished this version in only 4 months.

Was you inspired by some existing tracker when you think of how to realize the your one?

I preferred the trackers because of my Fasttracker experiences. So Cybertracker, Odintracker,
DMC and JCH's editor were the trackers that inspired me, and I downloaded many others to get
ideas.. I invented some new things too: separate cursors for play and edit, all in one screen, ad-
vanced play-stop functions, pattern-play mode, loop-play mode...

15

What can you say about your future plan of releasing a 1-sid/ 2 sid version of the tracker?
I think than many composers will be interesting into this.

Now it can be used as an 1SID or 2SID composer as in Cybertracker, but not specialized. Only
leave the other SID-tracks empty. As the fixed new version will be ready with new functions, then
1SID and 2SID specialized versions will be ready too. I see it is worth it to spend more time with
programming the tracker....

Have you some other interesting projects not jet released of just planned that you can talk
to us?

Yes, I don't want to use IBM PC in the future as possible, so I'm developing Commodore 64 hard-
ware and software to use it in my everydays.. Some other fanatic people does too. I now use for
example 64HDD, want to use netcard-expansion later, to write e-mail from real c64, and so on..
The in USA-developed Commodore One is a good solution, it's all in one C64 expansion-mother-
board with card-OS (Wings)... My actual work is the Hermit C64 Commander (HC), that will handle
64HDD,1541 and later pen drive as the Star Commander. My aim is to fanatically rise up again
this good machine. What would be now, if its great line was continued? It only died because of
wrong final leading of the firm... As I heard Tulip will manufacture C64 again with new logo.. I will
seriously buy one....

Now some quick final (standard) questions:
Real machine vs emulator: what do you think about?

Vice is a very good emulator, but SID emulation isn't as fully good as the real. Analogue filter is im-
portant, the other important is the note-frequency dependent samplerate of the SID (44100 Hz is
weak for pure analogue).

6581 vs 8580 chip: any (musical) preference?

I have a 3X8580 SID new machine and also an old 2X6581 SID machine. I tried both SID types,
and I think that the 8580 is more accurate, but 6581 has good bass-filter behavior for older compo-
sitions. I prefer 8580.

What is the worst and the better sid you composed?

I didn't compose lots of SIDs yet, first I used Light Voices, and made very weakly composed mu-
sics (they are in my zak-collections called Mirage) 8 years ago. Today with my tracker I last com-
posed the Earmind, which is my best SIDmusic now. But I have to train myself on SID a lot.

Who are your best sid authors?

The best for me is Jeroen Tel.
I think, he is one of the very-best composers in the world. I started to live-remix his composition
and play them with my band in Hungary. But all Maniacs Of Noise members are nearly good too:
Reyn Ouwehand, DRAX, Laxity, ... I also love Rob Hubbard music, and the best sounding and
strange feelings of Shogoon zaks.
On C64 there are lots of extra-good authors too: Thomas Detert, Mark Cooksey, Martin Galway,
Richard Joseph, David Whittaker, SLD, and so on.... SID (3 track) makes everyone to do his best
to keep interest and quality..

16

What are the best sids ever in your opinion?

Jeroen Tel: Rubicon, Wiz, Aspar Grand Prix , Myth, Poseidon, Supre Macy, Golden Axe, Elimina-
tor, Cybernoid I,II, Savage, ... Rob Hubbard: Zoids, Commando, Intern. Karate, Monty on Run, Star
Paws, ...
Shogoon: Fun Factory, Zone of Darkness, Illmatic End, Muza do Dema, Love 2

Other great SIDs: Barbarian, Last Ninja, BTTF3, Solitax end, Mysterious World, Stack Up, Krakout,
Jackal, Dazzler,

And many-many very sophisticated compositions!!!!
(Todays pop-music is weak in good melodies, so the before mentioned zaks are much better and
various for me...)

Finally, many thanks for the time you give for this interview, and now would you say some-
thing else to the our readers?

Everybody! Help us keep C64 alive, and make the feeling of a better world!!! READY.

17

Tiny Sid 2 (part 3)
by Stefano Tognon <ice00@libero.it>

With this article I finally ending to analysis of the last two entries of the Tiny Sid Compo II. All the
engines present here are done by reverse engineering the code.

Plaster 512b

Plaster is the 512b entries of GRG and is the tune that take more points over all the others.

Here a description of the player:
● Autostarting at $0326 by setting the IRQ
● It disables IRQ and made a synchronization onto raster position
● It fills the zero page data all with 0, and copy some data to zero page while initializing
● It uses filter and cut frequency that varies from $3F to $FF up and down during the playing
● Song is based onto 2 tracks, one for voice 1 and one for voice 2 and 3
● One value in a track is a index to a pattern table of commands to execute, and if this value

is negative, the absolute value is the transpose value to add for the next pattern.
● Each pattern command has this meanings:

● value < 8 = set an instrument to use
● 7 lower bit = note to play (if not an instrument)
● negative = this is the last command (7 bit =command)

● One instrument is made by:
● Control index value to use: an index to a series of control values to use for

making timbre effect to the instrument
● Attack/Decay value
● Sustain/Release value
● Pulse is varied by the player for making better effect
● Hardrestart of note is performed by the player

● Note frequencies are built using the values of an octave
● Other effects are made inside the player for let voice 2 and 3 to be different (they play the

same track)

 ; memory usage
; 84 note duration voice 1
; 86 pattern offset voice 1
; 87 freq low to add voice 1 (not used)
; 88 pattern index voice 1
; 89 track pattern index voice 1
; 8A note to play voice 1
; 8B note duration voice 2
; 8D pattern offset voice 2
; 8E freq low to add voice 2 (not used)
; 8F pattern index voice 2
; 90 track pattern index voice 2
; 91 note to play voice 2
; 92 note duration voice 3
; 94 pattern offset voice 3
; 95 freq low to add voice 3 (used)
; 96 pattern index voice 3
; 97 track pattern index voice 3
; 98 note to play voice 3
; A0 pattern low address voice 1
; A2 control reg. index voice 1
; A3 instrument voice 1
; A4 note transpose value voice 1
; A5 note duration for control voice 1
; A6 control reg. value voice 1
; A7 pattern low address voice 2
; A9 control reg. index voice 2
; AA instrument voice 2
; AB note transpose value voice 2
; AC note duration for control voice 2
; AD control reg. value voice 2

18

mailto:ice00@libero.it

; AE pattern low address voice 3
; B1 control reg. index voice 3
; B2 instrument voice 3
; B3 note transpose value voice 3
; B4 note duration for control voice 3
; B5 control reg. value voice 3
; BE actual wave low byte voice 1
; C0 direction 0=dec 1=inc
; C1 actual low freq.
; C2 actual high freq.
; C5 actual wave low byte voice 2
; CC actual wave low byte voice 3
; D8 actual cut freq. hi byte

.org $0326
 .byte $2A, $03
 .byte $ED, $F6

.org $032A
 sei
 tya
loop:
 sta $0002,y ; empty zero page variables
 iny
 bne loop

 ldx #$0E
 ldy #$02

loopInit:
 lda #$01
 sta $84,x ; note duration
 lda track,y
 sta $A0,x ; pattern low address
 lda wave_hi,y
 sta $D403,x ; Voice 1: Wave form pulsation amplitude (hi byte)
 dey

 lda #$FF
 sbx #$07 ; undocument operation
 bpl loopInit

 lda #$03
 sta $92 ; note duration voice 3
 lda #$1E
 sta $95 ; freq low to add voice 3

 lda #$F1
 sta $D417 ; Filter resonance control/voice input control
 lda #$3F
 sta $D418 ; Select volume and filter mode

playLoop:
 ; made the cut freq goes from 3F to FF and back
 ldy $D8 ; actual cut freq. hi byte
 ldx $C0 ; direction 0=dec 1=inc
 beq setDec
 iny
 cpy #$FF
 bne setCut
 dex
 beq setCut
setDec
 dey
 cpy #$3F
 bne setCut
 inx
setCut:
 stx $C0 ; direction 0=dec 1=inc
 sty $D8 ; actual cut freq. hi byte
 sty $D416 ; Filter cut frequency: hi byte
 ldx #$0E ; voice 3

nextVoice:
 dec $84,x ; dec note duration
 bne durNotZero

 ldy $88,x ; pattern index
 bne patNotZero
 ldy $86,x ; pattern offset
 lda $A0,x ; pattern low address
 sta trPos+1

notVoice1:
trPos:
 lda track,y ; load value of pattern
 bne skipVEffect

19

 tay
 cpx #$07 ; is voice 2?
 bne notVoice2

 ; transpose effect for voice 2
 lda $AB ; note transpose value voice 2
 eor #$F0
 sta $AB ; note transpose value voice 2

notVoice2:
 cpx #$00
 bne notVoice1 ; is voice 1?

 lda #$05 ; instrument 5
 sta patIns ; change pattern
 bne notVoice1

skipVEffect:
 bpl skipTranspose
 and #$1F
 sta $A4,x ; note transpose value
 iny
 bne notVoice1

skipTranspose:
 sta $89,x ; track pattern index
 iny
 sty $86,x ; pattern offset

patNotZero:
 ldy $89,x ; track pattern index
 lda patTable-1,y
 sta patPos+1
 ldy $88,x ; pattern index
 cpx #$00 ; voice 1
 beq skipVEffect2

 lda $A3,x ; instrument
 eor #$07
 sta $A3,x ; instrument

skipVEffect2:
patPos:
 lda $049E,y
 iny
 cmp #$08 ; is an instrument?
 bcs isNote
 sta $A3,x ; store instrument
 bne skipVEffect2
isNote:
 pha
 and #$7F ; isolate the note
 clc
 adc $A4,x ; note transpose value
 sta $8A,x ; note to play
 pla
 bpl notLast
 ldy #$00 ; restart pattern as it is finished
notLast:
 sty $88,x ; pattern index
decNextVoice:
 lda #$FF
 sbx #$07 ; undocument operation
 bpl nextVoice

loopSync:
 cmp $D012 ; Reading/Writing IRQ balance value
 bne loopSync
 jmp playLoop

durNotZero:
 lda $84,x ; note duration
 pha
 cmp #$01 ; test for hardrestart
 bne skipHR

 sta $D406,x ; Generator 1: Sustain/Release
 lda #$0F
 sta $D405,x ; Generator 1: Attack/Decay
 dec $A5,x ; note duration for control voice
skipHR:
 pla
 bpl setCtrl

 sta $A5,x ; note duration for control
 lda #$07
 sta $84,x ; note duration
 sta $BE,x ; actual wave low byte

20

 ldy $A3,x ; read instrument
 lda controlIndex-1,y
 sta $A2,x ; control reg. index
 lda AD_inst-1,y
 sta $D405,x ; Generator 1: Attack/Decay
 lda SR_inst-1,y
 sta $D406,x ; Generator 1: Sustain/Release

setCtrl:
 ldy $A2,x ; control reg. index
 lda control,y ; read control reg
 bne notZeroCtrl
 dey
 lda $A6,x ; control reg. value
 .byte $2C ; BIT $A2F6

notZeroCtrl:
 inc $A2,x ; control reg. index

 sta $A6,x ; control reg. value
 and $A5,x ; note duration for control voice
 sta $D404,x ; Voice 1: Control registers
 lda useFreq,y ; use freq. for effect
 bpl ignoreFreq

 and #$7F ; isolate low 7 bits of high freq
 bpl outHiFreq

ignoreFreq:
 lda $8A,x ; note to play
 pha
 and #$0F ; take base note
 tay
 lda hiFreq,y
 sta $C2 ; actual high freq.
 lda loFreq,y
 sta $C1 ; actual low freq.
 pla ; take octave
 lsr
 lsr
 lsr
 lsr
 tay ; y=octave
 beq skipDouble

doubleF: ; double the frequency
 lsr $C2 ; actual high freq.
 ror $C1 ; actual low freq.
 dey
 bne doubleF

skipDouble:
 lda $C1 ; actual low freq.
 clc
 adc $87,x ; freq low to add
 sta $D400,x ; Voice 1: Frequency control (lo byte)
 lda $C2 ; actual high freq.
 adc #$00

outHiFreq:
 sta $D401,x ; Voice 1: Frequency control (hi byte)

 lda $BE,x ; actual wave low byte
 adc #$18
 sta $BE,x ; actual wave low byte

 sta $D402,x ; Voice 1: Wave form pulsation amplitude (lo byte)
 jmp decNextVoice

track:
 .byte <track79, <track8F, <track8F

track79:
 .byte $83, $01, $01, $01
 .byte $01, $8A, $01, $01
 .byte $01, $01, $8B, $01
 .byte $01, $01, $01, $86
 .byte $01, $01, $85, $01
 .byte $06, $00

track8F:
 .byte $02, $02, $03, $03
 .byte $04, $04, $05, $05
 .byte $00

patTable:
 .byte <pat9E, <patAC, <patB6, <patC0, <patCA, <patA6

21

; value <8 = instrument
; negative = last
; 7 low bit = note (if not instrument)
pat9E:
 .byte $02, $60, $01, $60
patIns:
 .byte $02, $60, $01, $E0

patA6:
 .byte $02, $60, $60, $05
 .byte $60, $E0

patAC:
 .byte $03, $3A, $33, $3A
 .byte $03, $36, $3A, $35
 .byte $36, $B3

patB6:
 .byte $03, $21, $35, $21
 .byte $03, $3A, $21, $38
 .byte $3A, $B5

patC0:
 .byte $03, $3B, $33, $3B
 .byte $03, $3A, $3B, $36
 .byte $3A, $B3

patCA:
 .byte $03, $3A, $4A, $3A
 .byte $03, $36, $3A, $33
 .byte $36, $CA

wave_hi:
 .byte $08, $08, $04 ; wave high value for each voice

AD_inst:
 .byte $00, $0F, $02, $E0, $08 ; attack/decay of instruments

SR_inst:
 .byte $A4, $FA, $8A, $8A, $E8 ; sustain/release of instruments

loFreq:
 .byte $1E, $18, $8B, $7E, $FA, $06, $AC, $F3, $E6, $8F, $F8, $2E

hiFreq:
 .byte $86, $8E, $96, $9F, $A8, $B3, $BD, $C8, $D4, $E1, $EE, $FD

control:
 .byte $09, $81, $41, $00
 .byte $09, $81, $11, $11, $11, $11, $11, $00
 .byte $09, $81, $41, $40, $40, $80

controlIndex:
 .byte $00, $04, $02, $02, $0C

; if <0, 7bits=high freq. to use for effect
useFreq:
 .byte $00, $FF, $00, $02, $00
 .byte $FF, $8B, $89, $86, $84
 .byte $00, $0A, $00, $FD, $8E
 .byte $8C, $8A, $FF, $00, $00

22

Back To Basics

This is the 256 bytes tune wrote by Jaymz Julian.

Here a description of the player:
● Autostarting at $0326 by setting the IRQ
● It synchronization onto raster position
● It copies some data to zero page while initializing for access them with short instructions
● High byte of filter cut of frequency and high byte of wave pulse (that will be used a little

shifted for each voices) are changed every fixed time
● Voice 2 use tables of values for high frequencies and control register to use
● Pattern of values are used for Voice 1 and 3 frequencies low or high)
● Note duration are triggered between 2 values during the play

.org $0326
 .byte $2A, $03
 .byte $ED, $F6

.org $032A
 lda #$1F
 sta $D418 ; set volume
 ldx #$46

loopCopy: ; copy data to zero pages
 lda data,x
 sta $01,x
 dex
 bne loopCopy

mainLoop:
 ldx #$00 ; voice 1
 jsr play

 dec $3A ; dec delay for continue effect
 bne skipInc

 lda #$04
 sta $3A ; restore delay for continue effect
 inc $47 ; inc Wave form pulsation amplitude (hi byte)/ Filter cut frequency: hi byte

skipInc:
 ldx #$07 ; voice 2
 jsr play
 ldx #$0E ; voice 3
 jsr play

 lda #$F4
 sta $D417 ; Filter resonance control/voice input control
raster:
 cmp $D012 ; Reading/Writing IRQ balance value
 bne raster
 beq mainLoop

play:
 txa ; differentiate the effect for the 3 voices
 adc $47 ; Wave form pulsation amplitude (hi byte)/ Filter cut frequency: hi byte
 sta $D403,x ; Voice 1: Wave form pulsation amplitude (hi byte)
 sta $D416 ; Filter cut frequency: hi byte

 lda #$80
 sta $D402,x ; Voice 1: Wave form pulsation amplitude (lo byte)
 ldy $36,x ; read actual pattern index

 dec $38,x ; actual duration (delay)
 beq readPat

 cpx #$07 ; Voice 2
 bne quit

 ldx $3B ; pattern value (=index starting from $1A)
 lda $1A,x
 bne notZeroVal

 lda $1B,x ; load restarting position
 tax
 lda $1A,x ; use value of new position

notZeroVal:

23

 sta $D408 ; Voice 2: Frequency control (hi byte)
 lda $28,x
 sta $D40B ; Voice 2: Control registers
 inx
 stx $3B ; pattern value (=index starting from $1A)
quit:
 rts

readPat:
 lda $0002,y ; read pattern value
 bpl notEndPattern

 lda #$E9
 sta $D406,x ; Generator 1: Sustain/Release
 lda #$41
 sta $D404,x ; Voice 1: Control registers

 inc $2E ; counter
 lda $2E
 and #$0F ; test for every 16 ticks
 bne not16

 sta $D406,x ; Generator 1: Sustain/Release
 sta $D404,x ; Voice 1: Control registers

 lda $1C ; Voice 2 frequency high byte
 eor #$0C ; make effect
 sta $1C

not16:
 ldy $37,x ; restore pattern index
 sty $36,x ; actual pattern index
 bpl readPat

notEndPattern:
 cpx #$07 ; voice 2
 bne notV2

 sta $3B ; pattern value (=index starting from $1A)
 bne notJump

notV2:
 bcc isV1
 inc $41
 bne isV3
 inc $42
isV3:
 sta $D400,x ; Voice 1: Frequency control (lo byte)
 and #$0F
isV1:
 sta $D401,x ; Voice 1: Frequency control (hi byte)

notJump:.
 lda $35,x ; load duration (delay)
 sta $38,x ; store actual duration (delay)
 eor $39 ; change duration length
 sta $35,x ; store duration (delay)
 lda ($33,x)
 and #$07
 sta $36 ; actual pattern index position
 inc $36,x
data:
 rts

; $02:
 .byte $00, $0F, $14, $22
 .byte $24, $28, $1E, $FF
; $0A
 .byte $01, $07, $0B, $0B
 .byte $07, $01, $01, $0B
 .byte $FF
; $13:
 .byte $05, $0A, $05, $09
 .byte $05, $68, $05
;$1A Voice 2 frequency high byte
 .byte $77, $FF, $28, $2F, $3C, $00 $02
 .byte $FF
 .byte $0B, $0B
 .byte $B5, $FF
; $26
 .byte $0A
 .byte $00
; $28 Voice 2 control register
 .byte $0C, $81, $41, $41, $41, $00
; $2E
 .byte $00 ; counter
 .byte $81, $41, $40, $80, $81
; $34

24

 .byte $15
; $35
 .byte $06 ; duration (delay)
; $36
 .byte $00 ; Voice 1 actual pattern index position
; $37
 .byte $00 ; Voice 1 restore pattern index position
; $38
 .byte $01 ; actual duration (delay)
; $39
 .byte $08 ; for changing the duration length
; $3A
 .byte $04 ; delay for continue effect
; $3B
 .byte $00 ; pattern value (=index starting from $1A)
 .byte $06 ; duration (delay)
 .byte $08 ; Voice 2 actual pattern index position
 .byte $08 ; Voice 2 restore pattern index position
 .byte $01 ; actual duration (delay)
 .byte $08
; $41
 .byte $10
; $42
 .byte $A0
 .byte $06 ; duration (delay)
 .byte $11 ; Voice 3 actual pattern index position
 .byte $11 ; Voice 3 restore pattern index position
 .byte $01
; $47 Wave form pulsation amplitude (hi byte)/ Filter cut frequency: hi byte

Conclusion

Finally we had seen all the Tiny Sid 2 entries.

Remember that writing tiny music is a sort of programming art: you have to customize your play-
er according to the instruments to use, with the music effect you want to achieve and the melody
of your tune, arranging all the code in a manner that must be the smallest one. The work behind
this task could be very hard, and maybe with all the examples we showed during this and the other
issues you now have a precise idea of what this means.

25

Ripping Trivia Arcade
by Stefano Tognon <ice00@libero.it>

In this article I go to describe all the
steps involved in ripping the music of
The Trivia Arcade game.

The program comes with 2 disks:

● TRIVIAA0.D64
● TRIVIAA1.D64

that are full of files used by the pro-
gram.

But lets starts with the ripping ac-
tion...

Starting

When you start the program, a presentation screen appears an some files from the disk are
loaded during this process. Maybe the best things is to look at those files present in the disk, as
they could give us some information about this program.

26

mailto:ice00@libero.it

That's an easy task, from a console just type:
● c1541 TRIVIAA0.D64
● list
● extract
● quit

With the list command we see that there is a file called trimus.obj that can be a Trivia Music Ob-
ject file, or in other word the music data non embedded into the program, but a separate file to
load.

With extract we then have all the files extracted from the disk as PRG separated programs, so
we can better manage them.

27

Now just run LaLa's SIDedit perl program to the trimus extracted files and go to data display:
● Load address of the files is $1000
● There are 3 jumps at the start of the code
● The code seems to be relocated at $5000 and not to the address the files comes with.

With this simple analysis we can hypothesize that the music code must be loaded to $5000 and
that it not uses a standard IRQ calling (+0=init, +3=play), as there are 3 pointers in the beginning
of music data. That also means that our task that with the presence of a obj file with music
seemed easy, is now more difficult.

Now run vice and set some breakpoints to 5000, 5003, 5006 before loading the program.

(C:$eeac) break 5000
BREAK: 1 C:$5000 enabled
(C:$eeac) break 5003
BREAK: 2 C:$5003 enabled
(C:$eeac) break 5006
BREAK: 3 C:$5006 enabled

We will see these sequence of break:

#1 (Break) .C:5000 4C 13 50 JMP $5013
#2 (Break) .C:5003 4C 20 50 JMP $5020
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#2 (Break) .C:5003 4C 20 50 JMP $5020
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#3 (Break) .C:5006 4C A7 59 JMP $59A7

...
5000 is called only one time, so it must be a music player initialization.
5003 is called one time, then 5006 is called 4 times before 5003 is called again.

But how is the sequence regarding to the irq? Just see what there is at $314:

(C:$5003) m 314
>C:0314 3f 2e 66 fe 08 2f 4a f3 91 f2 0e f2 50 f2 33 f3 ?.f../J.....P.3.

So the irq call location is at $2e3f, and here we set a new breakpoint:

#4 (Break) .C:2e3f 78 SEI
#2 (Break) .C:5003 4C 20 50 JMP $5020
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#4 (Break) .C:2e3f 78 SEI
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#4 (Break) .C:2e3f 78 SEI
#3 (Break) .C:5006 4C A7 59 JMP $59A7
#4 (Break) .C:2e3f 78 SEI
#3 (Break) .C:5006 4C A7 59 JMP $59A7
...(restart)

Now we see that 5006 is called ad each tick, and 5003 is called one time over 4 before the
5006.

28

So, I try this simply player, but no one note were played:

; player for trivia

 processor 6502

INIT = $5000
PLAY1 = $5003
PLAY2 = $5006

 .org 2049

 .byte $0b,$08,$e8,$03,$9e,"2061",0,0,0

 .org 2061

 lda #0
 jsr INIT

sei
 lda #<raster
 sta $0314
 lda #>raster
 sta $0315
 lda #50 ;Set low bits of raster
 sta $d012 ;position
 lda $d011
 and #$7f ;Set high bit of raster
 sta $d011 ;position (0)
 lda #$7f ;Set timer interrupt off
 sta $dc0d
 lda #$01 ;Set raster interrupt on
 sta $d01a
 lda $dc0d ;Acknowledge timer interrupt
 cli
aaa: jmp aaa

 .org $2000

raster:
 inc tick
 lda tick
 and #$03
 bne skip
 jsr PLAY1 ; play first only one time over 4
skip
 jsr PLAY2

 dec $d019
 jmp $ea31

tick:
 .byte $FF

 .org $4FFE
 .incbin trimus.dat

So it is the case to see some part of the music code to understand how it work:

5000 4C 13 50 JMP $5013

5013 A2 18 LDX #$18
5015 A9 00 LDA #$00
5017 9D 00 D4 STA $D400,X
501A CA DEX
501B 10 FA BPL $5017
501D 4C 99 50 JMP $5099

5099 A9 01 LDA #$01
509B A0 00 LDY #$00
509D 8D 10 50 STA $5010
50A0 8D 11 50 STA $5011
50A3 8D 12 50 STA $5012
50A6 60 RTS

It only cleans some memory area, no one passed value is taken, so this is an init that simple
clear memory, and it is not related to sub-tune initialization.

29

So, we try to look at 5003 first, as it is called less time.

5003 4C 20 50 JMP $5020

5020 A0 00 LDY #$00
5022 AD 09 50 LDA $5009
5025 CD 0A 50 CMP $500A
5028 F0 7D BEQ $50A7
502A 8D 0A 50 STA $500A
502D C9 00 CMP #$00
502F D0 0C BNE $503D

Here we see that location 5009 is compared to location 500A and if different the value is stored.
Maybe location 5009 is for sub-tune selection and 500A is the value of the current being played
tune. So we can made a little test: run vice of the player we build, then enter the monitor and write:

● > 5009 2
● x

Now we heart something: the notes seems the right one, only the velocity is very low compared
to the expected one. Maybe the IRQ frequency of call is not 1 per frame (multispeed tune), or it is
done by CIA programming.

So now it is the case to see the IRQ routine more carefully:

2DE5 78 SEI
2DE6 A9 08 LDA #$08
2DE8 8D 18 03 STA $0318 Vector: Not maskerable Interrupt (NMI)
2DEB A9 2F LDA #$2F
2DED 8D 19 03 STA $0319 Vector: Not maskerable Interrupt (NMI)
2DF0 A9 7F LDA #$7F
2DF2 8D 0D DC STA $DC0D Interrupt control register CIA #1
2DF5 A9 3F LDA #$3F
2DF7 8D 14 03 STA $0314 Vector: Hardware Interrupt (IRQ)
2DFA A9 2E LDA #$2E
2DFC 8D 15 03 STA $0315 Vector: Hardware Interrupt (IRQ)
2DFF A9 01 LDA #$01
2E01 8D 12 D0 STA $D012 Reading/Writing IRQ balance value
2E04 AD 11 D0 LDA $D011 VIC control register
2E07 29 7F AND #$7F
2E09 8D 11 D0 STA $D011 VIC control register
2E0C A9 01 LDA #$01
2E0E 8D 1A D0 STA $D01A IRQ mask register
2E11 A9 DF LDA #$DF
2E13 8D 76 0C STA $0C76 Normal space for BASIC programs
2E16 20 00 50 JSR $5000 Normal space for BASIC programs
2E19 58 CLI
2E1A 60 RTS

It uses raster interrupt, so we must analyze the irq routine even more:

2E3F 78 SEI
2E40 D8 CLD
2E41 AD 12 D0 LDA $D012 Reading/Writing IRQ balance value
2E44 C9 01 CMP #$01
2E46 D0 03 BNE $2E4B Normal space for BASIC programs
2E48 4C 6A 2E JMP $2E6A Normal space for BASIC programs
2E4B C9 41 CMP #$41
2E4D D0 03 BNE $2E52 Normal space for BASIC programs
2E4F 4C 6F 2E JMP $2E6F Normal space for BASIC programs
2E52 C9 6E CMP #$6E
2E54 D0 03 BNE $2E59 Normal space for BASIC programs
2E56 4C 74 2E JMP $2E74 Normal space for BASIC programs
2E59 C9 C3 CMP #$C3
2E5B D0 03 BNE $2E60 Normal space for BASIC programs
2E5D 4C 79 2E JMP $2E79 Normal space for BASIC programs
2E60 C9 D2 CMP #$D2
2E62 D0 03 BNE $2E67 Normal space for BASIC programs
2E64 4C 7E 2E JMP $2E7E Normal space for BASIC programs
2E67 4C A1 2E JMP $2EA1 Normal space for BASIC programs

2E6A A9 41 LDA #$41
2E6C 4C D2 2E JMP $2ED2 Normal space for BASIC programs
2E6F A9 6E LDA #$6E
2E71 4C D2 2E JMP $2ED2 Normal space for BASIC programs
2E74 A9 C3 LDA #$C3
2E76 4C D2 2E JMP $2ED2 Normal space for BASIC programs
2E79 A9 D2 LDA #$D2
2E7B 4C D2 2E JMP $2ED2 Normal space for BASIC programs

30

2ED0 A9 01 LDA #$01
2ED2 8D 12 D0 STA $D012 Reading/Writing IRQ balance value
2ED5 AD 11 D0 LDA $D011 VIC control register
2ED8 29 7F AND #$7F
2EDA 8D 11 D0 STA $D011 VIC control register
2EDD AD 19 D0 LDA $D019 Interrupt indicator register
2EE0 8D 19 D0 STA $D019 Interrupt indicator register

I do not report all the irq routine, but the point we need is that this is a multispeed tune and the
vic raster position interested are:

$01, $41, $6E, $C3, $D2

As, however, we see before that there is 4 irq call for restarting the music cycle, so maybe one
of this raster line is not actually used. In this case we just need to run vice again and set a break-
point to 2E3F that is the irq. Looking at the raster line when there is the break, we see:

tune #1: 001 065 110 196
tune #2: 001 065 110 196
tune #3: 001 065 110 196
tune #4: 001 065 110 196
tune #5: 001 065 110 196

So $D2 is not actually used.

Combining the above information, we could make our player as:

; player for trivia

 processor 6502

INIT = $5000
PLAY1 = $5003
PLAY2 = $5006

 .org 2049

 .byte $0b,$08,$e8,$03,$9e,"2061",0,0,0

 .org 2061
 ; a=number of tune to paly
 tax
 inx
 stx $5009 ; store subtune to play
 inx
 stx $500a

 jsr INIT

 sei
 lda #<raster
 sta $0314
 lda #>raster
 sta $0315
 LDA #$7F
 STA $DC0D ; Interrupt control register CIA #1
 LDA #$01
 STA $D012 ; Reading/Writing IRQ balance value
 LDA $D011 ; VIC control register
 AND #$7F
 STA $D011 ; VIC control register
 LDA #$01
 STA $D01A ; IRQ mask register
 cli
aaa: jmp aaa

 .org $2000

raster:
 lda $d012
 cmp #01
 bne next1
 jsr PLAY1 ; play first only one time over 4
 lda #$41
 sta $d012
 jmp skip
next1:
 cmp #$41

31

 bne next2
 lda #$6E
 sta $d012
 jmp skip
next2:
 cmp #$6E
 bne next3
 lda #$C3
 sta $d012
 jmp skip
next3:
 lda #$01
 sta $d012
skip
 jsr PLAY2
 dec $d019
 jmp $ea31

 .org $4FFE
 .incbin trimus.dat

SID file

Now we want to create the sid file of
the above sid tune that was in binary
format.

First of all we need to know the num-
ber of tunes that are present. Testing
with the value of 5009, we see that:

● #0 it plays a tune with some
strange sound at beginning and
after it play good sound, only if
this is not the first tune to be
played, otherwise it is with no
sound.

● #1..#4 they play good tune
● #5 a tune similar to previous
● >=#6 seems to play one of the

above tune in every case

That is why I put inx into the code
(skip tune 0).

So, now it simple: our player must be
compacted for saving space in memo-
ry, by move the code near 5000 where
there is the music data (e.g 4f95), and
the SYS basic call can be removed too.

After that, just run SIDedit and let him
create a standard sidplay header, then
fill the options like in the image (Real
C64 tune, init address, 4 subtunes).
Save the sid file and the task is fin-
ished.

Conclusion

Ripping is alway a way to make you enjoy a sid tune into your sidplayer, so I hope that looking
even at how this is done is a good way for new rippers to learn how to do that.

32

SIDin 12 end

33

