“Eclipse”

Vice snapshot with Vice palette

Made with the GIMP from a photo
and converted to C64 160x200
Multicolor Mode Bitmap
by Stefano Tognon
in 2005

“Other tiny”

I c e Free Software Group

QP IDin 9
version 1.00
14 January 2006

General Index

EIOTIALS ...ttt sttt ettt ettt b et s e s bt et e a e bt et s ae e b e e b e eaeeearee s 4
IN WS, ettt ettt e sttt et a e s bt e s bb e e e a e e e e s s e nraneee s 5
GOATACKET 2.12/2.17 .ottt ettt ettt et e st e e te e st e s ae e st e e beessbeessaesssaessseesassseessnsssaessnsseesnnns 5
POILY TTACKET 1.2, . ceeuiiiiieeieeiteeieet ettt ettt ettt s b e et e st esbe e s st e s s seessaesnseesstessseenssesnsasseesssesnns 5
SWITISTID ...ttt ettt b et e e bt et e s bt e st e et e s bt et e et e sbe e beea b e s bt e be et e saeeeabeesbaeean 6
HVSC 43ttt sttt e b et e s ae e s bt st e s st e bt et e s st e bt e b e sab e e eabeeeateenaneas 7
POy TTaCKeT COIMPO...ccccutiiriieiriieiiiieieiteeesieeesieeesteessaeeessseeessaeessseeessseesssseesssseessssesssseessssssseeessanns 7
XMMS-SIA-0.8.0DETATS. ... eeectiieieeiieeieeieeeie et ete et e saeesteesteesaeessbesseesssaesseesssessssesssaesssseesssssseesns 8
SWINISIDZ.....ceeeeeee ettt e e et e e e st e e e s s abte e e s s bbaeesssasbaeessssaeeessssaaessssssnsnnnnnns 8
The Sid COMPO V.ot ettt st e e st e e be e s sae e beesae e e beessbeensaesasssaaeesssseasssssaeeens 9
GOATACKET 2.2/2.22.....e oottt ettt ettt e e e st e e st e e s ae e e saba e e st e e sssseeessee e sssaaaaeeeenssssnaaessanes 9
SIAPIAYEA VO.3.... ettt ettt et s e st e e sabe e e te e st e e sab e e s bt e e ebaeeentaaaaeeeensabraaaeeeenns 10
HVSC 4.ttt ettt et e st e b e st e s bt e st e e bt e s abeebeesab e e e eabaeeesaneeas 10
XMPlay SID pIugin Deta 24b........cccciiieiiieeieeeiieeeteeree ettt ee e ae e s ae e s ae e e sate e s aaaeeaaeas 11
Nata (Stephan Parth) INTEIVIEW !couiiiiiiieieeeeee ettt ettt s e e 12
Tiny Sid COmMPO 256D ENLTIS......ccouiiriiiiiteeieeiieetee ettt et et s b e st e s bt e s st e s beesate e bt esaeesbeesaseeeeane 15
MyDbIOCK... ONE BIOCK......ciiitiiiiiiiieieeteeee ettt ettt ettt et e st e e e aba e e e sasaeas 15
L2116 (o) 1 a AN 1 | T RSP SUPR 19
CIUE GUIT FTOESTYIO...cueiiiiieiiieitetee ettt ettt ettt st e bt e st s be e s abeesbeesabessaessnnes 23
128 BYLE BIUES..... ettt ettt ettt ettt sttt e bt e st e bt e st e e bt e s bt e e s s nneeeeane 31
IMPETIial MAICR. ... ciiiiiiieiecteee ettt ettt et e s be e st e e beesabesbaessteesbaesssesnnnes 34
New Kid On The BIOCK......cccueiiiiiiiieeeeeee ettt ettt et st e e e e e e 37
REPEAL M.ttt ettt ettt e ettt e e st e e s e ab bt e e e e abt e e e s e anne e e s e nnnnsnnannneeee 42
ELECEIOMIC. .ttt ettt et e s bt e b et s bt et e b s st e bt s s e s st e beebesabeesenneesaneenane 45
Repetitive Tune BASIC...... ..ottt ettt e e sttt e s ettt e e s ssrte e e s sssaee s e s asssssnsnsaneeee 48
SPIAFOIMNI256.....c. ettt ettt e st e e s at e e b e e st e s be e s st e esbeesabesnbaenateenseensneeas 49
(@0 3Tl 113 10 TR USSR 51
Catweasel MKA (FOILOW)....ciuiiiieiierieeiteeieeit ettt et te ettt e st e e te e st e s beesasesseesatessseesnnsneas 52
| D) WA <) O OO PO USSP UUTRRRRORRRRRRPPRPRE 52
Hardware DUFTET.......co.coouiiiiieeeee ettt ettt st e sbae e 53
SOUNG...eteeeiieeeteeet ettt e et e e et e e st e e s tee e e b e e ssssaeesssaeessseessaeesssseesssseenssaaenssaeensseenns 53
= SO OO PO PO PO UPPPPPRUOPPPPRRRRPRRPRE 55
F N 43 T PR PSUPRR 56
INO BT . teeteeeteetteete ettt ettt et e e e et e st e et e e ssb e e seessbeessaesssaesseasssaenseesssaensseasenssaeeenssses 58
ANOTNET G558 1....uiiiiiieeiiieeieeecte ettt e et e e te e st e e staeesaaeessaeeessbaeensbaeeeeenssssaeaeeeennraaeeans 59
(070)2 el 115370 1 TS OO OO PTUUPRRRP 60

Hi, again.

In this number there are two technical news:

+ The use of .odt instead of .sxw as document. This means that more programs can read the
saved document (you may use OpenOffice 1.5 or 2.0 to open them)

+ Sources are colored based onto 6502 assembly syntax. This come out automatically by the
new copy/paste function of KWrite (the KDE editor in Linux that supports 6502 syntax): now
it is more simple to look at sources (maybe old numbers one day could be converted to
colored syntax too).

The articles are in some sort similar as in the previous number: the analysis of the 256 bytes en-
tries of Tiny Sid Compo and the further analysis of the MK4.

You should see in the 256 bytes entries lot of differents approach to the programming and |
think that you could have some nice idea in how to implement your one in the near to come Tiny
Sid Compo 2.

After some further testing | was able to made the card sound better then before and finally | find
the problems that remain to solve in my card.

You probably will find this article a little too much descriptive and based on hypothesis that
where reduced pages after pages, but this is the way | really used for investigate to the card and |
think that a simple: “the card did not work for 1=.. 2=.. 3=.. “ gives no idea of the work below this
conclusion.

Bye
S.T.

mailto:ice00@libero.it

Some various news of players, programs , competitions and hardwares:

Goattracker 2.12/2.18
Polly Tracker 1.2
SwinSID
JSIDPlay 0.3
HVSC 43
PollyTracker Compo
Xmms-sid-0.8.0beta15
SwinSID2
The Sid Compo V

+ Goattracker 2.2/2.22

+ Sidplay64 v0.3

+ HVSC 44
XMPlay SID plugin beta 24b

Released from August to November 2005 the new versions of Goattracker PC music tracker:

v2.12
Playroutine 1 has buffered SID-writes.
Octave 0 is not disabled in routines with sound FX (no matter what the relocator says...)
v2.13
Standard playroutine now both in unbuffered and buffered flavors.
v2.15
Added SHIFT+I for inverting current pattern selection / whole pattern.
v2.16
Fixed octave selection with / * for laptop keyboards.
Empty patterns referenced in the orderlist will be saved when saving a song.
Save dialog will reappear if writing the song/instrument/executable music failed.
Optimized handling of "packed rests" in the playroutines.
Added < > for instrument selection in instrument/table edit modes.
v2.17
Fixed initialization of instrument vibrato.
Playroutines size-optimized.
v2.18
Wavetable left side values changed. Delay is now $01-$0F and inaudible waveforms (regis-
ter values $00-$0F) have been mapped to table values $EO-$EF.

Download from: http://covertbitops.c64.org

Released on 20 August 2005 the new version of Polly Tracker:

v1.2
Added demo modules
Loader problems with some disk drives fixed. Some old drives may still require an Initialize
command (c=+M and type 'i') before loading dir

Download: http://www.kolumbus.fi/aleksieeben/pollytracker/pollytracker.zip

http://www.kolumbus.fi/aleksieeben/pollytracker/pollytracker.zip
http://covertbitops.c64.org/

Features of SwinSID (16-bit stereo hardware sound module for C64) :

« hardware compatibly with SID chip.
Software compatibly with SID (almost full)
3 main channels + 3 effect channels.
Wavetable synthesis
9 instruments stored in flash ROM
Programmable ADSR envelope generator.
Stereo reverb
High quality audio DAC - 16bit stereo.

« 16 bit mixing with interpolation
Sampling rate 31,25 Khz.

|
s
L]
|]
{]
L
|
L}
i
L
[}
]
L]
L}
i
[]
|
1
]

http://www.swinkels.tvtom.pl/swinsid/

JSIDPlay is SID-player based onto JaC64 and version 0.3 was released in September 2005:

Features
+ ADSR emulation including ADSR bug

Emulation of combined waveforms using same method as re-sid (sample-lookup)
Filter (LP/BP/HP)

Synchronization, ring modulation, etc.

+ Interrupts - IRQ (50 times per second) - soon support for other playspeeds
- Bank switching

PSID sample play (Galway Noice, and ordinary samples)

Supports .sid files (PSID, some RSIDs)

Better "timing" than ordinary JaC64 emulator (via sound-player)
Animation/Oscilloscope shows all SID voices, ADSR, frequency, etc while playing.

Look at http://www.dreamfabric.com/c64/jsidplay/ for the online version.

http://www.dreamfabric.com/c64/jsidplay/
http://www.swinkels.tvtom.pl/swinsid/

HVSC Update #43 was released on 21 September 2005 at www.hvsc.c64.org
After this update, the collection should contain 30,743 SID files!

This update features (all approximates):
+ 759 new SIDs
19 fixed/better rips
7 fixes of PlaySID/Sidplay1 specific SIDs
+ 24 repeats/bad rips eliminated
+ 500+ SID credit fixes
+ 600+ SID model/clock infos
24 tunes from /DEMOS/UNKNOWN/ identified :-)
34 tunes moved out of /DEMOS/ to their composers' directories
5 tunes moved out of /GAMES/ to their composers' directories

New features in HVSC v43:

Not much really groundbreaking this time, just a lot of SIDs for you to enjoy.
Murdock quit the HVSC team, good luck with your various other projects!

Main Composers featured in this update: (Artists marked with NEW are either completely new to
the HVSC or they get their own directory in this update)

4- Mat Abj ect

Artl ace Kjell Nordbg

Brizz Pi erre Conus (NEW
Cubehead Dat a

Jer oen Koops LDX#40 (NEW
Madaco (NEW Ozzy d dskool
Randy Kri st opher Roebuck
Sur geon XPO (ex- Goner)

Peet Har al d Rosenfel dt (NEW
Ranmbones Hei n Hol t

DRAX

PollyTracker Compo ran in August/September at http://www.kolumbus.fi/aleksieeben/pollytrack-
er/ with tunes made with the Polly Tracker editor. Final classification:

1 Pollyhunter Abaddon/Fairlight 98/110
2 Polly wants a tracker Randall 96.5/110
3 Supernoid E. Jones 87.5/110
4 Melo Hukka 70/110
5 Instant funk SDFG 65/110
6 Heavy metal rain Uneksija 65/110
7 Old domain Murdock/Tropyx 59/110
8 Bakakaj 57/110
9 Extreme!!l Murdock/Tropyx 41/110
10 Eight(lo) Aneurysm 39/110
11 My Commodore Bones 38/110
12 Trancer 38/110

http://www.kolumbus.fi/aleksieeben/pollytracker/
http://www.kolumbus.fi/aleksieeben/pollytracker/
http://www.hvsc.c64.org/

Released on 10 November 2005 the new version of the sid plugin for Xmms.
News in version 0.8 so far:

+ Complete re-write.

+ Support for multiple emulator libraries, including libSIDPlay 2.x! See instructions in "IN-
STALL" for more information.

+ HVSC song-length database support. XMMS-SID now supports the XSIDPLAY's song-
length database for tunes contained in HVSC collection. Requires downloading of a small
package (few hundred kB's), that contains the database. Read "README" for more info.

+ Minimum and maximum playtime settings. If enabled, song will be played for given time
minimum and maximum. This can be used as a fall-back method if song-length database
does not contain information for selected tune.

+ Improved file information dialog.

+ XMMS v1.2.5 introduced the "generic title format" that can be used to have same format ti-
tles for those plugins that support it. XMMS-SID is now one of them. There is also an over-
riding option, that enables you to have SID-specific titles. See the configuration dialog for
more information.

+ New sub-song control methods as selectable options. Does not require patching of XMMS
anymore, so they are easier to use. The XMMS patch used by older versions is supported
as well, though.

« Throw in a handful of bugdfixes (and possibly new bugs), stir powerfully. Finally, sprinkle
some minor improvements on the top and vo@al!

Download the stuff from: http://www.tnsp.org/xmms-sid.php

After the released of SwinSID specifications, now are available the specifications of the next
generation of the 16-bit stereo hardware sound module for C64:

+ Pin compatible with C64's SID socket.

- Up to 8 voice channels

« 2 channels of white and purple noise generators

- 8 waveform oscillators with effects or 8bit stereo sample playback on each channel.

+ Cyclic wave synthesis

+ 16 waveforms stored in flash ROM

+ Independent stereo volume control

+ Stereo phase control for surround effect.

+ 16 effects for waveform processing including flanger, chorus, ring modulation, phase modu-
lation and more.

+ 2internal LFO oscillators for effect automation.

« Hardware vibrato and tremolo effects.

+ One global filter with adjustable cut-off and resonance frequency.

+ High quality 16 bit stereo audio DAC

« 16 bit mixing with interpolation

« Sampling rate 31,25 KHz or 24 KHz

« Requires special software to work.

Look at http://www.swinkels.tvtom.pl/swinsid/swinsid2.htm

http://www.swinkels.tvtom.pl/swinsid/swinsid2.htm
http://www.tnsp.org/xmms-sid.php

©CO~NOUODWNEREPRF

The 5° sid compo organized by www.c64.sk was running from 8 October to 13 November 2005.

Here the final result:

Assatas Song M chal Hof fmann (Dat N gga Randall) Pol and 473
Bonbs Over Dresden Al exander Rotzsch (Fanta) Germany 473
Pick It Up Stell an Andersson (Dane) Sweden 449
I Have a Knot In My Superstring Vincent Merken (_V_) Belgium 448
Water |s Fun Kami | Wl ni kowski (Janmmer) Pol and 446
Val | ey of Dreans Denni s LeDoux (Phase 2/) Denmark 442
Sol ar I ncantation Raf al Kazi m erski (Asterion) Poland 436
Trainline Androneda Luca Carrafiello (Luca) Italy 430
Lenmi e Eat The Rastertinme Mar ci n Kubi ca (Booker) Pol and 424
Interstellarian Love Arman Behdad (Intensity) Gernany 423
Transyl vani an Wi ppi ng Lasse (rni (Cadaver) Finland 418
error 23 Ronny Engmann (Dal ezy) Ger many 415
In Deep Freeze Ti no Tai pal us (Abaddon) Finl and 411
N ghtbird Sascha Zeidl er (Linus) Gernany 402
PVS Hein Holt (Hein) Netherlands 389
Dazzy Levstovski Si egfri ed Rudzynski (Crone) Germany 381
I w toc. s. newbut it s.like sid Daniel M Gartke (Turtle) Germany 367
Future I npul se Stephan Parth (Nata) Italy 355
Spank! Jan Diabel ez Arnt Harries (Ranbones) Denmark 348
Expl ori ng New Worl ds Freedom I taly 339
wall of Fire Ri chard Bayliss (Richard) United Ki ngdom 339
Bossah Novah Mar ci n Romanowski (Si dder) Pol and 336
Hangman's Swi ng Maci ej Stankiew cz (Tronpkins) The Land of Po 309
dATA dI SCO Robert Dorfler (LordN kon) Gernany 280
Zi on Gerhard Flagge (G Fellow) Gernmany 273
Run From a Ghost Debor ah (Deconpraci d) Netherl ands 216
Poetry of a Lonely M nd Peter Bergstrand / Sweden 131

More info at http://www.c64.sk/sidcompo5-results.html

Released on 11, 21 December 2005 and 9 January 2006 the new versions of Goattracker:

v2.2

+ Added the speedtable for more precise control of vibrato, portamento and funktempo.

+ Added SHIFT+O to optimize the speedtable (remove unused entries).

+ Added SHIFT+R to convert between absolute/relative notes in the wavetable.

+ Added SHIFT+RETURN in pattern/instrument editor to convert old style portamento, vibra-
to and funktempo parameters to speedtable entries.

+ Song and instrument format modified for 4 tables. Old 3-table data will be loaded but not
saved anymore.

v2.21
+ Fixed NTSC CIA timer value for SID files.
- Shift+E will copy several effect rows if pattern has been marked.

v2.22
« Shift+N will also negate relative wavetable notes.
+ When converting oldstyle parameters to speedtable entries with SHIFT+RETURN, the
speedtable view will shift to the new entry if one was created.

Download from: http://covertbitops.c64.org

http://covertbitops.c64.org/
http://www.c64.sk/sidcompo5-results.html
http://www.c64.sk/

Released on 19 December 2005 the C64 program that can playback sid files from the HVSC
collection on a real c64:

+ Supports most CBM and CMD drive types and runs from the device currently selected. It is
recommended to use Action Replay/Retro Replay.

+ It can handle 196 files in the
playlist. A 1541 disk can only
handle 144 files. Other drive =FLARBE 1 BLOCK
types can handle more.

+ It detects if the file loaded is a
HVSC sid file. (only version 2
sid files)

« Two playlist functions: play
next tune in list or play tunes
at a random selection.

+ The program relocates itself
according to startPage (reloc-
StartPage) and pagelength
(relocPages) found in the sid 66, 0K.068.88
header. Possible relocation
area is: $0400-$d000

+ SID Tunes that doesnt use
timers (dc04/dc05) is played back in PAL or NTSC speed. If the video standard for the tune
is unknown, playback will be PAL speed.

Iz

Ok o g el i iy |
(o e e el
ZTEMDO=CME

L
H
E
H
IC
YF

B
ID
CH

=]
-]
[xla]
[T]
o
LN=]

Download from http://home.eunet.no/~ggallefo/

HVSC Update #44 was released on 24 December 2005 at www.hvsc.c64.org

After this update, the collection should contain 31,330 SID files!

This update features (all approximates):
+ 620 new SIDs
- 87 fixed/better rips
+ 4 fixes of PlaySID/Sidplay1 specific SIDs
« 4 repeats/bad rips eliminated
« 360 SID credit fixes
+ 150 SID model/clock infos
+ 9 tunes from /DEMOS/UNKNOWN/ identified :-)
+ 20 tunes moved out of /DEMOS/ to their composers' directories
+ 12 tunes moved out of /GAMES/ to their composers' directories

Main Composers featured in this update:

(Artists marked with NEW are either completely new to the HVSC or they get their own directory
in this update)

Tomas Danko DRAX J’rg Rosenstiel

10

http://www.hvsc.c64.org/
http://home.eunet.no/~ggallefo/

Akuma Pan (NEW) A-Man Richard Bayliss

Arman Behdad Bluez Booker
Drake Hein Holt Joan
Josstintimberlake (NEW) Linus MAC2
Madaco Maktone Mankeli

MRT (NEW) Rayden Shock (NEW)
Surgeon The Blue Ninja

XMP-SID is a plugin for XMPlay (http://www.un4seen.com/) for playing Commodore 64 SID mu-
sic, featuring:

high quality playback
cycle exact C64 emulation by libsidplay2 and reSID engine
PSID, RSID (+BASIC), Sidplayer (+stereo) and C64 executable files (PRG) loading
neat sound effects (configurable stereo separation, surround and fadeout)
SLDB (song-length database) support
advanced song length manipulation
STIL (SID Tune Information List) and BUGList comments displaying (also with archived
HVSC and files outside of HVSC directory)
+ Favourite Top 100 SIDs rank displaying
« PlaySID tags and Sidplayer comments displaying
- fast time-based seeking
configurable C64 emulation
configurable output
subsong switching
...plus tons of XMPlay's features

Version beta 24b was releaded on 6 january 2006 and can be downloaded at:
http://dhost.info/pieknyman/bin/xmp-sid.zip

11

http://dhost.info/pieknyman/bin/xmp-sid.zip
http://dhost.info/pieknyman/bin/xmp-sid.zip
http://dhost.info/pieknyman/bin/xmp-sid.zip
http://www.un4seen.com/

This time | go to interview a very young and active Italian composer: Nata. The interview was
achieved this month.

Hello, Nata,
could you give some words about you and your real life?

I’'m 22 years old and live in a small village called Naturns in Italy.

Currently | have no job, since | don’t know what | could do...

However, | learnt something that has to do with advertising, but unfortunately | am really fed up
with everything that has to do with that. :-)

You are very young, so why did you choose to compose music with an so old chip?

That'’s really a good question!

| simply had to recognize that | don't get happy me with today’s commercial music. | have always
liked raw synthesizer sounds, but until 2003 there was no way to start composing.

It was rather hard for me to compose something, since | had no idea how the SID chip works. But
now it's pretty easy and I'm always surprised what is possible to squeeze out from it.

SID music gives me everything what | need for my life — it's simply the BEST MUSIC around the
world.

Did you own some Commodore computers?

In 1989 my brother bought a Commodore 64, but he sold it quite soon for unknown reasons. | real-
ly was amazed about this little machine — it was the first computer | ever saw. But | was too young
(6 years old) to do something with it. Some years later | bought my own C64-Il, a 1541-Il disk drive
and a green Monitor.

Today | hardly use the disk drive since I'm a happy owner of an MMC64. This way | easily can test
my music, play games and listen to the HVSC. Unfortunately the BIOS has no save/load routines
and only a simple Sidplayer.

However, | don'’t think there are many ltalian sceners that have such a nice card, right?

I receive Iot of request from friends that want to try to compose music for the C64 about
what program to use, but with all the editors available the answers is not so simple. Have
you already find a good (for you) tool for composing? How did you make your choice?

At the moment | compose with GoatTracker 2.2 (Yes it's cross-composing) since it offers nearly
everything | need. Cadaver was very generous and implemented a lot of features that | requested
(thank you very much, Cadaver!!).

| know there are a lot of people that believe GT is bad or something between (since it does not
work on a real c64), but the truth is there is hardly any difference. You just have to use 8580 emu-
lation and reSID interpolation turned on. Even them most people don’t know that some of the to-
day’s best composers like Hein, Jammer and Randall use GT.

At the time | started to compose SID music | tested some c64 based editors (f.e. Voicetracker,
DMC, JCH...), but they were simply too hard for me — first choice was GoatTracker.

What are your future projects about the sid music that you had already planned to make for

12

you or your group?

Samar Productions (The Group I'm currently in) will release soon (I really hope that!) my first music
collection with about 8 tunes. It contains own songs, remixes and some covers.

Furthermore | did a nice Stereo-SID tune (Yes, 6 SID channels!!!). | don’t know what Samar plans
do with it, but | probably do not wait much longer for the release since | did it already in summer
2005.

One tune | will write for the HVSC-Crew (for the 10" anniversary), and another one is planned for
the next issue of the diskmag “Attitude”

For sure | will do again some 1:1 covers of some SIDs | like and fix filters for the 8580. :-)

Now some quick final (standard) questions:
Real machine vs emulator: what do you think of?

There isn’t much difference between an emulator and a real machine.

| quite often use Vice (CCS64 SID emulation is too inaccurate), since it offers so many features.
For example it allows me to run IDE64 fixed games from PC desktop, simulate a REU or switch
between different SID models.

But when playing games with friends, it makes much more fun to use the real thing.

6581 vs 8580 chip: any (musical) preference?

| prefer the 8580. It's a heavily improved SID, but unfortunately the most old game tunes sounds
very bad on it.

There are some tunes (Ghouls 'n' Ghosts — subtune 6, The Last Ninja — subtune 9 and some
more) around, which use some odd filter settings that aren’t audible on a new SID.

On the other hand the 8580 has very nice waveform combinations and filters that are accurate.

What is the worst sid that you compose and the better one?

Well, every tune in the “c64music\VARIOUS\M-R\Nata\Early _Tunes” directory is really worse (ex-
cept maybe “Nata is Back”. It's a bit experimental)

One of my favorites is “Stargate” (done in GoatTracker 2.0 Beta). It has quite a simple structure
but is finest trance-techno. As far | can remember it was THE FIRST song that has been released
with the improved GT system.

Another one is “Sentimentale Tc-Mix”. It's based on the “Sentimentale” and “Sentimentale 8580”
tunes. The techno part starts at 00.33 min. and is quite nice.

Who are your best sid authors?

Hmm, that’s really hard to answer, because there are so many good composers around. From the
classical game-composers | prefer Chris Huelbeck, Tim Follin, Martin Galway, Jeroen Tel and Rob
Hubbard. But | like music of scene musicians much more. The best ones are Cane, DOS, Jeff,
Jammer, Randall, Hein Holt, Reed, V , and Welle: Erdball / Honey.

What are the best sids ever in your opinion?

| like every song of Cane & DOS. My most favorite song of Cane is BRAINBALL-GAME”. Unfortu-

13

nately it isn’t in the HVSC (and probably it never will be), since it bugs after some minutes.
Ok, here a list of my FAVOURITE SIDs (in no particular order):

“Aurora” by PseudoGrafx
“‘Dancesque” by TBB

“Draxish” by Taki

“Smilygirl” by Chubrock

“Yes Comment” by Tomas Danko
“Psy Six” by _V_

“Timmy-Boy” by Tim von Straaten
“Nicht schlecht” by Stephan Schmid
,Dutch Breeze: Soft and Wet* by Reyn Ouwehand
“Selfemade.exe.amj” by AMJ
“Shades” by Chris Huelsbeck
“Foatee” by Jammer

“Higher State of SID” by Cyberbrain
“‘Reanim8ed” by The Syndrom
“Phronk” by Nebula

“Gliding” by Kristian Rastgen

and a lot more...
The probably BEST SIDs:

“Guerrilla War” by Jonathan Dunn

“Wizball” by Martin Galway

“The Last Ninja” by Ben Daglish & Anthony Lees
“Aerobics” by Bill Mauchly

“‘Rainbow Islands” by Jason Page

“‘R-type” by Chris Hulsbeck & Ramiro Vaca
“IK+” by Rob Hubbard

Finally, many thanks for the time you give for this interview, and now you can say any
things you want that the people will read from you!

First let me say that it really was a pleasure to answer your questions (hehe, my first interview!).
I’'m always happy to get a new issue of your mag — it's simply great!!!

Furthermore, I'm always glad the receive any mails from people out there (for any purpose):

<natac64 [sid] web.de>

Ok, my 4 biggest wishes:

- GoatTracker 64 [The C64 version of GT]

- Writing music for a C64 Zelda or Bomberman
- My own C64 music group

- SID music forever ;-)

14

In this article | go to show and comment the entries of Tiny Sid Compo for the 256b category.
This was the list of entries:

128 Byte Blues
Imperial March

Repetitive Tune BASIC
0. Splatform256

1. Myblock... One Block 6. New Kid On The Block
2. Random Ninja 7. Repeat Me

3. Crue Gurl Freestyle 8. Electronic

4, 9.

5. 1

This is the 256 bytes tune by Agemixer and it is a co-winner.

The player, after disable interrupt with SEI, simple starts to copy his code to zero page address-
es and then switches the execution on it. This is a big solution as now all the variables can be ac-
cessed from zero page and so using only one byte for the address!

The player now initializes all the sid voices using a table (initTable): voice 1 and 3 are rectangu-
lar and a filter is apply in voice 1.

As interrupt is disable, it synchronized the code with raster line $80.

Register y is used as an index with 32 values that always is incremented. According with his val-
ue (or better his bits values) some actions are taken.

Y Value Description

0..15 Read high/low voice 1 note frequency from actual
voice 1 index position (location $0A)

16..31 Make a frequency (high/low value affected) effect
in voice 1 using XOR and LSR operations onto Y

values become: 15, 14, 13, 12, 11, 10, 9, 8 and
they are double.

The drum of voice 2 is made according with the bit 2 of register y:
« bit 0/1 drum=on/off

So every 4 values of Y, drum state is inverted

Voice 3 uses a 4 bytes pattern table and each pattern has 8 notes in it.

It normally uses bits 3-4 as index for pattern table, but every 8 times that an index is increment-
ed, it goes to use bits 2-3 instead (it uses self modified code for this). At the same time, the
low/high byte of duty cycle of Voice 3 is changed.

The upper bits of register Y are also used for setting the high byte of filter cut-off frequency and
even this time every 8 times the code is self-modified to change his behavior.

Maybe you will find more behaviors by looking at the player more carefully...
.org $0801

.byte $0B, $08, $D5, $07, S9E

mailto:ice00@libero.it

.org $0806
.byte $32, $30, $35, $39,
; copy all the code to zeropage!
.org 2058
1ldy #500
sei
1dx #500
loop
dex
lda 50806,x
sta $00,x
cpx #5517
bne loop
jmp S0017
.org $0017
entry:
lda initTable-1,x
sta $D401,x
dex
bne entry
sync:
lda #9580
wait:
cmp SDO12
bne wait
tya
and #S1F
cmp #5510
bcc fregEff
ldx SO0A
lda vlLoFreq,x
sta $SD400
lda vl1HiFreq,x
sta $SD401
jmp cont
freqgEff:
eor #S0F
1sr
sta $D401
sta $D400

; byte format
; aaaa abcc
; b=0/1 drum on/off

cont:
tya
Pos2:
and
asl
asl
asl
asl
eor
sta

tya
and
1sr
1sr
eor
sta

tya
1sr
Pos3:
1sr
sta
ror
1sr
and
tax

#507

#s57F

$D416

#504

#581
$D40B

$D411
$D410

#3503

$00

7

’

initialize sid registers

; Reading/Writing IRQ balance value

Flag: 0=LOAD, 1=VERIFY
Voice 1: Frequency control (lo byte)

Voice 1: Frequency control (hi byte)

Voice 1: Frequency control (hi byte)
Voice 1: Frequency control (lo byte)

S07 <=> SOF
ASL <-> NOP

Filter cut frequency: hi byte

Voice 2: Control registers

LSR <-> NOP
Voice 3: Wave form pulsation amplitude (hi byte)
Voice 3: Wave form pulsation amplitude (lo byte)

limit the value to 0..3

16

lda
sta
1dx

Pos:

lda
tax
lda
sta
lda
sta

iny

and
bne

;0081

inc

Ind:

lda
and
bne

;0089

tax
lda
eor
sta
txa

skipInv3:
and
sta
bne

lda
eor
sta

lda
eor
sta

goSync:

jmp

pattern:

pattern,x
Pos+1
$0A

patl,x

v3LoFreq,x
SD40E
v3HiFreq,x
SD40F

#53F
goSync

Ind+1

#508
#50F
skipInv3

Pos3
#SA0
Pos3

#3507
SOA
goSync

Pos2+1
#508
Pos2+1

Pos2+2

#5E0
Pos2+2

sync

.byte <pat3, <patl
.byte <pat3, <pat2

v1LoFreq:

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

$00
$56
SFF
$7C
$00
$56
SFE
$20

v1lHiFreq:

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

$08
$05
$02
$04
$04
$05
$05
$07

v3LoFreq:

.byte
.byte
.byte
.byte
.byte
.byte
.byte

$00
SF6
$06
$5B
S$F9
SE9
$82

7

7

Voice 3:

Voice 3:

Frequency

control

Frequency control

this is a local index
let value to be 0..15

(lo byte)

(hi

byte)

invert for voice 3 every 8 times

LSR <->

NOP

let value to be 0..7

invert for voice 1 every 8 times

#3507 <-> #SOF

ASL <->

NOP

17

patl:
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

pat2:
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

pat3
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

$00
$03
$01
$01
$00
$00
$01
$01

$02
$05
$04
$03
$02
$03
$04
$03

$04
$07
$06
$05
$04
$05
$06
$06

v3HiFreq:

.byte
.byte
.byte
.byte
.byte
.byte
.byte

$10
$11
$13
$15
$17
S1A
$1c

initTable:

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

$20
SOA
$41
$09
SEQ
SFE
SFF
$09
$09
$08
$02
$35
$00
$00
$09
$09
$41
SFF
STF
$00
$00
SC1
S1F

wave low byte voice 1
wave high byte voice 1
control reg of voice 1

s attack/decay voice 1

sustain/release voice 1
freq low of voice 2
freq high of voice 2
wave low byte voice 2
wave high byte voice 2
control reg of voice 2

; attack/decay voice 2

sustain/release voice 2
freq low of voice 3
freq high of voice 3
wave low byte voice 3
wave high byte voice 3
control reg of voice 3

; attack/decay voice 3

sustain/release voice 3

filter freq low

filter freqg high

filter in voice 1

thief pass filter and volume max

18

This is the my 256 bytes entry. It tries to performs the end part of “Last Ninja Il — Central Park” in
the Chris Holm edition. From my analysis and a little Goattracker test tune, | saw that with 2 voices
I can have a good feeling about the generated music.

In particular | find those instruments values the ones that work better (without using very com-
plex effects):
voi ce 2:
$81 C8
$41 A8
$40 00

voi ce 1:
$41 00
$21 00
The first is a drum that gives the rhythm to the tune, while the second is the melody part.

After some experimentation | find that the best way to describe the notes was to use a unique
pattern where one byte represent both voice 1 and voice 2 values, using fix duration for note:

Value Description
Upper bit Play drum in voice 2 if it is 1
Lower 7 bits Play note in voice 1 if not zero, else continue
with previous note

This is possible as for the drum we use fixed frequency for the note to use and so only a flag is
needed for it.

At this point the problem is how to create the timbre of the instrument, as the decode of note
and pattern reading is very simple as there is a unique pattern and so a unique pointer for all the
voices.

The main idea used here is to have some synchronization loop with Vic Il raster low position 0
(that will come double in a frame) and to perform some instrument steps if it is necessary, but after
a fixed number of synchronization, we loop to begin for managing a new note.

So the interrupt is disable (SEI instruction) and the fakeSyncro routine is used with the passed
number of time to use it. fakeSyncro uses kernel delay to skip raster position 0 and so it may be
called with the number of synchronizations to use as needed.

This table shows so the operations in details:

Raster 0 Operations

number of Ticks
0 read current note/duration

execute voice 2 (if it is the case)

execute voice 1 (if it is the case)

1 Put $21 as waveform for voice 1

Change high frequency of voice 2

19

Raster 0 Operations
number of Ticks

2 Change high frequency of voice 2

9 Voice 2 hardrestart (this is needed, otherwise
no sound is produced)

Restart from beginning

At his point the tune was ready, but | want to make some special effects in it. One was to add a
fade out, but then | migrate to the one that give the title to the tune: random changes into the tune
(the random number is taken from voice 3 output)

This was simple to achieve: as soon as a complete pattern is sounded, the wave to use for
voice 1 timbre (the second value of table) is randomly taken from $21 and $11 (a self modified
code is even used). This gives some kind of life to the music.

If you want to see how fakeSyncro works, just uncomment the “inc 53280” into the code: you will
see a very nice graphical effects!!!!

Here the code:

; Random N nj a
; 256b SID nusic

; This is a remx of the ending

; "Last Ninja Il - Central Park" of Matt Gey
; in the rem x version of Chris Holm

; this tune use voice 1 and 2 for nusic
; voice 3 is used for random nunber that change voice 1
; this make this tune quite different at each mnute
I listen to it for hours..... due to LN Il magic sound
processor 6502
org 2049

.byte $0b, $08, $e8, $03, $9e, "2061", 0,0, 0

.org 2061
point = $84 ; +$85 pointer
patt = $44 ; 4B index to current pattern
RDELAY = 9 ; reload del ay

not e decl aration

RURREY

OO WNE

;voice 2 should be |ike:

;1 $81 C8

;$41 A8

; $40 00

; in goattracker format for the best drumeffect.

; voice 1 is

; $41 00

; $21 00

; in goattracker format

;stx patt+7
;i nx

;stx del ay ; initial delay to virtually O
I da #$8F ; voice 3 off
sta $D418 ; vol ume max

20

sei ; did not allow interrupt

;lda #<irq
;sta $0314
;lda #>irq
;sta $0315
;cli
jrts
don't use IRQ as too many code is needed for nmeking the dinamc
; wavef orm change at each tick
; this is best achieved with fake interrupt syncronizatin code
virq:
;dec del ay
;beq nusic
imp o oexit
reset Pat :
lda $D41B ; "randont byte
| sr ; "randomt bit
lda #3$11 ; triangular waveform
bcs ski pAdd
adc #3$10 ; $21 waveform
ski pAdd:
sta pos+l ; self nodified code
ldx #0 ; reset pattern
stx patt
musi c:
Idy patt ; load pattern index of voices
cpy #64
beq resetPat
next | nd:
iny ; increment index (so pattern nust start one position before)
sty patt

; set pattern address
lda #<(pat-1)
sta point
lda #>(pat-1)
sta point+1

lda (point),y ; read current note/duration
bm voice2_note
bpl newNote

voi ce2_note:

ldx #157
stx $d400+7
ldx #69
stx $d401+7
;ldx #$08
;stx $D403+7 ; wave high
ldx #$81
stx $D404+7 . control voice 2
stx $D404+14 ; control voice 3 (random nunber)
;ldx #$00 ; we can skip this
;stx $D405+7 ; AD is already O
ldx #$b8 ;e8
stx $D406+7 : SR voice 2
newNot e:
and #3$0F ; take only Il ow nibble
beq ski pNew
tay
I da #00 ; reset gate
sta $D404

put right frequency
lda freqLo-1,y

sta $D400 ; low voice 1 frequency
lda freqHi -1,y
sta $D401 ; high voice 1 frequency
sta $D401+14 ; put even sone frequency for the random nunber
lda #%$41
sta $D404 ; voice 1 control
lda #3$76
sta $D405 ; AD voice 1
sta $D402 ; wave | ow
lda #3$9B
sta $D406 ; SRvoice 1
ski pNew:

21

I dx
jsr
pos:

| da
sta

;1 dx
; St X
I dx
st x

;1 da
;sta

| dx
jsr
;1 dx
; St x
I dx
st x
;1 da
;sta

| dx
jsr

| da
sta

jnp

#1
f akeSyncro

#$21
$D404

#196 ; skip this for saving bytes: values is not so different
$d400+7

#9

$d401+7 ; change only high frequency of voice 2

#$41
$D404+7

#2
f akeSyncro

#113 ; skip this for saving bytes: values is not so different
$d400+7

#2

$d401+7 ; change only high frequency of voice 2

#3$40

$D404+7

#RDELAY

f akeSyncro

#$09 ; voice 2 hard restart
$D404+7

nusi ¢

AITRQIlik
we use a
for |eave

e syncroni zation
call to KERNAL del ay
the (low) raster 0

f akeSyncro:
;inc
| da
bne
jsr
dex
bne
rts

freglLo:
.byte 10
.byte 162
.byte 103
.byte 137
.byte 237
.byte 20

freqHi:
.byte 13
.byte 14
.byte 17
.byte 19
.byte 21
.byte 26

patterns

$80=dr um
; low byte=
pat:

.byte $80

.byte $80

.byte $80

.byte $80

.byte $80
.byte $80
.byte $80
.byte $80

53280 ; this give sone very good effect

$0012

fakeSyncro ; sync with O of D012 (can cone double in a frane)
$eeb3 ; sonme cycle of delay for skipping d012 to 0

f akeSyncro

RURREY

RERREE

for voice 2
note for voice 1

+E4,
+D4,
+E4,
+M4,

D4, $80, $80+G3, 0, $80+E4, 0
G3, $80, $80+E4, 0, $80+D4, O
D4, $80, $80+A3, 0, $80+E4, 0
$80+A3, $80, $80+E4, 0, $80+D4, $80

cocoo

+E4,
+C4,
+E4,
+C4,

C4, $80, $80+A3, 0, $80+E4, O
A3, $80, $80+E4, 0, $80+C4, O
C4, $80, $80+G3, 0, $80+E4, O
$80+G3, $80, $80+E4, 0, $80+C4, $80

cocoo

22

This is the 256 bytes version of the tune by “A Life in Hell”. Read the previous SIDin number for
the review of the 512 bytes version, as this is the same base player.

As in the previous number, the code colored in blue is the one not used into the tune (the player
has some compilation flag for adding/removing some features).

| just give you some hint about the code:

- Interrupt is set by loading the tune in position $326 where is the IRQ routine called by the
Kernal, however, then IRQ is disable with SEI and code is synchronized with raster line $80

« Some of the data about the tune is copied to zeropage and this allow to read it with 8bits
address. This is a good technique for saving space.

« The rest of the player is about as the 512b version, but here it is used a random way for
generating the notes for save space.

The code:

; Tiny Player v0.5

; Player by A Life in Hell

; Additional optimzations by Jockstrap and Sorex
; Music by ALife in Hell

; (c) 2004-2005, Warriors of the Wastel and

; chords -1
;o wave -1 -- both of these are to save nenory, since 0 is silence!

$d400 ; voice
$d401 ; voice 0 frequency Hi
$d402 ; voice O pulse width LO

sid_vO0_freqg_lo 0
0
0
$d403 ; voice O pulse width H (only bits
0
0
0
|

sid_vO0_freq_hi
sid_vO0_pwidth_|o
sid_vO_pwi dt h_hi
sid_vO_ctrl
sid_v0_ad
sid_v0_sr
sid_ctrl

frequency LO

$d404 ; voice control register
$d405 ; Voice attack / decay
$d406 ; Vvoice sustain / rel ease
$d418 ; general control register

susFrames = 4

exe =1

| ot sOf Zpage = 1
useTranspose = 0
tranposeUp = 0

def aul t Speed = 5
gateEnd = 3
speedEor = 8
useSpeedEor = 1
stupi dl yConmpact = 1
rlines =0
defaul t Sr = $e9
def aul t WVave = $21
accurateChords = 0

noFilter =
filterSweep
filterReset

e

usePwm = 0

useReal Pul se = 0

pwrM n = 3

pwrivax = 6

pwnBpeed = 3 ; nust be (n”2)-1111!

useRestart = 0
useOrderList =0
doGat eReset =1
useRandonmNot es
randonNot esAnd

~ P

chordEor =1
chor dEor Byte =
chordEorVal = 2

[

.if lotsOf Zpage = 0
zpl=$fe
zp2=%$fc
chordPtr=$fb

23

.el se

tenpZpl=%fe
t enpzZp2=%$f c
t enpZp3=%f a
cur Dur .synmbol force8
zpl .synbol force8
zp2 .synbol force8
chordPtr .synbol force8
pos .synmbol force8
dur Tabl e .synbol force8
or der Pos .synbol force8
fltr .synmbol force8
wave .symbol force8
chords .synmbol force8
.endi f
Lif exe =1
;¥ = $7ae7
thanks to steve judd's xip for the tip on starting snally :)
unfortunatly, it tends to generate files which are
; larger than the original for this size - i've never had it
; generate smaller... tho often the sane size, indicating that
you'll win by the depack routine size at 1k :-p
*=$326
.word entry ; BSQUT vect or
.byte $ed, $f 6 ; STOP vector
entry
; sei
. el se
* = $1000
jmp initPlayer
jmp playPl ayer Al |l
.endi f
initPlayer
.if stupidlyConpact =0
| da #0
| dy #23+128
yl oopl
sta $d400-128,y
dey
bm vyl oopl
.endi f

; setup filter
.if noFilter = 0

| da #$1f

sta sid_ctrl
Lif filterReset = 0

| da #$f4
sta $d417
.endi f
| da #%$40
sta $d416
.el se
.if stupidl yConpact = 0
| da #3$0f
sta $d418
.endi f
.endif

. set channel #1 adsr now
.if stupidlyConpact = 0 || useRestart =0
| da #def aul t Sr
sta sid_vO_sr
sta sid_vO_sr+14
sta sid_v0_sr+7
.endi f
; this should always be on if you're not using PWM i guess...
| da #$8
sta sid_vO_pwi dt h_hi +7
.if usePwm= 0
Lif defaul tVave = $41
sta si d_vO_pwi dt h_hi
sta si d_vO_pwi dt h_hi +7
.endi f
.endi f
.if lotsOfZpage = 0
I sr
sta zp2
| da #<pat 1
sta zpl
| da #>patl
sta zpl+l
.el se
| dx #(dataEnd-dataStart)+1
zpcl oop I da dataStart-1, x
sta $01, x
dex
bne zpcl oop

24

.endi f

.if exe =0
return frominit!
rts
pl ayPl ayer Al |
t ax
.el se
pl ayPl ayer Al |
Lif rlines =1
inc $d020
.endi f
I dx #0
.endif

.if useOrderList =1
| da #<orderlListl
sta ol sm1
.el se
stx patsm+l
.endi f
jsr playPlayer

Lif filterSweep = 1
inc fltr
lda fltr
sta $d416

.endi f

.if usePwm =1
; do pul se wi dth now
why now? why not? just not
at start, so we can save one
; byte with tax @)
inc zp2+1
| da zp2+1
and #pwrSpeed
bne nopul sei nc
I dx zp2
inxbit inx
cpx #pwrivax
.if useReal Pulse =1
beq pl sdown

cpx #pwrM n ; possible saving: just reset pulse in
beq pl sup ; pl sdown instead of flipping direction!
.el se
bne ddd
I dx #pwrM n
.endi f
ddd stx sid_vO_pwi dt h_hi
stx sid_vO_pw dth_hi +14
stx zp2
nopul sei nc
.endi f

; now finish the channel s!
I dx #7
.if useOrderList =1
| da #<orderList2
sta ol sm+l
.el se
| da #<(pat 2- pat 1)
sta patsm+l
.endi f
jsr playPl ayer

I dx #14
.if noFilter = 1 & stupidlyConpact = 1
save two bytes by doing this each frane... heh!
stx sid_ctrl
.endi f
.if useOrderList =1
| da #<orderList3
sta ol smtl

.el se
| da #<(pat 3- pat 1)
sta patsm+l

.endi f

if exe =1

; don't fall through on exe - instead |oopy!
jsr playPlayer
.if rlines =1

dec $d020
.endi f

| da #80

cnp $d012

bne *-3

beq pl ayPl ayer Al |
.endi f

25

pl ayPl ayer
; check if we need to play a new note

I dy pos, x

| da dur Tabl e, x

beq newNot e

.if useRestart =1
; to turn off hard restart on channel #1
;uncomment this!
; cpx #0
; beq norestartchan

; update channel #1

cnp #2

beq restart

bcc restart cbranch if a==1
.endi f

cpx #7
.if doGateReset = 0

bne owt 2
.el se

beq not Clupd
nor estartchan
cnp #3
bne noGat eReset
; bne owt 2
I da #((def aul t ave) &$f e)
sta sid_vO_ctrl,x
noGat eReset
Pjnp owt 2
; not restarting - ensure filter is set
Lif filterReset =1

cpx #0
bne nofiltr4
| da #$f4
sta $d417
nofiltr4
.endi f
bne owt 2 ;branch al ways
.endi f
not Clupd
.if accurateChords = 1
chp #3
bne ng2
| da #$fe
sta gater+1
ng2
.endi f
I'dy chordPtr
I da chords-1,y
bne al | GoodC
lda (chords-1)+1,y
tay
I da chords-1,y
al | GoodC
.if useTranspose =1
sty tenmpzZp3
jsr transpose
I dy tenpZp3
.endi f

sta sid_v0_freqg_hi,x
| da wave-1,y

.if accurateChords = 1

gater and #$f f

.endi f
sta sid_vO0 ctrl,x
iny
sty chordPtr

ow 2

ot herwi se, update the player and retrun
dec durTabl e, x
rts

.if useReal Pulse =1
; flip pulse off

pl sup
| da #%$e8
sta inxbit
bne ddd

pl sdown
| da #$ca
sta inxbit
bne ddd

.endi f

.if useRestart =1
restart2

ylda (zpl),y

; beq owt 2

;1 da #$ff

sta sid_vO_freq_hi, x

| da #defaul t Sr

sta sid_v0_sr, x
Lif filterReset =1

cpx #0

bne nofiltr3

| da #$0

sta $d417
nofiltr3
.endi f

| da #%$81

savenor e
sta
bne

sid_vO0_ctrl,x
ow 2 ;branch al ways
restart

lda (zpl),y

beq owt 2

| da #$ff

bcc restart?2

;sta sid_vO_sr, x

| da #$08

;sta sid_vO_ctrl, x

il da #$f f

bne savenore ;branch al ways
.endi f

newNot e
get current
Ida (zpl),y

byt e

beq out

cnp #$ff
bne valid
.if useOrderList =1
| dy orderPos, x
iny
sty orderPos, x
I da orderListl,y
bpl noreset
I dy #0
beq xxx
nor eset
sta
tay
bpl newNot e

XXX
ol sm
;branch al ways
pos, X

; branch al ways
.el se

;i f durTabl e==2

then carry is set

i f durTabl e==1,

this gets executed either twice or three tines for one in every

ei ght | oops

.if chordEor =1
| da chor ds+chor dEor Byt e
eor #chor dEor Va
sta chords+chor dEor Byt e

.endi f

| da #0

sta pos, x

tay

bpl newNot e

patsm

.endi f
valid
cpx #7
bne not Channel 2
channel 2 is the hard one
.if accurateChords = 1
tay
I da chords-1,y
sta sid_v0_freqg_hi,x
| da wave-1,y
sta sid_vO_ctrl, x
iny
sty chordPtr
| da #$ff
sta gater+1

actual | y!

.el se

sta chordPtr
.endif

bne out ; branch al ways
not Channel 2
.if useTranspose =1

php

j sr transpose

plp

27

then carry is cleared

;Set to different (non-zero) values to get various restart types

.endi f
bcc clout ;branch if x<7
pha
.if useTranspose = 0
and #$f0
.el se
asl
asl
asl
asl
.endi f
sta sid_vO_freq_lo, x ; freq low
pla
.if useTranspose = 0
and #$0f
.el se
I sr
I sr
I sr
| sr
.endi f
clout
sta sid_vO_freq_hi, x
.if useRandonmNotes = 1
I da $d41b
and #randonmNot esAnd
sta pos
;inc pos, x
.endi f
| da #def aul t Wave
sta sid_vO0_ctrl,x
out
| da curDur, x
sta durTabl e, x
.if useSpeedEor =1
eor #speedEor
sta curDur, X
.endi f
;. i f useRandomNotes = 0
inc pos, x
;.endif
rts

.if useTranspose =1
transpose
sta tenpZpl
| da #0
sta tenpZp2
sta tenmpZp2+1
.if tranposeUp =1
; magic number :) 137 adds :")
| dy #136 ; actually 135.6112760779898
.el se
I dy #242 ; actually 241.6
.endi f
transposelLoop
| da tenpZp2
clc
adc tenpZpl
sta tenpZp2
| da tenpZp2+1
adc #0
sta tenpZp2+1
dey
bne transposelLoop
.if tranposeUp =1
; take the high byte and
shift right for eight bits!
asl
.endi f
rts
.endi f

.if useOrderList =1

orderListl
.byte patl-patl
.byte patl-patl
.byte pat5-patl
.byte pat5-patl
.byte pat7-patl
.byte pat7-patl
.byte pat7-patl
.byte pat7-patl
. byte pat6-patl
.byte pat6-patl
.byte pat6-patl
.byte pat6-patl
.byte $ff

28

orderList2
.byte pat2-patl
.byte pat2-patl
.byte pat4-patl
.byte pat4-patl

.byte $ff
orderList3
.byte pat3-patl
.byte $ff
.endi f
patl

.if useOrderList =0
.byte $00, $0f, $14, $22, $24, $28, $le, $18, $ff
.el se
.byte $28, $00, $14, $28, $14, $24, $22, $14, $28, $00, $0f, $14, $28, $00, $0f, $14,
.endi f
pat 2
.if useOrderList =0
.byte $0b, $00, $01, $01, $0b, $06, $01, $01, S$ff

.el se
.byte $14, $00, $01, $01, $14, $06, $01, $01
.byte $14, $00, $14, $01, $14, $06, $01, $06, $ff
.endi f
pat3

.if useOrderList =0
.byte $05, $00, $05, $0a, $05, $e8, $05, $68, $ff
.el se
.if useTranspose =1
.byte $50, $00, $50, $a0, $50, $8e, $50, $86, $50, $77, $50, $00, $6a, $00, $6a, $00,

.el se

.byte $05, $00, $05, $0a, $05, $e8, $05, $68, $05, $77, $05, $00, $a6, $00, $a6, $00,
.endi f
.endi f
.if useOrderList =1
pat 4

.byte $12, $00, $0e, $0e, $12, $06, $0e, $0e

.byte $12, $00, $12, $0e, $12, $06, $0e, $0e, $ff
pat5s

.byte $14, $24, $22, $24, $22, $00, $00, $14, $28, $00, $0f, $14, $0f, $14, $le, $le,
pat 6

.byte $0f, $14, $16, $18, $14, $le, $1b, $le, $1b, $0f, $1b, $0d, $1b, $0b, $1b, $0a,
pat 7

.byte $28, $le, $18, $14, $00, $16, $18, $00, $1b, $le, $1b, $le, $1b, $le, $1b, $28,
.endi f
dataStart

why sepecated? beacuse we can nove all of this up to put the patterns into
zpage
.if lotsOfZpage = 1
eop=*
*=$02
.of fs eop-$02

.byte $21, $21, $21, $00, $01 ; 6
.byte $ff, $41, $40, $80, $40, $80
.if useOrderList =1
; repeat fromlast ins
.byte $00, $0b
.byte $21, $21, $21, $00, $0e T 6
.byte $81, $41, $41, $41, $11, $08, $00, $19
.endi f
chords
.byte $28, $2f, $3c, $00, $01 ; 6
.byte $81, $0b, $0b, $b5, $0a, $ff
.if useOrderList =1
; repeat fromlast ins - chords is actually used
; for looping, so you shouldn't really do this. but
; because i wrote the player, i know what's going to happen - for
everyone else, i just can't reconmend this. use |ess notes or
sonething :).
.byte $00, $0b
.byte $28, $2d, $3c, $00, $0e ; $11
.byte $ff, $08, $06, $03, $09, $09, $00, $19
.endi f

.endif

.if lotsOfZpage = 0

curbDur .byte defaul t Speed
pos .byte patl-patl
dur Tabl e . byte $00
orderPos . byte O

fltr .byte $40

free2 .byte 0

29

$f f

$f f
$f f

$f f
$f f
$f

free3 .byte 0

. byte def aul t Speed
.byte pat2-patl

.byte
. byte
. byte
.byte
.byte
.byte

[eNeNoNoNoNa]

ef aul t Speed, pat 3-pat1,0,0 ;,0,0,0
.el se

fltr .byte $40

curbDur . byte default Speed

pos .byte patl-patl

dur Tabl e .byte $00

order Pos .byte 0

zpl .byte <pat1l

zplhi .byte >pat1l

chordPtr .byte O

. byte defaul t Speed ; curdur?2

.byte pat2-patl ; pos2

.byte O ; dur Tabl e2

.byte 0 ; orderpos2
zp2 .byte 4 ;zZp2
.byte 0 ; zp2hi
.byte 0 ; chordPtrHi
. byte defaul t Speed, pat 3-pat1,0,0 ;,0,0,0
zpagelLen=*- $02

*=eop+zpagelLen
.offs O
.endi f

dat aEnd

As you can see by reading the note that is within this tune (that | copy below), freakyDNA has try
to make a tune that read his notes from the C64 memory and so has a very hight compact ratio
(the code is only 128 bytes) and that it is influenced by user actions.

But here the description:

When I first had a look at the 512b/1k Tiny SID compo, I thought it'd be
a great way to get back into doing some assembly language on the C=64
(which I haven't done for a long time). I spent a fair amount of time
thinking of the best way to reduce the size and decided that one of the
best ways would be to really challenge myself and to squeeze some music
out of 128 bytes just for fun.

I really wanted to feature the nature of the C=64, so I thought about
several ways to best store the note and instrument data. After a few
sketches, I found that I seemed to be wasting a lot of space trying to
store both the note and duration data, so I decided that the best way
would be to derrive the notes and durations directly from the C=64 memory
and just index into a basic blues scale and generate some music. It took
a bit of playing around with techniques, but I found that utilizing
individual bits to step up or down within the scale generated the most
musical results. Somewhat of a 1-bit DPCM technique except for successive
music notes in a scale instead of successive samples.

So, the code basically cycles through the bits which are displayed in the
screen memory and uses them to generate the notes. The note duration is
set by combining the jiffy clock and the cursor countdown to give some
flex to the tempo. I found that staying in one note sequence was boring,
so I made it step through two blues scales. I tried to squeeze out more
space by removing the low byte of the frequency but found that it either
made the music too out of tune or too high in pitch. I also attempted to
add a second voice, but ran out of space.

I really liked the idea of adding something to watch while it's playing, so
the colours change as it is reading through the bytes of screen memory.
Rolling the bits of screen memory had the additional benefit that the bytes
would return to their original form after passing over them eight times
when the sequence repeats. Since the tempo is partially derrived from the
cursor blink, it is possible to change the tempo while moving the cursor.
The sequence of notes can also be modified by typing in the upper portion
of the screen.

But now it's time to comment the code:

+ The IRQ is set with the BASIC poke instruction like we see in SIDin #7 that is very compact
for having the IRQ located at $0831

+ The two blues scales are defined into 4 frequencies tables freq_table xx (low/high for each
scale)

« Uses triangular waveform and set only Sustain/Release of note

| find this tune very interesting for 128 bytes and | think that maybe using all the space allowed it
will be possible to made this kind of player to play other beautiful sound.

31

Cross-conpi | ed usi ng ACME assenbl er and Rel aunch64

April 9, 2005
"128 Byte Blues" SID - freakyDNA

Not es:

- try noving cursor around to change tenpo
- type letters at top of screen to change notes

A A 1 1 A B Y B e |
Il I Y B N | I B S B R B B B B |
11 1 I B A B B B B B B B A | 1
I I Y B B | I B Y B | Il
Il I B D Y B B R B Y B B N R I
1 i Il 11
; I B Y B B B B R B B |
; I B D B D B B B B S
; I B D B Y B B Y B B |
; 11 I I N e |
: w o w w f r e a k y d n a c o m
list of defines for SID
Isrc "../../acme/ ACME_Li b/ sid/sid.a"
; conpile to
I'to "fdnal28b. prg"
not e_count = $02 ; $0
note_val = $fd
cursor_blink = $cd ;o 1-14
note_tabl e = $400 ; index into screen space
col our_nem = $D800 ; colour nenory
jiffy = $a2 ; 1/ 60 counter
debug_flag = 0 ; no debuggin’
* = $0801
I'word $080c
Ibyte $05, $00
Ibyte $97
tx "789, 8" ; POKE 789,8 ;set interrupt to $0831
Ibyte $0, $0, $0 ; as seen in xxlarge in SIDn #7
taggit: Ttx "fDNA"
freq_table_hi:
18 16, 19, 22, 25, 29, 33, 39, 44
freq_table_lo:
18 195, 239, 96, 30, 223, 135, 223, 193
Co 64 | C4 | 4291 | 16 | 195 |
o 67 | D#- 4 | 5103 | 19 | 239 |
o 69 | F-4 | 5728 | 22 | 96 |
| 71 | G4 | 6430 | 25 | 30 |
| 74 | A#-4 | 7647 | 29 | 223 |
| 80 | C5 | 8583 | 33 | 135 |
| 83 | D#- 5 | 10207 | 39 | 223 |
Co 85 | F-5 | 11457 | 44 | 193 |
freq_tabl e_hi2:
'8 22, 26, 29, 31, 33, 44, 59, 53
freq_table_|l 02:
18 96, 156, 223, 165, 135, 193, 190
; top note is a bit out of tune, but allows for tag above
| 69 | F-4 | 5728 | 22 | 96 |
o 72 | G#- 4 | 6812 | 26 | 156 |
N 74 | A#-4 | 7647 | 29 | 223 |
N 75 | B-4 | 8101 | 31 | 165 |
N 80 | C5 | 8583 | 33 | 135 |
Co 85 | F-5 | 11457 | 44 | 193 |
Co 90 | A#-5 | 15294 | 59 | 190 |
. start is at $0831
nmus_irq:
lif debug_flag=1 { inc $d020 }
| da #$1F
sta SI D_MODE_VOL ; set volunme to max and use LP filter
lda jiffy ; get 1/60 tick
and cursor _blink ; conbine with cursor countdown for tenpo nodul ation
bne exit

32

add_| da:

rotate_note:

not e_down:

not e_up:

do_not e:

do_key1:

do_freq:

set _adsr:

turn_on_note:

exit:

| da

t ax
inc

cle
| da
rol
adc
sta
sta

and
bne

dec
bvc

inc
| da
bpl
and

eor
bvc

and

t ax
| da
sta
| da
sta

| dy
sty

I dy
sty

not e_count

not e_count

note_table, x

clear any garbage in carry reg
get the current note fromthe table
rotate left, carry reg top bit

#0 ; add carry to low bit

note_table, x
col our_nmem Xx

#01 ; check if

not e_up

not e_val ; one-bit

do_not e

not e_val

not e_val
do_key1l
#07
#16
do_freq

restore rotated note
change col ours too

low bit is one
go up or down in pitch based on rotated |ow bit

not e i ndex down
save a byte over jnp

change key if hal fway through sequence

#07 ; index into second freq table

freq_table_hi, x ;o stuff
SID_V1_F_H

freq_table_lo, x
SID_V1_F_LO

#$F1
SIDVI_S R

#$15
SID V1_C REG

lif debug_flag=1 { dec $d020 }

jmp $ea3l ;oexit

low and high freq val ues

loud with quick rel ease

set wave and turn on note

interrupt

33

This is a cover of Star Wars theme done by Tapio Viitanen. Here | present a reverse engineer-
ing source code for following better the player.

The player use the SEI instruction to disable the interrupt. Synchronization is so done using
raster line $64.
The table sidTable is used for putting all the sid values to registers each time (and at be-
ginning it contains the initial values).
Voice 1 and 2 use the same duration table (length) and notes table (note). A note is
packed with:

« high nibble = note value of voice 1

« low nibble = note value of voice 2
Voice 3 uses a unique table (pat3) of values:

+ high nibble = note value of voice 3

+ low nibble = note duration of voice 3
All notes are decoded using the common decodeFreq routine.
On voice 3 it is made an effect that affect the control value to use for the voice each time
the pattern is over. This made the tune more various like you can heart.

The code:

DUR
DUR3
IPAT
IPAT3

.org $0801

.byte
.byte
.byte
.byte
.byte
.byte
.byte

$0B, $08

$00, $00

$9E, $32, $30
$36, $31

$00

$00

$00

.org $080D
sei
lda #500
sta IPAT
sta IPAT3
sta DUR3

loopExt:

jsr sync

ldx #518

loopIT

lda sidTable,x

sta $D400,x ; Voice 1: Frequency control (lo byte)
dex

bpl loopIT

dec DUR ; decrement note duration
bne goLoop

readFromPat:
1ldx IPAT ; load the pattern index
lda length,x
bne noReset

sta IPAT ; reset the pattern index
beq readFromPat

noReset:

sta DUR ; store note length
1dy #500 ; voice 1

lda note,x ; read packet notes
pha

and #50F

jsr decodeFreq

1ldy #507 ; voice 2

pla

1sr

1sr

34

1sr

1sr
jsr decodeFreq
dec DUR3 ; 3
bpl incITAP

readPat3:
1ldx IPAT3 ; 3
lda pat3,x

bne decodePat3

sta IPAT3 ; pa 3
rol ctrl3

lda ctrl3

rol

ora #S01

sta ctrl3

lda pos+l

asl

rol pos+l

clc

bcec readPat3
decodePat3:

and #S0F

sta DUR3 ; Sstore duration voice 3

ldy #50E

lda pat3,x

1sr

1sr

1sr

1sr

jsr decodeFreq

inc IPAT3 ; n 3
incITAP:

inc IPAT ; lncrement the pattern index
goLoop:

jmp loopExt
;0884

rts
sync:
lda #564
wait:
cmp $DO12 ;
bne wait
rts

decodeFreq:
beq skip
tax
lda loFreq,x
sta sidTable,y ; low of frequency

lda hiFreq,x

sta sidTable+l,y ; frequency
pos

lda #510 ;oc

sta $D404,y ;
skip:

I
<
[}
.
o]
0]
=

; low

note:
.byte $14, $14
.byte $14, $14
.byte $14, $14
.byte $14, $14
.byte $14, $23
.byte $23, $23
.byte $23, $23
.byte $23

length:
.byte $20, $10
.byte 506, $06
.byte 506, $10
.byte 506, $06
.byte $06, $06
.byte $06, $06
.byte $06, $06
.byte $06, $00

35

; high nibble
; low nibble

pat3:
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

loFreq:
.byte
.byte
.byte
.byte
.byte

hiFreq:
.byte
.byte
.byte
.byte
,byte

SOF,
$40,
$43,
$51,
$21,
$49,
$63,
$73,
$30,
$51,
$00

500
$F6,
N
$82,
$OE

$00
S11,
$16,
sic,
$26

sidTable:

.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
ctrl3:
.byte
.byte
.byte

.byte
.byte
.byte
.byte

$00
$00
$10
$08
$21
$0A
$20

$00
$00
$20
$05
S11
SOA
$50

$00
$00
$40
$02

$11
S$2A
$00

$00
$00
$00
$OF

$0D
543
$23
$40
$51
$60
$63
$41
$21
549

$07
SF9
SEB

$13
$17
$23

note voice 3
duration voice 3

; freqg low of voice 1

; freq high of voice 1

; wave low byte voice 1

; wave high byte voice 1
; control reg of voice 1
; attack/decay voice 1

; sustain/release voice 1

; freq low of voice 2

; freqg high of voice 2

; wave low byte voice 2

; wave high byte voice 2
; control reg of voice 2
; attack/decay voice 2

; sustain/release voice 2

; freq low of voice 3

; freq high of voice 3

; wave low byte voice 3
; wave high byte voice 3

; control reg of voice 3
; attack/decay voice 3
; sustain/release voice 3

; filter freq low
; filter freq high
; no filter

; volume

36

This tune is made by Frantic and is a co-winner of 256 byte category. Even if instruments are
very simple in their definitions (only $11 and $21 waveform used), this tune is however one of the
winner, so it is great made.

Here a little analysis, even if code is simple to understand.

Instruments are made with 3 values:

Value Description

Attack/Decay Attack/Decay to use. Sustain/Release is not used (0)

Control Control value to use for sid

Duration How long is the duration of one note in pattern for
this instrument. A pattern is S*8 tick long, so this
allow to use an instrument to change values at each
tick (if S*1 is used).

This trick of use duration inside the instruments is very interesting, as with one instruction you
set the duration of note and the instrument to use. However, this will require to define more instru-
ments that you will need, but one instruments cost you only 3 bytes.

A pattern is made by:

Value Description
00 jump A (relative) jump to another pattern section
XX The high nibble is the instrument to use (and so
duration), the low nibble is the note to play

The above information is all you need for understanding the engine, however let we see some in
detail points:

« Interrupt routine is initialized automatically as the program is loaded into $326, and so the
first word sets the interrupt vector that Kernal IRQ will call automatically.

« Afilter is used in melody voice: note that the frequency is varied and it is used a BASIC call
to do it. This save lot of instructions (and this made the length of tune to be:
13*3*4*128%0,02=399,36 seconds).

« The undocumented instruction sbx is used into the engine for decrementing the x register
by 7

Here the code:

o Title: "NewKi dOnTheBl ock"
; Chip: 6581 C64 used when conposi ng.
; Author: Frantic/Hack'n' Trade

. CONSTANTS

DEBUG =0

T! CKCOUNTERS = $02 ;Use zp for tickcounters.. TICKCOUNTERS+0, TI CKCOUNTERS+7, Tl CKCOUNTERS+14
nglrlAng veed = $03 ;Use zp for SONGPCSITIONS... 0, 7, 14..

FI LTERHI = $23

NUMBEROFVO CES 3 ;Using all three Voices

37

S = $10 ; Song "speed"

CCDE

* = $326

.word start ; Four byte init code. Shanelessly ripped fromAlihs entry, who ripped it from Steven

.word $f6ed ;Judd. .. :) Sibce Alih "ripped" this | guess | could just as well use it too.???

;1 hope that won't break any conpetition rules. N njas nethod, used in xxxlarge was
;nice too, but still sone bytes larger even if one includes the extra code here
;needed for raster sync..
start: sei
#i f DEBUG
| da #<$ce00 ;NM interrupt pointer to Retro Replay debugstub by G oepaz.
sta $0318 i RREXE is a great tool and it allows me to get rid of using
| da #>$ce00 ; VI CE al toget her when coding. Why aren't nore ppl using this???
sta $0319
#endi f
I dy #%$02 ;Set it to $02 so the first incorrectly timed iteration won't affect anything
sty FILTERH ;Init filtersweep to make it a bit nore determ nistic.
;Init counters and sonpositions
| da #(NUMBEROFVO CES- 1) *7 ; Voi ce i ndeX
@nitlp:tax
sta DATAPGCS, x ;Init datapos+0 to 0, datapos+7 to 7 and datapos+14 to 14.
sty TI CKCOUNTERS, x ;y can be anything.. doesn't nmatter, but now | happen to
;init the filter so set it to $01 too

sec
shc #7
bpl @nitlp

Mai n pl ayer |oop

@ut er | oop:
@w ast : cpx $d012 ;After the loop, x is a negative nunber, thus well above $3e
; (or whatever the critical raster value is again..)
bne @w ast ;First iteration won't be correct though, but since the counters
;are set to 2 initially it doesn't natter.
#i f DEBUG
| da #1
sta $d020
sta $d021
#endi f
jsr $b5ff ;hijack sone BASIC ROM shit to do the filter sweep
;b5ff | ooks like this:
; inc $23
; I dx $23
I dy #3$00
; rts
stx $d416 ;filter hi
| dx #(NUVMBEROFVO CES- 1) *7 ; Voi ce indeX
;Right here is a good place for Voice specific code, if there is any reason for that.
@ nner | oop:
dec TI CKCOUNTERS, x
bne @ oopend
; Time for new sound settings, turn gate and oscillator off..
| da #8
sta $d404, x
; Turn on gl obal volume to make sure we'll hear anything at all.
; Reason for having this code inside the |oop:
; To nmake sure the player won't run too fast and get executed
; twice on the sane rasterline.
| da #3$5f ; H -pass + Lo-pass filter on.
sta $d418
| da #%a2 ;Filter used on middle (nelody) voice.
sta $d417
; Parse data sequence data
| dy DATAPCS, x
@ewseq:
iny
| da @wusicdata-1,y ; Get dat abyte
bne @onewseq
| da @wusicdata-0,y ;Get junpval if it's junptine
tay ;..and use new one instead
bpl @ewseq ; This means data may not be larger than $80 bytes
@onewseq:
sty DATAPGCS, x
pha
and #$0f ; Not e val ue
tay
lda @reqghi,y

38

sta
| da
sta
pla
| sr
I sr
I sr
| sr
tay
| da
sta
| da
sta
| da
sta

$d401, x
@reqlo,y
$d400, x

adtab, y

$d405, x
durtab,y

TI CKOOUNTERS, x
ctrlitab,y
$d404, x

@ oopend:
| da #$ff
.byte $ch,7
bpl @ nnerl oop

#i f DEBUG

dec $d020

dec $d021

jnp @uterl oop
#endi f

bm @uterl oop

"I nstrunments”

Using AD only to save space. (SR is se
; A patternis S*8 ticks |ong,
; can represent a whole enpty pattern by
; the sequence data. At the sane tine, t
; for changes to the waveformevery tick

S0 using

; Freq hi

;Freq lo

;axs #7 | sbx #7 | whatever. .

t to 00 as default)

"instrument” 5 we
just one byte in
his format allows
, which neans we

can al so make druns and such things. But, not in this
tune. Perhaps in the next one..
; 00 01 02 03 04 05 06
@dt ab: .byte $1c, $1b, $cd, $2b, $la, $00, $ad
@trltab: .byte $11, $11, $21, $21, $21, $00, $21
@lurt ab: .byte S*1, S*3, S$*6, S*2, S*1, S*8, S*8

Sequence data

VocO
Vocl
Voc2

starts at
starts at
starts at

Not e
byte is interpreted as the destination
the dat a.

@wsi cdat a:

@/ocOst art:
.byte
.byte
.byte
.byte
.byte
. byte
.byte

@oclstart:
. byte
. byte

<(@/ocOkonp- @wsi cdat a)

$20
$30

D5
Dz5

D5
Ad
Az

.byte
.byte
.byte

$20 |
$40 |
$40 | Az4
JP

<(@/oclnel ody- @wusi cdat a)

.byte
.byte
@/oc2start:

$50
$50
$50
$50

.byte
.byte
.byte
.byte

oooo

o

.byte
@/oc2| oop:
.byte
. byte
.byte
. byte

$50

$50
$50
$20
$40

gace

and duration stored in one byte and the byte following a $00 (JP)

of a junp to another place in

39

.byte $40 | F4
1 byte $50

| 0
.byte $60 | D5
.byte $20 | Dz5
.byte $30 | Az4
.byte $20 | A4
.byte $30 | F4
.byte $60 | &4
.byte $50 | 0
.byte $50 | 0
.byte $60 | C5
.byte $50 | 0
.byte $60 | D5
.byte $60 | Dz5
.byte $60 | F5

byte $60 | G5

.byte JP
. byte <(@/oc2l oop- @wusi cdat a)
@/ocOkonp:

.byte $10 | G5
.byte $00 | D4
.byte $00 | Fz4
.byte $00 | A4
.byte $00 | Az4
.byte $00 | C5
.byte $10 | D5
.byte $00 | Dz4
.byte $00 | F4
.byte $00 | &4
.byte $00 | Az4
.byte $00 | C5
.byte $10 | Dz5
.byte $00 | F4
.byte $00 | A4
.byte $00 | C5
.byte $00 | D5
.byte $00 | Dz5
.byte $10 | F5
.byte JP

.byte <(@/ocOstart - @rusi cdat a)

@/oc1nel ody:
.byte $20 | C5
.byte $30 | Az4

.byte $20 | A4
.byte $30 | F4

.byte $60 | &4
.byte $50 | 0

.byte $20 | F4
.byte $30 | Dz4

.byte $20 | F4
.byte $30 | Dz4

_byte $20 | D4
.byte $30 | Dz4

.byte $20 | D4
.byte $30 | Fz4

.byte $20 | &4
.byte $30 | Dz4

.byte $00 | C4
.byte $00 | Dz4
.byte $00 | F4
.byte $00 | &4
.byte $00 | A4
.byte $00 | C5
.byte $00 | G5
.byte $00 | F5

.byte JP

.byte <(@oclstart- @musi cdat a)

Only using needed notes.
JP

@reglo = *-1

@reqghi :

’
,
’
,
,
,

= 0
c4 = 1
D4 = 2
Dz4 = 3
. E4 = 2;Not used
F4 = 4
Fz4 = 5
(73 = 6
; &4= 6; Not used
A4 = 7
Az4 = 8
; B4 = 8; Not used
c5 = 9
; Cz5= 9; Not used
D5 = 10
Dz5 =11
=) = 11; Not used
F5 =12
; Fz5= 13; Not used
€3] = 13
; &5 ; Not used
; A5 ; Not used
; Az5= 14; Not used
.byte $0c, $1c, $2d, $3e, $51, $66
.byte $7b, $91, $a9, $c3, $dd, $fa
.byte $18, $38, $5a, $7d, $a3, $cc
.byte $f6, $23, $53, $86, $bb, $f 4
.byte $30, $70, $b4, $f b, $47, $98
.byte $ed, $47, $a7, $0c,
.byte $77;, $e9
.byte $61, $el;, $68,
.byte $f7,$8f, $30
;. byte $da,
.byte $8f, $4e;, $18,
.byte $ef;, $d2
.byte $c3, $c3;, $d1,
.byte $ef;, $1f,
.byte $60

.byte $b5, $le,

;. byte $9c;, $31, $df , $a5

.byte
. byte
.byte
.byte
. byte
. byte

. byte
.byte
.byte
.byte
.byte
. byte
. byte

. byte

. byte
.byte

. byte
.byte
.byte
.byte
. byte

$87, $86, $a2, $df , $3e, $c1
$6b, $3c, $39, $63, $be, $4b
$0f , $0c, $45, $bf, $7d, $83
$d6, $79, $73, $c7, $7c, $97
$le, $18, $8b, $7e, $f a, $06
$ac, $f 3, $e6, $8f , $f 8, $2e

$01, $01, $01, $01, $01, $01
$01, $01, $01, $01, $01, $01
$02, $02, $02, $02, $02, $02
$02, $03, $03, $03, $03, $03
$04, $04, $04, $04, $05, $05
$05, $06, $06, $07,

$00 ; VRAP

$07;, $07

$08, $08; , $09,
$09, $0a, $0b

.byte $0b,

$0c, $0d; , $0e,
$0e; , $0f

$10, $11;, $12,
$13;, $15,

$16

;. byte $17, $19,
;. byte $la;, $lc, $1d, $1f

. byte
.byte
. byte
. byte
.byte
.byte

$21, $23, $25, $27, $2a, $2c
$2f , $32, $35, $38, $3b, $3f
$43, $47, $4b, $4f , $54, $59
$5e, $64, $6a, $70, $77, $7e
$86, $8e, $96, $9f , $a8, $b3
$bd, $c8, $d4, $el, See, $fd

41

This is the 256b tune by Laxity.

In this case you will see that there is a unique type of instrument hardcore into the code. The in-
strument uses $21 as waveform, it has a sort of hardrestart at the end of note and it uses a fixed
$55 value for Attack/Decay and Sustain/Release.

The pattern for note/duration is defined according with this table:

Value Description

Positive number The lower nibble is the base note to play, high
nibble is the octave to use.

00 is for rest

Negative number The low 7bits are the duration of note

$FF Repeat the pattern

The engine so memorized only 12 notes frequency and the others are calculated at runtime.

The method used for initializing the IRQ is to simple disable it (SEI instruction) and to have a
loop at raster line $55 for proper time passed calculation.

Here the code:

;TinyPlayer 02.90
;By Laxity of Vibrants/Maniacs of Noise

zZp = $fb
clrbeg = $38
seqgpoi = clrbeg+3
cnt = segpoi+3
dur = cnt+3
note = dur+3
spdent = note+3
clrend = spdcnt+l
*= $507fd
jmp start
byte 0

.byte $0b,$08,500,500,$9%
.text "2061"
.byte $00,500,500

init 1ldx #clrend-clrbeg
lda #0

i101 sta clrbeg,x

e
waitsl ; A is $55 (except for first
; frame which doesn't matter)

42

noreset

nexttrk
lda spdcnt
bne updsnd

dec cnt,x
bpl updsnd

1dy segpoi,x
next
lda s0,y

bpl isnote
cmp #5£F
bne nowrap
1ldy sofs,x
bpl next

nowrap
and #S57f
sta dur,x
next2 iny
bpl next

1 WOrk

isnote
sta note,x
lda dur,x
sta cnt,x

updsnd
ldy #520
lda cnt,x
beq gateoff
lda note,x
beq gateoff

gateoff

1dy voice,x
sta $d404,y

lda note,x
and #S0f

lda frqglo,y
sta zp

lda frghi,y
sta zp+tl

bmi nooct
shift

1sr zp+l

ror zp

dey

bpl shift
nooct

1ldy voice,x

lda zp

sta $d400,y

lda zp+1

sta $d401,y

lda #555

sta $d405,y

sta $d406,y

Jmp waitsl

voice byte 0,7,14

Sofs .byte s1-s0,s2-50,s3-s0
o . byte s2£
sl .byte $83

.byte $40,$30,$43,$33
.byte $40,$30,$43,%47, S£f

s2 .byte $81
.byte $00,$27,$26,500
.byte $00,5$28,5$27,$00
.byte $00,5$27,5$26,$20
.byte $22,$23,$22,500
.byte S$ff

s3 .byte $bf, 500

.byte $83

.byte $00,5$12,510,51a
.byte $87,5$17,$00
.byte $83

.byte $00,51a,5$18,$17
.byte $87,$13,$00
.byte $83

.byte $12,$13,510,517
.byte $12,$13,$27,5$18
.byte $8£,5$17,$00

.byte Sff
frqglo .byte $a0,$b7,5$20, $bc, $Sac, $Se4d
.byte $70,$4c,$84,518,$10,$70
frghi .byte $45,549, $4e,$52,$57,$5¢

.byte $62,$68,$6e,5$75,$7c,$83

This is the 256 bytes tune by Aleksi Eeben. Here | present a reverse engineering source code.
But now some comments to the code:

« Itrelocates itself in page 0 with the same technique of Agemixer

« Interrupt is disable with SEI instruction and synchronization is done with raster line $81
« ltuses a table of values for all sid registers (even for initialize it)

+ ltuses lot of self modified code for storing and then using index values

« ltuses 7 notes (tables loFreq and hiFreq)

+ Voice 1 is rectangular with a duty cycled that is increase each time

+ Noise is putted into voice 1, 2 and 3 according to certain rules

+ Cut off frequency of thief pass filter in voice 3 is done using voice 3 output

+ It has the tables for note and duration (note/dur)

However, as you can see, the code is more articulated and the description of all his behaviors
will need more time for sure!

The pseudo-code:

.org $0801
.byte $0B, $08
;0803
.byte $00, $37, $9E, $32
.byte $30, $35, $39, $00
.byte $A2, $00
; 14080 sys 2059

.org $080D

sei

lda 5$0803,x

sta $00,x

inx

bne S080E

jmp 50084

.org $0016
sync:
1dy #s81
wait:
cpy $D012 ; Reading/Writing IRQ balance value
bne wait

lda $D41C ; Generator output
1sr
adc #520
sta sidTable4+1 ; filter freq high
lda sidTable+2 ; wave low byte voice 1
adc #50C
sta sidTable+2 ; wave low byte voice 1
bce skipWH
inc sidTable+3 ; wave high byte voice 1
skipWH:
lda sidTable2+1 ; freq high of voice 2
eor #540
sta sidTable2+1l ; fr
lda Indw+l ; in
clc
1ldx IndZ+1
adc tmp-1,x
cmp #5507
bcec skipSub
sbc #3507
skipSub:
tax
lda loFreq,x
asl
sta sidTable ; low freqg voice 1
lda hiFreq,x
rol
sta sidTable+l ; high freq voice 1

eq high of voice 2
dex of note to play

ldx #518
loopST
lda sidTable,x
sta $D400,x ; Voice 1: Frequency control (lo byte)

45

dex
bpl

dec
IndZ:

1dx

bne

lda
sta
asl
bcc
Indw:
1dx
1lda
sta
lda
sta
sty
inc
skipNote:
1dx
cpx
bne
sty
skipCl:
cpx
bne
sty
skipC2:
dec
IndA:
1dx
bne

lda

sta

dec
IndB:

lda

bne

inc
IndC:
1dx
lda
sta
bne
sta
inc
bne
notZero:
lda
sta
lda
sta
goSync:
Jmp

sidTable:
.byte $00
.byte $00
.byte $00
.byte $04
.byte $40
.byte $08
.byte $18

sidTable2:
.byte 500
.byte $S1A
.byte 500
.byte $00
.byte $80
.byte $04
.byte $04

sidTable3:
.byte $00
.byte $00
.byte $00
.byte 500
.byte $20
.byte 506
.byte $06

sidTable4:
.byte $00

loopST
Indz+1

#506
goSync

#5006

Indz+1
sidTable2+2
skipNote

#500
loFreq,x
sidTable3
hiFreq,x
sidTable3+1
SD412
sidTable2+2

IndA+1
#5006
skipCl
$D404

#504
skipC2
$D40B

IndA+1

#501
goSync

#508
IndA+1
IndB+1

#501
goSync

IndC+1

#SFE
note,x
Indw+1
notzZero
IndC+1
sidTable+4
IndC

pulse,x
sidTable2+2
dur,x
IndB+1

sync

high of vo
low byte v
gh byte
reg of
k/decay vo
in/release

1trol

low of voi
high of vo
low byte v
high byte

control reg of

ck/decay vo
in/release

low of voi
freq high of vo
wave low byte v
wave high byte

control reg of

; attack/decay vo
; sustain/release

freq

; low

low wave voice 2

; index of note to play
; low freq voice 3

; high freq voice 3

Voice 3: Control registers
wave voice 2

Voice 1:

Voice 2: Control registers

index of note to play

control reg of voice 1

low wave voice 2

ice 1
oice
voi

4

[y

Vo1l
ice 1

voice 1

ce 2

ice 2
oice 2
voice 2
voice 2
ice 2
voice 2

ce 3
ice 3
oice
voice 3
voice 3
ice 3

voice 3

3

46

.byte $00 ; filter freq high

.byte $F4 ; resonance + filter in voice 3
.byte $1F ; volume + tief pass filter
loFreq:

.byte $9B, $0C, $8B, $D0, $67, $10, SCE

hiFreq:
.byte $03, $04, $04, $04, $05, $06, $S06

pulse:
.byte $92, $90, $92, $94, $92
.byte $90, $n4, $A4, $92, SAA
.byte $92

note:
.byte $05, $03, $01, $04, $05
.byte $03, $01, $06, $05, $02
.byte $01

tmp:
.byte $00, $00, $04, $04

dur:
.byte $02, $02, $02, $02, $02
.byte $02, $02, $02, $06, $02
.byte $08

This tune made in BASIC was found by Peter Weighill in some very old stuffs. The code were all
BASIC and don't fit in 256 bytes. However with some management (like removing data statement),
the code was restricted to the right size.

DSw N

m=54272:poke m+24,15:poke m+5,9:poke m+6,15

p=2226

h=peek (p) : 1=peek (p+1) :d=peek (p+2) :p=p+3:if d=0then 5

poke m+l,h:poke m,l:poke m+4,33:for t=1to d:next :poke m+4,32:

for t=1to 300:next :goto 3

oy U1

c=c+l:if c=lthen c=-l:goto 2
goto 3

This is the code in basic that is located from $0801 to $08B1. It uses m and p pointers: m points
to the sid registers, while p points to the note data of the song:

In line 1, the sid 1 voice is initialized.

In line 3 three bytes are read from current position in memory: high/low note frequency and
note duration. If duration is 0O, line 5 is reached.

In line 4 the note to play is performed letting the gate on for a time that is polled by a cycle
based onto the note duration. After the gate is made off for a fixed amount of time.

In line 5 is coded that the tune is restarted when we reached duration O for the second
time.

.0rg 2226

.byte $03, $f4, $18
.byte $04, $b4, $18
.byte $05, $47, $90
.byte $04, $b4, $cO
.byte $03, $f4, $18
.byte $04, s$b4, $18
.byte $05, $47, $90
.byte $04, $b4, $60
.byte $04, $b4, $60
.byte $00, $00, $00

.byte $05, $47, $18
.byte $06, $47, $18
.byte $07, $0c, $90
.byte $06, $47, $cO
.byte $05, $47, s$18
.byte $06, $47, $18
.byte $07, $0c, $90
.byte $06, $47, $60
.byte $06, $47, $60
.byte $00, $00, $00

Even if this tune uses only one voice, you can see what is needed for programming sound using
BASIC program, and so the polling like technique to simulate note duration.

48

This is the tune of Splatform minigame, but Steve Judd had rewrite the code for fitting into 256

bytes.

Let we see some points of the player:

The player loads itself in position that already set the IRQ vector. However, then the IRQ is
disable with SEl and it synchronized with raster line $FF.

With a loop it copies some values for initialize voice 1 and 2 and some zeropage variables.
Voice 3 is never used.

It copies (and splits a byte in his nibbles) notes in zero page. This allow to use only 8 bits
for acceding to the notes.

The code is self modified in two points: one for made voice 1 to play a noise fixed note
(drum) when duration of note is over, and one for loading a new note address when a 0
note is reached. The trick is to use a BIT instruction that contains inside the LDY or LDA in-
struction.

The “drill” sound effect in voice 2 is made using note $0e and making a ramp of sound fol-

lowed by a fixed note.

Now the reverse engineering code:

.org $0326

.byte $2a, $03
.byte SED, S$F6

.org $032A

sei
1dy
sty
loopCopy:
lda
sta
sta
sta
dey
bpl

1dx
stx
decode:
iny
lda
pha
1lsr
1sr
1sr
1sr
jsr
pla
and
jsr
cpy
bcc

sync:
lda
wait:
cmp
bne

1dx
jsr
sty
lda
bne

1ldx
lda

#50D
$D418 ; Select volume and fi

Values,y

$D402,y ; Voice 1: Wave form p
$D409,y ; Voice 2: Wave form p
SO0AB,y

loopCopy

#500
$78

decript,y

dCopy

#50F
dCopy
#521
decode

#5FF

$D012 ; Reading/Writing IRQ bal

wait

#500 ; use voice 1
getNote

lter mode

S$B4 ; cur pattern pointer voice 1

SBO ; actual duration voice
useRect

#s0C ; note t
#5871 ; noise

.byte $2C ;bit $41A9

useRect:
lda

#541 ; rectangular waveform

L

49

sation amplitude (lo byte)
amplitude (lo byte)

1dy
jsr

1dx
jsr
sty

1dy
iny
iny
sty
sty

lda
1dy
cpx
bece

1dx
inx
cpx
bcc
1dx
skipFixed:
stx
1dy
lda
cmp
adc
skipDrill:
sty
1dy
jsr
bcc

dCopy:
sta
sta
24
bes
sta

skip02:
inx
rts

#500
outNote

#501
getNote
$B5

SB8

SD40A
$B8

#541
#s0c
#S0E
skipDrill

S8F

#50D
skipFixed
#50A

$8F
#560
#s0C
SB1
#504

SB3
#507
outNote
sync

$22,%
$34,%
#519
skip02
$02,x

; Get the n

ext note

; 1in x=voice to use (0/1)

; out x=not

e

; out y=next index to note

getNote:
1ldy $B4,x
inc $BO,x
lda S$BO,x
sec
sbec $B2,x
bne readNote
sta $BO,x
iny
.byte $2C ; bit $B6B4
isZero:
1ldy $B6,x
readNote:
lda 50002,y
beq isZero
tax
rts

; Out the n

ote:

> offset

; " voice

; x= note to play

outNote:
sta SD404,y
lda loFreg-1,x
sta SD400,y
lda hiFreg-1,x
sta $D401,y
rts

Values:

; copied from $AB

.byte $00

voice 1

use voice 2

cur pattern pointer voice 2

Voice 2: Wave form pulsation

; rectangular waveform

; note for special effect

7

; make the "drill" effect into

temp note

; inc temp note
; max to check

fixed note

temp note

; actual duration voice 2

; note duration voice 2
; voice 2

cur pattern pointer

; actual duration

; note duration

clear actual duration

; and go to read next note

; note to play

Voice 1: Control registers

amplitude (hi byte)

the tune

Voice 1: Frequency control (lo byte)

Voice 1: Frequency control (hi byte)

50

.byte $07

.byte $41
.byte $31
.byte SFB
.byte $0B ; actual note duration voice 1
.byte $0B ; actual note duration voice 2
.byte $0C ; note duration voice 1
.byte $0C ; note duration voice 2
.byte $SOF ; cur pattern pointer voice 1
.byte $75 ; cur pattern pointer voice 2
.byte $00
.byte $12

loFreq:
.byte $00

.byte $F4, $30
.byte $47, $e6l
.byte $8F, $C3
.byte $S1F, $87
.byte $3E, $3C
.byte $SOF

hiFreq:
.byte $00
.byte $03, $04
.byte $06, $08
.byte $0C, $10
.byte $15, $21
.byte $2A, $32
.byte $43

; decriptied and copied to $22, $34 and $02
decript:

.byte $31, $13, $11, $41

.byte $31, $13, $11, $21

.byte $00, $9a, $19, $Bl

.byte $9C, $19, $B1, $Al

.byte $91, $51, $65, Sl6

.byte $71, $65, $76, $56

.byte $57, SE8

; decripted and copied to $22 and $34
.byte $76, $B7, $98, S$BE
.byte $87, $67, $56, $51

Well, this is all about the previous year compo. But now it's time to think to the new one that is
being running as soon as you read this chapter.

You can now choose from a 256 bytes, 512 bytes and even 1KB, so maybe you will find your
right size for competing.

51

Some times is passed and some progress were made to make the card sound good in my sys-
tem, as if you remember from last article, the produced sound by the card was very horrible and it
depends by what you are doing with other applications in your system.

However, | had decided to experiment with the card by myself even with the possibility to dam-
age the sid chip in case | had a card with the DC-DC problem as | have not jet get an answer from
Individual Computer.

If you remember for Linux system, Simon White had made two hardsid kernel driver module:
Head and Experimental:

+ Head did not use the hardware buffer of the card (classic manage of the card)
« Experimental: use the hardware buffer of the card (this is the best driver to use)

We will speck about the hardware buffer later in more details, however in the near future Simon
will merge the two codes for having a unique driver that can use the two system together.

As | had sidplay2 console that play the tune at hyper speed, while the (patched) Vice played it
at right speed, | try to investigate why the driver gives these two different behaviors.

The funny things was that when | modify libsidplay2 to put a debug string at every commands it
passed to the kernel driver, and so this make sidplay2 to eat all the cpu power, then the card
starts to sound good (well, good as now, that it is not so good, but we will see this later) even if the
tune plays slower that the original speed.

The problem seems so that there was an incorrect speed managements into the kernel driver:
only if notes are emitted at the right time (due to how Vice send commands or with sidplay2 that
are delayed by cpu overworking) sound is played almost correctly.

Looking at the kernel module source | find soon the problem: in the experimental branch Simon
temporally disable chip 1 timing and let it be synchronized with chip 0. This was a way to test hard-
ware buffer without having the problem of the mutual synchronization of two chips mounted in the
same card.

Maybe was my fault to insert the chip in position 1 and not to position 0, but | liked the position 1
as it was more cooler in my system and even it is more easy to extract from this socket the chip, if
needed, using a simple screwdriver.

| so patch the driver to make it uses correct timer even for chip 1 (as | don’t have two chips in
the same card, and this was easier to be done that swapping the sid chip).

Well, now the sound is stable: sidplay2 plays at the right speed and (unfortunately for the mo-

ment) | didn’t have Vice 1.17 compiled with the hardsid patch to test it again, due to some compila-
tion errors.

52

mailto:ice00@libero.it

Before analyzing how the card sounds now, let we look at the hardware buffer of the card.
If you want that a card with a SID chip play a tune as in your C64 you need:

1. The chip must be clocked at the right PAL/NTSC speed. If you don’t have this, internal logic
shouldn’t be temporized correctly.

2. You must put a sid value in a sid register at the same time the real C64 puts it into the sid.

3. You should have some external capacitors for filters that are like in C64, otherwise the filter
(of the same chip) will have different behavior.

Point 1 and 3 is done by the hardware of the the card, but for point 2 it was necessary to sent
the command to the card at the right time.

Maybe this is not a problem: we know that actual emulators/sidplayers are good timing, and so
they will send the right sid commands at the right moment. However, as an I/O operation is to be
done for sending one command to the card, passing thrown the PCI bus, and this will use the Ker-
nel of the operating system, we could expect that if the cpu is overworking and there are lot of I/O
operations and kernel activities, we should experiment sound timing problems.

The hardware buffer of the card is so the solution of this problem. Imagine that you run a sid-
player at the max speed and register at each (virtual) clock the commands you had to sent to the
sid and put them in a software buffer. Then, as soon as the card is ready, you sent this buffer of
commands to the card hardware buffer, and start to produce another buffer to send the next time
the card is ready (well, this work even if you send directly the commands to the hardware buffer
without storing it -and maybe this is how the driver is implemented).

The card, as soon as it receives the commands, will starts to play the sid commands at the time
is specified for each instructions, something like:

DELAY $xxxx
PUT $yy TO regi ster $kk
DELAY $hhhh
PUT $dd TO register $I1

until the buffer is empty.
This methods will so prevent any sort of timing delay due to your SO or system overworking.
However if your system is overworking over a certain level, there are no hardware buffer that

can help you: if the buffer is empty before you give another one, the sound will be broken, but this
is however an advantage over the classic system that is more cpu depends.

At this point you will want to know how the sound play using the hardware buffer to his power af-
ter resolving the timing issue of the driver.

Well: good and horrible, depending from the tune!! I'm trying to understand why some tunes play
good and other play horrible and | will try to think of the problem.

However the first word to say is that the tune play always the same way, e.g. the sound is ever

53

the same (horrible or not) and so there is probably something in the card, or the drive, or the chip
that made this happen.

If we want to think that the card is working perfectly, just test these tunes (remember that |
mount a 6581 chip):

/Dunn_Jonathan/Ocean_Loader_4.sid
/Dunn_Jonathan/Ocean_Loader_5.sid

The tunes are almost 99% equals to the C64 listening. There is sometimes a distortion in some
sound (but as | don’'t have listen to that tunes in the C64 with the chip | mounted in the card, |
could accept the sound).

Oh, good, try with Matt, as | know by memories his tune:
/Gray_Matt/Tusker.sid

#1:

0: 15 Perfectly the initial sound!

0:20-0:24: Distortion (sound seens to go slow in one voices)

0: 30-0: 38 Distortion (sound seens to go slow in one voices)
1:35-1: 44 Arpeggio is perfect, but the long sound is distorted
ot her Coul d be happy, sound good

5:25-5:30 Alittle slowin one voice

#4.:

0: 30-0: 48 The main sound is a little around frequency as | remenber
1:10 -1:35 Slow in one voice

1:35-2:10 The sol o voice is perfect

2: 25 Slow in one voice

2:39-2:55 Distorted in frequency

3:23-3:29 Slow i n one voice

4:25-4:40 Fi nal voice is perfect

Not so good, around 75% of the right tune, but try with
Gray_Matt/Last_Ninja_2.sid

#1:

:00-0:06 Perfectly

:06- 0:20 Sound goes killed in volune in the voice that start
:20-0:30 Voices is distorted, volune sonetines go O for all voices
:54-1-08 Volune is right, play correctly

:08 -1:30 Goes silent, inaudible sounds

:30 -2:32 Sound good, alnobst correctly

2-32-3:44 Alittle distorted and not so synchronized

3:50-4:10 Goes up/down in vol une

4-10- 4:28 Low volune fromthe expected, but correctly

PR, OOOO

| think 40% right, the rest is horrible. However | could assured that the sid chip mounted in this
card sound perfectly this tune is the C64 (I always test a C64 with this tune, then | goes to test oth-
er interesting tunes).

What is the problem?
At this time I’'m wondering if what | listen is related to Sid ADSR bug. | remember that the first
tune | wrote to cover Driller using Hubbard sound driver where full of ADSR bug (sound goes killed

everywhere in volume). That was as | try to use ADSR values like in Driller using instruments with-
out a proper hardrestart.

54

Else if | remember correctly, after patching a sidplay2 console some time ago for showing ADSR
bug in tunes while playing, the Matt Gray tunes like Driller where near the ADSR bug is some
points.

Maybe there is the possibility that the tune | listen almost correctly are the ones that use
hardrestart, while the others (maybe the old one) without hardrestart will go in ADRS bug due to a
not precise timing from driver/card firmware?

At this point | need more test for understanding what is going wrong with the card.

One of the thing | done was to let xsidplay to use hardsid driver, so | could use it for a more pre-
cise timing (e.g sidplay?2 displayed clock goes at high speed, then slow down and so on, probably
due to the process used to send commands to the card).

The operation was simple, as Simon describe: substitute the reSidBuilder definition with the
hardsidBuilder one in the wrapper used by xsidplay. It works perfectly.

The other operations was to compile the Vice 1.18 that supports the hardsid (experimental and
only in unix). | compile it as usual, as it detects the presence of hardsid driver and adds support to
it without adding configuration parameters.

If you start x64 you will now see the voice Hardsid below Resid in the sid settings.

| so try it and see that now you can move windows, and do other activities into your desktop,
and the sound is played and not disturbed as with the last test | made (with driver with chip 0 tim-
ing and no chip 1 timing).

Take present that if you click in closing emulator, when the windows with yes/no/cancel appears,
the sound do the same things: the last one is played (with Resid, the sound is stopped).

The same thing appears even in xsidplay if you play pause (but not stop) or sidplay2 when you
exit. The reason is that if you start again from the pause, the sound must be started from where it
was. Maybe it could be more convenient to kill the sound, because having the last note played
could be very annoying and maybe when the sound restarts, it could not restart properly in every
case.

Now that x64 goes, it could be possible to speech even about RSID sid with samples in it.

In my system (266Mhz) | have that normally a tune played with xsidplay eats 30% with Resid
(with the faster option, not the most accurate) and 15% with hardsid. So, hardsid let me save 15%
of cpu working.

But if | listen to a sample RSID with xsidplay, all the cpu is working in emulation of cpu (here
there is not the max optimization) and so sound with Resid is played slowed. Using hardsid, the
15% of cpu save is not sufficient and the sound | listen is totally crap.

With x64 (that has a different cpu emulation), | could now listen to RSID sid having not the 100%
cpu working.

Even if now here | could listen to sample music, there is always the distortion/volume problem in
the sid part, and so listen to Arkanoid is quite different and the sound is not so good, even if sam-

55

ples are played and you can move the window without having a single note delayed.

However the hardware buffer should give the best result with sample based music as here there
are lot of volume settings per second for having the sid generating the sample music.

In order to test the card | try again to use Head kernel driver (if you remember the last snapshot
freeze my kernel, by now | have an updated system), in this way | will see if bypassing hardware
buffer the card sound the same.

The driver manifest soon some problems (well, maybe they were even the first time, but | didn’t
investigate):

1. It detected my sid chip as 8580. Simon fixed soon this problem. However Head end Experi-
mental used little different approach to determine the sid chip type.

2. It detected a chip even in position 0 that was empty (and with the same type of position 1).
This was quite intricate, as | test different values of delay and constant values to use in the
part of driver that detect if a socket is empty but with the same result. Simon fixed it after
knowing that exists two MK4 version and one like the mine did not have pull ups/downs in
the bus.

However at the moment the driver freeze again the kernel, but as Simon is merging his code this
is to be fixed soon.

Even if | describe the cases very common, like in Last_Ninja_2, where sound volume goes low
and there is a distortion, there are some cases where voices are completely missed.

Try an example: /VARIOUS/S-Z/Starlost/Nullone.sid

In this you not heard anything until 0:20 where you listen only a voice at a high volume. So look
at a sid2midi output of the tune (it is condensed):

Voi ce 1 Voi ce 2 Voi ce 3

Ti me Note Freq PW W ADSR VL Note Freq PW W ADSR VL Note Freq PW W ADSR VL Filter

00:00.00 --- 0 0 00 0000 -- - 0 0 00 0000 -- - 0 0 00 0000 - L_1_ of
00:00.00 >B-1< 61 2296 40 0000 -- - 16 0 00 0000 -- - 16 0 00 0000 - L_1_ of
00: 00.01 +++ 61 2328 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 3a8 f
00: 00.01 +++ 61 2360 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 398 f
00:00.02 +++ 61 2392 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 388 f
00: 00. 03 +++ 61 2424 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L1 378 f
00: 00. 03 +++ 61 2456 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L1 368 f
00: 00. 04 +++ 61 2488 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 358 f
00: 00. 04 +++ 61 2520 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 348 f
00: 00. 05 +++ 61 2552 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 338 f
00: 00. 06 +++ 61 2584 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 328 f
00:00.06 +++ 61 2616 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L1 318 f
00: 00.07 +++ 61 2648 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L__1__ 308 f
00: 00.07 +++ 61 2680 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L 1__ 2f8f
00:00.08 +++ 61 2712 40 Ofef -- - 16 0 00 0000 -- - 16 0 00 0000 - L1 2e8f

Voice 1 starts with a low pass filter (with variable frequency) and a very low note frequency.
The pulse is modulated (he increases). Attack is the minimum, while decay and release are the
maximum.

00:10.07 >B-2< 123 2184 40 Ofef -- >B-1< 61 2296 40 0000 -- - 16 0 00 0000 - L__ 12_ 398 f
00: 10.08 +++ 123 2200 40 Of Oe -- +++ 61 2328 40 Ofef -- - 16 0 00 0000 - L__12_ 3a8 f
00:10.09 +++ 123 2216 40 0fOe -- +++ 61 2360 40 Ofef -- - 16 0 00 0000 - L__12_ 398 f
00:10.09 +++ 123 2232 40 0f Oe -- +++ 61 2392 40 Ofef -- - 16 0 00 0000 - L__ 12_388 f
00:10.10 +++ 123 2248 40 0f Oe -- +++ 61 2424 40 Ofef -- - 16 0 00 0000 - L__ 12_ 378 f
00:10.10 +++ 122 2264 40 OfOe -- +++ 61 2456 40 Of ef -- - 16 0 00 0000 - L__ 12_ 368 f
00:10.11 +++ 121 2280 40 Of Oe -- +++ 61 2488 40 Ofef -- - 16 0 00 0000 - L__12_ 358 f
00:10.12 +++ 122 2296 40 Of Oe -- +++ 61 2520 40 Ofef -- - 16 0 00 0000 - L__12_ 348 f
00:10.12 +++ 123 2312 40 0Of Oe -- +++ 61 2552 40 Ofef -- - 16 0 00 0000 - L__12_ 338 f

56

00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

10.13 +++ 124 2328 40 0Of Oe -- +++ 61 2584 40 Ofef -- - 16 0 00 0000 - L 12_ 328 f
10.13 +++ 125 2344 40 0Of Oe -- +++ 61 2616 40 Ofef -- - 16 0 00 0000 - L__ 12_ 318 f
10.14 +++ 124 2360 40 Of Oe -- +++ 61 2648 40 Ofef -- - 16 0 00 0000 - L__ 12_ 308 f
10.15 +++ 123 2376 40 Of Oe -- +++ 61 2680 40 Ofef -- - 16 0 00 0000 - L 12_2f8 f
10. 15 +++ 122 2392 40 0Of Oe -- +++ 61 2712 40 Ofef -- - 16 0 00 0000 - L 12_ 2e8 f
10. 16 +++ 121 2408 40 Of Oe -- +++ 61 2744 40 Ofef -- - 16 0 00 0000 - L__ 12_ 2d8 f
10. 16 +++ 121 2408 40 Of Oe -- +++ 61 2776 40 Ofef -- - 16 0 00 0000 - L__ 12_ 2c8 f
10.17 >F#3< 185 2184 40 0fOe -- +++ 61 2808 40 Ofef -- - 16 0 00 0000 - L 12_ 2b8 f
Voice 2 follows the same setting of voice 1.

20.15 >B-2< 123 2184 40 0f0e -- >B-1< 61 2296 40 Ofef -- >B-4< 494 2296 40 0000 - L 12_ 398 f
20.15 +++ 123 2200 40 Of Oe -- +++ 61 2328 40 Ofef -- +++ 494 2280 40 0fe0 - L__ 12_ 3a8 f
20.16 +++ 123 2216 40 Of Oe -- +++ 61 2360 40 Ofef -- +++ 494 2264 40 0feO - L 12_ 398 f
20.16 +++ 123 2232 40 0f Oe -- +++ 61 2392 40 Ofef -- +++ 494 2248 40 0feO - L__ 12_ 388 f
20.17 +++ 123 2248 40 0f Oe -- +++ 61 2424 40 Of ef -- +++ 494 2232 40 0feO - L 12_ 378 f
20.18 +++ 122 2264 40 0Of Oe -- +++ 61 2456 40 Ofef -- +++ 490 2216 40 0feO - L 12_ 368 f
20.18 +++ 121 2280 40 Of Qe -- +++ 61 2488 40 Ofef -- +++ 486 2200 40 0OfeO - L__ 12_ 358 f
20.19 +++ 122 2296 40 Of Oe -- +++ 61 2520 40 Ofef -- +++ 490 2184 40 0feO - L__ 12_ 348 f
20.19 +++ 123 2312 40 0Of Oe -- +++ 61 2552 40 Ofef -- +++ 494 2168 40 0feO - L__ 12_ 338 f
20.20 +++ 124 2328 40 0Of Oe -- +++ 61 2584 40 Ofef -- +++ 498 2152 40 0feO - L 12_ 328 f
20.21 +++ 125 2344 40 0Of Oe -- +++ 61 2616 40 Ofef -- +++ 501 2136 40 0Of e0 - L__ 12_ 318 f
20.21 +++ 124 2360 40 Of Oe -- +++ 61 2648 40 Ofef -- +++ 498 2120 40 0feO - L__ 12_ 308 f
20. 22 +++ 123 2376 40 Of Oe -- +++ 61 2680 40 Ofef -- +++ 494 2104 40 0fe0 - L 12_ 2f8 f
20. 22 +++ 122 2392 40 0Of Oe -- +++ 61 2712 40 Ofef -- +++ 490 2088 40 0fe0 - L 12_ 2e8 f
20. 23 +++ 121 2408 40 Of Oe -- +++ 61 2744 40 Ofef -- +++ 486 2072 40 0feO - L 12_ 2d8 f
20. 24 +++ 121 2408 40 0Of Oe -- +++ 61 2776 40 Ofef -- +++ 490 2056 40 0feO - L 12_ 2c8 f
20.24 >F#3< 185 2184 40 0fOe -- +++ 61 2808 40 Ofef -- +++ 494 2040 40 0feO - L__ 12_ 2b8 f

Voice 3 starts with a little different value: release is 0, and as Sustain is $E, the volume is high
as listen in the player. However filter is not apply in this voice.

Maybe could the missing sound caused by a filter problem? There is only an operation to do:
patch Nullone tune to not use filter and listen what changes.

Just change all 17 D4 to 17 E4 in the tune and test again: now | listen voice 1 and 2 correctly.
So the problem for this is filter related.

So, now the question is: from what this happen and all problems are due to filter?

Maybe all sounds distortion come out from filter and so the volume killed for voices?
No, not possible: tunes like of Matt Gray did not make high use of filter, so we must look for oth-
er problems into the driver/card/chip.

However, the filter problems should derive from one of this causes:

Driver did not pilot correctly the sid chip when using the filter. | tend to exclude this possibil-
ity

Chip is broken in filter managing or its frequency working is out of a middle standard sid.
As it sounded good in C64 this should be to exclude, but maybe the chip could be dam-
aged by inserting into the card (even if | manage it with lot of carefully). However | did not
test lot of tunes that made high use of filter with this chip into the C64 before insert it into
the card, so there is the possibility that | test tunes where cutting frequency worked well.
Filter jumpers in the card are not set correctly: they are inserted as from the card manual
so this should be to exclude.

Capacitors in the card are broken/or not in right capacity? As changing the chip socket we
have the same effect, maybe it is to exclude that they are broken together, but there could
be the remote possibility that they are not into the right capacity even if | tend to exclude
even this.

At this point the right way is maybe to test again the chip into the C64 or inserted another 6581
chip into the card.

But before try this way, it it better to look and try to lean the causes of the other music problems

57

Well, how look like LN 1l tune? Simple:

Voice 1 Voi ce 2 Voi ce 3

Ti me Note Freq PW W ADSR VL Note Freq PW W ADSR VL Note Freq PW W ADSR VL Filter

00:00.00 --- 0 0 00 0000 -- 0 0 00 0000 -- --- 1132 0000000 -- ___ __ 0O
00:00.00 --- 0 0 00 0000 -- 0 0 00 0000 -- >F#4< 377 0100000 -- ___ 00O
00:00.01 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 1511 0100089 -- ___ __ 00O
00:00.01 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 755 0100029 -- ___ __ 00O
00: 00.02 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 377 0100029 -- ___ __ 00O
00:00.03 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 1511 01000a9 -- ___ __ 0O
00:00.03 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 755 0100029 -- ___ __ 00O
00: 00.04 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 377 01000a9 -- __ 00
00: 00.04 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 1511 0100029 -- ___ __ 00O
00:00.05 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 755 0100029 -- ___ __ 00O
00:00.06 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 377 010009 -- ___ 00O
00: 00.06 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 1511 0100029 -- ___ __ 00O
00: 00.07 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 755 01000a9 -- ___ __ 00O
00: 00.07 --- 0 0 00 0000 -- 0 0 00 0000 -- >Db5< 566 0100029 -- ___ __ 00O
00:01.27 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 566 186 10 00a9 -- 00O
00:01.27 --- 0 0 00 0000 -- 0 0 00 0000 -- +++ 2264 186 10 00a9 -- 00O
00:01.28 --- 0 16 00 0000 -- 0 16 00 0000 -- >F#4< 377 01000a9 -- ___ __ 00O
00:01.28 --- 0 16 00 0000 -- 0 16 00 0000 -- +++ 1511 0100029 -- ___ __ 00O
00:01.29 --- 0 16 00 0000 -- 0 16 00 0000 -- +++ 755 0100089 -- ___ __ 00O
00:02.00 --- 0 16 00 0000 -- 0 16 00 0000 -- +++ 377 010009 -- ___ __ 00O
00:03.24 --- 0 16 00 0000 -- 0 16 00 0000 -- +++ 566 202 1000a9 -- 00O
00:03.25 --- 0 16 00 0000 -- 0 16 00 0000 -- +++ 2264 202 100029 -- 00O
00:03.25 >F#2< 94 384 40 0000 -- >F#1< 47 384 40 0000 -- >F#4< 377 01000a9 -- ___ __ 00O
00:03.26 +++ 94 416 40 0f00 -- +++ 47 416 40 0f00 -- +++ 1511 0100029 -- ___ __ 00O
00: 03.27 +++ 94 448 40 0f00 -- +++ 47 448 40 0f00 -- +++ 755 0100089 -- ___ __ 00O
00: 03.27 +++ 94 480 40 0f00 -- +++ 47 480 40 0f00 -- +++ 377 0100029 -- ___ __ 00O
00: 03.28 +++ 94 512 40 0f00 -- +++ 47 512 40 0f00 -- +++ 1511 0100029 -- ___ __ 00O
00: 03. 28 +++ 94 544 40 0f00 -- +++ 47 544 40 0f00 -- +++ 755 0 10 00a9 -- __ _ 00
00: 03.29 +++ 94 576 40 0f00 -- +++ 47 576 40 0f00 -- +++ 377 0100029 -- ___ __ 00O
00: 04.00 +++ 94 608 40 0f00 -- +++ 47 608 40 0f00 -- +++ 1511 0100089 -- ___ __ 00O
00: 04.00 +++ 94 640 40 0f00 -- +++ 47 640 40 0f00 -- +++ 755 010009 -- ___ __ 00O
00: 04.01 +++ 94 672 40 0f00 -- +++ 47 672 40 0f00 -- +++ 377 0100089 -- ___ __ 00O
00: 04.01 +++ 94 704 40 0f00 -- +++ 47 704 40 0f00 -- +++ 1511 010009 -- __ 00O
00: 04.02 +++ 94 736 40 0f00 -- +++ 47 736 40 0f00 -- +++ 755 0100029 -- ___ __ 00O
00: 04.03 +++ 94 768 40 0f00 -- +++ 47 768 40 0f00 -- >Db5< 566 0100089 -- ___ __ 00O
00:19.05 +++ 74 3008 40 0f00 -- +++ 37 3008 40 0f00 -- +++ 599 250 10 00a9 -- ___ _ 00O
00:19.06 +++ 74 3040 40 0f00 -- +++ 37 3040 40 0f00 -- +++ 2398 250 10 00a9 -- 00O
00:19.06 >F#2< 94 384 40 0f00 -- >Bb5< 951 560 40 0f00 -- >F#4< 377 0100029 -- ___ __ 00O
00:19.07 +++ 94 416 40 0f00 -- +++ 951 656 40 008d -- +++ 1511 01000a9 -- ___ __ 00O
00:19.07 +++ 94 448 40 0f00 -- +++ 951 752 40 008d -- +++ 755 0100029 -- ___ __ 00O
00:19.08 +++ 94 480 40 0f00 -- +++ 951 848 40 008d -- +++ 377 01000a9 -- ___ __ 00O
00:19.09 +++ 94 512 40 0f00 -- +++ 951 944 40 008d -- +++ 1511 0100029 -- ___ __ 00O
00:19.09 +++ 94 544 40 0f00 -- +++ 951 1040 40 008d -- +++ 755 01000289 -- ___ __ 00O
00:19.10 +++ 94 576 40 0f00 -- +++ 951 1136 40 008d -- +++ 377 0100029 -- __ 00O
00:19.10 +++ 94 608 40 0f00 -- +++ 951 1232 40 008d -- +++ 1511 0100029 -- ___ __ 00O
00:19.11 +++ 94 640 40 0f00 -- +++ 951 1328 40 008d -- +++ 755 01000a9 -- ___ __ 00O
00:19.12 +++ 94 672 40 0f00 -- +++ 951 1424 40 008d -- +++ 377 0100029 -- ___ __ 00O
00:19.12 +++ 94 704 40 0f00 -- +++ 951 1520 40 008d -- +++ 1511 0100089 -- ___ __ 00O
00:19.13 +++ 94 736 40 0f00 -- +++ 947 1616 40 008d -- +++ 755 010009 -- ___ __ 00O
00:19.13 +++ 94 768 40 0f00 -- +++ 942 1712 40 008d -- >Db5< 566 010009 -- ___ __ 00O
00:42.06 +++ 94 3200 40 0f00 -- +++ 47 3200 40 0f00 -- +++ 566 186 10 00a9 -- ___ _ 00O
00:42.07 +++ 94 3232 40 0f00 -- +++ 47 3232 40 0f00 -- +++ 2264 186 10 00a9 -- __ 00O
00:42.07 >F#1< 47 384 40 0f00 -- +++ 16 0 80 0f00 -- >F#4< 377 0100029 -- ___ __ 00O
00:42.08 +++ 47 416 40 0f00 -- >A-7< 3611 0 80 00e0 -- +++ 1511 01000289 -- ___ __ 00O
00: 42. 09 +++ 47 448 40 0f00 -- +++ 16 0 80 00e0 -- +++ 755 0 10 00a9 -- _ 00
00:42.09 +++ 47 480 40 0f00 -- +++ 16 0 80 00e0 -- +++ 377 0100029 -- ___ __ 00O
00:42.10 +++ 47 512 40 0f00 -- +++ 16 0 80 00e0 -- +++ 1511 01000a9 -- 00
00:42.10 +++ 47 544 40 0f00 -- +++ 16 0 80 00e0 -- +++ 755 0100029 -- ___ __ 00O
00:42.11 +++ 47 576 40 0f00 -- +++ 16 0 80 00e0 -- +++ 377 0100089 -- ___ __ 00O
00:42.12 +++ 47 608 40 0f00 -- >A-7< 3611 0 80 00e0 -- +++ 1511 0100029 -- ___ __ 00O

As you see, tune is almost with same instruments settings until 0:19, after it changes the ADSR,
of one instrument. However, the sound problem could be heart before this, and so this seems con-
firm my hypothesis of a sort of ADSR bug due to invalid timing.

In this case sidplay2 console was better of xsidplay for showing the problem as, if you remem-
ber the clock goes faster and then slower ans so on.

You can so look at this:

time 0O sidplay time 0
time 5 sidplay time 9
time 6 sidplay time10

58

This is interesting: | heart the start of the problem as soon as I'm around (real) time 5/6 seconds
from the begging, when for the first time sidplay2 simulated clock is slowing down. However this
could be a coincidence.

Now it's time to made Head works. | so resume an old version of Head (from April) that | re-
member it did not freeze the system (but at that time it not produces sound for the problem of de-
tecting a sid in chip 0 that was empty). But it is not now a problem: | had inserted the sid in position
0.

How it sound now? Essentially the sound is like the hardware buffer's one, with the same prob-
lems.

However now | can see the advantage of hardware buffer: playing Arkanoid in X64 with this driv-
er made a 20% use of kernel for 1/0 operations (it was 1% with hardware buffer). If you move win-
dows in the desktop, now after some while, notes becomes killed.

This last test made some last possibility about the wrong sound to be tested:
+ Firmware of the card (or the card itself) did not work properly (and in the same manner
while using hardware buffer of not)
- Hardsid driver in the part that dialogs with the kernel driver did not work properly (and so,

using of not hardware buffer make not difference)
+ Chip was becoming broken after inserting into the card

Even if now | have a 8580 chip to test, | prefer to not damaging it if some things did not work. So
| test the old 6581 chip | use the first time (with no sound) in a C128: it sounds correctly.

| test Last Ninja 2, and even if the sound is not so clean (the chip is of 84, while the other one is
of 86) | can say that the tune is done in a good manner. So | insert again this chip into the card.

The most difficult task was to extract the chip from the socket in position 0 of the card: you must
manage carefully as you have only one point to make force into the chip. However after some min-
utes the new chip was mounted and the system started.

How it sound now?

Well, thinking that now the sound is a little more disturbed as in the C128, it sound as the previ-
ous chip and so:

+ Same muting/distortion problem as in Last Ninja 2
« Low filter make mute the voices as the other chip

At this point it is evident that there is an hardware issue regarding filter and maybe a software or
hardware related issue about the muting problem.

One thing to say about sound output is that, as sid chip is mono, chip 0 is passed into right
sound card canal, while chip 1 is passed into left channel.

This allow you to listen to stereo tune if you have 2 sid chips, but maybe it could be better that
you can listen in both channels if you are using one sid chip only.

59

Well at this point there is a major problem in my card.

One my friend with a MK4 with an 8580 say me that Last Ninja 2 is played correctly in his sys-
tem with Windows driver, so this prevent that this is due to a firmware driver problem (we have the
same and last one version).

| re-contact Jens and have a replay within 2 hours (well done) and for looking to the problem he
require (if possible) to have pictures of card + samples captured from the card.

Maybe the last operation is something that | should describe here as this is not a so common
operation that programs done by default in Linux.

[=]B][x]
First | have to made the CD line controlled by Alsa [Ele mpestion Auo
driver to capture the sound by: Output t | switches |
4 S
am xer set CD cap = i_ i_ :_
You can also use KMix and click to the red led in it un- § § § §
der CD line to allow this (look at the image in this page). = = = =
£1: S
Then | have set xsidplay to use aRts sound (instead sl El= gl= gl-
of OSS or ESD). Then opening KRec, you now can L I° L L
record the sample from MK4. e ||| Sound Blaster 16

In the Audio Manager you should now see the
xsidplay audio stream and the v-meter shows the [EEEr

sound from the MK4. Titolo Tipo Bus
KRec:ln registra in_soundcard
. . . KRec:Out riproduci out_soundcard
YOU can see from thIS Image hOW IOW IS_ the EXSIDPLAY audio stream friprodudi out_soundcard
sound volume level that come out from the sid in
MK4. ' '
i . ; | Livello di registrazione g
[i7]
ot il L L L II|| | L L L Y L L L L L L I I L T T L L L L L R O L B |—
A T e =]
\"'E P I T Y T T I I e ey i U i i T T T O N I I A I T Y (T AT T RO O AP I B T Y E =
(=]
. L P 3 (=W
ol e
~2.

However sound where captured in wav and then converted into mp3 with lame (if one wants to
listen to it | can send the mp3 by email).

Now it is time to attend Jens response, but in the meantime | have download the new Simon
merged driver called rt_async. Even if you can find that the driver changes every days, it is already
stable (I have only a driver lookup in sound, but the day after the driver was already corrected).

It is lot better of Head version (it uses asynchronous stream) as it competes with the Experimen-
tal version, even if hardware buffer gives always the best with sample music.

60

Qb Din 9 end

61

