“Holly Mary Combs”

Vice snapshot with CCS64 palette

Made with the GIMP from a HMC photo
and converted to C64 320x200
HiRes Mode Bitmap
by Stefano Tognon
in 2003

“4"™ voice”

I e Free Software Group

QeI 6

version 1.00
8 May 2004

General Index

BQIOTIALS. ... e e et e e et e e e et e e et e e e e eaaeeeeeeareeeeeaaeeeeeaaeeeenareeeas 4
N IS ettt e e e e e e e et e ettt e e et e e e attte—a———————taaaaaaaaaeaaeaaaeaaaaaaaaratttrtttarararaaaaaaaaraes 5
GOALTACKET 1.5/ 1.51/1.52. i e e ettt et e et e e ae e e enteeeeenneeeennees 5
NINJATACKET L. L. .eiiiieiiiiiiiieeie ettt ettt e et e sttt eeaeesteebeesbessseesaesseensnenseenseeseesnsesssend 6
POCKEESIA PIAYET. .. .eieiieiiieiiece ettt ettt e bt ebe e s sbeesbeesaeerseessaessaessseenseennes 6
ACTD 64 PIAYET V2.0..0..uiiiiieiiieieeieeiieteeieeste et e ette sttt etteestesbesssesseessaessesnsesssesssanssesseesseesseenseensensseeses 6
ASLErion S1A-TraCker V1.0oooiiiiiiiiiieeeee et e e s et e e e e e senteeeesssanares 7
AUIONSID V3,03, e et e et e ettt e et e e eae e e eeaae e e enate e e ettt e eenaaeeeeareeeerreeeen 7
SIDedit VA.00/VA.O1/VA.02. ...ttt eae et e e et e e e ete e e e eaaeeeseaaeesennees 7
SIAPIlay2/W 20-02-2004........c.oeeeieeieeieetiete et et estteeteetaeeste st ebeese e b eetbeeteeerbeseesbeeteesbereesseenteensaeses 9
HVSC UPAAte 38..... ettt et e et e st e st esbe e bt e bt e saeesaeesbeenneas 9
STIAWINES COMPO...cneiiiiiiieiiie ettt ettt e ettt ettt e s aae e sabeeesseeesseeesseeeesseeessseesnsseensseesnsseensseennns 10
Jan Diabelez Arnt Harries INterVIEW!.........ccoiiiiiiiiiiiie ettt et 11
ASLETION S1d TTACKET V1.0 ..oiiiiieiiiiiiiiiieiee ettt e e e e s et it e e e s seestaeeesseabbeeeeesenaenes 16
IIUEEO. e ettt e e et e e e e e e e e e ba e e e e e eatbaeeeeeaabaaaeeaaataaaeeeertraeeeaaaares 16
U $ T =T6 1) G PR PRRRR 16
SOUNA LADIC.......coiiiii ettt e et e e e ettt e e e eeteeeeeeaaaeeeeeaaseeeentareeeeearaeeeeanns 16
TTACKS. ...t ettt ettt e e et ae e e ete e e e et e e e etae e e ettt e e ettt seataeeeaaeeenteeeetaeeetreeeenes 18
PattOITIS. ...ttt e e et e et e e e et e e e et aae e e e et aaaeeeeerrraeeeeetbraaeeeeaaes 18
CONCIUSION. ...ttt et e et e e et e e et e e e eeaaeeeeeaaeeeeaaaeeeeateeeeenseaeeesseeeesseeeaneeeas 19
INSIA@ DIGIOTZANIZET.....ccuuieiieiieiieciie ettt ettt ettt et et et e ste e beebe e st esstesseeesbassseenseenseenseenseenseenns 20
IIUEEO. vt e e e e e e e e et e e e e e e e tareaeeaabaaeaeeeaarraaeeeeatarraeeeat 20
EUQIEOT ...t e et e e et e e e et e e e e et e e eaaaeeeenaeeeenaraeeeerreeeeannns 20
SAMIPIES. ...ttt ettt et he et e a et e bt et e e bt e be e bt et e enbeenbeeneeehbeestennaeneens 21
Self MAAE SAMPIES......eeiieiiiieiiiiiieiieeie ettt et ettt et e et eeteeesbe e saessaeesseessaessseanseenseennseans 23
IIISIAC. ..ttt e e et eeeete e e eetreeeataeeenraeeeateeeereaann 23
TRE COUR...nnvieie et ettt e et e e e et e e e et e e e etae e eenae e senaaeeseseeeeaneeeeeseeeeeseneenns 24
CONCIUSION. ...ttt e et et e e e et e e e etaeeeeeaaeeeeaseeeeseeeeesaeeeenaseeeeaeeeeenseeeenaneeean 29

Hi, again.

In this number we go to see the new Asterion Sid Tracker music editor program, by looking to his
characteristics.

Instead the planned rip of Marble Madness is delayed to the next number, as due to my activity of
this period, | had not give all the times the rip needs. Many progress was made into understand the
engine and many part reveals that it is not used at his maximum power.

So, as | had other articles ready, for maintaining the scheduled date of publication, this number is
out, because until September | will be full-time involving in minigame competition.

You can so look at the internal of DigiOrganizer, a great editor for 4bit sample music that can be
used with you preferred music editor too.

Finally, version 0.3 of HYMEC (High Voltage Music Engines Collection, see previous issue of
SIDin) is in high working stage and it will be released soon.

Now there is the Other categories that contains all other programs that don't fit in the Tracker/Edi-
tor as they manage only sample or sound effects.

Bye
S.T.

Some various news of players, programs , competition:

Goattracker 1.5/1.51/1.52
Ninjatracker 1.1
PocketSid Player

ACID 64 Player 2.0
Asterion Sid-Tracker V1.0
Audio::SID v3.03

SIDedit v4.00/v401
Sidplay2/w 20-02-2004
HVSC update 38
SidWine3 Compo

Released on 25 January 2004 the new version of Cadaver's PC tracker with lot of changes:

Playroutine rewritten. Uses testbit hard restart from now on for much sharper sounds

ADSR parameter for hard restart configurable (previously only AD)

Added orderlist cut/copy/paste

Added indicators for ADSR parameter & hard restart length to the title bar

Added delayed wavetable execution

Added proper gateoff, so keyoff in the patterns works correctly even if your wavetable has gatebit
set to 1

Added master fader command (7F0-7FF)

Timing mark is now command 7EF

Standard playroutine saves all zeropage locations it uses

INS2SND modified, now it will no longer insert delays, as these are unsupported by the new
gamemusic playroutine

On 16 February, version 1.51 was released with these changes:

Funktempo hack works differently
Copybuffer no longer erased on song load

In April,version 1.52 was released with these changes:

Frequency table should have better tuning now
Relocation address no longer significant for gamemusic tunes

Download the standard and stereo version at:

http://www.student.oulu.fi/~loorni/covert/tools/goattrk.zip

http://www.student.oulu.fi/~loorni/covert/tools/gstereo.zip

Released on 25 January 2004 the new version of Cadaver's C64 tracker with some changes:

Hardrestart is more solid (set both AD,SR to $00) and same in both standard & gamemusic ver-
sions

INS in pulse & filtertable inserts a 00,00-row, instead of 90,00 as in wavetable
Pulse/filter-pointers in wavetable are adjusted when INS/DEL is used in pulse- or filtertable
Movement in patterns speed-optimized (no unnecessary workpattern->pattern conversion any-
more)

Download the program at:
http://www.student.oulu.fi/~loorni/covert/tools/ninjatrk.zip

PocketSID is a music player for Windows Mobile 2003 devices that plays Commodore 64 SID mu-
sic files. PocketSID is a Pocket PC front-end on top of a port of the sidplay2 / reSID emulation en
gine.

Download PocketSID:

PocketSID 0.47 for Windows Mobile 2003 (ARM):
http://pocketsid.progenitus.com/PocketSID.PPC2003 ARM.CAB

PocketSID 0.47 for Windows Mobile 2003 (Emulator):
http://pocketsid.progenitus.com/PocketSID.PPC2003 x86.CAB

On 30/03/2004 version 0.64 was released.

This version fixes a number of minor problems and supports song skipping and pausing via your
PDA's buttons:

http://pocketsid.progenitus.com/PocketSID- 0.64.zip

ACID 64 is a sid player for windows and now it is at version 2.0 (released 5 May) that has this
new features:

Cycle based emulation of 6510 CPU, 6526 CIA and 6569 VIC-II chip
Cycle based playback of SID data

Support for sample playback of RSID and C64 Program files

Bad line support for character and sprite data reading

Support for playing PRG and PC64 files

Simulation of space bar and joystick fire buttons to skip intros
Support for restoring screen size

Added 6510 CPU performance indicator

Support for skipping silents of beginning of tunes

Better resetting of SID chip

Faster voice bar animation

Fix for frequency adjustment to avoid warble sounds in some tunes
Many other improvements

Download: http://www.xs4all.nl/~boswme/download/acid64 player v20.zip

6

Released on 26 January 2004 a new Sid-

CTRACKER Tracker from Asterion of Tinnitus.

M =
m .

QRSEWIPIOTR @

=]
[-pla=lopld =Tl L1 o

I

i o OTLLED
=]

TIOSDDTIIDN
MES@ =MD

The editor is tracked-based and come out
with lot of sample musics, from Asterion,
Borgon and Trompkins.

CODDDoESD
COOIOOOIT— D
ooDDDOODE— 0
OOOIDONDE- o
CODODDRERT X
DODDDoNDD
DDDDD D
COoDoOODDD o
BONDHARLNT =
o e e T)

[==] I
|
1

SEEIENT =
=

ATTINTT ©

QOOE M=INNLkW R

[=lp]=~1="]
0O Q00 =0D0DoODo

Download the disk image from
http://tinnitus.prv.pl

= QOO
Whik QD@

nnm
EDDE SDDD

SDOODMWED =I=IMN LR
m X

SESEIAD]LN
L=l -
Lp g [V e L o Ll
=l len e e T LA I=EC]
[lanlanllunlan] Ml
M iyl =-lul
=I=TTIDL
b o -1
=M= S
o =+

ISTM Q0@
- 1=

I==-- 00D
=ZXX SDDID
=LA

I=== Q00D
M2 SooS
IS QOO0

Audio::SID Perl module by Lala. In this new version:

+ Added a check in validate() to make sure the initAddress is within the load range for PSIDs.

+ Added complete support for the new 'C64 BASIC' RSID flag: added the new getC64BASIC(), is
C64BASIC(), setC64BASIC() methods, changed the PlaySID flag related methods. See docu-
mentation for details.

The new version of SIDedit perl ripper program was released on 02/02/2004 by LalLa. Some of the
major changes in this version are:

« Added support for the new 'C64 BASIC' RSID flag. (Thanks to Simon White!) Click on "Edit flags"
to set or clear this flag.

+ Added rudimentary support to modify a contiguous string of bytes in the SID data itself. See "Dis-
play SID data" -> "Modify bytes". Consult the "Modifying Bytes in SID Data" section of the "Help"
-> "Quick tutorial" guide for details on its usage. (WARNING: You can really screw up a SID file
with this, so use it with extreme care!)

« Major overhaul of the user interface:

« SIDedit now uses menus and toolbars for easy access to most functions.

« The main window and the data display make use of colors.

In the data display window it is now possible to click on the jump/branch addresses
to jump to that location directly (if that location can be displayed in the window).

« In the data display window switching between hex dump and assembly listings re-
tains the currently displayed address range in the window.

« All the settings are now configurable via a separate "Configure settings" popup win-

dow.

_ 5IDedit - SID data display i

;10FF FF 4t \ - Data display options ———— .

o mwmis s it - Experimental mousewheel support.
3;335 B 16 NG GG + Hex dump (NOTE: on some systems if you
}ﬂga 33'24 I Lo siged | | Assembly press down on the mousewheel but-
#1100 I 50 5TR i i .

10 A 7316 LDa $1673 V;::z;n}:?u:ﬁ'uns ton and move down, the window
71133 18 :

T ol s Starting from: contents scroll up, and moving up
s ¢ Load adiress (41000) scrolls them down instead of the
S v'"l'mgz;ess(i;:'gg;) other way around. This seems to be
120 a3 00 LDA #3500 N Py eSS i i

,Hgg Eg gg 16 STR Séggﬂ - Other (range is $1000-$1 C6D) a bug in PerI/Tk Itself')

5 A LDE # 3

;1127 2031 11 JsR 81131 [s7200 _ . .

;112 207 o7 .

L e T The .f|Ie navigator wmqlow pane also
;1128 a2 0E LIE #50E .

A 4 as binary 9ot its OV\{In toolbar \A_/lth 3 directory
L D0 STa LS X + & 64 KB memory image shortcuts" (default dir, default save
ﬂgg Bae Te s oA IRt in] ey dir, HVSC dir) which are config-
S1130 A TRY . : .

30 OB 16 LDA SI608,% Sl urable via the "Configure settings"
;1140 90 07 16 STh §1607, X .

143 FO12 EEQ 1157 ~Trimjpad dala———————— popup window. You can use these
;1145 BD 05 16 LOA& $1605, X Trim or pad the SID data . . M
A RO e sh?rtcu’gs ip jurtnp”;ro those dirs with
d4p D008 BNE 1154 N sJ#7000 - [e1ce0 out navigating to them.

S114F 29 FE LO& #5FE)

;1151 90 06 16 STa $1606, X Trimfpad data |

;1154 ED 07 16 LD& $1607, % . i -
s R B — _ Lots and IIots of small bugfixes. Hopefully, | man
i BCL

e G i ol 5 63t o aged tolflx all thg bugs that were reported since
JUSD e0 80 O 580 a the given adiress. the previous version was released. :)

J115F 90 0o BCi 116E rpr—

;1161 20 FE LIk #5FE At address: |$1000

;1163 oo Oe 16 STa $1606, X Jenmn

et 2000 L G Download from http://lala.c64.org

16 90604 ST SD4O6.% Houiy byt |

;116E DE 0a 16 DEC 31608, K

e Y / oK |

i~ SIDedit v4.00 B=E)
Hle Edit Tools Help
BEEEIETIETFWIR LY IE X
— File navigator — File info
H e D W | ol | | Filename: {Soulfixer.sid =
Directory: [fhomericeshvsids/VARIOUS/G-LiLuca lEsieal ety -
M List SID files _i List C64 data files _| List INFO files MD35 fingerprint: §1e2d07763che361289d9fcas29dibz |
[Intro.sid N Create HYSC ; i
Intro_2.sid compliant filename LisplivesiDilaty St unly
In_dulci Juhlll]:sll:l _ SID header
I_am_happy.sid 2
Jungle_gardenia.sid Environment: 4 PlaySID ~~ Real C64 |
Khaios_theme.sid version: vl # vZ2iveNG 3|
Kids_Arent_Allright.sid dataOffset: {DxDD?C 4
Ml The xean St loadAddress: [$0000 a4
Miami_beach.sid
Mindfizer.sid Load range: $1000 - $1C60
Moonlight_shadow .sid initAddress: |§1000 2l
Moonwalking_Spacedog.sid playAddress: 1003 a1
Horwegian_Fiord.sid Sars I1
Ho_controles.sid gs: A
Palestina.sid startSony: |1 £
Prato.sid speed: [0x00000000 Edit speed bits |
Quintet.sid
Salvation.sid name: |Soulfixer o
Scottish_dawn.sid author: |Luca Carrafiello (Luca) W
gt g1l released: [200Z FIRE L
Silent_moebius.sid
Soulfixer.sid flags: |0x<0024 Edit the flags o |
Status_Quo.sid startPage: (500 1
Sweet_Lullaby.sid i
Treni_di_Tozeur.sid pageLength: 300 -
Tubular_Bells_II-Shake.sid reserved: 00000 E|
When_the_nights_on_fire.sid
Why_Dont_You_ Get_ A Job.sid
Yeha-noha.sid 7

Soulfizer.sid is loaded into memory.
L 1

Version 4.01 of the program follows some days after the previous release and contains:

(added) New setting to turn off syntax coloring in data display to speed up display and clipboard
operations.

(added) Version history in the POD.

(added) Broke up content of INI file into 4 sections within the file for better readability.

(fixed) Colors were one off on the hex data display.

(fixed) There was a problem entering the "Other" address in the data display. It caused focus
problem, data rendering problem, etc. The address entry is now enabled permanently.

Finally version 4.02 contains:

All illegal assembly instructions are now colored red in the data display when syntax coloring is
turned on.

A line consisting of dashes is displayed after every JMP and RTS instruction in the data display
to improve readability.

Added configuration setting "Automatically create HVSC compliant filename when ‘name' field
changes". Turning on this setting automatically changes the filename to be HVSC compliant
whenever the 'name' field changes, and it also gets rid of the pop-up confirmation window when
the "Create HVSC compliant filename" button is pressed.

Added missing '$' signs when displaying conditional branch instruction addresses in the data dis-

play.

The new version of the Windows sid player by Adam Lorentzon was released with this changes:

ReSID 0.15

Improved CIA emulation in libsidplay2 (TOD emulation added)
RSID support improved

CPU debugging output file is now asked for each time

Download from http://www.gsldata.se/c64/spw/

Released on 21 February 2004 at http://www.hvsc.c64.org the update 38 of HVSC:

After this update, the collection should contain 25,149 SID files!

This update features (all approximates):

1695 new Sl Ds

126 fixed/ better rips (129 Sl Ds)
2 fix of PlaySID/ Sidplayl specific SlIDs
9 repeats/bad rips elimnated

106 SID credit fixes

280 SI D nodel infos
18 tunes noved out of /DEMOS to their conposers' directories
7 tunes from /DEMOS/ UNKNOMWN identified :-)
19 tunes noved out of /GAMES to their conposers' directories
(and 3 go back into /GAMES due to a wongly credited tune)

This time we bring you:

another dose of 1000+ new SIDs, in an effort to finally clean out our Unreleased archive. And it's

still not empty yet... [sigh!]

Like always we present all the latest scene releases, such as from demos and music collections
that were released since christmas.

The music compo tunes from several parties: Xmas Compo 2003, Deadline 2003, TUM 2003 and
Out Of Orderia 2003 (hope | didn't forget anything important).

You probably already noticed it, but it's worth stating again: The High Voltage SID Collection has
reached the magical 25,000 mark! Who would have thought we would ever come this far? Only a
couple of years ago we were thinking about if we would ever reach the 15,000 limit. How
naive! :-)

Let's start the race towards the 30,000, the support of you, the SID music lovers, shall be the wind

in our back. Please keep up sending tunes, notify us of missing ones, let us know about bugged
rips, submit your STIL entries. And | can promise you that the SIDoine will continue flowing through

your blood vessels!

=)
Main composers featured in this update:

MERMAN
Stefan Hartwi g
Jorg Rosensti el
Agemi xer
Amadeus/ Attic
Amadeus/ Meka Desi gn
John Anes
Conpod

Ar ne

Ri chard Bayli ss
Kl ax

St ef an Wi nert
Wodni k

The Cee

Kochan_Maci €]
Scrol |

Mer man

M . Bungl e
Ranos
Repl ay
Si gnor
Ti ps

Tj agvad
War nock
Vel | e:
Peace

Er dbal |

The SidWine 3 Online Music Competition was achieved from 21 February to 25 April at

http://digilander.iol.it/ice00/tsid/sidwine3

Here the result:

Pos. Points Title

1 174 Septi c Shock

2 152 ae!

3 141 One Mbre Chance
4 134 Wl f

5 133 Soni ¢ Dreans

6 129 Sea of the Seven
7 123 Di storted Frog

8 98 Eni gma Vari ati ons

Author

Daniel M Gartke (Turtle)

Hei n Hol t

Sl owhand (Bekir Ogurl u)

Hukka (Pietari Toi vonen)
Jaynez Julian (A Life in Hell)
Asterion

Tony Caven (Ferrara)

Anders Carl sson (Zapac)

W nds

Look at more user comments by downloading the result pack available in the site.

10

This time we can read this interview with Jan Diabelez Arnt Harries made in February of this year.
You probably already know him as Rambones sid author and that he is a HVSC crew member from
the beginning, so don't hesitate to read the interview.

Hello, Jan,
Why not start by giving us some information about you and your real life?

My full name is Jan Diabelez Arnt Harries, and I'm born on 12.01.1969 in Nyborg, Denmark.

I'm an educated and experienced IT-technician and programmer.

At the moment I'm looking for a new job, | just recently finished yet another education. I've been go-
ing to school 20.5 years out of my 35 :-)

I'm interesting to know what was working in a team in the early year of commodore story:
you were a member of The Supply Team active from middle '80, so you can tell something
about.

When | first met the other members of TST: TSN, Kaze, Wizz, Hagar - | only knew a little of BASIC.
Me and TSN learned some BASIC during 1985, and then we met Kaze who was using assembler.
Kaze worked for a whole year on his demo "Kaze Demo #2", and we decided to make the group The
Supply Team.

Kaze met Wizz in school, and then we had 2 assembler programmers.

At this point, later half of 1986, we made the first TST demos that were widely spread. Later we got
Hagar as a g¢fx artist, he was very good with Koala-painter. Things kept improving, and | started
making my own demos, and later, my own music as well: using the Soundmonitor from Chris Hls-
beck.

These tunes can be found in our demos offcourse, and in the HVSC at

/VARIOUS/M- R/Rambones/*.sid

In 1987 Kaze and Wizz left for Wizax 2004, and later they formed Zetrex 2005.

We had some internal friendship trouble because me and TSN were still using Kaze's assembler
routines after he left the team. This resulted in the Federation Against Supply Team (F.A.S.T). Ironi
cally, | got more and more contacts because FAST made TST even more famous :-)

After 8 months of war, Zetrex broke up and Wizz joined 2000 A.D. - in the end we all decided to be
friends again, and we co-operated on the demos "Mip Mip Police!" and "No System".

TST was never a cracking group, we were one of the first real demogroups in Denmark. Our heroes
as we began were Sodan, 1001 Crew, The Judges and Dutch-USA Team.

In 1988 and 89, we all had gotten an Amiga 500/2000, and we started doing demos on it. After
about a year we stopped because each member was into higher education - all of which were com-
puter-related.

| was using an A500, later | got a harddisk for it, and last | used an A1200. Up to 1996. Then | shift-
ed to PC, so did the other TST members.

You probably are one of the first ripper of C64 and Amiga music as you begin from '86 with
your "Ripp(ed) Off" collections: can you speek about these old projects?

| started in 1986 by ripping music from TMC's "Game Music #1-9".

This was really easy, and it helped me to understand what to look for when wanting to rip a tune. |
then started ripping from games, and just got better and better at it. In late 1988 | just resetted the
game and hit F2 to get into my SpeedDOS opcode- monitor. (it shows the whole memory as op-
codes and PETASCII)

11

| found the music by looking at the ASCII pattern that looked like notedata for the music, then quick-
ly decided where the player was (usually in front of the data, and determining an end-address).

All this, without looking in the code (well only opcodes) - those were really golden days.

| also used a monitor called "Handic" which i had gotten on a cartridge. This cartridge very often
fucked up the memory while | was ripping, so | often had to start all over again.

In 1987 | started spreading my rips, because there were too many to use in demos (I didn't know
what to do with all the rips).

| invented the first rip-series called "Ripped- Off #1-2xx". There was about 200, from early 1987 to
late 1988.

| later saw others try the same thing, but they all stopped before they reached 20 rips.

In 1986-1989 i filled 8 disk with rips. Later that number was gonna increase tenfold as | started con-
verting tunes to PlaySID on the Amiga.

[only knew about one other ripper that was as much into it as | was, and that was Omega Supreme
(Olav Mrkrid) from The Shadows (Norway).

| met him at the Danish Gold party in 1988 where TST released "New Limits", and it turned out he
had ripped "Cauldron II", which | could not!

To this day | still haven't ripped it. Me and Olav had a sound competition going that made me try
even harder.

By now I've ripped around 5000 tunes.

But you are even one of the first people involving in HVSC: can you tell about the born of the
project, and how it grown until now?

In 1990 came the demo "The 100 Most Remembered C64 Tunes" for the Amiga, from Per H an
Sundell and Ron Birk. It had a built in SID6581 emulator, and showed some koala pictures aswell. In
1991 they released PlaySID with about 300 tunes. A long time passed, and no more tunes were
ported to the Amiga. One day | got home from school, my friends Wizz and Brian Nevad had 'stolen'
my C64 and disks, and transferred 189 tunes to PlaySID 2.0b. The released this as "Addition", and it
was the first pack from outside the PlaySID team with ripped sidtunes.

| got the cable they had been using (it was self-made), and started to transfer all my rips to PlaySID.
From 1991-1995 | released 8 packs called "Ripp Off #1-8", and the first couple of years | was the
only one doing it, then others started.

A guy called Nemesis1 from Island took all the collections of tunes there was released, and put
them into one collection called the NemeSIDs.

At first | was angry, because he took my work, and presented it as his own, but after some time |
only ripped more and more, to 'complete' the collection. As a result of building NemeSIDs, | got in
contact with more and more rippers across the world, and it all grew - slowly.

In 1996 | got the PC, and as a result of my work | ended up in contact with the author of SIDPLAY
for the PC, Michael Schwendt. We exchanged all the stuff we had, and he kept improving SIDPLAY.
After a while | got in contact with The Shark of INC (David Greiman), and he was just about to re-
lease the equivalent of NemeSIDs for the PC/SIDPLAY.

| added all my rips (at the time it was 1364), and we agreed that | was to be co-author of the High
Voltage SID Collection (HVSC), together with BOD/Talent and Michael Schwendt.

Now we finally had a team and worked together on solving the mysteries of who really composed
the various tunes. Something that NemeSIDs wasn't really good at. Shark contacted many com-
posers by email, and we got a lot of tunes that had never been released before. Now the collection
was really going somewhere!

The HVSC has grown into the mature project that it is today, only because we have gotten more
and more feedback from the composers themselves, and new team members. Rippers, coders,
credits and STIL experts.

With the creation of the HVSC update-tool, and the distribution as an archive that any platform can
use - HVSC has been well accepted by the community.

In 1993 | estimated (based on my game/demo collection), that there was about 10000 tunes to rip.
Today we have more then 25000!

This is due to people like those behind the Gamebase64 and others, who have helped preserve the

12

software, and because of the C64 emulaters that have been made (CCS64, VICE, Frodo, A64 etc.).
All these projects combined have proven to be a good road for the preservation and future of the
C64 scene in general.

This magazine you're reading right now, is a direct result of all these events.

Perhaps it was inevitable the way things got to as they are now, but without the work of all these
people it certainly wouldn't have been as good as it is right now in 2004, 22 years after the release
of the Commodore 64.

As you have ripped probably tons of music until now, you can give the right words for the
readers that want to become a ripper. What is your advice for them?

If anyone wants to be a ripper, they either have a C64 or emulator with tons of software. So they
should get a good machine-code monitor. | use Action Replay 6, but in the past | used less powerful
methods. The easiest way to start is to first understand what music in a C64 is.

It is a portion of the running program, that writes data to the registers of the SID chip. The addresses
go from $D400- D7FF, usually only the D400 area is used.

To make things even easier, take a simple demo with only 1 tune in it, and reset your C64. Then
start the monitor, and look at the memory as PETASCII codes.

In Action Replay this is "I*0800-", it will display the memory from 0800 an upwards.

Find out what is the code (program), and learn to recognize it, apart from charset- data, sprite-data
and screencodes (gfx, bitmaps).

Find out what the program is doing, and in particular, find out how many interrupts there are and
what they do, what addresses they call (JSR $4000 is a call f.ex).

Writes to $0314/0315 and FFFE/FFFF are interrupts, and an interrupt usually ends with LDA #$01,
STA $D019, JMP $EA31 or RTI.

Then look at the addresses called in the interrupt, and some of these subroutines will contain code
that says STA $D400,X or y, and STA $D418/D412. If you find code like this, it is most probably the
musicplayer.

Find out EXACTLY how the player is called (it all says so right there in the main program)

And find out what is done before the interrupt is made, this is most likely the initialization of the mu-
sic routines. A music routine often needs to reset the starting point of the music to a zero.

After a while you will get accustomed to how a player looks, and understand what looks like and init-
address, and what looks like a play-address.

By reading the player code, and looking at the data in memory, you can determine where it starts
and ends. Save out the part(s) needed, and erase the whole memory.

Now load the part(s) saved, and write a small interrupt setup to make the music play.

You will now find out if your rip works or not.

Here's the setup | always use:

SEI yprepare to set up interrupt)

LDA §$35 ;switch off the KERNAL ROM (can now JSR nusic under EO00- FFFF)

STA $01

LDA #>.interrupt ;hi-byte of .interrupt address

STA $FFFF ; hi-byte systeminterrupt vector used when KERNAL ROMis OFF)

LDA #<.interrupt ;lo-byte of .interrupt address

STA $;FFE ;lo-byte systeminterrupt vector used when KERNAL ROM is OFF)

LDX #$00

STX $DCOE ;stop CIA timer, we want to use a PAL raster-interrupt here

I NX

STX $D01A ;enabl e interrupt

LDA #$1B

STA $D011 ;make this interrupt a raster-interrupt

LDA #$33

STA $D012 ;set rasterline to a specific line on the screen

LDA #$00 ;maybe the nusicinit needs a nunmber, nmaybe not, maybe in X or Y reg instead..
JSR _nusic_init ;initialize the nusicpl ayer

CLI

.lock JMP .l ock ;go into an endl ess | oop, never return to basic!

.interrupt o)
LDA #$06 ;set a color on the screen-border, as long as the nusic is playing
STA $D020]

JSR _nusi c_pl ay ;play the nusic!

LDA #$00

STA $D020 ;set another color on the screen-border, so you can see how rmuch rastertine the

13

; musi ¢ uses!

STA $D021

SEC

ROL $D019 ;the interrupt has occurred, and ends here
RTI ;return frominterrupt

There are more simple methods to use when using an interrupt to play music, but this one gives you
full control of the machine.

After getting the music to play, and making sure you have all the parts needed for it, you should try
and put it together in one single file.

This is a whole different science, that | would like to explain in a future article.

After many vyears, | have perfected the technique needed to do this, and in many cases (especially
old games) it is sometimes really difficult to do.

About ripping: if at first you don't succeed, try and try again!
For quick help, transfer a tune from the HVSC to your C64/emulator, and look how a musicplayer
looks like - this will help you a lot.

From time to time you compose again with the Sid: if | see correctly, some of your last works
are done with JCH editor. What do you think about the development that the most recent edi-
tor had have respect the initial ones? The SID chip is still the same, but what about the edi-
tors?

The editors have definitely improved over the years.

If you are into using real notation however, the possibilities are limited.

The only editors using notation are aged (1982-1986), and don't offer sophisticated sound creation.
So to get the best result, you must use the newest editors, trackers.

JCH and SDI (SID Duzz It, from SHAPE) are the best ones I've seen, and | now only use SDI.

A very good tracker for beginners is the Cybertracker from NoName, because it offers sound-cre-
ation in a very readable way. It also uses gfx to show ADSR, filters etc.

Now some quick final (standard) questions:
Real machine vs emulator: what do you think of?

For playing games and watching demos, | prefer the real machine.
It also has a nostalgic value to know that your C64 can still kick ass!

For listening music, off course the real machine.

For ripping and development | prefer the emulators, because it's much easier to transfer code from
the assembler.

When ripping in the emulator you can by a single keystroke enter a monitor where you can see
where the current interrupt is located, and thus very quickly see what is going on, while the program
is running.

6581 vs 8580 chip: any (musical) preference?

6581 - not because it's the best (coz actually it isn't, technically), but because it's the chip that my
C64 came with, and I've gotten used to the sound of it.

What is the worst sid that you compose and the better one?

Worst one: /VARIOUS/M- R/Rambones/Brev_til_dig.sid
Best one : /VARIOUS/M- R/Rambones/Zound_Muzak_3.sid

14

Who are your best sid authors?

This is the most asked question ever! :-)

Rob Hubbard, Martin Galway, Ben Daglish, David Whittaker, Fred Gray,
Mark Cooksey, Jeroen Tel, Charles Deenen, Drax, JCH, Laxity, Banana/TEK.

What are the best sids ever in your opinion?

After all these years, they are all the best.
Can't live without them.

Finally, many thanks for the time you give for this interview, and now you can say any things
you want that the people will read from you!

Keep the C64 spirit alive, by making what you do best!
Since 1988 when | got my Amiga, | have been composing MOD, XM, MP3 and | released most of it

on my website www.janharries.com
Go download the lot and listen to it, it's a story through time!

| proved to be a much better composer on the PC/Amiga than on the C64!
This was due to the fact that the TRACKER was invented by Karsten Obarski in 1987.

The HVSC is not a finished project, and it is very likely to be around after the C64 has completely
died. If you want to contribute with new rips or fixes, credits, don't be shy and write to us:
hvsc@c64.org

If you need help learning to rip music, write me: jan.harries@get2net.dk
And if you have the most irresistible music that is not ripped, send it to me as well and I'm sure we
can manage it.

There will be released another interview by me at www.c64hg.com in the near future. Be sure to
read it!

You can get all the C64 demos from The Supply Team (1985-1989) on:
http://hjem.get2net.dk/nmioaon/TSTDEMOS.zip (1.3 MB D64 images)

The Amiga demos we did are at:
http://hjem.get2net.dk/nmicaon/TSTAMIGA.zip (1.3 MB ADF images)

signed: Jan Diabelez Arnt Harries (rambones/nmioaon)

Webography:

Digital composer - http://www.janharries.com
Weblog - http://janharries.blogspot.com
Photo album - http://www.xpphotoalbum.com/showgallery.php?ppuser=5765&cat=500

15

| would like to write this article about a new music editor released this year: Asterion Sid Tracker.
The tracker is coded by Asterion of Tinnitus and come with a disk containing the editor with in
structions, the packer & relocator and lot of music examples.

[try to give you an overview of the editor and my personal opinions about it.

The editor starts up with a nice intro, that looks
as a Halloween's one, like you can see in the left
image. The music is very good and the scroller in-
troduces the born of the editor and the Tinnitus

group.

| like to see the intro in the editor, as it gives an
old fashion to the production.

After you had pressed a key, the editor pops up
with the main screen.

All you need for making music with the Asterion
editor is in the main screen. This is probably a good
features, as you don't have to open sub screens,
but on the other side, this reduce the space for the
pattern steps to 8.

Technically speaking, the editor is a tracker like
one, similar for examples to Goattracker, Cyber-
tracker, ecc., even if the commands you can use in
each pattern steps are limited to one byte, as we
see later.

Now | think that it is the case to start analyzing
how you can make an instrument into this editor.

An instrument is created with the sound table: press F3 to enter the sound table screen.

The parameters you can enter for controlling the sound generation are:

« A/D: Attack/Decay
- S/R: Sustain/Release
- WAV: Wave macrocommand

16

« ARP: Arpeggio macrocommand

« WAS: Wave/Arpeggio executing speed
- VDE: Vibrato delay

« VDS: Vibrato deeph/speed

+ PWM: Pulse starting speed

« PLM: Pulse lower/upper limited

« SCP: Cuttoff/pulse speed

+ MCP: Multicutoff/Multiple speed

« FCT: Filter starting cutoff

« FLM: Filter lower/upper limit

« R/T: Resonance/(1 2 4) filter type (8) Hardrestart on/off

The options are quite commons: ADSR of voice, Vibrato control, Pulse effect, advanced filter con-
trol, plus a wav/arpeggio table pointers and on/off control of hardrestart.

In fact, the values you inserted into WAV e ARP are a pointers into the table WAV and ARP that
you can see into the Track&Macros screen.

WAV is the control shape of the voice (triangular, rectangular, ...), while APR is the value to add to
the current note (for producing arpeggio, but even for the other effects) that can be relative (00-$7F
values), absolute ($80-DF) or skydrive ($EO).

The use is so quite the commons:

WAV -> 30

ARP -> 32
POS WAV ARP
30 41 00
31 21 00
32 FE FE

Performs a $41, followed by $21 with the same note frequency.

A $FE terminate the macro command, while a $FF will repeat the macro to the address specify by
the next value:

WAV -> 20

ARP ->20
POS WAV ARP
20 41 00
21 FE 0C
22 00 FF
23 00 20

This will perform an octave arpeggio to the note being played.

Note that Wave and Arpeggio tables are independent so you can achieve very complex tasks as
even their speeds of execution (controlled by WAS) are separated.

17

In the first 3 columns of track¯os screen, you have to insert the number of pattern that each
voices may execute (from $01 to $7F).

Values from $80 to $FE will execute the transpose (CO-middle) of the pattern that follows.

Finally, the $FF values will loop the track specify by the followed number.

Example:
POS 01 02 03
00 03 04 02
01 03 8C 02
02 03 04 02
03 FF 04 FF
04 00 80 00
05 FF
06 00

Here 3 patterns for each voices are executed forever, but for the voice 2 the last two patterns are
executed with a $0C of transposition.

At the left upper part of the screen there is the pattern editor where you can inserted the notes
and the effects to be played at each player call like in all tracker style program.

Each effect upon activated will be executed until a next one (so you don't have to repeat the com-
mand at each next positions).

Here there is the list of all available effects:

- 00 No effect

+ Ox-1x Instrument number

. 2X 1.Tie note
2.Synchronize
4.Modulation
8.No pulse restarting

« 3 Portamento to target note with speed x

o 4X Vibrato depth, with speed declared in vds
0.Vds depth

+ 5x Change attack

+ 6X Change decay

. TX Change sustain

+ 8x Change release (instrument declaration (0Ox-1x) restart adsr value)

« Ox Execute waveform from index no.x
0.Normal waveform

+ Ax Execute arpeggio from index no.X
0.Normal arpeggio

+ Bx Set pulse

0. Instrument pulse LFO
If MCP LSB=0 then absolute pulse (x dumped to pulse MSB)

18

If MCP LSB<>0 then x becomes 2Nd pulse value
+ Cx Set cutoff
0. Instrument cutoff LFO
If MCP MSB=0 then absolute cutoff (x dumped to cutoff MSB)
If MCP MSB<>0 then x becomes 2Nd cutoff value

+ Dx set volume - default F
- Ex Change filtertype

1. Lo pass

2. Bd pas

4 Hi pass

8 No cuttoff restarting
+ Fx Tempo

0. Stop tune

1-E Set tempo
F End pattern - affects all tracks

The first point to observe is that the instrument to use is declared as an effect, while in other
trackers you can specify it and even an effect to play. This is a choice that probably simplify the im-
plementation of the tracker, as only one byte (over the note) is processed.

Other interesting commands to use are the $9x, $Ax that specify the position of Wave and Arpeg-
gio to execute when the command is entered. You must use the middle screen (F6) for enter those
values.

You can then add vibrato, portamento, set ADSR at the position you like, controlling the filters and
the cuttoff and even controlling the volume for making fade-in/fade-out by using the other com-
mands.

Finally you can control how to manage the pulse restarting, setting the tempo of the tune and you
can let a pattern finish before by using $FF command.

As wee see, the editor has only one byte of commands in track, but it has all you need for making
good music as instrument implementation is good (e.g. Wave/Arpeggio independent tables are very
powerful).

The point that can be made better is to implement a more powerful disk menu, where you can see
the directory listing and you can choose the music to load by navigate directly into the screen.

Actually, the disk operation are limited to SHIFT+L, SHIFT+S for loading and saving and F8 for a
directory listing.

Choosing an editor from the all around is not a simple task, so try to test this editor as it is a good
tracker with all you need that stays compacted in a screen!

19

DigiOrganizer is a great peaces of software wrote by Polonius of Padua for making 4bit sample
music using SID volume register. | want to show you how the editor can be used, illustrating all the
processes you may use for producing yourself sampled music.

However, in the style of SIDin, | cannot not give more details like the complete reverse engineer-
ing source of the player code!

When you load the program, a nice intro starts,
with two scroll texts that introduce the editor and a
great animation is performed into the logo pictures.

Music is very interesting and | think you will lis-
ten to it for some minutes before pressing a key!

After so, the texts will disappear and after a
while, even the logo will do so with a fade out mu-
sic.

Now, some text screens show the porpoise of
this editor and how you may use it.

DigiOrganizer is an editor that allow you to add a digi-sample music onto a normal (singlespeed)
tune you had compose with other editors.

| think that this is a good solution, as you can use your favorite editor and extend the sound with
full 4° voices in a easy way. There are however some problems into this cohabitation but these will
be shown later.

The first step to do after the editor is open is to
load the demo tune from the disk.

Press M and M again, then insert
MODULE/DEMO for loading the sample demo part.

Press F1 and you will heart the sample music.

Press M and L and insert MUSIC/DEMO, then
the address of the location that activate the music
(usually $1000, but you can have music until
$7500).

[i] 5]
aa
a1
az
a8
a1
a2
a8
fF
FF

‘= DODEOEDE
h o D - G D e

Press F1 and now you will heart all the 4 voices
music! Very simple.

This is essentially how you have to use this editor with an external music.

20

But now it is time to use the editor for making our music.

In the left part of the screen there is the track menu. In this menu you have to insert, in the first
position, the number of pattern to play, while in the second position the number of time-1 to repeat
this pattern.

So, for example:
01 04 play pattern 1 for 5 tinmes
02 00 Play pattern 2 for 1 tinmes

A $FF value means to restart the playing from the beginning, while $FE means to stop the repro-
duction of sample.

In the right part of the screen there are the locations where insert the pattern values. You have a
maximum of 32 values, but you can insert a $FF where you want to finish a pattern before reaching
the last position.

A not 00 value you inserted in those locations is the number of pattern to reproduce, while a value
of 00 means to not take any sample action (so, eventually you will continue to heard the playing of
previous set sample if it is a long sound).

An example:
01 00 00 02 03 FF

In this example the sample 1 is played and his execution can go for other two tasks. Then sam-
ples 2 and 3 are played, before the pattern is finished.

Now there is the final step: how are samples declared?

Press S for going into sample menu, then press L and insert the name of one sample to load
from:

"tom 1" "noise 1" "lazer zokk" "small snare"

"tom 2" "noise 2" "backward zokk" 2nd snare"
‘synth tom" "noise 3" "double zokk" "snare 2"

"dx tom" "noise 4" "kraftzokk" "snare reverb"

"electom” "noise 5" "laser" "snare sk.or die"

"noise 6" ‘underwater 1" "sanxionsnare"

"base 1" "kraftsnare"

"base 2" "pueaaa" "hihat closed 1" "triadsnare"
‘base reverb" "puuu!!! "hihat closed"

"base sk.or die" ‘paaaalll" "hihat open" "ride"
"sanxionbase" ‘koud he" "dish 1" ‘roadrunner”
"kraftbase" "uuuu!” “crash” ‘scream"
"base x" "atsyou!" “triadcrash 1" "bark”

"arr!" "triadcrash 2" "little dog"

21

"sanxionchord 1" ‘ayeea!" "burp”

"sanxionchord 2" "arrh" "passguitar 1" "glass"

"sanxionchord 3" "klack!" "passguitar 2" "horse"

“chord" "oouuuooo!!" "synthbass" ‘cork"

“thank you robb" "paou!" "bell"

"bigbow" "quitar accord" ‘car"
‘nightmare” "guitar 1"
"boom” "guitar 2"
“touch” "guitar 3"
"destroyed egg" "quitar 4"
"guitar 5"

e e e e e e e e e e e e e e e
1T L 7 O 00 T e 1
00 0 0 0 0 0 D D D D

N =Nal- g TRI -1 [-p LT NI AT)
=leslanlanlaalunlanlenlun]unlunluslanlun]an o]

= 0L 0= L L e
2RI DDIDDIL L L
T
IO IDITDIO L L
OIS DDDDDINAM =]
oOoSLIDDIDDIDID

o e = g TR S TS TGS ST R R R TR TR TL S T

P
-+

back to Editor
delete last sample

load next sample into Mmemory

disk directory

After that, you will see that in the ta-
ble will appears two values (e.g A0-A7)
that are the high part of start and end-
ing address of where the sample is
loaded into memory.

You can so load up to $2F samples,
by filling all the memory from $A000.

One limit of the program is that you
can only delete the last inserted sample
(by pressing L), but as the sample can
have different lengths, deleting one
sample in the middle of table should
made difficult to fill the empty space
without an automatic process that com-
pacts the memory and move the point-
ers to the correct places.

The editor will fill the memory with $FF if the loaded sample did not reach the end of the memory

block (so, volume will go to 15 after the sample is played).

Now return to the main menu and press CRTL+2. Here you can define how the sample inserted

into the pattern value is formed:

01: A7 AE A0

Here, A7 is the high part of the starting address of sample in memory ($A700), AE is the high part
of ending address of sample ($AE00), and $AO0 is the speed of how the sample is played (we see

later what physically this parameter means).

With this system, you can have one sample formed by more sequence of memory data. Suppose
that we have load this three sample into memory:

A0-A4 Sample 1
A4-A7 Sample 2
A7 A9 Sample 3

If we have this definition:

22

01: A0 A9 A0

The sample played by inserting 01 value into patterns, is the sequence of Samplei, Sample2,
Sample3.

At this point, the last things to know about this editor is that pressing SHIFT+A..l you can set the
global tune speed.

If you think that the samples that are present in the disk are not enough for you, maybe you can
add your own sample to the editor.

All you need is a wav file containing the sample (stereo or mono, better into mono for skipping a
conversion from stereo to mono) of the sound you want to add.

Then you have to convert the file into 8 bits mono at 6KHz. This is achieved by reducing the bits
from 16 to 8 and down sampling the frequency from 44KHz to 6KHz.

If you use Linux, simple give this command:
sox sanplel6é.wav -cl -b -v .8 -r 6000 sanpl 8. wav

In this example, a 16 bit 44KHz wave file is converted into 6000Hz 8 bit unsigned, reducing even
the volume to 80%. Maybe you should manipulate more the signal adding some low pass filters dur
ing the conversion, as the down sampling can introduce some spurious upper sound.

If you use other systems, maybe your player can save the wave file into the format we need.
At this point the wave file must be converted into 4 bit and it must be in C64 format (so, in 4+4

format: low nibble, high nibble of 2 samples). A good solution is to use the dos program S64_ENG
(www.filety.prv.pl by Reiter/Apidya) that performs the task easily.

Now, goes into sample menu of DigiOrganizer and loads your sample into the editor and test if it
sounds good.

Now it's time to see the internal of the editor by looking at his reverse engineering source. Please,
take in mind that all code is copyrighted by Polonius and Padua group, so contact them for making a
businesses use of it.

The editor is initialized by a call to $9000 and then at each IRQ, $9003 will be called. This is how
all editor normally need to be used. So, your routine for 4° voices music may be like this:

Init:

JSR $1000 ; init of 3 voices nusic

JSR $9000 ; init of sanple volune voice
Pl ay:

JSR $1003 ; play of 3 voices nusic

JSR $9003 ; play of sanple vol une voice

23

During the init part, DigiOrganizer will activate a NMI (Non Maskerable Interrupt) from CIA #2 at
timer B together with timer A. In particular, the speed of NMI generation (=speed of sample as the
parameter you can set into the editor) is governed by the low byte of timer A.

The other important thing to know is that it sets the volume to 8 (a middle value) and sets the low
pass filter flag governed by $D418. This means that if you use filter into music (not recommended by
Polonius's note) only the low pass filter may be activate (as it is reseted at each NMI when playing a
sample).

| don't know why this flag is set, as apparently it has no effect. Maybe you can hack the DigiOrga-
nizer code for not forcing it if you want to use full filters into your music.

Last thing: make sure that your 3 voices player did not modify the volume during IRQ otherwise
some very high noise sound will appears while playing the sample!

As you can see from the source, the most important part of the code is the NMI routines of the
player.

The player use three routines:

« nmi_null
« Nmi_sx
« nmi_dx

nmi_null simply did not do anything and is so activate at the beginning or as soon as a sample is
completely played.

nmi_sx takes the left nibble of the sample and outputs it to the volume. Then it activates nmi_dx
in the next NMI call.

nmi_dx takes the right nibble of the sample and outputs it to the volume. Then it sets the address
for the next sample and the nmi_sx for the next NMI call. If sample is finished, nmi_null is activated.

The other parts of the code are very simple and essentially is for follow the flow of
track/pattern/sample values and all is called by IRQ routine during the play phase.

Finally, the code present some data part that | use in the SidWine3 demo disk music, so look at
the source of the music at http://digilander.iol.it/ice00/tsid/sidwine3 if you want to experiment with
this data.

processor 6502

.org $9000
JVWP Init
JWP Pl ay

.byte "Dl G- ORGAN ZER BY POLONUS/ PADUA", $21

Init:
se
| da #$36
sta $01 ; 6510 I/ O register
| da #$EO
sta $21
Idy #$00
sty $20

cl ear:
lda (%$20),y
sta (%$20),y
iny
bne clear

24

inc $21
bne clear
dec $01
lda #$70
I dy #$00
sta $DD04
sty $DD05
sty $DD06
sty $DDO7
Ida #$11
sta $DDOE
lda #$51
sta $DDOF
| da $DDOD
| da #$82
sta $DDOD
| da #$18
sta $D418
Idy #>nm _nul
sty $FFFB
Ida #<nm _nul
sta $FFFA
lda #$00
sty curNTRep
sta curTracklnd
sta cur Pat Pos
jsr resetDel ay
cl
rts
cur Speed:
.byte $03
cur Tr ackl nd
.byte $04
cur Pat Pos:
. byte $06
t npLow.
. byte $00
t mpHi gh:
.byte $95
cur NTRep
. byte $01
SPEED = $05
Pl ay:
dec cur Speed
bm nmakePl ay
rts
makePl ay:
| da #SPEED
sta cur Speed
I da cur Pat Pos
bne readPat Val ue
readAct ual Tr ack:
Ida curTracklnd
asl
tax
readTrack
lda track, x
t ax
cpx #$FE
bne testContinue
I da #<nm _nul
sta $FFFA
rts
test Conti nue
cpx #$FF
bne trackVal
i nx
stx curTrackl nd
jmp goToRead
trackVval
Ida curTracklnd
asl
tay
lda track+l,y
and #$7F
jsr setRepeat
I da #$00

6510 1/ O register

Tinmer A #2: Lo Byte

Timer A #2: H Byte

Timer B #2: Lo Byte

Tinmer B #2: H Byte

activate timer A forced

Control register A of ClIA #2
activate tinmer B, TOD allarm count CNT+
Control register B of CIA #2
Interrupt control register ClA #2
NM with tiner B

Interrupt control register C A #2

Sel ect volune and filter node

Not Maskerable Interrupt (NM) vector

actual nunber of repeat for this track
actual track index

current pattern position

actual values of tining delay (speed)

actual track index

current pattern position

actual nunber of repeat for this track

actual values of timng delay (speed)

actual values of timing delay (speed)
current pattern position

actual track index
=*2

read track val ue pointed by x

is stop playing ?

Not Maskerable Interrupt (NM) vector

is play from begi nni ng?

next track
actual track index

actual track index

=*2
read nunber of repeat for this track val ue

25

sta tnpHigh

t xa

asl

rol tnpHi gh

asl

rol tnpH gh

asl

rol tnpH gh

as

rol tnpH gh

as

rol tnpHi gh

nop

nop

nop

nop

sta tnpLow

I da tnpH gh

clc

adc #>pattern

sta tnpH gh

sta plnd+2

Ida tnpLow

sta plnd+1

I da cur Pat Pos
r eadPat Val ue

t ax
pl nd

lda pattern,x

bne perfornmeSampl e
next Pattern:

inc curPat Pos

I da cur Pat Pos

cnp #%$20

bcs set For Next PT

rts
; set for next pattern/track
set For Next PT:

| da #$00

sta cur Pat Pos

dec cur NTRep

bpl ski pTlnc

I da curTrackl nd

clc

adc #$01

and #$7F

sta curTracklnd
ski pTl nc

rts

per f or neSanpl e:

Idy #<nm _nul
jsr testEndPattern
as
as
tay
I da digi Sound-4,y
sta sanpAddSx+2
sta sanpAddDx+2
cmp di gl Sound- 3,y
bcc not Modi fy
clc
adc #$01
jmp setH ghE
not Modi fy:
I da digi Sound-3,y
set H ghE:
sta sanpl eEnd+1
Ida digl Sound-2,y
sta $DD04
I da #$00
sta sanpAddSx+1
sta sanpAddDx+1
lda #<nm _sx
sta $FFFA
jmp nextPattern
; NM for null sanple output
nm _nul |
sta tnpVal +1
| da $DDOD
t mpVal
| da #$04

rti

track val ue

track*32

current pattern position

read pattern value at x position

inc current pattern position
current pattern position
end of 1 pattern

reset pattern position
current pattern position
actual nunmber of repeat for this track

actual track index

actual track index

pattern val *4
hi gh pointer of start of sanple

hi gh pointer of end of sanple

hi gh pointer of end of sanple

speed
Timer A #2: Lo Byte
| ow pointer start fromO

Not Maskerable Interrupt (NM) vector

Interrupt control register C A #2

26

NM for output the left nibble

: of the sanpl e

nm _sx

sta $F8
sanpAddSx:

| da $ALF2

| sr

| sr

| sr

| sr

ora #$10

sta $D418

lda #<nm _dx

inc sanpAddSx

bne skiplnc

inc sanpAddSx+1
ski pl nc

sta $FFFA

| da $DDOD

| da $F8

rti

NM for output the right nibble

: of the sanpl e

nm _dx
sta $F8
sanpAddDx:
| da $ALF1
and #$0F
ora #$10
sta $D418
inc sanpAddDx+1
beq fixHi ghDx
lda #<nm _sx
sta $FFFA
| da $DDOD
|da $F8
rti
fi xH ghDx:
inc sanpAddDx+2
| da sanpAddDx+2
sanpl eEnd
cnp #3A7
bcs pauseSanpl e
lda #<nm _sx
sta $FFFA
| da $DDOD
|da $F8
rti
pauseSanpl e
Ida #<nm _nul
sta $FFFA
| da $DDOD
| da $F8
rti
reset Del ay:
bit curNTRep
I da nakePl ay+1
sta cur Speed

exi t AboveO
rts

; Set the nunber of repeat for
; this track
set Repeat :

sta nunRep+l

Ida curNTRep

nop

nop

bpl exitAbove0
nunRep:

I da #3$01

sta cur NTRep
exi t RTS;

rts
test EndPattern:

sty $FFFA

cnp #$FF

bne exitRTS

read packet sanple

left nibble

set low pass filter

Sel ect volune and filter
set NM for dx nibble

node

Not Maskerable Interrupt (NM) vector
Interrupt control register ClA #2

read packed sanple
right nibble
set |ow pass filter

Sel ect volune and filter node

set NM for sx nibble
Not Maskerable Interrupt (NM) vector
Interrupt control register ClA #2

test if sanple is finished

Not Maskerable Interrupt (NM) vector
Interrupt control register ClA #2

Not Maskerable Interrupt (NM) vector
Interrupt control register ClA #2

actual nunmber of repeat for this track
sel ected SPEED

actual values of timng delay (speed)
nunber of repeat for this track

actual nunmber of repeat for this track
actual nunber of repeat for this track
Not Maskerable Interrupt (NM) vector

end indicator of pattern

27

pl a

pl a

] sr set For Next PT
jnp readActual Track

goToRead: o
stx cur Pat Pos ; current pattern position
jmp readTrack

.org $9200
track:

.byte $00, $01

.byte $00, $01

. byte $01, $00

.byte $02, $00

.byte $00, $01

.byte $01, $00

.byte $02, $00

.byte $00, $01

.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, $FF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, $FF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, FF, SFF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, $FF
.byte $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF

.org $9300
di gi Sound

.byte $A0, $A7, $A0, $A0

.byte $A7, $AE, $A0, $A0

.byte $AE, $B5, $A0, $A0

.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $A0
.byte $A0, $A0, $A0, $A0, $A0, $A0, $A0, $AO
. byte $A0, $A0, $A0, $A0

.org $9400 ; probably spurious bytes
.byte $A0, $A7, S$AE
.org $9430 ; probably spurious bytes

28

.byte $A7, $AE, $B5
.org $9500

; group of 32 values of one pattern

pattern:
.byte $01, $00, $00, $00, $01, $00, $00, $00
.byte $01, $00, $00, $00, $01, $00, $00, $00
.byte $01, $00, $00, $00, $01, $00, $00, $00
.byte $01, $00, $00, $00, $01, $00, $00, $00

.byte $02, $00, $00, $00, $02, $00, $00, $00
.byte $02, $00, $00, $00, $02, $00, $00, $00
.byte $02, $00, $00, $00, $02, $00, $00, $00
.byte $02, $00, $00, $00, $02, $00, $00, $00

.byte $03, $00, $00, $00, $03, $00, $00, $00
.byte $03, $00, $00, $00, $03, $00, $00, $00
.byte $03, $00, $00, $00, $03, $00, $00, $00
.byte $03, $00, $00, $00, $03, $00, $00, $00
.org $A000

here goes all the digi. high page is filled with $FF for conplete the sanples.
.incbin sanples.bin

DigiOrganizer is very simple to use and | think you can add digi to your tune in an easy way.

The possibly of test the final result of the four voices tune inside the editor is a good characteristic
and the disk contains lot of samples that probably give you all you need from the beginning.

Maybe this editor could be more powerful if there was the possibility of move the loaded samples
into memory and if we could give a mnemonic name to the loaded sample for better managing them.

29

30

QS 6 end

31

