tococococ ot ococococ o

“Kylie Minogue”

Vice snapshot with CCS64 palette

Made with the GIMP from a KM photo
and converted to C64 160x200
Multicolor Mode Bitmap
by Stefano Tognon
in 2002

“Are you ready for this new magazine?”

- I_. T‘I@am
ng\ Free Software Group

g0 oc o oc0c e 0c o000

QB 7
version 1.00
21 September 2002

General Index

o [0] g = £SO TP 4
[N LS ST SRS TRPTRRPR PR 5
HVSC VEISION 5.0......c ettt ettt st sttt et ettt et ettt enne 5
(613 OF V=T 1710 o I L OSSR 5
S [o] = Y222 AT OSSP 6
(CTo L= L= 1ot =] G T 2 TSRS 6
ST | 57 1 TSR 7
XSIDPLAY L.B.5PI8L5....ccceiieie ettt sttt ettt sttt et es et et e b s b sttt sae st neeeas 7
Luca Carrafiello INTEIVIEW! ..ottt et s et e et en s 8
ISeq MUSIC COMPOSItION PrOGIANMY......c.uieereieseeeereereseeeesessesseseseeses e eseseessesessessessesessesseseeeeseessssensssen 11
Comp.SYS.CHM 1SEQ tNIrEAUS........ceiece et er e e sae e 11
'COMMANAO" TUNE 1N ISEQ . ..ueueeviieetie ettt e st et se ettt e et e er e s es e e s e e sesaesaes e e eneenesneneenns 28
RIppiNg @ game: DIG DUG........ccooi ettt ss e sr e eae s ene e e stese e e e snene e e ene e ene 30
Y (=T O R 1=y 1 [T o = 1 = SRS 30
Step 2: Play the QamMEL.... ..t er e st en e en e e eneens 31
Step 3: DisassSemble the gAME.......cccoi et sr e e eneens 31
Step 4: Let the order emerge from the Chaos!..........ccccciiiie e 32
Step 5: MaKe @ SOUICE filB....c.uo ettt ettt e er e ereens 34
Step 6: listen to the COMPIIEA SOUICE.........cueiieieceeeeee e s 35
INSIAE DIG-DUG ...ttt ettt e st ettt et s s et ettt es b seebe e e 35
LI ST O Lo =SSR 37
(@] 1o 11153 o] o WSS 52

Welcome, SID fans.
This is the first issue of a Sid related magazine.

The idea of this magazine born with the porpoise to give some feedback about sid
activity to other sid people. I hope that other people may contributed to the magazine.

The magazine will have a news section that reports what happens from an issue to
another in the sid activity: tools, programs, events, music, discussion... and all that can
be considerate interesting to know. The inserted news are to be considerate evergreen, so
they can be always useful.

The rest of the magazine will have various articles that speak about sid programming
technique, players, emulation, hacking, practical experience... and all that are around the
sid.

I hope that you want to contributed by give your articles or opinions. If you are/were a
composer, a programmer like me, a sid listener, than let your experience jumps out of
you and go to be a part of us!

This magazine is write with OpenOffice for bigs reasons:
« I want an open archive format that are to be available on most of the platforms.
- I want a not text based format (so images can be added).

Even if I can choose other tools, the less free time has choose for me!

However, the magazine will be available in OpenOffice sxw file and in pdf printable
version.

Well, how about the next issue?

As I dedicate most of the free time to the Sid, I'm writing other articles right now, but
there are so many C64 activity that I'm in that I cannot say when the next issue will be
out. You have just to be around when this happen :)

Well, as this is the first issue there are about 20 years of sid news to add!!! So I insert
some various stuff:

. HVSC version 5.0

. CGSC version 1.9

. Sidplay2/w

. Goattracker 1.33

. PSID64 0.4

. Xsisplay 1.6.5prel5

ounbhWNE

Released on August 17, 2002 this is an epochal version: it uses the new sid file format
PSIDVv2NG!

Now there are about 18,616 SID file into the collection, and in this update 32 there are:

0 new SIDs ((
346 fixed/better rips D))
2 repeats/bad rips eliminated

122 SID credit fixes)

In the next update (33, schedule for end October) there will be some real C64 tunes!

The Compute's Gazette Sid Collection (http://www.c64music.co.uk/) is at version 1.9
and was released in December 2001.

In the collection there are:

5773 MUS
1233 STR
1523 WDS (including 73 with Extended Words)

You may use sidplay2/w, sidplay2 or xsidplay (compiled with libsidplay2) to listen to the
stereo STR sid files. In the site you can also see how to made the VICE dual sid support to
play stereo sid music.

Sidplay2/w

s Released at September 15 2002, this is a must for
_ : _ —=| a windows user. You can download this player from
Eile — View =ettings Help http://www.student.nada.kth.se/~d93-alo/c64/spw/

Marne: Last Minja 2
Zuthor: Matt Gray
Copyright: 1988 Systern 3

ok

It is based onto the last libsidplay2 library
(http://sidplay2.sourceforge.net/), so you can hear

the best emulated sid sound ever, and is aligned

Song | out of 13 at 50 Hz WEI (PAL) with the new extension of sid file..
21]
—opeed —
Tirtie: plawed: 00:01:59

s x]

w2 Stop | Fauze J

ol I T] It runs even in Linux throw Wine!

Goattracker 1.33

The music editor by Lasse Odrni for cross develop is now at version 1.33. From version
1.3 the 12 raster time lines is not be granted anymore, but the player is becoming more
interesting and from version 1.24 it supports even multispeed tunes. Now, using SDL it
run even in Linux.

GOATTRACKER v1.33 (re3ID + SDL) F1Z2 = HELI

CHN1 PATTOO CHNZ PATTO1 CHN3 PATTOZ ORDERLIST (SUBTUNE @@, POS 00)

00 C-201000 00 ===000D8 00 ===00708 00 04 07 0D 09 R5TOO

01 —00000 01 —O000D8 01 —00000 01 05 08 OC 0A RSTOO

02 —00000 02 —O000D8 02 —00000 0Z 03 0B OE 06 RSTOO

03 C-403000 03 G-4020D8 03 —00000

04 ===00000 04 —O000D8 04 —00000 INSTRUMENT NUM. 01 Bass Guitar

05 C-301000 05 —000DB 05 —00000 fAttack-Decay 02 81 C4 N POS

06 C-201000 06 ===000D8 06 —00000 3Sustain-Release 88 41 00 0 01

07 —00000 07 —000D8 07 —O00000 Pulse Width 40 FF 00

08 —00000 08 ——000D8 08 —O00000 Pulse Speed 20 0o 00

09 5103000 09 G-4020D8 09 ——00000 Pulse Limit Min 20 0o 00

10 —00000 10 —000D8 10 —00000 Pulse Limit Max 60 00 00 B Hardres.
11 —00000 11 —000D8 11 —00000 Filter To Use 01 00 00 L ON

12 C-201000 12 ===000D8 12 —00000

13 —00000 13 —000D8 13 —00000 FILTER NUM. o0Q

14 —00000 14 —000D8 14 —00000 Filter Res/Chn. 00 Filter Cutoff 00
15 C-403000 15 G-40Z20D8 15 —00000 Filter Type-Uol OF Filter Speed 10]
16 ===00000 16 ——000D8 16 ——00000

17 C-301000 17 —000D8 17 —-00000 HNAME:

18 6201000 18 ===000D8 18 —00000 MW Title Remix

OCTAVE 2 STOPPED CHN1 CHNZ CHN3
LIAM MODE 00:00 00000 00000 GO00-0C

Download GoadTracker from: http://covertbitops.cjb.net/tools/goattrk.zip

PSID64 (http://psid64.sourceforge.net) is at version 0.4.
EIES

(3~ VICE: CB4 emulator

PSIDE4d wvB.4 by Ruiand Hermans!

LETL1:
Author E
Copyright:
Load -
Init
Play
Tunes

100%, 38 fos

What is PSID64? Here the
itself description:

PSID64 is a program that
makes it possible to listen to
your favorite SID music on a
real Commodore 64 computer.
It automatically generates a C64
self extracting executable from a
PSID file. The executable
contains the PSID data, a pre-
relocated player and may also -

if there is enough space
available in the C64
environment - contain a

demonstration program with
information about the PSID file.

Even if here I put a VICE
snapshot, I can grant that it
runs perfectly in my Cé64s.

XSidplay (http://www.geocities.com/SiliconValley/Lakes/5147/sidplay/) the Unix player

is now at version 1.6.5prel5.

Copyright i 1989 System 3

Songs t 4 Startsong: 13

Song =zpeed: 50 Hz VBI (PAL>

Addresses ¢ #1000, £#4100, $£=2002

Format + Play5ID one-file format (FSID)

[plavlist enabled [loop playlist

[random play

[=][Of[x]
File Config Playlist Hotlist Extra &bout It runs with libsidplay-1.36.57 or
libsidplay2 CVS.

e [= = L =
S { The player supports the new
PSID2NG, but libsidplayl may crush
Mame : Tusker when listening to C64 specific true
Author ¢ Matt Gray RIP as will come in the future HVSC

upgrade.

Some discussion is being done for
this, so probably a solution will be
found until the next HVSC upgrade,
otherwise listen to old PSID rips or
use the libsidplay2 engine.

I'm very happy to start this first issue of SIDin with this interview to Luca/FIRE. First of
all, because he is a Italian people like me, secondary because I like his music (Soulfixer is
stellar - I buy a C64C recently only for listen this tune in the real 8580 chip!, and
Central_Park_Loader_Y2K is one of the Matt Gray LN2 cover very innovative).

Now, here the interview that occurs with some emails in September of this year.

Hello, Luca,
Take some words to describe us a little about you: where do you live, what do you do, ...:
Jjust a presentation about your real life.

I'm Luca Carrafiello, aka Luca of Fantastic Italian Research Enterprise (FIRE) crew, and
I'm 29. I'm graduated in Physics Chemistry and currently I'd started my Ph.D. here at the
Florence's University. Though nowadays I'm living beside Florence, Italy, I came from
Salerno, few kilometers south from Naples: Florence had begun my city only because I
started studying here...

My life runs like a classic "single"'s way of life, with too much freedom and sudden
amasses of spare time after a period of hard work, generally used for sustain my hobbies:
Commodore, play Gameboy Advance's games (at the moment I'm playing "Super Robot
Taisen R", and improving the linked GreatMazinger-MazingerZ weapons!), read lots of
books (actually Johnathan Coe's), listening to relaxing music (Mike Oldfield, ISAN, Franco
Battiato, Einsturzende Neubauten, Enya, Deep Forest, Michael Nyman, Wim Mertens...);
and I like very much run in circles around Florence with my bike, pausing at every vintner
in order to drink a glass of Chianti.

Tell us how is initiated your passion for the Commodore and the steps that you have
accomplished during the years for reaching yours actual results (IMHO fantastic sid
music)

Stefano, d'ya wonder to kill me with a blade forged with reminders? :D

Well, when I was 14 my parents got my request of buying an home computer, and they
were so much surprised that they only spitted out money: I never asked for a toy or
anything else before. I bought a Commodore Plus/4, 'coz I loved its design and its Basic
seemed very user-friendly... But after few weeks frustration started: no hardware sprites,
and, most of all, no SID!

Agh!

In those days, the only programs sources for C16 in Italy (and for it only, not Plus/4!) are
the original games and the hacked games, sold in stands as tapes containing 6 of them;
these hacked packs were generally released with a little newspaper. Once a beautiful day,
in an issue of these papers I found an advertisement about Plus/4 only programs:
gettin'contact with that man had taken me in the real Plus/4 scene, and, undirectly, in the
C64 scene too.

I reached the Plus/4 scene in its best moment, at the beginning of 90s:

lotta crews, lotta stuff, lotta parties...and I got the desire of take part of. Thus, I started
to draw logos, pics, chars...but I dreamt about composing SID tunes!

The Plus/4 sound's calvary starts with its poor 2-voiced squarewave/noise sound, but
since the end of 80s, people had learnt how to convert SID data and play them on Plus/4,
while a channel alternates 2 SID voices. 2 years after, the frqg converter was supplanted,
when possible, by the wave converter, which plays SID files with correct waveform,
volume and SR.

Obviously, these emulations were far away from perfection, but I started to compose
SIDs on a converted version of the Future Composer V2.1. Nowadays those tunes are
included in the High Voltage SID Collection, but many of them sound really bad, 'coz on
the Plus/4 I wasn't able to emulate filters, correct AD, sync, ring...

At a certain moment, many users had begun to buy a SIDcard, a sort of plug-and-play
SID chip that allows the Plus/4 to run SID sounds. I bought it many years later from the
original producer, in the 1999, and started composing on an improved FC's SIDversion.
Finally, a cool Plus/4 user (Levente Harsfalvi, aka TLC/Coroners) converted on Plus/4 the
Taki's SIDwinder V01.23 for the SIDcard; probably, only in that moment I'd really
understood the real SID operation way, and so I had to learn again how to

compose SIDs. With decent results, I hope.

Although I'm not a coder, and that's the real pity for me, I put some LDA, STA and PLP
somewhere and my Plus/4 diskmagazine popped up. And I continue to release it. That's
the reason because my musics are never multispeed ones: I have to use them abitually
for the diskmag and can't manage a multispeed tune. And sometimes, I proclame some
compos: the Plus/4 LogoCompo reached the 3rd edition.

Nowadays, I see that all the 8bit scenes are united under the same great family, and in
many cases we can mind c64 sceners coding gameboy's demos, or ZX games... I only
hope that trend will continue and grow. My eternal frief continues to be: if only I learnt
assembly in past, now I was sustaining the scene by himself...bah, sh*t...

Now some quick final questions:
Real machine vs emulator: what do you think of?

The real machine remains the real machine: the best emulator ever should emulates the
real one at 0.999%, but never at 100%.

Once said it, I see much Jules Verne's syndrome: early emulators were really far away
from the real machine, and many users screamed about "shitty pc clones", but they're
becoming something really closer to a C64 or ZX or whatever. E.g.: on the Plus/4 side,
just during these days the digi emulation has become reality, and I jumped on my chair
when I heard working waveconverter music from my PC running Minus4 V2.5 or YAPE
VvV0.41.

Emulators are a therapy for the scene, but not the panacea.

What is the worst sid that you compose and the better one?

In order to answer this question, I must exclude all the musics composed directly on
Plus/4 without SID support, although "Tubular Bells II Shake" tooks one month to be
completed, and it's 13:30 ca. long. If you listen to it on a SID, real or emulated, it plays
very bad, 'cause I badly tried to use the three default filtereffects offered by the old
Future Composer; but surely it was a really hard work!

Thus, considering only music from 1999, I experimented very much the SID functions,
just like a SID-rookie, but in the same time I vent all the ideas I wasn't able to apply
without SID chip. Probably, the very first music that made me proud is the last I've
composed, "Soulfixer", that made 2nd in the SidWine online compo... Unfortunately, I had
to finish it with a certain hurry, so many ideas were truncated. The worst? All the others,
'coz I'm learning yet alot!

Who are your best sid authors?

There are too many hypercomposers, and a selection is very difficult. But I have a
measure's unit: a musical composition can be enjoyable regardless to the
instruments’'quality, the use of filters and other crap. And a bunch of composers has
caught very original and innovative ideas to put into a SID, some many more than others
maybe...

Yes, surely, Dave Whittaker, Jeroen Tel, Rob Hubbard, Martin Galway, Drax, Matt
Gray...but I like surprising melodies like "Zynaps prerelease" by Nigel Grieve, "Equinox"
by Nick Jones, or "Death or Glory" and "Counterforce" by Jay Derrett: the cute music you
don't expect!

What are the best sids ever in your opinion?

First of all, let be many people angry: I like multispeed tunes, but I consider them a sort
of "subcategory", like digis, and I seriously think it would be good to create a multispeed
compo instead of mixing them with "normal" singlespeed tunes (how racist!). E.g.,
"Strangers in the Flight" by Drax, "Gopho" by Goto80 and "GRG in Cyberspace" by Glenn
Gallefoss are stunning! But my heart was taken out of this world by other musics:
"Wizball" by Galway as first, then many others, like Matt Gray's "Last Ninja 2", Moppe's
"Shadow of the Beast", Geroen Tel's "Cybernoid", MozIcArt's "Luminous", Zardax's
"Eldorado Partl"...oohh, too many, too many, sorry! :D

Finally, many thanks for the time you give for this interview, but now there is a post
scriptum question (yes, you are allowed to not answer :)):
Sid and girls: what to think?

Aha! I've got lotta experience in this combo! Girls always will appreciate your works on
the SID chip: dunno why, but they're always so sensible about what they're listening, and
girls instantly understand your effort to take out cool melodies from something that
seems so toy-ish...

It's tested: you and the girl will move from the C64 desk directly on the bed, try it to
believe it! ;)

Webography [from Luca]:

LoneNews archive:
http://plus4.emucamp.com/lone.htm

Plus/4 shmup project:
http://www.xeo3.com/

Plus/4 archive:
ftp://c64.rulez.org/pub/plus4

HVSC's hp:
http://home.freeuk.net/wazzaw/HVSC/indexhi.html

10

Steve Judd had make a new production: Iseq a new kind of music player for the C64.
The reason for speaking here for this program is simple: it is very different respect all the
other players around. It is very interesting to see how the community have saw this
program by looking at the comp.sys.cbm threads about Iseq. After that we go into some
technical stuff, by looking at the Steve Judd's Commando remix using Iseq.

From:Robert Bernardo (rbernardo@value.net)
Subject:Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64
Date:2002-06-09 23:28:35 PST

Steve Judd has released Iseq, a new music composition program for
the C64 (see Steve's description below). Program, examples,
docs, and screenshots are at www.ffd2.com/fridge/iseq

Truly,

Robert Bernardo

Fresno Commodore User Group
http://videocam.net.au/fcug

Iseq is, of course, a C64 music composition program, written totally
from scratch (i.e. it isn't just a Tunesmith update). It has a lot of
features but is fairly easy to use, with online documentation (as well
as text stuff below). Feedback would be most welcomel!

5/31/02 Page officialy goes online!
Main files:

* iseq10.zip Program, docs, examples.

* ISEQ1.D64.gz A .d64 of the binaries.

* iseq.docs Main documentation.

* iseq.tutorial Tutorial on getting started.

Tunes: (you can listen from BASIC using SYS 4102)

* snood.tune A tune written for the game "Blockhead's Revenge"
(included in .zip above)

* examples.tune Some example instruments (note: some adapted from
instruments written by daBlondie in Tunesmith, lo these years

ago).

Source code:

11

The source is pretty big, so it might take a while to get up here. But
if you email me I'd be happy to send it to you (does anyone even look
at this stuff?1?).

Some pictures:

mem:51888-51b6c oct:83 raster:88 max:808
vl : ABBCDCE sync F &

gate AHHH =r HIJ &=

gate wait L ns M trans

core
:gate+ inst dur h dHd h

:inst dur ¢ d e f e dcgec
S h 9 h h h e fFfg9g e cCc h h g
X gH gH arp a
:inst dur c re g c rest rest

rest a d rest
inst dur a g a e gH a dur f

]
B
C
D:
E:*
Es:
G-
H
1

cinst dur a e h a g e h g a e h

set gate delawy=2
current tune:8-snood numtunes=2

The main editor. Iseq allows multiple tunes, among other things.

fl1 Edit tune:
a-x noteseq
set tempo

Online help is available for all screens.

12

The instrument editor. Instruments consist of sequence values or
modulation schemes, and are compiled into the player.

st l-bass+thi

= g

I

01050 0 0 e
ok o o o
o LG fu LEAL

P P P P P P P P P P P
=

i o bt o o o ok b o o o k]

8
i
2
3
4
5
B
7
8
3

o
3
4
5

e e |

Arpeggios can be of any speed or length, with both positive and
negative values, etc.

Stephen L. Judd
sjudd(at)ffd2.com

From:Blackspawn (noone@home.net)

Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-10 02:13:02 PST

Robert Bernardo schrieb:
> Steve Judd has released Iseq, a new music composition program for

> the C64 (see Steve's description below). Program, examples,
> docs, and screenshots are at www.ffd2.com/fridge/iseq

13

Hmm, I've only looked at the screenshots yet but I somehow doubt that
anyone would really use that program. It looks much too complicated and
spartan. IMO there are already much better tools for making music for the
C64, like GoatTracker or OdinTracker for example...

/Blackspawn\

From:Agemixer (agespam@NOSPAM.japo.fi)
Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-10 03:51:52 PST

On Mon, 10 Jun 2002, Blackspawn wrote:

> Robert Bernardo schrieb:

>

> > Steve Judd has released Iseq, a new music composition program for

> > the C64 (see Steve's description below). Program, examples,

> > docs, and screenshots are at www.ffd2.com/fridge/iseq

>

> Hmm, I've only looked at the screenshots yet but I somehow doubt that
> anyone would really use that program. It looks much too complicated and
> spartan. IMO there are already much better tools for making music for the
> C64, like GoatTracker or OdinTracker for example...

>

> /Blackspawn\

I checked it out and i must agree. I noticed it is too far from the common
'standards’' of music player/editor. The user interface and keyboard logic
is far from the common usage of most 'professional’ kind of music editors
around.

With first tests it hungs when adjusting the speed and the loader doesn't
seem to work with Action Replay cartridge. The tempo change to CIA
timers sounds funny, but it makes a lot of restrictions in demo and game
needs. Thought, it is said in the docs it can be played with VIC's
rasterrupt too.

I wouldn't recommend Iseq for any serious music making.

Agemixer/SCL

From:Steve Judd (sjudd@swcp.com)

Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-10 17:41:22 PST

Hola,
In article <Pine.LNX.4.33.0206101321350.16410-100000@aapo.japo.fi>,

Agemixer <agespam@NOSPAM.japo.fi> wrote:
>

14

>0n Mon, 10 Jun 2002, Blackspawn wrote:

>

>> Robert Bernardo schrieb:

>>

>> > Steve Judd has released Iseq, a new music composition program for
>> > the C64 (see Steve's description below). Program, examples,

>> > docs, and screenshots are at www.ffd2.com/fridge/iseq

>>

>> Hmm, I've only looked at the screenshots yet but I somehow doubt that
>> anyone would really use that program. It looks much too complicated and
>> spartan. IMO there are already much better tools for making music for the
>> C64, like GoatTracker or OdinTracker for example...

Heh, which is it: too complicated, or too spartan? :) Those must've been
pretty informative screenshots to lead to such conclusions! :)

>I checked it out and i must agree. I noticed it is too far from the common
>'standards' of music player/editor. The user interface and keyboard logic
>is far from the common usage of most 'professional’ kind of music editors
>around.

Well, all you've said is, "It's not what I'm used to." But the question is:
what doesn't it do that you are looking for?

Yes, the user-interface is different. In fact, it's a bit experimental.

The reason is simple: I don't think very highly of the "standard" interfaces,
and am trying to explore other more effective ways of doing stuff. It's not
1990 anymore; why should I limit myself to yet another clone of a 10-15 year
old music program/system?

The goal of the interface is to present useful information while keeping
clutter (i.e. useless information) to a minimum. The system is also
designed to let you compose "by ear", rather than by eye -- you compose by
single-stepping through your notes, instead of staring at the screen -- and
to do so rapidly.

As to the "keyboard logic", well, I don't know what to say. Musical keyboard
layout, cursor keys to move around, and CTRL-letter keys for editor commands.
It's awfully hard for me to see how this could be difficult or confusing.

Iseq is almost trivial to use: you pick an instrument, type a key, you hear
the note as it is entered. There's nothing to set up -- you just type and
run with it. Instruments take a few seconds to create, are easy to tweak
and mess with until you find something you like, and can be simple or very
complicated. Arpeggios too are trivial, and flexible. In summary, you

can do pretty much anything you want, both musically and in terms of SID,
and do so quickly and easily.

So where's the problem?

I figured when I wrote iseq that it wouldn't be very popular -- most sceners
don't like to step out of the comfort zone. And it certainly has room for
improvement, and I don't claim that it does everything or is for everyone.

But it certainly does most things, does them well, and has capabilities that

are sorely lacking in other music programs. With iseq, I can make pretty much

15

any sound I want, and write any type of music I want, and do it _quickly_ and
easily, without fighting the player. I get to _play_, both with SID and
with music -- I get to have FUN!

Who will use iseq? I will, of course!
>With first tests it hungs when adjusting the speed

I'm sorry, could you be more specific? (If there's a bug, I'll need more
information).

>and the loader doesn't seem to work with Action Replay cartridge.

This is a strange thing, and the fault of AR. The "loader" is just the kernal
LOAD routine -- totally standard. For some reason AR seems to get confused,
maybe when the call to LOAD is done from bank 2.

> The tempo change to CIA

>timers sounds funny, but it makes a lot of restrictions in demo and game
>needs. Thought, it is said in the docs it can be played with VIC's
>rasterrupt too.

Heh. This always seems to baffle some people. Using the CIA timers
removes restrictions.

To play a tune, you call the play routine (JSR $1003) at fixed intervals.
You can call the routine at the screen refresh rate; you can call it once
every second. There's nothing that _forces_ you to use a CIA timer (that
would be silly). Similarly, if you set the CIA timer to the frame rate,

the tune will sound exactly the same when called from a VIC interrupt.

Some of us simply don't like being limited to some multiple of the frame

rate -- not all music is for raster-timed demos and games. Iseq simply gives
you the choice; the only place where CIA timers are necessary is doing true
tempo changes. Otherwise, just use the default timer values (which are
automatically set to the NTSC or PAL frame rate when you clear a tune),

and it'll be fine.

Moreover, using the timers means that PAL and NTSC tempos are much closer --
a PAL guy can listen to an NTSC tune at pretty much the tempo the composer
intented, without effort.

>I wouldn't recommend Iseq for any serious music making.

Heh. Well, once again, I have to ask: what can't you do in Iseq that is
needed for "serious" music making? I'll bet the vast majority of these
so-called serious tunes can be _easily_ duplicated in iseq.

Well, look; I know that Iseq isn't for everybody. Heck, aside from jpz I

don't think anyone besides me uses any of my other programs, and I don't
expect anything different for Iseq. But this "I spent five minutes with

it/looked at the screenshots and it was unfamiliar, so it must be useless"

stuff is a little silly. If you can say you gave it an honest try, that

after understanding the system and working with it you see some weaknesses --
great! I'd love to hear about it!

16

After living and breathing (and playing) music my whole life, and writing

¢64 music for a few years, I tried to write a music system which fixed

up the weaknesses of other programs and had some features I've always wanted.
Iseq has a logic and structure to it that is, yes, different than the norm,

but personally, I rather enjoy it. Why not give iseq an honest try?

cu,

-S

From:Blackspawn (noone@home.net)

subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-11 02:25:03 PST

Steve Judd schrieb:
>
> Heh, which is it: too complicated, or too spartan? :) Those must've been

> pretty informative screenshots to lead to such conclusions! :)

Complicated wasn't the right word perhaps. Impractical would be better. And it's
impractical because it's spartan. :)

> So where's the problem?

I just don't like it. That's all there is to say. When it comes to making music,

I'm am very used to the typical tracker interface, like Goat- oder OdinTracker
have (or FT2/IT2 etc on PC) and I could never imagine using a system like yours.
And I guess there will hardly be someone who can and will.

> With iseq, I can make pretty much

> any sound I want, and write any type of music I want, and do it _quickly_ and
> easily, without fighting the player. I get to _play_, both with SID and

> with music -- I get to have FUN!

Sounds to me like a typical tracker interface! Why didn't you implement one? It's
always good to have new ideas and invent new things, but not if they're just
useless and worse than the current standards.

> Who will use iseq? I will, of course!

I won't.

> Why not give iseq an honest try?

See above.

> cu,
> -S

/Blackspawn\

17

From:Anders Carlsson (anders.carlsson@mds.mdh.se)
Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm

Data:2002-06-11 02:59:42 PST

Blackspawn <noone@home.net> writes:
> And I guess there will hardly be someone who can and will.

I had a quick look at the Iseq page prior the release note, and thought

it looked funny, but also saw it was offered with some DOCUMENTATION.
Now, after these messages, I'm more than intrigued to download it and
give it a serious try. If it doesn't conform to the traditional tracker
standards doesn't matter as much as if it is powerful to work with and
able to produce the kind of music I'd like to compose.

Something that very many of the music editors for the C64 lacks is
well-written documentation. Not strange, as they often were hacks by

demo groups (and beware, any L4M3R who would use this 3L33T composer).
I find even the easiest of GUIs to include effects or details which

aren't self-explanatory. Admittenly, I haven't checked out Goat- or
OdinTracker in that context, but besides those, I only know one music

editor which comes with decent docs, and that is SIDwinder.

Anders Carlsson

From:Agemixer (agespam@NOSPAM.japo.fi)
Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-11 02:51:30 PST

On 10 Jun 2002, Steve Judd wrote:

> Hola,

>

> In article <Pine.LNX.4.33.0206101321350.16410-100000@aapo.japo.fi>,
> Agemixer <agespam@NOSPAM.japo.fi> wrote:

> >

> >0n Mon, 10 Jun 2002, Blackspawn wrote:

> >

> >> Robert Bernardo schrieb:

> >>

> >> > Steve Judd has released Iseq, a new music composition program for
> >> > the C64 (see Steve's description below). Program, examples,

> >> > docs, and screenshots are at www.ffd2.com/fridge/iseq

> >I checked it out and i must agree. I noticed it is too far from the common
> >'standards' of music player/editor. The user interface and keyboard logic

> >is far from the common usage of most 'professional' kind of music editors
> >around.

>

> Well, all you've said is, "It's not what I'm used to." But the question is:

> what doesn't it do that you are looking for?

18

Referring to the docs, it seems to be missing atleast some flexible
wavelist/arpeggio, and seems to be replaced with 'fixf' feature. For
example, how could i do a continuous bass sound sequence like this can
be done in Iseq:?

Wave trp+
51 Oc
41 Oc
41 Oc
41(0) 00
41(0) 00
41(0) 00
41(0) 00
40 00
40 00
40 00

And an another issue, i didn't find a single word of "slide", "glide",

"tie", or even "vibrato" effects from the docs, so i guess they are
completely missing. Actually those are very important for the quality of

the tune sounds and enjoyability... though most of those aren't

made too well in some very known editors around, i had to replace the
glitching glide sounds with my own methods with wavelists + ties, and even
vibratos if the editor just made it possible.

> Yes, the user-interface is different. In fact, it's a bit experimental.

> The reason is simple: I don't think very highly of the "standard" interfaces,

> and am trying to explore other more effective ways of doing stuff. It's not

> 1990 anymore; why should I limit myself to yet another clone of a 10-15 year
> old music program/system?

Why do you think the old editors are worse? I have figured many old tools
are a more like usable than nowaday's stuff in general..

I can't see a reason to make the user interface even harder than
old-timer's editor :) Try to replace the CTRL+xx and SHIFT+xx keypresses
with only one key press, like simply p = play (that megasound used to), or
more common method that F1/F3/F5/F7 = play/stop/cont/f.forward
(DMC-styled) or something similiar. The idea is to get rid of multiple
keypresses for most common keypresses. But it is also a good idea to hide
f.e. clear track, clear instruments undo commands and things like this,
behind any press-together of either SHIFT, CBM or CTRL. For example, Home
keypress goes to the first line, Cir to the end (or whaterver it does),

but a less common CTRL+CLR clears the track and CBM+CLR could do the
same. So you don't need to start to recall, if it was CTRL+CLR or CBM+CLR,
but rather recall what this one key can do. I used to CTRL+del for UNDO
command in my text editors.

It does not mean that the keyboard should not be a clone of an another
C64 editor, but look at some old amiga/PC trackers, how similiar they
were to use, comparing to C64 editors overall... If you are searching for
some originality, i wouldn't do it with keyboard! :)

And why not implementing different keysets (DMC-like, JCH-like) to improve
one's get-in-touch. Atleast I planned that for my tracker project years

19

ago.

> The goal of the interface is to present useful information while keeping

> clutter (i.e. useless information) to a minimum. The system is also

> designed to let you compose "by ear", rather than by eye -- you compose by
> single-stepping through your notes, instead of staring at the screen -- and

> to do so rapidly.

Sometimes it is good to have some visual information than no information
at all.

> As to the "keyboard logic", well, I don't know what to say. Musical keyboard
> layout, cursor keys to move around, and CTRL-letter keys for editor commands.
> It's awfully hard for me to see how this could be difficult or confusing.

I didn't say that it is hard to learn, but it could be more user friendly.

I remember the Voicetracker times, when you HAD to type the whole
C#4.1f command to get the note and a duration for it. Argh! :)

> I figured when I wrote iseq that it wouldn't be very popular -- most sceners
> don't like to step out of the comfort zone. And it certainly has room for
> improvement, and I don't claim that it does everything or is for everyone.

I guess the 'comfort zone' is not the problem, but if this editor was
simply better than the one you used to, you would like to dump your old
editor.

> >With first tests it hungs when adjusting the speed

>

> I'm sorry, could you be more specific? (If there's a bug, I'll need more
> information).

When you press cbm +/- some times (during playing) it reserves a lot of
rastertime and plays the tune in a high speed, but pressing any keys
has no effect.

> >and the loader doesn't seem to work with Action Replay cartridge.

>

> This is a strange thing, and the fault of AR. The "loader" is just the kernal

> LOAD routine -- totally standard. For some reason AR seems to get confused,
> maybe when the call to LOAD is done from bank 2.

Ok. (It may be an emulator bug too, sorry.)

> > The tempo change to CIA

> >timers sounds funny, but it makes a lot of restrictions in demo and game
> >needs. Thought, it is said in the docs it can be played with VIC's

> >rasterrupt too.

>

> Heh. This always seems to baffle some people. Using the CIA timers

> _removes_ restrictions.

>

> To play a tune, you call the play routine (JSR $1003) at fixed intervals.
> You can call the routine at the screen refresh rate; you can call it once

20

> every second. There's nothing that _forces_ you to use a CIA timer (that
> would be silly). Similarly, if you set the CIA timer to the frame rate,
> the tune will sound exactly the same when called from a VIC interrupt.

It _does_ the restrictions, if one made a tune with CIA timing, and i
need to use it with a fullscreen FLI demo or raster timing stuff :)

> Some of us simply don't like being limited to some multiple of the frame

> rate -- not all music is for raster-timed demos and games. Iseq simply gives
> you the choice; the only place where CIA timers are necessary is doing true
> tempo changes. Otherwise, just use the default timer values (which are
automatically set to the NTSC or PAL frame rate when you clear a tune),

and it'll be fine.

>I wouldn't recommend Iseq for any serious music making.

Heh. Well, once again, I have to ask: what can't you do in Iseq that is
needed for "serious" music making? I'll bet the vast majority of these
so-called serious tunes can be _easily_ duplicated in iseq.

VVVVVYVYV

Hmm, a so-called 100% cover of Commando tune by Rob Hubbard could do
fine :)

/hvsc/hvsids-4.6/Hubbard_Rob/Commando.sid
/hvsc/hvsids-4.6/VARIOUS/A-F/Agemixer/Commando_Remix.sid

which i covered with DMC 4.0B, this editor is easy but one of
hardest ones for covering anything well. :)

> Well, look; I know that Iseq isn't for everybody. Heck, aside from jpz I

> don't think anyone besides me uses any of my other programs, and I don't

> expect anything different for Iseq. But this "I spent five minutes with

> it/looked at the screenshots and it was unfamiliar, so it must be useless"

> stuff is a little silly. If you can say you gave it an honest try, that

> after understanding the system and working with it you see some weaknesses --
> great! I'd love to hear about it!

Most of the judgement is based on first experience and feeling.
But now you know atleast one who even bothered to test the editor =)

Those horizontally placed notes in sequences in iseq is very strange for
music. Not that the common oldie note and delay staves with G-key are
also... :)

It is also missing the on-screen octave information, that is important to
see the current playing note octave.

A some kind of sequence position is necessary for editing, too.

> After living and breathing (and playing) music my whole life, and writing

> ¢64 music for a few years, I tried to write a music system which fixed

> up the weaknesses of other programs and had some features I've always wanted.
> Iseq has a logic and structure to it that is, yes, different than the norm,

> but personally, I rather enjoy it. Why not give iseq an honest try?

I know the feeling, there is a lot of 'unfinished' editors around that

21

either weren't flexible enough, or, the music routines took a lot of
rastertime... So i decided to start my own tracker project, meanwhile a
lot of people wanted to kill my project "aren't there already enough of
good trackers around yet", "This will become nothing anyway, everybody
already uses their own music players", "This kind of editor is already
being under construction, see this link blahblah.." and mumblings like
that.

But still, i have not seen a single music editor project a 'complete’
kind of tracker which can do it until now, with all the good features
imagined and still optimized the final result for you without crashing.

My project become too large to handle with: 'flexible' user interface,
'flexible' player, 'variable speed’ like iseq, even possible to stretch to

be synchronized with 3-channels sound frequency to produce 'SLTS
samples’, free IRQ/NMI for possible sample addition, different editor
sequence looks like tracker/DMC-style-expanded and that kind of 'crap’
and cleverly optimizing tune packer. A little revolutionary, yeah, but

It was a too large project and nobody seemed to like the idea of a new, a
'good-enough’ tracker which has all the other editor's capabilities, with
which you can torture your cat by playing him and even backwards... (?!)

Keep up your good work.

Agemixer/SCL

From:Steve Judd (sjudd@swcp.com)

Subject:Re: Iseq music composition program released
Newsgroups:comp.sys.cbm, alt.c64

Date:2002-06-17 22:15:21 PST

Hola Agemixer :)

In article <Pine.LNX.4.33.0206110957380.21613-100000@aapo.japo.fi>,
Agemixer <agespam@NOSPAM.japo.fi> wrote:

>

>0n 10 Jun 2002, Steve Judd wrote:

>

>Referring to the docs, it seems to be missing atleast some flexible
>wavelist/arpeggio, and seems to be replaced with 'fixf' feature. For
>example, how could i do a continuous bass sound sequence like this can
>be done in Iseq:?

>

>Wave trp+
> 51 Oc
> 41 Oc
> 41 Oc
> 41(0) 00
> 41(0) 00
> 41(0) 00
> 41(0) 00
> 40 00
> 40 00
> 40 00

22

Well, I'm not sure what the trp+ is, but I assume the "Wave" settings are
$d404 settings. In Iseq, I'd just create a sequence of length 8 and enter
those values (although I wouldn't use $51 :) -- when I used mixed waveforms
in the past they didn't work on lots of SIDs).

Instead of a program with a set of built-in features, I've had this sort-of

vision of a flexible set of tools that let you manipulate SID and compose

music -- a "shell" with a set of musical building blocks that you could define

and combine into anything you wanted, that let you control exactly what happens
and give you total control over SID and the player's behavior (not a
programming language; just a set of tools and a framework). That motivated

a lot of Iseq.

Any music player can only write to SID every time it's called. In iseq, you
specify exactly what gets written on each call. If you want to modify the
frequency register, you do it; same for the filters, ASDR, waveforms, etc.;
all registers are available to each instrument. The goal is to give you

full control over what gets written to SID.

In addition to plain sequences -- which can be written continuously or
just once -- there are also "modulators", for example ramps, which can go
from A to B step C, and adders, which can add sequences of values.

The "fixf" thingie is something different. fixf just restores the frequency
after a little bit -- for example, the bass+hihat example instrument sets the
waveform to noise, then triangle, then pulse; meanwhile, the frequency
needs to be high for the first two player calls, then restored to its

original frequency. That is:

1st player call: waveform=$81 freq=$a000 (or whatever)
2nd player call: waveform=$11 freq=$a000
3rd player call: waveform=$41 freq=original value

fixf restores the frequency, that's all.

All of these are meant to be tools, for manipulating SID. They are
actually compiled into the player during editing, and this makes it very
easy to add more. Anything you want, to manipulate SID, can potentially
be added in.

Arpeggios are in there -- ctrl-a from the instrument editor brings up
the arpeggio editor. Arpeggios can be any length and speed, can have
positive and negative offsets, and can either run continuously or one-shot.

>And an another issue, i didn't find a single word of "slide", "glide",

>"tie", or even "vibrato" effects from the docs, so i guess they are
>completely missing. Actually those are very important for the quality of
>the tune sounds and enjoyability... though most of those aren't

>made too well in some very known editors around, i had to replace the
>glitching glide sounds with my own methods with wavelists + ties, and even
>vibratos if the editor just made it possible.

Well, like a lot of things I probably was dumb and didn't mention it in the

docs, but part of the Iseq philosophy of "you control the SID" is that it
doesn't have built-in effects. Instead, it tries to provide the tools

23

you need to build your own effects. It tries to not limit you to whatever
effect is built into the player.

So, for example, the instrument editor has a thingie called "frq+". With
frq+, values are added to the current frequency. So if you want a vibrato,
you enter a set of frq+ values to increase and decrease the frequency,
and loop it continuously:

frq+ 0100 0200 0100 0000 ff00 fe0O ff00 0000

On the downside, it's not "proportional" -- you wouldn't use the same
modulations at low and high frequencies. On the plus side, you get to
specify exactly what you want, and combine it with stuff to make more
complex effects; for example, it's easy to, say, combine a vibrato with a
rising frequency, or make little ornaments for notes, or an 'asymmetric’
vibrato -- anything you can think of.

This is also the idea for slides and glides -- again, the idea was that

they're not built in, but the tools are there to make them. They can also

be done using the arpeggio editor. Since this is kind-of a crappy way of
implementing them, philosophical purity of not having any built-in fx may

be abandoned in a future release :). But from your descriptions above, it
sounds like building your own slides was necessary anyways. So the question
is: is there a _better_ way of implementing slides, a way which lets you,

the composer, control exactly what happens? I couldn't think of one, but

I'm very open to ideas.

Ties are built into the player. Players typically do things automatically
for the composer -- restart instruments, toggle gates, etc. With the aim
of giving control to the composer, Iseq has switches for all those things.
You can turn gate toggling on/off, restarts on/off, and so on. There are
also two special notes, "hold" (continue previous note) and "rest" (zero
frequency). One way to do a tie is to turn off instrument restarts and
hold the note; another way is to just define a longer duration! Slurs
and such are similar -- just turn off the parts that reset instruments.

It makes the player a little bulkier and less efficient, but again, I don't
want the player to automatically assume what you want and do stuff for you --
I want you to have the abilitiy to control the behavior exactly.

>...

>more common method that F1/F3/F5/F7 = play/stop/cont/f.forward
>(DMC-styled) or something similiar. The idea is to get rid of multiple
>keypresses for most common keypresses. But it is also a good idea to hide
>f.e. clear track, clear instruments undo commands and things like this,
>behind any press-together of either SHIFT, CBM or CTRL. For example, Home
>...

>And why not implementing different keysets (DMC-like, JCH-like) to improve
>one's get-in-touch. Atleast I planned that for my tracker project years

>ago.

Good idea. Thanks for the suggestions/tips; I'll keep them in mind!

I tried to make common keypresses single-key -- notes, durations, etc. --
and group other functions together under the ctrl-keys. I just couldn't

24

stomach using something like "m" and "n" for "turn gate toggle off/on".
I think I would have ran out of keys anyways.

>I remember the Voicetracker times, when you HAD to type the whole
>C#4.1f command to get the note and a duration for it. Argh! :)

Yeah, that's what happened in my first player(s) (blahtune/tunesmith). It's
not horrible, but it sure gets old fast. I think Iseq does a reasonable job

of getting around this -- just changing durations when necessary -- but
kind-of like a tracker I'm concerned that it gets me thinking about the
composition in rigid intervals, i.e. every note becomes a 4/4 kind of note.
(If that makes any sense :).

>> >With first tests it hungs when adjusting the speed

>>

>> I'm sorry, could you be more specific? (If there's a bug, I'll need more
>> information).

>

>When you press cbm +/- some times (during playing) it reserves a lot of
>rastertime and plays the tune in a high speed, but pressing any keys
>has no effect.

Hmmm. cbm+ doubles the playback speed, while cbm- halves it. If cbom+ is
pressed too many times things will get out of control -- IRQs start happening
faster than they can be acknowledged. But keys should still work. TI'll

have a look (and try to break it).

>> >and the loader doesn't seem to work with Action Replay cartridge.

>>

>> This is a strange thing, and the fault of AR. The "loader" is just the kernal

>> LOAD routine -- totally standard. For some reason AR seems to get confused,
>> maybe when the call to LOAD is done from bank 2.

>

>0k. (It may be an emulator bug too, sorry.)

No, it's an AR thing, and you're absolutely right. I was stupid to not
have a fix in place, since everyone and their brother uses AR. Programs that
don't work with AR are programs that don't get run!

>> Using the CIA timers _removes_ restrictions.

>

>It _does_ the restrictions, if one made a tune with CIA timing, and i
>need to use it with a fullscreen FLI demo or raster timing stuff :)

Well, this is another place where I was stupid and left some important
information out of the manual. Here's what I should have said: just set
the first tempo value to $4cc7 (using ctril-t) and it will behave just like
a VIC interrupt.

$4cc7 is the PAL setting; $42c¢6 is the normal NTSC setting, and $417f is
for old NTSC R56A VICs (64 cycles per line).

Also, when you clear a tune using shift-clear, the code checks whether the

machine is PAL or NTSC and _should_ set the value appropriately -- another
thing left out of the docs. Bleah.

25

Anyways, the bottom line is that you can make it work just like a normal VIC
interrupt -- you're just not limited to a VIC interrupt.

>Hmm, a so-called 100% cover of Commando tune by Rob Hubbard could do
>fine :)

>

>/hvsc/hvsids-4.6/Hubbard_Rob/Commando.sid
>/hvsc/hvsids-4.6/VARIOUS/A-F/Agemixer/Commando_Remix.sid

>

>which i covered with DMC 4.0B, this editor is easy but one of

>hardest ones for covering anything well. :)

Heh, cool. OK, I'll take you up on it :). But you'll have to describe the
instruments to me -- I'm pretty clueless as to duplicating instruments I
haven't done before. (We can do this in email).

That is, if this is a test of my abilities -- well, I lose, I can do the notes
from memory but I don't know how to make his instruments. But if it's a test
of iseq's abilities, well, some information would be most helpful :).

>Most of the judgement is based on first experience and feeling.
>But now you know atleast one who even bothered to test the editor =)

Yep, fair enough, and I would surely have a similar reaction, if not worse;
if I can't figure something out quickly I usually put the program aside,
and I should have put more work into easing into this one. Oh well.

As to the second, what makes it REALLY rare is that you not only tried
the program, but made COMMENTS on it! :) (That _never_ happens!)

>Those horizontally placed notes in sequences in iseq is very strange for
>music. Not that the common oldie note and delay staves with G-key are
>also... :)

Well, that's a funny thing. We read books left to right, and sheet music
left to right. There's more columns than rows on the screen, too. Sol
began to wonder why 64 tunes are written like Chinese script.

One reason is of course that if the information is "wide", more of it fits

in columns. And I learned another reason -- vertical stacking is a lot

easier to code than horizontal (especially with variable-width fields)! But
Iseq fits, what, 12 "tracks" on the screen at a time by using rows, and more
notes are visible at a time. You can see at a glance which are used, which
are left, which parts go where. It's taken me some getting used to, too,
but, well, I actually like it!

>It is also missing the on-screen octave information, that is important to
>see the current playing note octave.

Well.... this is another one that got to bugging me. Tunesmith displays
note, octave, and duration on the screen, and I realized that I never
found the octave/duration information useful, but instead spent all my
time single-stepping to find my place in the tune. Iseq displays the
current octave at the top of the screen, and displays the octave in the
"long" description of the note under the cursor. I did try putting the

26

octave information in with the note, but decided that
ABC#BC#AD
was a lot cleaner looking than
A-4 B-4 C#-4 B-4 C#-4 oops ran out of screen room
so it went into the long description instead (at the bottom of the screen).
>A some kind of sequence position is necessary for editing, too.
Hey, great idea :).

>I know the feeling, there is a lot of 'unfinished' editors around that
>either weren't flexible enough, or, the music routines took a lot of
>rastertime... So i decided to start my own tracker project, meanwhile a
>lot of people wanted to kill my project "aren't there already enough of
>good trackers around yet", "This will become nothing anyway, everybody
>already uses their own music players", "This kind of editor is already
>being under construction, see this link blahblah.." and mumblings like
>that.

Bah. That's Bull. I totally think you should write your own player. As

you say, current programs do _not_ do everything they can or should do.
Besides, you're an experienced and high quality composer, so why should you
have to depend on others for your composition needs, especially when those
needs aren't being met?

Now, if it means you'll have to stop composing for a while and/or get

bogged down in a bunch of coding, well, forget it -- talk some coder info

adding the features you want :). Or maybe someone has released some source
code that can be modified. Otherwise, there's always room for more,

new programs. That's what keeps the C= going, and if it makes you a more
productive composer then where's the problem?

(I almost hate to mention it, but you can always tell ME what features
you'd like to see :).

Anyways, I really do appreciate the comments, and the chance to defend
poor little iseq (actually, it's something like 70 blocks of code -- not
tables, graphics, music, and code; just code -- which is really humongous).

Further comments, good or bad, are unexpected but always welcome :).
I rarely read comp.sys.cbm though, so maybe email is better.

And Agemixer: get busy on the Ultimate Tracker! :)
cu all,

-Steve

27

As an example of Iseq music composition, this is the Steve Judd cover of Rob Hubbard's

Commando tune. The style is as in Iseq, with the hidden numbers in the editor added
here for more reliability.

\VO:

V1:

V2:

Voice tracks:

hard+ gate=3 DDDDG trans=3 G trans=0 H JI JKKLLMM trans=2 M trans=0 NPPPPTULL hard+ gate=3 MMV
trans=2 M trans=0 NPPPX

har d+ gat e=3 EEEEEE trans=3 EE trans=0 EEEEEEDD trans=-3 D trans=4 D trans=-3 D trans=4 D trans=5
DD trans=7 DD trans=3 PPPP trans=0 DDDDDD trans=-3 D trans=4 D trans=-3 D trans=4 D trans=5 DD
trans=7 DD trans=3 PPP trans=0 X

hard+ gate=0 AAA trans=3 A trans=0 BAAC trans=5 C trans=-3 Ctrans=4 Ctrans=-3 Ctrans=4 C
trans=5 CC trans=-5 CC trans=0 gate=3 QQQQ gate=0 C trans=5 C trans=0 C trans=5 C trans=0 C
trans=5 C trans=-3 Ctrans=4 Ctrans=-3 Ctrans=4 C trans=5 CC trans=-5 CCQQQ trans=0 W

Patterns:

i nst =0(hubbass) dur=1(6) al h al a2 inst=1(crash) al h inst=0(hubbass) al h al h h a2
inst=1(crash) al h inst=0(hubbass) g2 a2 al h al a2 inst=1(crash) al h inst=0(hubbass) al h al h h
a2 inst=1(crash) al h instr=0(hubbass) g2 a2 a#l h a#1l a#2 instr=1(crash) a#l h instr=0(hubbass)
a#l h a#1 h h a#2 instr=1(crash) a#l h instr=0(hubbass) g#2 a#2 el h el e2 instr=1(crash) el h
instr=0(hubbass) el h el h h e2 inst=1(crash) el h instr=0(hubbass) d2 e2

al h al a2 instr=1(crash) al h instr=0(hubbass) al h al h h a2 inst=1(crash) al h instr=0(hubbass)
g2 a2 d2 h d2 d3 instr=1(crash) d2 h instr=0(hubbass) d2 h d2 h h d3 instr=1(crash) d2 h

i nstr=0(hubbass) c3 d3 el h el e2 instr=1(crash) el h instr=0(hubbass) el h el h h e2
instr=1(crash) el h instr=0(hubbass) d2 e2 al h al a2 instr=1(crash) al h instr=0(hubbass) al h al
h h a2 instr=1(crash) al h instr=0(hubbass) g2 a2

instr=0(hubbass) al h al a2 instr=1(crash) al h instr=0(hubbass) al h al h h a2 instr=1(crash) al
h instr=0(hubbass) g2 a2 al h al a2 instr=1(crash) al h instr=0(hubbass) al h al h h a2
instr=1(crash) al h instr=0(hubbass) g2 a2

gate+ instr=2(crish-vl) dur=3(12) arp=1(octave) e6 a6 instr=4(hubharmo) dur=1(6) a4 h a4 h a4 h h
a4 h h g4 hhad4 ad h a4 h g4 h a4 g4 a4 h instr=2(crish-vl) dur=3(12) e6 a6

gate+ instr=3(crish-v2) arp=0 dur=1(6) b6 c7 c6 c6 instr=4(hubharno) arp=1(octave) e4 h e4 h f4 h
h e4 h h d4 h instr=3(crish-v2) dur=1(6) b6 c7 c6 c6 instr=4(hubharmo) e4 h e4 h e4 h h hhhhh

arp=0 instr=5(hubl ead) dur=1(6) rest rest a4 a4 a4 h a4 h a4 h h a4 h h a4 h h e5 e5 h e5 h e5 h
e5 h h h instr=6(beoop) e3 h h h instr=5(hublead) f5 h h h e5 hhhf5hhhe5hd5hh b4 bdh
b4 h b h b4 h h hinstr=6(beoop) b3 h h h

inst=5(hublead) a4 a4 a4 h a4 h a4 h a4 h h b4 h h ¢c5 h d5 d5 d5 h d5 h e5 h d5 h h
i nst =6(beoop) c4 h inst=5(hublead) d5 e5 f5 f5 e5 h d5 h ¢c5 h b4 h a4 h g#4 h h h

inst=5(hubl ead) a4 a4 h a4 h b4 h a4 h h h inst=6(beoop) c4 h h h

h
h
i nst =4(hubharmo) arp=1(octave) dur=1(6) c5 b4 h a#4 a4 h c5 b4 h a#4 a4 h c5 b4 h a#4 a4 h c5 b4 h
a#4 a4 h c5 b4 h a4 f5 h e5 h

f5 e5 h d#5 d5 h f5 e5 h d#5 d5 h f5 e5 h d5 b4 a#4 h a4 g#4 h b4 a#4 h a4 g#4 h c5 h b4 h

i nst =5(bubl ead) arp=0 c5 b4 h a#4 a4 h c5 b4 h a#4 a4 h c5 b4 h a#4 a4 h c5 b4 h a#4 a4 c5 b4 h a4
c5 h b4 h

gate- dur=3(12) inst=5(hublead) f#5 inst=a(scream) f#5 h h inst=5(hublead) e5 h b4 a#4 h h h
dur=1(6) a#4 h b4 a#4 b4 h c#5 h c#5 h c#5 h h h h h c#5 h e5 h h c#5 h h inst=b(screamt) b4 h h
i nst =5(hubl ead) c#5 h h inst=a(scream) c#5 h gate+ dur=3(12) h h h inst=6(beoop) c6 c6

gat e+ inst=5(hubl ead) dur=1(6) d5 h h h h h d5 h e5 h h d5 h h inst=b(scream+) ¢c5 h h h
i nst=5(hublead) d5 h d5 h ¢c56 h d5 ¢c5 d5 h h h h h

28

NN eShhhhhe5hf#5 h h e5 h h ds he5s hh f#5 h h g#5 h f#5 h h g#5 h h a5 h
P: inst=9(harnm2) arp=1(octave) dur=1(6) g5 g5 g5 f5 g5 h f5 g5 h f5 g5 f5 g5 h f5 h

Q inst=9(harno2) arp=1(octave) d#3 d#3 d#3 c#3 inst=6(beoop) arp=0 d#3 h inst=4(hubbar no)
arp=1(octave) c#3 d#3 h c#3 d#3 c#3 arp=0 i nst=6(beoop) d#3 h c#3 h

S: gate- dur=3(12) inst=c(screan) g4 h inst=b(screamt) g4 h inst=c(screan) a4 h h h h h g4 a4 d5 c5
a4 h c5 h inst=b(screamt) c5 h inst=c(scream) d5 h h h c5 d5 g5 f#5 d5 a4 g5

T: arp=0 inst=c(screanm) dur=1(6) a5 a5 h g5 a5 h g5 a5 h g5 f#5 g5 f#5 e5 f#5 e5 d5 d5 h ¢c5 d5 h c¢5
b4 h c5 b4 a4 b4 c5 d5 g5 a5 a5 h g5 a5 h g a5 h g5 f#5 g5 f#5 e5 f#5 e5 d5 d5 h ¢5 d5 h ¢5 b4 h
c5 b4 a4 b4 c5 d5 g5

U gate- dur=3(12) b5 inst=a(screan) b5 h h inst=c(screan) a5 h h h h h dur=1(6) g5 gate- h a5 h c6
c6 a5 h g5 h a5 h dur=3(12) d6 inst=a(scream) d6é h h inst=c(scream) c6 h h h h c6 d6 g6 gate+
dur=1(6) f#6 f#6 dur=3(12) d6 c6 a5 gate- g5 inst=b(screamt) g5 h h inst=c(screan) a5 h h h h h

dur=1(6) g5 h a5 h gate+ c6 c6 a5 h g5 h gate- a5 h dur=3(12) d6 inst=a(scream) d6é h h
inst=c(scream) c6 h h h h c6 d6 gate+ g6 dur=1(6) f#6 f#6 dur=3(12) d6 c6 a5

W arp=0 dur=3(12) h h h h h h inst=6(beop) g6 g6

X: arp=0 dur=3(12) h h h h h gate-

Arpeggio:

0 <no arp>
1 [+0 +12]

Instruments:

h inst=1(crash) el el

i nst O-hubbass

inst 1-crash

inst 2-crish-vl

inst 3=cridh-v2

frg+=0000 0040 0080 00cO
00cO 0080

at dk=09 at dk=0a at dk=0d at dk=0f

sur | =d0 surl =09 surl =f1 sur |l =b4

pwi d=0102 01ff 0016 freq=0f 82 1f 04 creg=15 81 81 15 pwi d=0200
creg=41 creg=81 80 gat e=14 creg=43 81 81 43
gat e=40 gat e=88 gat e=42

i nst =4- hubbar no i nst =5- bubl ead i nst =6- beop i nst =9- har no2

at dk=06 at dk=29 at dk=0a at dk=06

surl =ea surl =99 sur| =0800 surl =c9

pwi d=01800 pwi d=0900 09a8 0a50 Oaf 8 |freq=0dd0 0100 0100 pwi d=0800 0006
creg=41 81 81 41 Oba0O 0c48 creg=41 81 81 40 creg=41 81 81 40
gat e=40 creg=41 gat e=40

gat e=40
i nst =a- scream i nst =b- scr eamt i nst =scream inst f-hard
at dk=38 at dk=29 at dk=38
surl =9a surl =99 surl =7a
pwi d=0b20 0c00 OceO 0dcO [pwi d=0900 09cO 0a80 0c00 | pwi d=0b20 0c00 0OceO
Oea0 0dcO OccO 0dcO OeaO 0dcO
creg=41 creg=41 creg=41
gat e=40 frq+=0000 0028 frg+=0000 0094 0094
gat e=40 0094 0000 fféc

I very hope that this transposition give you an idea of how Iseq works and so you take

the player and made some composition with it.

29

In early months of 2001 I saw a Sid Hunt (http://lala.c64.org/sid-hunt) request for
ripping the game “Dig Dug”.

I was surprise to see that this
game was not in HVSC
(http://hvsc.c64.org) , because I
consider it one of the best old
game. So I decide to rip it by
myself.

There are various technique for
ripping a tune from a game or
demo but I always use the most
difficult and longer: disassemble
the game and give a source for
the rip.

However a brief guide
description for ripping can be
found at: http://www.geocities.com/SiliconValley/Lakes/5147/sidplay/docs.html#ripping

The reason for why I prefer this way is simple: I always like to know how the sound is
physically made by the music author and looking in so deep level is a good way to
understand that.

This technique is however probably the most indicate when ripping old games, where
the music routines were together with the games routines.

The first step is to retrieve a image file of the game by looking in the common games
archive in the net. It is very important to download all the images you found, because:

1) There are various cracked version of the game and sometimes the cracker had into
duce some bugs in the music data during his work, so you must look for the file that
seems the most accurate.

2) You should use the image that come with no intro o similar matter, because the intro
can contains music and so when you look for it in the game, you could saw that part
in memory.

3) You should use the image file that start directly the game (like a .prg not
compressed), so you can use a disassembly directly to the file instead of from a
memory snapshot.

For Dig Dug 1 have use the cartridge image of the game, because all the game is within
the image without extra stuff.

30

Even if these seems a stupid observation, it can be very useful to know when and where
the music is played in the game. When you are disassembly the game you could figure
better where the music routine is. You should use even a monitor (like that come in Vice
emulator) for keeping a list of addresses that are executed during the game by setting
some breakpoints..

There are various mode to obtain a disassemble of the game. You should use the Vice
monitor for saving the disassemble:

[1= jce@localhost:~ - Shell N. 3 - Konsole

sessione Modifica Visualizza Impostazioni Aiuto

[AUTOSTART: Turred off. [a]

%% Monitaor

{C1$223e) d

.L:a23s D0 FC BHE #A23C

LLia240 BD RTS

Liafdl A% OB LDA #30B

JL:a243 85 OA STA $0A

Lia245 A5 OA LDA #0A

Cia247 L9 OF CMP #3$0F

JLia2d49 Fo 08 EEQ #7253

LiaZdbh A TAY

Lia2dc 20 E6 94 JSE $9AEG

JLia2df E6 OA IHC #07

.C:a251 D0 F2 EME #A245

JL:a253 A9 Q0 LDE #$00

L:a255 85 0A STA #0A

L3257 20 88 A2 JSR $A=SS

.L:a25a Ad OA LDY #0A —

[Cra25c Bl 03 LOA ($033.Y

LiadEe B85 02 STA #02

LCia260 98 TYA

Lia2e1 1B CLC

JLia262 69 2C AOC #32C

Lia26d AB TAY |

[C:a265 20 D1 34 JSR #9AD1]

{Crsaze2) | -
<Muovg | [Shell) Shell N. 2 [Shell M. 3| [} Shell . 4 ||

However, you should even dump the memory of the game with the monitor in a file and
then disassemble it with a more specific tool.

For example you can use the sid_dis tools that produce a output like that of Vice's
monitor from a sid file. In this case you should create a fake sid file that contains the
image you want to disassemble (the tool is available from here:
http://www.geocities.com/SiliconValley/Lakes/5147/packages/).

You probably know other tools for disassemble a file: I use the myself utility: jc64dis
(http://sf.net/projects/jc64) that disassemble prg, sid and mus file. One characteristic of
this tool is to add a comment to the known memory locations being disassembled.

31

This can be a good point for two reasons:

1) It is more simple to look for specific memory locations while try to understand the
code you are being analyse. For example you may look for the string"0314"” when
looking for a IRQ setting, but if you simple look for*IRQ” you probably found more
stuff related to the IRQ like a JSR $EA31 call.

2) As I would produce a source, it is more beautiful to have a commented code.

In the specific case of Dig Dug I had save the memory location from $8000 to $BFFF
(the cartridge image) from the Vice's monitor (with the save command) and that give the
prg resulted file to jc64dis.

If you look at the jc64dis's listing, you will see that there are about 8300 rows of
disassembled code! At the first instance is very important to give a look to the /st file in
all his extension for viewing where there is the program code and where there is the data
(you should see lot of NOOP or JAM instructions here).

As we would found the music code, we should search for string like"Voice", "Freq",
“Control", etc. in the listing. When we found this, we will evidence the code by adding
new lines in it and remove the line number of not used locations like in this examples:

BBFE A6 EA LDX $EA Tabl e of screen |line/ Transi ent editor
BCOO 95 E1 STA $E1, X Tabl e of screen |line/ Transi ent editor
BC02 94 EO STY $EO, X Tabl e of screen line/ Transi ent editor
BC04 4C F3 BA JMP $BAF3 BASI C ROM

BCO7 A9 11 LDA #3$11

BC09 DO OA BNE $BC15 BASI C ROM

BCOB A9 10 LDA #$10

BCOD DO 06 BNE $BC15 BASI C ROM

BCOF A9 41 LDA #%$41

BC11 DO 02 BNE $BC15 BASI C ROM

BC13 A9 40 LDA #%$40

BCl5 A4 F6 LDY $F6 Vector: keyboard decode table

BCl7 99 04 ™4 STA $D404,Y Voice 1: Control registers

BC1A 4C F3 BA JMP $BAF3 BASI C ROM

BC1D A9 02 LDA #3$02

BC1F DO 02 BNE $BC23 BASI C ROM

BC21 A9 06 LDA #3$06

BC23 A4 EB LDY $EB Tabl e of screen |line/ Transi ent editor
BC25 99 F2 00 STA $00F2, Y Label of screen |lines

BC28 A9 40 LDA #%$40

BC2A 85 FE STA $FE Free 0 page for user program

BC2C 4C F3 BA JMP $BAF3 BASI C ROM

That will become like in this peace of code:

32

BBFE A6 EA LDX $EA Tabl e of screen |line/ Transi ent editor

BCOO 95 E1 STA $E1, X Tabl e of screen |line/ Transi ent editor
BC02 94 EO STY $EO, X Tabl e of screen line/ Transi ent editor
BC04 4C F3 BA JMP $BAF3 BASI C ROM

BCO7 LDA #$11
BNE $BC15
LDA #$10
BNE $BC15
LDA #%$41
BNE $BC15
LDA #$40
BC15 LDy $F6 ; Vector: keyboard decode table
STA $D404,Y ;Voice 1. Control registers
BC1A JMP $BAF3

BC1D A9 02 LDA #3$02

BC1F DO 02 BNE $BC23 BASI C ROM

BC21 A9 06 LDA #3$06

BC23 A4 EB LDY $EB Tabl e of screen |line/ Transi ent editor
BC25 99 F2 00 STA $00F2,Y Label of screen |ines

BC28 A9 40 LDA #%$40

BC2A 85 FE STA $FE Free 0 page for user program

BC2C 4C F3 BA JMP $BAF3 BASI C ROM

As you can see, only the part that contains music code is changed, removing the line
number and data, leaving only the code, the comments and the used memory locations,
like BCO7 (start of routine), BC15 (a local reference) and BC1A (end of routine).

After this task, a good point is to find where are the irq interrupts like NMI or IRQ used
in the game. You may so look for code that use locations $0314-0319:

9DBE A9 FE LDA #$FE

9DCO 8D 00 DC STA $DC00 Data port A #1: keyboard, joystick, paddle,
optical pencil

9DC3 A9 El1 LDA #$E1

9DC5 8D 14 03 STA $0314 Vector: Hardware Interrupt (IRQ

9DbC8 A9 9D LDA #$9D

9DCA 8D 15 03 STA $0315 Vector: Hardware Interrupt (IRQ

9DCD A9 20 LDA #$20

9DCF 8D 12 DO STA $D012 Readi ng/ Witing | RQ bal ance val ue

9DD2 A9 01 LDA #$01

o9DD4 8D 19 DO STA $D019 Interrupt indicator register

9DD7 8D 1A DO STA $DO1A | RQ mask register

9DDA AD OD DC LDA $DCOD Interrupt control register ClA #1

9DDD 58 CLI

9DDE 4C 12 9E JWMP $9E12 Normal space for BASIC progranms/ ROM cartridge

So we find that the game set the IRQ at $9DE1 and that the IRQ is triggered by the VIC
raster routine $20. It is very important to see all the interrupts generator, because some
games uses both CIA and VIC IRQ interrupt and even NMI interrupt.

One way to be sure witch interrupt the music routine use, is to stop one of the IRQ
source (e.g CIA or VIC) by modify some memory locations with the emulator monitor. If
you still listen the music then the IRQ source you have stopped is not the one responsible
for it.

33

However, as soon as the IRQ start routine is fount, we can examine it for seeing when it
goes to call the routines related to the music, and then follow the code flow to figure all
the music player.

As we have looked at all the music routines, we may found the data used by those
routines. For examples, frequency could be taken from a table, and as the SID register
are not readable, there were some locale storage for some variables related to each
voices. Else, notes can be taken from patterns and tracks...

For examples, after a good look inside the listing, we could figure out that at $BAOE
there is a routine for setting the track currently used, because it go to manage two
memory locations as pointer to memory data. Each of this track data contains meta
instructions used by the player to generate the music, as we can see by looking at the
data around $Bcxx-BDxx.

As soon as we found some memory location data, it is good to manage them in a better
manner, by adding .byte instructions like this:

track9:

. byte $38, $0F ; set volunme to 15

. byte $20, $07, $00 set ADSL

. byte $58, $10 set filter nobde

. byte $28, $00, $87 set filter frequency

. byte $30, $28 set resonance
. byte $78, $02 set nunber of repeat (A
BD60

. byte $00 ; set control 11 (triangle)
. byte $08, $3C, $32 ; set frequency
. byte $98 set note length duration to 6

. byte $90 set note length duration to 2
.byte $70, <rBD60, >rBD60 goto repeat (A

Now, I suppose that all the code related to the music is isolated and converted with the
syntax of the previous examples. Now it is simple: remove all the not modified code lines
like

.byte $68 ; set control to 10 (triangle no A)

ACSA A5 57 LDA $57 Scratch for numeric operation
AC5C DO 01 BNE $AC5F BASI C ROV
AC5E 60 RTS

from the code like (this is a part that set a track):

BAOE
sta $EB
asl a
sta S$EA

Now, give useful comments to each routines and then change each memory references
with a more human readable name like:

set Tr ack:
sta $EB
asl a
sta $EA

At this point the code is in a form that a cross compiler can understand: there is only to
setting up some initialization part in the start of the code. For example I use to add both
code for generating a prg files runnable from a C64 emulator and a psid files runnable
from a sid player.

Now, compile the source and listen to the result with as many sidplayer/emulators you
know or preferably with the real C64.

This is for being sure that the rip sounds as in the real stuff and so you have done a
good work.

The complete source of the rip is placed in the next paragraph, but now it's time to
analyse how the sound is generated in the game.

As you can see from the game, the sound is changed according to the action that you
are done with your player: at my point of view this made the simple sound of Dig Dug
more interesting.

In the game there are 8 pieces of music: the routine called setTrack use the passed
parameter for setting the music track to use for each voices. Each track body is composed
by a sequence of bytes that are used as meta instructions, like:

1) set the volume

2) set ADSR

3) set control registers

4) set frequency

5) set note length duration
6) set amplitude

7) set filter mode

8) set filter frequency

9) set resonance

and other instructions for allow a flow control, like:
1) set the number of repeats to execute
2) goto a specific part

The instructions are decoded by a table that points directly to the music routines.

So, a typical note pattern looks like:

35

.byte $80
.byte $08, $18, $OE
.byte $98
.byte $88
.byte $90

set
set
set
set
set

control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no A)
note length duration to 2

As you see the gate bit is released for some time, but there are parts that never clears
the gate bit (using short note lengths instead).

Even if this kind of player can seems so different from today music player, it is however
modular and the code is no so nested with the game code as I expect to found from a so

old game.

36

A note: this code is a my reverse engineering of an existent work that is copyrighted by
the respective author/software house. As at the moment in Italy is allowed to made a
reverse engineering, it is not clean if this can be distributed in a work like this. So you are
not allowed to do any work to this listing that can damage the copyright owner!

; Dig Dug game

; copyright 1982 Nanto, 1983 Atari, 1984 Datasoft
; The nusic in the gane are changed di nanmically

; during the ganes

.ifdef sid

.byte "PSID' .

.word $0200 . version 2 ~— Conditional code for
.word $7C00 ; data of fset : .

.word $0000 . load address in cbm format theSd flleheader
.byte >initnusic

.byte <initnusic

. byte >play

.byte <play

.word $0800 ; 8 song

.word $0700 ; default song 7
.word $0000

.word $0000

.byte "Dig Dug",0,0,0
.byte "<?>",0,0,0,0,0
.byte "1984 Datasoft"”
.word $0000

.word $0000

.word $0000

.endif

.byte $01, $08

. byte $0b, $08, $e8, $03, $9e, "2061",0,0,0
.org 2061

jsr initnusic

sei
| da #<interr
sta $0314
I da #>interr
sta $0315
I dx #$00
stx $DCOE ; Control register Aof CIA #1
i nx
stx $DO1A ; |RQ mask register
cli

aaa:

jnp aaa

interr =*
.ifndef sid
| da #$01
sta $D019 ; Interrupt indicator register
| da #$82
sta $D012 ; Reading/Witing | RQ bal ance val ue
| da #$1B
sta $D011 ; VIC control register
| da #$01
sta $D020 ; Border col or
.endif

jsr play

.ifndef sid
dec $D020 ; Border color
.endif

jnp $ea3l

37

;init music
i nitmnusic:

.ifndef sid
| da #$06
.endif

cnp #$00
beq t1

cnp #%$01
beq t2

cnp #%$02
beq t3

cnp #%$03
beq t4

cnp #%04
beq t5

cnp #%$05
beq t6

cnp #%$06
beq t7

| da #$0a

jsr setTrack
| da #$0c

jsr setTrack
| da #$0d

jsr setTrack
rts

tl:

| da #$00

jsr setTrack
| da #$01

jsr setTrack
| da #$02

jsr setTrack
rts

t2:

| da #$0b

jsr setTrack
| da #$0c

jsr setTrack
| da #$03

jsr setTrack
rts

t3:

| da #$0b

jsr setTrack
| da #$0c

jsr setTrack
| da #$04

jsr setTrack
rts

t4:

| da #$0b

jsr setTrack
| da #$0c

jsr setTrack
| da #$05

jsr setTrack
rts

t5:
| da #$0b
jsr setTrack
| da #$0c
jsr setTrack
| da #$06

Select the subtuneto
play according with
the passed A register

¥ Init the tracks for

first tuneto play

38

jsr
rts

t6:
| da
jsr
| da
jsr
| da
jsr
rts

t7:
| da
jsr
| da
jsr
| da
jsr
rts

set Track

#$0b
set Track
#$0c
set Track
#$07
set Track

#$08
set Track
#$09
set Track
#$0d
set Track

, set

the tracks and voice for

it

set Track:

sta $EB
asl a
sta $EA
tya

pha

txa

pha

Idy $EB

Ida voices,y

sta $EB
asl a

t ax

Idy $EA
sta $EA

lda tracks,y

sta $EO, x
sta $EC x

lda tracks+l,y

sta $EI, x
sta $ED, x
ldx #$02

| 00pST:

lda $F2, x
clc

adc $F5
sta $F2,x
dex

bpl | oopST

ldx $EB

I da #$00
sta $F2,x
I da #$01
sta $F5
pl a

t ax

pl a

tay

rts

Voi ces:
.byte $00, $01,
.byte $02, $02,
.byte $00, $01,
.byte $01, $02

tracks:
.byte <trackl
.byte <track2
.byte <track3
.byte <track4
. byte <track5
.byte <track6
. byte <track?7

$02, $02
$02, $02
$00, $00

>trackl
>track2
>track3
>track4
>t rack5
>track6
>track?7

read voi ce nunber
voi ce nunber

read instructions track

39

.byte <track8, >
.byte <track9, >

.byte <trackl0
.byte <trackll
.byte <trackl2
.byte <trackl2
.byte <trackl2
pl ay
dec $F5
beg | ocA
rts
| ocA
| da $DO
beg |ocB
rts
| ocB:
| da #$01
sta $DO
jsr locC
| da #$00
sta $DO
rts
I ocC:
cl
| da $DCOD
Idy #$02
I dx #$04
next Voi ce
I da $E1, x
beg noActiv
| da $00F2,y
bne noActiv
I da voiceln
sta $F6
jsr playNex
noActi ve:
dex
dex
dey
bpl next Voi

jmp j mpAdj ust Dur ati on

voi cel ndex

track8

track9

>trackl10
>trackll
>trackl2
>trackl2
>trackl2

e

e
dex,y

t

ce

.byte $00, $07, $OE

; play next note in track

pl ayNext :
t xa
pha
tya
pha
asl a
stx $EA
sty $EB

nextlnstr:
ldx $EA
Idy $EB
I da ($EO, x) ;
sta $FE ;
cnp #$B1
bcs ski pExecute
and #$07
bne ski pExecute
| da $FE ;
cnp #$BO
bne executelnstr

ski pExecut e
| da #$00
sta $E1, x ;
| da #$7F
sta $00F2,y ;
jmp exitPlay

executelnstr:

jsr incForNext

Interrupt control register ClA #1
| ast voice

is active?

note | ength duration

voi ce i ndex

previ ous voice

index of the 3 voices

read actual track instruction
store readed val ue

read stored track instruction
end?

no active

note | ength duration

increment pointer for next reading

40

| da $FE ; read stored track instruction

and #$F8

Isr a

Isr a

tay

lda instTable,y ; read this instruction fromtable

sta $E6

lda instTable+l,y

sta $E7

jmp ($00ES6) ; execute the readed instruction
finishlnstr:

| da $FE ; read stored track instruction

cnp #%$40 ; is set note length duration

bne nextlnstr ; exit only when note is set
exitPlay:

pl a

tay

pl a

t ax

rts

j mpAdj ust Dur ati on:
jmp adjustDuration

; increment pointer for next reading

i ncFor Next :

I da $EO, x
clc

adc #$01
sta $EO, x
I da $E1, x
adc #3$00
sta $EI, x
rts

; set frequency contro

set Frequency:
jsr readNext ; read next song instruction/data

Idy $F6 ; voi ce index

sta $D400,y ; Voice 1: Frequency control (lo byte)
jsr readNext ; read next song instruction/data

sta $D401,y ; Voice 1: Frequency control (hi byte)
ldx $EB ; voi ce nunber

sta $D8, x

jmp finishlnstr

; set voice contro

set Cont r ol

jsr readNext ; read next song instruction/data
Idy $F6 ; voice index
sta $D404,y ; Voice 1: Control registers

jmp finishlnstr

; set wave form pul sation anplitude

set Anpl i tude
jsr readNext ; read next song instruction/data
Idy $F6 ; voice index
sta $D402,y ; Voice 1: Wave form pul sation anplitude (lo byte)
jsr readNext ; read next song instruction/data
sta $D403,y ; Voice 1: Wave form pul sation anplitude (hi byte)

jmp finishlnstr

; set the Attack/ Decay Sustain/Rel ease

set ADSR

jsr readNext ; read next song instruction/data
Idy $F6 ; voice index
sta $D405,y ; Cenerator 1: Attack/Decay

jsr readNext read next song instruction/data

41

sta $D406,y ; Cenerator 1: Sustain/Rel ease
jmp finishlnstr

; set filter frequency

setFilterFreq: ; set filter frequency
jsr readNext read next song instruction/data

sta $D415 ; Filter cut frequency: lo byte (bit 2-0)
jsr readNext ; read next song instruction/data

sta $FF ; Transient data area of BASIC

sta $D416 ; Filter cut frequency: hi byte

jmp finishlnstr

; set filter resonance

set Resonance

jsr readNext ; read next song instruction/data

and #$FO

sta $FC

clc

adc $FA ; RS-232 output buffer pointer

sta $D417 ; Filter resonance control/voice input contro

jmp finishlnstr

; set volunme and filter node

set Vol une:

jsr readNext ; read next song instruction/data
and #3$0F

sta $FD

clc

adc $FB ; Free 0 page for user program
sta $D418 ; Select volune and filter node

jmp finishlnstr

; rts

; set note lenght duration

setDuration:

jsr readNext ; read next song instruction/data
Idy $EB ; voi ce nunber
sta $00F2,y ; note length duration

jmp finishlnstr

; change track position

changePosi ti on

ldx $EA

I da $EC, x ; read position to go
sta $EO, x ; set new position

| da $ED, x

sta $E1, x

jmp finishlnstr

; set filter resonance (A)

set ResonanceA:

Idy $EB ; voi ce nunber
| da #$01
| oopA:
cpy #$00
beg endA
asl a
dey
jmp | oopA
endA:
ora $FA
sta $FA
| da $FC
clc
adc $FA

42

sta $D417 ; Filter resonance control/voice input contro
jmp finishlnstr

; set filter node

éetFiIterhbde:

jsr readNext ; read next song instruction/data
and #$FO

sta $FB

clc

adc $FD

sta $D418 ; Select volume and filter node

jmp finishlnstr

; set filter resonance B

set ResonanceB:

Idy $EB ; voi ce nunber
| da #$FE
| oopB:
cpy #$00
sec
beg endB
rol a
dey
jmp | oopB
endB:
and $FA
sta $FA
clc
adc $FC
sta $D417 ; Filter resonance control/voice input contro

jmp finishlnstr

; set nunber of repeat (A)

set Repeat A

jsr readNext ; read next song instruction/data
Idy $EB ; voi ce nunber

clc

adc #$01

sta $00D2,y ; number of repeat factor

jmp finishlnstr

, rts

; goto the track to repeat (A)

got oRepeat A:

jsr readNext ; read next song instruction/data
tay
jsr readNext ; read next song instruction/data
I dx $EB ; voi ce nunber
dec $D2, x ; dec repeat factor
beg ski pRepeat A
ldx $EA
sta $EI1, x ; change pointer
sty $EO, x ; to the next instruction
ski pRepeat A:

jmp finishlnstr

; set various controls

set Control 11: ; set control voice to triangle

| da #$11
bne | ocSet Contro
set Control 10: ; set control voice to triangle (no A)
| da #$10
bne [ocSet Contro
set Control 41: ; set control voice to rectangle
| da #$41

43

bne | ocSetContro

set Control 40
lda #$40

| ocSet Cont r ol
Idy $F6
sta $D404,y
jmp finishlnstr

; set various duration

éetEUrationZ:
lda #$02
bne | ocSetDuration

set Durati on6:
lda #$06

| ocSet Dur ati on

Idy $EB
sta $00F2,y
I da #$40
sta $FE

jmp finishlnstr

; set nunber of repeat (B)
set Repeat B

jsr readNext

Idy $EB

clc

adc #$01

sta $00D5,y
jmp finishlnstr

; goto the track to repeat (B)

got oRepeat B
jsr readNext

tay
jsr readNext
ldx $EB
dec $D5, x
beg ski pRepeatB
ldx $EA
sta $EIL, x
sty $EO, x
ski pRepeat B

jmp finishlnstr

; read next song instruction/data

r eadNext :

ldx $EA

I da ($EO, x)
pha

jsr incForNext
pl a

rts

; adj ust duration of note

adj ust Durati on

I da $F2
cnp $F3
bcc locl
I da $F3
cnp $F4
bcc loc2
lda $F4
j | oc2

| ocl:

set contro

voi ce i ndex

Voice 1: Control registers

set note length duration to 2

set note length duration to 6

voi ce numnber
set note length duration

read next song instruction/data
voi ce nunber

number of repeat factor

read next song instruction/data
read next song instruction/data

voi ce numnber
dec repeat factor

change pointer
to the next instruction

read the val ue

increment pointer for next reading

note | ength duration voice 1
note | ength duration voice 2

note | ength duration voice 2
note | ength duration voice 3

note | ength duration voice 3

voice to rectangle (no A

| da $F2 ; note length duration voice 1

cnp $F4 ; note length duration voice 3

bcc loc2

| da $F4 ; note length duration voice 3
| oc2

sta $F5

| da $E1 ; seg. of track 1

beg |1oc3 ; jump if not active

| da $F2 ; note length duration voice 1

sec

sbc $F5

sta $F2 ; note length duration voice 1
| oc3

| da $E3 ; seg. of track 2

beg |oc4 ; jump if not active

| da $F3 ; note length duration voice 2

sec

sbc $F5

sta $F3 ; note length duration voice 2
| oc4

| da $E5 ; seg. of track 3

beg |oc5 ; jump if not active

| da $F4 ; note length duration voice 3

sec

sbc $F5

sta $F4 ; note length duration voice 3
loch: rts
i nst Tabl e:

.byte <setControl 11
.byte >setControl 11

. byte <set Frequency

. byte >set Frequency

. byte <set Control

. byte >set Control

. byte <set Anplitude

. byte >set Anplitude

. byte <set ADSR

. byte >set ADSR

.byte <setFilterFreq
.byte >setFilterFreq
. byte <set Resonance

. byte >set Resonance

. byte <set Vol une

. byte >set Vol une
.byte <setDuration
.byte >setDuration

. byt e <changePosition
. byte >changePosition
. byt e <set ResonanceA
. byte >set ResonanceA
.byte <setFilterMde
.byte >setFilterMde
. byte <set ResonanceB
. byte >set ResonanceB
. byte <setControl 10
. byte >set Control 10
. byt e <got oRepeat A

. byt e >got oRepeat A

. byte <set Repeat A

. byte >set Repeat A

. byte <setControl 41
. byte >set Control 41
. byte <set Control 40
. byte >set Control 40
.byte <setDuration2
.byte >setDuration2
.byte <setDuration6
.byte >setDuration6
. byte <set RepeatB

. byte >set RepeatB

. byt e <got oRepeat B

. byt e >got oRepeat B

trackl:
.byte $38, $0F ; set volunme to 15
.byte $20, $0F, $00 ; set ADSL
. byte $00 ; set control to 11 (triangle)

45

. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

track2:
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

track3
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
.byte
.byte
.byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$BO

$20,
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$00
$08,
$40,
$68
$BO

$38,
$20,
$18,
$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$98
$80
$08,
$40,
$88

$OF,
$04

$83,
$04

$C7,
$04

$OF,
$04

$45,

$04

$OF,
$C1,
$04

$D1,
$04

$A5,
$04

$1E,
$04

$A2,
$04

$OF
$0C,
$00,

$OF,

$45,

$7D,

$63,

$3C,

$C7,
$0C

$43

$59

$70

$43

$4B

$00

$2C

$12

$1F

$19

$25

$00
$09

$43

$4B

$54

$38

$32

$70

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

frequency

note | ength duration
control to 10 (triangle no
control to 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control to 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control to 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control to 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no

ADSL
control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no
control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no

volurme to 15

ADSL

anpl i tude

control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no
note length duration to 2
control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no
note length duration to 2
control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no
note length duration to 2
control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no
note |l ength duration to 2
control to 41 (rectangle)
frequency

note length duration to 6
control to 40 (rectangle no
note length duration to 6
control to 41 (rectangle)
frequency

note | ength duration
control to 40 (rectangle no

46

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

. byte
. byte
. byte
. byte
. byte
. byte
. byte

track9:
. byte
. byte
. byte
. byte
. byte
. byte

r BD60
. byte
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
r BD6F
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
. byte
. byte
r BD7D:
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
r BD88
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
.byte
.byte
.byte

.byte
.byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
r BDB3:

$98
$80
$08,
$40,
$88
$90
$BO

$38,
$20,
$58,
$28,
$30,
$78,

$00
$08,
$98
$68
$90
$70,

$00
$40,
$78,

$68
$90
$00
$98
$70,

$68
$90
$00
$40,
$78,

$68
$90
$00
$98
$70,

$68
$90
$78,

$00
$08,
$98
$68
$90
$00
$08,
$40,
$68
$90
$70,

$00
$08,
$98
$68
$90
$00
$08,
$40,
$68
$90
$00
$08,
$40,
$68
$90
$78,

$79,
$12

$OF
$07,
$10
$00,
$28
$02

$3C

<r BD6O,

$0E
$05

<r BDG6F,

$0E
$02

<r BD7D, >rBD7D

$01

$3E,

$C1
$0E

<r BD8S§,

$3E,

$C1
$2E

$A2
$16

$02

$64

$00

$87

$32

$2A

$2C

$2A

$2C

$25

>r BD60

>r BD6F

>r BD88

set note length duration to 6
set control to 41 (rectangle)
set frequency

set note length duration

set control to 40 (rectangle no A)

set note length duration to 2

set volunme to 15

set ADSR

set filter node

set filter frequency

set resonance

set nunber of repeat (A)

set control 11 (triangle)

set frequency

set note length duration to 6
set control to 10 (triangle no
set note length duration to 2
goto repeat (A)

set control 11 (triangle)
set note length duration
set nunber of repeat (A)

set control to 10 (triangle no
set note length duration to 2
set control 11 (triangle)

set note length duration to 6
goto repeat (A)

set control to 10 (triangle no
set note length duration to 2
set control 11 (triangle)
set note length duration
set nunber of repeat (A)

set control to 10 (triangle no
set note length duration to 2
set control 11 (triangle)

set note length duration to 6
goto repeat (A)

set control to 10 (triangle no
set note length duration to 2
set nunber of repeat (A)

set control 11 (triangle)

set frequency

set note length duration to 6
set control to 10 (triangle no
set note length duration to 2
set control 11 (triangle)

set frequency

set note length duration

set control to 10 (triangle no
set note length duration to 2
goto repeat (A)

set control 11 (triangle)

set frequency

set note length duration to 6

set control to 10 (triangle no
set note length duration to 2

set control 11 (triangle)

set frequency

set note length duration

set control to 10 (triangle no
set note length duration to 2

set control 11 (triangle)

set frequency

set note length duration

set control to 10 (triangle no
set note length duration to 2

set nunber of repeat (A)

47

A

A

A

A

A

A

A

A

A

A

. byte
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
r BDC2
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
. byte
. byte
r BDDO
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
r BDDB
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

track10
.byte
. byte
. byte
. byte

r BEO7:
. byte

r BEO9:
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

$00
$08,
$98
$68
$90
$70,

$00
$40,
$78,

$68
$90
$00
$98
$70,

$68
$90
$00
$40,
$78,

$68
$90
$00
$98
$70,

$68
$90
$78,

$00
$08,
$98
$68
$90
$00
$08,
$40,
$68
$90
$70,

$00
$08,
$98
$68
$90
$00
$08,
$40,
$68
$90
$48
$BO

$20,
$50
$18,
$78,

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$3E, $2A

<r BDB3, >rBDB3

$0E
$05

<r BDC2, >rBDC2

$0E
$02

<r BDDO, >r BDDO

$01

$A2, $25

$3E, $2A

$0E

<r BDDB, >r BDDB

$A2, $25

$3C, $32
$48

$37, $32

$00, $08
$01

$01

$C3, $10

$87, $21

<r BEO9, >rBEO9

set
set
set
set
set

set
set
set

set
set
set
set

set
set
set
set
set

set
set
set
set

set
set
set

set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set

set
set
set
set

set

set
set
set
set
set
set
set
set
set
set

control

11 (triangle)

frequency
note length duration to 6

control

to 10 (triangle no A)

note length duration to 2
goto repeat (A)

control

11 (triangle)

note | ength duration

nunber

control

of repeat (A)

to 10 (triangle no A)

note length duration to 2

control

11 (triangle)

note length duration to 6
goto repeat (A)

control

to 10 (triangle no A)

note length duration to 2

control

11 (triangle)

note | ength duration

nunber

control

of repeat (A)

to 10 (triangle no A)

note length duration to 2

control

11 (triangle)

note length duration to 6
goto repeat (A)

control

to 10 (triangle no A)

note length duration to 2

nunber of repeat (A)
control 11 (triangle)
frequency

note length duration to 6

control

to 10 (triangle no A)

note length duration to 2

control

11 (triangle)

frequency
note | ength duration

control

to 10 (triangle no A)

note length duration to 2
goto repeat (A)

control

11 (triangle)

frequency
note length duration to 6

control

to 10 (triangle no A)

note length duration to 2

control

11 (triangle)

frequency
note | ength duration

control

to 10 (triangle no A)

note length duration to 2
change position

ADSL

resonance A

anpl i tude

nunmber of repeat (A)
nunber of repeat (B)
control to 41 (rectangle)
frequency

note length duration to 6

control

to 40 (rectangle no A)

note length duration to 2

control

to 41 (rectangle)

frequency
note length duration to 6

control

to 40 (rectangle no A)

note length duration to 2
goto repeat (B)

48

. byte
r BE1C.
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
r BE2F:
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
r BE42:
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
r BE55:
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
r BEGS:
.byte
.byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

. byte
. byte
. byte
. byte
. byte
. byte
. byte
. byte

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$A0,

$80
$08,
$98
$88
$90
$80
$08,
$98
$88
$90
$A8,

$80
$08,
$98
$88
$90
$80
$08,
$98

$01

$D2, $OF

$A5, $1F

<r BE1C, >rBE1C

$01

$EF, $0E

$DF, $1D

<r BE2F, >r BE2F

$01

$18, $0E

$31, $1C

<r BE42, >r BE42

$03

$4E, $0D

$9C, $1A

<r BES5, >rBE55

$01

$8F, $0C

$1E, $19

<r BE68, >r BE68

$18, $0E

$31, $1C

set nunber of repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
goto repeat (B)

set nunber of repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
goto repeat (B)

set nunber of repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
goto repeat (B)

set nunber of repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
goto repeat (B)

set nunber of repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
goto repeat (B)

set control to 41 (rectangle)
set frequency

set note length duration to 6
set control to 40 (rectangle no
set note length duration to 2
set control to 41 (rectangle)
set frequency

set note length duration to 6

49

A

A

A

A

A

A

A

A

A

A

A

.byte $88 ; set control to 40 (rectangle no A)

.byte $90 set note length duration to 2
.byte $80 set control to 41 (rectangle)
.byte $08, $D2, $0OF set frequency

.byte $98 set note length duration to 6
.byte $88 set control to 40 (rectangle no A)

.byte $90 ; set note length duration to 2

.byte $80 set control to 41 (rectangle)
.byte $08, $A5, $1F set frequency
.byte $98 set note length duration to 6
.byte $88 set control to 40 (rectangle no A)
.byte $90 set note length duration to 2
.byte $70, <rBEO7, >rBEQO7 goto repeat (A)
.byte $90 ; set note length duration to 2
.byte $48 ; change position
.byte $BO

track4
.byte $38, $0F ; set volunme to 15
.byte $20, $00, $FO set ADSL
.byte $80 set control to 41 (rectangle)

.byte $18, $00, $08
.byte $08, $F7, $09
.byte $40, $01
.byte $08, $8F, $0A
.byte $40, $01
.byte $08, $68, $09
.byte $40, $01
.byte $08, $8F, $0A
.byte $40, $01
.byte $08, $8F, $0C
.byte $40, $01
.byte $08, $4E, $0D
.byte $40, $01
.byte $08, $18, $OE
.byte $40, $01
.byte $08, $C3, $10
.byte $40, $01
.byte $08, $EF, $13
.byte $40, $01
.byte $08, $60, $16
.byte $40, $01
.byte $08, $31, $1C
.byte $40, $01
.byte $08, $DF, $1D
.byte $40, $01
.byte $08, $86, $23
.byte $40, $01
.byte $08, $16, $22
.byte $40, $01
.byte $08, $87, $21
.byte $40, $01
.byte $08, $02, $24
.byte $40, $01
.byte $08, $86, $23
.byte $40, $01
.byte $08, $3B, $25
.byte $40, $01
.byte $08, $02, $26
.byte $40, $01
.byte $08, $86, $23
.byte $40, $01
.byte $08, $20, $24
.byte $40, $01

set anplitude
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration
set frequency
set note length duration

.byte $88 set control to 40 (rectangle no A)
.byte $BO
track5s:
.byte $38, $0F ; set volume to 15
.byte $20, $0F, $00 set ADSL
.byte $80 set control to 41 (rectangle)

.byte $18, $00, $08
.byte $78, $01

set anplitude
set nunber of repeat (A)

r BF1A:
.byte $08, $8F, $0C ; set frequency
.byte $40, $03 ; set note |length duration
.byte $08, $8F, $0B ; set frequency

50

.byte $40, $01 ; set note |length duration

.byte $70, <rBF1A, >rBFlA ; goto repeat (A)
.byte $88 ; set control to 40 (rectangle no A)
.byte $90 ; set note length duration to 2
.byte $80 ; set control to 41 (rectangle)
.byte $18, $00, $08
.byte $08, $5F, $10 ; set frequency
.byte $40, $08 ; set note |length duration
.byte $88 ; set control to 40 (rectangle no A)
.byte $BO

track6:
.byte $38, $0F ; set volunme to 15
.byte $20, $4F, $F4 ; set ADSL
.byte $18, $00, $08 set anplitude

.byte $80

.byte $08, $68, $03
.byte $40, $04
.byte $80

.byte $08, $89, $03
.byte $40, $04
.byte $80

.byte $08, $AE, $03
.byte $40, $04 set note |ength duration
.byte $80 set control to 41 (rectangle)
.byte $08, $C8, $03 ; set frequency

.byte $40, $04 set note |ength duration
.byte $80 set control to 41 (rectangle)
.byte $08, $AE, $03 set frequency

.byte $40, $03 set note |ength duration
.byte $80 set control to 41 (rectangle)
.byte $08, $93, $03 set frequency

.byte $40, $03 set note |ength duration

set control to 41 (rectangle)
set frequency

set note length duration

set control to 41 (rectangle)
set frequency

set note length duration

set control to 41 (rectangle)
set frequency

.byte $88 set control to 40 (rectangle no A)
.byte $BO
track?:
.byte $38, $0F ; set volunme to 15
.byte $20, $2C, $C2 ; set ADSL
.byte $78, $02 ; set nunber of repeat (A)
r BF69:
. byte $00 ; set control 11 (triangle)

.byte $08, $D6, $5E ; set frequency

.byte $40, $03 ; set note |length duration
. byte $00 ; set control 11 (triangle)
.byte $08, $C7, $70 ; set frequency

.byte $40, $03 set note |ength duration

. byte $00 set control 11 (triangle)
.byte $08, $97, $7E set frequency
.byte $90 ; set note length duration to 2
.byte $70, <rBF69, >rBF69 ; goto repeat (A)
.byte $68 ; set control to 10 (triangle no A)
.byte $BO

track8
.byte $38, $0F ; set volunme to 15
.byte $20, $0C, $00 ; set ADSL
.byte $00 ; set control 11 (triangle)
.byte $08, $1E, $86 ; set frequency
.byte $90 ; set note length duration to 2

.byte $68 ; set control to 10 (triangle no A)

. byte $00 ; set control 11 (triangle)

.byte $08, $8B, $96 ; set frequency

.byte $90 ; set note length duration to 2
.byte $68 ; set control to 10 (triangle no A)
. byte $00 ; set control 11 (triangle)

.byte $08, $2B, $9F ; set frequency

.byte $90 ; set note length duration to 2
.byte $68 ; set control to 10 (triangle no A)
. byte $00 ; set control 11 (triangle)

.byte $08, $FA, $A8 ; set frequency

.byte $90 ; set note length duration to 2

.byte $68 ; set control to 10 (triangle no A)

. byte $00 ; set control 11 (triangle)
.byte $08, $30, $AB ; set frequency
.byte $90 ; set note length duration to 2

51

.byte $68
.byte $00
. byte $08,
.byte $90
.byte $00
. byte $08,
. byte $40,
.byte $00
. byte $08,
. byte $40,
. byte $20,
.byte $00
. byte $08,
. byte $40,
.byte $68
.byte $BO

trackl2:
. byte $10,
.byte $08,
.byte $BO

track11:
.byte $38,
. byte $20,
.byte $00
. byte $08,
.byte $90
.byte $78,

r BFDO:
.byte $00
. byte $08,
. byte $40,
.byte $00
. byte $08,
.byte $90
. byte $70,

.byte $00
. byte $08,
. byte $40,
.byte $78,
r BFEG:
.byte $00
. byte $08,
.byte $90
.byte $00
. byte $08,
. byte $40,
.byte $70,

.byte $68
.byte $48
.byte $BO

$06,
$FF,
$03
$88,
$03
$0C,

$64,
$03

$00
$00,

$OF
$07,

$79,
$01
$C7,
$03
$C7,

$B3

$5E

$5A
$74

$56

$00

$60

$64

$6F

$69

<r BFDO,

$79,
$03
$02

$OF,

$4B,
$03

$64

$43

$3F

<r BFES,

>r BFDO

>r BFE6

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

set
set

set
set
set
set
set
set

set
set
set
set
set
set

control to 10 (triangle no A)
control 11 (triangle)
frequency

note length duration to 2
control 11 (triangle)
frequency

note | ength duration

control 11 (triangle)

frequency

note | ength duration
ADSL

control 11 (triangle)
frequency

note | ength duration
control to 10 (triangle no A)

control
frequency

volurme to 15

ADSL

control 11 (triangle)
frequency

note length duration to 2
nunber of repeat (A)

control 11 (triangle)
frequency

note | ength duration
control 11 (triangle)
frequency

note length duration to 2

goto repeat (A)

set
set
set
set

set
set
set
set
set
set

control 11 (triangle)
frequency

note | ength duration
nunber of repeat (A)

control 11 (triangle)
frequency

note length duration to 2
control 11 (triangle)
frequency

note | ength duration

goto repeat (A)

set

control to 10 (triangle no A)

change position

Ripping this game was a good experience for me. I hope that this description have let
you achieve some idea of how to rip an old game: there are other games that attend your

Fip!!!

Finally I like to thanks Petri Kerdanen that for sure was happy for this rip

52

QbS8 7 end

53

