SLPER-C

C for the
C-128 or C-64

by F.J. Hauck and T. Eirich

main()

« 1{ Intstar, end, step;
double fahr, celsius;
start=-50;
end=50;

slop=10;

celsius=start;

while(celsius<=end)

{ fahr=(9.0/5.0)"celslus+32.0;

printf(*%4.01%7.1\n" celslus,fahr);
celslus=celsius+step;

Copyright Notice

Abacus Software makes this package available for use on a single
computer only. It is unlawful to copy any portion of this software
package onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple computers,
please contact Abacus Software to make arrangements.

Warranty

Abacus Software makes no warnings, expressed or implied, as to
the fitness of this software package for any particular purpose. In
no event will Abacus Software be liable for consequential damages.
Abacus Software will replace any copy of this software which is
unreadable, if returned within 30 days of purchase. Thereafter,
there will be a nominal charge for replacement.

Second Printing, December 1986

Copyright © 1986 Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany
Abacus Software, Inc.
P.O. BOX 7219
Grand Rapids, MI. 49510

ISBN 0-916439-59-3

C)

Preface

The programming language C has been in existence since about
1972. 1t was developed by Dennis Ritchie and Brian Kernighan for
the operating system UNIX. More then 90% of UNIX was written
in C. With the spread of UNIX, C enjoyed greater popularity as
weg. Séxper C now makes it possible to program in C on the C-64
or C-128.

Like Pascal, C is a structured programming language. Programs are
written without jumps (goto's). You can program small problems
in functions (comparable to subroutines in BASIC), and then call
this with certain data. Once programmed, only the operation of
these functions need be known. This concept results not only in
programs which are easier to read but also to easier to maintain. By
building libgaries of functions, new programs can incorporate them
to quickly create solutions to a wide assortment of problems.

In C there are data types comparable to those in Pascal. Very
important in C is the pointer, which plays a large role. While it is
more of an appendage to Pascal, C supports the pointer with
pointer arithmetic. This moves C in the direction of assembly
languages. Like assembly languages, certain problems can be
solved easily using pointer arithmetic, without assuming anything
about the computer being used. This means that programs will run
on any C machine without significant changes.

Super C is a system of programs. Super C contains a command
processor with various resident commands, such as to display the
contents of the disk. In addition, there are commands which can be
loaded (transient commands). These can also be written in C
themselves.

An editor makes it easy to enter C programs. Programs are
translated into machine language by the compiler. This system
includes the entire range of the C language except for bit fields.

The linker links together separately compiled programs and the
standard libraries. Graphics and mathematical functions are also
available as library functions.

The Super C version for the C-128 also has a RAM disk. This can
be used like a normal disk drive. The RAM disk has a tremendous
speed advantage over normal disks. The contents of the RAM disk
can also be saved on diskette as a package so that they are loaded

when Super C is started. Super C can work with a total of up to
eight disk drives.

Franz J. Hauck
Thomas Eirich

Table of Contents

Part 1. Tutorial

1. Introduction

2. The Super C command processor

2.1 Starting Super C

2.2 CCP resident commands
2.3 CCP transient commands

3. The RAM disk in the C-128

4. C editor

4.1 The command "new"
4.2 Inserting and deleting lines

4.3 Saving text
4.4 Loading text
4.5 Block commands

4.5.1 Deleting block
4.5.2 Move blocks

4.5.3 Copy block

4.6 Search and replace

4.6.1 Searching
4.6.2 Replacing
4.7 Back to the CCP

5. Your first C program
5.1 Editing
5.2 Compiling
5.3 Linking
5.4 Executing

6. Introduction to C
6.1 Overview

6.1.
6.1.2 Objects
6.1.3 Loops

6.14

6.1.5 Arrays
6.1.

1 The first program

Symbolic constants
5
6 Character arrays

6.3

6.2 Expressions and declarations

.2.3 Constants

4 Memory classes

5 Arithmetic operators

6 Comparisons, logical operators

7 Type conversions

8 Increment and decrement

9 Bit operations

10 Assignments

11 Conditional evaluation

12 Precedence and order of operators
13 Additional operators

14 Program text

ontrol structures

1 Block

2 if instruction

3 switch instruction

4 while instruction
5
6
7

mmmaaaammmom..

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
.2.

Q

for instruction
do instruction
break instruction
8 continue instruction
6.3.9 goto instruction and labels

(= X =2 Y2 Y= Y= Y= Y= Y o))

3.
3.
3.
3.
3
3.
3.
3.

6.4 Program structures

6.4.1 Functions
6.4.2 Arguments
6.4.3 Global definitions
6.4.4 Declarations
6.4.5 Local definitions
g : .6 Initializations
6.4.8 Chaining files

0.

6.5 Pointers, addresses, and arrays

6.5.1 Pointers

6.5.2 Address arithmetic

€.5.3 Pointers and arrays as arguments
6.5.4 Complex declarations

6.5.5 Pointer arrays

6.5.6 Pointers and multi-dimension arrays

48
43
43
49
51
52
53
54
54
55
56
57
58
59

61
61
63

65
66
66
67
68
69
69
72
73
74
76
76
79
81
81
82
83
85
86
87
88

6.6 Structures and variants (struct/union)
6.6.1 Declarations of structures
6.6.2 Access to components
6.6.3 Functions and structures
6.6.4 Recursive structures
6.6.5 Variants
6.6.6 Type definitions

6.7 Programming environment
6.7.1 Files
6.7.2 EOF
6.7.3 STDIO
6.7.4 Additional functions
6.7.5 Error handling
6.7.6 Interruption

I1. System Guide

1. The command processor
1.1 Start, NMI, and RESET
1.2 Device identifiers and filenames
1.3 Extensions
1.4 Passing arguments
1.5 Character sets
1.6 Monitors
1.7 Resident commands
1.8 Transient commands

2. RAM disk
2.1 Deviations from Commodore DOS
2.2 Track/sector division
2.3 The RAM disk commands

89
90
91
92
93
94
95
96
96
97
98
98
99
99

103

103
103
105
106
107
108
109
109

111
112
114
115
115
115
117
117
118

119
119
120
121

3. The C editor

3.1 Character sets and text display

3.2 Control keys

3.3 Parameter inputs
3.3.1 Key input
3.3.2 Input a number
3.3.3 Input a string
3.3.4 Block input
3.3.5 Destination input

3.4 Commands

3.5 Error messages

4. C compiler
4.1 Start without arguments
4.2 Start with arguments
4.3 Compiler error messages
4.4 Finding errors

5. Linker
5.1 Start without arguments
5.2 Start with arguments
5.3 Error messages

6. C programs

6.1 Start

6.2 Operating modes
6.3 Run-time errors
6.4 Memory layout

7. The Library

functions

7.1 Standard C libraries

7.1.1 erron(), erroff(), nmion(), gerror(),

2

3
4
S5
6
i

error(), exit()

open(), close()

putc(), fputc(), getc(, fgetc(
getchar(), putchar()

gets(), fgets(), puts(), fputs()
fgetf(), fputf()

fopen(), fclose()

123
123

128
128
128
129
129
130
131
139

140
140
142
143

150
150
152
153

155
155
156
159
162

163
164

165
166
168
168
169
169
170

7.1.8 strlen(), strcmp(), strncmp() 171
7.1.9 strcat(), strncat(), strcpy(), strnepy() 172
7.1.10 strchr(), strrchr() 173
7.1.11 cursor(), exec() 173
7.1.12 cmove(), move() 174
7.1.13 alloc(), free() 175
7.1.14 settime(), gettime() 176
7.1.15 keys() 177
7.1.16 call() 177
7.1.17 fast(), slow() 178
7.1.18 window() 178
7.1.19 vdcin(), vdcout() 178
7.1.20 io\in(), io\out() 179
7.1.21 is80() 179
7.1.22 Formatted output 180
7.1.23 Formatted input 184
7.1.23.1 Reading strings 187
7.1.23.2 Error messages 187
7.1.23.3 sscanf and fscanf 188
7.2 The graphics library 189
7.2.1 graphlc(), graphon(), graphoff(), 1sgraph() 190
7.2.2 backgr(), clrmap(), colors(), setcol() 191
7.2.3 dot(), dotin(), bdot() 192
7.2.4 line(), bline(), mline(), oline() 195
7.2.5 setplot(), plot() 197
7.2.6 shape(), fill() 198
7.2.7 pushobj(), plotobj(), fplotobj(), bplotobj() 199
7.2.8 mask, bmap, mapv() 201
7.2.9 Layout of the graphics memory 202
7.2.10 Demo program 203
7.2.11 Storing the graphics 203
7.3 Math li 204
7.3.1 sin(), cos() 204
7.3.2 tan(), atn() 205
7.3.3 abs(), sgn(), md() 205
7.3.4 sqr(), sqrt() 206
7.3.5 logO, exp() 206

7.4 ctype.h 207

8. C language description
8.1 Introduction
8.2 Text conventions

83

8.4
85

00 00
~N O\
tr

8.8

8.2.1 Comments

"824.1 Integer constants
8.2.4.2 Char constants
8.2.4.3 Floating-point constants
8.2.5 Strings
8.2.6 Example
Object names
8.3.1 Storage classes
8.3.2 Types
8.3.3 Hardware-specific type data
Objects and L-values
5 Conversion of a
8.5.1 Integer values between each other
8.5.2 Floating-point values between each other
8.5.3 Floating-point and integer values
8.5.4 Addresses and integer values
8.5.5 The standard conversions
Syntax notation
xpressions
7.1 Simple expressions
7.2 Unary operators
7.3 Multiplication, division
7.4 Addition, subtraction
7.5 Shift operations
7.6 Comparisons
.7.7 Equivalence comparisons
7.8 Bit operations
7.9 Logical operations
7.10 Condition evaluation
7.11 Assigments
7.12 Lists
larations
.1 Storage classes
Ww
Data definitions

90 90 00 90 90 00 00 00 90 90 00 00

RERES

00 00 00
OOOOOO
U)Nr—-

209
209
209
209
209
210
210
210
211
211
212
212
213
213
214
215
216
216
216
216
217
217
217
218
218
219
221
222
223
224
224
225
226
226
227
227
228
229
230
230
231

.4 Type declarations
Functions

Declarators

Function declarator

Parameter declaration
Structures and unions
.10 Enumerated type
.11 Initializations

12 Abstract declarators

tements

.1 Blocks

.2 while statement

.3 do statement

.4 for statement

.5 if statement

.6 switch statement

.7 break statement

.8 continue statement

.9 return statement
1
.1
1

=AW A

moooooooooooooooooo
gOOOOWMOOWOOOOOO

8.9S

0 Labels
1 goto statement
2 Empty statement

UJ\D\O\O\O\O\O\O\O\O\O\O\D

OOO

l Scope of a name

.2 Scope on an object

8.11 Preprocessor

11.1 Macros

11.2 Chaining files

11.3 Conditional compilation
11.4 Line numbering

Implicit declarations

Operations on different data types
13.1 Structures and unions

13.2 Functions

13.3 Arrays, pointers

13.4 Conversion of pointer values

|—.|—t

8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.10
8.
8.
1
8.
8.
8.
8.
a2
13
8.
8.
8.
8.

8.14 Constant expressions

8.15 Portability

8.16 Differences from standard compilers
8.17 Differences from the C-Compiler 64

231
232
232
234
234
235
236
236
238
238
239
239
240
240
241
241
242
242
242
242
243
243
243
243
245
245
245
247
247
248
248
249
249
250
250
251
251
252
252
253

Part Il Appendix

1.0 Keyboard V2

1.2 Keyboard V3 LC character set
1.3 Keyboard V3 CBM character set
2.1 Character codes

2.2 CTRL-codes V2

2.3 CTRL-codes V3

2.4 ESC-codes V3

3.0 Function overview

4.0 Listing of the header files

5.0 Listing "text.c"

6.0 Listing "sample .c"

INDEX

254
254
255
256
257
258
259
261
262
270
277
281

282

Part 1

(Tutorial]

Abacus Software Super C for the C-128/C-64

Part 1. Tutorial Section

1. Introduction

Super C Version 2 requires a C-64 or a C-128, since it can be
operated in the C-64 mode. Version 3 requires a C-128. At least
one disk drive is required for either version. The drive may be
either a 1541 or a 1571. A maximum of 8 disk drives may be
connected.

This manual is divided into two parts: a tutorial section and a
reference section. The tutorial section will familiarize you with
SUPER C. If you aren't familiar with the programming in the C
language, the tutorial section also contains an introduction to C
programming. If you find that this introduction to C programming
is too advanced for you, consult the bibliography for a more
extensive introduction.

The reference section describes the specific features and capabilities
of the SUPER C package and contains a description of the C
language.

Even if you're already familiar with the C language, you should
begin with the tutorial section. The tutorial section describes the
important features and commands of SUPER C. After you're
familiar with these commands, you can concentrate on

programming in C.
The following conventions are used in this manual.

A request to press a key is noted by the key enclosed in square
brackets.

[RETURN] means press the key marked RETURN
[Aa] means press the key marked A

Abacus Software Super C for the C-128/C-64

A request to press several keys in succession is noted by the keys
enclosed in square brackets and separated by commas.

(h], [e}, (1], [1], [0]), [RETURN]
means type the word hello followed by the RETURN key.
The above may also be shortened to:

hello [RETURN]

A request to press two keys simultaneously is noted by the keys
enclosed in square brackets and separated by a plus (+) sign.

[RUN/STOP] + [RESTORE]

means press the [RUN/STOP] key and the [RESTORE] key
simultaneously.

In reality, we don't mean simultaneously. Instead press the first
key and hold it down, then press the second.

A request to press an uppercase letter is noted either of two ways:
[SHIFT]+[a] or [A]

A request to press a cursor key is noted as follows:

[C-UP] or ft Cursor up
[C-DOWN] or 4 Cursor down
[C-LEFT] or &= Cursor left
[C-RIGHT] or = Cursor right

Abacus Software Super C for the C-128/C-64

2. The Super C Command processor

2.1 Starting Super C
Turn on your computer and disk drive.
Insert the diskette included with your SUPER C package into your
drive and close the drive door. We will call this disk the system
diskette. The system diskette is write and copy-protected. You
cannot store any more programs on the system diskette.
For SUPER C Version 3 (C-128)
Before starting SUPER C, check the setting of the 40/80
column button. If it is depressed, SUPER C will start up in
80 column mode, Otherwise it will start in 40 column
mode. There are two ways to start SUPER C Version 3.

* Press the RESET button.
* Type: boot [RETURN]

In either case the SUPER C system is loaded and started.

For SUPER C Version 2 (C-64)
Enter the following:
load "c-system”,8,1 [RETURN]
The SUPER C system is loaded and started.
If you are using Version 2 on a C-128 you can press the

RESET button or type boot [RETURN]. SUPER C will
switch to '64 mode automatically.

Abacus Software Super C for the C-128/C-64

In either Version 2 or Version 3 the title screen is displayed and the
SUPER C command processor displays its prompt:

a:
The blinking cursor will appear after the prompt (a :).When you
see this prompt, you know that SUPER C is ready to process a

command. We call the command processor CCP. This stands for
C Command Processor.

2.2 CCP resident commands
All commands are terminated with the [RETURN] key. Enter:

a:dir [RETURN]

The directory of the system disk (which is hopefully still in the
drive) is displayed. Below is a partial listing of a directory:

0 "c-system #3.00a " he 2a
1 "ce" Prg
28 "c4qn prg
29 "e8" PXg
99 "ce” Prg
28 Tel® prg
43 "c-system” prg
5 "copy" prg
30 "device" Prg
Now enter:

a:err [RETURN]

The CCP reads the error message from the disk drive and displays
it. It looks like this:

a:err
00, ok,00,00
a:

C

Abacus Software Super C for the C-128/C-64

A third command sends disk commands to the disk drive. Type:
a:com v [RETURN]
The disk command v for validate is sent to disk drive a.

If the system diskette is still in the drive the following appears on
the screen:

a:com v
26, write protect on,18,00

The error message is displayed because the validated directory
cannot be written to the write-protected diskette. Here, we are just
demonstrating the com command.

All commands must immediately follow the a: prompt. The
command com gets the "v" as the argument. Arguments for a
command are separated from the command by at least one space.
Spaces within the argument are not allowed.

Using the com command any valid disk command may be sent to
the disk drive. For example, to rename a file from test to prog,
you would send the following:

a:com r:prog=test
If a filename has an embedded space, the CCP interprets this as a
separator. Only the text preceding the space is considered the

argument. To overcome this limitation, you can replace all
embedded spaces with a shifted space:

{SHIFT]+[SPACE]
A shifted space appears as a small dot on the screen.
The valid disk commands are described in the 1541 or 1571 disk

drive manuals. Some of these disk commands are described briefly
in Part II Chapter 2.

Abacus Software Super C for the C-128/C-64

2.3 CCP transient commands

In addition to the preceding resident commands, SUPER C
supports transient commands.

A resident command is always in the computer's memory, ready to
immediately perform a task.

Transient commands are stored on diskette and are loaded into
memory before they are started. SUPER C has several transient
commands on the system diskette. Later, you'll learn how to add
your own transient commands.

One SUPER C transient command is device. Type the following:
a:device [RETURN]

The program device is loaded from the system disk and responds
with:

DEVICE CHANGE PROGRAM V2.0
device a to b.

Press [RETURN] twice. The message:

DRIVE/DOS version
1541/70/71 V2.6
device is changed.
device a to b.

This transient command changed the device number of your disk
drive. Device numbers range from 0 to 15, and for disk drives from
8 to 15. In Super C the numbers are represented by letters:

Device letter: a b ¢c d e £ g h

Device number: 8 9 10 11 12 13 14 15

Since you accepted the default device identifiers in the device
transient command, a and b, the device address 8 is changed to 9.
This can be changed to normal as follows:

8

Abacus Software Super C for the C-128/C-64

[b], [RETURN], [a], [RETURN]
Now change drive a to drive b as follows::

(a], [RETURN], [b], [RETURN]

When another input appears, press
[RUN/STOP]

You'll find yourself back in the CCP. Read the directory in the
normal manner. The following is displayed:

a:dir [RETURN]
file not found
a:

The error "£file not found" message is printed whenever a
transient command is not found or if a disk drive is not
addressable. The CCP tried to read the directory of device a. Since
we reassigned drive a to device address b, the error message is
displayed. To be able to read the directory of drive b, change the
prompt from a: tob: as follows:

a:b: [RETURN]
b:dir [RETURN]

The directory of the system disk is now displayed. Furthermore,
the prompt is now b :. Change the prompt back to a:.

b:a: [RETURN]
a:b:dir [RETURN]

b:

You can prefix a command with a device identifier. This implies
that the command is to be performed using the prefixed device.
Therefore b:dir [RETURN] displays the directory of drive b
even if the current drive is drive a.

Abacus Software Super C for the C-128/C-64

You can prefix the com and err commands with a device
identifier. For transient commands, the prefixed device identifier
specifies the drive from which the command is loaded.

Try loading device form a:

b:a:device [RETURN]
file not found
a:b:device [RETURN]

DEVICE CHANGE PROGRAM. ..

Load device from b and change the address of your drive back to
a again.

If you are using two disk drives and both are turned on, the above
procedure does not work correctly if one drive is device 8 and the
other is device 9. Instead, the device transient command will set
both drives to device 9. In this case you won't need the device
command.

Usually the device address of the two disk drives are set to 8 on
power up. In this case, turn off one drive, change the device from
a to b using the device command, and turn on the second drive.

Remember that the device command changes the device address in
software only. If the drives are turned off or the RESET button is
pressed, the device number reverts to normal.

Here's another transient command. Type:
a:copy [RETURN]

This loads the copy transient command from the system disk.
After a short time the prompt appears again, on Super C Version 2
it is now light red. This signifies that a transient command is loaded
and ready to run (On Version 3, the transient command lram
std.p, which loads the contents of the RAM disk, is automatically
executed after booting. The prompt is red on Version 3 because
lram is present after booting). You can use the copy command
to copy files from one drive to another. The copy command

10

Abacus Software: Super C for the C-128/C-64

remains resident until another transient command is loaded.
Insert a blank disk into drive a and enter the format command:

a:com n:programs,cc [RETURN]
If you are using more than one drive, pay careful attention to the
device identifier. Before formatting a disk make sure that the correct
drive is specified.
You should now create a work diskette for your C programs. The
work diskette will require various link files. Create your work
diskette as described below.

For one drive systems:
Insert the system disk in drive a and enter:
a:copy a:stdio.h to a:* [RETURN]

The copy program then loads the file stdio.h from
drive a into memory. Once the file is loaded, the message

quit to save!

appears. Remove the system diskette and insert the
formatted work diskette. Now press a key and the file
stdio.h is written to the diskette.

quit to save! ok
When the prompt appears, the file has been copied.
Arguments for the copy command are separated by
spaces. No spaces may be within an argument. A space in

a filename must be replaced by a shifted space.

The first argument the is filename of the file to be copied. It
is prefixed by a device identifier.

The second argument is the word to. It indicates the
direction of the copy.

11

Abacus Software Super C for the C-128/C-64

The third argument is the filename of the copied file. It is

prefixed by a device identifier. An asterisk (*) may be
substituted for filename and signifies that the filename is C
the same as the first argument. ‘

For two disk drives systems:

Insert the system disk in a, the formatted work disk in b.
Enter:

a:copy a:stdio.h to b:* [RETURN]
The file is copied directly from drive a to drive b.

Now copy the following files onto the formatted work diskette
using the procedures described above (one drive or two drive
systems):

stdio.h (which we already copied)

graphic.h (i
math.h . :
ctype.h

libc.1

libes.1

libgraph.1

libmath.1

This procedure is necessary, many of these files will be used by the
C compiler when you compile your programs.

Super C also works with dual disk drive systems. Here is an
example using the copy program.

a:copy al:stdio.h to al:* [RETURN]

For directories use this form:

a:dir 1 (:

a:dir O

12

Abacus Software Super C for the C-128/C-64

3. Version 3-RAM disk (C-128)

If you are using SUPER C Version 3, the CCP contains a RAM
disk. The RAM disk uses device identifier h.

What is a RAM disk? A RAM disk is a simulated disk drive.
Instead of storing data or programs on magnetic media a RAM disk
stores the data or programs in memory. Keep in mind that the
contents of a RAM disk are lost when the computer is turned off,
but they can first be copied onto a normal diskette.

To display the directory of the RAM disk type:

ath:dir [RETURN]

You'll notice that several files are already stored on the RAM disk.
These are the files that you copied in the preceding section. These

files are automatically copied to the RAM disk when SUPER C
Version 3 is started.

Try using RAM disk with the commands com and erx:
h:com r:stdio.x=stdio.h [RETURN]

This command changes the name of stdio.hto stdio.x.
h:com n:test [RETURN]

This command erases the contents of the RAM disk and gives it the
name test. The RAM disk can be accessed just like a normal disk
drive, by specifying the device identifier h:.

Insert the system disk into drive a and enter the following
command:

h:a:lram a:stdio.p [RETURN]

Another transient command, 1ram, copies the specified file to the
RAM disk. The file stdio.p contains the list of files specified in
the preceding section. 1ram loads them into the RAM disk.

13

Abacus Software Super C for the C-128/C-64

You can also save the contents of the RAM disk using the
command sram. This command groups the individual files on the.
RAM disk together and saves them in one file.
h:a:sram [RETURN]
If you have a one drive system, you must load the 1ram and sram
commands without arguments from the system diskette. Then you
can replace the diskette in drive a. Enter this command:
a:sram a:ram.p [RETURN]
The RAM disk is saved to the diskette with the name ram.p.
If you have a two drive system, you can enter the following:
h:a:sram b:ram.p [RETURN]

The system disk must be in drive a and the other disk in drive b. If
the system diskette and the other diskette are reversed enter:

h:b:sram a:ram.p
Note: On Super C Version 3, the command 1ram std.p, is
automatically executed during startup. This is why the prompt is

red to begin with in Super C Version 3, 1ram is presentas a
resident command after booting.

14

Abacus Software SUPER C for the C-128/C-64

4. C editor

The editor is one of the three system components. The editor is
called ce and is loaded like a transient command:

a:ce [RETURN]

In Version 3, the editor can be used in either 40 or 80 column
mode.

4.1 The new command

For practice let's enter a short document. You begin a new
document with the editor command new (new document).

First press the [F5] key. This is the command key. The following
message appears on the top screen line:

enter command

This means that the editor is waiting for you to enter an editor
command.

Press the [n] key. The editor responds by displaying the
command name on the first line of the screen:

new: length of line

The editor is now waiting for you to specify the maximum length of
each document line. You can enter a value from 40 to 80. This line
length cannot be changed later. When entering numbers, the editor
accepts only the digits O to 9, the [DEL] and [RETURN] keys.
[DEL] deletes the preceding character and [RETURN] ends the
input Enter the number 63 and then delete 63 by pressing [DEL]
twice and enter 80. Then end the input by pressing [RETURN] .

The following is displayed:
new: length of line 80
file:

15

Abacus Software SUPER C for the C-128/C-64

The cursor is positioned after the word £ile: in the second screen

line. The editor is waiting for you to enter the filename of the
document. Enter:

new: length of line 80
file: textfile

[DEL] deletes the character preceding the cursor. The other control
keys are inoperative. Suppose you want to enter testfile
instead of textfile. You must [DEL] all the characters up to
and including x and then re-type the remainder of the filename.

To terminate the input, press [RETURN].

new: length of line 80
file: testfile

I [Ny JEVEPRS IS JEGEGES JUppms S SENE T TR

You have now opened a document with line length of 80 and a
filename "testfile".

4.2 Inserting and deleting lines

The cursor is now positioned in the text field. This is the part of the
screen below the top three status lines.

If you try press an alphabetic or numerical key, the message
"last line" is displayed on the status line. The cursor advances
but none of the characters are displayed.

last line
file testfile

RS JEPNUEY JEpEGES NIV JUomS SRSy NG | e R

"When a new document is opened, it contains only one line, a 1ast

line. You can't enter text in this line, nor can you move the
cursor beyond this line. In both cases the editor responds "last
line". To enter text into this document, you must insert
additional lines before the 1ast line.

16

Abacus Software SUPER C for the C-128/C-64

Insert a few blank lines by pressing the [F7] key. The [F7] key
is used for inserting lines. Press [F7] a total of six times.

Your text field is now 6 lines by 80 columns. You can position the
cursor anywhere within this text field. Pressing a key enters the text
at that location.

The [RETURN] key positions the cursor to the start of the next

line. [SHIFT]+ [RETURN] places the cursor at the end of the
previous line.

Use the cursor keys and the ([SHIFT]) [RETURN] key to move
around in the text field. Version 3 also allows the upper cursor keys
to be used. On 40 column monitors you'll notice that the screen
scrolls to the left when you move the cursor beyond column 20. If
you then move the cursor left, the screen scrolls to the right. Since
these screens can display only 40 character per line, the characters
outside the screen are brought into view by scrolling.

If you are using Version 3 on the 80-column monitor the screen
does not scroll.

Move the cursor to line one, column one. You can also use the
control key [CLR] ([SHIFT]+ [HOME]) to do this.

Now enter the following text. When typing, you can use the

[DEL] and [INS] keys, which have the same function as in
BASIC.

This is the first line of my document.
Here is the second

three

4

Position your cursor somewhere in the second line and press the
[F7] key (to insert blank lines). All characters from the cursor line
to the end of the document are moved down one line and the cursor
is positioned within in a blank line. Here you can insert text. If one
line isn't enough, press the [F7] several times.

17

Abacus Software SUPER C for the C-128/C-64

c-editor 1.0
file: testfile

LTS oors S gy JUGEIS JEGHpNS JEGEGIS JEpE SEpES | SE——,

This is the first line of my document

Here is the second
three
4

" To delete lines, use the key [F8] ([SHIFT]+[F71]). The line in

- which the cursor is positioned disappears and all subsequent lines

are moved up. Press [F8] again and the second line of the

- document disappears. It is deleted and all subsequent lines are
moved up.

c-editor 1.0
file: testfile

e LT Toysyuy JEpES PUPEpES UGS JEGESES JENEGES JEGHSES IR
This is the first line of my document.
three

4

The editor allows you to assign each line its own color. You set a
color by pressing the color control keys ([CBM]+[1] to
[CBM]+([8] or [CTRL]+([1] and [CTRL] +[8]). The line then
takes on the color according to the color control key. This can be
very helpful for beginners by allowing them to more easily see the
structure of the program.

Place the cursor in line one and then press [CTRL]+[6]. The line
becomes green. Move the cursor to line two and then press the keys
[CBM] +[4]. The line becomes dark grey. The color of the last
line cannot be changed and is always red. On 80 column
monochrome monitors these commands will not work, use one
color on monochrome monitors.

When inserting lines ([F7]) the color of the line moved down is
used. If you press [F7] in line 2, the new blank line has the color
dark grey.

If you want to do something like insert seven red lines between line

18

Abacus Software SUPER C for the C-128/C-64

one and line two, you don't have to insert seven lines and then
color these seven lines red, but just insert one line first. Set the
color of this line to red and then insert the remaining six lines.
These will have the color red as well.

You can now experiment a bit with colors and inserting and
deleting lines before you go on to the next section. Version 3
owners who are using a monochrome monitor for 80 columns will
not be able to use the color features. Since the color feature allows
beginners to see the structure of the program very easily, we have
used color in the examples on the system disk. On 80 column
monochrome screens if a sample program from the system disk is
missing some lines, they may be displayed in a color not visible on
your monitor. Simply change the color to one that can be displayed
on your monitor and save the new example program to your work
disk.

4.3 Saving text

Now save the document. Insert a diskette into the drive. Press the

command key (F5] followed by [s]. The command name save
appears on the first line as the editor saves the document. After the
document is saved, the cursor reappears in the text field.

Repeat the procedure ([F5], [s]). The following question
appears behind the command name:

save: replace y/n?

In this case the file already exists on the diskette. The editor is
asking you if the file should be replaced. If so press [y] for yes.
If not, press [n] for no and you are returned to the text field.

19

Abacus Software SUPER C for the C-128/C-64

4.4 Loading text

Now load a document.. Insert the system diskette into the drive.
We'll load a sample program.

Press the command key [F5], followed by the [1] key for the
command load. The command name load is displayed on the first

line and the cursor is positioned after the "file : " prompt on the
second line.

Enter the filename to be loaded:

load
file WR¥text.c [RETURN]

The new document is loaded and replaces the previous document in
memory.

After loading, the first page of the document is displayed and the
cursor is positioned to line one, column one.

Move the cursor using the cursor keys through the document and
examine the document, but don't change it. Try the right and left
scrolling on 40 column displays. Since this document has enough
lines, you can also test the up and down scrolling in which you
move the cursor beyond the first or last line of the screen.

Use [RETURN] to get to the start of the next line or

[SHIFT]+ [RETURN] in order to jump to the end of the previous
line.

You can also use two additional control keys in order to move the
cursor through the document quickly. The [F1] key pages
forward through the document. This always displays the next 22
lines. The [F2] key ([SHIFT]+ [F1)) pages backwards through
the document. Here 22 lines preceding the current cursor position
are displayed on the screen.

20

Abacus Software SUPER C for the C-128/C-64

4.5 Block commands

Block commands operate on multiple lines at a time. A block is a
group of lines that belong together. When delimiting a block of
text, the message marking out range always appears in the
first line. This message indicates the block-input mode. During the
block input, only a few of the control keys are active (cursor left,
cursor right, cursor up, cursor down, [RETURN], [STOP]).

4.5.1 Delete block

To practice let's delete lines 64 to 95 of the sample document. We'll
use the block command erase. You could also delete the lines
individually with the control key [F8].

Move the cursor to line 64. You can determine the line number at
which the cursor is positioned from status line. The first number
indicates the column, the second the line. Press [F5] followed by
[e]. The editor displays the command name erase: and the
block-input mode.

erase: marking out range

In the block-input mode the lines which mark the block are
displayed in reverse video. Use the keys [C-UP] and [C-DOWN]
to vary the size of the block.

Enlarge the text block with the [C-DOWN] key until the reverse line
field reaches to line 99. But since we want to erase only to line 95,
decrease the size of the block with [C-UP] until the reverse block
extends to line 95. After you have delimited the block press the

[RETURN] key. A confirmation question now appears behind
erase:

erase:are you sure y/n?
The [n] key terminates the command and returns you to the text

input without erasing the block. The [y] key erases the block.
Press the [y] key to delete the block.

21

Abacus Software SUPER C for the C-128/C-64

You can exit the block input with the [STOP] key in case you
don't want to delete it after all, or you marked it out wrong.

4.5.2 Move block

With the command move you can move text blocks to a different
location in the document. In the sample document we will move
lines 101 through 113 to line 58.

Move the cursor to line 101. Press [F5] followed by [m] for
move block. As you can gather from the status line (marking
out range), you are in the block-input mode. You must now
mark the range which you want to move. This works the same as
described in Section 4.5.1 Delete block.

After you have delimited the block, press the [RETURN] key. The
the message "fixing target" appears after move: on the first
line of the screen. Use the cursor keys to position the cursor to the
destination line which is displayed in reverse. In a block which is
already displayed in reverse, the destination line is displayed in
normal video.

You now have to set the destination line where the block is to be
inserted. You can use the following control keys for this:

[C-UP] and [C-DOWN] move the destination line up and down.

The [F1] and [F2] keys move the destination line 22 lines down
or up, respectively.

The [g] key calls the command "goto". You enter a line number
to which the destination line jumps.

[RETURN] ends the line input. The destination line may not lie
within the previously marked block. The editor will otherwise

respond "no target 1line" and will not end the destination
input.

Move the destination line to line 58 with the control keys and end
the input with [RETURN].

22

Abacus Software SUPER C for the C-128/C-64

The marked block is moved and the document is displayed starting
at the inserted block. If you move the cursor up one line you will
see the line before the destination line.

You can also use the goto command by pressing the [F5] key
followed by [g]. The command name goto appears in the first
line. Enter a number of up to four places (9999) at the prompt. The
cursor moves to the specified line, but not beyond the last line.

4.5.3 Copy block

Copying (transferring) a block is very similar to moving a block. In
contrast to moving, a copy of the marked block is inserted before
the destination line. This allows you to duplicate the block at
another location within the document.

The transfer command is used to copy blocks. It works
identically to the move command, with one addition. When setting
the destination , the [HOME] key is enabled.

[HOME] causes the text area to be switched into the extra text area.
The editor has two separate text areas, the file text area, where you
have worked so far, and the extra text area. You can distinguish
between the two text areas by means of the second screen line. For
the file text area, "file:" and the filename is displayed, while
"extra text" is displayed in the extra text area.

While you are editing the actual document in the file text area, text
should be stored only temporarily in the extra text area. You can
edit the extra text just like the file text, except that some commands
are not allowed in the extra text area. Using them causes the editor
to display the message "illegal text."

These commands include 1oad and save. Change the text area
once and try to use the load command ([HOME] ([F5] [1]).
The editor displays the "illegal text" error.

illegal text
extra text

i LTt U RPN PRy g JUGHy JEGEE PN DUy

23

Abacus Software SUPER C for the C-128/C-64

Back to the transfer command. You can transfer text from one area

to the other by changing the text area with the [HOME] key while
setting the destination.

For practice, transfer a block of text to the extra text area. Press

[F5] followed by [t] for transfer. Then mark a block of text.
While setting the destination, press the [HOME] key to enter the
extra text area. Since the extra text area contains only one line at this
time, the last line you cannot move the destination line within this
area.

As soon as you have set the destination by pressing [RETURN],
the text block is copied to the extra text area.

With the extra text area you can can insert text blocks into other
files, for instance. If you switch back to the normal text area by
pressing [HOME], you can load a different text file and the insert
the extra text in the file text area with the transfer command.

You will learn another very useful application of the extra text area
in Chapter 5 of the tutorial section.

4.6 Search and replace

The editor allows you to search for strings. It also allows you to
replace strings.

4.6.1 Searching

The search string is specified with the hunt command. Press
[F5] followed by [h]. The command name hunt: is displayed
and prompts you to enter a search string.

If you make a mistake while typing the search string you can delete
the character with the [DEL) key. When you have entered the
complete search string press [RETURN]. For this example enter:

hunt: violet [RETURN]

24

Abacus Software SUPER C for the C-128/C-64

Now press the [F3]key to begin the search. The cursor will move
through the text and stop at the first character of the matching
string.

Press [CLR] to jump to the start of the document and search with
[(F3]. The cursor will move to line 14 since it found a match for
"violet". Press [F3] again. Since there are no more occurrences

of "violet" the last line is displayed.
4.6.2 Replacing

To replace a string, you must specify both a search string and a
replacement string. Press [F5] followed by [r] for replace.

The prompt hunt : is displayed. Enter the search string followed
by [RETURN]. Next the prompt rplc: is displayed. Enter the
replacement string followed by [RETURN].
Enter the following:

hunt: violet [RETURN]

rplc: purple [RETURN]

Here we want the string "violet" to be replaced by the string
"purple".

Replace can be performed in one of two ways:

1) automatic replace
2) ask-before-replace

In automatic replace, all occurrences of the search string are
replaced by the replacement string.

In the ask-before-replace, the editor prompts you before making
any replacements.

To automatically replace all occurrences of the search string press
the [F6] key.

25

Abacus Software SUPER C for the C-128/C-64

To ask-before-replace press the [F4] key. In this case, the editor
searches for the first occurrence of "violet" and displays it. You are
prompted.

replace?y/n

Press the [y] key to replace the string. Press [n] to skip to the
next occurrence. You can stop this function by pressing the
[STOP] key at any time. The cursor then appears at the location in
the document that the editor had reached while searching.

If during the replacement the maximum line length is exceeded by a
replace, the editor terminates the operation without replacing the
string at that location. The cursor is located at the first character of
the occurrence and the error message "overflow in line"
appears in the status line. You must then decide for yourself how to
change the text.

For practice you can try to create an overflow-in-line error. You
must choose a replacement string which is longer than the search
string in order to do this.

4.7 Back to the CCP

You can terminate all procedures (searching, all inputs and
questions, loading, printing, etc.), with the exception of saving,
with the [STOP] key. Moreover, the functions listed above are
only the most useful; you can find a complete description of all the
functions in the reference section in Part II Chapter 3.

To exit the editor, press [F5] followed by [x]. The prompt are
you sure y/n? asks you to confirm this. Press [n] to return to
editing.

Press [y] to exit to the CCP. Make sure that you've saved your
document before exitting the editor.

26

Abacus Software SUPER C for the C-128/C-64

5. Your first C program

In this chapter we'll show you how to create a C program using the
Super C Package. We'll show you how to edit a program, compile
and link the program and finally run it.

When you use the Super C Package you will create three different
files: the source file, the link file, and the program file. Using the
C-editor, you create and modify the source file. The C-compiler
converts this source file into an intermediate link file. Finally the
C-linker combines this link file with any others required link files to
produce an executable program file.

To differentiate among these three types of files, we recommend
that you use filename extensions. In this manual, the following
conventions are used:

file type extension example
source file .8 test.s
link file) test.o
program file - test

The following describes two different methods to develop a
program using Super C.
In the first example, we assume that you are using Super C Version
3 and one disk drive. This version automatically gives you a second
disk drive-a RAM disk.

In the second example, we assume that you are using Super C
Version 2 and only one disk drive.

In either case, if you are using more than one real disk drive, you
can change the examples to use the added drives by specifying the
required device identifer.

Start the C system as described in Chapter 1. Once you are in the
CCP, load the editor by typing:

a:ce
The Super C editor will now be loaded and started.
27

Abacus Software SUPER C for the C-128/C-64

5.1 Editing

The C-editor is used to create and modify the program text. Chapter
4 described how to use the editor.

Since you are just learning how to use Super C, we won't have you
edit a source file here. We have already prepared a source file for
you named sample .c contained on the system disk. Load this
source file into the editor by typing:

[F5] [1] sample.c [RETURN]

Let's imagine that you had entered the text for this source file with
the C-editor and now want to compile it. It's not possible to change
the diskette during compilation. Therefore all source files to be
compiled must be on disks which can be in the drives at the same
time. This means that if you have only one drive, all source files
must be on one diskette. For Version 3, you can divide the source
files between the RAM disk (h :) and the real drive. If you have
$ore than one drive you can divide the files between several
iskettes.

Source files may not be saved on the system disk. Therefore you
must load the C compiler before compilation. To avoid changing
diskettes when moving between the editor, compiler, and linker,
you must reserve one disk drive for the system disk.

In the first example, the system diskette is in drive a: and in
version V3 the source files are saved on the RAM disk h:.

For Version V3 (C-128)

Look at the text of the example program. At the start of the
text there are some lines which look like this:

#include "stdio.h"

Change the text so that device identifier h: is in front of
stdio.h:

#include "h:stdio.h"

28

Abacus Software SUPER C for the C-128/C-64

The #include directive tells the compiler to insert the
specified file into the text beginning at that location. Recall
that the file stdio.h was copied to the RAM disk after
booting up. The device identifier h: tells the compiler that
this file is to be read from the RAM disk.

Save the sample program to the RAM disk. To do this,
change the file name to include the device identifierto h:.
Press the keys [F5] [£] to enter the file command.
Then enter the new filename:

h:sample.c [RETURN].
Finally save the new source file with the save command:
(F5]1 [s]
For Version V2 (C-64)

The same method applies for version V2. You do not have
to change the filename in the statement since the include
file is loaded fromdrive a:.

Insert the previously created work diskette into drive a:
and save the example program with the save command:

(F5] [s]

Make sure that all source files necessary for compilation are on the
work diskette or the RAM diskette. You can use the editor
command to display the diskette's directory. Remember to switch
to the extra text area with [HOME] before loading the directory so
that you do not overwrite the source file.

Then enter [F5] [d] [a) [:] [RETURN]. The d specifies
directory and a : specifies drive a :. The directory is then loaded
into the extra text area. The contents of the RAM disk is displayed
by using h: instead of a:.

In Version V2 the files stdio.h and sample.c should be on the
work diskette, or on the RAM disk for Version V3.

29

Abacus Software SUPER C for the C-128/C-64

Normally both source files must be present. The file stdio.h was
copied to the work diskette in Chapter 1.

Exit the editor with [F5] [x].

5.2 Compiling

The C-compiler is called cc and is loaded by typing [cc]
[RETURN]. The system diskette must be in the disk drive. The
compiler displays the compiler header message and asks you to
enter the filename of the source file. For Version V2, replace the
system diskette with the work diskette. Then enter sample.c as
the source program name.

When entering file name into the compiler, only the control keys
[DEL] and [CLR] ([SHIFT]+[HOME]) as well as [RETURN])
are active. [DEL] clears the previous character and [CLR] deletes
the entire input field. [RETURN] ends the input.

source file name: sample.c [RETURN]
Enter h:sample. ¢ for Version 3.
Now you are asked to enter the link file name. The output of the
compilation is written to this link file. If the source file input ends
with . c, the link file defaults to the file name with the extension
.o. We recommend that you use the same link file name, so the
various link files do not build up on the diskette.

Clear the input field with [CLR] ([SHIFT]+[HOME]) and enter a
name (such as o0.0):

link file name: a:o0.0 [RETURN]

For Version 3 enter h: instead of a: because the link file is
stored on the RAM disk.

Next enter the name of the error file. In this file all of the compiler
error messages are stored. The default name is error.e, which
is preceded with the device identifier of the source text.

30

Abacus Software SUPER C for the C-128/C-64

error file name: a:error.e [RETURN]

In Version 3 the device identifier is settoh:.

Now the compiler has all the information which it needs and starts
to compile the program.

In grey type the compiler prints the source files which it is
processing, h:sample.c and h:stdio.h. This means that it is
currently reading the corresponding source file. The yellow
message getchar indicates that the compiler is compiling the
function getchar. After this follows a grey # character. This
shows that the compiler is finished reading the source file
stdio.h and is continuing to read in sample.c atthe line after
the one in which stdio.h was called. Then the compiler outputs
main in yellow, then some error messages appear in red. These
errors were not caused by anything you did, they are intentional.

The compiler finishes the compilation and prints the concluding
message:

compiling finished
linkfile not available
press x to quit, r to restart

Press the [x] key to return to the CCP. With [r] you could
restart the compiler to compile a different source file.

If there are errors during compilation or if you have mistakenly
entered incorrect parameters (such as source file or link file), you
can stop the compiler at any time by pressing
[STOP]+ [RESTORE] . This produces a non-maskable interrupt
(NMI).

This compilation has a few errors, therefore you must return to the
editor to correct them. Reload the C-editor (insert the system
diskette first).

Once you are in the editor, insert your work diskette (Version V2

only) and load the file error.e from the work diskette or from
the RAM disk, as appropriate. All of the error and status messages

31

Abacus Software SUPER C for the C-128/C-64

are contained in this file. Copy this text into the extra text area. To
do this, use the transfer command ([F5] [t]) and mark the
entire document as a block. After you have ended the block input
with [RETURN], set the destination. Put the destination line in the
extra text with the [HOME] key. End the destination input with
[RETURN] and the file error.e is now moved to the extra text
area. Then load the source file sample. c into the file text area.

Now you can correct the source text with the help of the error
messages in the extra text area. Each error has the line number in
which the error occurred. The extra text contains the following
errors:

?expression syntax error in 0013
?statement syntax error in 0022
?declaration syntax error in 0036

Lines 13 and 22 are displayed in red and contain errors. To
eliminate these errors, delete these lines. The error in line 36 results
from the errors in lines 13 and 22 and disappears once they are
removed.

Once you have corrected the errors, save the modified source file

((F5] [s]). The message replace y/n? appears. Since the
file already exists the editor asks if it should be replaced. Press

[y] so that the old file is replaced by the corrected file.

You now have a corrected source file and can compile it again. Exit
the editor and start the compiler with cc [RETURN] .

source file name: h:sample.c [RETURN]
link file name: h:0.0 [RETURN]
error file name: h:error.e [RETURN]

For Version 2, you must use a : as the device identifier.
If a link file with the same name already exists, it is overwritten.

This time the compiler runs through the source text without error.
The termination message this time is:

32

Abacus Software SUPER C for the C-128/C-64

compiling finished
linkfile available
press x to quit, r to restart

The link file is now available. You can therefore proceed to the

linking. Exit the compiler with the [x] key and return to the
command processor.

5.3 Linking

Several functions are used in the compiled sample program which
must be explicitly made available under C. To make these available,
the link file of the sample program must be linked to the library(ies)
containing these functions. A library is a link file which contains
the appropriate functions already compiled.

Before you start linking, check if all the link files which you want
to link are on one diskette. The library is called Libc. 1. It should
be on your work diskette. It was copied to this diskette in Chapter
1. If it is not there, you must copy the file onto your work diskette
with the copy command.

If both link files, 0.0 and 1ibc. 1, are now on the work diskette
or the RAM disk, load the loader (insert the system disk first). The
linker is called c1 and is loaded with [c1] [RETURN].

The linker displays the linker header and requests you to enter the
final program filename. First insert your work diskette if you are
working with Version V2. Enter the name of the sample program
without the .c extension:

program file name: h:sample [RETURN]

The device identifier indicates where the file is to be saved, on
Version V2 use a: instead of h:.

The linker then asks you to enter the name of the required link files.
Enter the two link files, 1ibc. 1 and o. o. The first input contains
libc. 1, but without a device identifier. This means that you can
accept the default only if 1ibc.1 is ondrive a. In Version V3 the

33

Abacus Software SUPER C for the C-128/C-64

default already has the device identifier h: because this file is
usually on the RAM disk.

You can use the [DEL], [CLR], and [RETURN] keys for editing.

The [DEL] key deletes the previous character, [CLR] clears the
entire input field and [RETURN] ends the input.

The order of the link files is not important. You can change the
order around as you like, the same C program always result. A
good habit is to enter the libraries first.

link file h:libc.l [RETURN]
link file h:o.o [RETURN]
link file [RETURN]

After the two link files are entered, press [RETURN]. This ends
the link file input.

After this you can set the upper limit of the C program memory. If
you don't need any memory for other applications, you can accept
the default. The maximum C program memory available is 50K for
V2 and 51K for V3.

memory top page $e9 [RETURN]
The default here is $d0 for Version 2.

Next you are asked to enter either c or b (this happens only in
Version V2.) You can accept the default letter c. The c means that
the C program can be started only from the CCP. The linker option
b creates a C program which can be started from BASIC. We
designate a program as a C-version if it is to be started from the
CCP and as a B-version if it is to be started from BASIC. The
C-version has the advantage that you don't have to exit the C
system in order to run the program. The B-version has the
advantage that the Super C system doesn't have to be loaded to run
the program. This option is not available in Version 3.

(c=ccp/b=basic) c [RETURN}

34

Abacus Software SUPER C for the C-128/C-64

Now the linker begins to link the files. Status messages are printed
in grey, errors in red. The linker requires two passes. The start and
end of each pass is displayed by the linker. In addition the link file
from which the linker is currently reading is indicated in yellow.

Here is an example of what the linker displays in Version 3.
program file name: h:sample [RETURN]

link file h:libc.l [RETURN]
link file h:o.o [RETURN]
link file [RETURN]

memory top page $e9 [RETURN]

pass 1

link file h:libc.1l
link file h:o.o0
end of pass 1

pass 2

link file h:libc.1l
link file h:o0.o0
end of pass 2

If the linking was error free, the concluding message reads:
linking finished
program file available

press x to quit, r to restart

Exit the linker with the [x] key. With [r] you could start the
linker again.

A source listing of the sample.c program is found in the
appendix.

35

Abacus Software SUPER C for the C-128/C-64

5.4 Executing

The file sample contains the finished C program. To start this
program type:

a:sample [RETURN]
The CCP loads the C program sample and starts it automatically.

With version V3 you compiled the program to the RAM disk so
you would naturally have to specify the device identifier h: to load
the program with Version 3. It is a good idea to copy the finished
program from the RAM disk to a diskette at this time.

Once the program is started, it clears the screen and waits until a
key is pressed. It then displays the message "Character: ".
When you press a key the program displays the char constant of
the pressed key in the C notation. If you want to designate this key
in a C program, you can use this char constant value. In the next
line the ASCII value of the key in decimal, hexadecimal, and octal
is displayed. These numbers are also represented in C notation.

The hexadecimal numbers have a leading 0x (or 0X), the octal
numbers have a leading zero. The decimal numbers are in normal
notation, but may not have a leading zero because they will then be
interpreted as octal numbers.

Since the program consists of an infinite loop, you can end it only
by pressing [STOP]+ [RESTORE]. The following messages
appear when these keys are pressed:

?nmi interrupt
press x to quit, c to continue,
r to restart

With [x] you can end the program, with [c] you can continue the
program, and with [r] you can restart it. Try these three options.
The two options [r] and [c] have some peculiarities which
we will explain in detail in the reference section (Part II Chapter 6
and Part II Chapter 7.2). Strange results can occur if the
[STOP] + [RESTORE] are pressed during an output operation.

36

Abacus Software SUPER C for the C-128/C-64

6. Introduction to C

In the last chapters you were introduced to program development
with the SUPER C language compiler. In this chapter you will
become better acquainted with the C language. We will use some
example programs which you can and should enter, since a
programming language is best learned through examples.

This chapter is only an introduction, more detailed and specific

information can be gathered from the C language description in the
reference section (Part II Chapter 8).

Experienced C programmers can skip this introduction and continue
with Part II Chapter 1 of the reference section.

6.1 Overview

6.1.1 The first program

The first program which you should enter looks like this:
#include "stdio.h"
main ()
{ printf ("\nYour first\nprogram\n");
} getchar () ;

Compile this program and link it with the library 1ibc. 1. Run the
finished program and you should see:

Your first
program

This text remains until you press a key. You have now seen what
the program does.

37

abacus Software SUPER C for the C-128/C-64

The first line of the source file contains an include command
(#include stdio.h) which makes it possible to use the
standard jnput gutput functions from libc. 1. If this line is in the
program, you must always link the 1ibc.1 module to the
program. »

The remainder of the program is a function definition. A C program
consists of functions. The function main is the primary function.
This function is called when executing a C program. With the end
of this function, the program also ends.

main () is called a function header. It tells the compiler that a
function with the name main will be defined. The instructions
which are to be executed in the function are enclosed in braces
({,}). This is called a block. The braces are similar to BEGIN and
END in Pascal.

The function block contains the instructions which are to be
executed when the function is called. In our case there are two
instructions in the block. In the first instruction, a function by the
name of print £ is called and then a function called getchar.
Both functions are found in 1ibc. 1.

You can pass data to a function for it to process. These data are
called arguments. printf requires such an argument. The

argument for print £ is a string. print £ outputs this string on
the screen.

You probably noticed the characters \n, which were not printed, in
the string. The \ is called the escape character. A letter may follow
it which together with the escape character represents a character.
\n represents the carriage return and causes the next output to
appear at the start of the next line.

Calling the function getchar () requires no parameters and
causes the computer to wait for a key press. That is execution does
not leave the function getchar and return to the function main
until a key is pressed. There the end of the block is reached (}) and
the program is finished.

38

Abacus Software SUPER C for the C-128/C-64

Most instructions are terminated with a semicolon. This also applies
to the last instruction in a block (in contrast to Pascal).

6.1.2 Objects

An object is a storage (memory) area used in a program. Data can
be stored in this storage area. Such objects must be first created
before they can be used. To do this you use declarations. A
declaration which creates an object is also called a definition. The
object is assigned a type and a storage class by the declaration. But
the most important thing is that the object receives a name through
the definition. With this name it can be accessed in the program.

The type of an object determines the length and the interpretation of
its contents.

Here is our next example where we define various objects.

#include "stdio.h"

main ()
{ double e,pi;
int a,b;

e =2.7182818;
pi=3.14159265358973;
a =2;
b =4;
print ("e=%g\npi=%g\n",e,pi);
print ("a=%d\nb=%d\n",a,b);
getchar();

}

This is a very simple C program which outputs the following:

2.7182818

i .14159265358973

oo o

nmnnn

oSN W

39

Abacus Software SUPER C for the C-128/C-64

The first lines of the program should be familiar to you.
main () {...} defines the main function. Within a block you can
make declarations. These must come at the beginning of the block:

double e,pi;

declares two objects of type double. The two objects have the
names e and pi. The type double indicates that floating-point
numbers with double precision can be stored in this object. In this
case up to 11 places can be stored.

If you want to define several objects of the same type, they can be
separated with commas. A declaration is, like most other
instructions, terminated by a semicolon.

int a,b;

is a similar definition. Here two objects, a and b, are defined as
integers by int. Only whole numbers (integers) can be stored in
objects of this type.

The next four program lines are instructions in which the defined
objects are assigned values. The object identifier must always stand
on the left side of the equals sign. Such an identifier is called an
lvalue. To the right of the equals sign is the value which is to be
stored in the object. In the four program lines, all objects are
assigned the right number value.

The last lines of the program contain instructions which make calls
to the functions printf and getchar.

printf now has more than one argument, however. The first
argument is always a character string.

"e=%g\npi=%g\n"

All the characters are printed up to the %g characters. These are
called format instructions. They cause another argument of
printf to be printed. $g requires an argument of type double.
The value of this argument is printed as text. The \n character
causes the next output to appear at the start of the next line.

40

Abacus Software SUPER C for the C-128/C-64

The second print £ instruction is constructed similarly. Here the

format character is $d, which requires an argument of type int
and prints it in decimal.

getchar waits for a key press before the program is ended.

You have now been introduced to objects. The objects in this
example were all defined without specification of a memory class.
You will later see what consequences this has. We will say only
thz;} these objects exist only within the block in which they were
defined.

The number values which occur are constants. The floating-point
constants are always of type double. Integer constants are of type
int, as long as they are not too large.

You do not necessarily specify constants on the right of an
assignment. On the right side there can be an identifier or a
complicated expression.

pi=e;

6.1.3 Loops

Up to now our example programs have been processed
sequentially, meaning that the individual instructions were always
executed in order, then after the last instruction the function and the
program was ended. In the many applications this is not
satisfactory. This is why there are loop instructions, which make it
possible to repeat certain instructions.

The next example is a program which prints a table of Celsius and
Fahrenheit degrees.

#include "stdio.h"
/* Table of Celsius to Fahrenheit
for C=-50,—40, ey 50 */

main ()
{ int start,end, step;

41

Abacus Software SUPER C for the C-128/C-64

double fahr, celsius:;
start=-50;

end=50;

step=10;

celsius=start;
while (celsius<=end)
{ fahr=(9.0/5.0) *celsius+32.0;
printf("%4.0f %7.1f\n",celsius, fahr);
celsius=celsius+step;
}

getchar () ;
}

The compiler ignores everything between the /* and */ characters.
Between these characters are the comments for the program, use
comments liberally in all your programs.

A set of objects are defined. start and end represent the first and
last numbers in the table. st ep specifies the step width with which
the Fahrenheit degrees will be calculated. celsius represents the
current Celsius value, fahr the current Fahrenheit value. start,
end, and step are then assigned the required values. celsius is
initialized with the value of start. celsius now has the value
for the first conversion.

Next is the while instruction. A condition enclosed in parentheses
must follow while. In this case a comparison is made to see if
celsius is less than or equal to (<=) start. If this condition is
fulfilled, the body of the loop is executed. This is a block in this
case. In this block there are instructions which are to be repeated as
long as the condition is fulfilled. In this case the loop is executed

until celsius is larger than end. Then the end of the table has
been reached.

At the beginning of the loop the Fahrenheit value is converted to the
Celsius value. On the right side of the assignment there is a
complicated expression which performs the conversion. The
Celsius and Fahrenheit values are printed opposite each other with
the print f function.

42

M

@

Abacus Software SUPER C for the C-128/C-64

At the end of the loop the Celsius value in incremented by the step

width. The program tests to see if the loop condition is still true. If

$0, the loop is repeated. If the condition is no longer true, program

g:lcccllcltion continues after the loop instruction, behind the loop
ock.

Now to some program details.
celsius=lower;

Here the value of lower, an int value, is assigned to the object
celsius. The value of lower is automatically converted to type
double. For each C assignment the right side is always adapted to

the type of the left side. When possible, the numerical value
remains the same.

In the conversion formula we see the division 9.0/5.0. Here
double constants are used. If we used int constants and write
9/5, the result would be 1 because integer division would have
been performed. If you want division by a double value, at least
one of the operators must be of this type.

The format instruction of print £ has been changed somewhat.
% £ means that a double number without exponent will be printed.
Numbers can be place between the $ and f. $4.0f means that
the double number will be printed with a text of at least four
characters, with zero places after the decimal. The decimal point
and the sign of the number must be taken into account when
calculating the minimal text width. With this format instruction,
only numbers of up to 2 digits can be printed. If the numbers are
larger, the field becomes larger than 4 characters and this destroys
the output format. If the number is smaller, the text is filled with
spaces until it is 4 characters wide. The instruction $7.1f
specifies a double number without exponent with an output width
of at least seven characters and one place after the decimal.

43

Abacus Software SUPER C for the C-128/C-64

6.1.4 Symbolic constants

The previous conversion program can be easily rewritten for other
values. But imagine a considerably more complex program.
Changing all of the constants would be a great deal of work and
would also be a source of errors if a constant were forgotten. To
avoid this, modern programming languages have symbolic
constants. A name is defined as a constant. Wherever this name
appears in the program it is replaced by the constant it was defined
as

Our next example uses symbolic constants:

#include "stdio.h"
#define START (-50)
#define END 50
#define STEP 10

main ()
{ double celsius, fahr;

for (celsius=START; celsius<=END;
celsius+=STEP)
{ fahr=(9.0/5.0) *celsius+32.0;
printf("%4.0f %7.1f\n",celsius,fahr);
}

getchar() ;
}

This programs produces the same result, but it looks quite
different. The variables start, end, and step are missing.
Constants were defined for them instead. This is done with the
command #define. This command must always be at the start of
a line. After such a definition the specified name can be used like
the constant following it.

The while instruction was replaced by a for instruction. After
for are three expressions in parentheses. The first expression
corresponds to the initialization of the loop, the second represents
the loop condition, and the third is the continuation of the loop.
This continuation is is executed every time the body of the loop has
ended and before the condition is tested.

44

Abacus Software SUPER C for the C-128/C-64

The only unknown element for you may be the += operator.

celsius+=STEP corresponds to
celsius=celsius+STEP

celsius need be evaluated only once, however, which means
that the assignment is performed faster.

6.1.5 Arrays

In this section you will become acquainted with arrays. Let's take a
look at the following program:

#include "stdio.h"

main ()

{ static int numbers[10];
int i;
char c;

for (i=0; i<50; i++)
{ c=getchar();
if(c<='9"' && c>='0")
numbers([c~'0"']++;
}
for (i=0; i<10; i++)
printf ("Digit%d:%d times\n",i,numbers(il]);
getchar();
}

This program defines numbers as an array with ten elements. The
elements have type int. The number of times a certain key is
pressed will be counted in these elements. The key word static
stands before the declaration. It represents a memory class. Here
static is used because the objects of this memory class are
automatically set equal to zero, that is, the array contains only
values zero at the start of the program.

45

Abacus Software SUPER C for the C-128/C-64

In C, array elements are counted starting with zero, meaning that a
ten-element array has elements 0 to 9. In these we will count how
many times the digit keys O to 9 are pressed.

As temporary storage an int object i and a char object c are

defined. The type char creates objects which can accept one
character from the character set.

The first instruction creates a loop. In it the variable i runs from 0
to 49. i++ is the continuation of the loop. This expression has the
same effect as i+=1 (i is incremented by one).

In the loop body there is a block with two instructions. First the
function getchar is called, which waits for a key to be pressed. It
not only waits, it also returns the code of the pressed key. This
value is represented by the function call. Here the value is assigned
to the object ¢ (getchar(c).

Next is an if instruction. Its body is executed only if the condition
after if is true.

'0" and '9' are character constants, the values of which equal the
code of the enclosed character c. This code can be different from
computer to computer. The C-64 and C-128 used a modified ASCII
character set. The digits are coded in order, however.

The if condition checks to see if the character read has a code less
than or equal to the code of the character '9' and if the code is
greater than or equal to the code of '0'. The two conditions are
combined with a && operator, which makes the whole condition
true only if both individual conditions are fulfilled (logical AND).

Since the codes for the digits are in increasing order, the condition
is fulfilled only for characters which are digits. In this case

numbers (c-'0"']++
is executed. c-' 0" returns the digit as the value, for '0' the value

0 and for '9' the value 9. The array is indexed with this value,
meaning that the element with the number c-'0" is selected.

46

C

Abacus Software SUPER C for the C-128/C-64

This element is incremented through ++. The corresponding array
element is incremented for each digit key.

The for loop is executed 50 times, which means that you must
press 50 keys before the loop will be exitted.

The next instruction is again a for loop, which prints a list. i runs
through the values 0 to 9, and something like the following will be
printed:

Digit 0: 2 times
Digit 1: 15 times
etc.

The last get char waits for a key and the table is displayed until
then. Once you have started the program you must press keys.
After 50 keys the table appears indicating how often you pressed
the digit keys.

6.1.6 Character arrays

If you program with BASIC you are acquainted with character
strings. But they were really only string constants, that is, strings
with predetermined sequences of characters. There is no type for
changeable character strings in C. Strings are stored in arrays of
type char. The result of this is that the length of the string is
limited by the length of the array, but only by the length of the
array. The end of a string in an array is designated by a character
with the code zero. This end code is created by the compiler for
string constants.

#include "stdio.h"

main ()
{ char name([41];

gets (name, 40) ;

printf ("\n%s\n",name) ;
getchar () ;

47

Abacus Software SUPER C for the C-128/C-64

In this program a character array with 41 elements is defined. Since
one character is required for the end of the string, you can store up
to 40 characters. get s is a standard function for reading strings.
The first argument is the name of an array in which the string is to
be stored. The second argument specifies the maximum number of
characters to be read. The function causes the cursor to appear on
the screen and allows you to enter a string. The input works like
BASIC, that is, you must end it with [RETURN].

_In.the function print £ the control character %s expects an array
name as an argument. The string in the array is printed as text, in
this case, what you had entered.

getchar is again used to wait for a key so that you can view the
output.

‘6.2 Expressions and declarations

6.2.1 Names

The names which are connected to objects through declarations may
not match any C key words. These are reserved names which have
a certain meaning in the program text, such as int as a type name.

A name must start with a letter. After the first letter may come
digits. The underline character _ counts as a letter.

You should choose variables names which suggest the purpose and
contents of the variable and which are sufficiently unique so that a
minor typing error does not result in a different valid variable name.

'6.2.2 Types

In C there are a group of simple data types. The simple types are in
contrast to the more complex types like arrays.

You have already become acquainted with the data types char,
int, and double. In addition there are the following:

48

Abacus Software SUPER C for the C-128/C-64

float is like double, but with lower precision. In the Super C
system this type has a precision of 6 digits.

short int, also abbreviated to short, can store only whole
numbers like int.

long int, also abbreviated to long, can also store only
integers. The three integer types differ only in their value range,
that is, the size of the largest representable number. The value range
of short is guaranteed to be less than or equal to that of int and
the value range of 1ong is guaranteed to be greater than or equal to
that of int. In Super C short and int are the same size while
long is twice as large and requires twice as much memory.

The memory required is also called SIZE.

All integer types (including char) can be represented without a
sign by placing unsigned before the type name. The contents of
such as object are then interpreted without a sign as positive.
unsigned int can also be abbreviated to unsigned.

6.2.3 Constants

You have already used int and double constants. The compiler
recognizes a double constant by a decimal point and/or an
exponent in the constant. An exponent is designated by the letter e
or E and the corresponding exponent.

le5 = 100000.0 = 100E3 = 1E+5 = 0.1leb6
All of these constants have the same value.

int constants are integers. If you exceed the value 32767, they can
no longer be stored in objects of type int (this can be different for
other C compilers). In this case the constant becomes type long. If
you wish to make an integer constant 1ong, this can be done by
placing 1 or L after it.

15L 21 oL 40000

49

Abacus Software SUPER C for the C-128/C-64

Integer constants which have a leading zero are evaluated as

octal, meaning that the compiler interprets the number in the base
8 system.

077 (octal) = 63 (decimal)

Write all of your decimal numbers without leading zeros or they
will be regarded as octal.

Integer constants can also be read as hexadecimal by placing 0x or
0X in front of the number. The digits 10 to 15 represent the letters
atoforAtoF.

Ox3f (hex) = 077 (octal) = 63 (decimal)

We have also used character constants. They contain a character
enclosed in single quotation marks:

1] a] L x]] \n L} v \0]
‘The value of such constants is the code of the character in the
character set. This value is converted into the type int so that
calculations can also be performed on it. Combinations with the
escape character \ can also be used as character constants. '\n'
represents the code for [RETURN].

‘\n' = 13 = 0x0d
'\ 0" is the code Oor null, which is used as the end character for
strings. Up to three digits can come behind the \, which are
interpreted as octal digits. The value of these octal numbers is then
the code of the character:

'*\101’ = ‘a’ = 65

Another constant is the string. The characters in it are placed in
memory. At the end is the end character ' \0':

.nstring\nll -> '3."t"'r','i"'n"'g','\nl"\o'

50

Abacus Software SUPER C for the C-128/C-64

A string constant can be used like an array name. Two strings
constants which look alike are in reality two different constants.

Strings and characters are also different:
” a ” L a]

The first is a string, which contains a \0 character at the end,
while 'a’ is the value of the code of the letter a.

6.2.4 Memory classes

Up to now we have defined objects only within the function block.
If no memory class is specified, the memory class auto is
assumed. This memory class has the effect that the objects are
available only within the block and are discarded when the block is
exitted.

Objects which are defined within a block are called 1ocal. Local
objects with the memory class static are also available only
within the block. But the objects retain their value throughout the
program until the block is accessed again. An advantage of these
objects is that they automatically contain the value zero at the start
of the program.

global objects may also be declared. These are declared outside a
function. If no memory class is given, the object applies over the
entire program.

The memory class static can also be specified for global
objects. But if several separately-compiled C programs are linked

together, static global objects from one file cannot be
accessed by the others.

As a general rule, all objects must be declared before they can be
used in C. Names which the compiler does not recognize through
declaration are assumed to be global and be of type int ora
function returning an argument of type int, so that such objects do
not necessarily have to be declared.

51

Abacus Software SUPER C for the C-128/C-64

6.2.5 Arithmetic operators

Arithmetic operators are the basic types of calculations + - *
/ . The meaning of the operators should be clear to everyone: two
numbers are added, subtracted, multiplied, or divided. Important in
C is the type of the result. There are things called standard
conversions which are used for these operators for the many ways
of combining types.

1. char or short operands are converted to int,
float operands are converted to double operands.

2. If one of the two operands is double, the other is
converted to double and the result will be double.

3. If one of the operands is 1ong, the other operand and
the result will be 1long.

4. If one of the operands is unsigned, the other
operand and the result will be unsigned.

5. If both operators are of type int, the result will also
be int.

% also belongs to the arithmetic operators. The result is the
remainder after division. The standard conversions are performed
for this operator as well. Only integer types are allowed as
operands.

52

Abacus Software SUPER C for the C-128/C-64

6.2.6 Comparisons, logical operators

Some comparison operators have already been used. They return an
int value as the result, O for false and 1 for true.

The operators mean: less than, less than or equal, greater than,
greater than or equal, not equal, equal.

All of the simple types may be compared with each other. The
standard type conversions are performed first.

A logical value can be negated with the ! operator (logical NOT).
! (a<b) corresponds to a>=

The ! operator can be applied to all types. The operand is checked
to see if its is zero. The result is then 1 (true) else O (false).

Two conditions can be combined with && or | |. The operands do
not have to be conditions, however. They are only compared to
zero and then receive their value true or false.

&& returns 1 (true) if both operators are non-zero (logical AND),
else O (false).

| | returns 1 (true) if one of the operators is non-zero (logical OR),
else O (false).

These operators are guaranteed to be evaluated from left to right.
The second operand will not be evaluated if the result can be
determined from the first, that is, if the first operand of && is 0 or
notOfor ||.

53

Abacus Software SUPER C for the C-128/C-64

6.2.7 Type conversions

Type conversions are performed automatically in some cases, such
as the standard type conversions. Type conversions also underlie
the argument of a function call. char and short are converted to
int and float is converted to double.

Type conversions can also be forced, however. This is done
through something called a CAST. The type name of the result is

placed in parentheses and this CAST is placed in front of the type to
be converted.

(char) pi

The value of the object pi will be converted to type char. The
conversion is always done so that values with "smaller" types are
converted to "larger" types, without changing the value. A
conversion in the other direction can change the value if the value
does not fit in the value range of the destination type.

6.2.8 Increment and decrement

C has an increment command ++ and a decrement command -- to
increment or decrement an object by 1.

i++ ++i

increments the object i. Both expressions have the same effect. But
in C every expression has a value, even assignments and increment
and decrement operations. In the first case the expression has the
value of i before the increment, while the other has the value of i
after it has been incremented. The -- operator can be used for

decrement (subtract one) in the same manner.

- —i

It should be noted that these operators have side effects if they are
not alone.

numbers [i++]+i

54

Abacus Software SUPER C for the C-128/C-64

The above expression indexes the array numbers with the value i.
But i will be incremented and affects the expression following.
Often the order of evaluations in C is not predetermined, in order to
give the compiler free room for optimizations. The compiler may
reverse the expression above.

i+numbers [i++]
The side effect now has a different result since the first i is not
incremented. So watch out for side effects! You can avoid this
effect by using objects which will be changed by side effects only
once in the expression.
For integer types the increment and decrement operators are faster
than the corresponding assignment.
6.2.9 Bit operations

In C there are also operators which change the bit pattern of a
value. Such operators can be used only on integer types.

First there are operators which combine two values bit by bit. The
standard type conversions are performed.

& bitwise AND operation:
Result bit 1 if both operand bits are 1, else 0

| bitwise OR operation:
Result bit 0 if both operand bits are 0, else 1

~ bitwise exclusive OR:
Result bit 1 if both operands equal, else 0

The second group of bit operations are the shift operators. They
shift the bit pattern of a value.

1<<2

With the << operator the bit pattern of the left operand is shifted as
many times to the left as the right operand specifies. The above

55

Abacus Software SUPER C for the C-128/C-64

expression therefore has the result 4. 0-bits are shifted in from the
right. A shift to the left corresponds to a multiplication by 2.

4>>2

The >> operator shifts the bit pattern to the right. The result is 1
here. The operation corresponds to a division by 2 for one shift. If
the left operand is unsigned, O-bits are shifted on the left. But if
the operand is not of unsigned type, sign bits are shifted in
Super C, so that -4>>2 returns the result —1. This is different for
some compilers however and they always shift in 0-bits. The result
can therefore be different from machine to machine (this is
legitimate since Kernighan and Ritchie proposed both versions).

The type of these shift operations is always that of the left operand.
If the right operand is negative or too large, the result is undefined.

6.2.10 Assignments

The assignment through the = operator has already been used and is
a fundamental part of every program. The assignment assigns the
right operand to the object which the left operand denotes. The left
operand must therefore designate an object; it must be an 1value.
1+2 is not an 1value according to this.

The type of the right operand is converted to the type of the left
operand before the value is assigned. In C an assignment has a
value. This value can also be used further. The value of an
assignment is the converted value of the right operand.

#include "stdio.h"

main ()
{ char c; .
while ((c=getchar()) != '\n'")

putchar (c);
}

In the program above the key just pressed is assigned to c in the
loop condition. The value of the assignment, the pressed key, is

56

)

Abacus Software SUPER C for the C-128/C-64

compared to the [RETURN] character. If the key pressed was
[RETURN], the loop is ended. Otherwise the key pressed is
printed with the function putchar.

Note that the assignment must be enclosed in parentheses since the
compiler will otherwise perform the comparison first and then
assign its result to c.

There are short forms for assignments if the value to be assigned is
to be combined with the lvalue.a = a op (b) can be
written as a op= b. Operators permitted are:

*= /= %= += - Ao &= |= <<= > =
x*=y+1 will be converted to x=x* (y+1), meaning that the
precedence of operators doesn't apply. The entire right operand will
be combined. The 1value is evaluated once in this short form.

numbers [i++]+=1

causes i to be incremented only once.

If the value of an assignment is used further, side effects similar to
those for increment and decrement should be watched for, which
can be caused by changing an object.

6.2.11 Conditional evaluation

C offers the ability to perform conditional evaluation. It consists of
three parts and two operators:

a?b:c
The value of the expression a determines if the expression b or c
will be evaluated. b will be evaluated if a is not equal to 0, else c
will be evaluated. The value of the entire expression is the value of
the expression finally evaluated.

1?22:0

57

Abacus Software SUPER C for the C-128/C-64

always returns the value 2.
i?22:0

returns the value 0 if i is equal to O, else 2.
X ? i++ : g4+

If x equals 0, j will be incremented. The value of j before the
increment is the value of the expression. Otherwise i will be
incremented and the value of the expression is i before the
increment. Only one of the two objects is ever incremented.

If the result types of the two possible result expressions are
different, a standard type conversion is performed on both in order
to get the same result type in both possible cases.

6.2.12 Precedence and order of operators

Multiplication and division operations are performed before
addition and subtraction. In C all of the operators have a preset
precedence which determines which operator will be performed
first. If several operators of the same precedence are in a row, the
order of an operator determines whether it will be evaluated from
left to right or from right to left.

In the following table, operators on the same line have the same
precedence. The first line has the highest precedence, meaning that
the operators on that line will be executed first. The last line has the

lowest precedence.

38

Abacus Software SUPER C for the C-128/C-64

Operators Order

O 3] .- from left
++ -— * § - ! ~ (CAST) sizeof from right
* /% from left
+ - from left
<< >> from left
< <= > >= from left
== = from left
& from left
A from left
| from left
&& from left
| from left
? from right
’ from left

The associative and commutative operators + * ~ | & canbe
rearranged by the compiler. This cannot be prevented even with
parentheses. For all other operators the order, whether the left
operand or the right operand will be evaluated first, is not set. The
operators && and | | are exceptions to this. Their operands are
guaranteed to be evaluated from left to right.

6.2.13 Additional operators

Operators which you don't recognize in the list above will be
discussed later in the tutorial section. Otherwise you will find an
exact description in the reference section.

One operator should be mentioned yet. With the , operator you can
split an expression into two parts, both of which will be executed.
The value of the expression is the value of the right part.

if (t=0, s+l)

The condition of the if instruction is just s+1. But first t will be
set equal to zero.

59

Abacus Software SUPER C for the C-128/C-64

6.2.14 Program text

In principle a program can be entered format-free. The only
important thing is that the compiler, as one would expect, reads the
text line by line, from left to right. Whether you write

main() {int i;for(i=0;i<10;i++)printf ("%d\n",i);)

or

main ()
{ int i;
for (i=0; i<10; i++)
printf ("%d\n",1i);
}

is entirely up to you. But you see that you can get a clean,
understandable program if you follows certain rules.

« indent sub-statements and dependent program sections

» write brackets which belong together in the same column
» insert blank lines to make things easier to read

* don't overload one line with text

In the C editor you have the ability to change the color of program
sections. Beginners may wish to use this but don't over use it. A
rainbow-colored program is also hard to read. Use the supplied
programs as examples. On Version 3 when using a monochrome
monitor it is best to avoid color.

6.3 Control structures

A C program consists of functions. In the function blocks there are
instructions which the program executes. Such instructions are
executed sequentially, one after the other. In order to be able to
leave this rigid scheme, a programming language offers control
structures. All control structures are instructions themselves. But
they contain other instructions, whose execution is not necessarily
sequential. Sub-instructions can be repeated or skipped entirely
(loops, branches).

C

Abacus Software SUPER C for the C-128/C-64

Essentially, control structures change the sequential execution of
instructions. This change is usually made conditional, that is, the
processing is changed according to the value of certain data.

6.3.1 Block

A block is a group of statements enclosed in braces { }. Local
objects, which are available only in this block, may be defined at
the start of a block. A block is itself an instruction, so that blocks
can also be nested.

A block serves to group instructions together. In a loop, for
example, you can repeat only one instruction. If the loop is to
contain several instructions, you combine these into a block and
you have one instruction.

The block is an exception to the instructions, since it is not
terminated with a semicolon, but with the } brace.

6.3.2 if instruction

In an if instruction a sub-instruction is executed only if a certain
condition is fulfilled.

if (c=='a')
printf ("Letter: a");

Only when the condition c=="'a"* is fulfilled, true, will the

instruction following it be executed. This instruction could also be a
block, of course.

The parentheses following if need not necessarily contain a
condition. The expression is simply evaluated to see if the value is
0 (false) or not O (true).

The if instruction can also be extended with an section.

61

Abacus Software SUPER C for the C-128/C-64

if (c=='a')
printf ("Letter: a");
else
printf ("another character");

The instruction behind else is executed whenever the condition is
false. Either the instruction behind i f or the instruction behind
else is executed.

You can program a branch to one of two different statements with
if...else. To branch to one of several instructions,
if...else instructions can be chained by placing another i £
instruction in the e1se portion of the previous i f instruction.

if (c=='a')
printf ("Letter: a");
else
if (c=='b')
printf ("Letter: b");
else
printf ("Another character");

Note that this whole thing is one instruction, although it consists of
several nested sub-instructions. In order to increase readability, the
normal indentation can be eliminated:

if (c=='a')
printf("Letter: a");
else if (c=='b"')
printf ("Letter: b");
else
printf ("Another character");

if-else chaining has the disadvantage that it requires a good
deal of writing. The conditions must be somewhat different in each
instruction, but must be reprogrammed. Furthermore, all compilers
place some limit on the number of nested statements. For this
reason most higher-level programming languages have a way of
programming larger branches:

62

Abacus Software SUPER C for the C-128/C-64

6.3.3 switch instruction

A switch instruction can branch to one of up to 43 statements in
Super C. The branch is made based on the result of an expression:

switch(c)
{
case 'a': printf("Letter: a");
break;
case 'b': printf("Letter: b");
break;
case 'c':
case 'd': printf("Letter: c or d4d");
break;
default: printf("another character");
break;
}

The expression after switch is here just the object c. Its value is
the basis for the branch. After switch(..) follows a block
containing the various instructions. If a certain instruction should
be executed based on a certain result, a case label must be placed
before the instruction:

Behind case is a constant. If the result of the expression matches
the constant, the instruction following it will be executed. Not only
the following instruction, but all instructions following the
matching label. In some cases this can be very useful. To prevent
it, you place a break instruction after the branch to exit the block.

You can place several case labels in a row. One special thing is
the default label. If it comes before an instruction in the block,
this instruction will be executed if there is no case label which
matches the result of the expression. The default label need not
be at the end of the switch block. If there is no default label,
no instructions are executed if no case label is found.

The result of the expression must have an integral type.

Floating-point values are not allowed. The same applies for the
case constants.

63

Abacus Software SUPER C for the C-128/C-64

You may be surprised by the last break instruction in the block.
This is actually superfluous, since the block will also be ended
without this instruction. But you should still write this break
because the danger exists that it will be forgotten if a new branch is
later added. The instruction of this new branch will then be
executed along with the default instruction.

6.3.4 while instruction

The while instruction is a loop. It repeats a sub-instruction as
long as a condition is fulfilled.

while (i<10)
i++;

As with the if instruction, the condition is in parentheses. The
loop instruction then follows, and it will be repeated as long as the
condition is fulfilled, as long as the expression in the parentheses is
not equal to zero.

With loops, make sure that the loop condition will become false at
some point, or the loop will never end.

Endless loops, called infinite loops, can be programmed by
omitting the loop condition.

while ()
INSTRUCTION

Such infinite loops can sometimes be very useful. Omitting the loop
condition has even been propagated by Kernighan and Ritchie, but
we have found that many compilers will not allow it. In order to
write portable programs, write:

while (1)
INSTRUCTION

Abacus Software SUPER C for the C-128/C-64

6.3.5 for instruction

The for instruction is a special while instruction. It is not only
provided with a loop condition, but also an initialization expression
and a continuation expression.

for (i=0; i<10; i++)
putchar (string[i]);

This is usually used as it is in BASIC or Pascal, that is, a variable
is set to an initial value (initialization: i=0). The variable runs up
to a certain value (loop condition: i<10). The variable is
incremented at the end of each repetition (continuation: i++). Buta
for instruction is not tied to one variable. One can use three
expressions for the initialization, condition, and continuation.

for (c=getchar(), i=0; i<10; putchar(c), i++);
The initialization of the loop is:
c=getchar (), i=0

This is one expression. The , operator divides the expression. A
key is read and its code is stored. i is set to zero. The condition
checks to see if i is less than 10. The continuation consists of two
parts. The key pressed is printed and i is incremented. The
sub-instruction of the loop is just a semicolon. This is an empty
instruction. The entire statement waits for a key to be pressed and
then prints the character 10 times.

You can see that you can program much more complex for loops
in C than in other languages.

If the condition is omitted, you get an infinite loop. The
initialization and the continuation can also be omitted.

for (;;):

is the smallest for loop, an infinite loop.

Abacus Software SUPER C for the C-128/C-64

6.3.6 do instruction

The do instruction is a new type of loop. With the while and for
loops the condition is tested at the beginning of each repetition,
including the first time the loop is ever executed. It can occur that
the loop is never executed at all.

The do instruction does not check the loop condition until the end
of the loop instruction. Such loops are used when the loop
instruction is to be executed at least once.

do

{ printf ("Input: ");
gets(string, 20);

}

while(string[l]=='\0");

The loop starts with the key word do. The loop instruction
follows, here a block with two instructions. At the end of the loop
is the loop condition behind while. The instruction prints
"Input: " and then reads a string of at most 20 characters into
the array string, which must naturally be defined with at least 21
elements. The loop condition tests if the second element of the array
(element 1) is equal to the end character of the string. If this is the
case, the first element (element 0) is a [RETURN] character and no
more characters were read. Then the loop and the input is repeated.
Otherwise the loop ends.

do ; while():;

If you omit the loop condition, the result is an infinite loop.

6.3.7 break instruction

This instruction was already discussed in connection with
switch. It causes a loop or a switch instruction to be exitted.
The break instruction works only within loops or switch

blocks. It always refers to the last loop or switch instruction, if
several of these are nested.

Abacus Software SUPER C for the C-128/C-64

break;

The break instruction causes the loop to be exitted immediately
and execution to continue after the entire loop. In a switch
instruction the block is exitted.

for (i=0; i<20; i++)
{
string[i)=getchar();
if (string[i]=='\n"');
break;

}
string[i]="'\0";

In this program fragment the variable i runs from O to 19. It waits
for a key to be pressed and then assigns the key to the ith element
of a character array string. If the element read is a [RETURN]
character, a break instruction is executed. This exits the loop.

A maximum of 20 characters are read, but not beyond a
[RETURN] character. In the last instruction a '\ 0* character is
appended to the end of the string.

You could also integrate the test for the [RETURN] key in the loop
condition. This would make the program harder to understand,
however.

6.3.8 continue instruction

The continue instruction is not used very often. It applies only
to loops and not to switch instructions. continue directs
execution back to the end of the loop instruction.

With a while or do loop the loop condition is immediately tested
and the loop instruction repeated if the condition is fulfilled. With a

for loop, a continuation is first executed, then the loop condition
is tested.

The continue instruction is usually used to skip complicated
instructions in the loop.

67

Abacus Software SUPER C for the C-128/C-64

for (i=i; i<20; i++)
{ getchar();
if (c=='\n')
continue;
/* complicated computation */
}

The "complicated computation”™ indicated by the
comment is skipped if the key read is [RETURN].

6.3.9 goto instruction and labels

Labels can be placed in front of any instruction. They consists of a
name and a colon:

name : instruction

The name is thereby defined as a label. A jump can be made to

such a label with a got o instruction, that is, program execution can
be made to continue behind the label.

goto name;

Such jump instructions should not be used. There is no situation in
which a jump cannot be replaced by the existing set of control
structures. Jumps are to be strictly avoided in structured
programming in order to preserve the structure and readability of
the program. Only in rare cases is a jump useful, such as when an
error occurs within several nested loops. Only the innermost loop
:han be exitted with break, while goto can be used to exit all of
em.

A jump cannot be made into another function. You can jump out of
blocks. You should avoid jumping into blocks, however. If objects
are defined in such a block, they will not be defined and will not be
available.

68

Abacus Software SUPER C for the C-128/C-64

6.4 Program structures

6.4.1 Functions

Up to now we have defined only one function, main. Programs
usually consist of more than one function, however. As we already
know, functions can be passed arguments, with which they can
perform computations. A function can return a result value. If a
function is not supposed to return a result, it is also called a
procedure. Procedures are defined with the type void.

void nextline()
{ putchar('\n"');
}

The function next 1ine prints a [RETURN] character. It does not
return a result. It can be called in any other function.

main ()

{ printf ("Demonstration") ;
nextline();
printf ("of the function");
nextline();
printf ("nextline");

}

For functions for which no type has been specified, as with main
here, the compiler assumes type int and assumes that the end
result has this type. main does not return a result, however, since
the end of main also means the end of the program. The type
void is often left off of main through sheer laziness.

Functions can return all simple types. Take a look at the following
function, power, which has two arguments. The first argument is a
double value x, the second is an int value y. The function
power is to return the value of x to the power y.

69

Abacus Software SUPER C for the C-128/C-64

double power (x,Vy)
double x;
int y;

{ /% ... */

}

The function is assigned the type double, the result type. In the
function parentheses is a list of names. These are the names of the
parameters. The parameter names must be declared. This is done in
the usual manner, but without storage class. Note that there may be
no semicolon between the first and second lines, but a semicolon
must come at the end of each of the parameter declarations.

The parameter declarations must be made in the order in which the
parameter names are listed.

What do these parameters mean? The parameters are local variables
just like those defined within the block. They contain the value of
the arguments used when calling the function. The complete
function power looks like this:

double power (x,y)
double x;
int y;
{ if (y==0)
return 1;
if (y<O0)
return 1l/power (x,-y);
else
return x*power(x,y-1);

}

Let's go through the instructions of power step by step. When the
function is called the values of the arguments are stored in the
parameters. If, for example, you want to calculate 5 squared, call
the function power.

power(5.0,2);
Here we see a peculiarity of C. The types of the arguments must
match the types of the parameters. You must write 5.0 so that the
first argument has the type double.

70

Abacus Software SUPER C for the C-128/C-64

What happens in power? x has the value 5.0 and y has the value
2. If y were equal to 0, the result of power would be 1. This is
achieved through a return instruction. It can be anywhere in a
function block. If it is executed, the function is exitted. An
expression which calculates the result of the function may come
behind return. 1/power (x, —y) calculates the same thing as
power (x,y). But now the exponent is positive. The function
power therefore calls itself. This is called recursion. x and -y
here are arguments whose values are assigned to x and y in the
new call. The parameters x and y have only the same names as
those in the call. In reality the parameters are recreated like auto
objects at each new call so that they cannot disturb each other.

If y is positive, the function is exitted with the result
x*power (x,y-1).Inour call:

5.0*power (5.0, 0)

power is called again. But in this call power sets the result clearly
to 1, so that the result of the second call is:

5.0¥1.0 -> 5.0

The recursion runs back again. The result of the second call is then
used in the first call.

5.0%¥5.0 -> 25.0
25.0 is then the end result of the call power(5.0,2).

It is often difficult for the beginner to understand the structure of a
recursive function. Remember that the parameters of a new function
call are different from those of the old call. They have the same
names, but are different objects. The result of a function is
represent(c)ed by the call. power (5.0, 1) is represented by the
result 5.0.

Recursion is often easier to understand than linear programs. This

allows the function power to be implemented with quite few
statements.

71

Abacus Software SUPER C for the C-128/C-64

There doesn't have to be an expression behind return. But then
the result of the function is not defined. One should exit a function
of type void with return without an expression. A function is
also ended after the last instruction in the function block has been
executed. You know this from main. You can also end a C
program through a return instruction in the function block of
main.

6.4.2 Arguments

The are some characteristics of passing arguments to functions in C
which you should be aware of. The arguments are always
evaluated. If the type is char or short, the argument will be
converted to int, just as £loat will be converted to double.

The types of the arguments must match the types of the parameters.
This is not checked by the compiler. It remains the responsibility of
the programmer. If the types do not match, you can force
agreement with a CAST.

If you don't notice that the types do not match the function will
probably return erroneous results.

Parameters declared with the type char, short, or float will
be converted to int or double, as appropriate.

Parameters in C are passed only by value (call by value), which
means that the value of the argument is assigned to the parameter.
This parameter can be used like a local variable.

main ()
{ double a;
int b;

power(a,b);
}

In this example the value of the objects a and b are passed to
power. The contents of these objects cannot be changed by the

72

Abacus Software SUPER C for the C-128/C-64

function, however, not even by changing the corresponding
parameters.

If you want to change objects outside of the call, you must use
pointers. This will be discussed in the following sections.

6.4.3 Global definitions

It was mentioned briefly before that you can define global

objects. These definitions are programmed outside of the function
blocks.

int maximum;

main ()

{

i=maximum+1;
}

maximum is a global object with the type int. You may not
specify a storage class. A global object remains valid throughout
the entire program and is not discarded. The name of such an object
can be used in the entire program. If a local object with the same
name is defined, the definition of the global object will be
"hidden" by the local object, meaning that the local object will
always be accessed.

Global objects are used for storing data which is to be made
accessible to several functions. They can also be used to save
parameters or to return several results per function. Functions can
exchange data among themselves with global objects.

Global objects, defined without storage class, can also be used by a
separately-compiled program if both link files are linked together.
To prevent this outside access the memory class static can be
placed before the definition. The object still retains its value over
the whole program, but it can be used only in the file in which it
was defined.

73

Abacus Software SUPER C for the C-128/C-64

A function definition is also a global definition since functions
can also be thought of as objects. Functions can also be declared as
static, meaning that they can be used only with in the file. To do
this, static is placed in front of the function header. main may
not be defined as static.

6.4.4 Declarations

If you want to use global objects from a different,
separately-compiled program section, these objects must be
declared so that the compiler knows what type they are. No
memory space is reserved by a declaration. The compiler codes the
declaration in the compiled program such that the declared object
will be connected with its definition during linking,

Declarations can be made global or local, whereby in this
compiler system the declaration remains valid over the whole
program in both cases. They are designated with the storage class
extern.

The modules with the standard functions are nothing more than
separately-compiled programs. These functions must be declared
before they can be used. This is done by the program line:

#include "stdio.h"

The file stdio.h is a source file in which these declarations are

made. The #include command inserts this source file into the
program.

extern void printf();
extern char *gets();

The functions print £ and get s, which you already recognize,
must be declared. You see that no parameter list and no function
block are specified. Such declarations must always come before the
first use, but they can be either local or global.

74

Abacus Software SUPER C for the C-128/C-64

extern void printf();
main ()
{ extern void printf();

printf("...");
}

Local declarations are used in order to clarify which functions are
used within the block. An object can be declared more than once,
but the declarations must agree.

Naturally, objects other than functions can also be declared. With
functions, declarations within a source file are also interesting. If
you have two functions which call each other, one function must
logically come before the other. When the first function is
compiled, the compiler does not yet recognize the second. This
must therefore be declared:

double alpha()
{
extern long beta();

l;ét:.a();
:

long beta ()
{

éir:’ha ()
}

It would be better programming style to declare each function in
order. In summary: If an object is accessed by its name, it must be
known to the compiler through either a declaration or a definition.

If the compiler encounters an undeclared name, it assumes the
object to be of type int and with global storage class (not
static). The compiler would also assume this in the previous
example if beta had not been declared. An error message would
not appear.

75

Abacus Software SUPER C for the C-128/C-64

Global, non-static, int objects or functions returning type int do
not have to be declared. In spite of this, it is recommended that you
do so to preserve the understandability of the program.

6.4.5 Local definitions

The local definitions are found within a block. If no storage class is
specified, the compiler adds auto. Objects of this storage class are
generated at the start of the block and are discarded at the end. If the
block is called recursively, new objects are generated which have
only the name in common with the old objects.

The static local objects are handled differently. These are
defined with the storage class stat ic. The object retains its value
throughout the entire program, but is accessable only in the block in
which it was defined. Logically, recursive calls also refer to the
same object.

There is a third storage class which can be used for local
definitions: register. Such definitions work like auto
definitions, but the compiler tries to place these objects into special
processor registers so that they can be accessed faster.
Unfortunately, neither the C-64 nor the C-128 has such registers
available. If such definitions can no longer be placed in registers,
whether they are all used up or because there are none, these
definitions are handled like auto.

6.4.6 Initializations

In contrast to many other languages, you can initialize objects
during their definition, meaning that these objects are pre-assigned
a certain value. Such initializations save time over assignments and

are easier to follow.

Initializations are made by placing an = sign behind the declarator,
followed by the appropriate value.

76

Abacus Software SUPER C for the C-128/C-64

main ()
{
static int maximum = 50;
auto double minimum = power(5.0,2);

}

Static and global objects can be inititalized only with constant
values. maximum contains the value 50 after the initialization. If

static and global objects are not initialized, the compiler
automatically sets the value to zero.

Local auto objects are not automatically set to zero. Entire
expressions can be assigned to auto objects so that the above
initialization is possible. minimum contains the value of the
function call power (5.0, 2).

There is another important difference between auto objects and
others. auto objects are initialized upon each new function call.
global and all static objects are initialized all together at the
start of the program. Their value is initialized only once.
Declarations with the storage class extern cannot be initialized.

Arrays can be initialized element by element. aut o arrays cannot
be initialized, however.

char name[20] = {'a','n','n','a','\0'};
main ()

A list of elements is enclosed in braces and placed after the =
character. The array has 20 elements. Here only the first five are
initialized. If fewer elements than necessary are found in such a list,
the missing values are filled with zero. There is a short form of the
above initialization. Character arrays can be initialized with strings,
meaning that the elements of the string are placed in the character
array.

char name[20] = "anna";

performs the same initialization.

77

Abacus Software SUPER C for the C-128/C-64

The specification of the dimension can also be omitted in the
definition of an initialized array. The dimension is then
automatically as large as the number of initialized elements.

int month() {o,31, 28,31, 30,31, 30,31, 31, 30, 31, 30,31} ;

The array month is declared with 13 elements. The elements 1 to
12 contain the days of the months 1 to 12. Element 0 is not used,
but it must appear in the list.

char name[]="anna";

The array name is here dimensioned with 5 elements. Always
remember the ' \0* character.

Arrlalys can also have multiple dimensions and can be initialized as
such.

int month(][13]={ {O,31,28,31,30,31,
30,31,31,30,31,30,31},
{0,31,29,31,30,31,
30,31,31,30,31,30,31} }:

This is a two-dimensional array, which means that the elements of
the array are again arrays, whose elements are of type int. The
initialization is recursively, meaning that one has a list of two
elements. These are again lists, whose elements are initialized.

For multi-dimensional arrays, the specification of the first
dimension can be omitted, as in the example. Here
month[2] [13] is declared based on the initialization given
above. The sense of the above definition is the following: By the
first dimension we decide if the year is a leap year or not, and with
the second dimension we select the month, The result of an access
to the array returns the number of days of the month:

month[1] [2];
accesses February in a leap year and returns value 29.

If fewer than necessary are given in a sublist, the rest are filled with
zero. To initialize all the elements use one list:

78

Abacus Software SUPER C for the C-128/C-64

int

month([]} [13]={0, 31,28, 31, 30,31,30,31,31,30,31,30,31,
0,31,29,31,30,31,30,31,31,30,31,30,31

}:

The compiler automatically recognizes the structure and assigns the
first thirteen elements to the array month [0] and the next thirteen
tomonth[1].

6.4.7 Macros

You have already become acquainted with macros under the name
symbolic constants. You have assigned constants a name which can
then be used in the whole source file as the constant. This concept
is not limited to just constants. You can assign a name to any
desired piece of text. Wherever this name occurs in the source file,
the text string is inserted instead. The replacement string must be
separated from the name by a space.

#define NL putchar('\n')

In the program following this you could use the following
expression:

NL;

This causes a [RETURN] character to be printed. NL will be
replaced by putchar('\n").

Note that the # character must always be at the start of a line.
Commands which begin # belong to something called the
preprocessor. They are not directly part of C, but have an effect
only on the source file. Such a preprocessor command can come in
the middle of a source file, but requires its own line.

A name defined with #define is called a macro. Such macros can
also be used like functions, that is, you can pass arguments to
them.

79

Abacus Software SUPER C for the C-128/C-64

#define PRINT(x) printf("%d4d",x)
#define PRINT2(x,y) PRINT(x),PRINT(y)

The macro PRINT can now be called with an argument like a

function. The value of the argument is not important, but the

argument text is inserted in the replacement text wherever the

gua_rameter name is located. If, for example, you call the macro like
s:

main ()
{ .
PRINT (2*3) ;
PRINT (3*i-3);
PRINT2 (5*4-a,b);
}

the calls will be replaced with:

main ()
{ “ e
printf£("%d",2*3);
print £ ("%d",3*i-j);

printf (*%d",5*4-a) ,printf ("%d",b);
}

The following must be noted when making such a definition. The
parenthesis, (, must follow immediately behind the macro name
or it will be interpreted as a normal replacement text. The parameter
names must be chosen so that the same name does not occur in the
argl;ments, or it may continue to be replaced in the arguments as
well.

Macro names are often written in upper case so that they can be
recognized as macros. This is a matter of style, however, and can

differ from programmer to programmer.

An defined macro name applies to the end of the source file. The
name can no longer be declared because the name will be replaced
in the declaration text as well. If the name in front of a macro
definition is already declared, the name will always be interpreted
as a macro.

80

Abacus Software SUPER C for the C-128/C-64

#undef PRINT

This is a preprocessor command which erases a previously-defined
macro. From this line up to the end of the file, the macro defined
with PRINT will no longer be available.

6.4.8 Chaining files

The C compiler allows source files to be chained together. A special
preprocessor line takes care of this.

#include "prg part 2.c"

The contents of the file prg part 2.c will be inserted in place
of this preprocessor commanapWe have used this command before
to insert the file stdio.h. In this file all the functions in the
standard modules are declared and various macros are defined.

Additional #include commands may appear within a file inserted
with #include. Such chained source files result in only one file
for the compiler because the preprocessor affects only the source
text. Chained files are not to be confused with two separately
compiled files.

6.5 Pointers, addresses, and arrays

One of the more powerful advantages of C is the pointer. It is an
object like any of the others. The special part is the value range of a
pointer. The content of a pointer object is an address. This address
usually points to another object. You can access an object via this
address without having to use its name.

The difference between a pointer and an address is something like
the difference between an int object and and int constant.

81

Abacus Software SUPER C for the C-128/C-64

6.5.1 Pointers
A pointer is declared by placing an asterisk (*) in front of the name.

int *p;

defines p as a pointer whose address points to an int object. Take
a look at the following example program.

main ()
{ int a,*p;

p=&a;
*p=2 :
}

An int object and a pointer to int are defined. The & operator
appears in front of an 1value and returns the address of the

designated object. &a is the constant address of the object a. This
address is assigned to the pointer.

The * operator precedes an address or a pointer and makes its
operand an 1value of the designated object. *p has the same
effect as the name of the object whose address is stored in p. This
object is here assigned the value 2. Instead of *p we could also
have written a.

Further consequences:

*&a corresponds to a
(the * and & operators are evaluated from right to left,
*(&a))

& *p corresponds to p
(& *p is not an lvalue but only an address)

In summary:

A pointer is declared by placing an * in front of the name. The
pointer can contain only addresses which point to an object of the
declared type.

82

Abacus Software SUPER C for the C-128/C-64

The * operator requires an address or a pointer. The entire
expression represents the object to which the address points. 'I'hls
construction is an 1value.

The & operator requires an 1value and returns the constant
address of the object.

6.5.2 Address arithmetic

Computations can be performed with addresses and pointers in C
as well. This is made possible by pointer arithmetic:

int array([6]:;
int *p;

p=&array([4];
p=p+1;
*p=5;

First the address of the array element 4 is assigned to the pointer p.

The pointer is incremented by one. But actually the pointer is not
incremented by 1 but by 2. The pointer arithmetic causes the
summand 1 to be multiplied by the SIZE of the designated object,

2 in this case. This has the result that p+1 returns an address which
points to exactly one object beyond the current one, or
array([5]. *p=5 means the same thing as array[5]=5. The
addition with 1 is independent of the type of the array. If the
elements were of type double, 6 would have been added to the
address since the SIZE of type double is 6. This addition only
makes sense when the new address still points in the same array,
because only then is it guaranteed that the objects will be right
behind each other.

Instead of p=p+1 we could also have written p+=1 or even p++ or
++p. Furthermore, the last two lines could have been replaced with
the following:

*++p=5;

83

Abacus Software SUPER C for the C-128/C-64

The effect would be the same. The operators * and ++ have the
same precedence and are processed from the right, meaning that
first the ++p is executed and then the *.

You can use subtraction exactly as addition. The new address
points to an object a corresponding number previous.

p=&array([5]-4;
p points to the object array[1].

Two addresses or pointers can be subtracted one from the other. A
precondition for a correct result is that the two addresses point
within the same array.

&array([5]=&array([1l]

The result will be divided by the SIZE of the type, which means
that such an operation is independent of the type of the array. It
returns the number of objects between the two addresses.

It is from this pointer arithmetic that the indexing of an array
element is derived. The access of an array element a [b] is
internally converted to * (a+(b)).

The name of an array alone represents the address of the first
element in the array. The name itself is not an 1value. Butif you
adds to it the number of the desired element, you get its address
because of the pointer arithmetic. The * operator makes the
expression an 1value so that * (a+ (b)) has exactly the same
effectas a [b].

The following consequences result from this:

&array[0] corresponds to array
&array (1] corresponds to (array+1)
array([2] corresponds to * (array+2)

Further consequences result for the indexing by []. Since these
brackets are converted to an addition according to the scheme
above, their use is not restricted to arrays.

84

Abacus Software SUPER C for the C-128/C-64

int array(6];
int p*;
p=array+3;
pl2]1=5;

p is assigned the address of array element 3. p [2] is converted to
* (p+2) and thereby represents the object array [5]. You can
see that pointers can be used arrays and vice versa.

6.5.3 Pointers and arrays as arguments

It has already been mentioned that arrays cannot be passed as
arguments. Pointers or addresses of all objects can be passed as

arguments. To pass an array to a function, you pass just its
address.

int name([41];
gets (name, 40) ;

This fact was already used in an earlier example program. The
function get s receives as an argument the address of the array
name. name alone represents the this address. The corresponding
parameter declaration of get s would have to look like this:

char *gets(string, length, filenr)
char string(];
int length;

The specification of the dimension is not of interest and can be
omitted here. In reality st ring does not represent an array,
because the object to which the address of the array is assigned is a
pointer which can be used like an array within the function block.
The parameter declaration could also be:

char *string;

Passing arrays is done via the address (call by reference). This
procedure has the result, however, that the array can be changed by

85

Abacus Software SUPER C for the C-128/C-64

the called function. This is in contrast to passing other types where
only the value is passed.

If you want to change other objects within a function, you simply
pass an address:

main ()
{ double a,b;

swap(&a, &b);
}

swap (x,y)
double *x,*y;
{ double 2z;
z=%*x;
*x=*y;
*y=z;

}

Calling the function swap passes the addresses of a and b so that
the contents of the two objects can be exchanged.

6.5.4 Complex declarations

Up to now you have seen only declarations with simple declarators.
Declarators are the part after the type and storage class which
contains the name. Such a declarator could like this up to now:

name
namef(...]
name(...)
*name

In the first case the declared object is of the specified type, in the
second case it is an array whose elements are of this type. In the
third case it is a function which returns a value of the specified
type, and in the fourth case it is a pointer which can point to objects
of this type.

86

C

Abacus Software SUPER C for the C-128/C-64

At first it may appear that the declarators have been chosen
somewhat at random. But it holds for all declarators that when you
use them in the declaration, a result comes about whose type is that
of the declaration. You can convince yourself that this is so. In
keeping with the title, let's construct some complex declarations:

int (*alpha) (5], *beta([5], (*gamma) ();

Parentheses can also be inserted in order to change the precedence
of the operators used. From Section 6.2.12 you know that all
parentheses are evaluated before the * operator.

Look at the three declarators. First the * operator is used on
alpha, with the result that alpha is a pointer. Then the index
brackets are evaluated, meaning that *alpha is an array or
alpha is a pointer to an array with 5 int elements.

For the second declarator the index brackets are evaluated first.

beta is an array whose five elements are all pointers to int
objects.

gamma is then a pointer to a function which returns an int value
as the result.

You see that arbitrarily complex declarators can be used. These are,
however, seldom needed.

6.5.5 Pointer arrays

The above declaration of beta was such a pointer array, that is,
the elements of the array are pointers. Such pointers must first be
selected by an index from the array and can then be used like
pointers.

The use of pointer arrays of type char is of interest to us. It has
already been mentioned that string constants can be used like array
names. A string constant is a constant address to the specified
string and can therefore also be used like an address. For example,
you can initialize a pointer array of type char with strings.

87

Abacus Software SUPER C for the C-128/C-64

#include "stdio.h"

main ()

{ static *string[13]= {NIL,
"January\n",
"February\n",

"December\n"};
int i;

for (i=1; i<13; i++)
puts(string(i]);
getchar();
}

In this program the array st ring is initialized with the month
name. In reality the compiler places the string somewhere in the
program and initializes the address to the string. The element 0 is
set to NIL. This is the address to "nothing." NIL must be used
carefully. In no case may an object be accessed via the address
NIL. NIL serves only to indicate that such an access is not allowed.

The program passes the address of the ith string to the function
puts (put string) and prints this on the screen. get char waits for
a key so that the output is not immediately erased again.

Keep this initialization separate from the initialization of character
arrays through string constants. Here only the address is initialized.

But for character arrays the contents of the string are placed in the
array.

6.5.6 Pointers and multi-dimension arrays
Take a look at the following definitions:

int alpha([5][5];
int *betal5]:

In the first case we have a two-dimensional array and in the second

a pointer array. The beginner will probably find it difficult to keep
the two constructions apart. Both can be used in the same manner:

88

Abacus Software SUPER C for the C-128/C-64

alpha(2][2];
beta (2] ([2]:;

or:

*alpha(l];
*beta[l];

You must differentiate between them, however. alpha is an array
which actually consists of 25 int elements. beta, on the other
hand, consists of five elements. But these are all pointers. beta
does not generate a single int object. An element of beta can
only point to an int object.

The advantage of arrays of pointers is that a pointer of the array can
point to a subarray of unlimited length while still allowing it to be
accessed like a two dimensional array. The different pointers can
point to different length arrays, while the number of elements in a
two-dimensional array is predetermined. The disadvantage is that
the subarrays must be declared separately and the whole
construction requires more memory space because the pointer
objects must be added.

We saw that pointer arrays can access arrays of varying lengths in
Section 6.5.5. The list of month names, which was assigned to the
array strings, can be though of as subarrays.

strings(12][0];

access the letter D in the month December, and so on. The second
dimension is variable and is dependent on the initialization.

6.6 Structures and variants (struct/union)

Structures exits in every high-level programming language. In
Pascal and related languages they are called RECORD:s. A structure
is a type. Objects of this type consist of several subobjects. You
can select these subobjects as you can select an array element. The
difference from an array is that a structure can contain subobjects of
differing types.

89

Abacus Software SUPER C for the C-128/C-64

6.6.1 Declarations of structures

Let's assure that you want to create a type in which you can store
the data. To do this you would use a structure:

struct date { int day:;
int month;
int year;
char monthname([4];};

This whole construction can be used like a type name. struct is a
keyword for the type structure. date is a struct name. The
declarations enclosed in braces represent the subobjects of the
structure. These component declarations are called the struct
specifier.

There are several possibilities for declaring an object of type
structure. No objects are defined in the above example. A struct
name is defined. The specifier is assigned to this name so that you
can omit the specifier in future declarations:

struct date birthday;
birthday is an object which consists of the above components.

We could also have defined this object along with the definition of
date:

struct date { ...
} birthday;

If you need a specifier only once, you don't have to define a
struct name:

struct { int day;
} birthday;

The part in front of birthday is one type name and so must stay
together.

90

Abacus Software SUPER C for the C-128/C-64

Complex declarators can also be used in declarations of the type
structure and these can be declared in a list without having to repeat
the type name:

struct date birthday, *p, personal[50];

An object birthday, a pointer p to objects of type date, and an
array which consists of 50 structures of type date are defined.

The declarators can also be defined in definitions. This does not
work for the storage class auto, however. The initialization of the
individual components is done with a list, similar to arrays.

struct data birthday= {10,8,1965, “Aug"}:

If fewer elements than components are specified, the rest are filled
with zeros.

struct data personal([50])= { { 26,5,1939,"May"},
{ 10' 9' 1935["Sep" } 14
.o };
These lists can be nested again. The sublists can always be omitted
if all subobjects are defined. The compiler then divides the elements
of the list in order according to the array elements and components.

Some compilers allow you to define bit fields as components. This
is not possible with Super C.

6.6.2 Access to components
Components in C are accessed with the . operator.
birthday.day

The first operand is the name of the structure, the second is the
selected component. The entire expression is an 1value and can

be used like any other 1value. The type is the type of the
component.

birthday.monthname

91

Abacus Software SUPER C for the C-128/C-64

is naturally not an 1value but an address to a character array with
a maximum of 4 characters.

If you have a pointer to a structure, the access is possible as usual:
(*p) .year
*p must be put in parentheses because the . operator has

precedence. This construction has its own operator, ->, which is
used quite often.

p->year
has the same effect.

If you have an array of structures, an element is selected and then
the component:

personal[5] .monthname [3]

or:

(personal+5)->monthname [3]

6.6.3 Functions and structures

Structures cannot be passed as arguments to functions, but
addresses of structures can. The & operator can be used on
structures for this. Also, a function cannot return a structure as a
result, but it can return an address:

int monthdays (p)
struct date p*;
{ static month[13]= {0,31,28,31,... };

if (p->month==2)

return (28+leapyear (p—->year));
else

return (month (p—->month]) ;

92

Abacus Software SUPER C for the C-128/C-64

int leapyear (year)
int year;
{ return (year%4=0 && year%100!=0 ||
year%400==0) ;
}

The function monthdays returns the maximum number of days in
the month of the date to which p points. The familiar list of month
days is used for this. In the case of February the result is
28+leapyear. leapyear is a function which returns 1 if the
year passed to it is a leap year, else 0. To do this the function
requires the year of the date as the argument.

The complicated condition in the return instruction in leapyear
can best be read as:

If the year is either divisible by 4 and not divisible by 100 or it is
divisible by 400, then the year is a leap year.

This makes the condition correct according to the Gregorian
calendar in which a leap year occurs every four years, but not on
whole centuries. Centuries which are divisible by 400 are leap
years, however.

When the condition above is true it returns 1, otherwise 0. It
returns exactly the result needed in the calculation.

The function monthdays can be called as follows:

i=monthdays (&birthday) ;

6.6.4 Recursive structures

Structures can possesses structures as components. The component
structure may not have a specifier, however. It must be previously
defined with a st ruct name.

The same structure which is currently being defined cannot be

declared as a substructure. It is allowed to declare pointers to the
same structure as components.

93

Abacus Software SUPER C for the C-128/C-64

We can define a tree structure with structures:

struct node { struct node *left;
struct node *right;
char nodename([20];}:;

Each node has pointers to two other nodes. The "tree" branches off
to the right and left. Such tree are used to keep names in
alphabetical order, for instance.

6.6.5 Variants

Variants are declared exactly like structures, but with union
instead of st ruct. A variant is a special type. It can contain only
one of the declared components, that is, the entire object can be
used like one of the components. The storage space required is as
large as the largest component.

Variants are used where one wants to store objects of various types
and an object of a constant size is needed. If, for instance, you
would want to define an object which can store a C constant:

union cconst { int iwvalue;
long lvalue;
double dvalue;
char *pvalue; };

you would define a variant. It can store an int, long, or double
constant or an address to char.

The variants are accessed just like structures. The component which
is intended must be specified.

union cconst k, *p;

k.ivalue=5;
*p->pvalue='a’';

The object k is large enough to store the largest component. This is
independent of the system and is therefore easily portable.

94

Abacus Software SUPER C for the C-128/C-64

You must ensure yourself that the variant is read as it was stored. If
the components are changed on access, the result is not defined.

Variants can also be defined in structures and vice versa. In Super
C, however, it is not possible to declare a specifier within another
specifier. Specifiers of substructures of subvariants must be
defined outside with their own names.

A variant can also be designated as a structure whose components
are all stored at the start of the object or which have the relative
address 0. Variants, like structures, cannot be passed as arguments
and also cannot be the result of a function. Variants cannot be
6.6.6 Type definitions

You can also define new data types in C. These are not really new,
but are combinations of the existing types.

For such a definition you specify the "storage class" typedef.
The compiler then recognizes that an object is not being defined but
a type. A name is declared which can then be used as a type name.
It represents the type with which it was declared.

typedef int length;
length can now be used as a synonym for int:

length len;
static length 1([20];

Another example:

typedef char *string;
string lines([5];

lines is an array with 5 pointers to char.

typedef struct { double re,im; } complex;

95

Abacus Software SUPER C for the C-128/C-64

Here the type complex is declared, which in reality is a structure
and must be used as such.

complex x;
xX.re=5.5;
X.im=-0.5;

6.7 Programming environment

Now that you have become acquainted with the essential C
components, you should in this section learn the particular features
of this C system. The input and output functions are not contained
in the compass of the language. These are directly related to the
hardware in question.

6.7.1 Files

You know from BASIC how files are opened. The functions open
and close are used for this in C:

open (8, 15’ un) ;

opens the error channel (15) of the disk drive (device 8). The
filename must always be given--here it is an empty string. You
have no doubt noticed that the logical file number is missing. This
is not required in C. A similar instrument is the file descriptor. The
file descriptor is used just like the file number in order to access a
file. A file descriptor is an object which should be defined with the

type file.

file fchannel;
fchannel=open(8,15,"");

The result of the function is the file descriptor for the opened file.

The result of open must be stored or you will be able to neither use
the file nor close it.

The file is closed with:

96

Abacus Software SUPER C for the C-128/C-64

close (fchannel);

The type £ile is defined with t ypedef in the file stdio.h and
is usually not available in C.

You have already become acquainted with the functions put s and
gets. There are corresponding functions by the names of fputs

and f£gets, which do not operate on the screen or keyboard, but
read from or write to a file.

fputs("n0:program disk,cc\n", fchannel);

This sends a format command to the disk and erases the diskette.

fgets(string, 40, fchannel) ;

reads the first 40 characters of the error message and stores them in
the array string.

6.7.2 EOF

In order to recognize the end of a file there is an EOF flag, End Of
File. This flag is realized with a macro which has the value 64 if
EOF occurred or the value O if not. In order, for example, to get the
error message from the disk drive, you read characters until EOF is
encountered.

#include "stdio.h"

main ()
{ file fchannel=open(8,15,"");
char c, status=0;

while (!status)

{ c=getc(fchannel) ;
status=EOF;
putchar () ;

}

close (fchannel);

getchar();

97

Abacus Software SUPER C for the C-128/C-64

The EOF value must be placed in a temporary variable because it
may be changed by other input/output functions like putchar.

putchar outputs a character on the screen. getc reads a
character from the specified file.

6.7.3 STDIO

STDIO is a special file descriptor. It can be specified anywhere a
file descriptor is required as an argument. No open call is required
for STD IO, however. Outputs are directed to the screen by STDIO,
inputs are read from the keyboard:

#include "stdio.h"

main ()
{ static char command[40];
file fchannel=open(8,15,"");

fgets (command, 39, STDIO):;
fputs (command, fchannel);
close (fchannel);

}

A string is read from the standard input and is printed in the error
channel as a command.

STDIO is defined in "stdio.h" and represents the value O.

6.7.4 Additional functions

The standard modules contain a number of other functions whose
exact descriptions you can find in the system section.

Important and useful are the functions print £ and scanf which
make formatted output and input possible. These two functions are
relatively large. There are therefore contained only in module
libc. 1. Otherwise the modules 1ibcs.1 and 1ibc.1 contain
the same functions.

98

Abacus Software SUPER C for the C-128/C-64

The declaration file stdio.h can be used for both modules. The
declaration of print £ and so on when using 1ibcs.1 does not
create an error as long as these functions are not actually called.

6.7.5 Error handling

The error handling in C is system dependent and are therefore not
necessarily portable. In this system you can turn the error messages
on or off so that errors can also be processed in the program. If the
error messages are enabled, the following message might appear:

?division by zero
press x to quit, c to continue,
r to restart

You can end the program with the [x] key, restart it with [r], or
continue executing with [c].

Caution is advised in the last two cases. No static or global
objects are initialized or set to zero when the program is restarted.

If the program execution is continued, other errors may occur
because the value of a division by zero is set to zero.

The error messages can be turned on and off with the procedures
erron () and exroff (). The default condition is erron ().

6.7.6 Interruption

In BASIC you can interrupt the program with the keys [STOP] and
[RESTORE]. This is also possible in C and is sometimes useful, for
exiting an infinite loop, for instance. The message:

?2nmi interrupt
press x to quit, c¢ to continue
r to restart

is printed. You have the same options as for the error messages.
Here the same caution is advised. There is also the possiblity that

99

Abacus Software SUPER C for the C-128/C-64

the NMI interruption through [STOP] + [RESTORE] can come
during input/output operations. It may occur that undesired side

effects will result from the continuation of the program with the [c]
key.

This interruption can be turned on and off independent of the error

messages. The procedures nmion() and nmioff () are
available for this purpose. nmion () is the initial condition.

100

Part 11

(System Guide)

Abacus Software SUPER C for the C-128/C-64

1. The command processor

C 1.1 Start, NMI, and RESET
Super C V3

The master disk must be placed in drive a,
press the RESET key or

enter the command BOOT in BASIC.

In both cases the system will be booted.

After the booting the file aut oexec will be executed.
This is a file created by the editor. The first line of the text
contains a command which will be executed.

On the master disk the command in autoexec is
lram stdio.p

The prompt is light red at the start of version V3, since the
lram command is resident.

When starting the screen will be selected by means of the
40/80 column key.

Super C V2

The master disk can be in any drive. Load the CCP with
-load "c-system",8,1 or
-load "c-system", 8

run

The specified device number must be changed if you are loading
from device 9. Super C V2 can also be booted in the C-128 like

V3. The 64 mode is automatically enabled. autoexec is not
(executedinV2.

An NMI (non-maskable interrupt) can be generated by pressing the
[STOP]+[RESTORE] keys. This places the CCP back in the

103

Abacus Software SUPER C for the C-128/C-64

command mode. A loaded copy, 1ram, sram, or sysgen
command is no longer resident. The screen in V3 will be selected
according to the 40/80 column key.

The NMI is used to bypass certain sticking points of the CCP. The
NMI should only be used then. The NMI should be avoided during
input and output operations.

Super C V3

The C-128 has a RESET button. This can be used to restart
the processor if the computer crashes for some reason.
After pressing the RESET button the CCP will hopefully
respond. If an erroneous program caused the crash, it may
have destroyed part of the CCP or the RAM disk driver.
You will notice this if the CCP or the RAM disk do unusual
things or certain commands cause the computer to crash.

If this is the case, even the RESET button will not help.
You can try to call the command c-systemin the CCP in
order to restore the CCP and the RAM disk driver. This
will erase the contents of the RAM disk, however. If the
CCP will no longer execute this command, the only thing
left is to turn the computer off.

When the RESET key is pressed, the contents of the RAM
disk are not lost. All connected devices are reinitialized so
that device addresses set with device will be erased. The
RAM disk will be set back to the device address h.

Super C V2
If version V2 is used on the C-128, the RESET button has

the same effect as if you had turned the computer off and
then back on.

104

Abacus Software SUPER C for the C-128/C-64

1.2 Device identifiers and filenames

The device identifier specifies which drive the filename refers to.
The letters a to h signify the device addresses 8 through 9.

8 910 11 12 13 14 15

As a general rule a device identifier consists of the device letter and
a colon. For example:

b:

The following device identifiers are also possible for dual drives:
b0: bl: b:0: b:l:

in which 0 and 1 specify the drive.

A filename consists of a device identifier and a name. The name
should not contain any of the fcllowing characters:

=, ¥ 7

The characters ? and * are wildcards and can be used only if the
drive allows (not with write accesses). The * character also has a
special meaning in some CCP commands.

If a filename is specified without a device identifier, it refers to
device 8 or a. This is not the case if a command name is given
without a device identifier, however. Then the name refers to the
device which the prompt specifies, even if this is erased from the
input line.

105

Abacus Software SUPER C for the C-128/C-64

1.3 Extensions

The end of a filename is usually provided with a period and a letter
in order to indicate the type and use of the file.

There is a convention for this which is derived from the UNIX
operating system:

.C C program as text file

.h header file as text file (contains declarations)

.e error file as text file (created by the
compiler)

.0 object file as link file (created by the
compiler)

.1 library as link file (created by the compiler)

.b finished, executable program as B version
(to be started from BASIC, V2 only)

.p file package, contents of the RAM disk
(created by sram)

no extension finished program executable in the CCP

Typically the name before the extension remains the same. You
would for example, write a text file with the name test.c with
the editor and then compile this into the file test .o which is then
linked with the standard functions in the linker, resulting in the
executable program test.

106

Abacus Software SUPER C for the C-128/C-64

1.4 Passing arguments

The CCP reads a line and evaluates it as a command. The input line
is first divided into arguments. The space is used as the separator,
for example:

a: copy b:test.c to h:test.h
<arg0> <argl> <arg2> <arg3>

First a check is made to see if <arg0> is a resident command. If
s0, it is processed. Otherwise the file designated by <arg0> is
loaded and started. The arguments and the number of arguments are
passed to this program.

The maximum length of the input line is 80 characters for V2 and
160 characters for V3. The maximum number of arguments for V2
is 40 and 63 for V3. If a space is to appear within an argument, it
must be entered as a shifted space. This will be displayed as a space
with a small dot in the middle (in the C character set). The shifted
space will be converted to a space after the evaluation.

Parameters from the input line can also be passed to C programs.
The following or a similar declaration must be made in the function

main:

main(argec, argv)
int argc;
char *argv([];

{ ...

}

argc contains the number of arguments. Argument 0 is included in
the count. In the above example argc would equal 4. Leading and
trailing spaces are removed from the argument text.

arg[0] pointsto "a:copy"
arg[1l) pointsto "b:test.c”
arg[2] pointsto "to"
arg[3] pointsto "h:test.h"

107

Abacus Software SUPER C for the C-128/C-64

1.5 Character sets
Super C V3

After booting, after NMI or RESET and after the end of each
command the C character set is automatically set (on both screens).
In addition, the C character set can be set on the current screen by
pressing or printing (within a C program, for instance) the
sequence

[ESC] [1]

The Commodore character set is obtained on the current screen by
the sequence:

[ESC] 2]

[SHIFT]+[CBM] can be used here to switch between upper and
lower case, as is usual with BASIC.

[SHIFT]+[CBM] switches between upper and lower case.
Super C V2

In version V2, two character sets can be displayed: the C character
set and the Commodore lower case character set. The C character

set is set by the CCP as with V3. [SHIFT]+[CBM] can be used to
switch between the two character sets.

The switch with [SHIFT]+[CBM] can be done by printing the
control characters '\16' and '\216°'.

*\16" switches to lower case (or C character set in V2)
'\216" switches to upper case (or CBM character set in V2)

108

Abacus Software SUPER C for the C-128/C-64

1.6 Monitors
Two monitors can be connected to the C-128 at once, an 80-column

monitor and a 40-column monitor. Both are supported by Super C
version V3.

[ESC] [x]
switches the input to the CCP to the other monitor. In the fast mode
the 40-column screen is no longer displayed, but it can still be
addressed.

The 40/80 column key sets the screen on booting, RESET, NMI,
and when ending commands.

In version V2 only the 40-column monitor can be used.

1.7 Resident commands
In the following discussion, if mention is made of the device
identifier of a command, we mean the device identifier in front of
the command name or, if this is missing, the identifier specified by
the prompt. The device identifier of the following commands:
a:b:dir b:dir
is in both cases b: .
dir
dir <argl> This command lists the directory of the disk in
the device specified by the device identifier
preceding dir. A specifier may be given as an
argument. For example:
b:dir test*
displays all files whose names begin with test.

a:dir 1

109

Abacus Software

SUPER C for the C-128/C-64

arr

com <agrl>

time (in V3)
tod (in V2)

set <time>

lists the directory of device a drive 1 (for a double
drive).

The error message file not founda
if the device is not available or if the directory is
not readable.

reads the error message of the device specifed by
the device identifier.

The drive executes the text of <argl> as a
command. The command reads the error
message after execution of the command. You
can learn about the various commands in the disk
drive manual. For all delete commands, note
which drive the command will be sent to.

file not found will be printed if the device
is not accessable.

outputs the current clock time. This clock time is
set to zero upon booting, so the time that first
appears will be the time since you started
working with Super C. The clock can be set with
the command set.

sets the clock time to <time>. <time> must be in
the form HH : MM: SS, whereby

" HH specifies the hours (00-23),

MM specifies the minutes (00-59),
SS specifies the seconds (00-59)

If you enter a syntactically-incorrect time, tod or
time outputs a totally irrational time.

fast (V3 only) switches to the 2 MHz or FAST mode.

The processor then runs twice as fast as before.
The RAM disk in particular benefits from this

110

C\

Abacus Software SUPER C for the C-128/C-64

speed, while the transfer from normal disks
increases only slightly.

In the FAST mode the 40-column screen is not
visible (it would slow things down too much),
though it can still be accessed as usual.

slow (V3 only) switches back to the SLOW mode. The
processor clock is set to 1 MHz. The 40-column
screen becomes visible again.

end ends Super C. The effect is if you had turned the
computer off and then back on again. In version
V3 you should first take the master disk out of
the disk drive or the computer will boot the C

system again since the C-128 performs a boot
operation when turned on.

1.8 Transient commands

For transient commands the device identifier of the command
always indicates the drive from which the command will be loaded:

b: a:device

loads device from a.

1.8.1 device

This program makes it possible to change the device address of
disk drives from software. The following appears:

device a to b.
The cursor appears first on the a. You can set the device identifier
of the drive whose device identifier you want to change with the

letters a to h. You confirm this device address with [RETURN].
The cursor then goes to the b and you can set the device address

111

Abacus Software SUPER C for the C-128/C-64

which you want to have for the selected drive in the future. When
you press [RETURN] the address will be changed. With
[RUN/STOP] you can exit the input and return to the CCP.

When changing the device address, device indicates the DOS
version of the disk drive. device can be used on all known
Commodore drives and for the RAM disk. If you have an exotic
drive, with which device does not work, you can change
device accordingly. The C source file is stored on the master disk
under the name device.c.

1.8.2 copy

copy
copy <source> to <dest>
copy <source> <dest>

With copy you can copy files of type USR, SEQ, and PRG
between various devices. copy is loaded only on the first call. For
all following calls copy is resident. This holds until another
transient command is loaded. If you have only one drive you can
proceed as follows: First call copy without any arguments so that
copy will only be loaded into memory. Then remove the master
disk from the drive and insert the disk from which you want to
copy.

<source> and <dest> are filenames with device identifiers.
<source> specifies the name and device of the program to be
copied. <dest> specifies the device and the name of the copy. The
name of the original will be used if the name of the copy is
specified with *.

copy a:test h:*

Device identifiers can naturally be omitted for drive a. If you have a
dual drive, the following command is also possible:

copy bl:test al:*

112

Abacus Software SUPER C for the C-128/C-64

If the program determines that <dest> and <source> address
the same device, the original will first be loaded into memory and
the message: 4

quit to save!

will be displayed. You now have the opportunity to change the
disks in this drive. Then press any key and copy will save the
loaded file. If you have only one disk drive and want to copy test
from diskette X to diskette Y: Insert disk X.

copy test *

-results in the message quit to save! Remove disk X and insert

disk Y and press a key. When the CCP responds again, test has
been copied.

The copy procedure can be interrupted with [STOP]. The following
errors are possible:

file not found
- when copy was first called the program file was not found
- incorrect device identifier in the arguments
- <source> not found
- addressed device not present

illegal command
-illegal number of arguments

- * was improperly used as a destination argument

break
- termination through [STOP]

The prompt will be displayed in red instead of yellow while copy
is resident. The device identifier for copy is only important for the
first call. Arguments can also be passed on the first call (only of
interest for users with several disk drives).

The RAM disk does not have a copy command for copying within
the RAM disk. Use copy for this.

113

Abacus Software SUPER C for the C-128/C-64

183 f
f <arg0> <argl> <arg2> ...

£ is a special command for fast-loading commands and programs.
This fast loading works in both versions with the 1541/71 disk
drives. In V3, however, the £ command has no function with 1571
disk drives since these drives load quickly enough.

The arguments of £ are first the command name with device
identifier. All other arguments are passed to the command or
program to be loaded. The device identifier in front of £ determines
from where £ will be loaded. You can try out £ on the master disk
with device, for instance:

a:f a:device

If you want to use £ for your application programs and you have
only one disk drive, you should copy £ to your work disk.

If, for example, you want to load the copy program quickly for this
copy procedure, enter:

a:f a:copy a:f a:*
first loads copy quickly and then copies £.

For short programs £ is not very efficient. But for longer programs
it is possible to increase the speed of the load by a factor of three.

System components (editor, linker, and compiler) automatically
recognize if a slow device is present and then load fast. £ therefore
has no effect. The 40-column screen will be dark while £ is loading
because the transfer would be slowed by memory accesses to the
screen.

114

Abacus Software SUPER C for the C-128/C-64

1.8.4 Iram (V3 only)

lram
lram <file>

lram loads files saved with sram which contain the contents of
the RAM disk. 1ram is loaded only on the first call and then
remains resident like copy until the next command is loaded. This
is only important for users with only one drive. They can first load
the command, change diskettes, and then execute the command by
calling 1ram with an argument.

lram expects a filename which designates a file which was stored
with sram. This is loaded into the RAM disk. The old contents of

the RAM disk are erased by this. 1ram determines the device
number of the RAM disk itself.

1.8.5 sram (V3 only)

sram
sram <file>

sram saves the contents of the RAM disk to a file. This is expected
as the argument. You can also enter a device identifier with * as the
argument. Then the contents of the RAM disk will be saved under
its name. This name appears in the first line of the directory.

Just like 1ram, sram remains resident after the first call. The
contents of the RAM disk are not disturbed. sram determines the
device number of the RAM disk itself.

1.8.6 sysgen

sysgen
gen <text>

sysgen serves to construct user disks which are to contain a
command processor. These diskettes can then be booted like the

115

Abacus Software SUPER C for the C-128/C-64

master disk. After booting the CCP and the RAM disk are then
available. You can then set up a autoexec file. This file can be
created with the editor. It is possible, for instance, to load a
user-created menu program or another user program after booting.

sysgen is called without arguments. After loading, the prompt

will be red. Another command by the name of gen is now
available.

The device identifier of gen specifies the drive whose disk is to be
outfitted with a boot mechanism and CCP. If gen is called without
arguments, the message booting c-system v3... will
appear during booting. If you want your own message to appear,
enter this as the argument. Remember that spaces must be entered
as shifted spaces. In addition, the characters \n for new line and
\t for tab are accessable in the argument text. For example:

a:gen user disk 1l\n(contains test programs)\n

Later during booting, the message will appear:

booting user disk 1
(contains test programs)

gen uses track 1 sector 0 to create a boot block. If this is already
occupied by programs, gen cannot be used. You can erase the user
disk with com, whereby gen remains resident in memory. gen

also saves the file c-system which contains the CCP and the
RAM disk driver.

Possible errors:

file not found

for sysgen: sysgen not found
c-system not found

no block

for gen: block 1,0 already occupied.

116

Abacus Software SUPER C for the C-128/C-64

1.8.7 c-system
c-system

c-systenm is the file which contains the CCP (and the RAM disk
in V3). If the CCP or the RAM disk driver should be overwritten by
a runaway C program, you can try to load c-system by entering
it as a command in the CCP.

If the CCP still functions enough so that the loading process is

performed correctly, you will then have an error-free CCP
available. This will erase the contents of the RAM disk.

1.8.8 c1
cl <x:file> <1linkl> ...

cl is a command which calls the compiler and linking process.
This is done by passing arguments to the compiler. c1 expands
some of the arguments required so that you can save a good deal of
typing.

Super C V2
c1 calls the compiler as follows.

cc <x:file>.c <x:>0.0 <x:>error.e <x:file>
<x:>libc.l <1linkl> ...

The compiler will load file from the same drive as c1. The name
specified by <x: £ile> determines the name and device identifier
of the source text and the finished program. The file o. o will be
used as the link file and it will be stored on the same device as the

source file. The library 1ibc.1 is automatically linked to the user
file. Additional libraries may be specified.

It is possible to use this command only with two drives. If, for
example, the master disk is in drive a and the program disk in drive

117

Abacus Software SUPER C for the C-128/C-64

b, then you can compile the program test . ¢ on the program disk
in the following manner:

a:cl b:test
The compiler and linker will be loaded automatically and the
finished file test will be created on drive b, assuming that no
errors occur during compiling and linking.
Super C V3
The c1 command in version V3 runs similar to that under V2. The
object file and the error file are both placed on the RAM disk,
however. The library 1ibc. 1 is also taken from the RAM disk.
a:cl b:test
compiles test from drive b to the RAM disk. The finished
program is again stored on drive b. If you have only one drive, you

will also usually take the source file from the RAM disk. In this
case c1 works like it does in V2,

1.8.9 type

type <file2> ...
The type command expects at least one filename. The file should
be a text file created by the editor. t ype prints all text files which

are passed as arguments one after the other on the screen.

can't open appears if the file is not present.

If, for example, you want to know what text is stored in the
autoexec file on the master disk, enter:

a:type a:autoexec

118

Abacus Software SUPER C for the C-128/C-64

2. RAM disk

2.1 Deviations from Commodore DOS

The RAM disk is available only in Super C V3 (C-128). In this
chapter we will outline only the differences from Commodore
DOS. Since it is not possible to explain the function of the
Commodore DOS in the framework of this manual, we refer you to
the drive user's manual or to the appropriate literature.

The second RAM bank in the C-128 and the eventual memory
expansions up to 256K are used for the RAM disk. The RAM DOS
is loaded when the system is booted and remains available the entire
time. The device identifier of the RAM disk is h.

You can use the RAM disk like a normal Commodore disk drive.
Except for the following points, there is no difference between a
normal disk drive and the RAM disk:

* The RAM DISK cannot use relative files.

¢ The memory commands (m-r, m—e, m-w) do not exist.

» The user vectors u0, u2 to u8 do nothing and cannot be set.
(ul and u2 retain their significance: modified block
read/write).

e u9,u: generate a RESET of the RAM disk. The disk
contents are retained.

* The command & for USER files does not exist.

¢ The command p for selecting a record of a relative file is
missing.

* The command b-e does not exist.

* The command c for copying and appending files does not
exist.

» The command $ always transfers all the directory (no
specifier allowed).

* The ID specification in the command n for new has no effect.

+ Track and sector division is different from the Commodore
drives.

* The construction of the BAM as well as the directory is
different from the Commodore format.

119

Abacus Software SUPER C for the C-128/C-64

* In the RAM disk the device address can be changed by the

command u: or u9. Simply enter the device identifier behind
the command:

h:com u:b
file not found

The device address is now changed from h to b. The error message
appears only because com tries to read the error channel, but device
h no longer exists at this point (it became device b).

2.2 Track and sector division

If you do not want to manipulate the RAM disk with direct access,
this chapter is not important for you.

The track and sector division is shown in the following table:

Track Sectors
1 0-11
2-15 0-15
16 0-12

up to here without memory expansion (239 blocks free)

17 0-11
18-31 0-15
32 0-12

up to here with 64K memory expansion (488 blocks free)

33 0-11
34-47 0-15
48 0-12

up to here with 128K memory expansion (737 blocks free)
The BAM block is in track 1 sector 0. 9 blocks (from 1,1 to 1,9)

are allocated for the directory. The directory can accept a maximum
of 99 entries.

120

Abacus Software SUPER C for the C-128/C-64

2.3 The RAM disk commands

This description should give you a glimpse of the commands. It is
neither comprehensive nor complete by any means. For an exact
study, read your disk drive manual.

i(dr] (initialize)
Initializes the disk. The drive specification is optional. You
can specify only O since 1 will result in "drive not
ready". The command does not work in the RAM disk

v[dr] (validate)
Puts the directory and the sector chaining in order. The drive
specification behaves as for i.

s:name [=type] [,name[=typel...] (scratch)
Files can be erased with this command. You can specify
multiple names (up to four). The names can contain * and ?.
In addition you can restrict the types of the files by
specifying the type behind the name.

Example:

h:com s:lib*=seq
01, files scratched, 00,00

Since there are no sequential files in the RAM disk with
begin with 1ib, none are erased.

h:com s:1lib*
01, files scratched, 03,00

Now all library files are deleted.

r:namenew=nameold (rename)

The file nameold will be renamed namenew. Note the
direction of the name change.

121

Abacus Software SUPER C for the C-128/C-64

n:name(,id] (new)

b-w

b-p

The contents of the RAM disk are erased and a new RAM
disk with the disk name name will be created. You can
specify the id, but is has no significance. Before you give
this command, be sure that the right device identifier
precedes com so that you erase the correct disk.

: dr tt ss (block-allocate)

dr stands for drive; here you can specify only 0. tt

designates the track and ss the sector of the block which is
to be allocated.

: dr tt ss (block—-free)

This command frees the specified block. The arguments are
the same as for b-a.

ch dr tt se (block read)

ch designates the channel which was opened for the direct
access. dr, tt, se select the block which will be loaded into
the buffer of channel ch.

ch dr tt se (block write)
Writes the buffer to the specified block.

ch ps (block pointer)
The block pointer of channel ch will be set to the value ps.

ul ch dr tr se

Modified read (like b-r, but the first block byte will not be
taken as a pointer).

u2 ch dr tr se

Modified write (like b—w, but the first block byte will not be
taken as a pointer).

122

Abacus Software SUPER C for the C-128/C-64

3.0 The C editor

The C editor has the name ce and is loaded like a transient
command.

In version V3 there are actually two editors, e4 and €8, one for the
40-column screen and one for the 80-column screen. ce loads the
right editor for the current screen. Both editors are completely
compatible. e8 can display 70-columns per line at the same time so
that text is not shifted left and right as it is on the other version.

An argument can be passed to the editor. The argument is a
filename with device identifier. This file will be loaded after the
editor is started.

a:ce b:test.c

3.1 Character sets and text display

The editor has two text areas, a file text area in which you edit the C
source text, and an extra text area in order to store text temporarily.
There are about 43K bytes available for both text area together.

In contrast to BASIC, the cursor in the C editor does not blink and
the repeat function works for all keys. The keyboard layout has
been changed slightly from BASIC so that you can enter C-specific
characters. The editor is in the C character set. The keyboard layout
is shown in the appendix.

Super C V2

The keys [SHIFT]+[CBM] can be used in V2 to switch between
the C character set and the CBM lower case set.

123

Abacus Software SUPER C for the C-128/C-64

Super C V3

The keys [ESC] [1] enable the C character set and [ESC] [2]
enables the Commodore character set. Within the Commodore set
[SHIFT]+[CBM] can be used to switch between the upper and
g(v:v;r case sets. The switch mechanisms are the same as in the

The screen of the C editor indicates the cursor position in the first
line. The first number shows the column, the second the line, in
which the cursor is found. Messages and errors are displayed in the
first lines and the command names are shown.

The second screen line contains the filename in the file text and the
message extra in the extra text. The condition of the clock is
displayed on the right side. The current clock time can be set in the
CCP with the command set.

The third line indicates the tabs. * means that the tab is set. The
remaining lines, 4 to 25, contain the actual text field.

A document consists of individual lines which have a set maximum
length (40-80 characters). If the line length is greater than 40
characters, the remaining characters outside the screen are displayed
by horizontal scrolling of the screen (not necessary in e8). Each line
of a document has its own color, which you can set with the color
keys ([(CBM]+[1] to [CBM]+[8] and [CTRL]+[1] to [CTRL]+[8]).
The last line of a document cannot be written. It makes it possible
to insert additional lines. If you try to move the cursor beyond this
line or to write on it, the editor responds last line.

The document which you enter is immediately stored, without you
having to press the [RETURN] key.

If an operation would make the document too long so that it would
no longer fit in the available memory, the operation will not be
performed and the editor will respond overflow.

There are control characters and commands available for editing a
document. Control characters are available during text input with
only one key press. The commands, on the hand, are more
complex editor functions which usually require additional

124

Abacus Software SUPER C for the C-128/C-64

parameters. Commands are preceded by the command key [F5].
After this you select a command by entering the corresponding key
for the command. Parameter inputs may follow the command.
There are five input types for parameters. These five input types
will be discussed in the following sections.

3.2 Control keys

&

1l

The cursor is moved with the cursor left/right keys,

moving the screen left or right. The cursor stops at the
end of a line.

The cursor moves up or down and the screen scrolls as
required.

[RETURN]

The cursor jumps to the start of the next line.

[SHIFT+RETURN]

[TAB]

The cursor jumps to the end of the previous line.

<= (left-arrow) The cursor jumps to the next tab
position (*).

[SHIFT+TAB]

F1

F2

([SHIFT] and the left-arrow key) The tab marker in the
column in which the cursor is currently found changes
(set or cleared).

Page down. The text at the 22nd line after the cursor
line is displayed.

Page up. The text at the 22nd line before the cursor
line is displayed.

125

Abacus Software SUPER C for the C-128/C-64

F3

F4

Search for text beginning at the current cursor
position.

A search is made for the previously-defined search
string see command r = replace for the input of the
search text). The editor looks for the search string after
the F3 key is pressed. This can take up to two seconds
for long strings. If the editor finds an occurrence, the
string is displayed with the cursor at the first character
of the string.

The editor jumps from one occurence to the next with
each subsequent press of the F3 key. If no more
occurrences are found, the editor displays the last
line of the document.

The search process can be stopped with the [STOP]
key. The cursor is positioned to the line and column at
which the search had advanced to.

Replace with query. The next occurrence of the search
string is searched for and displayed in reverse. The
question replace y/n? appears in the command
line. If you press y (yes), the text is replaced by the
previously defined replace string (see the command
r=replace). Press n if you do not want to replace the
string.

After you answer the question the editor continues
with the search. You can halt the search and query
with [STOP] and the editor returns to the text input.

If a line becomes longer than the set maximum length
as the result of a replacement, the editor halts the
replacement and displays the message error
overflow in 1line. The cursor stands at the
occurrence whose replacement would have made the
line too long. The same applies for replace without
query with F6.

126

Abacus Software SUPER C for the C-128/C-64

F§ Command key. All commands start with this key. The
message enter command appears in the first screen
line. The corresponding command is called by
pressing a certain key.

F6 Replace without query. All occurrences of the search
string, from the cursor position on, are replaced with
the replace string automatically and without query.
Replace can be halted with the [STOP] key.

If an overflow in line occurs, the same procedure is
followed as for F4 (replace with query).

F7 Insert lines. A blank line is inserted before the cursor
line. The color of the line is copied from the
preceeding line.

F8 Delete lines. The cursor line is deleted and the
remaining text moves up.

[HOME]

Switch text areas. The display is toggled between the
file area and the extra text area.

[CLR] Start of text. The text is displayed starting at the
beginning of the document.

[STOP] Interrupts all command inputs, halts the printing,
loading, reading the directory, searching (F3), and
replacing (F4, F6). Basically, everything but saving
can be halted with [STOP].

127

Abacus Software SUPER C for the C-128/C-64

3.3 Parameter inputs

If you have selected a command, you must usually enter
parameters. The inputs the various commands require will be
described in Section 3.3. The five different types of parameter
inputs are explained in the following sections. All five can be
interrupted with the [STOP] key which returns you to text input.

3.3.1 Key input

No cursor appears for this type of input. The editor waits for
certain keys. The message in the first line of the screen indicates
which keys you may select from. The keys at the end of the
message are separated by a / character (for example: replace y/n?).
Except for the given keys and the [STOP] key, no other keys have
any effect.

3.3.2 Input a number

Only the digit keys 0-9 and the control keys [DEL], [RETURN],
and naturally [STOP] are accepted during a number input. The
input range is limited to a certain number of digits. At the end of the
field the cursor stops and no more digits are accepted.

[RETURN] ends the input. If no digits are entered, the input is not

ended. [DEL] deletes the last character entered. [STOP] halts the
input.

128

Abacus Software SUPER C for the C-128/C-64

3.3.3 Input a string

The input is limited to a certain number of characters. No more
characters are accepted at the end of the field except for [DEL]. All
printable characters from the keyboard are allowed as input.

[DEL] erases the last character entered, [STOP] interrupts the input.

[RETURN] ends the input. All characters from the start of the input
field to the character before the cursor belong to the entered string.

3.3.4 Block input

For this input the first screen line contains the message marking
out range. In this input type you can determine a block which
is displayed in reverse type.Various operations can then be

performed on this block. A block is a contigious section of lines.
The block can be edited with the following keys:

<> The cursor is moved to the right or left. The cursor itself
cannot be seen, but its position is indicated on the position
display. These keys have only the function of shifting the
screen right or left during the block input.

1 The size of the block is increased.

I The size of the block is decreased.

[RETURN] ends the input. The limits of the block are now set.
[STOP] interrupts the input. The editor returns to the text input.

129

Abacus Software SUPER C for the C-128/C-64

3.3.5 Destination input

For this input the first line of the screen contains the message
fixing target. The target line is displayed in reverse text.
The destination line appears in normal text in a line which appears
in the middle of a marked block of text. After the block input, the
target line is the line directly after the reverse block and cannot
immediately be recognized. You will see the target line if you move
it.

You can move the target line with the following control keys:

<> Changes the cursor column. Scroll the screen left or right
during the destination line input.

) Moves the target line up or down.

F1 (page down) The destination line is moved 22 lines down.
F2 (page up) The destination line is moved 22 lines up.
[HOME]

Switch text areas. This control key is possible only with
the transfer command.

g The g key calls the command goto. You can enter the
number of a line as the target line.

ends the input if the target line does not lie within the
previously marked block. Otherwise the editor displays no
target line and the target must be reentered.

[STOP] interrupts the input.

130

~—

Abacus Software SUPER C for the C-128/C-64

3.4 Commands

The message enter command appears in the first screen line
when the [F5] key is pressed. The editor expects the user to press a
key which selects a command. All keys except for the possible
command keys and [STOP] are ignored. [STOP] interrupts the
input.

In the description of the commands the input types for the
parameters are indicated as follows:

key input <key>
number input <number>
character string <string>
block input <block>

destination input <dest>

The input type is not indicated on the screen, it is only used to
inform you what kind of input you should make. In most cases this
will be clear anyway.

The key which calls the given command is set apart from the
paragraph. Indented and printed in different type are the messages
which appear during the command.

b bytes free
A message appears in the status line of the screen that
displays the amount of memory space remaining to the

editor.

h hunt
Entcg the search string for the search function (F3) and (F4
or F6).

hunt:<search string>

131

Abacus Software SUPER C for the C-128/C-64

r replace
Enter the search string for the replace function (F4 or F6).
The first character string which you enter is the search
string and the second is the replace string.

hunt :<search string>
rplc:<replace string>

e erase
Delete blocks of text. You must first mark the block.

erase:marking out block <block>
erase:are you sure y/n? <key y,n>

After marking a confirmation question appears. The key
[n] for no prevents the deletion. The key [y] for yes
deletes the block. The text is displayed at the deleted
block following the deletion.

t transfer
Copy a block from one point to another. You must first
mark the block and then set the target (destination) line.
The target of this command can also lie in the other text.

t'fer:marking out range <block>
t'fer:fixing target <dest>

After the input of the target line,a copy of the block is
inserted in front of the target line. The screen then displays
the document after the copied text. If the document
becomes too long, the transfer command will not be
executed. The editor responds ovexr£low and the screen
shows the text at the select target line.

132

Abacus Software SUPER C for the C-128/C-64

m move
Move a block from one location to another. You must first
mark the block and then set the target. The block is inserted
before the target line.

move:marking out range <block>
move:fixing target <dest>

c color
Enter the number of a color (0-15) and mark a block. The
block is then colored in the selected color. The screen then
displays the document starting with the colored text block.

color:<number 0-15>
color:marking out range <block>

1 load
Enter the name of a text file to be loaded into working
memory. Any text in memory will be erased. The extra text
area remains unchanged.

load
file: <string>

If the message £ile format error appears when
loading, the format is incorrect for the C_EDITOR. The
editor changes the text so that it is readable. Information
may be lost through this process, however. The message
overflow indicates that the text no longer fits in
memory. This command can be used from the file area.

133

Abacus Software SUPER C for the C-128/C-64

S save
Save the document with the name displayed in line two of
the screen. If a file with this name already exists on the
diskette, the following question appears:

save replace y/n? <key Yy,n>

If you answer with [y], the existsing file will be replaced
by the new one. An [n] halts the saving process and you
are back in text input. This command can be used in the
file area.

f filename
Change the name of the document in the file area. This
command can be used only in text file area.

file: <string>

k kill
Erases the document in the file area. The extra text
remains unchanged. This command can be given only in
the text file area.

kill: are you sure y/n? <key y/n>

The confirmation question protects the memory from
unintentional erasure. The [n] key stops the command.

i input disk error

Reads the disk drive error channel and displays the
contents on the status line.

134

Abacus Software SUPER C for the C-128/C-64

d

directory

Displays the directory of the diskette and inserts it in the
text at the current cursor line. You can give a specifier with
the directory command (such as *=prg, test*, test*=usr).
More about the function and syntax of these specifiers can
be found in the disk drive manual. If you enter nothing and
just press [RETURN], the entire directory is displayed.

directory:<string>

It is best to read the directory into the extra text because it
will not disturb anything there.

If you want to read the directory of a drive other than drive
a, you must give a least a device identifier as a specifier.
For example:

b:

lists the contents of drive b.

exit
Exit from the editor and return to the CCP,

exit: are you sure y/n? <key y/n>
The [n] key interrupts this command.

new text

Erase and set new parameters for a new document. The
line length for the new document is set here. It cannot be
changed later.

new: length of line <number 40-80>
The line length of the file text also applies to the extra text.
If lines in the extra text are longer than the new line length,
the remainder of the line is no longer accessible.

file:<string>

135

Abacus Software SUPER C for the C-128/C-64

Next, the filename is entered. The file text is erased and
now has the new line length. With a line lengh of 40 the
screen is no longer shifted horizontally. If you don't want
the screen to scroll, you can prevent it from doing so by
specifying a line length of 40. 80 columns at a time are
displayed in the e8 editor under version V3. If you set
fewer than 80 characters, you will not be able to move the
cursor beyond the set position.

g goto
Goto (jump) a given line number.

goto:<number>

p print
Print the document on the printer (device no. 4).

print:input defaults y/n? <key y,n>

With the n key the parameters last specified are used. After
the editor is started the following parameters are in effect:

secondary address 0, cbm, extra, lines per page
72, offset 0

You can change these parameters with [y] . If you press
[y], the following inputs appear:

print: sec. address <number 0-15>

You can set the secondary address with which the text will
be sent to the printer here.

print: cbm or ascii c/a? <key c¢,a>
If you select [e] for cbm, the text is output in the CBM
character set. With a, the text is output in the ASCII
character set.

If you have selected cbm:

136

Abacus Software ' SUPER C for the C-128/C-64

print:normal subst extra n/s/e?
<key n,s,e>

e: The characters of the ASCII character set are
represented using programmable characters on the
Commodore printer. This print mode requires more
time.

S: (subst=substitute) The ASCII characters are replaced

with suitable graphics characters from the Commodore
character set.

n: The text is output to the printer without conversion.

If you selected ascii:
print:line feed on y/n? <key y,n>
[y] causes the editor to send carriage return/line feed

combinations instead of just carriage return which n
produces.

print: epson printer y/n? <key y,n>
With [y] the editor sends the code sequence for the
American character for Epson printers before printing
($1b,$52,$00). With [n], the sequence is not set.

The following inputs are common to both types.

print: lines per page <number>

With this input you set the page length. For the American
standard of 11 inch paper, this would be 66 lines per page.

print:offset <number>

This number specifies the number of spaces that the
printing will be indented from the edge of the paper.

The input of the date is again common, independent from
whether you changed the parameters or not.

137

Abacus Software SUPER C for the C-128/C-64

print: date <string>

Here you can enter the date which will be printed beneath
the text name. If you entered the date before, the editor
skips this question.

You can stop the printing with [STOP]. It may be that you

have to hold the [STOP] key down longer than usual
before the editor reacts.

138

Abacus Software

SUPER C for the C-128/C-64

3.5 Error messages

illegal text:
overflow:

overflow in line:

no target line:

file format error:

last line:

i/o error:

The command selected may not be used in
extra text (new, save, load, kill, filename).

The text storage is full. The function will not
be executed.

The line became longer than the maximum line
length when replacing. The replacement is
halted.

The target line lies within a marked text block.
This is not allowed and the input of a target is
not ended.

The loaded file does not have the necessary
text format. The file is probably not a text file
at all. The editor forces the text to the required
format, but information can be lost in the
process.

If a FATAL ERROR occurs in the compiler,
the corresponding error file can generate this
error when it is loaded. No information is lost
if this happens.

You tried to write on the last line or you tried
to move the cursor past the last line.

A input/output error occurred or the device
being accessed is not turned on.

139

Abacus Software SUPER C for the C-128/C-64

4. C compiler

The name of the compiler is cc. It is loaded from the master disk
and started like a transient command. The cc belongs to the system
components and will automatically be loaded using the fast-loading
procedure. It makes no difference what disk drive is used
(1541/71). The loading time varies between 10 and 13 seconds.
Note, however, that cc is about 25K long.

4.1 Start without arguments

After the compiler has been loaded, the compiler header appears
along with the message:

source file name:

The name of the source file which the compiler is to compile must
be entered here. This input is done without quotation marks and
without spaces in front of the name. A device identifier can be
given in front of the filename. If this is missing, drive a will be
selected as usual.

The following control characters can be used during the input.

[DEL] delete the last character
[CLR] erases the entire input field.
[RETURN] ends the input

Next the compiler requests the link file names.
link file name:

If you use the extensions given in Section I.1.3, such as .c for the
source file name, cc will print the name with .o added as a
suggestion for the link file name so that you only have to press
[RETURN]. If you do not want to take the suggestion, because
you want a different name or because the link file is supposed to go
to a different device, you can erase the input with [CLR].

140

Abacus Software SUPER C for the C-128/C-64

After entering the link file, cc expects the input of the error file
name:

error file name:

Here the device identifier of the source file with the name
error.e is given as a default. Naturally, you can change this
name or accept it by pressing [RETURN].

The compiler now starts compiling. The source files currently being
processed are displayed in grey type. If an #include file is
ended, a # is printed. The names of functions which cc is
compiling appear in yellow.

Errors are printed by the compiler in red during compilation. The
error messages are also collected in the error file at the same time.
The error file is opened only if an error occurs. This also erases a
previous file by the same name. This error file can be read with the
C-editor and contains other status information from the first error
on so that it should not be hard to trace an error occurring in an
#include file.

At the conclusion of the compilation cc responds

compiling finished
linkfile (not) available
press x to quit, r to restart

The link file will be available depending on whether an error
occurred or not. If it is not available, there will be a file on the disk
with the link file name, but this is only a fragment which contains
only the code up to the error and cannot be linked.

By pressing the [x] you will be returned to the CCP. With [r] the
compiler starts over and is ready to compile another source
program.

All source programs which the compiler needs for compilation must
be on the disks in the designated drives before the input of the error
file name is ended. It is not possible to change disks during the
compilation.

141

Abacus Software SUPER C for the C-128/C-64

4.2 Start with arguments

Arguments from the command line can be passed to the C compiler.
The first three arguments refer to the source, link, and error files:

cc: a:test.c a:test.o a:error.e

In this example the compiler is loaded and started with the
arguments. The compiler puts the arguments in place of the inputs
and begins compilation immediately.

You can use this only if you have at least two disk drives or a RAM
disk. Users with only one drive must insert the appropriate
program disk after starting without arguments.

If fewer than three arguments are given, the compiler will ask for
the remaining arguments.

If more than three arguments are given, the compiler will start the
linker. First the program will be compiled as usual. If an error
occurs, the usual message will appear. If the compilation was
error-free, the following message appears:

compiling finished
linkfile available
loading linker

The linker will be loaded from the same drive as that the compiler
was loaded.

The fourth argument will be used as the program file name in the
linker. All other arguments apply as link files for the linker. The file
created by the compiler will automatically be specified as the last
link file. The call:

cc a:test.c a:test.o a:error.e a:test h:libec.l

first compiles test.c to the file test .o. Then test .o will be
linked with the library 1ibc. 1 which is located on the RAM disk.
The linked program file will be called test on drive a. The
transient command c1 (Section 1.1.8.8) makes use of this option.

142

Abacus. Software SUPER C for the C-128/C-64

4.3 Compiler error messages

The compiler outputs error messages to the screen and to the
specified error file at the same time. This file can be read with the
editor and used to find and correct the errors.

The error file will be opened with the first error and also contains
all status messages which otherwise appear only on the screen.

Behind the error message is the number of the line in the source file
in which the error occurred. Often an error will lead to other errors
which will disappear after the first error is corrected.

After the compiler discovers an error, it searches for the next
semicolon or brace and continues compilation at this point. This
naturally causes parts of the program to be skipped, which the
compiler assumes cannot be compiled properly because of the
error. Skipping these sections can lead to other errors.

Some errors cause the compilation to stop because it no longer
seems to be possible. These are called FATAL ERRORS. Such
errors are not put in the error file because output to the error file
may cause new errors (such as bus errors).

Here is a list of all of the compiler error messages:

?FLOPPY ERROR (FATAL ERROR)

e FLOPPY ERROR stands for a disk drive error message. In any
case the compilation will be terminated. The cause of the error
can be determined from the error text. The device identifier of
the corresponding device will also be given in the error text.

?DEVICE X: NOT PRESENT _(FATAL ERROR)
» The output device with device identifier X: is not available.

?ILLEGAL COMMAND .

* no preprocessor command recognized

* o string follows #include

?RUN END OF LINE .

* Terminating " character is missing from a string

143

Abacus Software SUPER C for the C-128/C-64

?STRING TOO LONG

« string constant consists of more than 254 characters

macro definition longer than 254 characters

argument of a macro definition is longer than 254 characters

?TOO MANY CONCATS
¢ More than seven files chained with #include

?EXPECTING IDENTIFIER

¢ noname follows #ifdef, #ifndef, #define

e parameter of a macro definition is not a name

e astruct,union, or enum name is expected for a
struct/union component whose type is struct,
union, Or enum

* names are expected in enum specifier

¢ astruct,union name is expected for a parameter
declaration with type st ruct /union

COND. COMPILE ERROR
more than 8 nested conditions

more than one #elseinthe #if - #endif

#else without #if, #ifdef, #ifndef

#endif without #if. ..

expression after #1if contains an error

the expression evaluation is interrupted through #if. #if is
possible only outside an expression or constant.

e o 0 0o 0 0y

?RUN END OF FILE

e end of program although preprocessor command #if not
closed with #endif yet

» end of program although the argument of a macro call is still
expected
declaration was not closed
block structure still open

?MACRO EXISTS .
e The macro to be defined already exists.

144

C

Abacus Software SUPER C for the C-128/C-64

?STACK OVERFLOW (FATAL ERROR)
* no space for new macros for #define

* no space for the entry of a new declaration
 recursion by initialization too large (about 40)

» constant buffer overflowed, cannot be emptied

?MACRO NOT DEFINED
¢ #undef was used on an undefined macro.

?ILLEGAL NOTATION

* improper char constant (not exactly one character)

* More than one decimal point of exponent in a double number
* exponent is incomplete

?ILLEGAL MACRO CALL _
» the call requires the specification of arguments
» the call has too many or too few arguments

?ILLEGAL OPERATOR)
* A character was recognized which cannot be evaluated as an

operator (like $, #, Q).

?0VERFLOW ERROR

* adouble constant which was too large was read
* an enumconstant is to large

» overflow during constant evaluation

?DIVISION BY ZERO .
* Division by zero in a constant division.

?DECLARATION OVERFLOW
* more than 60 nested arrays or pointers
* more than 60 parameters in a function definition

?EXPECTING SUBSCRIPT) '
* more than one dimension contains no subscript
* the first dimension does not contain a subscript

?SIZE OVERFLOW
* Object is longer than 32767 characters.

145

Abacus Software SUPER C for the C-128/C-64

?DECLARATION SYNTAX ERROR

e & o o o o

If the compiler encounters a block structure after a global
declaration, it cannot evaluate this as a declaration. Since the
block structure would be recongized as an error only because
of a previous error in a declaration, this will be skipped. The
compiler responds with this error to indicate this. If the block
structure were not skipped, a host of secondary errors would
occur.

improper declarator

no name in declarator

no , or ; as the end of a declarator

no type was given for a st ruct /union component

no } as the end of an enum specifier

neither type nor storage class for parameter definitions or local
declarations

?DECLARATION SEMANTIC ERROR

auto or register as the storage class for a global
declaration

typedef cannot define functions

components or parameters declared as function

an attempt was made to define arrays of functions or to define
functions which return arrays, functions, structures, or variants
an attempt was made to define a component as a structure or a
variant whose type agrees with that of the struct orunion
being defined (recursion)

declaration of a local function

?IDENTIFIER ALREADY DEFINED

L]

the name is already declared as extern, 1local name oras a
type name, st ruct, union, enum, or component name or
as an enum constant

the name to be declared already exists, but with a different
declaration

the names to be defined is already known, but with a different
declaration

?EXCEPTION ERROR

L]

This error normally does not occur

146

Abacus Software SUPER C for the C-128/C-64

2IDENTIFIER NOT DEFINED

* name is not defined, although no specifier is given

* the struct,union name in a component (for
struct/union subdeclaration) is not defined

?DECLARATION INCOMPATIBLE)
* Name is defined, but is not a struct, union name.

?EXPECTING IDENTIFIER]
» Neither a specifier nor a specifier name was given.

?2TYPE CONFLICT

no int-convertible type of address in enum

char cannot be initialized with addresses

auto addresses are not allowed as constants

switch expression is not of integral type

general improper type for operator, such as double for %
structures and variants can be combined only with . -> &
right operand of . or -> must be a component

function call without corresponding declaration

?INITIALIZER TOO LONG

* more elements or components were initialized in as array or
structure initialization than are possible

* A string is longer than the char array

?ILLEGAL INITIALIZER))
+ initializers for functions and variants is not allowed
¢ initializers for extern declarations are not allowed

?PARAMETER MISMATCH

 the declaration of the parameters does not agree with the order
in the parameter list

* occurs as a secondary error if a parameter declaration is
incorrect

?TO0 MANY STATEMENTS NESTED . .
e More than 16 instructions (blocks are also instructions) were
nested.

147

Abacus Software SUPER C for the C-128/C-64

2T0O0 MANY BLOCKS NESTED
e More than 8 blocks were nested.

?STATEMENT SYNTAX ERROR

* occurs as a secondary error from erroneous instructions when a
block is terminated

no name behind goto

no ; behind break or continue

conditions not parenthesized (for if, for, while, switch)
expressions behind for are not separated by ; (two ;'s are
necessary)

* nowhile(..); follows do

?LABEL NOT DEFINED
¢ The name behind goto is not defined as a label.

?EXRESSION SYNTAX ERROR

* general syntax error: incorrect parentheses, multiple constants
or names in a row (if ; was forgotten)

use of a keyword in an expression (only SIZEOF allowed)
improper parenthesization within the CAST declarator

a name which designates no object was used

operator stands alone in front

a : must follow every ?

?2ILLEGAL STATEMENT
e Dbreak or cont inue not allowed here.

?TOO MANY CASES
* More than 42 case labels were given within a switch block.

?CASE WITHOUT SWITCH
¢ Label defined outside a switch block.

?EXPRESSION SEMANTIC ERROR
* Only one CAST per simple expression is allowed.

148

C

C

Abacus Software SUPER C for the C-128/C-64

?EXPRESSION OVERFLOW

» expression consists of more than 63 elements

» expression consists of more than 28 names or constants
e CAST storage exceeded

?NO CONSTANT ERRQR .
» The expression does not return a constant, although this is
required.

?EXPECTING L-VALUE

the first operand of an assignment is not an Ivalue
the first operand in front of . is not an lvalue

an lvalue is expected for the unary operator &

++, —— may be used only on lvalues

e o ¢ o

?EXPECTING ADDRESS
» An address is expected for the unitary * operator.

?NMI INTERRUPT
o Generates an interrupt; all files are closed.

149

Abacus Software SUPER C for the C-128/C-64

5. Linker

The C linker has the task of converting compiled source files, called
link files, into an executable machine language program. With the C
linker you can link up to 10 separately compiled source files into
one program file which contains an executable C program.

The order of the link files is in principle irrelevant. As long as you
specify the same link files, the same C programs result. You
should, however, give the libraries as the first link files so that they
are the start of the program.

Note that the C linker does not make any declaration checks. You
can, for example, define an object as a structure in one file and
declare it as a function in another. If both objects have the same
name and are available externally, the linker will link references to
both objects without recognizing their different declarations.

All link files which you link must be on the inserted disks during
the linking process. It is not possible to change disks during
linking. You can use the copy command to copy files.

5.1 Start without arguments

For inputs in the linker, the same control characters apply as for the
compiler. The input is ended with [RETURN]. With [DEL] (delete)
you can erase the last input character. The key [CLR] clears the
entire input field.

First you enter the name of the program file in which the linked

program will be stored. A existing file with this name will be
erased.

program file
The filename can be naturally be specified with a device identifier.

Now the linker asks for the individual link files which are to be
linked together.

link file 1libc.l

150

Abacus Software SUPER C for the C-128/C-64

The name of the standard library 1ibc. 1 is printed as the default
for the first input since this file is usually linked to every program.
In version V3 this default has the device specifierh:, so that the
library will be read from the RAM disk.

You can specify a maximum of 10 files. After the tenth name the
linker automatically moves on to the next input. If you want to link
fewer than 10 files, you can terminate the link file input by not
entering anything behind link file and just pressing [RETURN].
You must have at least one link file, however, or the linker will
ignore your attempt to terminate the input.

The next input reads:

memory top page $d0

A default value is given for the input of the top of memory and you
can usually accept this default. This input is done in hexadecimal
and requires exactly two digits. In version V2 the default is $d0 and
in V3 it is $e9. The input will be repeated if an incorrect response
was given.

The memory top page designates the first page (page=256 bytes)
which is no longer available for C programs. For V2 and the
default value of $d0, the boundary of the C program memory is
$d000. This means that your C program reaches from $0801 to
$cfff (SOK). In the V3 version the memory reaches from $1c00 to
$e900 (51.25K).

Specification of a memory top page allows you to protect memory
from C programs. You can then use the memory at the memory top
page to $cfff or $e8ff for your own applications, such as common
storage for C programs which are chained and loaded in
succession.

linker option:
(c=ccp/b=basic) c

This linker option is only possible in version V2. The option ¢
means that your program can be started only from the CCP. The C

program is designated as a C-version. The b option allows your C
program to be started from BASIC.

151

Abacus Software SUPER C for the C-128/C-64

After the parameter input the linker starts to link the files. The linker
announces the individual passes through the link files. If errors
occur, they will be printed in red.

The linker can be stopped at any time, even during parameter input,
by pressing the [STOP]+[RESTOREY} keys (=NMI).

You then see the message:

nmi interrupt
press x to quit, r to restart

With the [x] key you exit the linker and go back to the CCP. With
[r] you start the linker again. If you enter incorrect parameters,
generate an NMI and select [r] for restart. You can then repeat the
parameter input.

5.2 Start with arguments

Like the compiler, arguments can also be passed to the linker. The
first argument is the program file. All other arguments are link files.
A maximum of 11 arguments are possible.

If the linker receives only one argument, it asks for the input of link
files. If at least two arguments are passed, the linker automatically
starts the link process with the specified arguments. The defaults
are taken for the memory top page and the linker option.

cl a:test a:libc.l a:libgraph.l a:test.o

This call automatically starts the linking process. The two libraries
are linked with the file test . o to produce the program file test.

152

Abacus Software SUPER C for the C-128/C-64

5.3 Error messages
The following messages can occur during the linking:

pass 1/2

The linker is starting the first/second pass through the
link files.

end of pass 1.2
The first/second pass is finished

link file
The linker is reading from the specified link file.

linking finished
The linking ended without error.

linking aborted .
The linking cannot be continued because of error.

incorrect linkage, L.
An error occoured in the linking.

program not available

The program file is not available because of errors. It
was erased.

In addition, the following error messages are possible:

no reference to
The specified name is not defined in any link file.

no clear re.ference. to)
The specified name is defined in at least two link files.

no external declaration of ...
The specified name is not declared as ext ern. This

error does not prevent the correct creation of a C
program.

153

Abacus Software SUPER C for the C-128/C-64

no linkfile format
The format of the file read is not right. The file in
question is probably not a link file.

overflow in symbol table
The desired link file combination cannot be linked
because the capacity of the available memory for the
extern names is too small.

static variables out of range
The C program does not fit in the available C program
memory because the static variable area exceeds the
memory top page. (The static variable area includes all
static and external variables which are not initialized).

program out of range . .
The C program does not fit in the available C program
memory.

linkfile incompatible
One of the link files is not compatible with the current
linker version. This error can occur only if you use link
files which were compiled with other Super C systems.
This is also the case, for example, if you want to link
link files from the V2 compiler with the V3 linker.

device X: not present L .
The device designated by device identifier X: is not
turned on.

floppy error on X:
An disk error occurred on device X:. The error message
will be printed. This error leads to termination of the
linker.

nmi interrupts
This message appears when [STOP]+[RESTORE] are
pressed.

exception error ?
This error does not occur under normal circumstances.

154

Abacus Software SUPER C for the C-128/C-64

6. C programs

6.1 Start

C programs can be linked as C versions or as B versions (V2
only). The C versions can only be started through the CCP. To do
this, enter the program name with the device identifier in the CCP.
In principle C programs are loaded like transient commands. The
program device, for example, is written in C.

B versions can be started under BASIC. To do this, load the
program with the following command:

load "program name",8,1

The B version starts itself automatically after loading. B versions
can also be loaded in the CCP. They will destroy the CCP. After
the program ends you will be back in BASIC.

B versions can be created only in V2. The aut oexec mechanism,
which makes it possible to load and start a user program after
boot-up, serves as a replacement in V3.

B and C versions run in basically the same environment. This
environment, memory division and usage, will be described in
Section I1.6.4.

If a C program is ended in the normal manner, that is, the main

block is ended, you will be back in the CCP for the C-version or

BASIC for the B-version. The C program can be restarted only by

loading it again.

One can pass arguments from the command line to C-versions:
a:tester alpha beta

In the C program, a parameter list must be defined for the function

main () for the evaluation of these arguments. This is normally
done as follows:

155

Abacus Software SUPER C for the C-128/C-64

main (argc,argv)
int argc;
char *argv[];

{ ...

}

argc then contains the number of arguments, whereby the
filename is counted as well. argc is therefore at least 1. The first
argument is an array of pointer to the arguments:

argv[0] pointsto "a:tester”
argv[1l] pointsto "alpha"
argv[2] pointsto "beta"
argc isequalto3

A maximum of 40 arguments can be passed in V2, or 63 arguments
in V3 (for more information, see I1.1.4).

No arguments can be passed to B-versions. The variable argc will
have the value zero. So you can test in the program if a B-version is
present.

6.2 Operating modes

Run-time errors can occur while a C program is running. In BASIC
such errors always lead to termination (this can be circumvented in
the new BASIC 7.0). In C you can set whether or not an
interruption will occur with operating modes.

The operating modes are ERRON, ERROFF, NMION, and NMIOFF,
which can all be set with standard functions by the same name.
Combinations of these result in four operating modes:

ERRON + NMION (default)
ERROFF + NMION
ERRON + NMIOFF
ERROFF + NMIOFF

The question of whether or not a program will be interrupted
depends not only on the operating mode, but also on the error

156

C

Abacus Software SUPER C for the C-128/C-64

number of the run-time error (run-time errors and their numbers are
given in the next chapter).

1. Error numbers 1 to 63 are switched off with ERROFF and on
with ERRON, that it, no interruption will occur if ERROFF is
set.

2. Error numbers 64 to 127 are turned off by NMIOFF and on
by NMION.

3. Error numbers 128 to 255 always lead to a termination of the
program.

All occurring errors place the error number in a special register
which the function gerror () can read. If the interruption is
turned off, the program can react to the error itself.

An interruption prints the error text. For example:

?2division by zero
press x to quit, ¢ to continue,
r to restart

You can get back to the CCP with the [x] key and thereby end the
program.

With [c] the program will be continued as if no interruption
occurred. The number of the error still stands in the error register,
however, so that gerror () functions without problems. If
run-time errors occur when reading data from the screen, the data to
be read may be destroyed by the error message so that the program
does not continue properly when [c] is pressed. Eventually other
errors will occur.

The program is restarted with [r]. Note that all external and static
variables will retain their values unchanged. Initializations are not
performed. Also, static and external variables will not have their
defined initial value of zero. Open channels will not be closed.

Error number 64 to 127 are manipulated with NMION/OFF. The
name comes from NMI (Non-Maskable Interrupt), which is
generated by pressing [STOP]+[RESTORE). This generates a

157

Abacus Software SUPER C for the C-128/C-64

run-time errors with number 127 and the text 2nmi interrupt.
You can enable and disable the interruption of a C program by the
NML. If the program is continued after the interruption with [c], the
error register will contain the number 127. If the NMI is disabled
with NMIOFF, the error register will not be changed by an attempt
to generate an NMI. You should never interrupt an input or output
operation in a C program with NMI or peculiar effects may occur if
the program is continued.

Error numbers 128 to 255 cannot be affected. Nor do they lead to a
normal interruption. Only the error message appears. For example:

?stack overflow

and the computer waits for a key press. The program is then ended.
This involves an error which makes it impossible for the program
to continue.

If you look at the following list of errors, you will see that not all of
the numbers are used. You have enough room for your own
run-time errors, which you can create with the function errox ().
You can then select by the error number in which operating mode
an interrupt is to be performed. You should, however, keep error
numbers 12 to 32 free for furture extensions.

158

Abacus Software SUPER C for the C-128/C-64

6.3 Run-time errors

The following error messages are possible in a C program. The
error numbers are given in parentheses. Note the significance of the
error number for the reaction of the program (whether an interrupt
is performed or not).

?too many files (1) .
No more than 10 file descriptors can be used at a time.
This error occurs on an attempt to open more than 10 files
at once.

?2i/o0#2 (2)
This message corresponds to the BASIC error message
FILE OPEN and cannot occur in C because the file
descriptors are not selected by the user.

?illgl%al filedescriptor (3)

e specified file descriptor is not being used, that is,
either the file has been closed already or it has not been
opened yet.

?2i/o0#4 (4)
This message corresponds to the BASIC error message
FILE NOT FOUND. It can occur in C only is a file is to be
read from cassette. In this case the function open()
searches for this file on the cassette. If open() finds an
EOT mark, this message appears.

?device not present (5)
A device is not reachable on the bus. It is probably turned
off. This message can appear when opening files and when
performing input and output operations.

Note: The message does not occur in the V2 version (because of
an error in the C-64 ROM) if a file is opened on the serial
bus without specifying a name and a read operation is
performed after this. If the addressed device is not present,
the open () function will be executed without the message
?device not present appearing. If a read operation
is performed on this channel, the computer will hang in an
endless loop, which can be ended only with an NMIL

159

Abacus Software SUPER C for the C-128/C-64

?not input file (6)
This error can occur in C only if a file on tape was opened
with a secondary address other than zero (=write access)
and an attempt was then made to read from the file.

?not output file (7)
This error occurs only if a file is opened on the keyboard
and an attempt was made to write to this file.

?i/0#8 - (8)
Corresponds to the BASIC error message MISSING
FILENAME and cannot occur in C.

2i/0#9 (9)
Corresponds to the BASIC error message ILLEGAL
DEVICE NUMBER. In C this error occurs only if the
pointer to the tape buffer is less than $0200 (V2) or $0400
(V3).

?break (10)
This message appears in C only when the [STOP] key is
pressed during a cassette routine. Continuation with [c] is
not recommended.

?illegal format (11)
When reading with a scanf function the data read does
not match the expected format.

?run eof (12)

The input of a scanf function was ended with an EOF
signal although additional data were expected.

?illegal quantity (13)
An uncalculable argument was passed to a mathematical
function. For example, the argument for sqrt and log
must be positive.

?division by zero (33) .
An attempt was made to divide by zero. After [c]
(continue), the expression has the value zero.

160

Abacus Software SUPER C for the C-128/C-64

?2overflow (34)
A double operation exceeded the range. After continue
the expression has the value zero. The overflow is ignored
for integer operations.

?2nmi interrupt (127)
Appears when [STOP]+[RESTORE] is pressed.

?stack overflow (129)
The run-time stack of the C program exceeds the available

program storage or too much memory was requested by
alloc.

161

Abacus Software SUPER C for the C-128/C-64

6.4 Memory layout

The memory layout is of interest only to those programmers who
want to access memory locations directly via pointers.

Super C V2
The addreses are all given in hexadecimal

$0000-303ff Memory for system variables
$0400-$07£ff CCP

$0800-$cfff C program storage
$d000-$d7ff 1I/0 range

$d800-$dfff Color RAM

$e000-$e3ff Video RAM

$e400-$£f£fff Operating system

The C program memory can be shortened in the linker. The
remaining memory is then freely available.

Super C V3
The addresses are all given in hexadecimal:

Bank O
$0000-$03ff Memory for system variables
$0400-$07ff Video RAM
$0800-$1bff CCP
$1c00-$e8ff C program storage
$e900-$ff£ff RAM disk driver

Bank 1 (2 and 3 for memory expansion)
$0000-S£ffff RAM disk storage

The complicated memory management of the C-128 does not allow
the I/O range ($d000-$d7£f) and the two color RAMs ($d800-$dfff)
to the accessed directly. Functions from the C library do make this
possible, however.

As with V2, the program storage for C programs can be restricted
in the linker.

162

Abacus Software SUPER C for the C-128/C-64

7.0 The Library functions

There are several libraries and header files on the system diskette.
The libraries contain pre-programmed link files which you include
in your own C programs. These link files have an extension .1
(. 1 = library). Header files have an extension . h. They are source
codes that can be inserted into your C programs with #include.
Header files declare library functions or define constants and
macros. There is no need for you to repeatedly define individual
functions. Set them up as a series of definitions in a header file and
#include that file in your programs.

The header files and library files available on Super C are:

stdio.h - libc.1l and libcs.1
math.h - libmath.1l
graphic.h - libgraph.l

ctype.h

stdio.h does the work of two libraries. Both of these libraries
are similar to one another; you'll probably work with 1ibc.1
most of the time. This library takes up quite a bit of memory due to
the size of the print £ and scanf functions. If you have no use
for these functions in your programs, you can use the 1ibcs .1
library, which excludes print £ and scanf.

ctype .h is a header file which contains macro definitions, and
has no corresponding file in the library files.

163

Abacus Software SUPER C for the C-128/C-64

7.1 Standard C Libraries

stdio.h is the name of the standard library header file (see
Appendix for a listing of this file). stdio.h contains the
following constants set by #define besides those found in
libc.1 and libcs. 1.

STDIO as file descriptor for the standard input/output
NULL as0

CR as carriage return $0d

CRSUP as code for cursor up

CRSDOWN as code for cursor down

CRSRIGHT as code for cursor right

CRSLEFT as code for cursor left

HOME as code for cursor home

CLR as code for clear home

REVERSON as code forRVS
REVERSOFF as code for RVS off
NIL as 0, pointer to nothing
EMPTY as an empty string

The getchar () function is also defined in stdio.h. This
function returns a character (type char) which is read from the
standard input. It will wait for a keypress unequal to zero.

To give you a better understanding of the standard functions, here
are descriptions of these functions.

164

~

Abacus Software SUPER C for the C-128/C-64

7.1.1 erron(), erroff(), nimon(), nimoff(),
gerror(), error(), exit()

void erron()

The operating mode ERRON is enabled with exrron, which has
the effect that run-time errors with numbers 1-63 create an
interruption (see Sec. 6 - C programs). The operating mode
ERRON is the initial mode.

void erroff ()

Enables the operating mode ERROFF. This has the effect that
run-time errors with numbers 1-63 are masked, that it, no
interruption is made. The only result is that the number of the error
is placed in the run-time error register.

void nmion ()

The operating mode NMION is enabled. All run-time errors with
numbers from 64 to 127 and the NMI itself [STOP+RESTORE]
lead to interruptions. This is the initial mode (see also Sec. 6 C
programs).

void nmioff ()

The operating mode NMIOFF is enabled. All run-time errors with
numbers from 64 to 127 and the NMI itself are masked, meaning
that no interruption occurs. The run-time errors 64-127 are only
placed in the error register of the run-time system. An attempt to
issue an NMI [STOP+RESTORE] during NMIOFF does not
change the error register.

int gerror ()

Returns the value of the error register of the run-time system. This
contains the number of the last run-time error encountered, even if
this error caused an interruption and the program was continued
with c. After calling the gerror function the error register is zero.
You can also use this function to set the error register to zero.

165

Abacus Software SUPER C for the C-128/C-64

void error(string, f£fnr)
char *string;
int fnr;

string is the pointer to some error text, £nr is the associated
error number.

The error function creates a run-time error whereby the given error
number and enabled operating mode determine whether an
interruption will be created or only the error register will be loaded.
(see Section 6)

void exit ()

exit () ends the C program and closes all of the open files. As

soon as the user presses a key, exit () returns to the CCP or to
BASIC.

7.1.2 open(), close()

All of the following input/output functions can trigger runtime
errors (which can be suppressed with ERROFF). The error register
is changed in any case. Most functions present additional results in
an error state.

file open(prim, sec, name([,buffer])
int prim, sec:;
char *name;

This function opens a file with a device address of prim. (device
number, rather than device identifier), a secondary address of sec
and a filename of name. Filenames can have up to 255 characters.
If no filename is sent, an empty string must be given.

The secondary address states the operating mode of the device
being used (e.g. 15 for the disk error and command channel).

The function opens a file with the given parameters. open ()

returns a file descriptor as the result. This corresponds to the logical
file number in BASIC. The file descriptor has the type file in

166

Abacus Software SUPER C for the C-128/C-64

stdio.h. Since the file descriptor of an opened file is required
for all further operations, it must be stored in a variable of type file.

file id;
fd=open (8,2, "testfile,s,r");

These commands are similar to the BASIC command;
OPEN fd,8,2,"testfile,s,x"

You must give the logical file number in BASIC, while in C, the
open function looks for a free file number. If you are not

aquainted with the open command in BASIC, see your manual for
a detailed description.

When an error occurs open () returns the file descriptor of 0 or
STDIO. This will be the case in any standard i/o errors. All file
descriptors normally given by open () are unequal to O.

The argument put into brackets is the above example is optional,
and is necessary only when the device number is 1 or 2. Device 1
opens a cassette file and the address of the cassette buffer must be
present in the argument buf fer. This buffer memory must be at
least 192 bytes long. Super C version V3 must put this area
between $1C00 and $C000. Version V2 must have the cassette
buffer between $0800 and $D00O.

Device 2 is used for the RS-232 interface. The given buffer must be
512 bytes long. Here is an example for 300 baud, 3-wire
handshake, full duplex and no parity.

fd=open (2,0, "\6\200",buf) ;
Most of the time the argument buf fer can be omitted.

file close(£fd);
file fd;

This function closes a file and therefore must be given the file
descriptor of the file. If this result is zero, an error has occurred.

167

Abacus Software SUPER C for the C-128/C-64

7.1.3 putce(), fputc(), getc(), fgetc()

int putc(c, £fd)
char c¢; file f£d;

int fputc(c, £d)
char c¢; file f£d;

Both of these functions are essentially the same. The ¢ character is

output with the file descriptor £d. The result returned will be 1 in
normal circumstances, or 0 in an error state.

char getc{(c, fd)
file fd;

char fgetc(c, £d)
charc; file fd; /
Both of these functions are essentially the same; they read a
character from a file. If the file descriptor is equal to 0 or STDIO,
no cursor appears. The value is \0' when no key is pressed, and a
value corresponding to the keypress is returned. Errors return a -1.

7.1.4 getchar(), putchar()
char getchar();

int putchar(c)
char c¢;

These functions work like getc and putc. They let you work
with both the keyboard and screen. get char waits for a keypress.

getchar is defined in stdio.h, putchar is a parameter
macro.

168

Abacus Software SUPER C for the C-128/C-64

7.1.5 gets(), fgets(), puts(), fputs()

char *gets(line,n)
char *line; int n;

char *fgets(line,n, £4)
char *line; int n;
file fd;

These functions read in a string. get s reads from the keyboard
(cursor visible), fgets reads from the given file. It reads
characters until it reads a *\0 ' or '\n". The string read will be
stored at the 1ine address and a *\0' will be at the end of the

line [n] area, along with the *\n"' character. The result will be
returned in the address line.

int puts(line)
char *line;

int fputs(line, £d)
char *line; file fd;

Both functions output a string until a closing *\0' (note: the '\0"'

is not output). puts writes to the screen, fputs to a file. The
result returned is the number of characters actually handled.

7.16 fgetf(), fputf()
int fputf(line,n, £d)
char *1line; int n;
file fd;
This function writes n characters from the address 1ine into the

appropriate file, without regard for the ' \0 ' character. The result
returned is the number of characters actually written.

169

Abacus Software SUPER C for the C-128/C-64

int fgetf(line,n, fd)
char *line; int n;
file £d;

This function reads up to n characters from the file in memory at
the address 1ine. Thus, the result returned is the number of
characters actually read. This can be n in an error state, or when an
EOF is found.

EOF can usually be read by all get functions. When EOF occurs
during reading, the variable is unequal to zero, otherwise equal to
zero.

The ST variable can be used here as in BASIC (see your computer
manual).

Both version are defined in stdio.h.

7.1.7 fopen(), fclose()

file fopen(name, mode)
char *name, *mode;

This function opens a file on the disk. The first argument points to

the filename with device identifier. mode points to a string which
can have the following contents:

"r" for reading a file
"w" for writing a file

n_n

a" for appending data to an existing file

The opened files always refer to the type SEQ. If you want to
process files of type PRG or USR, add , p or , u to mode.

fopen("b:test", "r,u");
opens the USR file test on device b for reading.

As with open, the file descriptor returned as a result must be stored.

170

Abacus Software SUPER C for the C-128/C-64

The secondary address, which specifies the disk channel, is equal
to the file descriptor. This is important if you want to open
additional channels to a disk with open.

file fclose(fd)
file fd;

This function is identical to close (). It serves only to achieve a
certain compatibility with UNIX.
7.1.8 strlen(), strcmp(), strncmp()

int strlen(str)
char *str;

The function returns the length of the string to which st r points.
The ' \0' character is not counted, that is:

str[(strlen(str)]=='\0".

int strcmp(strl,str2)
char *strl, *str2;

The two strings are compared lexically. The result returned:

-1 for stri<str2
0 for strl=str2
1 for stri>str2

int strncmp(strl,str2,n)
char *strl, *str2;
int n;

This function works like st rcmp. At most n characters are
compared with each other.

171

Abacus Software SUPER C for the C-128/C-64

' 17.1.9 strcat(), strncat(), strcpy(), strncpy()

char *strcat (strl,str2)
char *strl, *str2;

The string st r2 will be appended to the string st r1. The string
st r1 must have enough free memory space for this. st r1 will be
returned as the result.

char *strncat (strl,str2,n)
char *strl, *str2;
int n;

This function works like st rcat, but it appends a maximum of n
characters of str2 to strl.

char *strcpy(strl,str2)
char *strl, *str2;

The string st r2 will be copied into the string st r1. The ending
zero is not copied along. This means that if st r2 is shorter than
strl, that st r2 will overwrite only the first characters of str1l.

If st r2 is longer, the string may not have a terminating zero any
more. In Super C this is recognized and a terminating zero is
added. This is an extension, however, which cannot be expected of
other systems.

The result is the address of stril.
char *strncpy(strl,str2,n)
char *strl, *str2;

int n;

This function copies like st rcpy, but a maximum of only n
characters of str2 will be copied.

172

Abacus Software SUPER C for the C-128/C-64

7.1.10 strchr(), strrchr()

char *strchr(str,c)
char *str; char c;

The function searches in the string st r for the character c. The
search starts from the beginning. If the character is found in the
string, st rchr returns the address of the first occurrence of the
character. If the character is not found, the pointer NIL will be
returned.

char *strrchr(str,c)
char *str; char c;

This function searches for the specified character like strchr. The

search begins at the end of the string, however, and proceeds
toward the front.

If the character does not occur in the string or occurs only once,
both functions return the same value.

7.1.11 cursor(), exec()

void cursor(line,pos)
int line,pos;

The cursor is set to the line given by 1ine and the column given
by pos on the current screen.

void exec(string)
char *string;
This function ends the C program and executes the CCP commands
contained in string. This allows resident commands of the CCP to
be called, though this is not particularly useful.

You can, however, load a new C program with this command and
start it. The arguments for this are passed in string.

One example would by a menu program in C:

173

Abacus Software SUPER C for the C-128/C-64

#include "stdio.h"
main ()
{

int i;

while ()

{ printf("l. testerl\n");
printf("2. testprg2\n");
print£("3. END\n);
scanf ("%d",&i);
switch (i)

{case 1: exec("a:testerl arg0 argl"®);
case 2: exec("a:testprg2 arg0");
case 3: exec("");

}
}

Every user program could end with the line exec ("a:menu"),
which would reload the menu program.

If you want to pass more than arguments to the loaded programs,
you must set the memory top page down when linking the

individual programs. You can then use the resulting area as a
common data pool. The access must be done via pointers.

7.1.12 cmove(),move()
void cmove (target,n,source)
char *target;
int n;

char *source;

The function moves n bytes starting with the memory location
source to the memory location target. Overlappings are checked.

This function can, for example, be used for assigning complex

types:
char s[100],t[100];
éﬁéve(s,sizeof(t),t);

174

Abacus Software SUPER C for the C-128/C-64

In this example, the array t is assigned to the array s.

void move (target,n, source, mem)
char *target; int n;
char source; int mem;

The function move is available only under V2. It works like
CMOVE, but you can in addition set the memory configuration.
This configuration corresponds to the processor port in the C-64.
Kou can find the significance of these bits in the appropriate
iterature.

mem=52 means, for example, that the memory layout of 64K RAM
is enabled during the copy. This allows you to change character
sets in V2 which are located at $d000-$dfff. mem=53 is the
memory layout during the C program. The move routine should be
fairly close to the start of the memory (link libraries first). If the
function itself becomes covered by ROM through the memory
switch, the computer will hang up.

7.1.13 alloc(), free()

char *alloc(size)
int size;

alloc () prepares memory space for objects. These objects do not
have names and can be accessed only via pointer values. They
serve, for example, for list management or as temporary storage.
The length of the required object is passed as the argument.
alloc () returns as the result the pointer value to the object. This
pointer value is defined as a pointer to char. if other types are

required, the address must be converted by means of a CAST to
another type.

The argument size may have only positive values from 0 to 32767,
or an ?2overflow error will result. If larger objects are
required, two alloc () calls are necessary, whereby the second
call returns the base address of the entire object.

175

Abacus Software SUPER C for the C-128/C-64

If not enough space is available for an object, a ?stack
overflow error will be displayed. Remember that the
alloc () function limits the storage for the C stack. This stack
contains local variables and data for function calls.

char *free(size)
int size;

free () represents the reverse function of alloc (). It releases
objects defined with alloc (). Objects must be released in the
reverse order in which they where generated. The argument size
may not be larger than 32767 or the run-time error 2overflow
error will be created.

7.1.14 settime(), gettime()

char *settime (string)
char *string

The function expects a string in the form "HH:MM: SS" where HH
are the hours, MM the minutes, and SS the seconds of the clock time
to be set.
The function sets the internal clock to the given time and then reads
the clock time again. It returns an address to the read time (see
gettime).

char *gettime ()

The function reads the time of the built-in clock. It returns an
address to a string in which the time is stored.

The string has the following format:
":HH:MM:SS.s"
HH signify the hours, MM the minutes, and SS.s the seconds. The

resolution amounts to one tenth of a second. This string can be read
with the function sscanf£, for instance.

176

Abacus Software SUPER C for the C-128/C-64

sscanf (gettime (), "%d:%d:%d", &h,&m, &8) ;

h, m, and s contain the hours, minutes, and seconds. If you want
to read the tenths as well, you must change the last $d to $1f and
declare s as double.

7.1.15 keys()

int keys(string)
char *string;

This function places the characters of the string into the keyboard
buffer. This can be used to provided defaults for screen inputs, for
example.

keys () returns the number of characters which were put in the
keyboard buffer.

7.1.16 call()

long call(p)
char *p;

The function calls a machine language program at location p. The

call is done as a subroutine. The instruction RTS causes a jump
back to C.

Additional arguments can be passed to the function. The memory
location $20,$21 of the zero page contain a pointer to the start of
these arguments.

Memory locations $20 to $30 may be used during the assembly
language program.

A result of the function may be placed in memory locations $42 to

$45. This is a long value. The value must be stored with the
lowest-order byte first.

177

Abacus Software SUPER C for the C-128/C-64

The only possibility for placing an assembly-language program is
in the area in the C program storage which the linker creates by
limiting the program storage area.

This function should be used only by those familiar with assembly
and machine language.

7.1.17 fast(), slow() (V3 only)

void fast ()
void slow()

These functions switch to the FAST or SLOW mode of the C-128.
The processor clock is set to either 2MHz or IMHz. You can find
more under the CCP commands of the same names. These
functions are not available in V2.

7.1.18 window() (V3 only)

void window(lcol,tline,rcol,bline)
int lcol,tline,rcol,bline;

The screen area of the standard output will be set to the given
window. 1col means the left column, t 1ine the top line, rcol
the right column, and bline the bottom line of the window. The

line numbers run from 0 to 24 and the column numbers from O to
39 or 79.

The window area will be set back to the whole screen by
pressing [HOME)] twice.
7.1.19 vdcin(), vdcout() (V3 only)

char vdcin (regq)
int reg;

The register reg of the VDC chip will be read and returned as the
result. The function takes care of the appropriate handshake.

178

Abacus Software SUPER C for the C-128/C-64

You can find more about the registers of the VDC chip in the
appropriate literature, such as the book C-128 Internals by Abacus.

void vdcout (reg,c)
int reg; char c;

This function writes register reg of the VDC chip with the
character c. The function takes care of the appropriate handshake.

7.1.20 io\in(), io\out() (V3 only)

void io\out (adr, val [,colram])
char *adr; char val;
[int colram;]

char iolin(adr [,colram])
char *adr;
[int colram;]

A memory location in the I/O range ($d000-$dfff) is selected with
adr. The memory location is written with the value val with
io\out (). With io\in () the contents of the memory location
are read and returned as the result.

If the area $d800 to $dfff is selected (color RAM), the argument
colram must be specified in addition. This selects between the
two color RAMs in the C-128. If colram is 0, the color RAM for
text display is selected, else the color RAM for graphics will be
selected if colramis 1.

7.1.21 is80()
int is80()

This function returns 1 if the current screen is the 80-column
monitor, else a 0 is returned.

179

Abacus Software SUPER C for the C-128/C-64

7.1.22 Formatted output

void printf (control, argl, ..., argn)
char *control;

{ /* x/)
void fprintf(fd, control, argl, ..., argn)
file f£d;

char *control;

{ /% */ '}

void sprintf (string, control, argl, ...,argn)
char *string, *control;

R x/)

These three functions can be used for formatted output. The
function print £ () prints to the standard output (screen),
fprintf () to the file fd, and sprintf prints to the string
string. If you select fd=0 with fprint£ (), you have the same
function as print£ ().

The formatted output is controlled by the character string control.
control consists of normal characters which are printed without
change, and format instructions which control the conversion of the
arguments argl, ..., argn.Theprintf function uses the
string control in order to interpret the arguments following it. If
fewer arguments are provided than format instructions in control,
or the data types of the format instructions do not agree with those
of the parameters passed, the print £ function outputs nonsense.

Each format instruction starts with the % character and ends with a
character which designates the conversion. The following may be
used:

A minus sign, which directs the converted argument to be left
justified.

180

Abacus Software SUPER C for the C-128/C-64

A decimal digit string, which indicates the minimum field
width. If this is absent, the default value O is used. If the
converted argument is shorter than the minimum field width, it
is padded with blanks. If this string of digits starts with a 0, the
remaining positions up to the minimum field width are filled
with zeros (0) instead of spaces. This padding is performed
such that the output is right or left justified as specified.

A period, which precedes another string of digits.

A string of digits, which indicates the maximum number of
digits which will be output, or which sets the number of places
after the decimal for the conversions e and f. If this number
and the period are missing, the default value 6 will be used and
the length of the argument to be converted for all other
conversions will be supplemented by this amount (conversions
d,0,x,u,c,s). A digit string is expected if the period is
entered. O will be assumed if this is missing.

The letter 1, which designates the corresponding argument as
long (concerns the conversions d, 0, X, and u).

Each of the above specifications is optional. The number inputs
are converted modulo 256. At most the first 254 characters of a
string can be printed with the printf function. The output
of a format instruction may not comprise more than 255
characters or incorrect results will be obtained.

The following characters control the conversion:

d The argument is represented as a signed decimal number.
The argument must be of type int, or of type long if
an l is contained in the format instruction.

u The argument is represented in decimal without a sign.
The type of the argument must be unsigned int or
unsigned long if an 1 appears in the format instruction.

o The argument is represented as an octal number without

sign or leading zero. The type of the argument is the
same as that for u.

181

Abacus Software SUPER C for the C-128/C-64

- The argument is represented in hexadecimal without sign
and without leading Ox. The type of the argument is the
same as that for u.

The argument is represented as a single character. The
type of the argument must be char.

The argument is represented as a character string. The

type of the argument must be char * (pointer to
char).

The argument must be of type float or double and
is output in decimal in the following format:

[=]lm.nnnnnnE [+-] xx

With this conversion the second string of digits in the
format instruction represent the number of places after
the decimal. The default is 6 places.

The argument must be of type float or double and
is output in decimal in the following format:

[=}Jmmm.nnnnnn

The second string of digits determines the number of
places after the decimal. The default here is six. If more
places after the decimal are specified than the number of
significant digits present, the following digits become
zero (this also applies to the conversion with e).

The argument must be float or double. The
conversion is made as per f or e, whichever of the two
is shorter. The representation is selected so that only the
significant digits are shown. If both conversions are the
same length, e is chosen.

182

Abacus Software SUPER C for the C-128/C-64

If the conversion character is not one of those found above, the
character itself is output. The % character can be printed with % %.

Example 1:
double dbl=3.456E+1;

printf ("$0£f\n%e\n%12g\n%12.1£f\n%-012.2e\n",
d-bl, dbl' dbl,-dbl’ dbl
)i

The following output appears on the screen:

34.560000
3.456E+01
34.56
-34.6
3.46000E+01

Example 2:
static char s[9]="Example";
printf(":%s:\n:%9s8:\n:%.5s:\n:%9.5s:
\n:-9.5s\n", s,s,s8,s,8);

The following output appears on the screen:

:Example:
Example:
:Examp:
: Examp:
:Example

183

Abacus Software SUPER C for the C-128/C-64

7.1.23 Formatted input

int scanf(control, argl, arg2...)
char *control;

N Y,
}

int sscanf(string, control, argl, arg2...)
char *string;
char *control;

U . %y
}

int fscanf(fd, control, argl, arg2...)
file £fd;
char *control;

Usx L %)
)

These three functions make formatted input of data possible. The
function scanf () reads from the keyboard (standard input),
sscanf () from a character string, and £scanf () from a file.

A control string is passed as an argument to all three functions. The
input is interpreted by means of this control string.

The scanf function requires additional arguments in order to store
the data read in. These arguments are all pointer values which must
point to objects in which the data read can be stored.
The following characters may be in a control string:

Spaces and line separators, which will be skipped

Other characters (except for %) which are then expected in the
input (after an arbitrary number of spaces or line separators)

Format elements which begin with the % character. A *
character and/or a string of digits and the format character

184

Abacus Software SUPER C for the C-128/C-64

which indicates the type of the data read in eventually
follows them.

A format element determines the interpretation of the input and the
type of the object to which the input is to be assigned. A pointer to
the object must follow control as an argument.. If the format
element contains a * character, the ass:gnment is suppressed and
no pointer argument is rcqmred

An field is defined as a sequence of characters which contains no
blanks. An input field extends to the next blank or to the optional
field width given by the digit string, or to the character which no
longer fits the given format.

The following format characters are possible:

d An integer decimal number is expected as input. A pointer to
int should be given as an argument.

h liked

0 An octal integer is expected as input. The argument should
be an int pointer. The digits 8 and 9 are interpreted as
octal 10 and 11. The octal number is read with or
without leading zero.

x A hexadecimal number is expected as input (with or without
leading Ox). An int pointer should be passed as an
argument.

¢ A single character is read as input and a pointer to char is
expected as argument. In this case the pext input character
is assigned, even blanks. If a digit string comes
before the ¢, the next spaces are read as with the other
format elements.

S A string of characters is read in. More information can be
found in the next section, 7.1.23.1.

e A decimal floating-point number is read as input. The

argument should be pointer to float. A decimal point as
well as an exponent may be present in the input. The

185

Abacus Software SUPER C for the C-128/C-64

exponent consists of the character E or e, an option sign,
and a string of digits.

f likee

The letter 1 may stand before the conversion characters d, o, or x,
in order to show that the corresponding pointer argument points to
a long object. Before e and f the letter 1 indicates that the pointer
typeis double.

If a conversion is interrupted by a character which can not be
interpreted, it is applied to the next field. Such a character is logt if
no further input field is required in one call of scanf or
£scanf. This is because the input and output in operating
system of the C-64 are not buffered.

Example: int x;
float d;
double e;
scanf ("%o%e%le", &x, &d, &e) ;
The cursor appears and you enter:
44.123 2.5
The following data is assigned:
36 is placed in x,
0.123 is placed in d,
25is placedine
If you enter the same input with only the following evaluation:
scanf ("%d4", &x) ;

the decimal point is lost as a separator. (scan£ differs from the
normal standard functions in this regard).

If an input from the keyboard is not completely evaluated, the

remainder of the input is lost and printing is done to the screen.
Because the standard input does not send an EOF signal, the input

186

C

Abacus Software SUPER C for the C-128/C-64

is repeated until all arguments are served. The sscanf function
creates an EOF signal if it encounters the end of the input string.

The scanf functions return the number of correctly-read data as
the resulit.

7.1.23.1 Reading strings

The reading of a string is done at the start of the next input field.
The reading is not interrupted by blanks. The number of characters
read in is determined by the field width given, but does not go
beyond an EOF signal. In addition, the reading can be interrupted
by a boundary character. This boundary character is normally
assigned the code for RETURN. As a general rule, the string is
read only up to a RETURN character. The boundary character
always belongs to the string read.

The boundary character can be determined by the user. A . (period)
character must appear in front of the s and then the boundary
character.

Caution is recommended when reading strings from the standard
input without specifying a field limit. Since the standard input does
not send an EOF signal, the input is stopped only by the boundary
character.

7.1.23.2 Error messages

If the input is ended by an EOF signal although the scanf
function expects more data, the error ZRUN EOF (10) is given. The
error message 7ILLEGAL FORMAT (11) is generated if a certain
character was expected in the input but a different character was
read instead. This also applies for the input of numbers. At least
one digit must be present for these.

187

Abacus Software SUPER C for the C-128/C-64

7.1.23.3 sscanf and fscanf

The function sscanf reads the input from a string. Another
argument is passed before the control string, namely the input
string.

The function fscanf reads from a file. A file descriptor
originating from the opening of the appropriate file must be
additionally passed as an argument.

A good example is reading the error message from the disk:

int f1,£2,£3;

char ft[30];

file floppy=open(8,15,EMPTY) ;
fscanf (floppy, "%d,%.,s%d, %d", &fl, ft,&£2,&£3);
fscanf reads from the error channel. First, a decimal number is
stored in f1. Then a comma must follow in the input, or an illegal
format error will result. A string is then read and stored in f£t. The
string is interrupted at the first comma. Then two int numbers are
read.
If the error messages reads, for example,

65, NO BLOCK, 10, 14
the following assignments will be made:

£1=65;

ft="NO BLOCK, ";

£2=10;
£3=14;

188

C

Abacus Software SUPER C for the C-128/C-64

7.2 The graphics library

The graphics functions of Super C create four-color graphics on the
40-column monitor with a resolution of 160x200 points. Each of
the four colors can be chosen from a palette of 16 colors. A point
can have one of four conditions. These conditions are called color
classes. You can assign each color class its own color with a
corresponding function. The color class zero has a special
significance; it is the color class which corresponds to the
background color of the screen. Points of this color cannot be seen.
You must therefore distinguish between color and color class. If
you change the color of a color class, all points in the graphic
which possess this color class will change.

A color class is of type int, whereby one of the lowest two bits
are relevant (0-3). This allows the four color classes to be
distinguished. A color is of type int, whereby only the lowest
four bits are relevant (0-15). This allows 16 colors to be displayed.

You do not need to pass the color number to the corresponding
function, however. In graphic.h there are macros defined
whose names correspond to the available colors. These macros will
then be replaced by the corresponding color number in the C

program:

#define black 0
#define white 1

#define lgrey 15

In addition, the external declarations of the graphics functions and
some system variables for the graphics are made in graphic.h.
If you want to use the graphic functions in a C program, insert this
with the following instruction in your source text:

#include "graphic.h"
Remember that this filename may have a device identifier. For users

of Super C V3, this will usually be h: because this file is found on
the RAM disk after boot-up.

189

Abacus Software SUPER C for the C-128/C-64

When linking the compiled program, you must then link the
graphics library 1ibgraph. 1 as well.

The possible points of the graphic screen are addressed through a
Cartesian coordinate system. The coordinates are of type int. The
visible drawing plane is a rectangle bounded by the points (0,0) and
(159,199). The lower left screen point is the point (0,0), the right
upper (159,199). In all functions you can also specify points which
lie outside the drawing surface. The effect of the function is then
partially visible at best. Points which lie outside the drawing plane
always have color class zero (background) when read. Write
accesses to points outside the drawing plane will be ignored.

Graphics and text are independent of each other. This means that
you can display text on the 40-column screen while you construct a
graphic, or vice versa. Only the background and border colors are
the same for text and graphics (color RAMs are different).

7.2.1 graphic(), graphon(), graphoff(),
isgraph()

void graphic()

With this function, which requires no arguments and does not
return anything, you can allocate the memory space required for
graphics. This memory space goes from the upper end of the C
program storage on. The exact length is determined by the
architecture of the video chip. If there is not enough space for the
graphics because your C program is too long, the error 7stack
overflow will be printed.

As you may already know, you can request memory with the
function alloc (). This memory is taken from the upper end of
the C storage down. The function graphic () does not take into
account whether you have already allocated memory with

alloc() ornot, because the graphic memory can lie only an one
specific location.

In order to eliminate complications, you should call graphic () at
the start of the C program and then allocate the required memory

190

Abacus Software SUPER C for the C-128/C-64

space. Since the graphics also use alloc () indirectly to allocate
the memory, you can also release the graphic storage with the
free () function.

void graphon()
The graphics mode on the 40-column monitor is enabled.
void graphoff ()

This function is the opposite of graphon (). The graphics mode
is switched off and the text mode is enabled.

int isgraph()

isgraph () returns 1 (true) is the graphics mode is currently
enabled. If the text mode is enables, isgraph () returns 0 (false).

7.2.2 backgr(), clrmap(), colors(), setcol()

void backgr(colex, colbk)
int colex,colbk;

This function is the same in text and graphics modes. With it the
border and background color (color class 0) can be set (40-column
screen only). The two arguments colex and colbk are colors,
this means you can use the macros defined in graphic.h for the
colors or pass the appropriate code.

backgr (dgrey, black):;

would set a dark grey border and a black background. The
argument colbk is the color of color class 0.

void clrmap (cnr)
int cnr;

clrmap () clears the graphic storage. A color class with which the

graphic memory will be filled can be passed as an argument.
Normally one uses the value 0 for the background color class.

191

Abacus Software SUPER C for the C-128/C-64

void colors(coll, col2, col3)
int coll,co0l2,co0l3;

With this function you set the three foreground colors. The
arguments are color values. You can therefore use the color macros
or specify the corresponding number. The three arguments
determine the colors of color classes 1 to 3.

colors(red, green, blue);

assigns red to the color class 1, green to color class 2, and the color
blue to color class 3. All points in the graphic which are stored in
one of the color classes change their color.

void setcol (cnr)
int cnr;

Here the color class in which most of the graphics functions draw
can be set. If you specify the color class O here, it means that points
will be set in the color of the background, which amounts to
erasing them.

7.2.3 dot(), dotin(), bdot()

void dot (x,y)
int x,y;

With dot () you can set the individual points of the graphic. The
color class of the points is set by setcol (). You can erase points
by first selecting the color class 0 with setcol (). If the point lies
outside the drawing surface, dot () has no effect.

int dotin(x,y)
int x,y;

dotin () is the reverse of dot (). dotin () returns the color
class of the point (x,y). If the point lies outside the drawing area, 0
will be returned.

192

-

Abacus Software SUPER C for the C-128/C-64

int bdot (x,y)
int x,y;

bdot () has almost the same effect as dot () . The point will only
be set, however, if the point previously had the color class 0, the
background color. bdot () returns the color class of the point
(x,y) before it was overwritten. With the help of dot () and
dotin () one could rewrite bdot () in the following manner:

int bdot (x,y)
int x,y;
{

int z;
if ((z=dotin(x,y))==0)
{ dot (x,y):
return 0;
}

return z;

}

The effect of bdot () is this: An object which you draw with
bdot () can be seen wherever there was previously background in

the graphic. This creates the impression that the object was drawn
behind the foreground.

193

Abacus Software SUPER C for the C-128/C-64

An example:

#include "stdio.h"
#include "graphic.h"

main ()
{ int 1i,3;
graphic(); graphon();
clrmap(0); colors(red, green, blue);
setcol(l);
for (i=80; i<=110; ++i)
for (j=80; j<=110; ++3)
dot (i,3);
setcol(2);
for (i=70; i<=140; ++i)
for (3=85; j<=130; ++3j)
bdot (i, j) ;
getchar() ;
}

First a red rectangle is drawn and then a green one. The green
rectangle would cover the red, but it will be drawn with bdot (),

creating the impression that the green rectangle was drawn behind
the red one.

194

C

Abacus Software SUPER C for the C-128/C-64

7.2.4 line(), bline(), mline(), oline()

void line(x1l,yl,x2,y2)
int x1,vy1,x2,y2;

With this function you can draw lines in the current color class. The
line begins at the point (x1,y1) and ends at the point (x2,y2). One
or both of the points can lie outside of the drawing surface. The line
is then only partially visible. If the line is drawn in color class 0, all
points which lie on the line will be erased.

void bline(xl,yl,x2,y2)
int x1,v1,x2,y2;

bline () works like bdot (). The line will be drawn from
(x1,y1) to (x2,y2), but only the points which previously lay in the
background.

The example program of bdot () can be formulated with 1ine ()
andbline () as follows: :

#include "stdio.h"
#include "graphic.h"
main ()

{

int i;

graphic(); graphon():;

clrmap(0); colors(red, green, blue);

setcol(l);

for (i=80; i<=110; ++1i)
line(i,80,i,110);

setcol (2);

for (i=70; i<=140; ++1i)
bline(i,85,1i,130);

getchar();

}

char *mline(x1l,yl,x2,y2,put)
int x1,yl,x2,y2;
char *put;

195

Abacus Software SUPER C for the C-128/C-64

First ml1ine () has the same function as 1ine () —it draws a line
from (x1,y1) to (x2,y2). In addition, all of the overwritten points
are placed in memory at the location put. The color class of the
points is stored. Since a point can have four different color classes,
you need 2 bits of storage per point. The memory required for the
entire line can be calculated so:

if ((dx=x1-x2)<0) dx=-dx;
if ((dy=yl-y2)<0) dy=-dy;
if (dx<dy) dx=dy;

memavail=((dx+1) *2+6) /8;

You can get the memory space for such lines in three ways. You
can declare appropriate objects which can store such lines. You can
allocate the memory space dynamically with alloc (). The third
possibility is to use unused graphic memory. In all cases you must
be sure that the memory area actually suffices for storing the line.
We will go into the unused graphic memory later.

mline () returns a pointer which points behind the memory in
which the overwritten line points were stored. In contiguous

memory the result of m1ine () can serve as the put argument for
another call.

char *oline(xl,vyl,x2,y2,get)
int x1,vyl,x2,y2;
char *get;

The function oline () is the opposite of mline (). get must
point to memory in which a line was stored with mline ().
oline () draws the stored line on the screen. The coordinates

should be the same as they were when calling ml1ine () or the
result will not make much sense.

oline () returns an address to the end of the memory area of the
line.

Here is a small example for mline () and oline (). The
following function draws a line from a set starting point (x1,y1).
You can move the end point across the screen with the help of the
cursor keys.

196

Abacus Software SUPER C for the C-128/C-64

drawline (x1,yl)
int x1,yl;
{ int x2,y2;
char buffer[100];

x2=y2=0;

setcol (3);

mline (x1,yl,x2,y2,buffer);
while ((c=getchar())!='\n")

{ oline(x1,yl,x2,y2,buffer);

switch (x)

{ case CRSUP: y2+=10; break;
case CRSDOWN: y2-=10; break;
case CRSRIGHT: x2+=10; break;
case CRSLEFT: x2-=10; break;

}
mline (x1,yl,x2,y2,buffer);

7.2.5 setplot(), plot()

void setplot (x,y)
int x,y;

setplot () sets the starting point for the plot function to the
specified coordinates.

void plot(x,y)
int x,y;

plot () draws a line from the set starting point to the specified
coordinates. The specified destination point becomes the starting
point for the next call of plot (). The starting point can be
changed with setplot ().

197

Abacus Software SUPER C for the C-128/C-64

7.2.6 shape(), fill()

void shape(xl,yl,x2,y2)
int x1,x2,y1,y2;

The rectangle designated by the diagonal end points (x1,y1) and
(x2,y2) will be filled with the current color class. The specified
rectangle need not necessarily lie within the drawing plane. For
example;

shape(-10,-20,30,40);
The following calls are identical:

shape (-10,40,30,-20) ;
shape (30,-20,-10,40) ;

void £ill(x,y)
int x,y;

This function fills a background surface which is bounded by
points of a different color class. The point (x,y) must lie within the
surface to be filled. If the point lies outside the drawing plane or is

not a point of the color class 0 (background), £i11 () does
nothing.

The figure which will be filled can naturally have bizarre shapes--it
need only be bordered.

198

Abacus Software SUPER C for the C-128/C-64

7.2.7 pushobj(), plotobj(), fplotobj(), bplotobj()

char *pushobj(xl,yl,x2,y2,put)
int x1,y1,x2,y2;
char *put;

pushobj () has an effect like that of m1ine (). The specified

coordinates determine a rectangle. This will then be placed at the

memory location put. The points of the rectangle are stored line by

line from top to bottom and from left to right. The color class zero

will be stored for points outside the drawing surface. Two bits are

;equired per point. The required memory space can be calculated as
ollows:

if ((dx=x1-x%2)<0) dx=-dx;
if ((dy=yl-y2)<0) dy=-dy;
memneed=++dx * ++dy;

memneed= (memneed*2+6) /8;

As with mline () you must always make sure that the memory
space provided suffices for the rectangle because otherwise the
program are data will may be overwritten.

pushobj (), like mline (), returns the address of the first
memory location no longer needed.

char *plotobj(xl,yl,x2,y2,get)
int x1,y2,x2,y1l;
char *get;

char *fplotobj(xl,yl,x2,y2,get)
char *bplotobj(xl,yl,x2,y2,get)

These three functions are the counter parts to pushob3j (). With
them you can merge a stored graphic object back into the graphic.
The argument get is the address of the memory in which
pushobj () placed the object. It thereby corresponds to the
argument put of the corresponding pushob3j () call. The points

199

Abacus Software SUPER C for the C-128/C-64

(x1,y1) and (x2,y2) are interpreted as the diagonal end points of a
rectangle. To prevent the graphic object from becoming distorted,
the rectangle must have the same dimensions as for the call to
pushobj (). The position of the rectangle can naturally be
selected differently. You should save the dimensions when storing
with pushobj () in order to call the corresponding plotob3j ()
functions correctly. These functions return as result the address
behind the object read so that if objects are stored sequentially in
memory, the address of the next object will be returned.

plotobj () draws the stored object on the screen exactly as it was
stored.

bplotobj () draws the object only at the places in the graphic
where the color class 0 (background) is present. The object will
thereby be drawn behind the current graphic.

fplotobj () draws only the points of the object which do not
have the color class 0. The object is thereby drawn in front of the
current graphic. At the places where the object has the color class 0,
the previous graphic appears, that is, the object is drawn in the
foreground. Here is an example of these functions:

#include "stdio.h"

#include "graphic.h"

main ()

{ char obj[1200]); /* 50*90*2-8=1200 */
graphic(); clrmap(0):;
colors (red, green,blue);
graphon() ;
setcol (1) ;shape (50, 60,90,140) ;
setcol (2) ;shape (52, 64,88,136);
setcol(1l) ;shape(63,86,77,114);
setcol (0) ;shape (65,90,75,110) ;
pushobj (45, 55, 95,145,0bj) ;

plotobj(-10,40,40,130,0b3j);
plotobj(-10,-10,40,80,0b3j);
bplotobj(65,90,115,180,0bj);
fplotobj(15,0,65,90,0b3j);
getchar () ;

200

Abacus Software SUPER C for the C-128/C-64

7.2.8 mask, bmap, mapv()

char mask;

char *bmap;

char mapv(x,y)
int x,y;

mapv () returns the byte in which the point (x,y) is located. The
variable mask is set at the same time. In it is the value in which only
the two bits are zero which in the result of mapv () represent the
point(x,y). In addition, the pointer bmap is set after mapv ()
which points to the location in the bit map in which the result of
mapv () stands.

If you are familiar with the architecture of the bit map storage
(multi-color graphics mode), you can manipulate the graphic
directly with this function. Normally you do not need this function.

The function dot in () could look like this in C;

dotin(x,y)
int x,y;
{ char c¢;

=mapv(x,y) ;

switch(mask ~ Oxff)

{ case 0xc0: c>>=2;
case 0x30: c>>=2;
case 0x0c: c>>=2;

}

return ¢ & 0x3;

201

Abacus Software SUPER C for the C-128/C-64

7.2.9 Layout of the graphics memory
Super C V2

$8c00-$8ffff Video RAM of the graphics (color storage)
$9000-$9bff Unused (free for graphic objects)

$9b00-$9bff Stack for fill

$9c00-$9fff Temporary color RAM (for graphic/text switch)
$a000-$cfff Graphics bit map

$d000-$dfff I/O range

$e000-$e3ff Video RAM of the text

The free RAM from $9000 to $9bff results from the architecture of
the C-64. This area will always be addressed as character ROM by
the video chip, so graphics here are not possible. The video RAM
for the graphics must therefore lie below $9000. You can use the
free memory for graphics objects. Make sure, however, that these
objects fit in the memory provided or your graphics will be
overwritten.

We cannot go into the significance of the individual memory
locations for the graphics. We recommend the relevant literature for
the C-64.

Super C V3
$c000-$dfff Bit map of the graphics
$6000-$e3ff Video RAM for graphics
$e400-$e4ff Stack for fill
$e500-$e8ff Unused (free for graphic objects)

Temporary -color RAM is not required because the C-128 has two
switchable color RAMs.

When using the unused memory, make sure that the area above
$e900 is not overwritten. This will destroy the RAM disk driver.

202

C

Abacus Software SUPER C for the C-128/C-64

7.2.10 Demo program

On your master disk there is a demonstration program called
cdemo. c. In this program you will find extensive applications of

the graphics routines. An analog clock, among other things, is
implemented.

The Super C V2 owners have a compiled version on their diskettes.
On Super C V3, the disk storage sufficed only for the source text.
You can start the demo with the following commands:

Master disk in drive a:

tcom g¥*

:cc cdemo.c hto.o h:error.e h:cdemo libc.l libgraph.l
:slow

:cdemo

> e D

The last command starts the demo. Note: The contents of the RAM
disk will be erased.

7.2.11 Storing the graphics

We want to present two useful routines heré. The functions load
and save a graphic. You can pass the name to the function along
with a device specifier:

static col[3]; /*contains the color classes*/

void writegr (name)
char name(];
{file f£d;
fd=open (name, "w") ; /*name no RETURN at -end */
fputf (col,sizeof(col), £fd);
if (ST)
error ("graphic file exists",20);
if (fputf (bitmap, 8000, £fd) !=8000)
error ("write error",21);
fclose (£d) ;

203

Abacus Software SUPER C for the C-128/C-64

void readgr (name)
char name([];
{ file f£d;
fd=fopen (name, *xr");
fgetf (col,sizeof (col), £4d):;
if (ST)
error ("graphic file not found",22);
if (fgetf (bitmap, 8000, £d) !=8000)
error ("read error", £d);
colors(col[0],col[1l],c0l[2]);

7.3 Math library

The math library requires the header file math.h. It makes the
appropriate function declarations. In addition the constants PI
(3.14...) and E (2.718...) are defined as macros.

The mathematical library is called 1ibmath. 1. It must be linked
to the program in the linker when using the mathematical functions.

7.3.1 sin(), cos()

double sin(d)
double d;

double cos(d)
double d;

The functions calculate the sine and cosine of the specified
arguments. Note that the arguments must have the type double.
sin (1) is not allowed. It must be sin(1.0).

The arguments must be given in radians.

204

Abacus Software SUPER C for the C-128/C-64

7.3.2 tan(), atan()

double tan(d)
double d;

double atan(d)
double d;

The functions calculate the tangent and the arctangent of the the
argument.

7.3.3 abs(), sgn(), rnd()

double abs(d)
double d;

double sgn(d)
double d;

double rnd(d)
double d;

abs () calculates the absolute quantity of the arguments.

sgn () calculates the sign function for the argument. The result
will be -1 for a negative argument, 1 for a positive argument, and 0
if the argument is zero.

rnd () creates random numbers between O and 1. The number one
is never reached. The argument determines the method of creation.
For negative arguments the argument will be enlisted to form a
random sequence. For positive arguments a random number results
which is dependent only on the last random number. The use is
similar to the BASIC function rnd.

205

Abacus Software SUPER C for the C-128/C-64

7.3.3 sqr(), sqrt()

double sqgr(d)
double d;

double sqrt (d)
double d;

The function sqr (square) calculates the square of the argument.
The function sqrt (square root) calculates the square root of the

argument. Note that the root of only positive numbers can be taken.
Otherwise an ?illegal quantity error will appear.

7.3.4 log(), exp()

double log(d)
double d;

double exp(d)
double d;

log () calculates the logarithm base e. This number is defined in
the macro E. The logarithm can be used only on positive numbers.

You can calculate logarithms of other bases like so:
log(x)/log(b)
where x is the argument and b is the base.

exp (x) calculates the number e to the x power. The
exponentiation to other bases is done by:

exp (log (b) *x)

where b is the base and x is the exponent. This construction is also
suited for general exponentiation. The calculation is admittedly
rather inaccurate so that only the accuracy of float can be
guaranteed.

206

Abacus Software SUPER C for the C-128/C-64

7.4 ctype.h

This header file does not correspond to any library. In it only a set
of macros are defined which can be used like functions.

int isupper{c)
char c¢;

Returns the value 1 (true) if the argument is an upper case letter,
else 0 (false).

int islower (c)
char c¢;

Returns the value 1 if the argument is a lower case letter, else 0.

int isalpha(c)
char c;

Returns the value 1 if the argument is a letter, else 0. The
underscore character is counted as a letter.

int isdigit (c)
char ¢;

Returns the value 1 if the argument is a digit, else 0.

int isspace(c)
char c;

Retumns the value 1 if the argument is a space, a shifted space, a
tab, a new line character, or a shifted new line character.

char tolower(c)
char c;

This function converts upper case letters to lower case letters. If the

argument is not an upper case letter, the argument will be returned
unchanged.

207

Abacus Software SUPER C for the C-128/C-64

char toupper(c)
char c;

This function converts lower case letters to upper case letters. It C
reacts like tolower.

208

Abacus Software SUPER C for the C-128/C-64

8.0 C language description

8.1 Introduction

In this chapter we will discuss the entire range of the C language
and the Super C language compiler. Differences between this
compiler and the language as described by Kernighan and Ritchie
will be pointed out. In general however, most compilers are quite
compatible, including this one. C programs can be directly
transported except for a few details which usually result from the
different hardware configurations.

8.2 Text conventions

The source text of a C program consists of six classes: names
(identifiers), keywords, constants, strings, operators, and
separators. Spaces, line separators, and comments belong to the
separators. This is skipped during the compilation. They serve
only to separate neighboring words, constants, etc., where the
compiler cannot recognize the relationship without a separation. In
each case the compiler tries to interpret the longest string of
characters possible as a word, constant, etc.

8.2.1. Comments

Comments begin with /* and end with */. They cannot be
nested.

8.2.2 Names

An identifier, or name, begins, as in almost every language, with a
letter and can then consists of an arbitrarily long sequence of letters
or digits. The _ (underscore) character also counts as a letter.

Upper and lower case are distinguished and may be mixed in a
name.

209

Abacus Software SUPER C for the C-128/C-64

The Super C compiler use only the first eight letters to differentiate
between names, however. For external names, which must be
processed by the LINKER, the same conventions apply. In other
compilers this can be different.

8.2.3 Keywords

These are names which have a predefined significance. They may
not be used as identifiers:

auto break case char continue
default do double else entry
enum extern float for goto

if int long register return
short sizeof static struct switch
typedef union unsigned void while

No distinction between upper and lower case is made for
keywords. AUTO is accepted as auto just as is autO. The
keywords entry, fortran, asm have no meaning in Super C.

8.2.4 Constants

8.2.4.1 Integer constants

Integer constants are whole-number constants. They consist of a
sequence of digits. It is interpreted as a decimal number and has the
type int . If a digit string starts with O, the digits following it are
interpreted as an octal number. The digits 8 and 9 are interpreted as
octal 10 and 11 and are thus allowed.

If a digit string begins with Ox or 0X, the following digits are
treated as hexadecimal number. Here the letters a-f or A-F apply as
the values 10-15. In Super C, all integer constants are automatically
converted to the type long if their decimal value is greater than
32767. If an 1 or L stands behind the integer constant, the constant
is always converted to type long.

210

Abacus Software SUPER C for the C-128/C-64

8.2.4.2 Char constants

A char constant consists of a character enclosed in single quotes,
such as 'a'. The value of the constant is the value from the
character set of the C-64, here 65. The following symbols also
count as single characters:

\b backspace in Super C: DELETE $14

\t tab in SuperC: SPACE $20

\n line separator in Super C: CARRIAGE RETURN $0d

\r carriage return in Super C: SHIFT RETURN $8d

\e escape in Super C: ESCAPE $1b

\\

*!

\ " "

\0 $00

\ddd d are octal digits, returns the value of the constant
0ddd, for example \ 24 corresponds to \b in Super C
(see character set table)

All characters in the character set can be accessed with \ddd. Ifa
character other than the ones given here is placed after the escape
code character, the escape code symbol is ignored.

8.2.4.3 Floating-point constants

A floating-point constant consists of a sequence of digits which
represent the integer portion of the constant, followed by a decimal
point and a sequence of digits for the fractional portion. Finally
comes the exponent, given with e or E and a sequence of digits
with an optional sign. Either a decimal point or an exponent must
be present for the compiler to recognize the number as
floating-point. Floating-point constants have the type double.

211

Abacus Software SUPER C for the C-128/C-64

8.2.5 Strings

As already mentioned, a string is a string of characters. It consists
of a sequence of characters enclosed in double quotes. The number
of characters in a string constant can vary between 0 and 254 in
Super C. A string is viewed as an array of characters with storage
class static and intialized with the given characters. The
compiler automatically appends a \O character at the end of the
string in order to recognize this.

All of the escape code symbol combinations in Section 8.2.4.2 can
also be used within a string. If an escape code symbol stands at the
end of the line in the source text, it is ignored and the compiler
skips the end of the line, meaning that the string can be continued
on the next line.

8.2.6 Example

Here are some examples and their interpretations:

2 -> 2 int
2L -> 2 long
010 -> 8 int
Oxffff -> 65535 long
1.5 -> 1.5 double
1.5E2 -> 1500.0 double
1.5¢-2 -> 0.015 double
.5 -> 0.5 double
le5 -> 100000 double
LA -> string "\0

"abc\n" -> string abc\n\0

212

Abacus Software SUPER C for the C-128/C-64

8.3 Object names

To clarify this term, we must first clarify the term "object." By
object we mean a certain contiguous area of memory with a specific
length within a C program. In BASIC an object is comparable to a
variable.

As a rule each object has a name. With this name you can access
that object, by writing something to it or reading something from it.
An object in C has two attributes: the storage class and the type.
The location and lifetime of an object are determined by its storage
class. The type of the object determines the interpretation of the
value from the memory area of the object.

In order to inform the compiler what storage class and what type
the object has, the name of the object must be declared. If an object
is created at a declaration, then it is called a definition.

8.3.1 Storage classes

There are four storage classes in C: auto, static, extern,
and register. Objects with the storage class auto or
register are local. The exist only as long as execution in the
block in which they were defined continues. When the block is
exited, the objects are erased. The compiler tries to place
register objects in hardware registers in order to make faster
access possible. If all hardware registers are used, register variables
are automatically converted to auto. In Super C, register variables

are always converted to auto variables because the processor has
no registers free.

Variables defined as static are accessible only in the block in
which they were defined. These objects remain, however, and
retain their old values when execution returns to the same block.

Objects declared as extern remain available throughout the
program. External variables can also be used by separately
compiled program fragments. Static objects which are defined
outside of a block are also available throughout the entire program,
but are available only in the program in which they were defined.

213

Abacus Software SUPER C for the C-128/C-64

8.3.2 Types
The following types are available in C:

char objects can accept a character from the character set.
The value of a character is always positive after its definition.
char objects can also be assigned integer numbers.

Other integral types are short int, int and long int.
short int can be abbreviated short and long int to
long. Longer types may not have a smaller value range than
shorter. For this reason all types can be implemented with the
same size on a compiler. In Super C, short and int are the
same and long is twice as large. All integer types can also be
defined as unsigned, meaning that their value will be always be
interpreted as positive. unsigned char can be defined, but
is not different from char in Super C because the definition of
all characters of the character set is positive and the set fills the
entire value range of a char variable.

float and double are floating-point types. In Super C
double is twice as large as float.

The type void can only be declared for the result of
functions. This means that the function returns no type,
meaning that it is a procedure in the Pascal sense.

'ghse tgpe enum indicates an enumeration type (see Section
.8.10).

Arrays can be created of all types. An array contains
several objects of the same type (array elements).

One can define a pointer to a certain object.

Functions can be programmed which return simple types as
results.

You can declare structures (struct) which contain a group
of objects of various types, or variants (union) which
contain one object of a group of various types.

214

Abacus Software SUPER C for the C-128/C-64

These constructions can also be nested.

8.3.3 Hardware-specific type data

The special type properties of Super C are listed in the following
table. This can naturally be different in other compilers. The only
guarantee is that the value range of short <= int <= long
and that of float <= double.

Type (written out) Abbrev, Value range Size
short int short -32768 to +32767 2
int - -32768 to 432767 2
long int long -2147483648 to 2147483647 4
unsigned short int unsigned short 0 to 65535 2
unsigned int unsigned 0 to 65535 2
unsigned long int wunsigned long 0 to 4294967295 4
char - a character from the 1
unsigned char - character set or 0 to 255 1
float - +-9.09E-77 to +/-6.78e+74 4
accurate to 6 or 7 places
long float double +-9.09E-77 to +/-6.78e+74 8

accurate to 16 places

215

Abacus Software SUPER C for the C-128/C-64

8.4 Objects and L-values

An object is, as mentioned, a memory area. An L-value is an
expression which denotes an object. The simplest L-value is a name
which is defined. In C however an ex%ression can also yield an
L-value. This is done with pointers. If E, for example, contains a

pointer to the type int, *E is an L-value and refers to the int
object to which E points.

8.5 Conversion of a type

Various type conversions are performed depending on the
operators.

8.5.1 Integer values between each other

The conversion of integer values between each other is done so that
the sign is retained when converting to a longer integer value. The
most-significant bits are cut off when converting to a smaller type.

Converting a signed integer value to an unsigned value succeeds
only through different interpretation. Negative values are
represented in two's complement in Super C.

8.5.2 Floating-point values between each other

Floating-point calculations occur only in the type double in C.
float values are automatically converted to double. Ifa
floating-point value is assigned to a float variable, it is first

converted to £1oat . This is done by rounding the mantissa.

Converting from float to double is done by appending
zero-bits.

216

Abacus Software SUPER C for the C-128/C-64

8.5.3 Floating-point and integer values

The manner in which floating-point and integer values are
converted among each other depends on the compiler. The only
guarantee is that if the floating-point number has a reasonable

number, it can be converted. If the floating-point number cannot fit
in the integer number, however, the result is not guaranteed.

8.5.4 Addresses and integer values

The conversion of an integer value to an address and back is
performed without change. Only the type of the value changes.
This conversion is not performed automatically.

8.5.5 The standard conversions

The "standard conversions" are performed by most of the
operators:

1. char or short operands are converted to int,
float todouble operands.

2. if one of the two operands is double, the other is
converted to double and the result is double.

3. if one of the operands is 1long, the other operand is
converted to long and the resultis long.

4. if one of the operands is unsigned, the other operand
is converted and the result is unsigned.

5. if both operators are of type int, the result is also int .

217

Abacus Software SUPER C for the C-128/C-64

8.6 Syntax notation

For a better understanding of the next section, we offer a C
grammar. At the start of each grammar definition stands a name
which is defined. Usually, several alternatives follow with which
the name can be replaced. Letters and characters in bold face must
not be changed. Names in normal type can be replaced by the
corresponding definition of a name. An alternative stands in each
line within a definition.

Sections which are enclosed in square brackets [] can be omitted.
Sections in braces { } can be repeated.

8.7 Expressions

An expression consists of operands and operators. a+b is an
expression. a and b are the operands of the operator +.

A distinction is made between unary and binary operators. Unary
operators operate on only one operand, binary on two. A binary
operator stands between the two operands.

Each operator has a set precedence to determine the order in which
the operators are executed. If operators having the same precedence
stand are on the same line, the processing direction determines the
order of evaluation (left to right or right to left).

Apart from the precedence, the order of processing is not defined,
meaning that it is up to the compiler to determine how expression
fragments will be nested in order to make optimizations, even if the
expression fragments create side effects through assignments, etc.
Associative and commutative operators can be switched arbitarily,
even when explicit parentheses are present. A specific order of
evqhﬁtion can be guaranteed only by assigning (temporary)
variables.

The handling of errors during the evaluation of an expression

depends on the compiler in question. In general, an overflow in an
integer operation is ignored.

218

Abacus Software SUPER C for the C-128/C-64

8.7.1 Simple expressions

A simple expression (operand) is, for example, a name or
constant (including string constant). First the syntactic definition:

operand:
name
constant
string
(expression)
operand ([argument list])
operand [expression]
operand . name
operand -> name

argument list
assignment { , assignment }

A name is usually an L-value. If it refers to a function or array,
however, it is to be treated as a constant which represents the
address of the function of the array. A name from an enum
specifier is only a constant. The name of a structure of variant, on
the other hand, is an L-value.

An expression enclosed in parentheses is a simple expression.
Because the parentheses have highest precedence, the expression
within the parentheses is evaluated first. The compiler can remove
the parentheses in associative expressions such as a+(b+c),
however.

If a parenthesized argument list follows a simple expression, the
whole thing is handled as a simple expression, a function call. The
left part then represent the address of the function. In the simplest
case this is the name of the function. The list in the parentheses
contains the arguments which are to be passed to the function. The
arguments can themselves be expressions.

The use of a free comma (not parenthesized) is not allowed because
itis found in the above definition assignment. If the type of such an
expression is char or short it is converted to int. The type
float is converted to double. The argument list can also be
empty. A function call is not an L-value.

219

Abacus Software SUPER C for the C-128/C-64

If an expression in square brackets follows a simple expression,
this is again a simple expression. The left part then represents the
address of an array. In the simplest case this can be the name of the
array. The whole thing is the selection of an array element. The
expression must have an integer value. The whole expression is an
L-value. Internally, the simple expression a[b] is converted to
(*(a+(b))). To understand this you must first understand the
operators * and +.

The arguments are passed to the function exclusively by copying
the value (call by value). The parameters of the function are
simply assigned the values of the arguments. The function
parameters can be changed as desired without changing the original
arguments. This also applies to pointer values (addresses). The
object can be changed from the function via the address, however.

The order in which the arguments are evaluated is not defined.
Watch out for side effects, such as with assignments in arguments.

Functions can also be called recursively, meaning that a function
calls itself. An argument of a function can be a call to the same
function.

If a simple expression is followed by a . (period) character or by an
arrow (-> from a minus sign and the greater-than character), it is
treated as a reference to a structure or variant. This is a simple
expression. If a . (period) is present, the expression on the left
should refer to a structure or union. If an arrow is present, an
address of a structure or union should be on the left. The right
portion must always be the name of a structure or union
component. The whole expression represents the selected
component as object and is therefore an L-value. A->B is
internally replaced by (*A).B.

220

)

Abacus Software SUPER C for the C-128/C-64

8.7.2 Unary Operators

Unary operators are evaluated from left to right. None of the
operators yield an L-value except for *.

unary:
operand
operand ++
operand --
* unary
& unary
- unary
! unary
~ unary
++ unary
-- unary

(type spec) unary
sizeof unary

sizeof (type spec)

The operand of the unary operator * must be an address or a
pointer. The result is an L-value which refers to the object to which
the address points.

The unary operator & requires an L-value as operand. The result is
the address of the object referred to. This operator is to a degree the
opposite of the * operator.

The unary operator - returns the negative value of its operand. With
integer values the negative is computed using two's complement.
This also applies for unsigned values. There is no unary +
operator in C.

The ! operator returns the logical negation. The logical value zero is
false, the logical value of all other values is true. If the operand is
zero, ! returns the value 1; if the operand is not zero, ! returns
zero.

The ~ operator inverts the individual bits of an integer value and

thereby computes its one's complement. The operand must have an
integral type.

221

Abacus Software SUPER C for the C-128/C-64

The operators ++ and -- add or subtract 1 from their operand
(increment, decrement). The operands must be L-values. The result
of the expression depends on whether the operator is placed before
or after the operand. If the operator is in front, the result is the
value of the object after the increment or decrement, while if the
operator is behind, the object is incremented or decremented after
the evaluation.

Converting a value from one type to another is done with the
cast. A type specifier in parentheses stands in front of the
operand. The operand is then converted to the given type. An
example of the type specifiers is found in Section 8.8.12.

The sizeof operator returns the size of the operand. Applied to
an L-value, one receives the length of the designated object. If the
operator is applied to other values, one receives the length of the
type of the value. A type can be directly given by placing a type
specifier in parentheses. The length is measured in bytes. The
operation represents an int constant with the length as the value.

8.7.3 Multiplication, Division

The operators * / % fall into this category. The are processed from
left to right and the standard conversions are performed.

multiplication:
unary
multiplication * unary
multiplication / unary
multiplication % unary

The binary * operator denotes multiplication. It is commutative and
associative.

The / operator denotes division, the % operator the remainder of
the corresponding division. On most compilers the remainder has
the same sign as the dividend. If the divisor is not zero,
(A/B) *B+A%B-A is equal to zero.

The % operator may be used only on integer values.

222

Abacus Software SUPER C for the C-128/C-64

8.7.4 Addition, subtraction

The operators + and - are evaluated from left to right. The standard
conversions are performed. Addresses and pointers can also be
combined.

addition:
multiplication
addition + multiplication
addition - multiplication

+ denotes addition, - subtraction. The + operator is commutative
and associative so that rearrangement by the compiler are possible.

A pointer value and an integer value can be added. It is then
assumed that the pointer points to an array. The result is an address
which points as many elements farther as the integer value is large.
If A is an array, A+1 is the address to element 1 (second element)
of the array.

An integer value can also be subtracted from a pointer value. As a
result one receives an address which points the appropriate number
of elements previous. The pointer value must always be on the left.

Two pointer values can be subtracted from each other. The result is
the number of array elements between the addresses. A necessary
condition for a reasonable result is that both pointers point in the
same array. This is not checked by the compiler.

223

Abacus Software SUPER C for the C-128/C-64

8.7.5 Shift operations

The shift operators << and >> are evaluated from left to right. The

two operands must be of integral type. The result has the type of
the left operand.

shift:
addition
shift << addition
shift >> addition

The value of A<<B is the bit pattern of A shifted B bits to the left.
Zero-bits are shifted in on the right. A>>B is, correspondingly, the
bit pattern of A shifted right. If A is an unsigned value, zero-bits are
shifted in from the left. It is dependent on the system whether
zero-bits or the sign bit will be shifted in from left if the value is
signed. Sign bits are shifted in on the Super C compiler.

8.7.6 Comparisons

Comparisons are evaluated from left to right. This property is
mentioned as a warning before use. A<B<C does not yield the
expected result. The comparison A<B returns the result O for false,

1 for true. Then a comparison is made to see if C is greater than 0
or 1.

comparison:
shift
comparison < shift
comparison <= shift
comparison > shift
comparison >= shift

The operators < (less than), <= (less than or equal), > (greater
than), and >= (greater than or equal) return 0 for false and 1 for
true. The result type is always int. The standard conversions are
performed before the comparison.

224

Abacus Software SUPER C for the C-128/C-64

Pointer values may also be compared whereby there machine
addresses are used. Such comparisons are only portable to other
systems when both pointers point in the same array.

8.7.7 Equivalence comparisons

The compare operators == (equal) and != (not equal) behave like
the compare operators above. They have a lower precedence,
however, so that the following expression makes sense: A<B ==
C>D returns the value 1 if A<B and C>D are both false or both true.

equivalence:
comparison
equivalence == comparison
equivalence != comparison

Pointer values may also be compared with integer values. This is
not portable, however. The only guarantee is that the pointer value
will never be equal to the integer value O if the pointer actually
points to an object. Pointers which are not supposed to point to any
object can be assigned the value 0. The constant NIL is defined as
an address to no object in the standard declarations of Super C.
You are warned against an access to such an address since this
processor register can be changed, leading to a system crash.
Before each address it should be ascertained that the pointer value
does not equal NIL.

225

Abacus Software SUPER C for the C-128/C-64

8.7.8 Bit operations

The operators & (and operation), ~ (exclusive or), and | (or)
combine their operands bit by bit. The operands must be integer
values. The standard conversions are performed.

bitwise-and:

equivalence { & equivalence }
bitwise-xor:

bitwise-and { ~ bitwise-and }
bitwise-or:

bitwise-xor { | bitwise-xor }

The bit operators are commutative and associative and can be
rearranged by the compiler.

If a and b are corresponding bits of the left and right operands,
then:

a AND b is 1 if both bits aand b are 1
a OR bis 1 is at least one of the two bits is 1
aXORbis 1 if a and b are different (not both 1 or both 0)

8.7.9 Logical operations

There are two logical operations in C, && (AND) and | | (OR).
The operands are guaranteed to be evaluated from left to right. The
result of the && operator is 1 if both operands are non-zero, else
the result is 0.

log-and:
bitwise-or { && bitwise-or }

The second operand is evaluated only if the left operand is not zero.

The result of the | | operator is zero if both operands are zero, else
it is one. The second operand is evaluated only if the first is zero.

226

Abacus Software SUPER C for the C-128/C-64

log-or:
log-and { || log-and }

The operands can be completely different types, but they must
permit a comparison to zero. The result type is int.

8.7.10 Condition evaluation

selection:
log-or
log-or ? selection : selection

The first expression is evaluated. If its value is not zero, the second
expression is evaluated, otherwise the third. Only one of the last
two operands is evaluated. The result is the value of the evaluated
expression. The standard conversions are performed on the last two
expressions if possible, in order to get the same result type in both
cases. Otherwise the result types must be two addresses which
point to objects of the same type.

8.7.11 Assignments

All assignment operations are evaluated from right to left. The left
operand of an assignment must be an L-value. The type of the
result is always that of the left operand. The result is the value
assigned.

assignment:
selection
unary = assignment
unary *= assignment
unary /= assignment
unary %= assignment
unary += assignment
unary -= assignment
unary >>= assignment
unary <<= assignment
unary &= assignment
unary ~= assignment
unary |= assignment

227

Abacus Software SUPER C for the C-128/C-64

With the simple assignment = the value of the right operand is
converted to the type of the left and then assigned to the object to
which the L-value refers.

The result of a complex assignment of the form A op= B is the
same as that of the assignment A = A op (B). A is evaluated only
once however. The left operand may be a pointer with += and -=.

A C compiler allows assignments of pointer values to integer
objects and vice versa, as well as assignments of pointer values
which point to objects of different types. This assignment is done
purely by copying the value and may not be portable to other
machines. The only guarantee is the portability of assigning the
constant zero (NIL) to a pointer value.

8.7.12 Lists

Two expressions separated by a comma are evaluated from left to
right. The result is the value of the right expression.

expression:
assignment { , assignment }

In a situation in which the comma has another meaning, such as in
an argument list or in initializations, the comma operator can be
used only in parenthesis. Thus the following function call

£ (4, (a=3,a*2),6)

has the arguments 4, 6, and 6.

228

Abacus Software SUPER C for the C-128/C-64

8.8 Declarations

A declaration determines how names will be processed by the
compiler. The name is connected to a type and a storage class in a
declaration. The compiler can then recognize what type the object is
and to which the name refers. If an object is created in a declaration
it is called a definition.

Declarations with the storage class extern do not reserve any
memory space. The serve only to make objects known prior to their
definition or to refer to an object which is defined in another
separately compiled file.

A C program consists of a sequence of global declarations. The
definition of the function main must be found in one of several
separately compiled program segments. The execution of the C
program begins and ends with this function.

Names can also be declared locally, meaning that they are declared
within a block in a function definition.

c-program:
{ global }

global:
function-definition
global-definition ;
declaration ;
type declaration ;
local:

local-definition ;

declaration ;
type-declaration ;

229

Abacus Software SUPER C for the C-128/C-64

8.8.1 Storage classes

There are three storage classes for definitions in C: auto,

static, and register, which were already described in
section 8.3.1.

storage-class:
auto
register
static

The & operator cannot be used on objects of storage class
register. As arule, the register storage class is used to
make programs faster and shorter. The microprocessor on the C-64
does not allow us to make use of this storage class, however. If no
storage class is given, auto is assumed inside a block. Outside a
block the declaration is assumed to be a global definition.

8.8.2 Types
The following may be used as type names:

type-name:
[unsigned] [short] int
[unsigned] [long] int
[unsigned] short
[unsigned] long
[unsigned] char
[long] float
double
void
struct-union-type-name
enum-type-name

typdef-name

A declaration may contain only one type name. If the type name is
missing, int is assumed.

230

C

Abacus Software SUPER C for the C-128/C-64

8.8.3 Data definitions

Data definitions serve to create data objects. The definitions contain
storage class and type specifiers and a sequence of declarators.
Each declarator contains a name which is to be declared. The
defined objects can be initialized to a certain value in the definition.
Local objects can initialized only with simple types.

global-definition:
static [type-name] i-declarators
type-name [static] i-declarators

local-definition:
storage-class [type-name] i-declarators
type-name [storage-class] i-declarators

declaration:
extern [type-name] declarators
type-name extern declarators

Declarations declare a sequence of names in declarators. They
cannot be initialized. A corresponding data definition must be
located in some part of the C program.

8.8.4 Type declarations

type-declaration:
typedef [type-name] declarators
type-name typedef declarators
struct-union-type-name

The names contained in the declarators are declared as type names
(typedef-name). The type represented is what was declared.

A struct-union-type-name also applies as a type
declaration in case a struct-name or union-name is
defined in it. This definition assigns a specific configuration of
components to the name.

231

Abacus Software SUPER C for the C-128/C-64

8.8.5 Functions

function-definition:
static [type-name] f-declarator par-declaration block
type-name [static] f-declarator par-declaration block

Functions can have the storage class static or they may be
global. A function definition consists of one function declarator, the
parameter declaration, and the function block.

8.8.6 Declarators

Declarators serve to declare a name. The name is used in declarator
as it could be used in an expression. If the name is used in an
expression exactly as in the declarator, the expression has the same
type as the type name given in the declaration. This may seem
peculiar, but is absolutely unambiguous.

declarator:
{ * } declarator
(declarator)
declarator ()
declarator [[constant]]
name

It is easy to see that the simplest declarator is a name:

type name;
defines name as an object of type type. If name is supposed to be
a pointer to an object of type type, a * character must be added in
front of name:

type * name;
One can see that if the expression *name is used in an expression,
its type is type because the expression refers to the object to which
name points.

If an array is to be declared, it looks like:

232

Abacus Software SUPER C for the C-128/C-64

type name[constant]

name is then a vector with as many elements as the constant
indicates. name alone is the constant address to the start of this
array and not an L-value.

Functions are declared by placing parentheses after the name:
type name ()

name is now a function which returns a value of type type. The
definition of a function is discussed in the next section. A name
which is defined as a function represents the constant address of the
function.

These various declarators can be nested in order to declare more
complex types. Parenthesis have a higher precedence than the *
character. The declarator can also be parenthesized to change the
precedence.

Let us take a look at the following declarations:

int (*£)), *g(), *h[5];
f is defined as a pointer to a function which returns a value of type
int. g is a function which returns a pointer value to an int

object. h is an array with five elements which are all pointers to
objects of type int . Experience has shown that it can be very

difficult to determine the type from a declaration at the start.
The following syntax definitions finish up the normal declarations:

i-declarators:
declarator [=initializer] {,declarator [=initializer]}

declarators:
declarator {, declarator}

233

Abacus Software SUPER C for the C-128/C-64

8.8.7 Function declarator

A function declarator is only slightly different from a normal
declarator. Instead of a name, a name with a parameter list must be
given.

f-declarator:
{ * } f-declarator
(f-declarator)
f-declarator ()
f-declarator [[constant]]
name (name-list)

name-list:
[name]
name { , name}

The parenthesization of the name list identifies the name as a
function. The name list can also be empty. It specifies the
parameters.

8.8.8 Parameter declaration

par-declaration:
{ register [type-name] declarators ; }
{ type-name [ragister] declarators ; }

The parameter declaration declares the types of the parameters in the
order in which they occur in the name list of the function declarator.
The objects generated can be used like auto or register
objects. They are initialized with the values of the arguments when
the function is called.

Parameters of type char are converted to int, type float
becomes double automatically. Parameters of type array

become type pointer because the array can be used like a pointer as
a parameter; it's an L-value.

234

Abacus Software SUPER C for the C-128/C-64

8.8.9 Structures and unions

Structures and unions are declared like other objects. A special
type-name is used for them:

struct-union-type-name:
struct [struct-name] {{ c-declaration }}
struct struct-name
union [union-name] {{ c-declaration }}
union union-name

c-declaration:
type-name c-declarator {, c-declarator} ;

c-declarator:
declarator
[declarator] : constant

The component declarations in braces are call struct or
union specifiers. A struct orunion name can always be
given. If a specifier follows it, the name is defined by the specifier.
Only the name need by given for a new declaration.

A component is declared like a normal declaration. The option in

italics to declare bit fields as components is not possible in Super
C.

A structure or variant may be declared as a component. If the
structure or variant is of the same type as that being declared, only
pointer may be defined.

A specifier is not allowed within a component declaration. The

specifier must be defined outside the structure with its own
struct name.

235

Abacus Software SUPER C for the C-128/C-64

8.8.10 Enumeration type

The enumeration type enum has its own type name.

enum-type-name:

enum [enum-name] { enumerator {, enumerator } }
aenum enum-name

enumerator:
name [= constant]

The specifier can be defined via a name as with structures. The
constants of the enumeration type are enumerated in the specifier.
The constants are numbered from 1 on. If a constant is given
explicitly in an enum, it is accepted. The next enum constants
will be defined beginning with the next highest value.

Objects of the enumeration type behave like int objects. They

serve only to make a program more readable and understandable.

The programmer must ensure that an object of the enumeration type

i; assigned a value from the specifier. The compiler does not check
is.

The defined constants can be used in the program text like int
constants.

8.8.11 Initializations

initializer:
assignment
constant
{ initializer {, initializer} }

Simple types are initialized by appending an equals sign and a
constant to their declarator. Complex types like arrays and
components are initialized by a list of constants enclosed in braces.
This procedure can be nested as desired.

236

Abacus Software SUPER C for the C-128/C-64

int x [3] [3]= { {0,1,2} ,
{3,4,5} ,
{6,7,8}};

This definition initializes a two-dimensional array with three
elements in each dimension. The values 0,1, and 2 are assigned to
the elements x[0][0], x[0][1], and x[0][2], and so on.

The list for arrays and structures need not be complete. If fewer

clements than necessary are given, the rest are automatically
initialized with zero.

If all elements or components are initialized, one can eliminate the
nested listing. The above definition can also look like:
int x (3] (3]={(0,1,2,3,4,5,6,7,8};

The compiler assigns the values to the elements or components in
order.

Functions and variants cannot be initialized. Only simple types of
auto objects can be initialized. In contrast to other initializations,
however, entire expressions can be initialized (assignment in the
syntax definition).

Static and global objects are automatically initialized to zero if no

other initializer is given. auto objects without initializer have an
undefined value.

237

Abacus Software SUPER C for the C-128/C-64

8.8.12 Abstract declarators

Abstract declarators serve to specify a type in a CAST.

type-spec:
type-name [a-declarator]

a-declarator:
{ * } a-declarator
(a-declarator)
a-declarator ()
a-declarator [[constant]]

An abstract declarator does not contain a name. The compiler can
always determine where the name would have stood, so this
construction is unambiguous.

int *{()

is, according to this, a function which returns a pointer to int.

8.9 Statements

Statements are normally executed in sequence; the execution path is
indicated if this is not the case.

statement:
label statement ;
block
expression ;
while([expression]) statement
do statement while([expression]) ;
fox([expression];[expression];[expression]) statement
switch(expression) block
i £(expression) statement [else statement]
break;
continue;
return [expression] ;
goto name ;
H

238

Abacus Software SUPER C for the C-128/C-64

label:
name : [label]
case constant : [label]
default : [label]
block:
{ { local } { statement } }

The most common form of a statement is the expression. It
normally consists of assignments or function calls.

8.9.1 Blocks

A entire block can also be a statement. Local definitions can again
be used in a block. This then applies only within the block. A block
is usually used to gather several instructions together, such as
behind a loop.

8.9.2 while statement

The while statement has the form:

while (exf)'tession)
statement

The statement is repeated until the value of the expression is zero.

The expression is always evaluated before the statement. If the
expression is omitted, the loop is infinite.

239

Abacus Software SUPER C for the C-128/C-64

8.9.3 do statement
The do statement has the form:

do
statement
while(expression);

The statement is repeated until the expression is zero. The
expression is always evaluated after the statement. Here the
statement is executed at least once, whereas it may never be
executed with while.

8.9.4 for statement
The for statement has the following form:

for (expressionl; expression2; expression3)
statement

It can be directly converted to a while statement:

expressionl;

while(expression2)

{ statement
expression3;

All three expressions can be omitted. The semicolons must remain
in the parentheses, however. If the second expression is omitted,
the loop is infinite.

240

Abacus Software SUPER C for the C-128/C-64

8.9.5 if statement
An if statement can have an option else section:

if(expression)
statement
or:
if(expression)
statement
else
statement

The expression is evaluated in both cases. If the value of the
expression is not zero, then the statement behind the i£(...) is
executed. If the value is zero, the first statement is skipped and the
statement behind else (if present) is executed. If several i f
instructions are nested, an else is always paired with the last i £.

8.9.6 switch statement

switch(expression)
block

The switch statement causes the execution of the program to
branch to one of several instructions. First, the expression is
evaluated. It must return an integer value. In Super C, addresses
can also be given. case labels can stand in the block. Behind each
of these labels is a constant. If the constant agrees with the value of
the expression, execution continues behind that label. A constant
should be found only once behind a case label. The constants can
also be constant expressions. If no constant matches the value of
the expression, execution continues behind the default label. If
this is not present, the whole block is skipped.

In contrast to other languages, execution starts after the matching
label and continues to the end of the block. A break statement

can be used to prevent this. The default label need not come at
the end of the block.

241

Abacus Software SUPER C for the C-128/C-64

The block can contain variables. These will not be initialized,
however.

8.9.7 break statement

The last do, while, for, or switch statement can be exited
with a break statement. The execution of the program continued
after the interrupted statement.

8.9.8 continue statement

The continue statement refers to the last do, for, or
while statement. In these loops, continue causes a jump the
location which determines whether the loop will be repeated or not.
8.9.9 return statement

The return statement causes execution to return from a function
call. Execution continues after the function call. An expression may
stand behind return. The expression is converted to the type

given in the definition of the function.

If the program execution reaches the end of function block, the
compiler supplies a return statement without expression.

8.9.10 Labels

A label may be placed in front of any statement. This label consists
of a name and a colon. The names is thereby defined as a label and
can be jumped to with goto.

242

Abacus Software SUPER C for the C-128/C-64

8.9.11 goto statement

With the goto statement one can jump to label. The execution of
the program then continues behind this label. Such an statement
requires that the name be defined within the same block.

The use of labels as well as goto's is not recommended. They
tend to destroy the advantages of structured programming. Also,
one should avoid jumping into a block because local definitions will
not be performed. No variables are present and therefore also not
initialized

8.9.12 Empty statement

An empty statement consists of only a semicolon ;. They are
mostly used to place a label at the end of block. For example:

iz.li)cl: ;
}

The empty statement is also used to create loops which are not
supposed to repeat any statement.

8.10 Scope

By the scope of an object we mean the range of its validity. A
distinction is made between two scopes: the scope on which a name
is bound, and the scope on which an object is bound.

8.10.1 Scope of a name

By this term we mean the range of the program in which a declared
name is tied to it declaration. Static global names apply over the
entire source file. Global names declared without storage class
apply also to other source files bound to the one in which they are
declared and in which a corresponding declaration is made.

243

Abacus Software SUPER C for the C-128/C-64

Externally declared names refer to a global definition and make this
name known globally.

Local predeclarations can be made within a block. Local
predeclarations work like global predeclarations in Super C. They
serve only to designate once more which global objects will be used
in the block. Several declarations of the same name with the same
type do not hurt.

All other local names apply only within the defined block. Note that
global and also local names can be covered up by declarations in a
"deeper" block. The most recent valid declaration always applies
within a block.

Another characteristic applies in Super C. All names must normally
be declared in C. If one wants to use objects before their definition,
they must be predeclared. This is normally only done with global
objects. In Super C, static objects can also be predeclared with the
storage class extern. If you want to prevent objects from
agplying outside their source files, you may not predeclare these
objects.

Note that the compiler can look for global definitions and
predeclarations only within one source file. If a name is used in a
global definition in one file and a declaration with the same name
but different type in another file, the compiler will never discover
this. The linker binds these files together without an error message,
but the program will probably not work correctly.

There are normally two classes of names in C: first, all struct,
union, enum, and component names, and second, all other
names. This rule is not implemented in Super C, however. This is
not a problem, since it is not a good idea to use the same name for
more than one thing in a program.

244

Abacus Software SUPER C for the C-128/C-64

8.10.2 Scope of an object

By the scope of an object we mean the range in which memory
space exists for the object in the program.

For global definitions, the memory space applies over the whole
program. If a static object is defined in each of two files which are
bound together into one program, they are treated as two separate
objects whose memory space exists over the whole program. The
memory space only addressible in the file in which it is defined
because of the scope of a static name.

Local static objects are retained over the entire program. Only
auto and register objects are created at their declaration

and then erased again as soon as the block in which they were
defined is left.

8.11 Preprocessor

A C compiler is equipped with something call a preprocessor. The
preprocessor alters the source text according to specific rules before
it is sent to the actual compiler. This does not change the source text
on the diskette. The preprocessor is built into the compiler in Super
C and it operates on the text as soon as it is read by the compiler.

All preprocessor commands occupy a separate line in the source
text. The first character of a preprocessor line must be a #
character. The effect of a preprocessor command applies until the
end of the source file and is not dependent on the scopes of C
declarations.

8.11.1 Macros

Names can be defined as macros with the preprocessor. If these
names appear in the program text following, they will be replaced
with a replacement string.

f#define name replacement_string

245

Abacus Software SUPER C for the C-128/C-64

The defined macro name has precedence above all scopes, meaning
that it is first checked whether a name is defined as a macro. This
also applies for keywords.

A macro definition can also be made with parameters.

fidefine name (namel,name2,...) replacement_string

The macro replacement is similar to a function call. An argument
list as with a function must follow the defined macro name in the
program text. The parenthesis (of the argument list must come
directly after the macro name or the preprocessor will recognize it
as a macro without parameters. The name and the list are replaced
by the replacement string. First, however, all of the names in the
replacement string which match the parameter names are replaced
with corresponding argument strings from the call. Note that no
names may occur in the argument strings which match those in the
parameters.

The C preprocessor does not have command of the C language,
however. It replaces the text without recognizing its relationship
and its meaning. C macros must be used carefully and with
consideration.

The macros serve to define program constants and small
"functions.” A macro call is the concern of the compiler and does
not take up any time at the program run time. Complex macro
definitions are better realized with functions because these require

less space in the C program. The replacement text is recompiled at
each macro call.

#undef name

causes a defined macro to be erased.

246

Abacus Software SUPER C for the C-128/C-64

8.11.2 Chaining files

Multiple source files can be combined with a preprocessor
command.

#include "filename”

This preprocessor line will be replaced by the entire source text
filed under the name filename when the program is compiled.

Additional #include calls may be found in this file. The files
may be nested up to six deep in Super C. As many files as desired
can be combined by placing such instructions one after the other in
the same file, however.

Chained text files count as one source text. The chaining is not to
be confused with the binding of several separately compiled files.

In other C systems the filename can also be enclosed in < and >,
which causes a different search procedure to take place. This
command is not necessary because of the size of the floppy.

8.11.3 Conditional compilation

In C, program sections can be selected for compilation. This allows
the same source text to be used for various program versions. The

selection of the text range to be compiled is done with an i £
statement.

#if constant
#ifdef name
#ifndef name

are the selection instructions. The text following these instructions
is selected if the constant after #4£ has a value other than zero, if
the name after #i fdef is defined as a macro, of if the name
after #ifndef is not defined as a macro.

247

Abacus Software SUPER C for the C-128/C-64

In this case the text behind the selection instructions is compiled up
to a command:

#endif
or:

#else
The last command indicates that there is an else portion which is
skipped. The else portion must be concluded with #endif at
some point.
If the logical value in a selection statement is false (if the number is
zero, etc.), the program section behind the selection statement is
skipped. If an else portion is present, this is compiled.
The constant after i £ can be a constant expression. The

conditional compilation instructions can be nested, up to eight
levels in Super C.

8.11.4 Line numbering

In more complex systems the line numbering and source file name
can be influenced through the command:

#line constant name

This is not necessary in Super C and is not implemented.

8.12 Implicit declarations

Certain specifications within a declaration can be omitted. These are
then supplemented by default values.

If the storage class is not given in a global definition, it means that
the definition applies over the whole program. If no type is given,
int is assumed.

If no storage class is given in a local declaration, auto is
assumed. One exception is the declaration of a function which is

248

Abacus Software SUPER C for the C-128/C-64

assigned the storage class axtexzn in local declarations and is
thereby only predeclared. If only the storage class is given in a local
declaration, int is assumed as the type. Both specifications,
storage class and type, can not be omitted in a local declaration
because the declarator will otherwise be recognized as an
expression.

If the compiler does not recognize a name, if the name is not
declared, it is automatically predeclared as a global name with the
type int or as a function which returns type int. This should
not be overused in larger programs for reasons of style.

8.13 Operations on different data types

8.13.1 Structures and unions

A structure or union cannot be used for all operations. One can
select a component with the operators . and ->. The address of a
structure or union can be determined with the & operator.

In many implementations, structures can be assigned to structures
of the same type or passed to functions as arguments. A function
may also be able to return a structure as a result. This is not
possible in Super C.

In all compilers, pointer to structures and unions can be passed to
functions as arguments, of course.

With structures it is possible to avoid the usual type checking. The
right operand of the operators . and -> need not refer to the
declaration of the left operand; any component declaration is valid.
The left operand need only be an L-value and it will be used as a
structure or union. With the -> operator the left operand can be an
pointer value. Caution is urged with these constructions. They are
not portable.

249

Abacus Software SUPER C for the C-128/C-64

8.13.2 Functions

Only two things can be done with functions: they can be called or
their address can be determined.

The name of a function standing alone in the program represents the
address of the function. One can pass functions as arguments, for
instance.

int a()
{o'o}
main ()
{ ... b(a);
e oo}
int b(fp)
int (*£p) ()
{ ...
(’}‘fp)(---);

The address of the function a is passed to function b. Function a
can be called in b.

8.13.3 Arrays, pointers

The identifer of the array alone is always converted to a pointer
value to the first element in the array. The name is thereby a
constant and not an L-value. The index operator [] is converted
to addition. a [b] is converted to (* (a+ (b))). a is a pointer
value and b an integer value. The addition works in the conversion
such that (a+ (b)) points to an array element which is b
elements removed from the first. The * operator generates an
L-value from the address. The whole expression correponds to that
which is expected when one uses a [b]. This operation is
commutative, although it does not look it.

This applies correspondingly for multi-dimensioned arrays. If one
has an array;

int a[5] [4);

250

Abacus Software SUPER C for the C-128/C-64

for example, a is first an array. The elements of this array are again
arrays. a[3] is an array and is treated as such. The elements of
this array are int elements. The index 3 in this expression means
that element three of the array a is being handled. The elements are
stored line by line in the memory of the object a, meaning that the
last index varies the fastest. The first element is the array a (0],
then the array a[1], and so on.

If the * operator is applied to an array, the expression refers to the
first element (element 0) of the array. Note that when the number of
array elements is given in the declaration of an array, the elements
are counted starting at zero.

8.13.4 Conversion of pointer values

A pointer value can be converted to an integer value. In Super C the

type unsigned int is used. The conversion returns the
memory address in Super C.

An integer value can be converted to a pointer value. This is
different from machine to machine since larger computers require
that the address of an object be divisible by the SIZE. This problem
does not exist in Super C. In any case it is guaranteed that a
conversion from a pointer value to an integer value and back again
results in the original value.

8.14 Constant expressions

Constant expressions can be used, for example, after case, after
#i£, in an enum specifier, and in initialization.

Constant expressions consist of constants and character strings
which can be combined with the operators:

sizeof - ~
and all of the binary operators except for assignment and logical
operations.

251

Abacus Software SUPER C for the C-128/C-64

+ - % / % & | A << > == 1= <= >= ?:

Parentheses can also be inserted. Calling of functions is not
allowed.

The addresses of already declared global or static objects can be
used as constants with the & operator. Array and function names
with indices and argument lists are also handled as constant
addresses.

8.15 Portability

Not only the value range of the various types need be noted when
transporting progams from one machine to another. The following
processing methods are open to the C compilers and, in order to
promote portability, should not be used excessively.

In Super C the order of the bytes within an object is always stored
from low to high, the least-significant byte first. The actual
processing of register objects are handled as auto in Super
C. The order of the evaluation of arguments need not proceed
strictly left to right.

8.16 Differences from standard compilers

Although the Super C compiler understands almost all elements of
C, there are a few differences between it and some other compilers
which must be mentioned here.

Some compilers understand certain original language elements such
as =+ instead of +=. This was changed in later versions. The
Super C compiler does not recongnize these earlier constructions. If
a corresponding program is to be compiled, it must fit or be made
to fit the modern standard.

No lists of auto can be initialized in Super C. Each initialized
auto variable must be concluded with ;:

252

Abacus Software SUPER C for the C-128/C-64

auto int x=5;
auto int y=4;

The two name classes for structure names and other names are not
realized in Super C. This is not really a problem though, since one
should not use the same name for two different things.

Super C also offers possibilities which other systems do not offer.
Do not use these in programs which are to transported to other
machines.

Addresses can be given as case constants. The specification of a
boundary character is possible when reading strings with scang,
sscanf, and £scanf.

Some compilers do not recognize the construction while () as
an infinte loop.

8.17 Differences from the C-Compiler 64

The language scope of the Super C compiler has hardly changed
from from that of its predecessor Super C-64. Only some standard
functions and macro definitions have been changed in order to
realize better compatibility to UNIX:

stdio.h was called stdio.c

EOF was called EOI in C for the C-64
fgets was called get s

fputs was called puts

fget f was called get £

fput £ was called put £

The function inkey was removed.

The function CMOVE is now called cmove.

The return values of the functions st rcpy, strcat, free,
and get s have changed.

253

- o

Z-A O ¥EANS 2388 umuomumﬁ..vizmo

SUPER C for the C-128/C-64

Fvas
_ WSS 2ams
[XY <« Y / - N
at v A5 < s Wi ~n{ms| anls o} rx|+ 2 10H5 | WD
ot a[<] : o0 | dais
% Srsd o o Al o ms| BC] EH| 1S ®al® af v os[o vsews| s
<= i * @
ha| OS] 3 plh—| " A= a0 | ||| & |t [+ 3] FM|q 0] B2
o || ¥ -] +| @] o 8 & 9 s w €] z[+] o
24 sot| ol %I 1RE] o ol o] Lol okl 8]] W] i]|evus
Z-A D ¥ddns 2398 I83d0eIRYD O
TIN5
B 3ovas 1S
o & ® 71 ¢+ ¢ 14 | Hed
8+ > ¢.E_zm ¢ < 2l Hl N%TsAlm I rX[n Z S
Ty = H M a7 {4045
9% N |1 g e o s wef i 18] @ e qf v s|{4 wjams| ey
vl #| O
M»w 0SB a =" A =a|m o™ t|m0]a A|_ L]> u]v 3| F a4 B2
wafewn] N[# o] e 8[& 9 s[H[€| 2| [=
va o wo{ B[V IR —] ¢) . kI I I T

PART III. Appendix
1.0 Keyboard V2

Abacus Software

254

SUPER C for the C-128/C-64

1.2 Keyboard V3 C character set

Abacus Software

€-A D ¥3ANS 3I9s I930®BIRYD) 3VaS
G 3ovas 1ans
&l 4 7/ . ¢
] N 2 o gl 1M il <) ol wli n|mel anle 3| ex|a z| 2MS |ue0
= ¢ s 00| 4018
v . .
= * @

9] s| h wwoﬁm«?”'ll\lulol_ls.I»I._.L.d._.w _.z.._@Jdth
ry wfae| N =] #] o o 8] &I 9o <[wl €| =z [—
5 ® & s anjvwgil Ll (4] VI - I 1) I
te| st S| vt & 2 o @ oS 0Bloh 418Y ﬁs«u 1w ovi| os3

8| 92| hi| u _2.L

255

SUPER C for the C-128/C-64

AMas
S ANV
T 5 & M oaams| 0 ol BN S AL 3] X E s ueo
P v I <L 2 N[l /%1 aXla —|{r¥]n ¢ s
=1 ¢]] A < H] S| 4] a] S| V¥].pn|gas
N I e rREY o (e 0 I T Y s O L P e e
— 4 % 9 4] o i1 a A L] w] 3] M| 9
M paus)|, s_ru,n_._.._..l.m_lfl.._l_ = ==~ ol o,_ B
+ ol 8 & 33| 3uon N_ - +1 2 ol 8 t 9 S h el T —.\ >
IR KNI LY o1 %8 % ¢ & o] i
te| st) <] il & o ¢ mona] aajon oaat] ran ~a] 0v] ew] 53
82| 9| na| ¢ 3
€-A D ¥3ANS 395 I930®IRYD RKED
EL 23
A%vS 131HS
- <¢ 6 / e . 14 uel
pave ° o ol B 2 <l o Wi vl 8| aala o Fx|4 2|
= . . X001 ;S
b B i €] a7l ax| 5| an] 16w alw a| e s|a]| wn
- ¢ * @
21 S h —mdD&U*ﬂ%ll.-\-tl@'O_..—'slﬁlbn-ld..—-w FN4© o
ol sl & ._mngs.ﬁ..+omm¢¢mrm~..\.v
s | wMyzliE I+ ¢ oyl] =l %] s] 8] Wl i
vy €2 b <& ° ¢ :ﬂﬁ_ o8joh owmg JWBH wal swl ewal ¥»a
a3 28 ovuas

1.3 Keyboard V3 CBM character set

Abacus Software

256

Abacus Software SUPER C for the C-128/C-64

2.1 Character codes

(IR}
g 8
o
i 2
P EE
o LY
940 (., 120 p P 240 |+, 7! 3ge Pl 7]
@41 ¢ | 121 q Q@ 241 M@, 221 o (I8
a4 * 1ee v ’R: 242 W 322 (R i =
043 8 123 s 'S 243 1 | 323 s . /]
044 ¢ | | 124 ¢ T a4a O i 324 |T ! 1]
2493 % i 128 u : 5’“* 245 {); ! 385 ,0 |,
eas b | ! 126 v i vy 2ds Wy sae jv |
ea7 ¢ | | 127 w W] a7 il i} | 327 ‘W ?
o308 . (‘ 139 in | IX! 239 , : 330 'X ||)
os1) ' 131 i," “iyf as1 g :Uf 3z Y| ;0
ozsa2 | 132 a r]! e:gu“ by ggg : fmm-
953 + , 13| | 253 i
054 ! | 134 |\ 4i; i esa g | gg; ; &l
23S |~ 1358 oy 238 L ! i
ess!.! |1 136 H ? S assl ’ i 336 -~ & o
es? /' I i 137 1_ je= | as7 ,u P as? |N b
°ce 8. 190 1B | . 268 (ni || | 340 Lyl | |
es1 4! i 141 'A & ae1im. i 341 @) | !
es2,2! | ta2 18 | (@ 262 | 3de 'mi | [
263 |3; [143 IC 1= 263 {gr; co 343 :ﬁ !
P H i .
N T = B - S
: . ‘e “'_ . | H oo
966 !6 198 Fi ' 866 g 346 Iu L |
= |mald I fEmd,
e71.9 I 1s1.1! g1 271 “ ast &
e7e 1 - | 1se '] N 272 vi. |0 ase ()
e73a ; . i | 153 K E,] 273y | a:g a i
e74 ¢ I 159 L, i 274 | 384 A
075 n | | . 155 M N ers 9 | ass '
o7 >, | ! 156 ‘N i@ 276 ') ass 'y 1
077 7., ‘ 157 o 0 277 %, ! as? 4
189 © | ' tee p |] 300 {[—] h 360 i |
181 a | ‘gi 181;@! W 301 A, l[;ﬂ S -E
192 b | 182 R B se2 !B [l 32 | ! !
103 e;’i c 183 'S } " ses ¢ H 383 ! |
194 4'! D! 184 T |0V sea D | i‘a 3’4 () il
105 el | E 185 U | ‘Iid 35 Ei I'A aes [, i; ;
16 §.| |'F 166 v . X! ses F - H 366 (1 -
107 g |'G! 187 Wi . 327 g [387 M |
110 4 * IR 170 X W 3tle H| [370 i, {
111 i ljl 171 Y; D 311 T '5‘; 371 cn.,, 'U
112 j i 172 2. W 32 3; I aza .
113 & ‘lr 173 § 'R 313 kPl 373 igl: 5
114 (. L. tva | §]. 319 L: [374 ‘_ﬂ ‘
115 m - M 175 3 I 315 M [\ 375 P
116 n:' |IN 176 ~ B =« 316 N, 2 376 pu.
117 o '0j 177N &N a1z 0, .0, 377 ~.8.%

257

Abacus Software SUPER C for the C-128/C-64

2.2 CTRL-codes V2

The following CTRL codes can be accessed by keypress and within
a program. We have included the corresponding key sequence and
the print codes in octal.

000 End character of strings.
003 [STOP] Stop-key

005 [CTRL]+[2] white

010 [TAB] Tab (editor)

011 [SHIFT]+{TAB} Set. clear tab (editor)
015 [RETURN] RETURN key, \n'
016 [CTRL]+[n] C-character set switch
021 [C-DOWN] Cursor down

022 [CTRL]+[9} Reverse on

023 [HOME] Home

024 [DEL] Delete

034 [CTRL]+[3] red

035 [C-RIGHT] Cursor right

036 [CTRL]}+{[6] green

037 [CTRL)+[7] blue

201 [CTRL]+[1] orange

203 [SHIFT]+[STOP]

205 [F1] F1

206 [F31 F3

207 [F5] F5

210 [F7] F7

211 [SHIFT]+ [F1] F2

212 [SHIFT]+ [F3] F4

213 [SHIFT]+ [F5] F6

214 [SHIFT}+ [F7] F8

215 [SHIFT]+[RETURN]

216 CBM key

220 [CRTL]+([1] white

221 [C-UP] Cursor up

222 [CTRL]+[0] Reverse off

223 [SHIFT]+[HOME] CLR

224 [SHIFT}+[DEL] Insert

225 [CBM]+[2] brown

226 [CBM]+[3] 1t. red

227 [CBM]+[4] dk. grey

230 [CBM]+[5] It. green

258

Abacus Software

SUPER C for the C-128/C-64

231
232
233
234
235
236
237

[CBM]+[6]
[CBM]+(7]
[CBM]+(8]
[gTRL]+[5]

LEFT]
[CTRL]+([2]
[CTRL}+[4]

2.3 CTRL-codes V3

It. green
1t. blue
It. grey

1t. purple
Cursor left

yellow
cyan

The following CTRL codes can be accessed by keypress and within
a program. We have included the corresponding key sequence and

the print codes in octal.
000
002 [CRTL]+b]
003 [STOP]
005 [CTRL]+([2]
007 [CRTL]+[g]
011 [TAB]
012 [LINE-FEED]
015 [RETURN]
016 [CTRL]}+[n]
021 [C-DOWN]
022 [CTRL}+[9}
023 [HOME]
024 [DEL]
030 [SHIFT]+[TAB]
033 [ESC]
034 [CTRL]+[3]
035 [C-RIGHT]
036 [CTRL]+[6])
037 [CTRL}+[7]
201 [CTRL]}+{1]
203 [SHIFT]}+[STOP]
204 [HELP]
205 [F1]
206 [F3]
207 [Fs5]

259

End character of strings.
Set bottom window
(80 column only)
Stop-key

white

Bell

Tab (editor)
Line-feed
RETURN key, \n'
C-character set switch
Cursor down
Reverse on

Home

Delete

set, clear tab
ESCAPE

red

Cursor right

green

blue

orange

Abacus Software

SUPER C for the C-128/C-64

210
211
212
213
214
215
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

(E7]

[SHIFT]+ [F1]
[SHIFT]+ [F3]
[SHIFT]+ [F5]
[SHIFT]+ [F7]
[SHIFT]+[RETURN]
[CRTL}+{1]

[C-UP]

[SHIFT]+[DEL]
[CBM]+(2]
[CBM]+([3]
[CBM]+[4]
[CBM]+(5]
[CBM]+[6]
[CBM]+(7]
[CBM]+([8]
[CTRL]+(5]
[C-LEFT]
[CTRL]+[2]
[CTRL]+[4]

260

F7
F2
F4
F6
F8

white
Cursor up
Reverse off
CLR

Insert
brown

1t. red

dk. grey
It. green
It. green
1t. blue

1t. grey

1t. purple
Cursor left
yellow
cyan

Abacus Software SUPER C for the C-128/C-64

2.4 ESC-Codes V3

Escape sequences consist of pressing the ESC key and an
additional character. This sequence can be activated by keypresses
or in progrom codes. The ESC character is accessible in SUPER-C
with “\e', but this is not compatible with most C systems. For
"portable” code use \33' which is the equivalent of ESCAPE.

[ESC], [1] enable C character set

[ESC], [2] enable CBM character set
[ESC], [@] erase screen from cursor position to end
[ESC], [a] Auto insert mode on

[ESC], [b] set bottom of window

[ESC], [c] Auto insert mode off

[ESC], [d] Delete one line

[ESC], [e] cursor off flash

[ESC], [f] curosr on flash

[ESC], [g] enable bell

[ESC], [h] disable bell

[ESC], [i] insert one line

[ESC], (j] jump to start of line

[ESC], [k] jump to end of line

[ESC]), [1] scrolling off

[ESC], [m] scrolling on

[ESC], [n] REVERSE off (80 column)
[ESC], [o] INSERT, QUOTEm RVS off
[ESC], [p] erase to end of line

[ESC], [q] erase to start of line

[ESC], [1] REVERSE on (80 column)
[ESC], [s] Solid block cursor (80 column)
[ESC], [t] set top of window

[ESC], [u] underline cursor (80 column)
[ESC], [v] scroll up one line

[ESC], [w] scroll down one line

[ESC], [x] switch 40/80 column screen
[ESC], [yl all TABs normal

[ESC], [z] erase all TABs

261

Abacus Software SUPER C for the C-128/C-64

3. Function Overview

This list should give all the functions in the SUPER-C libraries.
Keep in mind the following:

(like V1) when the function is identical to the older C-64
version.
(similar to V1) the functions are similar to the olderC-64 version.

(V3 only) available in version V3 only.

void erron() (like V1)
void erroff() (like V1)
void nmion() (like V1)
void nmioff() (1ike V1)
int gerror() (like V1)
void error(string,fnr) (like V1)
char *string;
int fnr;
void exit() (like V1)

file open(prim,sek, name,buffer (gimilaiar to V1)
int prim,sek;
char *neme;
char *buffer; (optional)

file close(fd) (like V1)
file fd;

262

Abacus Software SUPER C for the C-128/C-64

int putc(c, fd) (like v1)
char c;
file fd;

int fputc(c, fd)
char c;

file fd;

char getc(fd) (like V1)
file fd;

char fgetc(fd)

file fd;
char getchar() {like v1)
int putchar(c) (like v1)
char ¢;

char *gets(line,n)
char *line;
int n;

char *fgets(line,n, fd) {similaiar to vi gets)
char *line; '
int n;
file fd;

int puts(line)
char *line;

int fputs(line,fd) (similaiar to V1 puts)
char *line;
file fd;

int fgetf(line,n, fd) (like V1 getf)
char *line;
int n;
file fd;

263

Abacus Software SUPER C for the C-128/C-64

int fputf(line,n,fd) (like V1)
char *line;
int n;
file fd;

file fopen(name,mode)
char *name, *mode;

file fclose(fd)
file fd;

int strlen(str) (like V1)
char *str;

int strcmp(stri,str2) (like V1)
char *str1,*str2;

int strncmp(stri,str2,n)
char *stri1,%str2;
int n;

char *strcat(stri,str2) (like V1)
char *str1,*str2;

char *strncat(stri,str2,n)
char *stri,*str2;
int n;

char *strcpy(stri,str2) (similaiar to V1)
char *str1,*str2;

char *strncpy(stri,str2,n)
char *str1,%str2;

int n;

char *strchr(str,c)
char *str, ¢;

264

Abacus Software SUPER C for the C-128/C-64

char *strrchr(str,c)
char *str, c;

void cursor(line,pos) (like V1)
int line, pos;

void exec(string)
char *string;

void cmove(target,n,source) (like V1CMOVE)
char *target;
int n;
char *source;

void move(target,n,source,mem) (nur V2) (wie V1)
char *target;
int n;
char *source;

int mem;

char *alloc(size) (like V1)
int size;

char *free(size) (like V1)
int size;

char *settime(string)
char *string;

char *gettime()

int keys(string)
char *string;

tong call(p)
char *p;

void fast() (V3 only)

265

Abacus Software SUPER C for the C-128/C-64

void slow() (V3 only)

void window(lcol,tline,reol,bline) (V3 only)
int Lecol,tline,rcol,bline;

char vdcin(reg) (V3 only)
int reg;

void vdcout(reg,c) (V3 only)
int reg;
char ¢;

void ionout(adr,val,colram) (V3 only)
char *adr,val;
int colram; (optional)

char io»in(adr,colram) (V3 only)
char *adr;
int colram; (optional)

int is80¢) (V3 only)

void graphic()

void graphon()

void graphoff()

int isgraph()

void backgr(colex,colbk)
int colex,colbk;

void clrmap(cnr)
int cnr;

void colors(col1,col2,col3)
int col1,col2,col3;

266

Abacus Software SUPER C for the C-128/C-64

void setcol(col)
int col;

void dot(x,y)
int x,y;

fnt dotin(x,y)
int x,y;

int bdot(x,y)
int x,y;

void line(x1,y1,x2,y2)
int x1,y1,x2,y2;

void bline(x1,y1,x2,y2)
int x1,y1,x2,¥2;

char *mline(x1,y1,x2,y2,put)
int x1,y1,x2,y2;
char *put;

char *oline(x1,y1,x2,y2,get)
int x1,y1,x2,¥2;

char *get;

void setplot(x,y)
int x,y;

void plot(x,y)
int x,y;

void shape(x1,y1,x2,y2)
int x1,y1,x2,y2;

void fill(x,y)
int x,y;

267

Abacus Software

SUPER C for the C-128/C-64

char

char

char

char

char

*pushobj(x1,y1,x2,y2,put)
int x1,y1,x2,y2;
char *put;

*plotobj(x1,y1,x2,y2,get)
int x1,y1,x2,y2;
char *get;

*fplotobj(x1,y1,x2,y2,get)
int x1,y1,x2,y2;
char *get;

*bplotobj(x1,y1,x2,y2,get)
int x1,y1,x2,y2;
char *get;

mapv(x,y)
int x,y;

double sin(d)

double d;

double cos(d)

double d;

double tan(d)

double d;

double atan(d)

double d;

double abs(d)

double d;

double sgn(d)

double d;

double rnd(d)

double d;

268

Abacus Software

SUPER C for the C-128/C-64

double sqr(d)
double d;

double sqrt(d)
double d;

double log(d)
double d;

double exp(d)
double d;

int isupper(c)
char c;

int islower(c)
char c;

int isalpha(c)
char ¢;

int isdigit(c)
char ¢;

int isspace(c)
char c;

char tolower(c)
char c;

char toupper(c)
char c;

269

Abacus Software SUPER C for the C-128/C-64

4. Listing of the header files

V2:

stdio.h

1 /% library headerfile for 'libc.l' and ‘libcs.1’ #/
2/% C~Compiler V2 Super-C 74
3

4 §define STDIO @

5 ddefine NULL @

6 &define CR “\n’

7 ddefine CRSUP '\221°

8 #define CRSDOWN "\2{'

9 ddefine CRSRISHT "\3§’

18 #define CRSLEFT '\235'

11 #define DELETE "\b’

12 §define INSERT '\224*

13 ddefine HOME '\23'

14 §define CLR "\223°

!5 ddefine REVERSON *\22'

i6 8define REVERSOFF '\222°

17

18 §define NIL 8

% 4define ENPTY °°

20 fdefine MAXINT 32747

21 #define MAXLONG 2147483447L

22

23 #define ST {#(char#)8x90)

24 ddefine EOF (ST & 8x40)

25

26 fdefine putchar{XB) putc(X8,5TDI0)

27 ¥define caove(X1,X2,X3) move(X1,X2,X3,0235)
28

29 typedef int file;

38

31 extern file open(),close(),fopen(),fclose();
32 extern int putc),getc(),fgetci),fputci);
33 extern char #getst),#fgets();

34 extern int puts(),fputs(),tqetf(),fputé(};
33 extern void erron(),erroff () nsion() neioff();
36 extern void error(),exit();

270

Abacus Software SUPER C for the C-128/C-64

PABE: 2 stdio.h
DATE: 4/21/86

37 extern int qerror();

38 extern void cursor(),movel),exect);

39 extern int strien{),strcap(),stracapl);
40 extern char #strcat() #stracat(),#strepy (), #stencpy();
41 extern char #strchri),#strrchr();

42 extern char #alloc(),#freal);

43 extern char #settiae(),#gettine();

44 extern int keys();

43 extern long call();

44

47 extern void printf(),sprintf(),fprintf();
48 extern int scanf(), sscanfl), fscanfil;
49

58 char (#screen)(48] = 8xedpe;

SI char (fcolor 1E40] = @xd808;

52 char {¥charrasi) [8]= BxdBpd;

33 char {#charran2) [8]= @xd8@e;

54

55 char getchar ()

56 (char c;

57

98 while({c=getc(STDI0})==R);

39 return c;

8 }

61

271

Abacus Software SUPER C for the C-128/C-64

V3: sthdio.h

{ /¢ library headerfile for ‘libc.1’ and ‘libcs.l' #/
2/ C-Conpiler V3 Profi-C/Super-C ¥/
3

4 §define STDIO @

S #define NULL @

6 #define CR ‘\n*

7 ddefine CRSUP '\221'

B d#define CRSDOKN "\2t°

9 #define CRSRIGHT "\3§°

10 #define CRSLEFT '\235'

11 #define DELETE ‘\b’

12 §define INSERT "\224°

13 #define HOME *\23°

14 9define CLR *\223°

15 #define REVERSON '\22°

16 ddefine REVERSOFF °\222'

17

18 ddefine RIL B

19 #define ENPTY *°

20 d#define MAXINT 32747

21 ddefine MAXLONG 2147483447L

22

23 §define ST (#{char#)8x98)

24 ddetine EOF (ST & @x48)

25

26 ddefine putchar (X8) putc(X®,STDIO)

27

28 typedef int file;

29

38 extern file openi),close(),fopen(),fclose();
31 extern int putc(),getc() fgetc(),fputci);

32 extern char #getst),#fgets();

33 extern int puts(),fputs),fgett (), fputi();

34 extern void erron{},erroff(),noion(),naioff();
35 extern void error(},exit{);

36 extern int qerror();

37 extern void cursor(),ceovei},execi);

38 extern int strlen(),strcap(),stracep();

39 extern char #strcat(),#stracat(),#strepy(),4stracpyll;

272

Abacus Software SUPER C for the C-128/C-64

PABE: 2 stdio.h
DATE: 4/21/86

48 extern char #strchr{),#strrchr();
41 extern char #alloc(),*free();
42 extern char #settime(),tgettisme();
43 extern char io_in{),vdcinl);
44 extern int is88(),keys();
45 extern void io_out(),vdcout(},fast(),slonl) ,window();
46 extern long call();
47
48 extern void printf() sprintf (), fprintf();
49 extern int scanf(), sscanf(), fscanf(l;
58
51 char (#screen) [42] = Dx840D;
2 char (#color) (48] = BxdaRs;
33 char (#charraai)[8)= Bx1000;
34 char (fcharran2)(81= Bx1088;
5%
96 char getchar()
37 (char ¢
58
59 while((c=getc(STDIO))==@);
68 return c;
61 }
62

273

Abacus Software SUPER C for the C-128/C-64

V2: graphic.h

PABE: | graphic.h (::
DATE: 4/21/86

{ /& headerfile for 'libgraph.l' #/

2 /+ C-Compiler V2 Super-C &/

3

4 extern void graphic() ,graphon(),graphotf();

9 extern void backgr{) ,colers{},clreap(),setcal (),fill(};
6 extern int dot{),dotin(),bdot();

7 extern int line(),bline(),shape{);

8 extern int isgraphi),setplot(},plot(};

9 extern char sapv{),#aline(} ®oline();

18 extern char #plotobj(),#pushobj();

11 extern char #bplotebj(),*fplotobji};

12

13 extern char sask, bmap;

14

13 #define black
16 #define white
i7 #define red

18 f#define cyan
19 #define purple
28 #define green
21 idefine blue
22 idefine yellow
23 #define orange
24 Adefine brown
25 ddefine pink 18
26 ddefine dgrey 11
27 ddefine grey 12
28 #define lgreen 13
29 4define l1blue 14
38 #define lgrey 15

D =~ N N - B

~0

3

32 char (#video)[4B1=BxBc@B, /* Video rae in Graphic-Mede !
33 #bitmap=0xa008, /% Bit nap im Graphic-Mode (:j
34 #vic=8xdees; /% Base address Video Interface Chip #/
35

36

274

Abacus Software SUPER C for the C-128/C-64

V3: graphic.h

PAGE: 1 graphic.h

DATE: 4/21/84
{ /% headerfile for libgraph.l #/
2 /% ¥/
3

4 extern void graphic(),graphon(),graphoff();

3 extern void backgr () ,colars(),clraap(},setcol (), fill();
6 extern int dot(),dotin() bdot();

7 extern int line(),bline(),shape();

8 extern int isgraph(},setplot(),plot();

9 extern char eapv(),#aline(),toline();

18 extern char #plotobj(),#pushebjl);

11 extern char #bplotobj{},#fplotebjil;

13 extern char mask, tbmap;

14

15 #define black
16 ddefine white
17 #define red

18 #define cyan
19 #define purple
20 #define green
21 d#define blue
22 §define yellow
23 ¥define orange
24 #define brown
25 ddefine pink 18

26 Ydefine dgrey 1l

27 ddefine grey 12

28 #define lgreen {3

29 $define lblue 14

38 #define lgrey 15

3

32 char (#video)[40)=Bxe@@8, /+# Video ran im Graphic-Mode #/
3 thitaap=Bxc0e; /% Bit map of Graphic-Mode #/
34

35

36

M~ O th Il N — B

~3

275

Abacus

Software

SUPER C for the C-128/C-64

VuV3: ctype.h
PRBE: 1 ctype.h
DATE: 4/21/8b
1/8 headerfile ‘ctype’ ¥/

V2/V3:

2 /% C-Compiler V2/V3 Super-C &/

3

4 #define isupper(X)
9 §define islower(X)
b @define isalpha(X)
7 #define isdigit(X)
8 §define isspace(X)
9

18 #define tolower(Y)
11 #define toupper(Y)
12

(0="A" & K="1")

($)="a' ¥ X=2")

(0="A" & X1 00="a" & X="2")ix=="_"
(1="0" & K='9")

(f==' 'i¥==' ‘iX=="\t'!X=="\n'iX=="\r")

{isupper (Y} ? ¥ & Bx7f : V)
{islower(Y) 2 Y } 8x80 : Y)

13 /¢ header file ‘ctype’ #/
14
math.h
PABE: | eath.h

DATE: 4/21/86

T LN B e O e

ak}

/% headerfile for ‘libmath.l®
/% C-Compiler V2/V3 Profi-C/Super-C «

#define PI 3.14159263359
Gdefine E 2.71028182846

extern double sinf),cosii,tan{i;
3 extern double atan(},abs{),sgnf{);

9 extern double sqr(),sqrt(),rnd{);
18 extern double log{),expt);

1
12

276

Abacus Software SUPER C for the C-128/C-64

5. Listing "text.c"

PABE: 1 text.c
DATE: 4/21/86

1 Ne can display 14 colors

2 on the screen. The source text does
3 not produce thes. The colors

4 are used to high-light the sost important
3 lines of the source text.

b

7

8

9 Color list:

18 CBN#! black

11 CBH+2 white **blackr”

12 CBM+3 red

13 CBH+4 cyan

14 CBN+§ violet

i5 CBM+6 green

16 CBN+7 blue

i7 CBM+8 yellow

18 CTRL+! orange

19 CTRL+2 brown

28 CTRL+3 light red

21 CTRL+4 dark gray

22 CTRL+5 gray

23 CTRL+6 light green

24 CTRL+7 light blue

25 CTRL+B light gray

25

27

28

29 The Editor can display two character sets:
e
31 the BASIC-character set and a
32 special C-character set

3

34 1UB$UE’ () #+,-, /B123456789: 3¢=)?
35 @abcdefghi jklanopgrstuvwxyz[\14_
36 'ABCDEFGHIJKLMNOPQRSTUVHXYZ{!}™)

277

Abacus Software SUPER C for the C-128/C-64

PAGE: 2 text.c
DATE: 4/21/86

37 ---and 2 x 32 Braphic characters----

38

39 Hith [SHIFTI+(CBM] (64) or [ESCI [1/2] (128) it is possible to switch
40 between the two character sets.

4

42 The character set includes the follewing

43 special C-characters:s \ ~ _ (|} "

44

45 Hhen in the CBM-character sode, it will

46 be difficult to find the special C

47 characters, please use the {- character sode.

3%

4% The Characters: _ is done with left arrow key

0 [[SHIFT] + (8] on 64)

<} and the Left-arrow key (64 onlylis the

52 tditor TAB key. TAB SET and release is

v done by using [SHIFTI+[Left-arrow] {64 only) [SHIFT] + [TAB] (128 oniy:
34 To obtain the character | use the

5% i0=1+-],

36

57

38 These lines stand at the start of our goal.

39 Our goal is to mark a black once.

68 Set the goal line of the previous line.

6l

62

63

64 This line is the end of the Block *HEREEEEEsErstERERststtEteitetsssness
63 This is the beginning of the text block that we will erase

bb

&

66 GREEN
49

78 Block to be erased only
71

72 has

278

Abacus Software SUPER C for the C-128/C-64

(PABE: 3 text.c
DATE: 4/21/86

73
74 one
75
76 Nugber
I 1
8 2
79 3
Ba 4
81 3
82 [
83 7
84 B
85 9
86 Block to be 18
(:i 87 erased 1t
36 12
§9 13
" 14
51 15
72 16
93 17
54 18
95 These are the last lines of the block
96 that we will erase with the erase cosmand })) line 95 ¢
97 This Text is after the block we HEEEEEEEEEEEREERERERREIREREERERRRLEREREIEEEES
98 wish to erase.
99
108
181 This line is before the blue text block
182 Here begins the Block for maving.

103

(:: 184 2. . 8.0.26
185 .} 1 4.
186 1'=f=-s-21 -
187
188

279

Abacuas Software SUPER C for the C-128/C-64

PAGE: 4 text.c
DATE: 4/21/86

189 This is the last line of the blue biock.
118 This line is not in the blue text black
i1
$12 This is the next line to the 'last line’
13

280

Abacus Software SUPER C for the C-128/C-64

5. Listing "sample.c"

PABE: | sagple.c
DATE: 4/21/86

1 #include "stdio.h”

2 §define CASE(I) case '\1': printf("'\\I' °};break
3

4 oain()

5 { char ¢;

6
7 putc(CLR,STDIO};
8 puts(®Display the value for key pressed\n”,5TDI0);

9

18 while()

| B ¢

12 c=getchar ()

13 char c; /#This line is incorrect#/
14 printf{°Character: ");

i3

16 ifllc & Bx74) >= Bx20)

17 ifle=="\\" 11 =="\"" i c=="\"")
18 printf{"'\ie® °,cl;

19 else

28 printf (" %c’ "ye)s

2 else

22} /%This line is incorrect#/

23 switch (c)

24 {

23 CASEn);

24 CASE(t);

27 CASE(f);

28 CASE(r);

29 CASE(b);

K{! default: printf(""\\lo' *,c);break;
3 }

32

3

34 printf("\nASC-Code: %3d BX%@2x @%-3e\ni\n",c,c,C);
I)

36 3}

281

Abacus Software SUPER C for the C-128/C-64

Index

address,81, 82

alloc(), 175

arguments, 72

arithmetic, 52, 83

arrays, 45, 81, 84, 85, 87, 88, 250
assignments, 56

atan(), 205

auto, 76, 210, 213

autoexec

B-version, 34

backgr(), 191

bdot(), 192

bit operations, 55, 226
bline(), 195

block, 61, 129 ,239

block commands (editor), 21
boot, 5, 116

bplotob(), 199

break, 66, 66

C-command processor, 131
C-program, 140, 159
c-system, 117

cl, 117,118

case, 251

CAST

cc, 30

CCP, 6

ce, 15

c{zar, 47, 182, 211, 230
c

close(),166

clrmap(), 191

cmove(), 174

colors(), 191

com (resid.), 7, 110

282

Abacus Software SUPER C for the C-128/C-64

commands

editor, 15-26

RAM disk, 121

CCP, 155

processor, 144

resident, 6

transient, 8, 111
component, 91
conditional evaluation, 57
constants, 49
control string, 125
control structures, 60, 150
continue, 67, 242
copy, 10, 112
cos(), 204
cursor(), 173

default, 241

#define, 246
declarations, 74, 86, 90, 229, 234
declarator, 233, 234
decrement, 54

device (prg), 8, 105, 111
dir (resid), 6, 109
directory (editor), 135
do, 66, 240

dot(), 192

dotin(), 192

double, 40, 182, 230

editor commands, 123
else, 248

#lelse, 248

end (resid.), 111
#endif, 248

enum, 236, 251

EOF, 97, 187

erase (editor), 21, 132
err (resid.), 6-9, 139
erroff(), 156, 165
erron() 156, 165
error() 156, 165

283

Abacus Software SUPER C for the C-128/C-64

exit(), 165
exp(), 173, 206
extension, 106
extern, 213

f, 114

fast (resid.), 110
fast(), 178

fclose(), 170
fgetc(), 168

fgetf(), 169

fgets(), 169
filename (editor), 105, 134
fill(), 198

float, 182, 211, 230
fopen(), 170

for, 44, 65, 240
format instructions, 40, 180
fplotobj(), 199
fprintf(), 168
fputc(), 168

fputf(), 169

fputs(), 169

free(), 175

fscanf(), 186, 188
functions, 69, 92, 95

getc(), 168
getchar(), 38, 168
gets(), 169
gettime(), 169
goto (editor), 22
goto, 68, 240
graphic(), 190
graphoff(), 190
graphon(),190

hunt (editor), 24
if, 61, 241

#IF, 247
#ifdef, 247

284

Abacus Software SUPER C for the C-128/C-64

#ifndef, 247
#include, 38, 247
increment, 54
initializations, 76, 236
int, 185, 237
io_in(), 179
io_out(), 179
is800), 179
isalpha(), 190
isdigit(), 190
isgraph(), 190
islower(), 190
isspace(), 190
isupper(), 190

keys(), 128, 177
kill (editor), 134

labels, 68, 242

library, 33, 163, 164, 189
line(), 195

linker option, 150, 162
linkfile, 27

load (editor), 20, 133
log(), 206

long, 230

loops, 41

Iram, 10, 13, 115
lvalue, 40, 219

macro, 79, 80

mapv(), 201, 245

mathematical functions, 222, 223
memory classes, 51, 162, 202
mline(), 195

monitor, 109

move (editor), 22, 133

move(), 174

names, 48, 232

new (editor), 15, 135
NMI, 157

285

Abacus Software SUPER C for the C-128/C-64

nmioff(), 100 , 156, 165
nmion() 100, 156, 165

object, 39
global, 51, 73
local, 51, 76

oline(), 195

open(), 166

operand, 219

operators, 53
arithmetic, 52
logical, 52
precedence, 58shift-

parameter, 128, 234
Pascal, 1, 38

plot(), 197

plotobj(), 199
pointer, 1, 81,85,87,88,250
preprocessor, 245
print (editor), 136
printf(), 38, 180
program file, 27, 96
program structures, 69
pushobj(), 199

putc(), 168

putchar(), 168

puts(), 169

RAM disk, 13, 106, 119, 121
register, 76, 213

replace (editor), 132

return, 242

save (editor), 19
scanf(), 184,188
screen colors, 18
set (resid.),108, 110
setcol(), 191
setplot(), 197
settime(), 176
shape(), 198

286

Abacus Software

short, 230

sin(), 204

size, 251

sizeof, 251

slow (resid.), 111
slow(), 178
sourcefile, 27
sprintf(), 180

sqr(), 206

sqrt(). 206

sram, 115

sscanf(), 184

starting Super C, 5, 103, 104
static, 45, 213

stdio (prg), 13, 37, 98
strcat(), 172

strchr(), 173
strncmp(), 171
strepy(), 172

string, 129, 187, 212
strlen(), 171

strncat(), 172
strncmp, 172
strnepy(), 173 .
strrchr(), 173

struct, 235

structure, 89,90,92,93,249
switch, 63,241
symbolic constants, 44
sysgen, 115, 116

tan(), 205

text field, 16, 209

time (resid.), 110

tod (resid.), 110

tolower(), 208

toupper(), 208

transfer (editor), 23, 130,132
types, 48, 118,214

type conversions, 54, 230
typedef, 95

287

SUPER C for the C-128/C-64

Abacus Software SUPER C for the C-128/C-64

#undef, 246

union, 231, 249
UNIX, 1, 106, 253
unsigned, 251

variant, 89, 94
vdcin(), 178
vdcout(), 178

while, 42, 64, 239
window(), 178

288

(128

and C-64

AUTHORTATIVE
4 BOOKS

Preseny of programming
m.m:g m‘:.:p'“ nao'umul nm in c%‘m m g sbru.
on the systom, m‘z
exsmples; ; kB B3R P Me'y m
Mas; wuCh B0, $1093 BASC “”N“ oo ';lM; "“ :ﬁ'ﬁ
4utmwcumnm»u TRICKS & TIPS FOR C-84 Collection of SCIENCE/ENGINEENING ON C-84 In
64 iernale. Geaphics, scund, VO, kemal, advanced
: W vm Goptth Irts0 1o Compstens In sclence. Toplos:

[ROM Satrge. %opp $1993 Copnd, more. Zepp $1995 qiectronics, s1088
ANATOMY OF SOMVE Best 1541 REPAIR & MAINTENANCE CASBETTE 800K C.-04viC-20
handook o al. Many Handoook Oescrbes the cisk drive hard- Comprehentive guids; many
exaxgies commerted ware, irchides and peed
1841 ROM $1993 -u-pmlmu m" $19.95 fast (e baclng end saving. 223pp $14.95
MACNINE LANGUAGE C-84 Learn IDEAS FOR USE ON C-84 Themes:
0510 code wekte fast prograsns. Many S8m- Mot covered [7] recipe e, s3ock
phs ard for compiets Sextier, (raemupts, timers, clocks, n.uh., 313, St planner,
monkor, & shoutator, 200pp 81493 grenced DASIC.mom. 210pp $14.93 others. inciudes ltings. 300pp $12.95
GRAPHICS BOOK C-84 - bost roleroncs ppyTER SOOK C-H4VIC-30 Under. COMPILER BOOK C-84/C-121 Al you

P.0. Box 7219 Dept. H8 Grand Rapids, Ml 49510 - Telex 709-101 -Phone (616) 241-5510

Optional disketies available for 2l book titles - $14.95 each. Other books & software also avaiable. Call for the name of your
nearsst dealer. Or order directly from ABACUS using your MC, Visa or Amex card..Add $4.00 per order for shipping. Foreign
orders add $10.00 per booi. Call now or wrlte for your free catalog. Dealer inquires welcome-—-over 1400 dealers nationwide.

usoge, wmmmmmm&

.mmm uﬂi‘

mmﬂf-ﬂm
mwmu

with
TERNS; W‘IEXT SAVEMRECNJ.WM“ disk.
libe ur‘y ! symbols/objocts with the easy-1o-use OBJECT MENT
SYSTEM-storo up to 104 separato objocts. C-128 $80.98

Fculouhg(s 1571, 18 541); Two standard 1O (brarys plus
s9C. s0c. 1541); o

two addtional Mﬂu—mmh
commands (iine, £i§, dat, etc.).

tunctions (sin, cos, 857, oic.) & 20+ graphic

|Let your “128 or '84 speak Pascal best loals avaiizble-SUP!

Pascs! Is your first
C-64 $39.95

OTHER TITLES AVAILABLE:

COBOL Compller
Now you can leam COBOL, st widely used commercial
programing language, on your 64. COBOL
is easy to laam bocause madCOBOLCanp{I«
packoge comes compl compilar !rmuprow
end Symbolic Debugger.

Personal Portfolio aneger

Compiato portfollo management systom for the Individual or
professional Investor. Easlly manago your portfolios, obtain
up-to-tho-minute quotes and noews, and parform selacted
anntysla Entor quotes manually or automatically through
Warner Computor Systoms. C-64 $30.05

Xper
XPER I3 the first "export systear for the C-128 and C-64. While
ordinary data base systems are good for reproducing facts,
XPER con dorive knowlodge from a mountaln of facts and help
you make expert docisions. Large capacity. completo with
editing and reporting. C-64 $59.95

A mdCad

Unis s & basenat of Ouf Laibusatntes:

P.0. Box 7219 Dept.M9 Grand Haplds, M 49510 Telex 709-101 - Phone (616) 241-5510

Call now for the name of your noarest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)
241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping
per order. Foreign orders add $12.00 per iem. Dealer inquires welcome—1400+ nationwide.

(

BASIC 7.0 INTERNALS
e

S emsveneRaRauE ReEs

jeaacadei

cessananaaaanam on:

TIIIITY

t |

Tt Mo AR SO oy o s AR eea e o wemTawo AT’ SDDA 008 AR S I
AbammSonwam Abacus Hl Sofiware Abxusm&mvm AbuusSonwm Aba:mmSonwm:
Detalied guide presents tho |m Get 33 e inside Information on Filed wh in0 o1 everyons. Covers Insiders’ guide lor novice & 10- Learn lundamenials of CAD while

1ating Sysiem, oxplm?‘ BASIC 7.0. This exhaustive hand- 00 column hi-res graphics, win- vanced users. Covers uqumh developing your own sysism. Design

Memory Ms: Ak, oo bock is mxhh whh commeried dowing, memory layout, Xefnal relative files, & Cirect BCCESS COM- ODJECTS ON YOUT SCTEEN 10 AUITH lul
column graphics u nd_commented BASK: 7.0 ROM Gstings. comlg toutines, sprites, sONware pPro- Mands. Desctioes DOB mhu printer. Inchudes tistings fof ‘64 wih

ROM tstngs. 6O0pp $1095 Sumar'ss $19 . ning. 300pp $1985 Commentsd kstings. $1985 Simon's Basic. 00pp $1983

e rnene
Jeesansescannamleanal

TIIXIIIYIIXTTY

t)

orn oomn
secesaseaanseans(eene

jwawsnusssnsnnamlans:

t ' g

AMTA KLATABOON A @D Y

———eee
ATATA WO R 0L AASUD BY

ATATA BCONERROOK AR B OV

e,

«‘vms
Ton iy

APAENEEKE,
GAMTEWHITE RS
EANTNKVR 20K

Bt e e

CONNIG

AT

oot

OO

Abacus FESonware Abxuquoﬂwm AbacmSovan
atreduction to . problem Presenty cozens of programming Essential guide for ever Inter-
8Aslys, Ihrough description of & oaia-muoﬂ Easy snd useful esled in CP/M on the 129 Simple
BASIC commands with huncreds of Jechai cpefating system, nation of the operatng system,
013Mpies; MONID? COMMANCS; Ulih Siacks, nw page, poinlers, the memory usage, CP/M ut Pro-
s, much more. $1595 BASKC nterprster anc more. $1355 grama, subm ies & more. 1905

Mutom OF C-84 Inaiders guide 1o the
‘04 iedemnals. Graphics, sound, VO, kemal,

TRICKS & TIPS FOR C-04 Cotlection of
ea3y-o-use mm advanced graphics,

BCIENCE/ENGINEERING ON C-84 In
depth intro 10 computers In science. Topics:

physics, biology,

WL

swmmuwww-m

elscuronics, others, 330pp $19.95
CABGETTE BOOK C-s4/viCc-20
Comprehensive ouldo. many sample

MOMOTY MEDS, MOS. BASIC,
HOM tatinga. 0opp $1995 cm:nm Wipp 51995
ANATOMY OF ORIVE Best 1341 REPAIR & MAINTENANCE
handbook on al. Many Handvook wmmwam hard-
examples and commentad wae, includes

1541 ROM 830pp $18.95 15 hoep 1341 funning. mw $19.95

MACHINE LANGUAGE C.04 Lean
8510 code write 1ast programs. Many sam-
ples and Iiwnqa tor eomplou oisembler,
monior, & simulator. 200pp $14.85
GRAPHICS BOOK C-64 - bes! rsterence
covers basic and advanced graphics.
Sptites, animation, Hites, Multicalor,
lightpen, 3D-graphics, IRQ, CAD, pro-
Jecione, curves, mote. A50pp $19.95

Abacus

Migh speed g System
tast tie lbading and saving. 223pp $14.85

Not covered

extanded BASIC,

ADVANCED IACHIN! LANGUAGE (DEAS FOR USE ON C.64 Themes:
audto recipe {1s, stock

interrupts, timers, dod-o. vo. roal time, Wats, el planner. window advertising,
more. 210pp $14.95 others. inckudes 00pp $12.85

PRINTER BOOX C-84/VIC-20 Undes-
stand Commodore, Epson-compaible print-
s and 1520 plotier. Packed: uhkties; gra-
phics dump; 3D-plot; commenied MPS801
ROM tatings, mote. 330pp $10.95

F3TFEIITIN

T
P.0. Box 7219 Dept.M9 Grand Rapids, MI 49510 - Telex 709-101 - Phone (616) 241-5510

Optional diskettes available for all book titles - $14.95 each. Other books & software also available. Call for the name of your
nearest dealer. Or order directly from ABACUS using your MC, Visa or Amex card. Add $4.00 per order for shipping. Foreign
orders add £10,00 per book. Call now or write for your free catalog. Dealer inquires welcome—over 1400 dealers nationwide.

COMPILER BOOK C-04/C-128 Al you
need (0 know about compilers: how they
work; designing and writing your owa;
generating machine code. Wah working
1ampie compiler. 300pp $19.93
C128 e C 84

youz own games, Wi

dVeniure game QeNeiaor. mw $14.05
PEEKDS & POKES FOR THE C-C4
Includes in-Cepth explanations of PEEK,
POXE, USR, and other BASIC commands.
Learn the “inaide* tricks 10 gel 1he moat ot
of your ‘04, 200pp $14.85

Options! Diskettes for Dooks

For your convenience, the programs
contained in each of ow books ase avall-
able on diskefts to save you time .morhg
hem from yout keyboard. Specily name

bock when ordering. 1493 ueh

Software

