
c

c

c

SLJFERC
for the

C-128 or C-64

by F.J. Hauck and T. Eirich

+

mainO

{ Int start, end, step;

double fahr, Celsius;

start-50;

end-50;

step-10;

celsius-start;

while{ ceteius<-end)

{ fahr-(9.0/5.0)'cets!us+32.0;

ptint(("%4.0f%7.1f\n",celslU9,lahr);
celsiusocelsJus+step;

}
getcnarO;

A Data Becker product from

Abacuslinini Software

233277

a

Copyright Notice

Abacus Software makes this package available for use on a single

computer only. It is unlawful to copy any portion of this software

package onto any medium for any purpose other than backup. It is

unlawful to give away or resell copies of this package. Any

unauthorized distribution of this product deprives the authors of

their deserved royalties. For use on single-site multiple computers,

please contact Abacus Software to make arrangements.

Warranty

Abacus Software makes no warnings, expressed or implied, as to

the fitness of this software package for any particular purpose. In

no event will Abacus Software be liable for consequential damages.

Abacus Software will replace any copy of this software which is

unreadable, if returned within 30 days of purchase. Thereafter,

there will be a nominal charge for replacement

Second Printing, December 1986

Copyright © 1986 Data Becker GmbH

Merowingerstr. 30

4000 Dusseldorf, West Germany

Abacus Software, Inc.

P.O. BOX 7219

Grand Rapids, MI. 49510

ISBN 0-916439-59-3

c

c

c

Preface

The programming language C has been in existence since about

1972. It was developed by Dennis Ritchie and Brian Kernighan for

the operating system UNIX. More then 90% of UNIX was written

in C. With the spread of UNIX, C enjoyed greater popularity as

well. Super C now makes it possible to program in C on the C-64

or C-128.

Like Pascal, C is a structured programming language. Programs are

written without jumps (goto's). You can program small problems

in functions (comparable to subroutines in BASIC), and then call

this with certain data. Once programmed, only the operation of

these functions need be known. This concept results not only in
programs which are easier to read but also to easier to maintain. By

building libraries of functions, new programs can incorporate them

to quickly create solutions to a wide assortment of problems.

In C there are data types comparable to those in Pascal. Very
important in C is the pointer, which plays a large role. While it is

more of an appendage to Pascal, C supports the pointer with

pointer arithmetic. This moves C in the direction of assembly

languages. Like assembly languages, certain problems can be

solved easily using pointer arithmetic, without assuming anything

about the computer being used. This means that programs will run

on any C machine without significant changes.

Super C is a system of programs. Super C contains a command
processor with various resident commands, such as to display the

contents of the disk. In addition, there are commands which can be

loaded (transient commands). These can also be written in C

themselves.

An editor makes it easy to enter C programs. Programs are

translated into machine language by the compiler. This system

includes the entire range of the C language except for bit fields.

The linker links together separately compiled programs and the

standard libraries. Graphics and mathematical functions are also

available as library fiinctions.

The Super C version for the C-128 also has a RAM disk. This can
be used like a normal disk drive. The RAM disk has a tremendous

speed advantage over normal disks. The contents of the RAM disk

can also be saved on diskette as a package so that they are loaded

when Super C is started. Super C can work with a total of up to
eight disk drives. /-

Franz J. Hauck

Thomas Eirich

c

c

c

c

c

Table of Contents

Part L Tutorial

1. Introduction

2. The Super C command processor

2.1 Starting Super C

2.2 CCP resident commands

2.3 CCP transient commands

3. The RAM disk in the C-128

4. C editor

4.1 The command "new"

4.2 Inserting and deleting lines

4.3 Saving text

4.4 Loading text

4.5 Block commands

4.5.1 Deleting block

4.5.2 Move blocks

4.5.3 Copy block

4.6 Search and replace

4.6.1 Searching

4.6.2 Replacing

4.7 Back to the CCP

5. Your first C program

5.1 Editing

5.2 Compiling

5.3 Linking

5.4 Executing

6. Introduction to C

6.1 Overview

6.1.1 The first program

6.1.2 Objects

6.1.3 Loops

6.1.4 Symbolic constants

6.1.5 Arrays

6.1.6 Character arrays

1

3

5

5

6

8

13

15

15

16

19

20

21

22

23

24

24

25
26

27

28

30

33

36

37

37

37

39

41

44

45

47

6.2 Expressions and declarations 48
6.2.1 Names 48

6.2.2 Types 48

6.2.3 Constants 49
6.2.4 Memory classes 51

6.2.5 Arithmetic operators 52 /"""*

6.2.6 Comparisons, logical operators 53 ^—
6.2.7 Type conversions 54

6.2.8 Increment and decrement 54
6.2.9 Bit operations 55
6.2.10 Assignments 56

6.2.11 Conditional evaluation 57

6.2.12 Precedence and order of operators 58
6.2.13 Additional operators 59

6.2.14 Program text 60

6.3 Control structures 60

6.3.1 Block 61

6.3.2 if instruction 61

6.3.3 switch instruction 63

6.3.4 while instruction 64

6.3.5 for instruction 65

6.3.6 do instruction 66

6.3.7 break instruction 66 /"~
6.3.8 continue instruction 67 v_

6.3.9 goto instruction and labels 68

6.4 Program structures 69

6.4.1 Functions 69

6.4.2 Arguments 72

6.4.3 Global definitions 73
6.4.4 Declarations 74

6.4.5 Local definitions 76

6.4.6 Initializations 76
6.4.7 Macros 79

6.4.8 Chaining files 81

6.5 Pointers, addresses, and arrays 81

6.5.1 Pointers 82

6.5.2 Address arithmetic 83

6.5.3 Pointers and arrays as arguments 85
6.5.4 Complex declarations 86

6.5.5 Pointer arrays 87 •-

6.5.6 Pointers and multi-dimension arrays 88 _

c

c

c

6.6 Structures and variants (struct/union)

6.6.1 Declarations of structures

6.6.2 Access to components

6.6.3 Functions and structures

6.6.4 Recursive structures

6.6.S Variants

6.6.6 Type definitions
6.7 Programming environment

6.7.1 Files
6.7.2 EOF

6.7.3 STDIO
6.7.4 Additional functions

6.7.5 Error handling

6.7.6 Interruption

II. System Guide

1. The command processor

1.1 Start, NMI, and RESET

1.2 Device identifiers and filenames

1.3 Extensions

1.4 Passing arguments

1.5 Character sets

1.6 Monitors

1.7 Resident commands

1.8 Transient commands

1.8.1 device

1.8.2 copy

1.8.3 f
1.8.4 Iram (V3 only)

1.8.5 sram (V3 only)

1.8.6 sysgen (V3 only)

1.8.7 c system

1.8.8 cl

1.8.9 type

2. RAM disk

2.1 Deviations from CommodoreDOS

2.2 Track/sector division

2.3 TheRAM disk commands

89

90

91

92

93

94

95

96

96

97

98

98

99

99

103

103

103

105
106

107

108

109

109

111

111

112

114

115

115

115

117

117

118

119

119

120
121

3. The C editor 123

3.1 Character sets and text display 123

3.2 Control keys 125
3.3 Parameter inputs 128

3.3.1 Key input 128
3.3.2 Input a number 128 (~
3.3.3 Input a string 129 v-
3.3.4 Block input 129
3.35 Destination input 130

3.4 Commands 131

3.5 Error messages 139

4. C compiler 140
4.1 Start without arguments 140
4.2 Start with arguments 142
4.3 Compiler error messages 143

4.4 Finding errors

5. Linker 150
5.1 Start without arguments 150
5.2 Start with arguments 152
5.3 Error messages 153

6. C programs 155 ^~
6.1 Start 155
6.2 Operating modes 156
6.3 Run-time errors 159
6.4 Memory layout 162

7. The library functions 163
7.1 Standard C libraries 164

7.1.1 erron(), enoff(), nmion(), qerrorO,

errorO, exit() 165
7.1.2 open(), close() 166

7.1.3 putcO, fputc(), getcO, fgeteO 168
7.1.4 getchar(), putchar() 168

7.1.5 gets(), fgets(), puts(), fputs() 169

7.1.6 fgetf(), fputfO 169
7.1.7 fopen(), fcloseQ 170

c

c

7.1.8 strlenO, strcmpO, strncmpO 171
7.1.9 strcatO, strncatO, strcpy(), strncpyO 172
7.1.10 strchrO, strrchrO 173

7.1.11 cursorO, execO 173
7.1.12 cmove(), moveO 174

7.1.13 aUocO,ftee() 175

7.1.14 settimeO, gettimeO 176
7.1.15 keysO 177
7.1.16 callO 177
7.1.17 fastO, slowO 178
7.1.18 windowO 178

7.1.19 vdcinO, vdcoutO 178
7.1.20 io\inO,io\outO 179
7.1.21 is80() 179
7.1.22 Formatted output 180

7.1.23 Formatted input 184

7.1.23.1 Reading strings 187

7.1.23.2 Error messages 187
7.1.23.3 sscanf and fscanf 188

7.2 The graphics library 189

7.2.1 graphic(), graphon(), graphoffO, isgraph() 190

7.2.2 backgrO, clrmapO, colorsO, setcol() 191
7.2.3 dot(), dotin(), bdotO 192

7.2.4 lineO,bline(),mline(),oline() 195

7.2.5 setplot(), plot() 197

7.2.6 shape(), fill() 198

7.2.7 pushobjO, plotobjO, fplotobjO, bplotobjO 199
7.2.8 mask, bmap, mapvQ 201

7.2.9 Layout of the graphics memory 202
7.2.10 Demo program 203

7.2.11 Storing the graphics 203

7.3 Math library 204

7.3.1 sinO, cosO 204
7.3.2 tanO, atn() 205

7.3.3 abs(), sgn(), rndO 205

7.3.4 sqrO, sqrt() 206
7.3.5 logO, exp() 206

7.4 ctype.h 207

C

8. C language description 209
8.1 Introduction 209

8.2 Text conventions 209
8.2.1 Comments 209

8.2.2 Names 209

8.2.3 Keywords 210
8.2.4 Constants 210

8.2.4.1 Integer constants 210

8.2.4.2 Char constants 211
8.2.4.3 Floating-point constants 211

8.2.5 Strings 212

8.2.6 Example 212

8.3 Object names 213
8.3.1 Storage classes 213
8.3.2 Types 214

8.3.3 Hardware-specific type data 215
8.4 Objects and L-values 216
8.5 Conversion of a type 216

8.5.1 Integer values between each other 216

8.5.2 Floating-point values between each other 216
8.5.3 Floating-point and integer values 217

8.5.4 Addresses and integer values 217
8.5.5 The standard conversions 217

8.6 Syntax notation 218

8.7 Expressions 218

8.7.1 Simple expressions 219
8.7.2 Unary operators 221

8.7.3 Multiplication, division 222

8.7.4 Addition, subtraction 223

8.7.5 Shift operations 224

8.7.6 Comparisons 224

8.7.7 Equivalence comparisons 225
8.7.8 Bit operations 226

8.7.9 Logical operations 226

8.7.10 Condition evaluation 227

8.7.11 Assigments 227
8.7.12 Lists 228

8.8 Declarations 229
8.8.1 Storage classes 230
8.8.2 Types 230

8.8.3 Data definitions 231 c

c

c

c

8.8.4 Type declarations 231

8.8.5 Functions 232

8.8.6 Declarators 232
8.8.7 Function declarator 234

8.8.8 Parameter declaration 234

8.8.9 Structures and unions 235

8.8.10 Enumerated type 236

8.8.11 Initializations 236

8.8.12 Abstract declarators 238
8.9 Statements 238

8.9.1 Blocks 239

8.9.2 while statement 239

8.9.3 do statement 240

8.9.4 for statement 240

8.9.5 if statement 241

8.9.6 switch statement 241

8.9.7 break statement 242

8.9.8 continue statement 242

8.9.9 return statement 242

8.9.10 Labels 242

8.9.11 goto statement 243

8.9.12 Empty statement 243

8.10 Scope 243
8.10.1 Scope of a name 243

8.10.2 Scope on an object 245

8.11 Preprocessor 245

8.11.1 Macros 245

8.11.2 Chaining files 247

8.11.3 Conditional compilation 247
8.11.4 Line numbering 248

8.12 Implicit declarations 248

8.13 Operations on different data types 249
8.13.1 Structures and unions 249

8.13.2 Functions 250
8.13.3 Arrays, pointers 250

8.13.4 Conversion of pointer values 251
8.14 Constant expressions 251

8.15 Portability 252

8.16 Differences from standard compilers 252

8.17 Differences from the C-Compiler 64 253

Partm Appendix 254

1.0 Keyboard V2

1.2 Keyboard V3 LC character set
1.3 Keyboard V3 CBM character set

2.1 Character codes

2.2 CTRL-codes V2

2.3 CTRL-codes V3
2.4ESC-codesV3

3.0 Function overview

4.0 Listing of the header files

5.0 Listing "textc"

6.0 Listing "sample .c"

INDEX

254

255

256

257

258

259
261

262

270

277

281

282

c

c

c

c
Part I

(Tutorial!

C

c

c

c

c

c

c

Abacus Software Super C for the C-128/C-64

Part I. Tutorial Section

1. Introduction

Super C Version 2 requires a C-64 or a C-128, since it can be
operated in the C-64 mode. Version 3 requires a C-128. At least

one disk drive is required for either version. The drive may be

either a 1541 or a 1571. A maximum of 8 disk drives may be
connected

This manual is divided into two parts: a tutorial section and a

reference section. The tutorial section will familiarize you with
SUPER C If you aren't familiar with the programming in the C

language, the tutorial section also contains an introduction to C

programming. If you find that this introduction to C programming

is too advanced for you, consult the bibliography for a more
extensive introduction.

The reference section describes the specific features and capabilities

of the SUPER C package and contains a description of the C
language.

Even if you're already familiar with the C language, you should

begin with the tutorial section. The tutorial section describes the

important features and commands of SUPER C. After you're

familiar with these commands, you can concentrate on
programming in C.

The following conventions are used in this manual.

A request to press a key is noted by the key enclosed in square
brackets.

[RETURN] means press the key marked RETURN

[A] means press the key marked A

Abacus Software Super C for the C-128/C-64

A request to press several keys in succession is noted by the keys

enclosed in square brackets and separated by commas.

[h], [e], [1], [1], [o], [RETURN]

means type the word hello followed by the RETURN key.

The above may also be shortened to:

hello [RETURN]

A request to press two keys simultaneously is noted by the keys

enclosed in square brackets and separated by a plus (+) sign.

[RUN/STOP]+[RESTORE]

means press the [RUN/STOP] key and the [RESTORE] key
simultaneously.

In reality, we don't mean simultaneously. Instead press the first
key and hold it down, then press the second

A request to press an uppercase letter is noted either of two ways:

[SHIFT] + [a] or [A]

A request to press a cursor key is noted as follows:

[C-UP] or

[C-DOWN] or

[C-LEFT] or

[C-RIGHT] or

ir Cursor up

Cursor down

Cursor left

Cursor right

c

c

c

Abacus Software Super C for the C-128/C-64

2. The Super C Command processor

v 2.1 Starting Super C

Turn on your computer and disk drive.

Insert the diskette included with your SUPER C package into your

drive and close the drive door. We will call this disk the system

diskette. The system diskette is write and copy-protected. You
cannot store any more programs on the system diskette.

For SUPER C Version 3 (C-128)

Before starting SUPER C, check the setting of the 40/80
column button. If it is depressed, SUPER C will start up in

80 column mode. Otherwise it will start in 40 column

mode. There are two ways to start SUPER C Version 3.

v_ • Press the RESET button.

•Type: boot [RETURN]

In either case the SUPER C system is loaded and started.

For SUPER C Version 2 (C-64)

Enter the following:

load lfc-systemfl,8,1 [RETURN]

The SUPER C system is loaded and started.

If you are using Version 2 on a C-128 you can press the

RESET button or type boot [RETURN]. SUPER C will

r switch to '64 mode automatically.

Abacus Software Super C for the C-128/C-64

In either Version 2 or Version 3 the title screen is displayed and the
SUPER C command processor displays its prompt:

a:

The blinking cursor will appear after the prompt (a:).When you
see this prompt, you know that SUPER C is ready to process a

command. We call the command processor CCP. This stands for
C Command Processor.

2.2 CCP resident commands

All commands are terminated with the [RETURN] key. Enter

a:dir [RETURN]

The directory of the system disk (which is hopefully still in the

drive) is displayed. Below is a partial listing of a directory:

0 "c-system #3.00a lf he 2a

1 "ce" prg

28 "c4" prg

29 "e8" prg

99 "cc" prg

28 "cl" prg

43 "c-system" prg

5 "copy" prg

30 "device" prg

Now enter:

a:err [RETURN]

The CCP reads the error message from the disk drive and displays

it It looks like this:

a: err ^-
00, ok,00,00

a:

Abacus Software Super C for the C-128/C-64

A third command sends disk commands to the disk drive. Type:

r a:com v [RETURN]

The disk command v for validate is sent to disk drive a.

If the system diskette is still in the drive the following appears on

the screen:

a:com v

26, write protect onf18,00

The error message is displayed because the validated directory

cannot be written to the write-protected diskette. Here, we are just

demonstrating the com command.

All commands must immediately follow the a: prompt The

command com gets the "v" as the argument. Arguments for a

command are separated from the command by at least one space.

f~ Spaces within the argument are not allowed.

Using the com command any valid disk command may be sent to

the disk drive. For example, to rename a file from test to prog,

you would send the following:

a:com r:prog=test

If a filename has an embedded space, the CCP interprets this as a

separator. Only the text preceding the space is considered the
argument. To overcome this limitation, you can replace all

embedded spaces with a shifted space:

c

[SHIFT]+[SPACE]

A shifted space appears as a small dot on the screen.

The valid disk commands are described in the 1541 or 1571 disk
drive manuals. Some of these disk commands are described briefly

in Part n Chapter 2.

Abacus Software Super C for the C-128/C-64

2.3 CCP transient commands

In addition to the preceding resident commands, SUPER C (~
supports transient commands. ^~

A resident command is always in the computer's memory, ready to
immediately perform a task.

Transient commands are stored on diskette and are loaded into
memory before they are started. SUPER C has several transient

commands on the system diskette. Later, you'll learn how to add
your own transient commands.

One SUPER C transient command is device. Type the following:

a:device [RETURN]

The program device is loaded from the system disk and responds

with:

DEVICE CHANGE PROGRAM V2.0 ^-
device a to b.

Press [RETURN] twice. The message:

DRIVE/DOS version

1541/70/71 V2.6

device is changed,

device a to b.

This transient command changed the device number of your disk

drive. Device numbers range from 0 to 15, and for disk drives from

8 to 15. In Super C the numbers are represented by letters:

Device letter abcdefgh

Device number 8 9 10 11 12 13 14 15 f~

Since you accepted the default device identifiers in the device

transient command, a and b, the device address 8 is changed to 9.

This can be changed to normal as follows:

8

Abacus Software Super C for the C-128/C-64

[b],[RETURN],[a],[RETURN]

f~ Now change drive a to drive b as follows::

[a],[RETURN],[b],[RETURN]

When another input appears, press

[RUN/STOP]

You'll find yourself back in the CCR Read the directory in the
normal manner. The following is displayed:

a:dir [RETURN]

file not found

a:

The error "file not found" message is printed whenever a

transient command is not found or if a disk drive is not

£' addressable. The CCP tried to read the directory of device a. Since
^ we reassigned drive a to device address b, the error message is

displayed. To be able to read ihe directory of drive b, change the

prompt from a: to b: as follows:

a:b: [RETURN]

b:dir [RETURN]

. » *

The directory of the system disk is now displayed. Furthermore,

the prompt is now b:. Change the prompt back to a:.

b:a: [RETURN]

a:b:dir [RETURN]

• • •

b:

f~ You can prefix a command with a device identifier. This implies
^ that the command is to be performed using the prefixed device.

Therefore b: dir [RETURN] displays the directory of drive b

even if the cuiTent drive is drive a.

Abacus Software Super C for the C-128/C-64

You can prefix the com and err commands with a device

identifier. For transient commands, the prefixed device identifier

specifies the drive from which the command is loaded. f~

Try loading device form a:

b:a:device [RETURN]

file not found

a:b:device [RETURN]

DEVICE CHANGE PROGRAM...

Load device from b and change the address of your drive back to

a again.

If you are using two disk drives and both are turned on, the above

procedure does not work correctly if one drive is device 8 and the

other is device 9. Instead, the device transient command will set

both drives to device 9. In this case you won't need the device

command. (^

Usually the device address of the two disk drives are set to 8 on

power up. In this case, turn off one drive, change the device from

a to b using the device command, and turn on the second drive.

Remember that the device command changes the device address in

software only. If the drives are turned off or the RESET button is

pressed, the device number reverts to normal.

Here's another transient command Type:

a:copy [RETURN]

This loads the copy transient command from the system disk.

After a short time the prompt appears again, on Super C Version 2

it is now light red This signifies that a transient command is loaded

and ready to run (On Version 3, the transient command lram r
std. p, which loads the contents of the RAM disk, is automatically

executed after booting. The prompt is red on Version 3 because

lram is present after booting). You can use the copy command

to copy files from one drive to another. The copy command

10

Abacus Software Super C for the C-128/C-64

remains resident until another transient command is loaded.

Insert a blank disk into drive a and enter the format command:

v~ a:com n:programsfcc [RETURN]

If you are using more than one drive, pay careful attention to the
device identifier. Before formatting a disk make sure that the correct
drive is specified.

You should now create a work diskette for your C programs. The

work diskette will require various link files. Create your work
diskette as described below.

For one drive systems:

Insert the system disk in drive a and enter:

a:copy a:stdio.h to a:* [RETURN]

CThe copy program then loads the file stdio. h from

drive a into memory. Once the file is loaded, the message

quit to save!

appears. Remove the system diskette and insert the

formatted work diskette. Now press a key and the file

stdio. h is written to the diskette.

quit to save! ok

When the prompt appears, the file has been copied.

Arguments for the copy command are separated by

spaces. No spaces may be within an argument A space in

a filename must be replaced by a shifted space.

CThefirst argument the is filename of the file to be copied. It

is prefixed by a device identifier.

The second argument is the word to. It indicates the

direction of the copy.

11

Abacus Software Super C for the C-128/C-64

The third argument is the filename of the copied file. It is
prefixed by a device identifier. An asterisk (*) may be

substituted for filename and signifies that the filename is /"~

the same as the first argument >*-

For two disk drives systems:

Insert the system disk in a, the formatted work disk in b.

Enter:

a:copy a:stdio.h to b:* [RETURN]

The file is copied directly from drive a to drive b.

Now copy the following files onto the formatted work diskette
using the procedures described above (one drive or two drive

systems):

stdio. h (which we already copied)

graphic.h f"
math.h • V_

ctype.h

libel

libcs.l

libgraph.l

libmath.1

This procedure is necessary, many of these files will be used by the
C compiler when you compile your programs.

Super C also works with dual disk drive systems. Here is an

example using the copy program.

a:copy aO:stdio.h to al:* [RETURN]

For directories use this form:

a:dir 1 v-

a:dir 0

12

Abacus Software Super C for the C-128/C-64

3. Version 3-RAM disk (C-128)

If you are using SUPER C Version 3, the CCP contains a RAM

disk. The RAM disk uses device identifier h.

What is a RAM disk? A RAM disk is a simulated disk drive.
Instead of storing data or programs on magnetic media a RAM disk

stores the data or programs in memory. Keep in mind that the

contents of a RAM disk are lost when the computer is turned off,

but they can first be copied onto a normal diskette.

To display the directory of the RAM disk type:

a:h:dir [RETURN]

You'll notice that several files aie already stored on the RAM disk.

These are the files that you copied in the preceding section. These

files are automatically copied to the RAM disk when SUPER C
Version 3 is started.

Try using RAM disk with the commands com and err:

h:com r:stdio.x=stdio.h [RETURN]

This command changes the name of stdio. h to stdio. x.

h:com n:test [RETURN]

This command erases the contents of the RAM disk and gives it the

name test. The RAM disk can be accessed just like a normal disk

drive, by specifying the device identifier h:.

Insert the system disk into drive a and enter the following

command:

h:a:lram a:stdio*.p [RETURN]

^ Another transient command, lram, copies the specified file to the
RAM disk. The file stdio. p contains the list of files specified in

the preceding section, lram loads them into the RAM disk.

13

c

Abacus Software Super C for the C-128/C-64

You can also save the contents of the RAM disk using the

command sranu This command groups the individual files on the.

RAM disk together and saves them in one file. r

h:a:sram [RETURN]

Ifyou have a one drive system, you must load the lram and sram

commands without arguments from the system diskette. Then you

can replace the diskette in drive a. Enter this command:

a:sram a:ram.p [RETURN]

The RAM disk is saved to the diskette with the name ram. p.

If you have a two drive system, you can enter the following:

h:a:sram b:ram.p [RETURN]

The system disk must be in drive a and the other disk in drive b. If
the system diskette and the other diskette are reversed enter f~

h:b:sram a:ram.p

Note: On Super C Version 3, the command lram std.p, is

automatically executed during startup. This is why the prompt is

red to begin with in Super C Version 3, lram is present as a

resident command after booting.

c

14

Abacus Software SUPER C for the C-128/C-64

4. C editor

r~ The editor is one of the three system components. The editor is

V called ce and is loaded like a transient command:

a:ce [RETURN]

In Version 3, the editor can be used in either 40 or 80 column
mode.

4.1 The new command

For practice let's enter a short document. You begin a new

document with the editor command new (new document).

c

First press the [F5] key. This is the command key. The following
message appears on the top screen line:

enter command

This means that the editor is waiting for you to enter an editor
command.

Press the [n] key. The editor responds by displaying the

command name on the first line of the screen:

new: length of line

The editor is now waiting for you to specify the maximum length of

each document line. You can enter a value from 40 to 80. This line

length cannot be changed later. When entering numbers, the editor

accepts only the digits 0 to 9, the [DEL] and [RETURN] keys.

[DEL] deletes the preceding character and [RETURN] ends the

input. Enter the number 63 and then delete 63 by pressing [DEL]

C twice and enter 80. Then end the input by pressing [RETURN] .
The following is displayed:

new: length of line 80

file:

15

Abacus Software SUPER C for the C-128/C-64

The cursor is positioned after the word file: in the second screen

line. The editor is waiting for you to enter the filename of the

document. Enter: s~

new: length of line 80

file: textfile

[DEL] deletes the character preceding the cursor. The other control

keys are inoperative. Suppose you want to enter testfile

instead of textfile. You must [DEL] all the characters up to

and including x and then re-type the remainder of the filename.

To terminate the input, press [RETURN].

new: length of line 80

file: testfile
* * * * * * * * * *

You have now opened a document with line length of 80 and a

filename "testfile11. C

4.2 Inserting and deleting lines

The cursor is now positioned in the textfield. This is the part of the

screen below the top three status lines.

If you try press an alphabetic or numerical key, the message

"last line" is displayed on the status line. The cursor advances

but none of the characters are displayed.

last line

file testfile
* * * * * * * * * *

When a new document is opened, it contains only one line, a last

line. You can't enter text in this line, nor can you move the C
cursor beyond this line. In both cases the editor responds "last

line". To enter text into this document, you must insert

additional lines before the last line.

16

c

c

c

Abacus Software SUPER C for the C-128/C-64

Insert a few blank lines by pressing the [F7] key • The [F7] key

is used for inserting lines. Press [F7] a total of six times*

Your text field is now 6 lines by 80 columns. You can position the

cursor anywhere within this text field Pressing a key enters the text
at that location.

The [RETURN] key positions the cursor to the start of the next

line. [SHIFT] + [RETURN] places the cursor at the end of the
previous line.

Use the cursor keys and the ([SHIFT]) [RETURN] key to move
around in the text field. Version 3 also allows the upper cursor keys

to be used. On 40 column monitors youll notice that the screen

scrolls to the left when you move the cursor beyond column 20. If
you then move the cursor left, the screen scrolls to the right Since

these screens can display only 40 character per line, the characters

outside the screen arc brought into view by scrolling.

If you are using Version 3 on the 80-column monitor the screen
does not scroll.

Move the cursor to line one, column one. You can also use the

control key [CLR] ([SHIFT] + [HOME]) to do this.

Now enter the following text. When typing, you can use the

[DEL] and [INS] keys, which have the same function as in

BASIC.

This is the first line of my document.

Here is the second

three

4

Position your cursor somewhere in the second line and press the

[F7] key (to insert blank lines). All characters from the cursor line

to the end of the document arc moved down one line and the cursor

is positioned within in a blank line. Here you can insert text If one

line isn't enough, press the [F7] several times.

17

Abacus Software SUPER C for the C-128/C-64

c-editor 1.0

file: testfile
* * * * * * * * * * *-

This is the first line of my document V_

Here is the second

three

4

To delete lines, use the key [F8] ([SHIFT]+ [F7]). The line in

which the cursor is positioned disappears and all subsequent lines

are moved up. Press [F8] again and the second line of the

document disappears. It is deleted and all subsequent lines are
moved up.

c-editor 1.0

file: testfile
——— £ ———*.».».»&___*___*_.._*—__£___&___£__—£

This is the first line of my document.

three /^

4 <s_

The editor allows you to assign each line its own color. You set a

color by pressing the color control keys ([CBM] + [1] to

[CBM] + [8] or [CTRL] + [1] and [CTRL]+ [8]). The line then

takes on the color according to the color control key. This can be

very helpful for beginners by allowing them to more easily see the

structure of the program.

Place the cursor in line one and then press [CTRL] + [6]. The line

becomes green. Move the cursor to line two and then press the keys

[CBM] + [4]. The line becomes dark grey. The color of the last

line cannot be changed and is always red. On 80 column
monochrome monitors these commands will not work, use one

color on monochrome monitors.

When inserting lines ([F7]) the color of the line moved down is f~'

used. If you press [F7] in line 2, the new blank line has the color V-

dark grey.

If you want to do something like insert seven red lines between line

18

c

c

c

Abacus Software SUPER C for the C-128/C-64

one and line two, you donft have to insert seven lines and then
color these seven lines red, but just insert one line first Set the
color of this line to red and then insert the remaining six lines.
These will have the color red as welL

You can now experiment a bit with colors and inserting and

deleting lines before you go on to the next section. Version 3
owners who are using a monochrome monitor for 80 columns will

not be able to use the color features. Since the color feature allows

beginners to see the structure of the program very easily, we have

used color in the examples on the system disk. On 80 column

monochrome screens if a sample program from the system disk is

missing some lines, they may be displayed in a color not visible on
your monitor. Simply change the color to one that can be displayed

on your monitor and save the new example program to your work
disk.

4.3 Saving text

Now save the document. Insert a diskette into the drive. Press the

command key [F5] followed by [s]. The command name save

appears on the first line as the editor saves the document After the

document is saved, the cursor reappears in the text field.

Repeat the procedure ([F5] , [s]). The following question

appears behind the command name:

save: replace y/n?

In this case the file already exists on the diskette. The editor is

asking you if the file should be replaced. If so press [y] for yes.

If not, press [n] for no and you are returned to the text field.

19

Abacus Software SUPER C for the C-128/C-64

4.4 Loading text

Now load a document.. Insert the system diskette into the drive. ^

Well load a sample program. (^

Press the command key [F5], followed by the [1] key for the

command load. The command name load is displayed on the first

line and the cursor is positioned after the flfile: " prompt on the

second line.

Enter the filename to be loaded:

load

file jsS^-text.c [RETURN]

The new document is loaded and replaces the previous document in
memory.

After loading, the first page of the document is displayed and the

cursor is positioned to line one, column one. s~

Move the cursor using the cursor keys through the document and

examine the document, but don't change it Try the right and left

scrolling on 40 column displays. Since this document has enough

lines, you can also test the up and down scrolling in which you

move die cursor beyond the first or last line of the screen.

Use [RETURN] to get to the start of the next line or

[SHIFT] + [RETURN] in order to jump to the end of the previous

line.

You can also use two additional control keys in order to move the

cursor through the document quickly. The [Fl] key pages

forward through the document This always displays the next 22

lines. The [F2] key ([SHIFT]+ [F1]) pages backwards through

the document Here 22 lines preceding the current cursor position

are displayed on the screen. s~

20

c

c

c

Abacus Software SUPER C for the C-128/C-64

4.5 Block commands

Block commands operate on multiple lines at a time. A block is a

group of lines that belong together. When delimiting a block of

text, the message marking out range always appears in the

first line. This message indicates the block-input mode. During the

block input, only a few of the control keys are active (cursor left,

cursor right, cursor up, cursor down, [RETURN], [STOP]).

4.5.1 Delete block

To practice let's delete lines 64 to 95 of the sample document Well

use the block command erase. You could also delete the lines

individually with the control key [F8].

Move the cursor to line 64. You can determine the line number at

which the cursor is positioned from status line. The first number

indicates the column, the second the line. Press [F5] followed by

[e]. The editor displays the command name erase: and the

block-input mode.

erase: marking out range

In the block-input mode the lines which mark the block are

displayed in reverse video. Use the keys [C-UP] and [C-DOWN]

to vary the size of the block.

Enlarge the text block with the [C-DOWN] key until the reverse line

field reaches to line 99. But since we want to erase only to line 95,

decrease the size of the block with [C-UP] until the reverse block

extends to line 95. After you have delimited the block press the

[RETURN] key. A confirmation question now appears behind

erase:

erase:are you sure y/n?

The [n] key terminates the command and returns you to the text

input without erasing the block. The [y] key erases the block.

Press the [y] key to delete the block.

21

Abacus Software SUPER C for the C-128/C-64

You can exit the block input with the [STOP] key in case you
don't want to delete it after all, or you marked it out wrong.

4.5.2 Move block

With the command move you can move text blocks to a different
location in the document In the sample document we will move
lines 101 through 113 to line 58.

Move the cursor to line 101. Press [F5] followed by [m]for

move block. As you can gather from the status line (marking

out range), you are in the block-input mode. You must now

mark the range which you want to move. This works the same as

described in Section 4.5.1 Delete block.

After you have delimited the block, press the [RETURN] key. The

the message "fixing target" appears after move: on the first

line of the screen. Use the cursor keys to position the cursor to the
destination line which is displayed in reverse. In a block which is
already displayed in reverse, the destination line is displayed in

normal video.

You now have to set the destination line where the block is to be

inserted. You can use the following control keys for this:

[C-UP] and [C-DOWN] move the destination line up and down.

The [Fl] and [F2] keys move the destination line 22 lines down

or up, respectively.

TTie [g] key calls the command "goto". You enter a line number

to which the destination line jumps.

[RETURN] ends the line input The destination line may not lie

within the previously marked block. The editor will otherwise

respond "no target line" and will not end the destination

input

Move the destination line to line 58 with the control keys and end

the input with [RETURN].

22

c

Abacus Software SUPER C for the C-128/C-64

The marked block is moved and the document is displayed starting
at the inserted block. If you move the cursor up one line you will

s~ see the line before the destination line.

You can also use the goto command by pressing the [F5] key

followed by [g]. The command name goto appears in the first
line. Enter a number of up to four places (9999) at the prompt The
cursor moves to the specified line, but not beyond the last line.

4.5.3 Copy block

Copying (transferring) a block is very similar to moving a block. In

contrast to moving, a copy of the marked block is inserted before

the destination line. This allows you to duplicate the block at
another location within the document

The transfer command is used to copy blocks. It works

identically to the move command, with one addition. When setting

C the destination, the [HOME] key is enabled.

[HOME] causes the text area to be switched into the extra text area.

The editor has two separate text areas, the file text area, where you

have worked so far, and the extra text area. You can distinguish
between the two text areas by means of the second screen line. For

the file text area, "f ile:" and the filename is displayed, while

"extra text" is displayed in the extra text area.

While you are editing the actual document in the file text area, text
should be stored only temporarily in the extra text area. You can
edit the extra text just like the file text, except that some commands

are not allowed in the extra text area. Using them causes the editor

to display the message "illegal text."

These commands include load and save. Change the text area

r once and try to use the load command ([HOME] [F5] [1]).

(_ The editor displays the "illegal text" error.

illegal text

extra text

* * * * * * * * * *

23

Abacus Software SUPER C for the C-128/C-64

Back to the transfer command. You can transfer text from one area

to the other by changing the text area with the [HOME] key while
setting the destination. r-

For practice, transfer a block of text to the extra text area. Press

[F 5] followed by [t] for transfer. Then mark a block of text

While setting the destination, press the [HOME] key to enter the
extra text area. Since the extra text area contains only one line at this

time, the last line you cannot move the destination line within this
area.

As soon as you have set the destination by pressing [RETURN],

the text block is copied to the extra text area.

With the extra text area you can can insert text blocks into other
files, for instance. If you switch back to the normal text area by

pressing [HOME], you can load a different text file and the insert
the extra text in the file text area with the transfer command

You will learn another very useful application of the extra text area (^
in Chapter 5 of the tutorial section. V_

4.6 Search and replace

The editor allows you to search for strings. It also allows you to
replace strings.

4.6.1 Searching

The search string is specified with the hunt command. Press

[F5] followed by [h]. The command name hunt: is displayed
and prompts you to enter a search string.

If you make a mistake while typing the search string you can delete

the character with the [DEL] key. When you have entered the

complete search string press [RETURN]. For this example enter:

hunt: violet [RETURN]

24

Abacus Software SUPER C for the C-128/C-64

Now press the [F3] key to begin the search. The cursor will move

through the text and stop at the first character of the matching
/- string.

Press [CLR] to jump to the start of the document and search with

[F3]. The cursor will move to line 14 since it found a match for

"violet". Press [F3] again. Since there are no more occurrences

of "violet11 the last line is displayed.

4.6.2 Replacing

To replace a string, you must specify both a search string and a

replacement string. Press [F5] followed by [r] for replace.

The prompt hunt: is displayed. Enter the search string followed

by [RETURN]. Next the prompt rplc: is displayed. Enter the

replacement string followed by [RETURN].

Enter the following:

hunt: violet [RETURN]

rplc: purple [RETURN]

Here we want the string "violet" to be replaced by the string

"purple".

Replace can be performed in one oftwo ways:

1) automatic replace

2) ask-before-replace

In automatic replace, all occurrences of the search string are

replaced by the replacement string.

In the ask-before-replace, the editor prompts you before making

any replacements.

To automatically replace all occurrences of the search string press

the [F6] key.

25

Abacus Software SUPER C for the C-128/C-64

To ask-before-replace press the [F4] key. In this case, the editor

searches for the first occurrence of "violet" and displays it. You are
prompted. s~

replace?y/n

Press the [y] key to replace the string. Press [n] to skip to the

next occurrence. You can stop this function by pressing the

[STOP] key at any time. The cursor then appears at the location in

the document that the editor had reached while searching.

If during the replacement the maximum line length is exceeded by a

replace, the editor terminates the operation without replacing the

string at that location. The cursor is located at the first character of

the occurrence and the error message "overflow in line"

appears in the status line. You must then decide for yourself how to
change the text

For practice you can try to create an overflow-in-line error. You
must choose a replacem<

string in order to do this.

must choose a replacement string which is longer than the search /"~

4.7 Back to the CCP

You can terminate all procedures (searching, all inputs and

questions, loading, printing, etc.), with the exception of saving,

with the [STOP] key. Moreover, the functions listed above are

only the most useful; you can find a complete description of all the

functions in the reference section in Part n Chapter 3.

To exit the editor, press [F5] followed by [x]. The prompt are

you sure y/n? asks you to confirm this. Press [n] to return to
editing.

Press [y] to exit to the CCP. Make sure that youVe saved your

document before exitting the editor.

26

c

c

c

Abacus Software SUPER C for the C-128/C-64

5. Your first C program

In this chapter well show you how to create a C program using the

Super C Package. We'll show you how to edit a program, compile

I link the program and finally run it

When you use the Super C Package you will create three different

files: the source file, the link file, and the program file. Using the

C-editor, you create and modify the source file. The C-compiler

converts this source file into an intermediate link file. Finally the

C-linker combines this link file with any others required link files to

produce an executable program file.

To differentiate among these three types of files, we recommend
that you use filename extensions. In this manual, the following

conventions are used:

file type extension example

source file . s test • s

link file .o test.o

program file - test

The following describes two different methods to develop a

program using Super C.

In the first example, we assume that you are using Super C Version

3 and one disk drive. This version automatically gives you a second

disk drive-a RAM disk.

In the second example, we assume that you arc using Super C

Version 2 and only one disk drive.

In either case, if you arc using more than one real disk drive, you

can change the examples to use the added drives by specifying the

required device identifier.

Start the C system as described in Chapter 1. Once you arc in the

CCP, load the editor by typing:

a:ce

The Super C editor will now be loaded and started.

27

Abacus Software SUPER C for the C-128/C-64

5.1 Editing

The C-editor is used to create and modify the program text Chapter (~
4 described how to use the editor. v-

Since you are just learning how to use Super C, we won't have you

edit a source file here. We have already prepared a source file for

you named sample. c contained on the system disk. Load this

source file into the editor by typing:

[F5] [1] sample.c [RETURN]

Let's imagine that you had entered the text for this source file with
the C-editor and now want to compile it It's not possible to change

the diskette during compilation. Therefore all source files to be
compiled must be on disks which can be in the drives at the same

time. This means that if you have only one drive, all source files

must be on one diskette. For Version 3, you can divide the source

files between the RAM disk (h:) and the real drive. If you have

more than one drive you can divide the files between several (

diskettes. v~

Source files may not be saved on the system disk. Therefore you

must load the C compiler before compilation. To avoid changing

diskettes when moving between the editor, compiler, and linker,

you must reserve one disk drive for the system disk.

In the first example, the system diskette is in drive a: and in

version V3 the source files are saved on the RAM disk h:.

For Version V3 (C-128)

Look at the text of the example program. At the start of the

text there are some lines which look like this:

#include "stdio.h11

Change the text so that device identifier h: is in front of

stdio.h:

#include "h:stdio.h"

28

c

c

c

Abacus Software SUPER C for the (M28/C-64

The #include directive tells the compiler to insert the

specified file into the text beginning at that location. Recall

that the file stdio. h was copied to the RAM disk after

booting up. The device identifier h: tells the compiler that
this file is to be read from the RAM disk.

Save the sample program to the RAM disk. To do this,

change the file name to include the device identifier to h:.

Press the keys [F5] [f] to enter the file command.

Then enter the new filename:

h:sample.c [RETURN].

Finally save the new source file with the save command:

[F5] [s]

For Version V2 (C-64)

The same method applies for version V2. You do not have

to change the filename in the statement since the include

file is loaded from drive a:.

Insert the previously created work diskette into drive a:

and save the example program with the save command:

[F5] [s]

Make sure that all source files necessary for compilation arc on the

work diskette or the RAM diskette. You can use the editor

command to display the diskette's directory. Remember to switch

to the extra text area with [HOME] before loading the directory so

that you do not overwrite the source file.

Then enter [F5] [d] [a] [:] [RETURN] . The d specifies

directory and a: specifies drive a:. The directory is then loaded

into the extra text area. The contents of the RAM disk is displayed

by using h: instead of a:.

In Version V2 the files stdio. h and sample. c should be on the

work diskette, or on the RAM disk for Version V3.

29

Abacus Software SUPER C for the C-128/C-64

Normally both source files must be present The file stdio. h was
copied to the work diskette in Chapter 1.

Exit the editor with [F5] [x].

5.2 Compiling

The C-compiler is called cc and is loaded by typing [cc]

[RETURN]. The system diskette must be in the disk drive. The

compiler displays the compiler header message and asks you to

enter the filename of the source file. For Version V2, replace the

system diskette with the woik diskette. Then enter sample. c as

the source program name.

When entering file name into the compiler, only the control keys

[DEL] and [CLR] ([SHIFT] + [HOME]) as well as [RETURN]

are active. [DEL] clears the previous character and [CLR] deletes

the entire input field [RETURN] ends the input

source file name: sample.c [RETURN]

Enter h: sample. c for Version 3.

Now you are asked to enter the link file name. The output of the

compilation is written to this link file. If the source file input ends

with . c, the link file defaults to the file name with the extension

. o. We recommend that you use the same link file name, so the

various link files do not build up on the diskette.

Clear the input field with [CLR] ([SHIFT] +[HOME]) and enter a

name (such as o.o):

link file name: a:o.o [RETURN]

For Version 3 enter h: instead of a: because the link file is *~

stored on the RAM disk. V^

Next enter the name of the error file. In this file all of the compiler

error messages are stored. The default name is error. e, which

is preceded with the device identifier of the source text

30

c

c

c

Abacus Software SUPER C for the C-128/C-64

error file name: a:error.e [RETURN]

In Version 3 the device identifier is set to h:.

Now the compiler has all the information which it needs and starts
to compile the program.

In grey type the compiler prints the source files which it is

processing, h: sample. c and h: stdio. h. This means that it is

currently reading the corresponding source file. The yellow

message getchar indicates that the compiler is compiling the

function getchar. After this follows a grey # character. This

shows that the compiler is finished reading the source file

stdio. h and is continuing to read in sample, c at the line after

the one in which stdio. h was called. Then the compiler outputs

main in yellow, then some error messages appear in red. These

errors were not caused by anything you did, they are intentional.

The compiler finishes the compilation and prints the concluding
message:

compiling finished

linkfile not available

press x to quit, r to restart

Press the [x] key to return to the CCP. With [r] you could

restart the compiler to compile a different source file.

If there are errors during compilation or if you have mistakenly

entered incorrect parameters (such as source file or link file), you

can stop the compiler at any time by pressing

[STOP] + [RESTORE] . This produces a non-maskable interrupt

(NMI).

This compilation has a few errors, therefore you must return to the

editor to correct them. Reload the C-editor (insert the system

diskette first).

Once you are in the editor, insert your work diskette (Version V2

only) and load the file error. e from the work diskette or from

the RAM disk, as appropriate. All of the error and status messages

31

Abacus Software SUPER C for the C-128/C-64

are contained in this file. Copy this text into the extra text area. To

do this, use the transfer command ([F5] [t]) and mark the
entire document as a block. After you have ended the block input (~

with [RETURN], set the destination. Put the destination line in the ^-
extra text with the [HOME] key. End the destination input with

[RETURN] and the file error.e is now moved to the extra text

area. Then load the source file sample. c into the file text area.

Now you can correct the source text with the help of the error

messages in the extra text area. Each error has the line number in

which the error occurred. The extra text contains the following
errors:

?expression syntax error in 0013

?statement syntax error in 0022

?declaration syntax error in 0036

Lines 13 and 22 are displayed in red and contain errors. To

eliminate these errors, delete these lines. The error in line 36 results

from the errors in lines 13 and 22 and disappears once they are C
removed. v-

Once you have corrected the errors, save the modified source Hie

([F5] [s]). The message replace y/n? appears. Since the

file already exists the editor asks if it should be replaced. Press

[y] so that the old file is replaced by the corrected file.

You now have a corrected source file and can compile it again. Exit

the editor and start the compiler with cc [RETURN] .

source file name: h:sample. c [RETURN]

link file name: h:o.o [RETURN]

error file name: h:error.e [RETURN]

For Version 2, you must use a: as the device identifier.

If a link file with the same name already exists, it is overwritten. tT
This time the compiler runs through the source text without error.

The termination message this time is:

32

c

c

Abacus Software SUPER C for the C-128/C-64

compiling finished

linkfile available

press x to quit, r to restart

The link file is now available. You can therefore proceed to the

linking. Exit the compiler with the [x] key and return to the
command processor.

5.3 Linking

Several functions are used in the compiled sample program which

must be explicitly made available under C. To make these available,

the link file of the sample program must be linked to the library(ies)

containing these functions. A library is a link file which contains

the appropriate functions already compiled.

Before you start linking, check if all the link files which you want

to link are on one diskette. The library is called libc. 1. It should

r be on your work diskette. It was copied to this diskette in Chapter
^~ 1. If it is not there, you must copy the file onto your work diskette

with the copy command.

If both link files, o. o and libc. 1, are now on the work diskette

or the RAM disk, load the loader (insert the system disk first). The

linker is called cl and is loaded with [cl] [RETURN].

The linker displays the linker header and requests you to enter the

final program filename. First insert your work diskette if you are
working with Version V2. Enter the name of the sample program

without the .c extension:

program file name: h:sample [RETURN]

The device identifier indicates where the file is to be saved, on

Version V2 use a: instead of h:.

The linker then asks you to enter the name of the required link files.

Enter the two link files, 1 ibc. 1 and o. o. The first input contains

libc. 1, but without a device identifier. This means that you can

accept the default only if libc .1 is on drive a. In Version V3 the

33

Abacus Software SUPER C for the C-128/C-64

default already has the device identifier h: because this file is

usually on the RAM disk.

r
You can use the [DEL], [CLR],and [RETURN] keys for editing. v_

The [DEL] key deletes the previous character, [CLR] clears the

entibre input field and [RETURN] ends the input.

The order of the link files is not important You can change the

order around as you like, the same C program always result. A

good habit is to enter the libraries first

link file h:libc-l [RETURN]

link file h:o.o [RETURN]

link file [RETURN]

After the two link files are entered, press [RETURN]. This ends

the link file input

After this you can set the upper limit of the C program memory. If C
you don't need any memory for other applications, you can accept v-
the default The maximum C program memory available is 50K for

V2and51KforV3.

memory top page $e9 [RETURN]

The default here is $dO for Version 2.

Next you are asked to enter either c or b (this happens only in

Version V2.) You can accept the default letter c. The c means that
the C program can be started only from the CCP. The linker option

b creates a C program which can be started from BASIC. We

designate a program as a C-version if it is to be started from the

CCP and as a B-version if it is to be started from BASIC. The

C-version has the advantage that you don't have to exit the C
system in order to run the program. The B-version has the

advantage that the Super C system doesn't have to be loaded to run C
the program. This option is not available in Version 3. v~

(c=ccp/b=basic) c [RETURN}

34

c

Abacus Software SUPER C for the C-128/C-64

Now the linker begins to link the files. Status messages are printed

in grey, errors in red. The linker requires two passes. The start and
end of each pass is displayed by the linker. In addition the link file

firom which the linker is currently reading is indicated in yellow.

Here is an example of what the linker displays in Version 3.

program file name: h:sample [RETURN]

link file h:libel [RETURN]

link file h:o.o [RETURN]

link file [RETURN]

memory top page $e9 [RETURN]

pass 1

link file h:libel

link file h:o.o

end of pass 1

pass 2

link file h:libel

link file h:o.o

end of pass 2

If the linking was error free, the concluding message reads:

linking finished

program file available

press x to quit, r to restart

Exit the linker with the [x] key. With [r] you could start the

linker again.

A source listing of the sample . c program is found in theCt\ source

appendix.

35

Abacus Software SUPER C for the C-128/C-64

5.4 Executing

The file sample contains the finished C program. To start this (~
program type:

a:sample [RETURN]

The CCP loads the C program sample and starts it automatically.

With version V3 you compiled the program to the RAM disk so

you would naturally have to specify the device identifier h: to load

the program with Version 3. It is a good idea to copy the finished

program from the RAM disk to a diskette at this time.

Once the program is started, it clears the screen and waits until a

key is pressed. It then displays the message "Character: ".

When you press a key the program displays the char constant of

the pressed key in the C notation. If you want to designate this key

in a C program, you can use this char constant value. In the next /—

line the ASCII value of the key in decimal, hexadecimal, and octal V^

is displayed. These numbers are also represented in C notation.

The hexadecimal numbers have a leading Ox (or OX), the octal

numbers have a leading zero. The decimal numbers are in normal

notation, but may not have a leading zero because they will then be

interpreted as octal numbers.

Since the program consists of an infinite loop, you can end it only

by pressing [STOP] + [RESTORE]. The following messages

appear when these keys are pressed:

?nmi interrupt

press x to quit, c to continue,

r to restart

With [x] you can end the program, with [c] you can continue the s~

program, and with [r] you can restart it. Try these three options. V.

The two options [r] and [c] have some peculiarities which

we will explain in detail in the reference section (Part II Chapter 6

and Part II Chapter 7.2). Strange results can occur if the

[STOP] + [RESTORE] are pressed during an output operation.

36

Abacus Software SUPER C for the C-128/C-64

6* Introduction to C

CIn the last chapters you were introduced to program development

with the SUPER C language compiler* In this chapter you will

become better acquainted with the C language. We will use some

example programs which you can and should enter, since a

programming language is best learned through examples.

This chapter is only an introduction, more detailed and specific

information can be gathered from the C language description in the

reference section (Part II Chapter 8).

Experienced C programmers can skip this introduction and continue

with Part II Chapter 1 of the reference section.

6.1 Overview

6.1.1 The first program

The first program which you should enter looks like this:

#include "stdio.h"

main ()

{

printf (tf\nYour first\nprogram\n");

getchar();

Compile this program and link it with the library libc • 1. Run the

finished program and you should see:

Your first

program

^- This text remains until you press a key. You have now seen what
the program does.

37

Abacus Software SUPER C for the C-128/C-64

The first line of the source file contains an include command

(#include stdio.h) which makes it possible to use the

Standard input Qutput functions from 1ibc. 1. If this line is in the

program, you must always link the libel module to the
prograiTL

The remainder of the program is a function definition. A C program

consists of functions. The function main is the primary function.

This function is called when executing a C program. With the end

of this function, the program also ends.

main () is called a function header. It tells the compiler that a

function with the name main will be defined. The instructions

which are to be executed in the function are enclosed in braces

({,}). This is called a block. The braces are similar to BEGIN and

END in Pascal.

The function block contains the instructions which are to be

executed when the function is called. In our case there are two

instructions in the block. In the first instruction, a function by the

name of print f is called and then a function called getchar.

Both functions are found in libc. 1.

You can pass data to a function for it to process. These data are

called arguments, print f requires such an argument. The

argument for printf is a string, printf outputs this string on

the screen.

You probably noticed the characters \n, which were not printed, in

the string. The \ is called the escape character. A letter may follow

it which together with the escape character represents a character.

\n represents the carriage return and causes the next output to

appear at the start of the next line.

Calling the function getchar () requires no parameters and

causes the computer to wait for a key press. That is execution does

not leave the function getchar and return to the function main

until a key is pressed. There the end of the block is reached (}) and

the program is finished.

38

c

c

c

Abacus Software SUPER C for the C-128/C-64

Most instructions are terminated with a semicolon. This also applies

to the last instruction in a block (in contrast to Pascal).

6.1.2 Objects

An object is a storage (memory) area used in a program. Data can

be stored in this storage area. Such objects must be first created

before they can be used. To do this you use declarations. A

declaration which creates an object is also called a definition. The

object is assigned a type and a storage class by the declaration. But
the most important thing is that the object receives a name through

the definition. With this name it can be accessed in the program.

The type of an object determines the length and the interpretation of

its contents.

Here is our next example where we define various objects.

♦include "stdio.h"

main ()

{ double e,pi;

int afb;

e =2.7182818;

pi=3.14159265358973;

a =2;

b =4;

print ("e=%g\npi=%g\nfl,e,pi) ;

print ("a=%d\nb=%d\n",a,b) ;

getchar();

}

This is a very simple C program which outputs the following:

e = 2.7182818

pi= 3.14159265358973

a = 2

b = 4

39

Abacus Software SUPER C for the C-128/C-64

The first lines of the program should be familiar to you.

main (){...} defines the main function. Within a block you can

make declarations. These must come at the beginning of the block: r

double e,pi;

declares two objects of type double. The two objects have the

names e and pi. The type double indicates that floating-point

numbers with double precision can be stored in this object In this
case up to 11 places can be stored.

If you want to define several objects of the same type, they can be
separated with commas. A declaration is, like most other
instructions, terminated by a semicolon.

int a,b;

is a similar definition. Here two objects, a and b, are defined as

integers by int. Only whole numbers (integers) can be stored in
objects of this type. C~

The next four program lines are instructions in which the defined
objects are assigned values. The object identifier must always stand
on the left side of the equals sign. Such an identifier is called an

lvalue. To the right of the equals sign is the value which is to be

stored in the object In the four program lines, all objects are

assigned the right number value.

The last lines of the program contain instructions which make calls

to the functions print f and getchar.

print f now has more than one argument, however. The first

argument is always a character string.

"e=%g\npi=%g\n"

All the characters are printed up to the %g characters. These are C~
called format instructions. They cause another argument of

printf to be printed. %g requires an argument of type double.

The value of this argument is printed as text The \n character

causes the next output to appear at the start of the next line.

40

Abacus Software SUPER C for the C-128/C-64

The second printf instruction is constructed similarly. Here the

format character is %d, which requires an argument of type int
f and prints it in decimal.

getchar waits for a key press before the program is ended.

You have now been introduced to objects. The objects in this
example were all defined without specification of a memory class.

You will later see what consequences this has. We will say only

that these objects exist only within the block in which they were

defined.

The number values which occur are constants. The floating-point

constants are always of type double. Integer constants are of type

int, as long as they are not too large.

You do not necessarily specify constants on the right of an

assignment. On the right side there can be an identifier or a
complicated expression.

^ pi=e;

6.1.3 Loops

Up to now our example programs have been processed

sequentially, meaning that the individual instructions were always

executed in order, then after the last instruction the function and the

program was ended. In the many applications this is not

satisfactory. This is why there are loop instructions, which make it

possible to repeat certain instructions.

The next example is a program which prints a table of Celsius and
Fahrenheit degrees.

f~ #include "stdio.h"

f /* Table of Celsius to Fahrenheit
for c=-50,-40, ...f 50 */

main()

{ int start,end,step;

41

Abacus Software SUPER C for the C-128/C-64

double fahr, Celsius;

start=-50;

end=50;

step=10;

celsius=start/

while(celsius<=end)

{ fahr=(9.0/5.0)*celsius+32.0;

printf("%4.Of %7.If\n",celsius,fahr);

celsius=celsius+step;

}
getchar();

The compiler ignores everything between the /* and */ characters.

Between these characters are the comments for the program, use

comments liberally in all your programs,

A set of objects are defined, start and end represent the first and

last numbers in the table* step specifies the step width with which /~"

the Fahrenheit degrees will be calculated, ceIs ius represents the ^~
current Celsius value, fahr the current Fahrenheit value, start,

end, and step are then assigned the required values, eels ius is

initialized with the value of start, celsius now has the value

for the first conversion.

Next is the while instruction. A condition enclosed in parentheses

must follow while. In this case a comparison is made to see if

celsius is less than or equal to (<=) start. If this condition is

fulfilled, the body of the loop is executed. This is a block in this

case. Li this block there are instructions which are to be repeated as

long as the condition is fulfilled. In this case the loop is executed

until celsius is larger than end. Then the end of the table has

been reached.

At the beginning of the loop the Fahrenheit value is converted to the ^

Celsius value. On the right side of the assignment there is a (
complicated expression which performs the conversion. The

Celsius and Fahrenheit values are printed opposite each other with

the printf function.

42

Abacus Software SUPER C for the C-128/C-64

At the end of the loop the Celsius value in incremented by the step
width. The program tests to see if the loop condition is still true. If

C> so, the loop is repeated If the condition is no longer true, program

1 execution continues after the loop instruction, behind the loop
block.

Now to some program details.

celsius=lower;

Here the value of lower, an int value, is assigned to the object

celsius. The value of lower is automatically converted to type

double. For each C assignment the right side is always adapted to

the type of the left side. When possible, the numerical value
remains the same.

c

c

In the conversion formula we see the division 9.0/5.0. Here

double constants are used. If we used int constants and write

9/5, the result would be 1 because integer division would have

been performed. If you want division by a double value, at least

one of the operators must be of this type.

The format instruction of print f has been changed somewhat.

%f means that a double number without exponent will be printed.

Numbers can be place between the % and f. %4 . Of means that

the double number will be printed with a text of at least four

characters, with zero places after the decimal. The decimal point

and the sign of the number must be taken into account when

calculating the minimal text width. With this format instruction,

only numbers of up to 2 digits can be printed. If the numbers are

larger, the field becomes larger than 4 characters and this destroys

the output format If the number is smaller, the text is filled with

spaces until it is 4 characters wide. The instruction % 7 .1 f

specifies a double number without exponent with an output width

of at least seven characters and one place after the decimal.

43

Abacus Software SUPER C for the C-128/C-64

6.1.4 Symbolic constants

The previous conversion program can be easily rewritten for other r~

values. But imagine a considerably more complex program. v~

Changing all of the constants would be a great deal of work and

would also be a source of errors if a constant were forgotten. To

avoid this, modern programming languages have symbolic

constants. A name is defined as a constant. Wherever this name

appears in the program it is replaced by the constant it was defined

as.

Our next example uses symbolic constants:

finclude "stdio.h"

#define START (-50)

tdefine END 50

#define STEP 10

main()

{ double celsius, fahr;

r
for(eelsius=START; celsius<=END; v_ •

celsius+=STEP)

{ fahr=(9.0/5.0)*celsius+32.0;

printf("%4.0f %7.If\n",Celsius,fahr);

}
getchar();

This programs produces the same result, but it looks quite

different The variables start, end, and step are missing.

Constants were defined for them instead. This is done with the

command #define. This command must always be at the start of

a line. After such a definition the specified name can be used like

the constant following it

The while instruction was replaced by a for instruction. After

for are three expressions in parentheses. The first expression

corresponds to the initialization of the loop, the second represents

the loop condition, and the third is the continuation of the loop.

This continuation is is executed every time the body of the loop has

ended and before the condition is tested.

44

c

Abacus Software SUPER C for the C-128/C-64

The only unknown element for you may be the += operator.

celsius+=STEP corresponds to

celsius=celsius+STEP

celsius need be evaluated only once, however, which means

that the assignment is performed faster.

6.1.5 Arrays

In this section you will become acquainted with arrays. Let's take a

look at the following program:

#include "stdio.h"

main ()

{ static int numbers[10];

int i;

char c;

for(i=0; i<50;

{ c=getchar() ;

if(c<=f9' &&

numbers[c-f 0f]++;

for(i=0;

printf("Digit%d:%d times\n",i,numbers[i]);

getchar () ;

This program defines numbers as an array with ten elements. The

elements have type int. The number of times a certain key is

pressed will be counted in these elements. The key word static

stands before the declaration. It represents a memory class. Here

Cj static is used because the objects of this memory class are

automatically set equal to zero, that is, the array contains only

values zero at the start of the program.

45

Abacus Software SUPER C for the C-128/C-64

In C, array elements are counted starting with zero, meaning that a
ten-element array has elements 0 to 9. In these we will count how
many times the digit keys 0 to 9 are pressed. r~

As temporary storage an int object i and a char object c are

defined. The type char creates objects which can accept one
character from the character set

The first instruction creates a loop. In it the variable i runs from 0

to 49. i++ is the continuation of the loop. This expression has the

same effect as i+=l (i is incremented by one).

In the loop body there is a block with two instructions. First the

function getchar is called, which waits for a key to be pressed. It

not only waits, it also returns the code of the pressed key. This

value is represented by the function call. Here the value is assigned

to the object c (getchar(c).

Next is an if instruction. Its body is executed only if the condition ^

after if is true. (_

'0' and '9* are character constants, the values of which equal the

code of the enclosed character c. This code can be different from

computer to computer. The C-64 and C-128 used a modified ASCII

character set The digits are coded in order, however.

The if condition checks to see if the character read has a code less

than or equal to the code of the character '9* and if the code is

greater than or equal to the code of f0\ The two conditions are

combined with a && operator, which makes the whole condition

true only if both individual conditions are fulfilled (logical AND).

Since the codes for the digits are in increasing order, the condition

is fulfilled only for characters which are digits. In this case

numbers[c-f0f]++ r~

is executed, c-f 0' returns the digit as the value, for ' 0 • the value

0 and for ■ 9' the value 9. The array is indexed with this value,

meaning that the element with the number c- ■ 0' is selected.

46

c

c

c

Abacus Software SUPER C for the C-128/C-64

This element is incremented through ++. The corresponding array

element is incremented for each digit key.

The for loop is executed 50 times, which means that you must
press 50 keys before the loop will be exitted.

The next instruction is again a for loop, which prints a list, i runs

through the values 0 to 9, and something like the following will be

printed:

Digit 0: 2 times

Digit 1: 15 times

etc.

The last getchar waits for a key and the table is displayed until

then. Once you have started the program you must press keys.

After 50 keys the table appears indicating how often you pressed

the digit keys.

6.1.6 Character arrays

If you program with BASIC you are acquainted with character

strings. But they were really only string constants, that is, strings

with predetermined sequences of characters. There is no type for

changeable character strings in C. Strings are stored in arrays of

type char. The result of this is that the length of the string is

limited by the length of the array, but only by the length of the

array. The end of a string in an array is designated by a character

with the code zero. This end code is created by the compiler for

string constants.

tinclude "stdio.h"

main()

{ char name[41];

gets(name,40);

printf("\n%s\n",name);

getchar()/

47

Abacus Software SUPER C for the C-128/C-64

In this program a character array with 41 elements is defined Since

one character is required for the end of the string, you can store up

to 40 characters, gets is a standard function for reading strings.

The first argument is the name of an array in which the string is to

be stored. The second argument specifies the maximum number of

characters to be read. The function causes the cursor to appear on

the screen and allows you to enter a string. The input works like

BASIC, that is, you must end it with [RETURN].

In the function printf the control character %s expects an array

name as an argument The string in the array is printed as text, in

this case, what you had entered.

getchar is again used to wait for a key so that you can view the

output

6.2 Expressions and declarations

6.2.1 Names

The names which are connected to objects through declarations may

not match any C key words. These are reserved names which have

a certain meaning in the program text, such as int as a type name.

A name must start with a letter. After the first letter may come

digits. The underline character_ counts as a letter.

You should choose variables names which suggest the purpose and

contents of the variable and which are sufficiently unique so that a

minor typing error does not result in a different valid variable name.

6.2.2 Types

In C there are a group of simple data types. The simple types are in Q_
contrast to the more complex types like arrays.

You have already become acquainted with the data types char,

int, and double. In addition there are the following:

48

c

c

c

Abacus Software SUPER C for the C-128/C-64

float is like double, but with lower precision* In the Super C
system this type has a precision of 6 digits.

short int, also abbreviated to short, can store only whole

numbers like int.

long int, also abbreviated to long, can also store only

integers. The three integer types differ only in their value range,

that is, the size of the largest representable number. The value range

of short is guaranteed to be less than or equal to that of int and

the value range of long is guaranteed to be greater than or equal to

that of int. In Super C short and int are the same size while

long is twice as large and requires twice as much memory.

The memory required is also called SIZE.

All integer types (including char) can be represented without a

sign by placing unsigned before the type name. The contents of

such as object are then interpreted without a sign as positive,

unsigned int can also be abbreviated to unsigned.

6.2.3 Constants

You have already used int and double constants. The compiler

recognizes a double constant by a decimal point and/or an

exponent in the constant An exponent is designated by the letter e

or E and the corresponding exponent

Ie5 = 100000.0 = 100E3 = 1E+5 = 0.1e6

All of these constants have the same value.

int constants are integers. If you exceed the value 32767, they can

no longer be stored in objects of type int (this can be different for

other C compilers). In this case the constant becomes type long. If

you wish to make an integer constant long, this can be done by

placing 1 or L after it

15L 21 0L 40000

49

Abacus Software SUPER C for the C-128/C-64

Integer constants which have a leading zero are evaluated as

octal, meaning that the compiler interprets the number in the base

8 system. s~

077 (octal) = 63 (decimal)

Write all of your decimal numbers without leading zeros or they

will be regarded as octal.

Integer constants can also be read as hexadecimal by placing Ox or

OX in front of the number. The digits 10 to 15 represent the letters

a to f or A to F.

0x3f (hex) = 077 (octal) = 63 (decimal)

We have also used character constants. They contain a character

enclosed in single quotation marks:

'a1 'Xf '\nf f\0f

The value of such constants is the code of the character in the ^~
character set. This value is converted into the type int so that

calculations can also be performed on it. Combinations with the

escape character \ can also be used as character constants. ' \n ■

represents the code for [RETURN].

f\n» = 13 = OxOd

1 \0 • is the code Oor null, which is used as the end character for

strings. Up to three digits can come behind the \, which are

interpreted as octal digits. The value of these octal numbers is then

the code of the character

•\101f = faf = 65

Another constant is the string. The characters in it are placed in

memory. At the end is the end character 'NO1: (^

wstring\n" -> 's'/t'/r1, -i', 'n', 'g', '\n', '\0'

50

Abacus Software SUPER C for the C-128/C-64

A string constant can be used like an array name. Two strings

constants which look alike are in reality two different constants.

Strings and characters are also different:

"a" 'a1

The first is a string, which contains a \0 character at the end,

while f a' is the value of the code of the letter a.

6.2.4 Memory classes

Up to now we have defined objects only within the function block.

If no memory class is specified, the memory class auto is
assumed. This memory class has the effect that the objects are

available only within the block and are discarded when the block is

exitted.

Objects which are defined within a block are called local. Local

objects with the memory class static are also available only

within the block. But the objects retain their value throughout the

program until the block is accessed again. An advantage of these

objects is that they automatically contain the value zero at the start
of the program.

global objects may also be declared. These are declared outside a

function. If no memory class is given, the object applies over the
entire program.

The memory class static can also be specified for global

objects. But if several separately-compiled C programs are linked

together, static global objects from one file cannot be

accessed by the others.

As a general rule, all objects must be declared before they can be

used in C. Names which the compiler does not recognize through

declaration are assumed to be global and be of type int or a

function returning an argument of type int, so that such objects do

not necessarily have to be declared.

51

Abacus Software SUPER C for the C-128/C-64

6.2.5 Arithmetic operators

Arithmetic operators are the basic types of calculations + - * r~

/. The meaning of the operators should be clear to everyone: two v~

numbers are added, subtracted, multiplied, or divided Important in

C is the type of the result. There are things called standard
conversions which ate used for these operators for the many ways

of combining types.

1. char or short operands are converted to int,

float operands are converted to double operands.

2. If one of the two operands is double, the other is

converted to double and the result will be double.

3. If one of the operands is long, the other operand and

the result will be long.

4. If one of the operands is unsigned, the other

operand and the result will be unsigned.

5. If both operators are of type int, the result will also

be int.

% also belongs to the arithmetic operators. The result is the

remainder after division. The standard conversions are performed

for this operator as well. Only integer types are allowed as

operands.

c

52

Abacus Software SUPER C for the C-128/C-64

6.2.6 Comparisons, logical operators

Some comparison operators have already been used They return an

(^ int value as the result, 0 for false and 1 for true.

< <= > >= != ==

The operators mean: less than, less than or equal, greater than,

greater than or equal, not equal, equal.

All of the simple types may be compared with each other. The

standard type conversions are performed first.

A logical value can be negated with the ! operator flogical NOT).

! (a<b) corresponds to a>=b

The ! operator can be applied to all types. The operand is checked

to see if its is zero. The result is then 1 (true) else 0 (false).

V_. Two conditions can be combined with & & or | |. The operands do

not have to be conditions, however. They are only compared to

zero and then receive their value true or false.

& & returns 1 (true) if both operators are non-zero (logical AND),

else 0 (false).

I | returns 1 (true) if one of the operators is non-zero (logical OR),

else 0 (false).

These operators are guaranteed to be evaluated from left to right

The second operand will not be evaluated if the result can be

determined from the first, that is, if the first operand of & & is 0 or

not 0 for ||.

c

53

Abacus Software SUPER C for the C-128/C-64

6.2.7 Type conversions

Type conversions are performed automatically in some cases, such
as the standard type conversions. Type conversions also underlie

the argument of a function call, char and short are converted to

int and float is converted to double.

Type conversions can also be forced, however. This is done

through something called a CAST. The type name of the result is

placed in parentheses and this CAST is placed in front of the type to
be converted.

(char) pi

The value of the object pi will be converted to type char. The
conversion is always done so that values with "smaller11 types are

converted to "larger" types, without changing the value. A

conversion in the other direction can change the value if the value

does not fit in the value range of the destination type.

6.2.8 Increment and decrement

C has an increment command ++ and a decrement command — to
increment or decrement an object by 1.

c

increments the object i. Both expressions have the same effect But

in C every expression has a value, even assignments and increment

and decrement operations. In the first case the expression has the

value of i before the increment, while the other has the value of i

after it has been incremented. The — operator can be used for
decrement (subtract one) in the same manner.

It should be noted that these operators have side effects if they are

not alone.

numbers[i++]+i

54

Abacus Software SUPER C for the C-128/C-64

The above expression indexes the array numbers with the value i.

But i will be incremented and affects the expression following.

C Often the order of evaluations in C is not predetermined, in order to

give the compiler free room for optimizations. The compiler may

reverse the expression above.

i+numbers[i++]

The side effect now has a different result since the first i is not

incremented. So watch out for side effects! You can avoid this
effect by using objects which will be changed by side effects only

once in the expression.

For integer types the increment and decrement operators are faster

than the corresponding assignment

6.2.9 Bit operations

CIn C there are also operators which change the bit pattern of a
value. Such operators can be used only on integer types.

First there are operators which combine two values bit by bit The

standard type conversions are performed.

& bitwise AND operation:

Result bit 1 if both operand bits are 1, else 0

I bitwise OR operation:

Result bit 0 if both operand bits are 0, else 1

A bitwise exclusive OR:

Result bit 1 if both operands equal, else 0

The second group of bit operations are the shift operators. They

shift the bit pattern of a value.

With the « operator the bit pattern of the left operand is shifted as

many times to the left as the right operand specifies. The above

55

Abacus Software SUPER C for the C-128/C-64

expression therefore has the result 4. O-bits are shifted in from the

right A shift to the left corresponds to a multiplication by 2.

4»2

The » operator shifts the bit pattern to the right. The result is 1

here. The operation corresponds to a division by 2 for one shift. If

the left operand is unsigned, O-bits are shifted on the left But if

the operand is not of unsigned type, sign bits are shifted in

Super C, so that -4»2 returns the result -1. This is different for
some compilers however and they always shift in O-bits. The result

can therefore be different from machine to machine (this is

legitimate since Kernighan and Ritchie proposed both versions).

The type of these shift operations is always that of the left operand.

If the right operand is negative or too large, the result is undefined.

6.2.10 Assignments

The assignment through the = operator has already been used and is

a fundamental part of every program. The assignment assigns the

right operand to the object which the left operand denotes. The left

operand must therefore designate an object; it must be an lvalue.

1+2 is not an lvalue according to this.

The type of the right operand is converted to the type of the left
operand before the value is assigned. In C an assignment has a

value. This value can also be used further. The value of an
assignment is the converted value of the right operand.

tinclude "stdio.h"

main()

{ char c;

while ((c=getchar()) != '\n')

putchar(c);

In the program above the key just pressed is assigned to c in the
loop condition. The value of the assignment, the pressed key, is

56

Abacus Software SUPER C for the C-128/C-64

compared to the [RETURN] character. If the key pressed was

[RETURN], the loop is ended. Otherwise the key pressed is

^ printed with the function putchar.

Note that the assignment must be enclosed in parentheses since the

compiler will otherwise perform the comparison first and then

assign its result to c.

There are short forms for assignments if the value to be assigned is

to be combined with the lvalue, a = a op (b) can be

written as a op= b. Operators permitted are:

*= /:= %= += -a *= &= |= «» »=

x*=y+l will be converted to x=x* (y+1), meaning that the
precedence of operators doesn't apply. The entire right operand will

be combined. The lvalue is evaluated once in this short form.

numbers[i++]+=1

^~ causes i to be incremented only once.

If the value of an assignment is used further, side effects similar to

those for increment and decrement should be watched for, which
can be caused by changing an object

6.2.11 Conditional evaluation

C offers the ability to perform conditional evaluation. It consists of

three parts and two operators:

a ? b : c

The value of the expression a determines if the expression b or c

Cwill be evaluated, b will be evaluated if a is not equal to 0, else c
will be evaluated. The value of the entire expression is the value of

the expression finally evaluated.

1 ? 2 : 0

57

Abacus Software SUPER C for the C-128/C-64

always returns the value 2.

i ? 2 : 0 *-

returns the value 0 if i is equal to 0, else 2.

If x equals 0, j will be incremented The value of j before the

increment is the value of the expression. Otherwise i will be

incremented and the value of the expression is i before the

increment Only one of the two objects is ever incremented.

If the result types of the two possible result expressions are

different, a standard type conversion is performed on both in order

to get the same result type in both possible cases.

6.2.12 Precedence and order of operators

Multiplication and division operations are performed before

addition and subtraction. In C all of the operators have a preset

precedence which determines which operator will be performed

first If several operators of the same precedence are in a row, the
order of an operator determines whether it will be evaluated from

left to right or from right to left

In the following table, operators on the same line have the same

precedence. The first line has the highest precedence, meaning that
the operators on that line will be executed first The last line has the

lowest precedence.

c

58

c

c

c

Abacus Software SUPER C for the C-128/C-64

Operators Order

(> [] . -> fromleft

++ __ * & _ j ^ (CAST) sizeof from right

* / % fromleft

+ - fromleft

« » fromleft

<<=>>= fromleft

== != fromleft

& from left

fromleft

| from left

&& fromleft

| | fromleft

? : from right

s *= /= %= += -= »= «= &= A= != from right

, from left

The associative and commutative operators + * A I & can be
rearranged by the compiler. This cannot be prevented even with
parentheses. For all other operators the order, whether the left

operand or the right operand will be evaluated first, is not set The

operators & & and I I are exceptions to this. Their operands are

guaranteed to be evaluated from left to right

6.2.13 Additional operators

Operators which you don't recognize in the list above will be
discussed later in the tutorial section. Otherwise you will find an

exact description in the reference section.

One operator should be mentioned yet With the , operator you can

split an expression into two parts, both of which will be executed.

The value of the expression is the value of the right part

if (t=0, s+1) ...

The condition of the if instruction is just s+1. But first t will be

set equal to zero.

59

Abacus Software SUPER C for the C-128/C-64

6.2.14 Program text

In principle a program can be entered format-free. The only
important thing is that the compiler, as one would expect, reads the
text line by line, from left to right Whether you write

main() {int i;for (i=0;i<10;i++)printf ("%d\nfff i) ;)

or

main()

{ int i;

for (i=0; i<10; i++)

printf("%d\n",i)/

is entirely up to you. But you see that you can get a clean,
understandable program if you follows certain rules.

♦ indent sub-statements and dependent program sections
• write brackets which belong together in the same column

• insert blank lines to make things easier to read
♦ don't overload one line with text

In the C editor you have the ability to change the color of program
sections. Beginners may wish to use this but don't over use it. A
rainbow-colored program is also hard to read. Use the supplied
programs as examples. On Version 3 when using a monochrome

monitor it is best to avoid color.

6.3 Control structures

A C program consists of functions. In the function blocks there are
instructions which the program executes. Such instructions are
executed sequentially, one after the other. In order to be able to

leave this rigid scheme, a programming language offers control
structures. All control structures are instructions themselves. But
they contain other instructions, whose execution is not necessarily
sequential. Sub-instructions can be repeated or skipped entirely
(loops, branches).

60

Abacus Software SUPER C for the CM28/C-64

Essentially, control structures change the sequential execution of

instructions. This change is usually made conditional, that is, the
^ processing is changed according to the value of certain data.

6.3.1 Block

A block is a group of statements enclosed in braces {}. Local
objects, which are available only in this block, may be defined at

the start of a block. A block is itself an instruction, so that blocks
can also be nested.

A block serves to group instructions together. In a loop, for
example, you can repeat only one instruction. If the loop is to

contain several instructions, you combine these into a block and
you have one instruction.

The block is an exception to the instructions, since it is not

terminated with a semicolon, but with the } brace.

c
6.3.2 if instruction

In an if instruction a sub-instruction is executed only if a certain
condition is fulfilled.

if (c==.a.)

printf("Letter: a")/

Only when the condition c== • a • is fulfilled, true, will the

instruction following it be executed. This instruction could also be a
block, of course.

The parentheses following if need not necessarily contain a

condition. The expression is simply evaluated to see if the value is

0 (false) or not 0 (true).

^- The if instruction can also be extended with an section.

61

Abacus Software SUPER C for the C-128/C-64

if (c=fa!)

printf("Letter: a");

else

printf("another character");

The instruction behind else is executed whenever the condition is

false. Either the instruction behind if or the instruction behind

else is executed.

You can program a branch to one of two different statements with

if. . .else. To branch to one of several instructions,

if. . .else instructions can be chained by placing another if

instruction in the e1se portion of the previous i f instruction.

if (C==tat)

printf("Letter: a");

else

if (c==fbf)

printf("Letter: b");

else

printf("Another character");

Note that this whole thing is one instruction, although it consists of

several nested sub-instructions. In order to increase readability, the

normal indentation can be eliminated:

if (c=== 'a')

printf("Letter: a");

else if (c==fbf)

printf("Letter: b");

else

printf("Another character");

if-else chaining has the disadvantage that it requires a good

deal of writing. The conditions must be somewhat different in each

instruction, but must be reprogrammed. Furthermore, all compilers

place some limit on the number of nested statements. For this

reason most higher-level programming languages have a way of

programming larger branches:

62

c

c

c

Abacus Software SUPER C for the C-128/C-64

6.3.3 switch instruction

A switch instruction can branch to one of up to 43 statements in
Super C. The branch is made based on the result of an expression:

switch(c)

case •a1: printf("Letter: a");

break;

case 'b1: printf("Letter: b");

break;

case fcf:

case 'd1: printf("Letter: c or d");

break;

default: printf("another character");

break;

The expression after switch is here just the object c. Its value is

the basis for the branch. After switch (. .) follows a block

containing the various instructions. If a certain instruction should

be executed based on a certain result, a case label must be placed

before the instruction:

Behind case is a constant If the result of the expression matches

the constant, the instruction following it will be executed. Not only

the following instruction, but all instructions following the

matching label. In some cases this can be very useful. To prevent

it, you place a break instruction after the branch to exit the block.

You can place several case labels in a row. One special thing is

the default label. If it comes before an instruction in the block,

this instruction will be executed if there is no case label which

matches the result of the expression. The default label need not

be at the end of the switch block. If there is no default label,

no instructions arc executed if no case label is found.

The result of the expression must have an integral type.

Floating-point values are not allowed. The same applies for the

case constants.

63

Abacus Software SUPER C for the C-128/C-64

You may be surprised by the last break instruction in the block.

This is actually superfluous, since the block will also be ended

without this instruction. But you should still write this break /—

because the danger exists that it will be forgotten if a new branch is V.
later added. The instruction of this new branch will then be

executed along with the default instruction.

6.3.4 while instruction

The while instruction is a loop. It repeats a sub-instruction as

long as a condition is fulfilled

while (i<10)

As with the if instruction, the condition is in parentheses. The

loop instruction then follows, and it will be repeated as long as the
condition is fulfilled, as long as the expression in the parentheses is

not equal to zero. (^

With loops, make sure that the loop condition will become false at

some point, or the loop will never end.

Endless loops, called infinite loops, can be programmed by

omitting the loop condition.

while ()

INSTRUCTION

Such infinite loops can sometimes be very useful. Omitting the loop
condition has even been propagated by Kernighan and Ritchie, but

we have found that many compilers will not allow it In order to

write portable programs, write:

while(1)

INSTRUCTION r

64

c

c

c

Abacus Software SUPER C for the C-128/C-64

6.3,5 for instruction

The for instruction is a special while instruction. It is not only

provided with a loop condition, but also an initialization expression
and a continuation expression.

for (i=0; i<10;

putchar(string[i]);

This is usually used as it is in BASIC or Pascal, that is, a variable

is set to an initial value (initialization: i=0). The variable runs up

to a certain value (loop condition: i<10). The variable is

incremented at the end of each repetition (continuation: i++). But a

for instruction is not tied to one variable. One can use three
expressions for the initialization, condition, and continuation.

for (c=getchar(), i=0; i<10; putchar(c), i++);

The initialization of the loop is:

c=getchar(), i=0

This is one expression. The , operator divides the expression. A

key is read and its code is stored, i is set to zero. The condition

checks to see if i is less than 10. The continuation consists of two

parts. The key pressed is printed and i is incremented. The

sub-instruction of the loop is just a semicolon. This is an empty

instruction. The entire statement waits for a key to be pressed and
then prints the character 10 times.

You can see that you can program much more complex for loops

in C than in other languages.

If the condition is omitted, you get an infinite loop. The

initialization and the continuation can also be omitted.

for (;/);

is the smallest for loop, an infinite loop.

65

Abacus Software SUPER C for the C-128/C-64

6.3.6 do instruction

The do instruction is a new type of loop. With the while and for
loops the condition is tested at the beginning of each repetition,
including the first time the loop is ever executed. It can occur that
the loop is never executed at alL

The do instruction does not check the loop condition until the end
of the loop instruction. Such loops are used when the loop
instruction is to be executed at least once.

do

{ print f (lf Input: ") /

gets(string, 20);

}
while(string[1]=='NO1) ;

The loop starts with the key word do. The loop instruction
follows, here a block with two instructions. At the end of the loop

is the loop condition behind while. The instruction prints

" Input: " and then reads a string of at most 20 characters into

the array string, which must naturally be defined with at least 21
elements. The loop condition tests if the second element of the array
(element 1) is equal to the end character of the string. If this is the

case, the first element (element 0) is a [RETURN] character and no

more characters were read. Then the loop and the input is repeated.
Otherwise the loop ends.

do ; while();

If you omit the loop condition, the result is an infinite loop.

6.3.7 break instruction

This instruction was already discussed in connection with

switch. It causes a loop or a switch instruction to be exitted. C*
The break instruction works only within loops or switch

blocks. It always refers to the last loop or switch instruction, if

several of these are nested.

66

c

c

c

Abacus Software SUPER C for the C-128/C-64

break;

The break instruction causes the loop to be exitted immediately

and execution to continue after the entire loop. In a switch
instruction the block is exitted

for (i=0; i<20; i++)

{
string[i]=getchar();

if (string[i]= f\nf);
break;

}
string[i]='\0f;

In this program fragment the variable i runs from 0 to 19. It waits

for a key to be pressed and then assigns the key to the ith element

of a character array string. If the element read is a [RETURN]

character, a break instruction is executed. This exits the loop.

A maximum of 20 characters are read, but not beyond a

[RETURN] character. In the last instruction a f \0 ' character is

appended to the end of the string.

You could also integrate the test for the [RETURN] key in the loop

condition. This would make the program harder to understand,
however.

6.3.8 continue instruction

The continue instruction is not used very often. It applies only

to loops and not to switch instructions, continue directs
execution back to the end of the loop instruction.

With a while or do loop the loop condition is immediately tested

and the loop instruction repeated if the condition is fulfilled With a

for loop, a continuation is first executed, then the loop condition
is tested.

The continue instruction is usually used to skip complicated

instructions in the loop.

67

Abacus Software SUPER C for the C-128/C-64

for (i=i; i<20;

{ getchar();
if (c==3i\nt)

continue;

/* complicated computation */

The "complicated computation" indicated by the

comment is skipped if the key read is [RETURN].

6.3.9 goto instruction and labels

Labels can be placed in front of any instruction. They consists of a

name and a colon:

name : instruction

The name is thereby defined as a label. A jump can be made to

such a label with a goto instruction, that is, program execution can (~
be made to continue behind the label. v—

goto name;

Such jump instructions should not be used. There is no situation in

which a jump cannot be replaced by the existing set of control

structures. Jumps are to be strictly avoided in structured

programming in order to preserve the structure and readability of

the program. Only in rare cases is a jump useful, such as when an

error occurs within several nested loops. Only the innermost loop

can be exitted with break, while goto can be used to exit all of

them.

A jump cannot be made into another function. You can jump out of

blocks. You should avoid jumping into blocks, however. If objects

are defined in such a block, they will not be defined and will not be

available. r~

68

Abacas Software SUPER C for the C-128/C-64

c

c

c

6.4 Program structures

6.4.1 Functions

Up to now we have defined only one function, main. Programs

usually consist of more than one function, however. As we already

know, functions can be passed arguments, with which they can
perform computations. A function can return a result value. If a

function is not supposed to return a result, it is also called a

procedure. Procedures are defined with the type void.

void nextlineO

{ putchar C\nf) ;

The function nextline prints a [RETURN] character. It does not

return a result It can be called in any other function.

main ()

{ printf("Demonstration");

nextline();

printf("of the function");

nextline()/

printf("nextline");

For functions for which no type has been specified, as with main

here, the compiler assumes type int and assumes that the end

result has this type, main does not return a result, however, since

the end of main also means the end of the program. The type

void is often left off of main through sheer laziness.

Functions can return all simple types. Take a look at the following
function, power, which has two arguments. The first argument is a

double value x, the second is an int value y. The function

power is to return the value of x to the power y.

69

Abacus Software SUPER C for the C-128/C-64

double power(xfy)

double x;

int y;

The function is assigned the type double, the result type. In the
function parentheses is a list of names. These are the names of the
parameters. The parameter names must be declared. This is done in

the usual manner, but without storage class. Note that there may be
no semicolon between the first and second lines, but a semicolon
must come at the end of each of the parameter declarations.

The parameter declarations must be made in the order in which the
parameter names are listed

What do these parameters mean? The parameters are local variables
just like those defined within the block. They contain the value of

the arguments used when calling the function. The complete

function power looks like this: ^

double power(x,y)

double x;

int y;

{ if (y==0)

return 1;

if (y<0)

return 1/power(x,-y);

else

return x*power(x,y-1);

Let's go through the instructions ofpower step by step. When the
function is called the values of the arguments are stored in the

parameters. If, for example, you want to calculate 5 squared, call

the function power.

power(5.0,2);

Here we see a peculiarity of C. The types of the arguments must

match the types of the parameters. You must write 5.0 so that the

first argument has the type double.

70

c

c

c

Abacus Software SUPER C for the C-128/C-64

What happens in power? x has the value 5,0 and y has the value

2. If y were equal to 0, the result of power would be 1. This is

achieved through a return instruction. It can be anywhere in a
function block. If it is executed, the function is exitted. An
expression which calculates the result of the function may come

behind return. 1/power (xf -y) calculates the same thing as

power (x, y). But now the exponent is positive. The function

power therefore calls itself. This is called recursion, x and -y

here are arguments whose values are assigned to x and y in the

new call. The parameters x and y have only the same names as

those in the call. In reality the parameters are recreated like auto
objects at each new call so that they cannot disturb each other.

If y is positive, the function is exitted with the result

x*power (x, y-1). In our call:

5.0*power(5.0,0)

power is called again. But in this call power sets the result clearly

to 1, so that the result of the second call is:

5.0*1-0 -> 5.0

The recursion runs back again. The result of the second call is then
used in the first call.

5.0*5.0 -> 25.0

25.0 is then the end result of the call power(5.0,2).

It is often difficult for the beginner to understand the structure of a

recursive function. Remember that the parameters of a new function

call are different from those of the old call. They have the same
names, but are different objects. The result of a function is

represented by the call, power (5.0,1) is represented by the

result 5.0.

Recursion is often easier to understand than linear programs. This

allows the function power to be implemented with quite few

statements.

71

Abacus Software SUPER C for the C-128/C-64

There doesn't have to be an expression behind return. But then

the result of the function is not defined. One should exit a function

of type void with return without an expression. A function is

also ended after the last instruction in the function block has been

executed. You know this from main. You can also end a C

program through a return instruction in the function block of

main.

6.4.2 Arguments

The are some characteristics of passing arguments to functions in C

which you should be aware of. The arguments are always

evaluated. If the type is char or short, the argument will be

converted to int, just as float will be converted to double.

The types of the arguments must match the types of the parameters.

This is not checked by the compiler. It remains the responsibility of
the programmer. If the types do not match, you can force

agreement with a CAST.

If you don't notice that the types do not match the function will

probably return erroneous results.

Parameters declared with the type char, short, or float will

be converted to int or double, as appropriate.

Parameters in C are passed only by value (call by value), which

means that the value of the argument is assigned to the parameter.

This parameter can be used like a local variable.

main ()

{ double a;

int b;

power(a,b);

. . .

In this example the value of the objects a and b are passed to

power. The contents of these objects cannot be changed by the

72

c

Abacus Software SUPER C for the (M28/C-64

function, however, not even by changing the corresponding

parameters.

If you want to change objects outside of the call, you must use

pointers. This will be discussed in the following sections.

6.4.3 Global definitions

It was mentioned briefly before that you can define global

objects. These definitions are programmed outside of the function

blocks.

int maximum;

main ()

{
i=maximum+l;

maximum is a global object with the type int. You may not

specify a storage class. A global object remains valid throughout

the entire program and is not discarded. The name of such an object

can be used in the entire program. If a local object with the same

name is defined, the definition of the global object will be

"hidden" by the local object, meaning that the local object will

always be accessed.

Global objects are used for storing data which is to be made

accessible to several functions. They can also be used to save

parameters or to return several results per function. Functions can

exchange data among themselves with global objects.

Global objects, defined without storage class, can also be used by a

separately-compiled program if both link flies are linked together.

To prevent this outside access the memory class static can be

placed before the definition. The object still retains its value over

the whole program, but it can be used only in the file in which it

was defined.

73

Abacus Software SUPER C for the C-128/C-64

A function definition is also a global definition since functions

can also be thought of as objects. Functions can also be declared as

static, meaning that they can be used only with in the file. To do /*-

this, stat ic is placed in front of the function header, main may v_

not be defined as static.

6.4.4 Declarations

If you want to use global objects from a different,
separately-compiled program section, these objects must be

declared so that the compiler knows what type they are. No

memory space is reserved by a declaration. The compiler codes the

declaration in the compiled program such that the declared object

will be connected with its definition during linking.

Declarations can be made global or local, whereby in this
compiler system the declaration remains valid over the whole

program in both cases. They are designated with the storage class

extern. (~

The modules with the standard functions are nothing more than

separately-compiled programs. These functions must be declared

before they can be used. This is done by the program line:

#include "stdio.h"

The file stdio. h is a source file in which these declarations are

made. The #include command inserts this source file into the
program.

extern void printf()/

extern char *gets();

The functions printf and gets, which you already recognize,
must be declared. You see that no parameter list and no function

block are specified. Such declarations must always come before the C
first use, but they can be either local or global.

74

c

c

c

Abacus Software SUPER C for the C-128/C-64

extern void printf();

main()

{ extern void printf();
• • •

printf ("...");

Local declarations are used in order to clarify which functions are
used within the block. An object can be declared more than once,
but the declarations must agree.

Naturally, objects other than functions can also be declared With

functions, declarations within a source file are also interesting. If
you have two functions which call each other, one function must
logically come before the other. When the first function is
compiled, the compiler does not yet recognize the second. This
must therefore be declared:

double alpha()

{
extern long beta ();

...

beta<);

long beta()

{
alpha () ;

It would be better programming style to declare each function in

order. In summary: If an object is accessed by its name, it must be

known to the compiler through either a declaration or a definition.

If the compiler encounters an undeclared name, it assumes the

object to be of type int and with global storage class (not

static). The compiler would also assume this in the previous

example if beta had not been declared. An error message would
not appear.

75

Abacus Software SUPER C for the C-128/C-64

Global, non-static, int objects or functions returning type int do

not have to be declared. In spite of this, it is recommended that you

do so to preserve the understandability of the program. ^

6.4.5 Local definitions

The local definitions are found within a block. If no storage class is

specified, the compiler adds auto. Objects of this storage class are

generated at the start of the block and are discarded at the end If the

block is called recursively, new objects are generated which have

only the name in common with the old objects.

The static local objects are handled differently. These are

defined with the storage class static. The object retains its value

throughout the entire program, but is accessable only in the block in

which it was defined. Logically, recursive calls also refer to the

same object

There is a third storage class which can be used for local s~

definitions: register. Such definitions work like auto v-

definitions, but the compiler tries to place these objects into special

processor registers so that they can be accessed faster.

Unfortunately, neither the C-64 nor the C-128 has such registers

available. If such definitions can no longer be placed in registers,

whether they are all used up or because there are none, these

definitions are handled like auto.

6.4.6 Initializations

In contrast to many other languages, you can initialize objects

during their definition, meaning that these objects are pre-assigned

a certain value. Such initializations save time over assignments and

are easier to follow.

Initializations are made by placing an = sign behind the declarator, C
followed by the appropriate value. Vs~

76

c

c

c

Abacus Software SUPER C for the C-128/C-64

main ()

{
static int maximum = 50;

auto double minimum = power(5.0,2)/

Static and global objects can be inititalized only with constant

values, maximum contains the value 50 after the initialization. If

static and global objects are not initialized, the compiler

automatically sets the value to zero.

Local auto objects are not automatically set to zero. Entire

expressions can be assigned to auto objects so that the above

initialization is possible, minimum contains the value of the

function call power (5.0,2).

There is another important difference between auto objects and

others, auto objects are initialized upon each new function call,

global and all static objects are initialized all together at the

start of the program. Their value is initialized only once.

Declarations with the storage class extern cannot be initialized.

Arrays can be initialized element by element, auto arrays cannot

be initialized, however.

char name[20] = {faf, 'n1, 'n1,faf,f\0'};

main ()

A list of elements is enclosed in braces and placed after the =

character. The array has 20 elements. Here only the first five are

initialized. If fewer elements than necessary are found in such a list,

the missing values are filled with zero. There is a short form of the

above initialization. Character arrays can be initialized with strings,

meaning that the elements of the string are placed in the character

array.

char name[20] = "anna";

performs the same initialization.

77

Abacus Software SUPER C for the C-128/C-64

The specification of the dimension can also be omitted in the
definition of an initialized array. The dimension is then
automatically as large as the number of initialized elements. r~

int monthU - {0,31,28,31,30,31,30,31,31,30,31,30,31);

The array month is declared with 13 elements. The elements 1 to
12 contain the days of the months 1 to 12. Element 0 is not used,
but it must appear in the list

char name[]="anna";

The array name is here dimensioned with 5 elements. Always
remember the f \0f character.

Arrays can also have multiple dimensions and can be initialized as
such.

int month[][13]={ {0,31,28,31,30,31,

30,31,31,30,31,30,31}, f~

{0,31,29,31,30,31, V-

30,31,31,30,31,30,31} };

This is a two-dimensional array, which means that the elements of

the array are again arrays, whose elements are of type int. The
initialization is recursively, meaning that one has a list of two
elements. These are again lists, whose elements are initialized.

For multi-dimensional arrays, the specification of the first
dimension can be omitted, as in the example. Here

month [2] [13] is declared based on the initialization given

above. The sense of the above definition is the following: By the
first dimension we decide if the year is a leap year or not, and with
the second dimension we select the month. The result of an access
to the array returns the number ofdays of the month:

month[1] [2]; /-

accesses February in a leap year and returns value 29.

If fewer than necessary are given in a sublist, the rest are filled with

zero. To initialize all the elements use one list:

78

c

c

c

Abacus Software SUPER C for the C-128/C-64

int

month[][13] = {0,31,28,31,30,31r30,31,31,30,31,30,31,

0,31,29,31,30,31,30,31,31,30,31,30,31

};

The compiler automatically recognizes the structure and assigns the

first thirteen elements to the array month [0] and the next thirteen

to month [1].

6.4.7 Macros

You have already become acquainted with macros under the name

symbolic constants. You have assigned constants a name which can
then be used in the whole source file as the constant This concept

is not limited to just constants. You can assign a name to any

desired piece of text Wherever this name occurs in the source file,

the text string is inserted instead. The replacement string must be

separated from the name by a space.

#define NL putchar(f\nf)

In the program following this you could use the following

expression:

NL;

This causes a [RETURN] character to be printed NL will be

replaced by putchar (f \n■).

Note that the # character must always be at the start of a line.

Commands which begin # belong to something called the

preprocessor. They are not directly part of C, but have an effect

only on the source file. Such a preprocessor command can come in

the middle of a source file, but requires its own line.

A name defined with #define is called a macro. Such macros can

also be used like functions, that is, you can pass arguments to

them.

79

Abacus Software SUPER C for the C-128/C-64

#define PRINT (x) printf (lf%d"f x)

#define PRINT2(x,y) PRINT (x) , PRINT (y)

The macro PRINT can now be called with an argument like a

function. The value of the argument is not important, but the

argument text is inserted in the replacement text wherever the

parameter name is located. If, for example, you call the macro like

this:

main()

{
PRINT(2*3);

PRINT(3*i-j);

PRINT2(5*4-a,b) ;

the calls will be replaced with:

main ()

{ ...
printf (lf%d", 2*3) ;

printf("%d",3*i-j);

printf("%d",5*4-a),printf("%d",b);

The following must be noted when making such a definition. The

parenthesis, (, must follow immediately behind the macro name

or it will be interpreted as a normal replacement text The parameter

names must be chosen so that the same name does not occur in the

arguments, or it may continue to be replaced in the arguments as

well.

Macro names are often written in upper case so that they can be

recognized as macros. This is a matter of style, however, and can

differ from programmer to programmer.

An defined macro name applies to the end of the source file. The

name can no longer be declared because the name will be replaced C
in the declaration text as well. If the name in front of a macro v-
definition is already declared, the name will always be interpreted

as a macro.

80

c

c

c

Abacus Software SUPER C for the C-128/C-64

#undef PRINT

This is a preprocessor command which erases a previously-defined
macro. From this line up to the end of the file, the macro defined

with print will no longer be available.

6.4.8 Chaining files

The C compiler allows source files to be chained together. A special
preprocessor line takes care of this.

#include "prg_part 2.c"

The contents of the file prg part 2. c will be inserted in place
of this preprocessor command We have used this command before

to insert the file stdio .h. In this file all the functions in the

standard modules are declared and various macros are defined

Additional finclude commands may appear within a file inserted

with #include. Such chained source files result in only one file
for the compiler because the preprocessor affects only the source

text. Chained files are not to be confused with two separately
compiled files.

6.5 Pointers, addresses, and arrays

One of the more powerful advantages of C is the pointer. It is an

object like any of the others. The special part is the value range of a

pointer. The content of a pointer object is an address. This address

usually points to another object You can access an object via this
address without having to use its name.

The difference between a pointer and an address is something like

the difference between an int object and and int constant

81

Abacus Software SUPER C for the C-128/C-64

6.5.1 Pointers

A pointer is declared by placing an asterisk (*) in front of the name. /~

int *p;

defines p as a pointer whose address points to an int object. Take

a look at the following example program.

main ()

{ int a,*p;

p=&a;

*p=2;

}

An int object and a pointer to int are defined. The & operator

appears in front of an lvalue and returns the address of the

designated object &a is the constant address of the object a. This

address is assigned to the pointer. f~

The * operator precedes an address or a pointer and makes its

operand an lvalue of the designated object. *p has the same

effect as the name of the object whose address is stored in p. This

object is here assigned the value 2. Instead of *p we could also

have written a.

Further consequences:

*&a corresponds to a

(the * and & operators are evaluated from right to left,

*<&a))

& *p corresponds to p

(& *p is not an lvalue but only an address)

In summary:

A pointer is declared by placing an * in front of the name. The

pointer can contain only addresses which point to an object of the

declared type.

82

c

c

c

c

Abacus Software SUPER C for the C-128/C-64

The * operator requires an address or a pointer. The entire
expression represents the object to which the address points. This

construction is an lvalue.

The & operator requires an lvalue and returns the constant
address of the object

6.5.2 Address arithmetic

Computations can be performed with addresses and pointers in C
as well. This is made possible by pointer arithmetic:

int array[6];

int *p;

. . ■

p=&array[4];

p=p+l;

*p=5 ;

First the address of the array element 4 is assigned to the pointer p.

The pointer is incremented by one. But actually the pointer is not

incremented by 1 but by 2. The pointer arithmetic causes the

summand 1 to be multiplied by the SIZE of the designated object,

2 in this case. This has the result that p+1 returns an address which

points to exactly one object beyond the current one, or

array [5] . *p=5 means the same thing as array [5] =5. The

addition with 1 is independent of the type of the array. If the

elements were of type double, 6 would have been added to the

address since the SIZE of type double is 6. This addition only

makes sense when the new address still points in the same array,

because only then is it guaranteed that the objects will be right
behind each other.

Instead ofp=p+l we could also have written p+=l or even p++ or

++p. Furthermore, the last two lines could have been replaced with

the following:

*++p=5;

83

Abacus Software SUPER C for the C-128/C-64

The effect would be the same. The operators * and ++ have the

same precedence and are processed from the right, meaning that

first the ++p is executed and then the *. ~

C-
You can use subtraction exactly as addition. The new address

points to an object a corresponding number previous.

p=&array[5]-4;

p points to the object array [1] ♦

Two addresses or pointers can be subtracted one from the other. A

precondition for a correct result is that the two addresses point

within the same array.

Sarray[5]=&array[1]

The result will be divided by the SIZE of the type, which means

that such an operation is independent of the type of the array. It

returns the number of objects between the two addresses. ^

It is from this pointer arithmetic that the indexing of an array

element is derived. The access of an array element a[b] is

internally converted to * (a+ (b)).

The name of an array alone represents the address of the first

element in the array. The name itself is not an lvalue. But if you

adds to it the number of the desired element, you get its address

because of the pointer arithmetic. The * operator makes the

expression an lvalue so that * (a+ (b)) has exactly the same

effect as a [b].

The following consequences result from this:

&array[0] corresponds to array

&array [1] corresponds to (array+1)

array [2] corresponds to * (array+2) f~

Further consequences result for the indexing by []. Since these

brackets are converted to an addition according to the scheme

above, their use is not restricted to arrays.

84

c

c

Abacus Software SUPER C for the C-128/C-64

int array [6];

int p*;

p=array+3;

p[2]=5;

p is assigned the address of array element 3. p [2] is converted to

* (p+2) and thereby represents the object array [5]. You can

see that pointers can be used arrays and vice versa.

6.5.3 Pointers and arrays as arguments

It has already been mentioned that arrays cannot be passed as
arguments. Pointers or addresses of all objects can be passed as

arguments. To pass an array to a function, you pass just its

address.

int name[41];

• • •

gets(name,40);

This fact was already used in an earlier example program. The

function gets receives as an argument the address of the array

name, name alone represents the this address. The corresponding

parameter declaration of get s would have to look like this:

char *gets(string, length, filenr)

char string[];

int length;

The specification of the dimension is not of interest and can be

omitted here. In reality string does not represent an array,
because the object to which the address of the array is assigned is a
pointer which can be used like an array within the function block.

The parameter declaration could also be:

char *string;

Passing arrays is done via the address (call by reference). This

procedure has the result, however, that the array can be changed by

85

Abacus Software SUPER C for the C-128/C-64

the called function. This is in contrast to passing other types where
only the value is passed.

If you want to change other objects within a function, you simply
pass an address:

main ()

{ double a,b;

• • •

swap(&a, &b);

swap(xfy)

double *x,*y;

{ double z;

z=*x;

*x=*y;

*y=z;

Calling the function swap passes the addresses of a and b so that
the contents of the two objects can be exchanged.

c

6.5.4 Complex declarations

Up to now you have seen only declarations with simple declarators.
Declarators are the part after the type and storage class which
contains the name. Such a declarator could like this up to now:

name

name[...]

name (...)

*name

In the first case the declared object is of the specified type, in the C
second case it is an array whose elements are of this type. In the ^-
third case it is a function which returns a value of the specified
type, and in the fourth case it is a pointer which can point to objects
of this type

86

Abacus Software SUPER C for the C-128/C-64

At first it may appear that the declarators have been chosen
somewhat at random. But it holds for all declarators that when you

r use them in the declaration, a result comes about whose type is that
^ of the declaration. You can convince yourself that this is so. In

keeping with the title, let's construct some complex declarations:

int (*alpha)[5]f *beta[5]f (*gamma)();

Parentheses can also be inserted in order to change the precedence

of the operators used. From Section 6.2.12 you know that all

parentheses are evaluated before the * operator.

Look at the three declarators. First the * operator is used on

alpha, with the result that alpha is a pointer. Then the index

brackets are evaluated, meaning that *alpha is an array or

alpha is a pointer to an array with 5 int elements.

For the second declarator the index brackets are evaluated first

Cbeta is an array whose five elements are all pointers to int

objects.

gamma is then a pointer to a function which returns an int value

as the result.

You see that arbitrarily complex declarators can be used. These are,

however, seldom needed.

6.5.5 Pointer arrays

The above declaration of beta was such a pointer array, that is,

the elements of the array are pointers. Such pointers must first be

selected by an index from the array and can then be used like

pointers.

The use of pointer arrays of type char is of interest to us. It has

already been mentioned that string constants can be used like array

names. A string constant is a constant address to the specified

string and can therefore also be used like an address. For example,

you can initialize a pointer array of type char with strings.

87

Abacus Software SUPER C for the C-128/C-64

#include "stdio.h"

main () r~

{ static *string[13]= {NIL, v_

nJanuary\n",

"February\nlf,

• • •

tfDecember\n"};

int i;

for (i«l; i<13; i

puts(string[i]);

getchar();

In this program the array string is initialized with the month
name. In reality the compiler places the string somewhere in the

program and initializes the address to the string. The element 0 is
set to NIL. This is the address to "nothing." NIL must be used

carefully. In no case may an object be accessed via the address
NIL. NIL serves only to indicate that such an access is not allowed.

The program passes the address of the ith string to the function

puts (put string) and prints this on the screen, getchar waits for

a key so that the output is not immediately erased again.

Keep this initialization separate from the initialization of character

arrays through string constants. Here only the address is initialized.

But for character arrays the contents of the string are placed in the
array.

6.5.6 Pointers and multi-dimension arrays

Take a look at the following definitions:

int alpha[5][5]/

int *beta[5];

In the first case we have a two-dimensional array and in the second

a pointer array. The beginner will probably find it difficult to keep

the two constructions apart. Both can be used in the same manner:

88

c

c

Abacus Software SUPER C for the C-128/C-64

alpha[2][2];

beta[2][2];

on

*alpha[l];

*beta[l];

You must differentiate between them, however, alpha is an array

which actually consists of 25 int elements, beta, on the other

hand, consists of five elements. But these are all pointers, beta

does not generate a single int object. An element of beta can

only point to an int object

The advantage of arrays of pointers is that a pointer of the array can
point to a subarray of unlimited length while still allowing it to be

accessed like a two dimensional array. The different pointers can

point to different length arrays, while the number of elements in a
two-dimensional array is predetermined. The disadvantage is that

the subarrays must be declared separately and the whole
construction requires more memory space because the pointer

objects must be added.

We saw that pointer arrays can access arrays of varying lengths in

Section 6.5.5. The list of month names, which was assigned to the

array strings, can be though of as subarrays.

strings[12][0];

access the letter D in the month December, and so on. The second

dimension is variable and is dependent on the initialization.

6.6 Structures and variants (struct/union)

Structures exits in every high-level programming language. In
Pascal and related languages they are called RECORDS. A structure

is a type. Objects of this type consist of several subobjects. You
can select these subobjects as you can select an array element The

difference from an array is that a structure can contain subobjects of
differing types.

89

Abacus Software SUPER C for the C-128/C-64

6.6.1 Declarations of structures

Let's assure that you want to create a type in which you can store (~
the data. To do this you would use a structure:

struct date { int day;

int month;

int year;

char monthname[4];};

This whole construction can be used like a type name, struct is a

keyword for the type structure, date is a struct name. The

declarations enclosed in braces represent the subobjects of the

structure. These component declarations are called the struct
specifier.

There are several possibilities for declaring an object of type

structure. No objects are defined in the above example. A struct

name is defined The specifier is assigned to this name so that you ^

can omit the specifier in future declarations: (^

struct date birthday;

birthday is an object which consists of the above components.

We could also have defined this object along with the definition of

date:

struct date { ...

. • • } birthday;

If you need a specifier only once, you don't have to define a

struct name:

struct { int day;

... } birthday; ^-

The part in front of birthday is one type name and so must stay

together.

90

Abacus Software SUPER C for the C-128/C-64

Complex declarators can also be used in declarations of the type
structure and these can be declared in a list without having to repeat
the type name:

struct date birthdayf *p, personal[50];

An object birthday, a pointer p to objects of type date, and an

array which consists of50 structures of type date are defined.

The declarators can also be defined in definitions. This does not

work for the storage class auto, however. The initialization of the

individual components is done with a list, similar to arrays.

struct data birthdays {10,8,1965, "Aug11}/

If fewer elements than components are specified, the rest are filled
with zeros.

C struct data personal [50]-» { { 26,5,1939, "May"},

{ 10r9,1935,lfSepff},

These lists can be nested again. The sublists can always be omitted
if all subobjects are defined. The compiler then divides the elements

of the list in order according to the array elements and components.

Some compilers allow you to define bit fields as components. This
is not possible with Super C.

6.6.2 Access to components

Components in C arc accessed with the. operator.

birthday.day

The first operand is the name of the structure, the second is the

selected component The entire expression is an lvalue and can

be used like any other lvalue. The type is the type of the
component

birthday. monthname

91

Abacus Software SUPER C for the C-128/C-64

is naturally not an lvalue but an address to a character array with
a maximum of 4 characters.

If you have a pointer to a structure, the access is possible as usual:

(*P).year

*p must be put in parentheses because the . operator has

precedence. This construction has its own operator, ->, which is
used quite often.

p->year

has the same effect

If you have an array of structures, an element is selected and then

the component:

personal[5].monthname[3] /—

on ^

(personal+5) ->monthname [3]

6.6.3 Functions and structures

Structures cannot be passed as arguments to functions, but

addresses of structures can. The & operator can be used on

structures for this. Also, a function cannot return a structure as a

result, but it can return an address:

int monthdays (p)

struct date p*;

{ static month[13]= {0,31,28,31,... };

if (p->month==2)

return(28+leapyear(p->year));

else

return (month [p->month]) ;

92

c

c

c

Abacus Software SUPER C for the C-128/C-64

iht leapyear(year)

int year;

{ return(year%4=0 && year%100!=0

year%400==0);

The function monthdays returns the maximum number ofdays in

the month of the date to which p points. The familiar list of month

days is used for this. In the case of February the result is

28+leapyear. leapyear is a function which returns 1 if the

year passed to it is a leap year, else 0. To do this the function

requires the year of the date as the argument

The complicated condition in the return instruction in leapyear
can best be read as:

If the year is either divisible by 4 and not divisible by 100 or it is

divisible by 400, then the year is a leap year.

This makes the condition correct according to the Gregorian

calendar in which a leap year occurs every four years, but not on

whole centuries. Centuries which are divisible by 400 are leap
years, however.

When the condition above is true it returns 1, otherwise 0. It

returns exactly the result needed in the calculation.

The function monthdays can be called as follows:

i=monthdays(&birthday)/

6.6.4 Recursive structures

Structures can possesses structures as components. The component

structure may not have a specifier, however. It must be previously

defined with a struct name.

The same structure which is currently being defined cannot be

declared as a substructure. It is allowed to declare pointers to the

same structure as components.

93

Abacus Software SUPER C for the C-128/C-64

We can define a tree structure with structures:

struct node { struct node *left;

struct node *right;

char nodename[20];};

Each node has pointers to two other nodes. The "tree" branches off
to the right and left. Such tree are used to keep names in
alphabetical order, for instance.

6.6.5 Variants

Variants are declared exactly like structures, but with union

instead of struct. A variant is a special type. It can contain only
one of the declared components, that is, the entire object can be

used like one of the components. The storage space required is as

large as the largest component

Variants are used where one wants to store objects of various types

and an object of a constant size is needed. If, for instance, you

would want to define an object which can store a C constant

union cconst { int ivalue;

long lvalue;

double dvalue;

char upvalue; }/

you would define a variant It can store an int, long, or double

constant or an address to char.

The variants are accessed just like structures. The component which
is intended must be specified.

union cconst kf *p;

k.ivalue=5;

*p->pvalue='a1;

The object k is large enough to store the largest component This is

independent of the system and is therefore easily portable.

94

c

Abacus Software SUPER C for the C-128/C-64

You must ensure yourself that the variant is read as it was stored. If

the components are changed on access, the result is not defined.

V Variants can also be defined in structures and vice versa. In Super

C, however, it is not possible to declare a specifier within another

specifier. Specifiers of substructures of subvariants must be
defined outside with their own names.

A variant can also be designated as a structure whose components

are all stored at the start of the object or which have the relative

address 0. Variants, like structures, cannot be passed as arguments

and also cannot be the result of a function. Variants cannot be

initialized.

6.6.6 Type definitions

You can also define new data types in C. These are not really new,

but are combinations of the existing types.

V- For such a definition you specify the "storage class" typedef.

The compiler then recognizes that an object is not being defined but

a type. A name is declared which can then be used as a type name.

It represents the type with which it was declared.

typedef int length;

length can now be used as a synonym for int:

length len;

static length l[20];

Another example:

typedef char *string;

string lines[5]/

v lines is an array with 5 pointers to char.

typedef struct { double refim; } complex;

95

Abacus Software SUPER C for the C-128/C-64

Here the type complex is declared, which in reality is a structure
and must be used as such.

complex x; V~

x.re=5.5;

x.im=-0.5;

6.7 Programming environment

Now that you have become acquainted with the essential C
components, you should in this section learn the particular features

of this C system. The input and output functions are not contained
in the compass of the language. These are directly related to the
hardware in question.

6.7.1 Files

You know from BASIC how files arc opened The functions open

and close are used for this in C:

open(8,15f"");

opens the error channel (15) of the disk drive (device 8), The

filename must always be given-here it is an empty string. You

have no doubt noticed that the logical file number is missing. This

is not required in C. A similar instrument is the file descriptor. The
file descriptor is used just like the file number in order to access a

file. A file descriptor is an object which should be defined with the

type file.

file fchannel;

fchannel=open(8,15f"");

The result of the function is the file descriptor for the opened file.

The result of open must be stored or you will be able to neither use
the file nor close it

The file is closed with:

96

Abacus Software SUPER C for the C-128/C-64

close (fchannel);

CThetype file is defined with typedef in the file stdio. h and
is usually not available in G

You have already become acquainted with the functions puts and

gets. There are corresponding functions by the names of fputs

and fgets, which do not operate on the screen or keyboard, but
read from or write to a file.

fputs (fln0:program disk,cc\nlff fchannel) ;

This sends a format command to the disk and erases the diskette.

fgets(string,40,fchannel);

c

reads the first 40 characters of the error message and stores them in
the array string.

6.7.2 EOF

In order to recognize the end of a file there is an EOF flag, End Of

File. This flag is realized with a macro which has the value 64 if

EOF occurred or the value 0 if not In order, for example, to get the

error message from the disk drive, you read characters until EOF is

encountered.

#include "stdio.h"

main()

{ file fchannel=open(8,15f"")/

char c, status=0;

while (!status)

{ c=getc(fchannel);

status=EOF;

putchar ();

}
close(fchannel);

getchar ();

97

Abacus Software SUPER C for the C-128/C-64

The EOF value must be placed in a temporary variable because it

may be changed by other input/output functions like putchar.

put char outputs a character on the screen, getc reads a v_

character from the specified file.

6.7.3 STDIO

STDIO is a special file descriptor. It can be specified anywhere a

file descriptor is required as an argument No open call is required

for STDIO, however. Outputs are directed to the screen by STDIO,
inputs are read from the keyboard:

#include "stdio.h"

main()

{ static char command[40];

file fchannel=open(8,15f"") ;

fgets(commandf 39f STDIO);

fputs(command, fchannel)/

close(fchannel);

A string is read from the standard input and is printed in the error
channel as a command

STDIO is defined in "stdio. h" and represents the value 0.

6.7.4 Additional functions

The standard modules contain a number of other functions whose

exact descriptions you can find in the system section.

Important and useful are the functions printf and scanf which

make formatted output and input possible. These two functions are
relatively large. There are therefore contained only in module

libc. 1. Otherwise the modules libcs. 1 and libc. 1 contain

the same functions.

98

Abacus Software SUPER C for the C-128/C-64

The declaration file stdio. h can be used for both modules. The

declaration of printf and so on when using libcs. 1 does not
f create an error as long as these functions are not actually called.

6.7.5 Error handling

The error handling in C is system dependent and are therefore not

necessarily portable. In this system you can turn the error messages

on or off so that errors can also be processed in the program. If the

error messages are enabled, the following message might appear:

?division by zero

press x to quit, c to continue,

r to restart

You can end the program with the [x] key, restart it with [r], or

continue executing with [c].

C Caution is advised in the last two cases. No static or global

objects are initialized or set to zero when the program is restarted.

If the program execution is continued, other errors may occur

because the value of a division by zero is set to zero.

The error messages can be turned on and off with the procedures

erron () and erroff (). The default condition is erron ().

6.7.6 Interruption

In BASIC you can interrupt the program with the keys [STOP] and

[RESTORE]. This is also possible in C and is sometimes useful, for

exiting an infinite loop, for instance. The message:

C?nmi interrupt

press x to quit, c to continue

r to restart

is printed. You have the same options as for the error messages.

Here the same caution is advised. There is also the possiblity that

99

Abacus Software SUPER C for the C-128/C-64

the NMI interruption through [STOP]+ [RESTORE] can come

during input/output operations. It may occur that undesired side

effects will result from the continuation of the program with the [c]

key.

This interruption can be turned on and off independent of the error

messages. The procedures nmion () and nmiof f () are

available for this purpose, nmion () is the initial condition.

c

c

100

c
Partn

C

(System Guide)

c

c

D

Abacus Software SUPER C for the C-128/C-64

1. The command processor

v- 1.1 Start, NMI, and RESET

Super C V3

The master disk must be placed in drive a,

press the RESET key or

enter the command BOOT in BASIC.

In both cases the system will be booted

After the booting the file autoexec will be executed

This is a file created by the editor. The first line of the text

contains a command which will be executed.

On the master disk the command in autoexec is

■-- lram stdio.p

^ The prompt is light red at the start of version V3, since the
lram command is resident

When starting the screen will be selected by means of the

40/80 column key.

Super C V2

The master disk can be in any drive. Load the CCP with

-load ftc-system",8,1 or

-load "c-system11, 8

run

The specified device number must be changed if you are loading

from device 9. Super C V2 can also be booted in the C-128 like

s~ V3. The 64 mode is automatically enabled, autoexec is not

(^ executed in V2.

An NMI (non-maskable interrupt) can be generated by pressing the

[STOP]+[RESTORE] keys. This places the CCP back in the

103

Abacus Software SUPER C for the C-128/C-64

command mode. A loaded copy, lram, sram, or sysgen

command is no longer resident. The screen in V3 will be selected
according to the 40/80 column key. /~~

The NMI is used to bypass certain sticking points of the CCP. The
NMI should only be used then. The NMI should be avoided during
input and output operations.

Super C V3

The C-128 has a RESET button. This can be used to restart

the processor if the computer crashes for some reason.

After pressing the RESET button the CCP will hopefully

respond. If an erroneous program caused the crash, it may

have destroyed part of the CCP or the RAM disk driver.

You will notice this if the CCP or the RAM disk do unusual

things or certain commands cause the computer to crash.

If this is the case, even the RESET button will not help.

You can try to call the command c-system in the CCP in ^~
order to restore the CCP and the RAM disk driver. This v~
will erase the contents of the RAM disk, however. If the

CCP will no longer execute this command, the only thing

left is to turn the computer off.

When the RESET key is pressed, the contents of the RAM

disk are not lost All connected devices are reinitialized so

that device addresses set with device will be erased. The

RAM disk will be set back to the device address h.

Super C V2

If version V2 is used on the C-128, the RESET button has
the same effect as if you had turned the computer off and
then back on.

c

104

Abacus Software SUPER C for the C-128/C-64

1.2 Device identifiers and filenames

CThe device identifier specifies which drive the filename refers to.

The letters a to h signify the device addresses 8 through 9.

abcdefgh

8 9 10 11 12 13 14 15

As a general rule a device identifier consists of the device letter and

a colon. For example:

b:

The following device identifiers are also possible for dual drives:

bO: bl: b:0: b:l:

in which 0 and 1 specify the drive.

v_ A filename consists of a device identifier and a name. The name

should not contain any of the following characters:

The characters ? and * are wildcards and can be used only if the

drive allows (not with write accesses). The * character also has a

special meaning in some CCP commands.

If a filename is specified without a device identifier, it refers to

device 8 or a. This is not the case if a command name is given
without a device identifier, however. Then the name refers to the

device which the prompt specifies, even if this is erased from the

input line.

105

Abacus Software SUPER C for the C-128/C-64

1.3 Extensions

The end of a filename is usually provided with a period and a letter

in order to indicate the type and use of the file.

There is a convention for this which is derived from the UNIX

operating system:

. c C program as text file

. h header file as text file (contains declarations)

.e error file as text file (created by the

compiler)

.o object file as link file (created by the

compiler)

. 1 library as link file (created by the compiler)

. b finished, executable program as B version

(to be started from BASIC, V2 only)

. p file package, contents of the RAM disk

(created by sram)

no extension finished program executable in the CCP

Typically the name before the extension remains the same. You

would for example, write a text file with the name test. c with

the editor and then compile this into the file test. o which is then
linked with the standard functions in the linker, resulting in the

executable program test.

c

106

c

c

c

Abacus Software SUPER C for the C-128/C-64

1.4 Passing arguments

The CCP reads a line and evaluates it as a command The input line

is first divided into arguments* The space is used as the separator,

for example:

a: copy b:test.c to h:test.h

<argO> <argl> <arg2> <arg3>

First a check is made to see if <argO> is a resident command. If

so, it is processed. Otherwise the file designated by <argO> is
loaded and started. The arguments and the number of arguments are

passed to this program.

The maximum length of the input line is 80 characters for V2 and

160 characters for V3. The maximum number of arguments for V2
is 40 and 63 for V3. If a space is to appear within an argument, it

must be entered as a shifted space. This will be displayed as a space

with a small dot in the middle (in the C character set). The shifted

space will be converted to a space after the evaluation.

Parameters from the input line can also be passed to C programs.

The following or a similar declaration must be made in the function

main:

main(argc, argv)

int argc;

char *argv[];

argc contains the number of arguments. Argument 0 is included in

the count. In the above example argc would equal 4. Leading and

trailing spaces are removed from the argument text

arg[0]

arg[l]

arg[2]

arg[3]

points to

points to

points to

points to

"a:copy

"b:test

"to"

"h:test

it

.c"

.h"

107

Abacus Software SUPER C for the C-128/C-64

1.5 Character sets

Super C V3 s~

After booting, after NMI or RESET and after the end of each

command the C character set is automatically set (on both screens).

In addition, the C character set can be set on the current screen by
pressing or printing (within a C program, for instance) the
sequence

[ESC] [1]

The Commodore character set is obtained on the current screen by
the sequence:

[ESC] [2]

[SHIFT]+[CBM] can be used here to switch between upper and

lower case, as is usual with BASIC.

[SHEFT]+[CBM] switches between upper and lower case. _

Super C V2

In version V2, two character sets can be displayed: the C character

set and the Commodore lower case character set. The C character

set is set by the CCP as with V3. [SHIFT]+[CBM] can be used to

switch between the two character sets.

The switch with [SHIFT]+[CBM] can be done by printing the

control characters f\16f and '\216\

1 switches to lower case (or C character set in V2)

1 \ 216f switches to upper case (or CBM character set in V2)

c

108

Abacus Software SUPER C for the C-128/C-64

1.6 Monitors

Two monitors can be connected to the C-128 at once, an 80-column

monitor and a 40-column monitor. Both are supported by Super C
version V3.

[ESQ [x]

switches the input to the CCP to the other monitor. In the fast mode
the 40-column screen is no longer displayed, but it can still be
addressed.

The 40/80 column key sets the screen on booting, RESET, NMI,

and when ending commands.

In version V2 only the 40-column monitor can be used.

r 1.7 Resident commands

In the following discussion, if mention is made of the device

identifier of a command, we mean the device identifier in front of

the command name or, if this is missing, the identifier specified by

the prompt The device identifier of the following commands:

a:b:dir b:dir

is in both cases b: .

dir

dir <argl> This command lists the directory of the disk in

the device specified by the device identifier

preceding dir. A specifier may be given as an

argument For example:

f~ b:dir test*

displays all files whose names begin with test

a:dir 1

109

Abacus Software SUPER C for the C-128/C-64

lists the directory of device a drive 1 (for a double
drive), s~

The error message file not found appears
if the device is not available or if the directory is
not readable.

err reads the error message of the device specifed by

the device identifier.

com <agrl> The drive executes the text of <argl> as a

command. The command reads die error

message after execution of the command. You

can learn about the various commands in the disk

drive manual. For all delete commands, note

which drive the command will be sent to.

file not found will be printed if the device
is not accessable.

time (in V3)

tod (in V2) outputs the current clock time. This clock time is
set to zero upon booting, so the time that first

appears will be the time since you started

working with Super C. The clock can be set with

the command set.

set <time> sets the clock time to <time>. <time> must be in

the form HH: MM: SS, whereby

HH specifies the hours (00-23),

MM specifies the minutes (00-59),

SS specifies the seconds (00-59)

If you enter a syntactically-incorrect time, tod or
time outputs a totally irrational time.

fast (V3 only) switches to the 2 MHz or FAST mode.

The processor then runs twice as fast as before.

The RAM disk in particular benefits from this

110

c

c

c

Abacus Software SUPER C for the C-128/C-64

speeds while the transfer from normal disks
increases only slightly.

In the FAST mode the 40-column screen is not
visible (it would slow things down too much),
though it can still be accessed as usual.

slow (V3 only) switches back to the SLOW mode. The

processor clock is set to 1 MHz. The 40-column

screen becomes visible again.

end ends Super C. The effect is if you had turned the

computer off and then back on again. In version

V3 you should first take the master disk out of
the disk drive or the computer will boot the C

system again since the C-128 performs a boot

operation when turned on.

1.8 Transient commands

For transient commands the device identifier of the command

always indicates the drive from which the command will be loaded:

b: a:device

loads device from a.

1.8.1 device

This program makes it possible to change the device address of

disk drives from software. The following appears:

device a to b.

The cursor appears first on the a ♦ You can set the device identifier
of the drive whose device identifier you want to change with the

letters a to h. You confirm this device address with [RETURN].

The cursor then goes to the b and you can set the device address

111

Abacus Software SUPER C for the C-128/C-64

which you want to have for the selected drive in the future. When

you press [RETURN] the address will be changed. With

[RUN/STOP] you can exit the input and return to the CCP.

When changing the device address, device indicates the DOS

version of the disk drive, device can be used on all known
Commodore drives and for the RAM disk. If you have an exotic

drive, with which device does not work, you can change

device accordingly. The C source file is stored on the master disk

under the name device. c.

1.8.2 copy

copy

copy <source> to <dest>

copy <source> <dest>

With copy you can copy files of type USR, SEQ, and PRG

between various devices, copy is loaded only on the first call. For

all following calls copy is resident This holds until another

transient command is loaded. If you have only one drive you can

proceed as follows: First call copy without any arguments so that

copy will only be loaded into memory. Then remove the master

disk from the drive and insert the disk from which you want to
copy.

<source> and <dest> are filenames with device identifiers.

<source> specifies the name and device of the program to be

copied. <dest> specifies the device and the name of the copy. The

name of the original will be used if the name of the copy is

specified with *.

copy a:test h:*

Device identifiers can naturally be omitted for drive a. If you have a
dual drive, the following command is also possible:

copy bl:test aO:*

112

Abacus Software SUPER C for the C-128/C-64

If the program determines that <dest> and <source> address
the same device, the original will first be loaded into memory and

f~ the message:

quit to save!

will be displayed. You now have the opportunity to change the

disks in this drive. Then press any key and copy will save the

loaded file. If you have only one disk drive and want to copy test
from diskette X to diskette Y: Insert disk X.

copy test *

results in the message quit to save! Remove disk X and insert

disk Y and press a key. When the CCP responds again, test has
been copied.

The copy procedure can be interrupted with [STOP]. The following
f~ errors are possible:

file not found

- when copy was first called the program file was not found

- incorrect device identifier in the arguments

- <source> not found

- addressed device not present

illegal command

-illegal number of arguments

- * was improperly used as a destination argument

break

- termination through [STOP]

The prompt will be displayed in red instead of yellow while copy

is resident The device identifier for copy is only important for the

_ first call. Arguments can also be passed on the first call (only of
(^ interest for users with several disk drives).

The RAM disk does not have a copy command for copying within

the RAM disk. Use copy for this.

113

Abacus Software SUPER C for the C-128/C-64

1.8.3 f

f <argO> <argl> <arg2> ... (~

f is a special command for fast-loading commands and programs.

This fast loading works in both versions with the 1541/71 disk

drives. In V3, however, the f command has no function with 1571

disk drives since these drives load quickly enough.

The arguments of f are first the command name with device

identifier. All other arguments are passed to the command or

program to be loaded The device identifier in front of f determines

from where f will be loaded. You can try out f on the master disk

with device, for instance:

a:f a:device

If you want to use f for your application programs and you have

only one disk drive, you should copy f to your work disk. f~

If, for example, you want to load the copy program quickly for this

copy procedure, enter:

a:f a:copy a:f a:*

first loads copy quickly and then copies f.

For short programs f is not very efficient But for longer programs

it is possible to increase the speed of the load by a factor of three.

System components (editor, linker, and compiler) automatically

recognize if a slow device is present and then load fast, f therefore

has no effect. The 40-column screen will be dark while f is loading

because the transfer would be slowed by memory accesses to the

screen.

c

114

(

c

Abacus Software SUPER C for the C-128/C-64

1.8.4 Iram (V3 only)

Iram

Iram <file>

Iram loads files saved with sram which contain the contents of

the RAM disk. Iram is loaded only on the first call and then

remains resident like copy until the next command is loaded. This
is only important for users with only one drive. They can first load
the command, change diskettes, and then execute the command by

calling Iram with an argument

Iram expects a filename which designates a file which was stored

with sram. This is loaded into the RAM disk. The old contents of

the RAM disk are erased by this. Iram determines the device
number of the RAM disk itself.

1.8.5 sram (V3 only)

sram

sram <file>

sram saves the contents of the RAM disk to a file. This is expected

as the argument You can also enter a device identifier with * as the

argument Then the contents of the RAM disk will be saved under

its name. This name appears in the first line of the directory.

Just like Iram, sram remains resident after the first call. The

contents of the RAM disk are not disturbed, sram determines the

device number of the RAM disk itself.

1.8.6 sysgen

sysgen

gen <text>

sysgen serves to construct user disks which are to contain a

command processor. These diskettes can then be booted like the

115

Abacus Software SUPER C for the C-128/C-64

master disk. After booting the CCP and the RAM disk are then

available. You can then set up a autoexec file. This file can be
created with the editor. It is possible, for instance, to load a

user-created menu program or another user program after booting.

sysgen is called without arguments. After loading, the prompt

will be red. Another command by the name of gen is now

available.

The device identifier of gen specifies the drive whose disk is to be

outfitted with a boot mechanism and CCP. If gen is called without

arguments, the message booting c-system v3.. ♦ will
appear during booting. If you want your own message to appear,

enter this as the argument Remember that spaces must be entered

as shifted spaces. In addition, the characters \n for new line and

\t for tab are accessable in the argument text For example:

a:gen user disk l\n(contains test programs)\n

Later during booting, the message will appear.

booting user disk 1

(contains test programs)

gen uses track 1 sector 0 to create a boot block. If this is already

occupied by programs, gen cannot be used. You can erase the user

disk with com, whereby gen remains resident in memory, gen

also saves the file c-system which contains the CCP and the
RAM disk driver.

Possible errors:

file not found

for sysgen: sysgen not found

c-system not found

no block

for gen: block 1,0 already occupied.

116

c

c

c

Abacus Software SUPER C for the C-128/C-64

1.8.7 c-system

c-system

c-system is the file which contains the CCP (and the RAM disk

in V3). If the CCP or the RAM disk driver should be overwritten by

a runaway C program, you can try to load c-system by entering

it as a command in the CCP.

If the CCP still functions enough so that the loading process is

performed correctly, you will then have an error-free CCP
available. This will erase the contents of the RAM disk.

1.8.8 cl

cl <x:file> <linkl> ..•

cl is a command which calls the compiler and linking process.

This is done by passing arguments to the compiler, cl expands

some of the arguments required so that you can save a good deal of
typing.

Super C V2

cl calls the compiler as follows.

cc <x:file>.c <x:>o.o <x:>error.e <x:file>

The compiler will load file from the same drive as cl. The name

specified by <x: file> determines the name and device identifier

of the source text and the finished program. The file o. o will be

used as the link file and it will be stored on the same device as the

source file. The library libc. 1 is automatically linked to the user

file. Additional libraries may be specified.

It is possible to use this command only with two drives. If, for

example, the master disk is in drive a and the program disk in drive

117

Abacus Software SUPER C for the C-128/C-64

b, then you can compile the program test. c on the program disk
in the following manner:

a:cl b:test V_

The compiler and linker will be loaded automatically and the

finished file test will be created on drive b, assuming that no
errors occur during compiling and linking.

Super C V3

The c1 command in version V3 runs similar to that under V2. The
object file and the error file are both placed on the RAM disk,

however. The library 1ibc. 1 is also taken from the RAM disk.

a:cl b:test

compiles test from drive b to the RAM disk. The finished

program is again stored on drive b. If you have only one drive, you (~
will also usually take the source file from the RAM disk. In this ^-
case cl works like it does in V2.

1.8.9 type

type <file2> ...

The type command expects at least one filename. The file should

be a text file created by the editor, type prints all text files which
are passed as arguments one after the other on the screen.

can' t open appears if the file is not present

If, for example, you want to know what text is stored in the

autoexec file on the master disk, enter s-

a:type a:autoexec

118

c

c

Abacus Software SUPER C for the C-128/C-64

2. RAM disk

2.1 Deviations from Commodore DOS

The RAM disk is available only in Super C V3 (C-128). In this

chapter we will outline only the differences from Commodore

DOS. Since it is not possible to explain the function of the

Commodore DOS in the framework of this manual, we refer you to

the drive user's manual or to the appropriate literature.

The second RAM bank in the C-128 and the eventual memory

expansions up to 256K are used for the RAM disk. The RAM DOS

is loaded when the system is booted and remains available the entire

time. The device identifier of the RAM disk is h.

You can use the RAM disk like a normal Commodore disk drive.

Except for the following points, there is no difference between a

normal disk drive and the RAM disk:

• The RAMDISK cannot use relative files.

• The memory commands (m-r, m-e, m-w) do not exist

• The user vectors uO, u2 to u8 do nothing and cannot be set

(u 1 and u 2 retain their significance: modified block

read/write).

• u9,u: generate a RESET of the RAM disk. The disk

contents are retained.

• The command & for USER files does not exist

• The command p for selecting a record of a relative file is

missing.

• The command b-e does not exist

• The command c for copying and appending files does not

exist.

• The command $ always transfers all the directory (no

specifier allowed).

• The ID specification in the command n for new has no effect

• Track and sector division is different from the Commodore

drives.

• The construction of the BAM as well as the directory is

different from the Commodore format

119

Abacus Software SUPER C for the C-128/C-64

• In the RAM disk the device address can be changed by the

command u: or u9. Simply enter the device identifier behind

the command: s~

h:com u:b

file not found

The device address is now changed from h to b. The error message

appears only because com tries to read the error channel, but device

h no longer exists at this point (it became device b).

2.2 Track and sector division

If you do not want to manipulate the RAM disk with direct access,
this chapter is not important for you.

The track and sector division is shown in the following table:

Track Sectors

1 0-11

2-15 0-15

16 0-12

up to here without memory expansion (239 blocks ftee)

17 0-11

18-31 0-15

32 0-12

up to here with 64K memory expansion (488 blocks free)

33 0-11

34-47 0-15

48 0-12

up to here with 128K memory expansion (737 blocks free)

The BAM block is in track 1 sector 0. 9 blocks (from 1,1 to 1,9)

are allocated for the directory. The directory can accept a maximum

of 99 entries.

120

c

Abacas Software SUPER C for the C-128/C-64

2.3 The RAM disk commands

CThis description should give you a glimpse of the commands. It is
neither comprehensive nor complete by any means. For an exact
study, read your disk drive manual.

i[dr] (initialize)

Initializes the disk. The drive specification is optional. You

can specify only 0 since 1 will result in "drive not

ready". The command does not work in the RAM disk

v[dr] (validate)

Puts the directory and the sector chaining in order. The drive

specification behaves as for i.

s:name [=type] [,name[=type]...] (scratch)

Files can be erased with this command. You can specify

multiple names (up to four). The names can contain * and ?.

In addition you can restrict the types of the files by

{ specifying the type behind the name.

Example:

h:com s:lib*=seq

01/ files scratched,00,00

Since there are no sequential files in the RAM disk with

begin with lib, none are erased.

h:com s:lib*

01/ files scratched/03/00

Now all library files are deleted

r:namenew=nameold (rename)

The file nameold will be renamed namenew. Note the
(direction of the name change.

121

Abacus Software SUPER C for the C-128/C-64

n:name[/id] (new)

The contents of the RAM disk are erased and a new RAM

disk with the disk name name will be created. You can r~

specify the id, but is has no significance. Before you give v_

this command, be sure that the right device identifier

precedes com so that you erase the correct disk.

b-a: dr tt ss (block-allocate)

dr stands for drive; here you can specify only 0. tt

designates the track and ss the sector of the block which is

to be allocated.

b-f: dr tt ss (block-free)

This command frees the specified block. The arguments are

the same as for b-a.

b-r ch dr tt se (block read)

ch designates the channel which was opened for the direct

access, dr, tt, se select the block which will be loaded into

the buffer of channel ch. C

b-w ch dr tt se (block write)

Writes the buffer to the specified block.

b-p ch ps (block pointer)

The block pointer of channel ch will be set to the value ps.

ul ch dr tr se

Modified read (like b-r, but the first block byte will not be

taken as a pointer).

u2 ch dr tr se

Modified write (like b-w, but the first block byte will not be

taken as a pointer).

c

122

c

c

Abacus Software SUPER C for the C-I28/C-64

3.0 The C editor

The C editor has the name ce and is loaded like a transient

command

In version V3 there are actually two editors, e4 and e8, one for the

40-column screen and one for the 80-column screen, ce loads the

right editor for the current screen. Both editors are completely

compatible. e8 can display 70-columns per line at the same time so
that text is not shifted left and right as it is on the other version.

An argument can be passed to the editor. The argument is a

filename with device identifier. This file will be loaded after the

editor is started

a:ce b:test.c

3.1 Character sets and text display

The editor has two text areas, a file text area in which you edit the C
source text, and an extra text area in order to store text temporarily.

There are about 43K bytes available for both text area together.

In contrast to BASIC, the cursor in the C editor does not blink and

the repeat function works for all keys. The keyboard layout has
been changed slightly from BASIC so that you can enter C-specific
characters. The editOT is in the C character set The keyboard layout

is shown in the appendix.

Super C V2

The keys [SHDFT]+[CBM] can be used in V2 to switch between
the C character set and the CBM lower case set

123

Abacus Software SUPER C for the C-128/C-64

Super C V3

The keys [ESC] [1] enable the C character set and [ESC] [2] f ,

enables the Commodorc character set Within the Commodorc set V-

[SHIFT|+[CBM] can be used to switch between the upper and

lower case sets. The switch mechanisms arc the same as in die
CCP.

The screen of the C editor indicates the cursor position in the first

line. The first number shows the column, the second the line, in
which the cursor is found. Messages and errors arc displayed in the
first lines and the command names arc shown.

The second screen line contains the filename in the file text and the

message extra in the extra text. The condition of the clock is

displayed on the right side. The current clock time can be set in the
CCP with the command set

The third line indicates the tabs. * means that the tab is set The
remaining lines, 4 to 25, contain the actual text field. /*~

A document consists of individual lines which have a set maximum

length (40-80 characters). If the line length is greater than 40

characters, the remaining characters outside the screen are displayed

by horizontal scrolling of the screen (not necessary in e8). Each line

of a document has its own color, which you can set with the color

keys ([CBM]+[1] to [CBM]+[8] and [CTRL]+[1] to [CTRL]+[8]).

The last line of a document cannot be written. It makes it possible

to insert additional lines. If you try to move the cursor beyond this
line or to write on it, the editor responds last line.

The document which you enter is immediately stored, without you
having to press the [RETURN] key.

If an operation would make the document too long so that it would

no longer fit in the available memory, the operation will not be

performed and the editor will respond overflow. *~

There are control characters and commands available for editing a

document Control characters are available during text input with

only one key press. The commands, on the hand, are more

complex editor functions which usually require additional

124

Abacus Software SUPER C for the C-128/C-64

parameters. Commands are preceded by the command key [F5].
After this you select a command by entering the corresponding key

Cfor the command. Parameter inputs may follow the command.

There are five input types for parameters. These five input types
will be discussed in the following sections.

3.2 Control keys

<=> The cursor is moved with the cursor left/right keys,

moving the screen left or right. The cursor stops at the

end of a line.

INi The cursor moves up or down and the screen scrolls as
required.

[RETURN]

The cursor jumps to the start of the next line.

C [SHIFT+RETURN]
The cursor jumps to the end of the previous line.

[TAB] <= (left-arrow) The cursor jumps to the next tab

position (*).

[SHIFT+TAB]

([SHIFT] and the left-arrow key) The tab marker in the

column in which the cursor is currently found changes

(set or cleared).

Fl Page down. The text at the 22nd line after the cursor

line is displayed.

F2 Page up. The text at the 22nd line before the cursor
line is displayed.

125

Abacas Software SUPER C for the C-128/C-64

F3 Search for text beginning at the current cursor
position.

A search is made for the previously-defined search

string see command r = replace for the input of the
search text). The editor looks for the search string after

the F3 key is pressed. This can take up to two seconds

for long strings. If the editor finds an occurrence, the

string is displayed with the cursor at the first character

of the string.

The editor jumps from one occurence to the next with

each subsequent press of the F3 key. If no more

occurrences are found, the editor displays the last

line of the document

The search process can be stopped with the [STOP]
key. The cursor is positioned to the line and column at

which the search had advanced to.

F4 Replace with query. The next occurrence of the search

string is searched for and displayed in reverse. The

question replace y/n? appears in the command

line. If you press y (yes), the text is replaced by the
previously defined replace string (see the command
r=replace). Press n if you do not want to replace the

string.

After you answer the question the editor continues
with the search. You can halt the search and query

with [STOP] and the editor returns to the text input

If a line becomes longer than the set maximum length

as the result of a replacement, the editor halts the

replacement and displays the message error

overflow in line. The cursor stands at the

occurrence whose replacement would have made the

line too long. The same applies for replace without
query with F6.

126

Abacus Software SUPER C for the C-128/C-64

F5 Command key. All commands start with this key. The
message enter command appears in the first screen

Cline. The corresponding command is called by
pressing a certain key.

F6 Replace without query. All occurrences of the search
string, from the cursor position on, are replaced with

the replace string automatically and without query.

Replace can be halted with the [STOP] key.

If an overflow in line occurs, the same procedure is
followed as for F4 (replace with query).

F7 Insert lines. A blank line is inserted before the cursor
line. The color of the line is copied from the

preceeding line.

F8 Delete lines. The cursor line is deleted and the
remaining text moves up.

[HOME]

Switch text areas. The display is toggled between the

file area and the extra text area.

[CLR] Start of text. The text is displayed starting at the
beginning of the document

[STOP] Interrupts all command inputs, halts the printing,
loading, reading the directory, searching (F3), and

replacing (F4, F6). Basically, everything but saving

can be halted with [STOP].

c

127

Abacus Software SUPER C for the C-128/C-64

3.3 Parameter inputs

If you have selected a command, you must usually enter

parameters. The inputs the various commands require will be

described in Section 3.3. The five different types of parameter

inputs are explained in the following sections. All five can be

interrupted with the [STOP] key which returns you to text input

3.3.1 Key input

No cursor appears for this type of input The editor waits for

certain keys. The message in the first line of the screen indicates
which keys you may select from. The keys at the end of the
message are separated by a / character (for example: replace y/n?).

Except for the given keys and the [STOP] key, no other keys have

any effect

3.3.2 Input a number

Only the digit keys 0-9 and the control keys PEL], [RETURN],
and naturally [STOP] are accepted during a number input. The

input range is limited to a certain number of digits. At the end of the
field the cursor stops and no more digits are accepted.

[RETURN] ends the input If no digits are entered, the input is not
ended. PEL] deletes the last character entered. [STOP] halts the

input

c

128

Abacus Software SUPER C for the C-128/C-64

3.3.3 Input a string

CThe input is limited to a certain number of characters* No more

characters are accepted at the end of the field except for [DEL]. All

printable characters from the keyboard are allowed as input

PEL] erases the last character entered, [STOP] interrupts the input

[RETURN] ends the input All characters from the start of the input

field to the character before the cursor belong to the entered string.

3.3.4 Block input

For this input the first screen line contains the message marking

out range. In this input type you can determine a block which

is displayed in reverse type.Various operations can then be

performed on this block. A block is a contigious section of lines.

The block can be edited with the following keys:

V_ <=> The cursor is moved to the right or left The cursor itself

cannot be seen, but its position is indicated on the position

display. These keys have only the function of shifting the

screen right or left during the block input

H The size of the block is increased.

ft The size of the block is decreased.

[RETURN] ends the input. The limits of the block are now set

[STOP] interrupts the input The editor returns to the text input

129

Abacus Software SUPER C for the C-128/C-64

3.3.5 Destination input

For this input the first line of the screen contains the message /"""

fixing target. The target line is displayed in reverse text ^-
The destination line appears in normal text in a line which appears
in the middle of a marked block of text After the block input, the
target line is the line directly after the reverse block and cannot
immediately be recognized. You will see the target line if you move
it.

You can move the target line with the following control keys:

<=> Changes the cursor column. Scroll the screen left or right

during the destination line input

1TU- Moves the target line up or down.

Fl (page down) The destination line is moved 22 lines down.

F2 (page up) The destination line is moved 22 lines up. v_

[HOME]

Switch text areas. This control key is possible only with

the transfer command

g The g key calls the command goto. You can enter the

number of a line as the target line.

[RETURN]

ends the input if the target line does not lie within the

previously marked block. Otherwise the editor displays no

target line and the target must be reentered.

[STOP] interrupts the input

c

130

c

c

Abacus Software SUPER C for the C-128/O64

3.4 Commands

The message enter command appears in the first screen line

when the [F5] key is pressed. The editor expects the user to press a

key which selects a command. All keys except for the possible
command keys and [STOP] are ignored. [STOP] interrupts the

input.

In the description of the commands the input types for the

parameters are indicated as follows:

key input <key>

number input <number>

character string <string>

block input <block>

destination input <dest>

The input type is not indicated on the screen, it is only used to

inform you what kind of input you should make. In most cases this

will be clear anyway.

The key which calls the given command is set apart from the
paragraph. Indented and printed in different type are the messages

which appear during the command.

bytes free
A message appears in the status line of the screen that
displays the amount of memory space remaining to the

editor.

hunt

Enter the search string for the search function (F3) and (F4

or F6).

hunt:<search string>

131

Abacus Software SUPER C for the C-128/C-64

r replace

Enter the search string for the replace function (F4 or F6).
The first character string which you enter is the search
string and the second is the replace string.

hunt:<search string>

rplc:<replace string>

e erase

Delete blocks of text You must first mark the block.

erase:marking out block <block>

erase rare you sure y/n? <key y,n>

After marking a confirmation question appears. The key

[n] for no prevents the deletion. The key [y] for yes

deletes the block. The text is displayed at the deleted

block following the deletion.

t transfer

Copy a block from one point to another. You must first
mark the block and then set the target (destination) line.

The target of this command can also fie in the other text

t'fer:marking out range <block>

tf fer:fixing target <dest>

After the input of the target line,a copy of the block is
inserted in front of the target line. The screen then displays
the document after the copied text If the document

becomes too long, the transfer command will not be

executed. The editor responds overflow and the screen

shows the text at the select target line.

c

132

c

c

Abacus Software SUPER C for the C-128/C-64

m move

Move a block from one location to another. You must first
mark the block and then set the target. The block is inserted
before the target line.

move:marking out range <block>

move:fixing target <dest>

c color

Enter the number of a color (0-15) and mark a block. The

block is then colored in the selected color. The screen then

displays the document starting with the colored text block.

color:<numbor 0-15>

color:marking out range <block>

I load

Enter the name of a text file to be loaded into working

memory. Any text in memory will be erased. The extra text

area remains unchanged.

load

file: <string>

If the message file format error appears when

loading, the format is incorrect for the CREDITOR. The

editor changes the text so that it is readable. Information

may be lost through this process, however. The message

overflow indicates that the text no longer fits in

memory. This command can be used from the file area.

c

133

Abacus Software SUPER C for the C-128/C-64

save

Save the document with the name displayed in line two of
the screen. If a file with this name already exists on the

diskette, the following question appears:

save replace y/n? <key y,n>

If you answer with [y], the existsing file will be replaced

by the new one. An [n] halts the saving process and you

are back in text input This command can be used in the

file area.

filename

Change the name of the document in the file area. This

command can be used only in text file area.

file: <string>

kill

Erases the document in the file area. The extra text

remains unchanged. This command can be given only in

the text file area.

kill: are you sure y/n? <key y/n>

The confirmation question protects the memory from

unintentional erasure. The [n] key stops the command.

input disk error
Reads the disk drive error channel and displays the

contents on the status line.

c

134

Abacus Software SUPER C for the C-128/C-64

d directory

Displays the directory of the diskette and inserts it in the
Ctextat the current cursor line. You can give a specifier with

the directory command (such as *=prg, test*, test*=usr).

More about the function and syntax of these specifiers can

be found in the disk drive manual. Ifyou enter nothing and

just press [RETURN], the entire directory is displayed

directory:<string>

It is best to read the directory into the extra text because it

will not disturb anything there.

If you want to read the directory of a drive other than drive

a, you must give a least a device identifier as a specifier.

For example:

b:

/- lists the contents of drive b.

x exit
Exit from the editor and return to the CCP.

exit: are you sure y/n? <key y/n>

The [n] key interrupts this command

n new text

Erase and set new parameters for a new document. The
line length for the new document is set here. It cannot be

changed later.

new: length of line <number 40-80>

The line length of the file text also applies to the extra text

Clflines in the extra text are longer than the new line length,

the remainder of the line is no longer accessible.

file:<string>

135

Abacus Software SUPER C for the C-128/C-64

Next, the filename is entered The file text is erased and

now has the new line length. With a line lengh of 40 the
screen is no longer shifted horizontally. If you don't want

the screen to scroll, you can prevent it from doing so by
specifying a line length of 40. 80 columns at a time are

displayed in the e8 editor under version V3. If you set

fewer than 80 characters, you will not be able to move the
cursor beyond the set position.

g goto

Goto (jump) a given line number.

goto:<number>

p print

Print the document on the printer (device no. 4).

print:input defaults y/n? <key y,n>

With the n key the parameters last specified are used. After
the editor is started the following parameters are in effect:

secondary address 0, cbm, extra, lines per page

72, offset 0

You can change these parameters with [y] . If you press

[y] 9 the following inputs appear:

print: sec. address <number 0-15>

You can set the secondary address with which the text will

be sent to the printer here.

print: cbm or ascii c/a? <key c,a>

If you select [c] for cbm, the text is output in the CBM

character set. With a, the text is output in the ASCII

character set

If you have selected cbm:

136

Abacus Software SUPER C for the C-128/C-64

print:normal subst extra n/s/o?

<key n,s,e>

V. e: The characters of the ASCII character set are

represented using programmable characters on the

Commodore printer. This print mode requires more
time.

s: (subst=substitute) The ASCII characters are replaced

with suitable graphics characters from the Commodore
character set

n: The text is output to the printer without conversion.

If you selected ascii:

print:line feed on y/n? <key y,n>

C[y] causes the editor to send carriage return/line feed
combinations instead of just carriage return which n

produces.

print: epson printer y/n? <key y,n>

With [y] the editor sends the code sequence for the

American character for Epson printers before printing

($lb,$52,$00). With [n], the sequence is not set
The following inputs are common to both types.

print: lines per page <number>

With this input you set the page length. For the American
standard of 11 inch paper, this would be 66 lines per page.

print:offset <number>

V_ This number specifies the number of spaces that the
printing will be indented from the edge of the paper.

The input of the date is again common, independent from

whether you changed the parameters or not

137

Abacus Software SUPER C for the C-128/C-64

print: data <string>

Here you can enter the date which will be printed beneath r~

the text name. If you entered the date before, the editor V

skips this question.

You can stop the printing with [STOP]. It may be that you
have to hold the [STOP] key down longer than usual

before the editor reacts.

c

c

138

Abacus Software SUPER C for the C-128/C-64

3.5 Error messages

C illegal text: The command selected may not be used in
extra text (new, save, load, kill, filename).

overflow: The text storage is full. The function will not
be executed

overflow in line: Hie line became longer than the maximum line
length when replacing. The replacement is

halted.

no target line: The target line lies within a marked text block.

This is not allowed and the input of a target is

not ended.

c

file format error: The loaded file does not have the necessary
text format. The file is probably not a text file

at all. The editor forces the text to the required

format, but information can be lost in the

process.

If a FATAL ERROR occurs in the compiler,

the corresponding error file can generate this

error when it is loaded. No information is lost

if this happens.

last line: You tried to write on the last line or you tried

to move the cursor past the last line.

i/o error: A input/output error occurred or the device
being accessed is not turned on.

139

Abacus Software SUPER C for the C-128/C-64

4. C compiler

The name of the compiler is cc. It is loaded from the master disk

and started like a transient command. The cc belongs to the system

components and will automatically be loaded using the fast-loading

procedure. It makes no difference what disk drive is used

(1541/71). The loading time varies between 10 and 13 seconds.

Note, however, that cc is about 25K long.

4.1 Start without arguments

After the compiler has been loaded, the compiler header appears

along with the message:

source file name:

The name of the source Hie which the compiler is to compile must

be entered here. This input is done without quotation marks and

without spaces in front of the name. A device identifier can be

given in front of the filename. If this is missing, drive a will be

selected as usual.

The following control characters can be used during the input

[DEL] delete the last character

[CLR] erases the entire input field.

[RETURN] ends the input

Next the compiler requests the link file names.

link file name:

If you use the extensions given in Section 1.1.3, such as .c for the

source file name, cc will print the name with . o added as a

suggestion for the link file name so that you only have to press

[RETURN], If you do not want to take the suggestion, because

you want a different name or because the link file is supposed to go

to a different device, you can erase the input with [CLR].

140

c

c

c

Abacus Software SUPER C for the C-128/C-64

After entering the link file, cc expects the input of the error file
name:

error file name:

Here the device identifier of the source file with the name

error. e is given as a default Naturally, you can change this

name or accept it by pressing [RETURN].

The compiler now starts compiling. The source files currently being

processed are displayed in grey type. If an #include file is

ended, a # is printed. The names of functions which cc is

compiling appear in yellow.

Errors are printed by the compiler in red during compilation. The

error messages are also collected in the error file at the same time.

The error file is opened only if an error occurs. This also erases a

previous file by the same name. This error file can be read with the

C-editor and contains other status information from the first error

on so that it should not be hard to trace an error occurring in an

♦include file.

At the conclusion of the compilation cc responds

compiling finished

linkfile (not) available

press x to quit, r to restart

The link file will be available depending on whether an error

occurred or not If it is not available, there will be a file on the disk

with the link file name, but this is only a fragment which contains

only the code up to the error and cannot be linked.

By pressing the [x] you will be returned to the CCP. With [r] the

compiler starts over and is ready to compile another source
program.

All source programs which the compiler needs for compilation must

be on the disks in the designated drives before the input of the error
file name is ended. It is not possible to change disks during the

compilation.

141

Abacus Software SUPER C for the C-128/C-64

4.2 Start with arguments

Arguments from the command line can be passed to the C compiler. ("~
The first three arguments refer to the source, link, and error files:

cc: a:test.c artest.o a:error.e

In this example the compiler is loaded and started with the

arguments. The compiler puts the arguments in place of the inputs

and begins compilation immediately.

You can use this only if you have at least two disk drives or a RAM

disk. Users with only one drive must insert the appropriate

program disk after starting without arguments.

If fewer than three arguments are given, the compiler will ask for

the remaining arguments.

If more than three arguments are given, the compiler will start the

linker. First the program will be compiled as usual. If an error f~
occurs, the usual message will appear. If the compilation was

error-free, the following message appears:

compiling finished

linkfile available

loading linker

The linker will be loaded from the same drive as that the compiler

was loaded.

The fourth argument will be used as the program file name in the

linker. All other arguments apply as link files for the linker. The file

created by the compiler will automatically be specified as the last
link file. The call:

cc a:test.c a:test.o a:error.e attest h:libc.l

first compiles test. c to the file test. o. Then test. o will be ^
linked with the library libc. 1 which is located on the RAM disk.

The linked program file will be called test on drive a. The

transient command cl (Section 1.1.8.8) makes use of this option.

142

c

c

c

Abacus Software SUPER C for the C-128/C-64

4.3 Compiler error messages

The compiler outputs error messages to the screen and to the

specified error file at the same time. This file can be read with the

editor and used to find and correct the errors.

The error file will be opened with the first error and also contains

all status messages which otherwise appear only on the screen.

Behind the error message is the number of the line in the source file

in which the error occurred. Often an error will lead to other errors
which will disappear after the first error is corrected

After the compiler discovers an error, it searches for the next

semicolon or brace and continues compilation at this point. This

naturally causes parts of the program to be skipped, which the

compiler assumes cannot be compiled properly because of the

error. Skipping these sections can lead to other errors.

Some errors cause the compilation to stop because it no longer
seems to be possible. These are called FATAL ERRORS. Such

errors are not put in the error file because output to the error file

may cause new errors (such as bus errors).

Here is a list of all of the compiler error messages:

7FL0PPY ERROR (FATAL ERROR)

• FLOPPY ERROR stands for a disk drive error message. In any

case the compilation will be terminated. The cause of the error

can be determined from the error text The device identifier of

the corresponding device will also be given in the error text

7DEVICE X: NOT PRESENT (FATAL ERROR)

• The output device with device identifier X: is not available.

?ILLEGAL COMMAND

• no preprocessor command recognized

• no string follows #include

?RUN END OF LINE

• Terminatingft character is missing from a string

143

Abacus Software SUPER C for the C-128/C-64

7STRING TOO LONG

• string constant consists of more than 254 characters

• macro definition longer than 254 characters r~

• argument of a macro definition is longer than 254 characters v,

?TOO MANY CONCATS

• More than seven files chained with #include

?EXPECTING IDENTIFIER

• no name follows #ifdef, #ifndef, #define

• parameter of a macro definition is not a name

• a struct, union, or enum name is expected for a

struct/union component whose type is struct,

union, or enum

• names are expected in enum specifier

• a struct, union name is expected for a parameter

declaration with type struct/union

?COND. COMPILE ERROR ^

more than 8 nested conditions f
more than one #else in the #if - #endif

#else without #if, #ifdef, tifndef

#endif without #if...

expression after #if contains an error

the expression evaluation is interrupted through #if. #if is

possible only outside an expression or constant

?RUN END OF FILE

• end of program although preprocessor command #if not

closed with #endif yet

• end of program although the argument of a macro call is still

expected

• declaration was not closed

• block structure still open

7MACR0 EXISTS

• The macro to be defined already exists.

144

c

Abacus Software SUPER C for the C-128/C-64

7STACK OVERFLOW (FATAL ERROR)

• no space for new macros for #define

C* no space for the entry of a new declaration

• recursion by initialization too large (about 40)

• constant buffer overflowed, cannot be emptied

7MACRO NOT DEFINED

• #undef was used on an undefined macro.

?ILLEGAL NOTATION

• improper char constant (not exactly one character)
• More than one decimal point of exponent in a double number

• exponent is incomplete

? ILLEGAL MACRO CALL

• the call requires the specification of arguments

• the call has too many or too few arguments

?ILLEGAL OPERATOR

C* A character was recognized which cannot be evaluated as an

operator (like $, #, @).

7OVERFLOW ERROR

• a double constant which was too large was read

• an enum constant is to large

• overflow during constant evaluation

7DIVISION BY ZERO

• Division by zero in a constant division.

7DECLARATION OVERFLOW

• more than 60 nested arrays or pointers

• more than 60 parameters in a function definition

7EXPECTING SUBSCRIPT

• more than one dimension contains no subscript

• the first dimension does not contain a subscript

?SIZE OVERFLOW

• Object is longer than 32767 characters.

145

Abacus Software SUPER C for the C-128/C-64

7DECLARATI0N SYNTAX ERROR

• If the compiler encounters a block structure after a global

declaration, it cannot evaluate this as a declaration. Since the r

block structure would be recongized as an error only because v~

of a previous error in a declaration, this will be skipped. The

compiler responds with this error to indicate this. If the block

structure were not skipped, a host of secondary errors would

occur.

improper declarator

no name in declarator

no , or ; as the end of a declarator

no type was given for a struct/union component

no } as the end of an enum specifier

neither type nor storage class for parameter definitions or local

declarations

7DECLARATI0N SEMANTIC ERROR

• auto or register as the storage class for a global

declaration

• typedef cannot define functions C
• components or parameters declared as function v—
• an attempt was made to define arrays of functions or to define

functions which return arrays, functions, structures, or variants

• an attempt was made to define a component as a structure or a

variant whose type agrees with that of the struct or union

being defined (recursion)

• declaration of a local function

7IDENTIFIER ALREADY DEFINED

• the name is already declared as extern, local name or as a

type name, struct, union, enum, or component name or

as an enum constant

• the name to be declared already exists, but with a different
declaration

• the names to be defined is already known, but with a different

declaration

7EXCEPTI0N ERROR ^
• This error normally does not occur

146

Abacus Software SUPER C for the C-128/C-64

7IDENTIFIER NOT DEFINED

• name is not defined, although no specifier is given

C# the struct,union name in a component (for

struct/union subdeclaration) is not defined

7DECLARATI0N INCOMPATIBLE

• Name is defined, but is not a struct, union name.

7EXPECTING IDENTIFIER

• Neither a specifier nor a specifier name was given.

7TYPE CONFLICT

no int-convertible type of address in enum

char cannot be initialized with addresses

auto addresses are not allowed as constants

switch expression is not of integral type

general improper type for operator, such as double for %

structures and variants can be combined only with . -> &

C- right operand of • or -> must be a component
• function call without corresponding declaration

7INITIALIZER TOO LONG

• more elements or components were initialized in as array or
structure initialization than are possible

• A string is longer than the char array

?ILLEGAL INITIALIZER

• initializers for functions and variants is not allowed

• initializers for extern declarations are not allowed

7PARAMETER MISMATCH

• the declaration of the parameters does not agree with the order
in the parameter list

• occurs as a secondary error if a parameter declaration is

incorrect

C7TOO MANY STATEMENTS NESTED

• More than 16 instructions (blocks are also instructions) were
nested.

147

Abacus Software SUPER C for the C-128/C-64

?T00 MANY BLOCKS NESTED

• More than 8 blocks were nested.

7STATEMENT SYNTAX ERROR

• occurs as a secondary error from erroneous instructions when a

block is terminated

• no name behind goto

• no ; behind break or continue

• conditions not parenthesized (for if, for, while, switch)

• expressions behind for are not separated by ; (two ; *s are
necessary)

• no while (. .) ; follows do

?LABEL NOT DEFINED

• The name behind goto is not defined as a label.

7EXRESSION SYNTAX ERROR

• general syntax error: incorrect parentheses, multiple constants

or names in a row (if ; was forgotten)

use of a keyword in an expression (only SIZEOF allowed)

improper parenthesization within the CAST declarator

a name which designates no object was used

operator stands alone in front

a : must follow every ?

?ILLEGAL STATEMENT

• break or continue not allowed here.

?TOO MANY CASES

• More than 42 case labels were given within a switch block.

?CASE WITHOUT SWITCH

• Label defined outside a switch block.

7EXPRESSION SEMANTIC ERROR

• Only one CAST per simple expression is allowed.

c

148

Abacus Software SUPER C for the C-128/C-64

7EXPRESSI0N OVERFLOW

• expression consists of more than 63 elements

C» expression consists ofmore than 28 names or constants

♦ CAST storage exceeded

?NO CONSTANT ERROR

• The expression does not return a constant, although this is

required.

7EXPECTING L-VALUE

• the first operand of an assignment is not an lvalue

• the first operand in front of . is not an lvalue

• an lvalue is expected for the unary operators

• ++, — may be used only on lvalues

7EXPECTING ADDRESS

• An address is expected for the unitary * operator.

?NMI INTERRUPT

s- • Generates an interrupt; all files are closed

c

149

Abacus Software SUPER C for the C-128/C-64

5. Linker

The C linker has the task of converting compiled source files, called

link files, into an executable machine language program. With the C

linker you can link up to 10 separately compiled source files into

one program file which contains an executable C program.

The order of the link files is in principle irrelevant As long as you

specify the same link files, the same C programs result You

should, however, give the libraries as the first link files so that they

are the start of the program.

Note that the C linker does not make any declaration checks. You

can, for example, define an object as a structure in one file and

declare it as a function in another. If both objects have the same

name and are available externally, the linker will link references to

both objects without recognizing their different declarations.

All link files which you link must be on the inserted disks during

the linking process. It is not possible to change disks during

linking. You can use the copy command to copy files.

5.1 Start without arguments

For inputs in the linker, the same control characters apply as for the

compiler. The input is ended with [RETURN]. With [DEL] (delete)

you can erase the last input character. The key [CLR] clears the

entire input field.

First you enter the name of the program file in which the linked

program will be stored. A existing file with this name will be

erased.

program file

The filename can be naturally be specified with a device identifier. s~

Now the linker asks for the individual link files which are to be

linked together.

link file libel

150

c

c

c

Abacus Software SUPER C for the C-128/C-64

The name of the standard library libc. 1 is printed as the default

for the first input since this file is usually linked to every program.

In version V3 this default has the device specifier h:, so that the

library will be read from the RAM disk

You can specify a maximum of 10 files. After the tenth name the

linker automatically moves on to the next input If you want to link

fewer than 10 files, you can terminate the link file input by not

entering anything behind link file and just pressing [TRETURN].

You must have at least one link file, however, or the linker will

ignore your attempt to terminate the input

The next input reads:

memory top page $d0

A default value is given for the input of the top of memory and you

can usually accept this default. This input is done in hexadecimal

and requires exactly two digits. In version V2 the default is $d0 and

in V3 it is $e9. The input will be repeated if an incorrect response

was given.

The memory top page designates the first page (page=256 bytes)

which is no longer available for C programs. For V2 and the

default value of $d0, the boundary of the C program memory is
$d000. This means that your C program reaches from $0801 to

$cfff (50K). In the V3 version the memoiy reaches from $lc00 to
$e900(51.25K).

Specification of a memory top page allows you to protect memory

from C programs. You can then use the memory at the memory top

page to $cfff or $e8ff for your own applications, such as common

storage for C programs which are chained and loaded in

succession.

linker option:

(c=ccp/b=basic) c

This linker option is only possible in version V2. The option c

means that your program can be started only from the CCP. The C

program is designated as a C-version. The b option allows your C

program to be started from BASIC.

151

Abacus Software SUPER C for the C-128/C-64

After the parameter input the linker starts to link the files. The linker
announces the individual passes through the link files. If errors
occur, they will be printed in red. s-

The linker can be stopped at any time, even during parameter input,
by pressing the [STOP]+[RESTORE} keys (=NMI).

You then see the message:

nmi interrupt

press x to quit, r to restart

With the [x] key you exit the linker and go back to the CCP. With

[r] you start the linker again. If you enter incorrect parameters,

generate an NMI and select [r] for restart You can then repeat the

parameter input

5.2 Start with arguments

Like the compiler, arguments can also be passed to the linker. The v_

first argument is the program file. All other arguments are link files.
A maximum of 11 arguments are possible.

If the linker receives only one argument, it asks for the input of link
files. If at least two arguments are passed, the linker automatically
starts the link process with the specified arguments. The defaults
are taken for the memory top page and the linker option.

cl a:test a:libel a:libgraph.l a:test.o

This call automatically starts the linking process. The two libraries

are linked with the file test. o to produce the program file test.

c

152

Abacus Software SUPER C for the C-128/C-64

5.3 Error messages

r~ The following messages can occur during the linking:

pass 1/2

The linker is starting the first/second pass through the
link files.

end of pass 1.2

The first/second pass is finished

link file

The linker is reading from the specified link file.

linking finished

The linking ended without error.

linking aborted

The linking cannot be continued because of error.

v_^ incorrect linkage

An error occoured in the linking.

program not available

The program file is not available because of errors. It
was erased.

In addition, the following error messages are possible:

no reference to

The specified name is not defined in any link file.

no clear reference to

The specified name is defined in at least two link files.

no external declaration of ...

CThespecified name is not declared as extern. This

error does not prevent the correct creation of a C

program.

153

Abacus Software SUPER C for the C-128/C-64

no linkfile format

The format of the file read is not right. The file in

question is probably not a link file. f~

overflow in symbol table

The desired link file combination cannot be linked

because the capacity of the available memory for the

extern names is too small.

static variables out of range

The C program does not fit in the available C program

memory because the static variable area exceeds the

memory top page. (The static variable area includes all

static and external variables which are not initialized).

program out of range

The C program does not fit in the available C program

memory,

linkfile incompatible (~
One of the link files is not compatible with the current v-
linker version. This error can occur only if you use link

files which were compiled with other Super C systems.

This is also the case, for example, if you want to link
link files from the V2 compiler with the V3 linker.

device X: not present

The device designated by device identifier X: is not

turned on.

floppy error on X:

An disk error occurred on device X:. The error message

will be printed. This error leads to termination of the

linker.

nmi interrupts

This me

pressed.

This message appears when [STOP]+[RESTORE] are s~

exception error ?

This error does not occur under normal circumstances.

154

Abacus Software SUPER C for the C-128/C-64

6. C programs

^ 6.1 Start
C programs can be linked as C versions or as B versions (V2
only). The C versions can only be started through the CCP. To do

this, enter the program name with the device identifier in the CCP.

In principle C programs are loaded like transient commands. The

program device, for example, is written in C.

B versions can be started under BASIC. To do this, load the
program with the following command:

load "program name"9 8,1

The B version starts itself automatically after loading. B versions

can also be loaded in the CCP. They will destroy the CCP. After

the program ends you will be back in BASIC.

B versions can be created only in V2. The autoexec mechanism,

which makes it possible to load and start a user program after

boot-up, serves as a replacement in V3.

B and C versions run in basically the same environment. This

environment, memory division and usage, will be described in
Section H6.4.

If a C program is ended in the normal manner, that is, the main
block is ended, you will be back in the CCP for the C-version or

BASIC for the B-version. The C program can be restarted only by
loading it again.

One can pass arguments from the command line to C-versions:

a:tester alpha beta

^ In the C program, a parameter list must be defined for the function
main () for the evaluation of these arguments. This is normally

done as follows:

155

Abacus Software SUPER C for the C-128/C-64

main(argc,argv)

int argc;

char *argv[]; r

• • • v.

argc then contains the number of arguments, whereby the

filename is counted as well* argc is therefore at least 1. The first
argument is an array of pointer to the arguments:

argv[0] points to "a:tester"

argv [1] points to "alpha"

argv [2] points to "beta"

argc is equal to 3

A maximum of40 arguments can be passed in V2, or 63 arguments
in V3 (for more information, see n.1.4).

No arguments can be passed to B-versions. The variable argc will

have the value zero. So you can test in the program if a B-version is (
present v-

6.2 Operating modes

Run-time errors can occur while a C program is running. In BASIC

such errors always lead to termination (this can be circumvented in

the new BASIC 7,0). In C you can set whether or not an
interruption will occur with operating modes.

The operating modes are ERRON, ERROFF, NMION, and NMIOFF,

which can all be set with standard functions by the same name.
Combinations of these result in four operating modes:

ERRON + NMION (default)

ERROFF + NMION

ERRON + NMIOFF *
ERROFF + NMIOFF

The question of whether or not a program will be interrupted
depends not only on the operating mode, but also on the error

156

c

c

Abacus Software SUPER C for the C-128/C-64

number of the run-time error (run-time errors and their numbers are
given in the next chapter).

1. Error numbers 1 to 63 are switched off with ERROFF and on

with ERRON, that it, no interruption will occur if ERROFF is

set.

2. Error numbers 64 to 127 are turned off by NMIOFF and on

by NMION.

3. Error numbers 128 to 255 always lead to a termination of the
program.

All occurring errors place the error number in a special register

which the function qerror () can read. If the interruption is

turned off, the program can react to the error itself.

An interruption prints the error text For example:

?division by zero

press x to quit, c to continue,

r to restart

You can get back to the CCP with the [x] key and thereby end the
program.

With [c] the program will be continued as if no interruption

occurred. The number of the error still stands in the error register,

however, so that qerror () functions without problems. If

run-time errors occur when reading data from the screen, the data to

be read may be destroyed by the error message so that the program

does not continue properly when [c] is pressed. Eventually other

errors will occur.

The program is restarted with [r]. Note that all external and static

variables will retain their values unchanged. Initializations arc not
performed. Also, static and external variables will not have their

defined initial value of zero. Open channels will not be closed.

Error number 64 to 127 are manipulated with NMION/OFF. The

name comes from NMI (Non-Maskable Interrupt), which is

generated by pressing [STOP]+[RESTORE]. This generates a

157

Abacas Software SUPER C for the C-128/C-64

run-time errors with number 127 and the text ?nmi interrupt.

You can enable and disable the interruption of a C program by the

NMI. If the program is continued after the interruption with [c], the /-

error register will contain the number 127. If the NMI is disabled v_

with NMIOFF, the error register will not be changed by an attempt

to generate an NMI. You should never interrupt an input or output

operationin a C program with NMI or peculiar effects may occur if

the program is continued

Error numbers 128 to 255 cannot be affected Nor do they lead to a

normal interruption. Only the error message appears. For example:

?stack overflow

and the computer waits for a key press. The program is then ended
This involves an error which makes it impossible for the program

to continue.

If you look at the following list of errors, you will see that not all of
the numbers are used. You have enough room for your own s~

run-time errors, which you can create with the function error (). v_

You can then select by the error number in which operating mode

an interrupt is to be performed. You should, however, keep error

numbers 12 to 32 free for furtuie extensions.

c

158

c

c

c

Abacus Software SUPER C for the C-128/C-64

6.3 Run-time errors

The following error messages are possible in a C program. The

error numbers are given in parentheses. Note the significance of the

error number for the reaction of the program (whether an interrupt

is performed or not).

?too many files (1)

No more than 10 file descriptors can be used at a time.

This error occurs on an attempt to open more than 10 files

at once.

?i/o#2 (2)
This message corresponds to the BASIC error message

FILE OPEN and cannot occur in C because the file

descriptors are not selected by the user.

?illegal filedescriptor (3)

The specified file descriptor is not being used, that is,

either the file has been closed already or it has not been

opened yet

?i/o#4 (4)
This message corresponds to the BASIC error message

FILE NOTFOUND. It can occur in C only is a file is to be

read from cassette. In this case the function open()

searches for this file on the cassette. If open() finds an

EOT mark, this message appears.

?device not present (5)

A device is not reachable on the bus. It is probably turned
off. This message can appear when opening files and when

performing input and output operations.

Note: The message does not occur in the V2 version (because of

an error in the C-64 ROM) if a file is opened on the serial

bus without specifying a name and a read operation is

performed after this. If the addressed device is not present,

the open () function will be executed without the message

?device not present appearing. If a read operation

is performed on this channel, the computer will hang in an

endless loop, which can be ended only with an NMI.

159

Abacus Software SUPER C for the C-I28/C-64

?not input file (6)

This error can occur in C only if a file on tape was opened

with a secondary address other than zero (=write access)

and an attempt was then made to read from the file.

?not output file (7)

This error occurs only if a file is opened on the keyboard
and an attempt was made to write to this file.

?i/o#8 (8)

Corresponds to the BASIC error message MISSING
FILENAME and cannot occur in C.

?i/o#9 (9)

Corresponds to the BASIC error message ILLEGAL

DEVICE NUMBER. In C this error occurs only if the

pointer to the tape buffer is less than $0200 (V2) or $0400

(V3).

?break (10)

This message appears in C only when the [STOP] key is

pressed during a cassette routine. Continuation with [c] is

not recommended

?illegal format (11)

When reading with a scanf function the data read does

not match the expected format

?run eof (12)

The input of a scanf function was ended with an EOF

signal although additional data were expected.

?illegal quantity (13)

An incalculable argument was passed to a mathematical

function. For example, the argument for sqrt and log

must be positive.

?division by zero (33)

An attempt was made to divide by zero. After [c]

(continue), the expression has the value zero.

160

c

Abacus Software SUPER C for the C-128/C-64

?overflow (34)

A double operation exceeded the range. After continue
the expression has the value zero. The overflow is ignoredCuicexpression nas me

for integer operations.

?nmi interrupt (127)

Appears when [STOP]+[RESTORE] is pressed.

?stack overflow (129)

The run-tune stack of the C program exceeds the available

program storage or too much memory was requested by
alloc.

161

Abacus Software SUPER C for the C-128/C-64

6.4 Memory layout

The memory layout is of interest only to those programmers who r~

want to access memory locations directly via pointers. v_

Super C V2

The addreses are all given in hexadecimal

$0000-$03ff Memory for system variables

$0400-$07ff CCP

$0800-$cfff C program storage

$d000-$d7ff I/O range

$d800-$dfff Color RAM

$e000-$e3ff Video RAM

$e400-$ffff Operating system

The C program memory can be shortened in the linker. The

remaining memory is then freely available.

c
Super C V3

The addresses are all given in hexadecimal:

Bank 0

$0000-$03ff Memory for system variables

$0400-$07ff Video RAM

$0800-$lbff CCP

$lc00-$e8ff C program storage

$e900-$ffff RAM disk driver

Bank 1 (2 and 3 for memory expansion)

$0000-$ffff RAM disk storage

The complicated memory management of the C-128 does not allow

the I/O range ($d000-$d7ff) and the two color RAMs ($d8OO-$dfff) r
to the accessed directly. Functions from the C library do make this ^
possible, however.

As with V2, the program storage for C programs can be restricted

in the linker.

162

c

c

Abacus Software SUPER C for the C-128/C-64

7.0 The Library functions

There are several libraries and header files on the system diskette.

The libraries contain pre-programmed link files which you include

in your own C programs. These link files have an extension . 1

(• 1 = library). Header files have an extension . h. They are source

codes that can be inserted into your C programs with #include.

Header files declare library functions or define constants and

macros. There is no need for you to repeatedly define individual
functions. Set them up as a series of definitions in a header Hie and

#include that file in your programs.

The header files and library files available on Super C are:

stdio.h - libc.l and libcs.l

math•h - libmath.1

graphic.h - libgraph.1

ctype.h

stdio. h does the work of two libraries. Both of these libraries

are similar to one another; you'll probably work with libc. 1

most of the time. This library takes up quite a bit of memory due to

the size of the printf and scanf functions. If you have no use

for these functions in your programs, you can use the libcs ♦ 1

library, which excludes print f and scanf.

ctype. h is a header file which contains macro definitions, and

has no corresponding file in the library files.

163

Abacus Software SUPER C for the C-128/C-64

7.1 Standard C Libraries

stdio . h is the name of the standard library header file (see

Appendix for a listing of this file), stdio.h contains the

following constants set by #define besides those found in

libel andlibcs.l.

STD10 as file descriptor for the standard input/output

null as 0

CR as carriage return $0d

CRSUP as code for cursor up

CRSDOWN as code for cursor down

CRSRIGHT as code for cursor right

CRSLEFT as code for cursor left

HOME as code for cursor home

CLR as code for clear home

REVERSON as code for RVS

reversoff as code for RVS off

NIL as 0, pointer to nothing

EMPTY as an empty string

The getchar () function is also defined in stdio. h. This

function returns a character (type char) which is read from the
standard input It will wait for a keypress unequal to zero.

To give you a better understanding of the standard functions, here

are descriptions of these functions.

e

c

c

164

c

c

Abacus Software SUPER C for the C-128/C-64

7.1.1 erronO, erroff(), nimon(), nimoff(),

qerrorO, error(), exit()

void erron()

The operating mode ERRON is enabled with erron, which has
the effect that run-time errors with numbers 1-63 create an

interruption (see Sec. 6 - C programs). The operating mode

ERRON is the initial mode.

void erroff()

Enables the operating mode ERROFF. This has the effect that

run-time errors with numbers 1-63 are masked, that it, no
interruption is made. The only result is that the number of the error
is placed in the run-time error register.

void nmion()

The operating mode NMION is enabled. All run-time errors with

numbers from 64 to 127 and the NMI itself [STOP+RESTORE]

lead to interruptions. This is the initial mode (see also Sec. 6 C

programs).

void nmioff()

The operating mode NMIOFF is enabled. All run-time errors with

numbers from 64 to 127 and the NMI itself are masked, meaning

that no interruption occurs. The run-time errors 64-127 are only

placed in the error register of the run-time system. An attempt to
issue an NMI [STOP+RESTORE] during NMIOFF does not

change the error register.

int qerror()

Returns the value of the error register of the run-time system. This

contains the number of the last run-time error encountered, even if

this error caused an interruption and the program was continued
with c. After calling the qerror function the error register is zero.

You can also use this function to set the error register to zero.

165

Abacus Software SUPER C for the C-128/C-64

void error(string, fnr)

char *string;

int fnr; r~

string is the pointer to some error text, fnr is the associated

error number

The error function creates a run-time error whereby the given error

number and enabled operating mode determine whether an

interruption will be created or only the error register will be loaded,

(see Section 6)

void exit()

exit () ends the C program and closes all of the open files. As

soon as the user presses a key, exit () returns to the CCP or to

BASIC.

7.1.2 open(), close() f~

All of the following input/output functions can trigger runtime

errors (which can be suppressed with ERROFF). The error register

is changed in any case. Most functions present additional results in

an error state.

file open (prim, sec, name[,buffer])

int prim, sec-

char *name;

This function opens a file with a device address of prim, (device
number, rather than device identifier), a secondary address of sec

and a filename of name. Filenames can have up to 255 characters.

If no filename is sent, an empty string must be given.

The secondary address states the operating mode of the device

being used (e.g. 15 for the disk error and command channel). r~

The function opens a file with the given parameters, open ()

returns a file descriptor as the result This corresponds to the logical

file number in BASIC. The file descriptor has the type file in

166

c

c

c

Abacus Software SUPER C for the C-128/C-64

stdio. h. Since the file descriptor of an opened file is required

for all further operations, it must be stored in a variable of type file.

file id;

fd=open(8,2,"testfile,s,r");

These commands are similar to the BASIC command:

OPEN fd,8,2,"testfile,sfr"

You must give the logical file number in BASIC, while in C, the

open function looks for a free file number. If you are not

aquainted with the open command in BASIC, see your manual for

a detailed description.

When an error occurs open () returns the file descriptor of 0 or

STDIO. This will be the case in any standard i/o errors. All file

descriptors normally given by open () are unequal to 0.

The argument put into brackets is the above example is optional,

and is necessary only when the device number is 1 or 2. Device 1

opens a cassette file and the address of the cassette buffer must be

present in the argument buffer. This buffer memory must be at

least 192 bytes long. Super C version V3 must put this area

between $1COO and $C000. Version V2 must have the cassette

buffer between $0800 and $D0O0.

Device 2 is used for the RS-232 interface. The given buffer must be

512 bytes long. Here is an example for 300 baud, 3-wire

handshake, full duplex and no parity.

fd=open(2,0,"\6\200",buf);

Most of the time the argument buffer can be omitted.

file close(fd);

file fd;

This function closes a file and therefore must be given the file

descriptor of the file. If this result is zero, an error has occurred.

167

Abacus Software SUPER C for the C-128/C-64

7.1.3 putc(), fputc(), getc(), fgetc()

int putc(c,fd)

char c; file fd;

int fputc(c,fd)

char c; file fd;

Both of these functions arc essentially the same. The c character is

output with the file descriptor fd. The result returned will be 1 in
normal circumstances, or 0 in an error state.

char getc(c,fd)

file fd;

char fgetc(c,fd)

chare; file fd;

Both of these functions are essentially the same; they read a

character from a file. If the file descriptor is equal to 0 or STD10,
no cursor appears. The value is M)1 when no key is pressed, and a
value corresponding to the keyprcss is returned. Errors return a -1.

7.1.4 getchar(), putchar()

char getchar();

int putchar(c)

char c;

These functions work like getc and putc. They let you work

with both the keyboard and screen, getchar waits for a keypress,

getchar is defined in stdio .h, putchar is a parameter
macro.

c

168

c

c

Abacus Software SUPER C for the C-128/C-64

7.1.5 getsO, fgetsO, putsO, fputs()

char *gets(line,n)

char *line; int n;

char *fgets(line,n,fd)

char *line; int n;

file fd;

These functions read in a string, gets reads from the keyboard

(cursor visible), fgets reads from the given file. It reads

characters until it reads a • \0 • or • \n'. The string read will be

stored at the line address and a ' \0 ■ will be at the end of the

line [n] area, along with the ■ \nf character. The result will be

returned in the address line.

int puts(line)

char *line;

int fputsdine, fd)

char *line; file fd;

Both functions output a string until a closing f \0 • (note: the ■ \0f

is not output), puts writes to the screen, fputs to a file. The
result returned is the number of characters actually handled.

7.16 fgetf(), fputf()

int fputf (line,n,fd)

char *line; int n;

file fd;

This function writes n characters from the address line into the

appropriate file, without regard for the f \0f character. The result
returned is the number of characters actually written.

169

Abacus Software SUPER C for the C-128/C-64

int fgetf(line,n,fd)

char *line; int n;

file fd; s~

This function reads up to n characters from the file in memory at

the address line. Thus, the result returned is the number of

characters actually read. This can be n in an error state, or when an

EOF is found.

EOF can usually be read by all get functions. When EOF occurs

during reading, the variable is unequal to zero, otherwise equal to
zero.

The ST variable can be used here as in BASIC (see your computer
manual).

Both version are defined in stdio. h.

7.1.7 fopen(), fclose() C

file fopen(name, mode)

char *name, *mode;

This function opens a file on the disk. The first argument points to

the filename with device identifier, mode points to a string which
can have the following contents:

11 r" for reading a file

"w" for writing a file
«7

a" for appending data to an existing file

The opened files always refer to the type SEQ. If you want to

process files of type PRG or USR, add , p or , u to mode.

fopen("b:test","rfu"); r

opens the USR file test on device b for reading.

As with open, the file descriptor returned as a result must be stored.

170

Abacus Software SUPER C for the C-128/C-64

The secondary address, which specifies the disk channel, is equal
to the file descriptor. This is important if you want to open

s additional channels to a disk with open.

file fclose(fd)

file fd;

This function is identical to close (). It serves only to achieve a
certain compatibility with UNIX.

7.1.8 strlen(), strcmp(), strncmpO

int strlen(str)

char *str;

The function returns the length of the string to which str points.

The ' \0f character is not counted, that is:

C str[strlen(str)]=='\0f.

int strcmp(strl, str2)

char *strl,*str2;

The two strings are compared lexically. The result returned:

-1 for strl<str2

0 for strl=str2

1 for strl>str2

int strncmp(strlfstr2fn)

char *strl,*str2;

int n;

This function works like strcmp. At most n characters are
~ compared with each other.

171

Abacus Software SUPER C for the C-128/C-64

7.1.9 strcat()> strncatO, strcpyO, strncpyO

char *strcat(strl,str2) f~

char *strl,*str2; ^~

The string str2 will be appended to the string strl. The string

strl must have enough free memory space for this, strl will be

returned as the result.

char *strncat(strl,str2,n)

char *strl,*str2;

int n;

This function works like strcat, but it appends a maximum ofn

characters of str2 to strl.

char *strcpy(strl,str2)

char *strl,*str2;

The string str2 will be copied into the string strl. The ending (_ \
zero is not copied along. This means that if str2 is shorter than

strl, that str2 will overwrite only the first characters of strl.

If str2 is longer, the string may not have a terminating zero any

more. In Super C this is recognized and a terminating zero is

added. This is an extension, however, which cannot be expected of
other systems.

The result is the address of strl.

char *strncpy(strl,str2,n)

char *strl,*str2;

int n;

This function copies like strcpy, but a maximum of only n

characters of str2 will be copied. s~

172

Abacus Software SUPER C for the C-128/C-64

7.1.10 strchr(), strrchrO

f~ char *strchr(str,c)
char *str; char c;

The function searches in the string str for the character c. The

search starts from the beginning. If the character is found in the

string, st rchr returns the address of the first occurrence of the

character. If the character is not found, the pointer NIL will be
returned

char *strrchr(str,c)

char *str; char c;

This function searches for the specified character like strchr. The

search begins at the end of the string, however, and proceeds

toward the front

Clf the character does not occur in the string or occurs only once,

both functions return the same value.

7.1.11 cursor(), exec()

void cursor(line,pos)

int line,pos;

The cursor is set to the line given by line and the column given

by pos on the current screen.

void exec(string)

char *string;

This function ends the C program and executes the CCP commands

contained in string. This allows resident commands of the CCP to

/- be called, though this is not particularly useful.

You can, however, load a new C program with this command and

start it The arguments for this are passed in string.

One example would by a menu program in C:

173

Abacus Software SUPER C for the C-128/C-64

#include "stdio.h"

main()

< r
int i; V_
while ()

{ printf("l. testerl\nn);

printf("2. testprg2\nw);

printf("3. END\n);

scanf (tf%dn,&i) ;

switch(i)

{case 1: exec("a:tester1 argO argl");

case 2: exec (tfa:testprg2 argO11);

case 3: exec("");

Every user program could end with the line exec ("a: menu"),
which would reload the menu program.

If you want to pass more than arguments to the loaded programs, v_

you must set the memory top page down when linking the

individual programs. You can then use the resulting area as a
common data pool. The access must be done via pointers.

7.1.12 cmove(),move()

void cmove(target,n,source)

char *target;

int n;

char *source;

The function moves n bytes starting with the memory location

source to the memory location target Overlappings are checked

This function can, for example, be used for assigning complex
types:

char s [100],t[100];

• • •

cmove(s,sizeof(t),t);

174

c

c

c

Abacus Software SUPER C for the C-128/C-64

In this example, the array t is assigned to the array s.

void move (target,n, source,mem)

char *target; int n;

char source; int mem;

The function move is available only under V2. It works like

CMOVE, but you can in addition set the memory configuration.

This configuration corresponds to the processor port in the C-64.
You can find the significance of these bits in the appropriate
literature.

mem=52 means, for example, that the memory layout of 64K RAM

is enabled during the copy. This allows you to change character

sets in V2 which are located at $dOOO-$dfff. mem=53 is the

memory layout during the C program. The move routine should be

fairly close to the start of the memory (link libraries first). If the

function itself becomes covered by ROM through the memory
switch, the computer will hang up.

7.1.13 alloc(), free()

char *alloc(size)

int size;

alloc () prepares memory space for objects. These objects do not

have names and can be accessed only via pointer values. They

serve, for example, for list management or as temporary storage.

The length of the required object is passed as the argument.

alloc () returns as the result the pointer value to the object This

pointer value is defined as a pointer to char, if other types are

required, the address must be converted by means of a CAST to
another type.

The argument size may have only positive values from 0 to 32767,

or an ?overflow error will result. If larger objects are

required, two alloc () calls are necessary, whereby the second

call returns the base address of the entire object.

175

Abacas Software SUPER C for the C-128/C-64

If not enough space is available for an object, a ?stack

overflow error will be displayed. Remember that the

alloc () function limits the storage for the C stack. This stack

contains local variables and data for function calls.

char *free(size)

int size;

free () represents the reverse function of alloc (). It releases

objects defined with alloc (). Objects must be released in the
reverse order in which they where generated. The argument size

may not be larger than 32767 or the run-time error ?overflow

error will be created.

7.1.14 settimeO, gettime()

c

char *settime(string)

char *string

The function expects a string in the form "HH:MM:SS" where HH

are the hours, MM the minutes, and SS the seconds of the clock time

to be set

The function sets the internal clock to the given time and then reads
the clock time again. It returns an address to the read time (see

gettime).

char *gettime()

The function reads the time of the built-in clock. It returns an

address to a string in which the time is stored.

The string has the following format:

":HH:MM:SS.S" r~

HH signify the hours, MM the minutes, and SS. s the seconds. The

resolution amounts to one tenth of a second. This string can be read

with the function sscanf, for instance.

176

Abacus Software SUPER C for the C-128/C-64

sscanf (gettimeO , n%d:%d:%dn,&h, &m, &s) ;

Ch, m, and s contain the hours, minutes, and seconds. If you want

to read the tenths as well, you must change the last %d to%lf and

declare s as double.

7.1.15 keys()

int keys(string)

char *string;

This function places the characters of the string into the keyboard

buffer. This can be used to provided defaults for screen inputs, for
example.

keys () returns the number of characters which were put in the

keyboard buffer.

7.1.16 call()

long call(p)

char *p;

The function calls a machine language program at location p. The

call is done as a subroutine. The instruction RTS causes a jump
back to C.

Additional arguments can be passed to the function. The memory

location $20,$21 of the zero page contain a pointer to the start of
these arguments.

Memory locations $20 to $30 may be used during the assembly
language program.

A result of the function may be placed in memory locations $42 to

$45. This is a long value. The value must be stored with the
lowest-order byte first

177

Abacas Software SUPER C for the C-128/C-64

The only possibility for placing an assembly-language program is
in the area in the C program storage which the linker creates by
limiting the program storage area.

This function should be used only by those familiar with assembly
and machine language.

7.1.17 fastO, slow() (V3 only)

void fast ()

void slow()

These functions switch to the FAST or SLOW mode of the C-128.
The processor clock is set to either 2MHz or 1MHz. You can find

more under the CCP commands of the same names. These

functions are not available in V2.

7.1.18 window() (V3 only) f

void window(lcol,tline,rcol,bline)

int lcol,tline,rcol,bline;

The screen area of the standard output will be set to the given

window, lcol means the left column, tline the top line, rcol

the right column, and bline the bottom line of the window. The

line numbers run from 0 to 24 and the column numbers from 0 to
39 or 79.

The window area will be set back to the whole screen by
pressing [HOME] twice.

7.1.19 vdcin(), vdcout() (V3 only)

char vdcin(reg) C
int reg;

The register reg of the VDC chip will be read and returned as the

result The function takes care of the appropriate handshake.

178

c

c

c

Abacus Software SUPER C for the C-128/C-64

You can find more about the registers of the VDC chip in the
appropriate literature, such as the book C-128 Internals by Abacus.

void vdcout(reg,c)

int reg/ char c;

This function writes register reg of the VDC chip with the

character c. The function takes care of the appropriate handshake.

7.1,20 io\in(), io\out() (V3 only)

void io\out(adr, val [,colram])

char *adr; char val;

[int colram;]

char io\in(adr [fcolram])

char *adr;

[int colram;]

A memory location in the I/O range ($dOOO-$dfff) is selected with

adr. The memory location is written with the value val with

io\out (). With io\in () the contents of the memory location
are read and returned as the result.

If the area $d800 to $dfff is selected (color RAM), the argument

colram must be specified in addition. This selects between the

two color RAMs in the C-128. If colram is 0, the color RAM for

text display is selected, else the color RAM for graphics will be

selected if colram is 1.

7.1.21 is80()

int is80()

This function returns 1 if the current screen is the 80-column
monitor, else a 0 is returned.

179

Abacus Software SUPER C for the C-128/C-64

7.1.22 Formatted output

void printf (control/ argl, ..., argn) /-~

char *control; V_

• • • •

t /* */ }

void fprintf(fd, control, argl, ..., argn)

file fd;

char *control;

• • • •

{ /* */ }

void sprintf(string, control/ arglf ...,argn)

char *stringf *control;

• • • •

{ /* */ }

These three functions can be used for formatted output. The

function printf () prints to the standard output (screen), *~

fprintf () to the file fd, and sprintf prints to the string V_

string. If you select fd=O with fprintf (), you have the same

function as printf ().

The formatted output is controlled by the character string control,

control consists of normal characters which are printed without

change, and format instructions which control the conversion of the

arguments argl, . . ., argn. The printf function uses the

string control in order to interpret the arguments following it If
fewer arguments are provided than format instructions in control,

or the data types of the format instructions do not agree with those

of the parameters passed, the printf function outputs nonsense.

Each format instruction starts with the % character and ends with a

character which designates the conversion. The following may be

used:

A minus sign, which directs the converted argument to be left _

justified.

180

c

c

c

Abacus Software SUPER C for the C-128/C-64

A decimal digit string, which indicates the minimum field

width. If this is absent, the default value 0 is used. If the
converted argument is shorter than the minimum field width, it

is padded with blanks. If this string of digits starts with a 0, the

remaining positions up to the minimum field width are filled

with zeros (0) instead of spaces. This padding is performed

such that the output is right or left justified as specified.

A period, which precedes another string of digits.

A string of digits, which indicates the maximum number of

digits which will be output, or which sets the number of places

after the decimal for the conversions e and f. If this number

and the period are missing, the default value 6 will be used and

the length of the argument to be converted for all other

conversions will be supplemented by this amount (conversions

d, o, x, u, c, s). A digit string is expected if the period is

entered. 0 will be assumed if this is missing.

The letter 1, which designates the corresponding argument as

long (concerns the conversions d, o, x, and u).

Each of the above specifications is optional. The number inputs

are converted modulo 256. At most the first 254 characters of a

string can be printed with theprintf function. The output

of a format instruction may not comprise more than 255

characters or incorrect results will be obtained.

The following characters control the conversion:

d The argument is represented as a signed decimal number.

The argument must be of type int, or of type long if

an 1 is contained in the format instruction.

u The argument is represented in decimal without a sign.

The type of the argument must be unsigned int or

unsigned long if an 1 appears in the format instruction.

o The argument is represented as an octal number without

sign or leading zero. The type of the argument is the

same as that for u.

181

Abacus Software SUPER C for the C-128/C-64

x The argument is represented in hexadecimal without sign

and without leading Ox. The type of the argument is the

same as that for u.

c The argument is represented as a single character. The ^
type of the argument must be char.

s The argument is represented as a character string. The

type of the argument must be char * (pointer to

char).

e The argument must be of type float or double and

is output in decimal in the following format

[-]m.nnnnnnE[+-]xx

With tins conversion the second string of digits in the

format instruction represent the number of places after

the decimal. The default is 6 places.

f The argument must be of type float or double and (_
is output in decimal in the following format

[-]mmm.nnnnnn

The second string of digits determines the number of

places after the decimal. The default here is six. If more

places after the decimal are specified than the number of

significant digits present, the following digits become

zero (this also applies to the conversion with e).

g The argument must be float or double. The
conversion is made as per f or e, whichever of the two

is shorter. The representation is selected so that only the

significant digits are shown. If both conversions are the

same length, e is chosen.

c

182

Abacus Software SUPER C for the C-128/C-64

If the conversion character is not one of those found above, the
character itself is output The % character can be printed with %%.

Example 1:

double dbl=3.456E+l;

printf (n0f\n%e\n%12g\n%12.1f\n%-012.2e\nM,

dbl, dbl, dbl, -dbl, dbl

The following output appears on the screen:

34.560000

3.456E+01

34.56

-34.6

3.46000E+01

Example 2:

C static char s[9]="Example";

printf(":%s:\n:%9s:\n:%.5s:\n:%9•5s:

\n:-9.5s\n"f 3,8,3,8,8);

The following output appears on the screen:

:Example:

: Example:

:Examp:

: Examp:

:Example :

c

183

Abacus Software SUPER C for the C-128/C-64

7.1.23 Formatted input

int scanf (controlf argl, arg2 . . .)

char *control;

• • •

{ /* ... */

int sscanf(string, control, argl, arg2•..)

char *string;

char ^control;

'{ /* ... */

int fscanf(fd, control, argl, arg2...)

file fd;

char *control;

"i /*...*/ r
> L

These three functions make formatted input of data possible. The

function scanf () reads from the keyboard (standard input),

sscanf () from a character string, and fscanf () from a file.

A control string is passed as an argument to all three functions. The

input is interpreted by means of this control string.

The scanf function requires additional arguments in order to store

the data read in. These arguments are all pointer values which must

point to objects in which the data read can be stored

The following characters may be in a control string:

Spaces and line separators, which will be skipped

Other characters (except for %) which arc then expected in the _
input (after an arbitrary number of spaces or line separators)

Format elements which begin with the % character. A *

character and/or a string of digits and the format character

184

c

c

Abacus Software SUPER C for the C-128/C-64

which indicates the type of the data read in eventually

follows them.

A format element determines the interpretation of the input and the

type of the object to which the input is to be assigned. A pointer to

die object must follow control as an argument. If the format

element contains a * character, the assignment is suppressed and

no pointer argument is required.

An field is defined as a sequence of characters which contains no

blanks. An input field extends to the next blank or to the optional

field width given by the digit string, or to the character which no

longer fits the given format

The following format characters are possible:

d An integer decimal number is expected as input A pointer to

int should be given as an argument.

h liked

o An octal integer is expected as input. The argument should

be an int pointer. The digits 8 and 9 are interpreted as

octal 10 and 11. The octal number is read with or

without leading zero.

x A hexadecimal number is expected as input (with or without

leading Ox). An int pointer should be passed as an

argument

c A single character is read as input and a pointer to char is

expected as argument. In this case the next input character

is assigned, even blanks. If a digit string comes

before die c, the next spaces are read as with the other

format elements.

s A string of characters is read in. More information can be

found in the next section, 7.1.23.1.

e A decimal floating-point number is read as input. The

argument should be pointer to float A decimal point as

well as an exponent may be present in the input. The

185

Abacas Software SUPER C for the C-128/C-64

exponent consists of the character E or e, an option sign,
and a string of digits.

f likee Q

The letter I may stand before the conversion characters d, o, or x,
in order to show that the corresponding pointer argument points to

a long object. Before e and f the letter 1 indicates that the pointer

type is double.

If a conversion is interrupted by a character which can not be

interpreted, it is applied to the next field. Such a character is lost if

no further input field is required in one call of scan£ or

fscanf. This is because the input and output in operating

system of the C-64 are not buffered

Example: int x;

float d;

double e;

scanf (lf%o%e%le"f &x, &d,&e) ; s~

The cursor appears and you enter

44,123 2.5

The following data is assigned:

36 is placed in x,

0.123 is placed in d,
2.5 is placed in e

If you enter the same input with only the following evaluation:

scanf ("%dlf,&x) /

the decimal point is lost as a separator, (scanf differs from the
normal standard functions in this regard). •-

If an input from the keyboard is not completely evaluated, the
remainder of the input is lost and printing is done to the screen.

Because the standard input does not send an EOF signal, the input

186

c

c

Abacus Software SUPER C for the C-128/C-64

is repeated until all arguments are served. The sscanf function
creates an EOF signal if it encounters the end of the input string.

The scanf functions return the number of correctly-read data as
the result

7.1.23.1 Reading strings

The reading of a string is done at the start of the next input field

The reading is not interrupted by blanks. The number of characters
read in is determined by the field width given, but does not go

beyond an EOF signal. In addition, the leading can be interrupted

by a boundary character. This boundary character is normally

assigned the code for RETURN. As a general rule, the string is
read only up to a RETURN character. The boundary character

always belongs to the string read.

The boundary character can be determined by the user. A. (period)

character must appear in front of the s and then the boundary
character.

Caution is recommended when reading strings from the standard

input without specifying a field limit Since the standard input does
not send an EOF signal, the input is stopped only by the boundary
character.

7.1.23.2 Error messages

If the input is ended by an EOF signal although the scanf

function expects more data, the error ?RUN EOF (10) is given. The

error message 7ILLEGAL FORMAT (11) is generated if a certain

character was expected in the input but a different character was

read instead. This also applies for the input of numbers. At least

one digit must be present for these.

187

Abacus Software SUPER C for the C-128/C-64

7.1.23.3 sscanf and fscanf

The function sscanf reads the input from a string. Another /"~ ')

argument is passed before the control string, namely the input v-
string.

The function fscanf reads from a file. A file descriptor
originating from the opening of the appropriate tile must be
additionally passed as an argument

A good example is reading the error message from the disk:

int flff2,f3;

char ft[30]/

file floppy=open(8,15,EMPTY);

fscanf (floppy, "%d, % ., s%d, %dfl, &flf ft, &f2, &f3) /

fscanf reads from the error channel. First, a decimal number is

stored in fl. Then a comma must follow in the input, or an illegal /^

format error will result. A string is then read and stored in ft. The ^-
string is interrupted at the first comma. Then two int numbers are
read.

If the error messages reads, for example,

65, NO BLOCK, 10, 14

the following assignments will be made:

fl=65;

ft="NO BLOCK,";

f2=10;

f3=14;

c

188

c

c

Abacas Software SUPER C for the C-128/C-64

7.2 The graphics library

The graphics functions of Super C create four-color graphics on the

40-column monitor with a resolution of 160x200 points. Each of
the four colors can be chosen from a palette of 16 colors. A point

can have one of four conditions. These conditions are called color
classes. You can assign each color class its own color with a

corresponding function. The color class zero has a special

significance; it is the color class which corresponds to the
background color of the screen. Points of this color cannot be seen.

You must therefore distinguish between color and color class. If

you change the color of a color class, all points in the graphic

which possess this color class will change.

A color class is of type int, whereby one of the lowest two bits

are relevant (0-3). This allows the four color classes to be

distinguished. A color is of type int, whereby only the lowest

four bits are relevant (0-15). This allows 16 colors to be displayed.

You do not need to pass the color number to the corresponding

function, however. In graphic.h there are macros defined

whose names correspond to the available colors. These macros will
then be replaced by the corresponding color number in the C
program:

#define black 0

Idefine white 1

* • •

#define lgrey 15

In addition, the external declarations of the graphics functions and

some system variables for the graphics are made in graphic. h.

If you want to use the graphic functions in a C program, insert this

with the following instruction in your source text:

♦include "graphic.h"

Remember that this filename may have a device identifier. For users

of Super C V3, this will usually be h: because this file is found on

the RAM disk after boot-up.

189

Abacus Software SUPER C for the C-128/C-64

When linking the compiled program, you must then link the

graphics library libgraph. 1 as well.

The possible points of the graphic screen are addressed through a

Cartesian coordinate system. The coordinates are of type int. The
visible drawing plane is a rectangle bounded by the points (0,0) and

(159,199). The lower left screen point is the point (0,0), the right
upper (159,199). In all functions you can also specify points which

lie outside the drawing surface. The effect of the function is then
partially visible at best. Points which lie outside the drawing plane

always have color class zero (background) when read. Write

accesses to points outside the drawing plane will be ignored

Graphics and text are independent of each other. This means that
you can display text on the 40-column screen while you construct a

graphic, or vice versa. Only the background and border colors are
die same for text and graphics (color RAMs are different).

7.2.1 graphicO* graphon(), graphoffO, r

isgraphO ^~

void graphicO

With this function, which requires no arguments and does not

return anything, you can allocate the memory space required for

graphics. This memory space goes from the upper end of the C

program storage on. The exact length is determined by the

architecture of the video chip. If there is not enough space for the

graphics because your C program is too long, the error ?stack

overflow will be printed

As you may already know, you can request memory with the

function aHoc (). This memory is taken from the upper end of

the C storage down. The function graphic () does not take into
account whether you have already allocated memory with

alloc () or not, because the graphic memory can lie only an one C
specific location. v~

In order to eliminate complications, you should call graphic () at

the start of the C program and then allocate the required memory

190

Abacus Software SUPER C for the C-128/C-64

space. Since the graphics also use alloc () indirectly to allocate
the memory, you can also release the graphic storage with the

r free() function.

void graphon()

The graphics mode on the 40-column monitor is enabled.

void graphoff ()

This function is the opposite of graphon (). The graphics mode
is switched off and the text mode is enabled.

int isgraph()

isgraph () returns 1 (true) is the graphics mode is currently

enabled. If the text mode is enables, isgraph () returns 0 (false).

{ 7.2.2 backgr(), clrmapO, colors(), setcol()

void backgr(colexf colbk)

int colexfcolbk;

This function is the same in text and graphics modes. With it the

border and background color (color class 0) can be set (40-column

screen only). The two arguments colex and colbk are colors,

this means you can use the macros defined in graphic. h for the

colors or pass the appropriate code.

backgr(dgrey, black);

would set a dark grey border and a black background. The

argument colbk is the color of color class 0.

f- void clrmap(cnr)

[^ int cnr;

clrmap () clears the graphic storage. A color class with which the

graphic memory will be filled can be passed as an argument.

Normally one uses the value 0 for the background color class.

191

Abacas Software SUPER C for the C-128/C-64

void colors(coll, col2, col3)

int coll,col2,col3;

With this function you set the three foreground colors. The

arguments are color values. You can therefore use the color macros

or specify the corresponding number. The three arguments

determine the colors of color classes 1 to 3.

colors(red, green, blue);

assigns red to the color class 1, green to color class 2, and the color

blue to color class 3. All points in the graphic which are stored in

one of the color classes change their color.

void setcol(cnr)

int cnr;

Here the color class in which most of the graphics functions draw

can be set If you specify the color class 0 here, it means that points
will be set in the color of the background, which amounts to

erasing them.

7.2.3 dot(), dotin(), bdot()

void dot(x,y)

int x,y;

With dot () you can set the individual points of the graphic. The

color class of the points is set by setcol (). You can erase points

by first selecting the color class 0 with setcol (). If the point lies

outside the drawing surface, dot () has no effect

int dotin(x,y)

int x,y;

dot in () is the reverse of dot (). dot in () returns the color

class of the point (x,y). If the point lies outside the drawing area, 0

will be returned.

192

V.

Abacus Software SUPER C for the C-128/C-64

int bdot(x,y)

int x,y;

bdot () has almost the same effect as dot (). The point will only
be set, however, if the point previously had the color class 0, the

background color, bdot () returns the color class of the point

(x,y) before it was overwritten. With the help of dot () and

dotin () one could rewrite bdot () in the following manner

int bdot(x,y)

int x,y;

{
int z;

if ((z=dotin(xfy))=0)

{ dot(x,y);

return 0;

}
return z;

The effect of bdot () is this: An object which you draw with

bdot () can be seen wherever there was previously background in

the graphic. This creates the impression that the object was drawn

behind the foreground.

c

193

Abacus Software SUPER C for the C-128/C-64

An example:

finclude "stdio.h"

#include "graphic.h"

main()

{ int i,j;

graphic(); graphon();

clrmap(O)/ colors(red, green, blue);

setcol(l);

for (i=80; i<=110; ++i)

for (j«80; j<=110; ++j)

dot(if j);

setcol (2)/

for (i=70; i<=140; ++i)

for (j=85; j<=130;

bdot(if j);

getchar ();

First a red rectangle is drawn and then a green one. The green

rectangle would cover the red, but it will be drawn with bdot (),

creating the impression that the green rectangle was drawn behind
the red one.

c

194

Abacus Software SUPER C for the C-128/C-64

7.2.4 line(), blineQ, mlineQ, olineQ

r void Iine(xl,yl,x2,y2)

int xl,yl,x2,y2;

With this function you can draw lines in the current color class. The

line begins at the point (xl,y 1) and ends at the point (x2,y2). One
or both of the points can lie outside of the drawing surface. The line

is then only partially visible. If the line is drawn in color class 0, all

points which lie on the line will be erased.

void bline(xl,yl,x2,y2)

int xl,yl,x2,y2;

bline (> works like bdot (). The line will be drawn from
(xl,y 1) to (x2,y2), but only the points which previously lay in the

background.

The example program of bdot () can be formulated with line ()

C andblineO as follows:

tinclude "stdio.h"

#include "graphic.hlf

main ()

{
int i;

graphic(); graphon()/

clrmap(O); colors (redf green, blue)/

setcol(l)/

for (i=80; i<=110;

line(1,80,1,110);

setcol(2);

for (i=70; i<=140;

bline(i,85,i,130);

getchar()/

c >
char *mline(xl,ylfx2,y2,put)

int xl,ylfx2,y2;

char *put;

195

Abacus Software SUPER C for the C-128/C-64

First mline () has the same function as line () -it (haws a line

from (xl,y 1) to (x2,y2). In addition, all of the overwritten points

are placed in memory at the location put The color class of the r~

points is stored. Since a point can have four different color classes, v

you need 2 bits of storage per point The memory required for the
entire line can be calculated so:

if <(dx=xl-x2)<0) dx=-dx;

if ((dy=yl-y2)<0) dy=-dy;

if (dx<dy) dx=dy;

memavail=((dx+1)*2+6)/8;

You can get the memory space for such lines in three ways. You

can declare appropriate objects which can store such lines. You can

allocate the memory space dynamically with aHoc (). The third

possibility is to use unused graphic memory. In all cases you must
be sure that the memory area actually suffices for storing the line.

We will go into the unused graphic memory later.

mline () returns a pointer which points behind the memory in /"~

which the overwritten line points were stored. In contiguous ^-~
memory the result of mline () can serve as the put argument for

another call.

char *oline(xlfyl,x2,y2,get)

int xlfyl,x2,y2;

char *get;

The function oline () is the opposite of mline (). get must

point to memory in which a line was stored with mline ().

oline () draws the stored line on the screen. The coordinates

should be the same as they were when calling mline () or the

result will not make much sense.

oline () returns an address to the end of the memory area of the

line.

Here is a small example for mline () and oline () . The

following function draws a line from a set starting point (xl,yl).

You can move the end point across the screen with the help of the

cursor keys.

196

Abacus Software SUPER C for the C-128/C-64

drawline (xl, yl)

int xl,yl;

C { int x2,y2;
^- char buffer[100];

x2=y2=0;

setcol(3);

mline(xlfyl,x2,y2,buffer);

while ((c=getchar())!='\n')

{ oline(xl,yl,x2,y2,buffer);

switch(x)

{ case CRSUP: y2+=10; break;

case CRSDOWN: y2-=10; break;

case CRSRIGHT: x2+=10; break;

case CRSLEFT: x2-=10; break;

mline(xl,yl,x2,y2,buffer);

}

}

C
7.2.5 setplot(), plot()

void setplot(x,y)

int x,y;

setplot () sets the starting point for the plot function to the

specified coordinates.

void plot(x,y)

int x,y;

plot () draws a line from the set starting point to the specified

coordinates. The specified destination point becomes the starting

point for the next call of plot (). The starting point can be

changed with setplot ().

197

Abacus Software SUPER C for the C-128/C-64

7.2.6 shape(), fillQ

void shape(xlfyl,x2,y2)

int xl,x2,ylfy2;

The rectangle designated by the diagonal end points (xl,yl) and
(x2,y2) will be filled with the current color class. The specified

rectangle need not necessarily lie within the drawing plane. For

example;

shape(-10,-20,30f40);

The following calls are identical:

shape(-10,40,30,-20);

shape(30,40,-10,-20);

shape(30,-20,-10,40);

void fill(x,y)

int x,y;

This function fills a background surface which is bounded by

points of a different color class. The point (x,y) must lie within the

surface to be filled. If the point lies outside the drawing plane or is

not a point of the color class 0 (background), f ill () does

nothing.

The figure which will be filled can naturally have bizarre shapes-it

need only be bordered.

c

198

Abacus Software SUPER C for the C-128/C-64

7.2.7 pushobjO, plotobjO, fplotobjO, bplotobjO

char *pushobj(xl,yl,x2,y2,put)

int xl,yl,x2,y2;

char *put;

pushobj () has an effect like that of mline (). The specified
coordinates detennine a rectangle. This will then be placed at the

memory location put. The points of the rectangle are stored line by

line from top to bottom and from left to right The color class zero
will be stored for points outside the drawing surface. Two bits are
required per point The required memory space can be calculated as
follows:

if ((dx=xl-x2)<0) dx=-dx;

if ((dy=yl-y2)<0) dy=-dy;

memneed=++dx * ++dy;

memneed=(memneed*2+6)

As with mline () you must always make sure that the memory
space provided suffices for the rectangle because otherwise the

program are data will may be overwritten.

pushob j (), like mline (), returns the address of the first
memory location no longer needed.

char *plotobj(xl,yl,x2,y2,get)

int xl,y2,x2,yl;

char *get;

char *fplotobj(xlfyl,x2,y2,get)

• • •

char *bplotobj(xl,ylfx2,y2,get)

These three functions are the counter parts to pushob j (). With
them you can merge a stored graphic object back into the graphic.
The argument get is the address of the memory in which

pushob j () placed the object It thereby corresponds to the

argument put of the corresponding pushob j () call. The points

199

Abacus Software SUPER C for the C-128/C-64

(xl,y 1) and (x2,y2) are interpreted as the diagonal end points of a

rectangle. To prevent the graphic object from becoming distorted,

the rectangle must have the same dimensions as for the call to ^

pushob j (). The position of the rectangle can naturally be v_
selected differently. You should save the dimensions when storing

with pushob j () in order to call the corresponding plotob j ()

functions correctly. These functions return as result the address
behind the object read so that if objects are stored sequentially in

memory, the address of the next object will be returned

plotobj () draws the stored object on the screen exactly as it was
stored.

bplotob j () draws the object only at the places in the graphic

where the color class 0 (background) is present. The object will
thereby be drawn behind the current graphic.

fplotob j () draws only the points of the object which do not

have the color class 0. The object is thereby drawn in front of the

current graphic. At the places where the object has the color class 0, /—
the previous graphic appears, that is, the object is drawn in the v_
foreground. Here is an example of these functions:

#include "stdio.h"

iinclude "graphic.h"

main ()

{ char obj[1200]; /* 50*90*2-8=1200 */

graphic (); clrmap(0);

colors(red,green,blue);

graphon()/

setcol(l);shape(50,60,90,140) /

setcol(2);shape(52,64,88,136);

setcol(l);shape(63,86,77,114) /

setcol(O);shape(65,90,75,110)/

pushobj(45,55,95,145,obj);

plotobj(-10,40,40,130,obj); r-

plotobj(-10,-10,40,80,obj); (_
bplotobj(65,90,115,180,obj);

fplotobj(15,0,65,90,obj)/

getchar() /

200

c

Abacus Software SUPER C for the C-128/C-64

7.2.8 mask, bmap, mapv()

char mask;

char *bmap;

char mapv(x,y)

int x,y;

mapv () returns the byte in which the point (x,y) is located The

variable mask is set at the same time. In it is the value in which only

the two bits are zero which in the result of mapv () represent the

point(x,y). In addition, the pointer bmap is set after mapv ()

which points to the location in the bit map in which the result of

mapv() stands.

If you are familiar with the architecture of the bit map storage

(multi-color graphics mode), you can manipulate the graphic

directly with this function. Normally you do not need this function.

The function dotin () could look like this in C:

dotin(x,y)

int x,y;

{ char c;

c=mapv(x, y) ;

switch(mask A Oxff)

{ case OxcO: c»=2;

case 0x30: c»=2;

case OxOc: c»=2;

return c & 0x3;

201

Abacus Software SUPER C for the C-128/C-64

7.2.9 Layout of the graphics memory

Super C V2

$8cOO-$8ffff Video RAM of the graphics (color storage)
$9000-$9bff Unused (free for graphic objects)
$9bOO-$9bff Stack for fill
$9cOO-$9fff Temporary color RAM (for graphic/text switch)
$a000-$cfff Graphics bit map
$dOOO-$dfff I/Orange
$e000-$e3ff Video RAM of the text

The free RAM from $9000 to $9bff results from the architecture of
the C-64. This area will always be addressed as character ROM by

the video chip, so graphics here are not possible. The video RAM
for the graphics must therefore lie below $9000. You can use the

free memory for graphics objects. Make sure, however, that these
objects fit in the memory provided or your graphics will be
overwritten.

We cannot go into the significance of the individual memory

locations for the graphics. We recommend the relevant literature for
the C-64.

Super C V3

$cOOO-$dfff Bit map of the graphics

$e000-$e3ff Video RAM for graphics
$e400-$e4ff Stack for fill
$e500-$e8ff Unused (free for graphic objects)

Temporary color RAM is not required because the C-128 has two
switchable color RAMs.

When using the unused memory, make sure that the area above
$e900 is not overwritten. This will destroy the RAM disk driver.

o

c

202

Abacus Software SUPER C for the C-128/C-64

7.2.10 Demo program

COn your master disk there is a demonstration program called

cdemo. c. In this program you will find extensive applications of
the graphics routines. An analog clock, among other things, is
implemented

The Super C V2 owners have a compiled version on their diskettes.
On Super C V3, the disk storage sufficed only for the source text
You can start the demo with the following commands:

Master disk in drive a:

h:com s:*

a:cc cdemo.c h:o.o h:error.e h:cdemo libel libgraph.l

a:slow

h:cdemo

The last command starts the demo. Note: The contents of the RAM
~ disk will be erased.

7.2.11 Storing the graphics

We want to present two useful routines here. The functions load
and save a graphic. You can pass the name to the function along

with a device specifier:

static col [3]/ /*contains the color classes*/

void writegr(name)

char name[];

{file fd;

fd=open(name, "w11) ;/*name no RETURN at end */

fputf(col, sizeof(col),fd)/

if (ST)

C error("graphic file exists",20);

if (fputf(bitmap,8000,fd)!=8000)

error("write error",21);

fclose(fd);

203

Abacus Software SUPER C for the C-128/C-64

void readgr(name)

char name[];

{ file fd;

fd-fopen(name,"r")/

fgetf(col,sizeof(col), fd) ;

if (ST)

error("graphic file not found",22);

if (fgetf(bitmap,8000,fd)!=8000)

error("read error",fd);

colors(col[0],col[1],col[2]);

7.3 Math library

The math library requires the header file math. h. It makes the

appropriate function declarations. In addition the constants PI

(3.14...) and E (2.718...) are defined as macros.

The mathematical library is called 1 ibmath. 1. It must be linked f~

to the program in the linker when using the mathematical functions. v_

7.3.1 sin(), cos()

double sin(d)

double d;

double cos(d)

double d;

The functions calculate the sine and cosine of the specified

arguments. Note that the arguments must have the type double,

sin (1) is not allowed. It must be sin (1.0).

The arguments must be given in radians.

204

c

c

c

Abacus Software SUPER C for the C-128/C-64

7.3.2 tan(), atan()

double tan(d)

double d;

double atan(d)

double d;

The functions calculate the tangent and the arctangent of the the

argument

7.3.3 absO, sgn(), rnd()

double abs(d)

double d;

double sgn(d)

double d;

double rnd(d)

double d;

abs () calculates the absolute quantity of the arguments.

sgn () calculates the sign function for the argument. The result

will be -1 for a negative argument, 1 for a positive argument, and 0
if the argument is zero.

rnd () creates random numbers between 0 and 1. The number one
is never reached. The argument determines the method of creation.

For negative arguments the argument will be enlisted to form a

random sequence. For positive arguments a random number results
which is dependent only on the last random number. The use is

similar to the BASIC function rnd

205

Abacus Software SUPER C for the C-128/C-64

7.3.3 sqr(), sqrt()

double sqr(d)

double d;

double sqrt(d)

double d;

The function sqr (square) calculates the square of the argument

The function sqrt (square root) calculates the square root of the

argument Note that die root of only positive numbers can be taken.

Otherwise an ?illegal quantity error will appear.

7.3.4 Iog(), exp()

double log(d)

double d;

double exp(d) V_

double d;

log () calculates the logarithm base e. This number is defined in
the macro E. The logarithm can be used only on positive numbers.

You can calculate logarithms of other bases like so:

log(x)/log(b)

where x is the argument and b is the base.

exp (x) calculates the number e to the x power. The

exponentiation to other bases is done by:

exp(log(b)*x)

where b is the base and x is the exponent This construction is also v_

suited for general exponentiation. The calculation is admittedly

rather inaccurate so that only the accuracy of float can be

guaranteed.

206

c

Abacus Software SUPER C for the C-128/C-64

7.4 ctype.h

This header file does not correspond to any library. In it only a set
of macros are defined which can be used like functions.

int isupper(c)

char c;

Returns the value 1 (true) if the argument is an upper case letter,
else 0 (false).

int islower(c)

char c;

Returns the value 1 if the argument is a lower case letter, else 0.

int isalpha(c)

char c;

C Returns the value 1 if the argument is a letter, else 0. The
underscore character is counted as a letter.

int isdigit(c)

char c;

Returns the value 1 if the argument is a digit, else 0.

int isspace(c)

char c;

Returns the value 1 if the argument is a space, a shifted space, a
tab, a new line character, or a shifted new line character.

char tolower(c)

char c;

CThis function converts upper case letters to lower case letters. If the

argument is not an upper case letter, the argument will be returned
unchanged.

207

Abacus Software SUPER C for the C-128/C-64

char toupper(c)

char c;

This function converts lower case letters to upper case letters. It v_
reacts like tolower.

c

c

208

Abacus Software SUPER C for the C-128/C-64

c

c

c

8.0 C language description

8.1 Introduction

In this chapter we will discuss the entire range of the C language
and the Super C language compiler. Differences between this

compiler and the language as described by Kernighan and Ritchie
will be pointed out In general however, most compilers are quite
compatible, including this one. C programs can be directly

transported except for a few details which usually result from the
different hardware configurations.

8.2 Text conventions

The source text of a C program consists of six classes: names

(identifiers), keywords, constants, strings, operators, and
separators. Spaces, line separators, and comments belong to the

separators. This is skipped during the compilation. They serve

only to separate neighboring words, constants, etc., where the

compiler cannot recognize the relationship without a separation. In

each case the compiler tries to interpret the longest string of

characters possible as a word, constant, etc.

8.2.1. Comments

Comments begin with /* and end with */. They cannot be
nested.

8.2.2 Names

An identifier, or name, begins, as in almost every language, with a

letter and can then consists of an arbitrarily long sequence of letters

or digits. The _ (underscore) character also counts as a letter.
Upper and lower case are distinguished and may be mixed in a
name.

209

Abacus Software SUPER C for the C-128/C-64

The Super C compiler use only the first eight letters to differentiate

between names, however. For external names, which must be

processed by the LINKER, the same conventions apply. In other

compilers this can be different

8.2.3 Keywords

These arc names which have a predefined significance. They may

not be used as identifiers:

auto

default

enuxn

if

short

typedef

break

do

extern

int

sizeof

union

case

double

float

long

static

unsigned

char

else

for

register

struct

void

continue

entry

goto

return

switch

while

No distinction between upper and lower case is made for

keywords. AUTO is accepted as auto just as is aUtO. The
keywords entry, fortran, asm have no meaning in Super C.

8.2.4 Constants

8.2.4.1 Integer constants

Integer constants are whole-number constants. They consist of a

sequence of digits. It is interpreted as a decimal number and has the

type int. If a digit string starts with 0, the digits following it are

interpreted as an octal number. The digits 8 and 9 are interpreted as

octal 10 and 11 and are thus allowed

If a digit string begins with Ox or OX, the following digits are

treated as hexadecimal number. Here the letters a-f or A-F apply as

the values 10-15. In Super C, all integer constants are automatically

converted to the type long if their decimal value is greater than

32767. If an 1 or L stands behind the integer constant, the constant

is always converted to type long.

210

Abacus Software SUPER C for the C-128/C-64

c

c

8.2.4.2 Char constants

A char constant consists of a character enclosed in single quotes,

such as 'a', The value of the constant is the value from the

character set of the C-64, here 65. The following symbols also

count as single characters:

\b

\t

\n

\r

\e

\\

V

\"
\o

\
1

II

$00

backspace

tab

line separator

carriage return

escape

in Super C:

in Super C:

in Super C:

in Super C:

in Super C:

DELETE $14

SPACE $20

CARRIAGE RETURN $0d

SHIFTRETURN $8d

ESCAPE $lb

\ddd d are octal digits, returns the value of the constant

Oddd, for example \24 corresponds to \b in Super C

(see character set table)

All characters in the character set can be accessed with \ddd. If a

character other than the ones given here is placed after the escape

code character, die escape code symbol is ignored.

c

8.2.4.3 Floating-point constants

A floating-point constant consists of a sequence of digits which
represent the integer portion of the constant, followed by a decimal

point and a sequence of digits for the fractional portion. Finally

comes the exponent, given with e or E and a sequence of digits

with an optional sign. Either a decimal point or an exponent must

be present for the compiler to recognize the number as

floating-point Floating-point constants have the type double.

211

Abacus Software SUPER C for the C-128/C-64

8.2.5 Strings

As already mentioned, a string is a string of characters. It consists

of a sequence of characters enclosed in double quotes. The number

of characters in a string constant can vary between 0 and 254 in

Super C. A string is viewed as an array of characters with storage

class static and intialized with the given characters. The

compiler automatically appends a \0 character at the end of the

string in order to recognize this.

All of the escape code symbol combinations in Section 8.2.4.2 can
also be used within a string. If an escape code symbol stands at the

end of the line in the source text, it is ignored and the compiler

skips the end of the line, meaning that the string can be continued

on the next line.

8.2.6 Example

Here are some examples and their interpretations:

2 ->

2L ->

010 ->

Oxffff ->

1.5 ->

1.5E2 ->

1.5e-2 ->

.5 ->

Ie5 ->
ti\tfn _>

"abcXn" ->

2

2

8

65535

1.5

1500.0

0.015

0.5

100000

string

string

int

long

int

long

double

double

double

double

double

"NO

abc\n\0

c

c

212

c

c

c

Abacus Software SUPER C for the C-128/C-64

8.3 Object names

To clarify this term, we must first clarify the term "object" By

object we mean a certain contiguous area of memory with a specific

length within a C program. In BASIC an object is comparable to a

variable.

As a rule each object has a name. With this name you can access

that object, by writing something to it or reading something from it

An object in C has two attributes: the storage class and the type.

The location and lifetime of an object are determined by its storage

class. The type of the object determines the interpretation of the

value from the memory area of the object

In order to inform the compiler what storage class and what type

the object has, the name of the object must be declared. If an object
is created at a declaration, then it is called a definition.

8.3.1 Storage classes

There are four storage classes in C: auto, static, extern,

and register. Objects with the storage class auto or

register are local. The exist only as long as execution in the

block in which they were defined continues. When the block is
exited, the objects are erased. The compiler tries to place

register objects in hardware registers in order to make faster

access possible. If all hardware registers are used, register variables

are automatically converted to auto. In Super C, register variables

are always converted to auto variables because the processor has

no registers free.

Variables defined as static are accessible only in the block in
which they were defined. These objects remain, however, and

retain their old values when execution returns to the same block.

Objects declared as extern remain available throughout the

program. External variables can also be used by separately

compiled program fragments. Static objects which are defined

outside of a block are also available throughout the entire program,

but are available only in the program in which they were defined

213

Abacus Software SUPER C for the C-128/C-64

83.2 Types

The following types are available in C: _.

char objects can accept a character from the character set

The value of a character is always positive after its definition.

char objects can also be assigned integer numbers.

Other integral types are short int,int and long int.

short int can be abbreviated short and long int to

long. Longer types may not have a smaller value range than

shorter. For this reason all types can be implemented with the

same size on a compiler. In Super C, short and int are the

same and long is twice as large. All integer types can also be

defined as unsigned, meaning that their value will be always be

interpreted as positive, unsigned char can be defined, but

is not different from char in Super C because the definition of

all characters of the character set is positive and the set fills the

entire value range of a char variable.

float and double are floating-point types. In Super C ^~
double is twice as large as float.

The type void can only be declared for the result of
functions. This means that the function returns no type,

meaning that it is a procedure in the Pascal sense.

The type enum indicates an enumeration type (see Section
8.8.10).

Arrays can be created of all types. An array contains

several objects of the same type (array elements).

One can define a pointer to a certain object

Functions can be programmed which return simple types as
results.

You can declare structures (struct) which contain a group

of objects of various types, or variants (union) which
contain one object of a group of various types.

214

c

c

Abacus Software SUPER C for the C-128/C-64

These constructions can also be nested.

8.3.3 Hardware-specific type data

The special type properties of Super C are listed in the following
table. This can naturally be different in other compilers. The only

guarantee is that the value range of short <= int <= long

and that of float <= double.

Type (written oufl Abbrev. Value range Size

short int short -32768 to +32767 2

int - -32768 to+32767 2

long int long -2147483648 to 2147483647 4

unsigned short int unsigned short 0 to 65535 2

unsigned int unsigned 0 to 65535 2

unsigned long int unsigned long 0 to 4294967295 4

char - a character from the 1

unsigned char - character set or 0 to 255 1

float - +/-9.09E-77 to +/-6.78e+74 4

accurate to 6 or 7 places

long float double +/-9.09E-77 to +/-6.78e+74 8

accurate to 16 places

215

Abacus Software SUPER C for the C-128/C-64

8.4 Objects and L-values

An object is, as mentioned, a memory area. An L-value is an

expression which denotes an object The simplest L-value is a name

which is defined. In C however an expression can also yield an

L-value. This is done with pointers. If E, for example, contains a

pointer to the type ini, *E is an L-value and refers to the int

object to which E points.

8.5 Conversion of a type

Various type conversions are performed depending on the

operators.

8.5.1 Integer values between each other

The conversion of integer values between each other is done so that
the sign is retained when converting to a longer integer value. The f
most-significant bits arc cut offwhen converting to a smaller type. v-

Converting a signed integer value to an unsigned value succeeds

only through different interpretation. Negative values are

represented in two's complement in Super C.

8.5.2 Floating-point values between each other

Floating-point calculations occur only in the type double in C.

float values are automatically converted to double. If a

floating-point value is assigned to a float variable, it is first

converted to float. This is done by rounding the mantissa.

Converting from float to double is done by appending

zero-bits. s~

216

Abacus Software SUPER C for the C-128/C-64

8.5.3 Floating-point and integer values

CThe manner in which floating-point and integer values are

converted among each other depends on the compiler. The only

guarantee is that if the floating-point number has a reasonable

number, it can be converted. If the floating-point number cannot fit
in the integer number, however, the result is not guaranteed

8.5.4 Addresses and integer values

The conversion of an integer value to an address and back is

performed without change. Only the type of the value changes.

This conversion is not performed automatically.

8.5.5 The standard conversions

The "standard conversions" are performed by most of the

operators:

1. char or short operands are converted to int,

float to double operands.

2. if one of the two operands is double, the other is

converted to double and the result is double.

3. if one of the operands is long, the other operand is

converted to long and the result is long.

4. if one of the operands is uns igned, the other operand

is converted and the result is unsigned.

5. if both operators are of type int, the result is also int.

217

an

Abacus Software SUPER C for the C-128/C-64

8.6 Syntax notation

For a better understanding of the next section, we offer a C r~ \

grammar. At the start of each grammar definition stands a name v_

which is defined. Usually, several alternatives follow with which

the name can be replaced. Letters and characters in bold face must

not be changed. Names in normal type can be replaced by the

corresponding definition of a name. An alternative stands in each

line within a definition.

Sections which are enclosed in square brackets [] can be omitted.

Sections in braces { } can be repeated.

8.7 Expressions

An expression consists of operands and operators, a+b is

expression, a and b are the operands of the operator +.

A distinction is made between unary and binary operators. Unary /^

operators operate on only one operand, binary on two. A binary v~

operator stands between the two operands.

Each operator has a set precedence to determine the order in which
die operators are executed. If operators having the same precedence
stand are on the same line, the processing direction determines the

order of evaluation (left to right or right to left).

Apart from the precedence, the order of processing is not defined,
meaning that it is up to the compiler to determine how expression

fragments will be nested in order to make optimizations, even if the

expression fragments create side effects through assignments, etc.

Associative and commutative operators can be switched arbitarily,
even when explicit parentheses are present A specific order of

evaluation can be guaranteed only by assigning (temporary)

variables.

The handling of errors during the evaluation of an expression v_

depends on the compiler in question. In general, an overflow in an

integer operation is ignored.

218

c

c

Abacas Software SUPER C for the C-128/C-64

8.7.1 Simple expressions

A simple expression {operand) is, for example, a name or
constant (including string constant). First the syntactic definition:

operand:

name

constant

string

(expression)

operand ([argument list])
operand [expression]

operand • name

operand -> name

argument list

assignment { , assignment}

A name is usually an L-value. If it refers to a function or array,

however, it is to be treated as a constant which represents the

address of the function of the array. A name from an enurn

specifier is only a constant The name of a structure of variant, on

the other hand, is an L-value.

An expression enclosed in parentheses is a simple expression.

Because the parentheses have highest precedence, the expression

within the parentheses is evaluated first The compiler can remove
the parentheses in associative expressions such as a+(b+c),
however.

If a parenthesized argument list follows a simple expression, the
whole thing is handled as a simple expression, a function call. The

left part then represent the address of the function. In the simplest

case this is the name of the function. The list in the parentheses
contains the arguments which are to be passed to the function. The

arguments can themselves be expressions.

The use of a free comma (not parenthesized) is not allowed because
it is found in the above definition assignment If the type of such an

expression is char or short it is converted to int. The type

float is converted to double. The argument list can also be

empty. A function call is not an L-value.

219

Abacus Software SUPER C for the C-128/C-64

If an expression in square brackets follows a simple expression,

this is again a simple expression. The left part then represents the

address of an array. In the simplest case this can be the name of the

array. The whole thing is the selection of an array element The

expression must have an integer value. The whole expression is an

L-value. Internally, the simple expression a[b] is converted to

(*(a+(b))). To understand this you must first understand the

operators * and +.

The arguments are passed to the function exclusively by copying

the value (call by value). The parameters of the function are

simply assigned the values of the arguments. The function

parameters can be changed as desired without changing the original

arguments. This also applies to pointer values (addresses). The

object can be changed from the function via the address, however.

The order in which the arguments are evaluated is not defined.

Watch out for side effects, such as with assignments in arguments.

Functions can also be called recursively, meaning that a function

calls itself. An argument of a function can be a call to the same

function.

If a simple expression is followed by a. (period) character or by an

arrow (-> from a minus sign and the greater-than character), it is

treated as a reference to a structure or variant. This is a simple
expression. If a ♦ (period) is present, the expression on the left

should refer to a structure or union. If an arrow is present, an

address of a structure or union should be on the left. The right
portion must always be the name of a structure or union

component. The whole expression represents the selected

component as object and is therefore an L-value. A->B is

internally replaced by (*A).B.

c

220

c

c

Abacus Software SUPER C for the C-128/C-64

8.7.2 Unary Operators

Unary operators are evaluated from left to right None of the

operators yield an L-value except for *.

unary:

operand

operand ++

operand—

* unary

& unary

- unary

! unary

^ unary

++ unary

« unary

(type spec) unary

sizeof unary

sizeof (type spec)

The operand of the unary operator ♦ must be an address or a

pointer. The result is an L-value which refers to the object to which

the address points.

The unary operator & requires an L-value as operand. The result is

the address of the object referred to. This operator is to a degree the
opposite of the ♦ operator.

The unary operator - returns the negative value of its operand With

integer values the negative is computed using two's complement.

This also applies for unsigned values. There is no unary +
operator in C.

The! operator returns the logical negation. The logical value zero is
false, the logical value of all other values is true. If the operand is
zero, ! returns the value 1; if the operand is not zero, ! returns
zero.

The ** operator inverts the individual bits of an integer value and

thereby computes its one's complement. The operand must have an
integral type.

221

Abacas Software SUPER C for the C-128/C-64

The operators ++ and — add or subtract 1 from their operand

(increment, decrement). The operands must be L-values. The result

of the expression depends on whether the operator is placed before

or after the operand. If the operator is in front, the result is the

value of the object after the increment or decrement, while if the

operator is behind, the object is incremented or decremented after

the evaluation.

Converting a value from one type to another is done with the

cast. A type specifier in parentheses stands in front of the

operand. The operand is then converted to the given type. An
example of the type specifiers is found in Section 8.8.12.

The slzBofoperator returns the size of the operand. Applied to

an L-value, one receives the length of the designated object If the

operator is applied to other values, one receives the length of the

type of the value. A type can be directly given by placing a type

specifier in parentheses. The length is measured in bytes. The

operation represents an int constant with the length as the value.

8.7.3 Multiplication, Division

The operators * / % fall into this category. The are processed from

left to right and the standard conversions are performed.

multiplication:

unary

multiplication * unary

multiplication / unary

multiplication % unary

The binary * operator denotes multiplication. It is commutative and

associative.

The / operator denotes division, the % operator the remainder of

the corresponding division. On most compilers the remainder has

the same sign as the dividend. If the divisor is not zero,

(A/B) *B+A%B-A is equal to zero.

The % operator may be used only on integer values.

222

c.

c

c

Abacus Software SUPER C for the C-128/C-64

8.7.4 Addition, subtraction

The operators + and - are evaluated from left to right. The standaid
conversions are performed. Addresses and pointers can also be
combined

addition:
multiplication

addition + multiplication

addition - multiplication

+ denotes addition, - subtraction. The + operator is commutative

and associative so that rearrangement by the compiler are possible.

A pointer value and an integer value can be added. It is then
assumed that the pointer points to an array. The result is an address
which points as many elements farther as the integer value is large.

If A is an array, A+l is the address to element 1 (second element)
of the array.

An integer value can also be subtracted from a pointer value. As a

result one receives an address which points the appropriate number

of elements previous. The pointer value must always be on the left.

Two pointer values can be subtracted from each other. The result is

the number of array elements between the addresses. A necessary

condition for a reasonable result is that both pointers point in the

same array. This is not checked by the compiler.

223

Abacus Software SUPER C for the C-128/C-64

8.7.5 Shift operations

The shift operators « and » are evaluated from left to right The s~
two operands must be of integral type. The result has the type of v_
the left operand

shift:
addition

shift« addition

shift» addition

The value of A«B is the bit pattern of A shifted B bits to the left.

Zero-bits are shifted in on the right A»B is, correspondingly, the

bit pattern ofA shifted right If A is an unsigned value, zero-bits arc

shifted in from the left It is dependent on the system whether

zero-bits or the sign bit will be shifted in from left if the value is
signed Sign bits arc shifted in on the Super C compiler.

8.7.6 Comparisons r

Comparisons arc evaluated from left to right This property is

mentioned as a warning before use. A<B<C does not yield the

expected result The comparison A<B returns the result 0 for false,

1 for true. Then a comparison is made to see if C is greater than 0

or 1.

comparison:

shift

comparison < shift

comparison <= shift

comparison > shift

comparison >= shift

The operators < Gess than), <= (less than or equal), > (greater
than), and >= (greater than or equal) return 0 for false and 1 for

true. The result type is always int. The standard conversions are C
performed before the comparison. ^~

224

c

c

Abacus Software SUPER C for the C-128/C-64

Pointer values may also be compared whereby there machine

addresses are used Such comparisons are only portable to other

systems when both pointers point in the same array.

8.7.7 Equivalence comparisons

The compare operators == (equal) and != (not equal) behave like

the compare operators above. They have a lower precedence,

however, so that the following expression makes sense: A<B ==

OD returns the value 1 if A<B and OD are both false or both true.

equivalence:

comparison

equivalence == comparison

equivalence != comparison

Pointer values may also be compared with integer values. This is

not portable, however. The only guarantee is that the pointer value

will never be equal to the integer value 0 if the pointer actually

points to an object Pointers which are not supposed to point to any

object can be assigned the value 0. The constant NIL is defined as

an address to no object in the standard declarations of Super C.

You are warned against an access to such an address since this
processor register can be changed, leading to a system crash.
Before each address it should be ascertained that the pointer value

does not equal NIL.

225

Abacus Software SUPER C for the C-128/C-64

8.7.8 Bit operations

The operators & (and operation), ~ (exclusive or), and | (or)

combine their operands bit by bit The operands must be integer

values. The standard conversions are performed.

bitwise-and:

equivalence { & equivalence }

bitwise-xor:

bitwise-and { * bitwise-and }

bitwise-or:

bitwise-xor { | bitwise-xor }

The bit operators are commutative and associative and can be

rearranged by the compiler.

If a and b are corresponding bits of the left and right operands,

then:

a AND b is 1 if both bits a and b are 1

a OR bis 1 is at least one of the two bits is 1

axORbisl if a and bare different (not both lor both 0)

8.7.9 Logical operations

There are two logical operations in C, && (AND) and 11 (OR).
The operands are guaranteed to be evaluated from left to right The

result of the && operator is 1 if both operands are non-zero, else

the result is 0.

log-and:

bitwise-or { && bitwise-or }

The second operand is evaluated only if the left operand is not zero.

The result of the 11 operator is zero if both operands are zero, else

it is one. The second operand is evaluated only if the first is zero*

226

c

c

Abacus Software SUPER C for the C-128/C-64

log-on

log-and { || log-and }

The operands can be completely different types, but they must

permit a comparison to zero. The result type is infc.

8.7.10 Condition evaluation

selection:

log-or

log-or ? selection: selection

The first expression is evaluated. If its value is not zero, the second
expression is evaluated, otherwise the third. Only one of the last

two operands is evaluated. The result is the value of the evaluated

expression. The standard conversions are performed on the last two

expressions if possible, in order to get the same result type in both

cases. Otherwise the result types must be two addresses which
point to objects of the same type.

8.7.11 Assignments

All assignment operations are evaluated from right to left The left

operand of an assignment must be an L-value. The type of the

result is always that of the left operand. The result is the value
assigned.

assignment:
selection

unary = assignment

unary ♦= assignment
unary /= assignment

unary %= assignment

unary += assignment

unary -= assignment

unary »= assignment

unary «= assignment

unary &= assignment

unary **= assignment

unary |= assignment

227

Abacus Software SUPER C for the C-128/C-64

With the simple assignment = the value of the right operand is

converted to the type of the left and then assigned to the object to
which the L-value refers. C

The result of a complex assignment of the form A op= B is the
same as that of the assignment A = A op (B). A is evaluated only

once however. The left operand may be a pointer with += and -=.

A C compiler allows assignments of pointer values to integer

objects and vice versa, as well as assignments of pointer values
which point to objects of different types. This assignment is done
purely by copying the value and may not be portable to other

machines. The only guarantee is the portability of assigning the

constant zero (NIL) to a pointer value.

8.7.12 Lists

Two expressions separated by a comma are evaluated from left to
right The result is the value of the right expression.

expression:

assignment { , assignment}

In a situation in which the comma has another meaning, such as in

an argument list or in initializations, the comma operator can be

used only in parenthesis. Thus the following function call

f (4, (a=3,a*2),6)

has the arguments 4, 6, and 6.

c

228

c

c

Abacus Software SUPER C for the C-128/C-64

8.8 Declarations

A declaration determines how names will be processed by the

compiler. The name is connected to a type and a storage class in a

declaration. The compiler can then recognize what type the object is

and to which the name refers. If an object is created in a declaration
it is called a definition.

Declarations with the storage class extern do not reserve any

memory space. The serve only to make objects known prior to their

definition or to refer to an object which is defined in another
separately compiled file.

A C program consists of a sequence of global declarations. The

definition of the function main must be found in one of several

separately compiled program segments. The execution of the C

program begins and ends with this function.

Names can also be declared locally, meaning that they are declared
within a block in a function definition.

c-program:

{ global }

global:

function-definition

global-definition ;

declaration ;

type declaration ;

local:

local-definition ;

declaration ;

type-declaration ;

229

Abacus Software SUPER C for the C-128/C-64

8.8.1 Storage classes

There are three storage classes for definitions in C: auto,

static, and register, which were already described in

section 8.3.1.

storage-class:

auto

register

static

The & operator cannot be used on objects of storage class

register. As a rule, the register storage class is used to

make programs faster and shorter. The microprocessor on the C-64

does not allow us to make use of this storage class, however. If no

storage class is given, auto is assumed inside a block. Outside a

block the declaration is assumed to be a global definition.

8.8.2 Types C

The following may be used as type names:

type-name:

[unsigned] [short] int

[unsigned] [long] int

[unsigned] short

[unsigned] long

[unsigned] char

[long] float

double

void

struct-union-type-name

enum-type-name

typdef-name

A declaration may contain only one type name. If the type name is

missing, int is assumed.

230

c

c

Abacas Software SUPER C for the C-128/C-64

8.8.3 Data definitions

Data definitions serve to create data objects. The definitions contain

storage class and type specifiers and a sequence of declarators.

Each declarator contains a name which is to be declared. The

defined objects can be initialized to a certain value in the definition.

Local objects can initialized only with simple types.

global-definition:

static [type-name] i-declarators

type-name [static] i-declarators

local-definition:

storage-class [type-name] i-declarators

type-name [storage-class] i-declarators

declaration:

extern [type-name] declarators

type-name extern declarators

Declarations declare a sequence of names in declarators. They
cannot be initialized. A corresponding data definition must be

located in some part of the C program.

8.8.4 Type declarations

type-declaration:

typedef [type-name] declarators

type-name typedef declarators

struct-union-type-name

The names contained in the declarators are declared as type names

(typedef-name). The type represented is what was declared.

A struct-union-type-name also applies as a type

C declaration in case a struct-name or union-name is
^ defined in it. This definition assigns a specific configuration of

components to the name.

231

Abacas Software SUPER C for the C-128/C-64

8.8.5 Functions

function-definition:

static [type-name] f-declarator par-declaration block

type-name [static] f-declarator par-declaration block

Functions can have the storage class static or they may be
global. A function definition consists of fine function declarator, die
parameter declaration, and the function block.

8.8.6 Declarators

Declarators serve to declare a name. The name is used in declarator
as it could be used in an expression. If the name is used in an

expression exactly as in the declarator, the expression has the same
type as the type name given in the declaration. This may seem
peculiar, but is absolutely unambiguous.

declarator:

{ * } declarator

(declarator)

declarator ()

declarator [[constant]]

name

It is easy to see that the simplest declarator is a name:

type name;

defines name as an object of type type. If name is supposed to be

a pointer to an object of type type, a ♦ character must be added in
front of name:

type * name;

One can see that if the expression *name is used in an expression,

its type is type because the expression refers to the object to which
name points.

If an array is to be declared, it looks like:

232

Abacus Software SUPER C for the C-128/C-64

type name[constant]

Cname is then a vector with as many elements as the constant
indicates, name alone is the constant address to the start of this
array and not an L-value.

Functions are declared by placing parentheses after the name:

type name()

name is now a function which returns a value of type type. The
definition of a function is discussed in the next section. A name

which is defined as a function represents the constant address of the
function.

These various declarators can be nested in order to declare more
complex types. Parenthesis have a higher precedence than the ♦

character. The declarator can also be parenthesized to change the
precedence.

(^ Let us take a look at the following declarations:

int (*f) <), *g(), *h[5];

f is defined as a pointer to a function which returns a value of type

int. g is a function which returns a pointer value to an int

object, h is an array with five elements which are all pointers to

objects of type int. Experience has shown that it can be very
difficult to determine the type from a declaration at the start

The following syntax definitions finish up the normal declarations:

i-declarators:

declarator [=initializer] {^declarator [=initializer]}

declarators:

x- declarator {, declarator}

233

Abacus Software SUPER C for the C-128/C-64

8.8.7 Function declarator

A function declarator is only slightly different from a normal

declarator. Instead of a name, a name with a parameter list must be

given.

f-declarator:

{ ♦ } f-declarator
(f-declarator)

f-declarator ()

f-declarator [[constant]]

name (name-list)

name-list:

[name]

name { , name}

The parenthesization of the name list identifies the name as a

function. The name list can also be empty. It specifies the

parameters. s~~

8.8.8 Parameter declaration

par-declaration:

{ register [type-name] declarators ; }

{ type-name [register] declarators ; }

The parameter declaration declares the types of the parameters in the

order in which they occur in the name list of the function declarator.

The objects generated can be used like auto or register

objects. They are initialized with the values of the arguments when
the function is called

Parameters of type char are converted to int, type float

becomes double automatically. Parameters of type array
become type pointer because the array can be used like a pointer as

a parameter; it's an L-value.

234

c

c

c

Abacus Software SUPER C for the C-128/C-64

8.8.9 Structures and unions

Structures and unions are declared like other objects. A special
type-name is used for them:

struct-union-type-name:

struct [struct-name] {{ c-declaration }}

struct struct-name

union [union-name] {{ c-declaration }}

union union-name

c-declaration:

type-name c-declarator {, c-declarator} ;

c-dcclcuntor:

declarator

[declaratory: constant

The component declarations in braces are call struct or

union specifiers. A struct or union name can always be

given. If a specifier follows it, the name is defined by the specifier.
Only the name need by given for a new declaration.

A component is declared like a normal declaration. The option in

italics to declare bit fields as components is not possible in Super

C.

A structure or variant may be declared as a component. If the

structure or variant is of the same type as that being declared, only

pointer may be defined.

A specifier is not allowed within a component declaration. The

specifier must be defined outside the structure with its own

struct name.

235

Abacus Software SUPER C for the C-128/C-64

8.8.10 Enumeration type

The enumeration type enum has its own type name. s~

enum-type-name:

enum [enum-name] { enumerator {, enumerator } }

enum enum-name

enumerator:

name [= constant]

The specifier can be defined via a name as with structures. The

constants of the enumeration type are enumerated in the specifier.

The constants are numbered from 1 on. If a constant is given

explicitly in an enum, it is accepted. The next enum constants

will be defined beginning with the next highest value.

Objects of the enumeration type behave like int objects. They
serve only to make a program more readable and understandable.

The programmer must ensure that an object of the enumeration type (~

is assigned a value from the specifier. Tlie compiler does not check ^-
this.

The defined constants can be used in the program text like int

constants.

8.8.11 Initializations

initializer:

assignment
constant

{initializer {, initializer} }

Simple types are initialized by appending an equals sign and a
constant to their declarator. Complex types like arrays and

components are initialized by a list of constants enclosed in braces. C
This procedure can be nested as desired. ^-

236

Abacus Software SUPER C for the C-128/C-64

int x [3] [3]= { {0,1,2} ,

{3,4,5} ,

f {6,7,8}};

This definition initializes a two-dimensional array with three

elements in each dimension. The values 0,1, and 2 are assigned to

the elements x[0][0], x[0][l], and x[0][2], and so on.

The list for arrays and structures need not be complete. If fewer

elements than necessary are given, the rest are automatically

initialized with zero.

If all elements or components are initialized, one can eliminate the
nested listing. The above definition can also look like:

int x [3] [3]= { 0,1,2,3,4,5,6,7,8};

The compiler assigns the values to the elements or components in
order.

y_ Functions and variants cannot be initialized. Only simple types of

auto objects can be initialized. In contrast to other initializations,

however, entire expressions can be initialized (assignment in the
syntax definition).

Static and global objects are automatically initialized to zero if no

other initializer is given, auto objects without initializer have an

undefined value.

c

237

Abacus Software SUPER C for the C-128/C-64

8.8.12 Abstract declarators

Abstract declarators serve to specify a type in a CAST. /"~

type-spec:

type-name [a-declarator]

a-declarator:

{ * } a-declarator

(a-declarator)

a-declarator ()

a-declarator [[constant]]

An abstract declarator does not contain a name. The compiler can

always determine where the name would have stood, so this
construction is unambiguous.

int *<)

is, according to this, a function which returns a pointer to int. f~

8.9 Statements

Statements are normally executed in sequence; the execution path is

indicated if this is not the case.

statement:

label statement;

block

expression;

whilo([expression]) statement

do statement while([expression]);

for([expression];[expression];[expression]) statement

3witch(expression) block

if(expression) statement [else statement]

break;

continue;

return [expression] ;

goto name;

9

238

Abacus Software SUPER C for the C-128/C-64

label:

name: [label]

Cease constant: [label]

default: [label]

block:

{ {local } { statement} }

The most common form of a statement is the expression. It
normally consists of assignments or function calls.

8.9.1 Blocks

A entire block can also be a statement Local definitions can again

be used in a block. This then applies only within the block. A block
is usually used to gather several instructions together, such as
behind a loop.

Q 8.9.2 while statement

The while statement has the form:

while (expression)

statement

The statement is repeated until the value of the expression is zero.

The expression is always evaluated before the statement. If the
expression is omitted, the loop is infinite.

c

239

Abacus Software SUPER C for the C-128/C-64

8.9.3 do statement

The do statement has the form: s~

do

statement

while(expression);

The statement is repeated until the expression is zero. The

expression is always evaluated after the statement Here the

statement is executed at least once, whereas it may never be

executed with while.

8.9.4 for statement

The for statement has the following form:

for (expressionl;expression2; expression3)

statement

It can be directly converted to a while statement:

expression1;

while(expression2)

{ statement

expression3;

All three expressions can be omitted. The semicolons must remain

in the parentheses, however. If the second expression is omitted,
the loop is infinite.

c

240

c

c

Abacus Software SUPER C for the C-128/C-64

8.9.5 if statement

An if statement can have an option else section:

if(expression)

statement

on

if(expression)

statement

else

statement

The expression is evaluated in both cases. If the value of the

expression is not zero, then the statement behind the if(...) is
executed If the value is zero, the first statement is skipped and the

statement behind else (if present) is executed. If several if

instructions are nested, an else is always paired with the last if.

8.9.6 switch statement

switch(expression)

block

The switch statement causes the execution of the program to

branch to one of several instructions. First, the expression is

evaluated. It must return an integer value. In Super C, addresses

can also be given, case labels can stand in the block. Behind each

of these labels is a constant If the constant agrees with the value of

the expression, execution continues behind that label. A constant

should be found only once behind a case label. The constants can

also be constant expressions. If no constant matches the value of

the expression, execution continues behind the default label. If

this is not present, the whole block is skipped.

In contrast to other languages, execution starts after the matching

label and continues to the end of the block. A break statement

can be used to prevent this. The default label need not come at
the end of the block.

241

Abacas Software SUPER C for the C-128/C-64

The block can contain variables. These will not be initialized,

however.

c
8.9.7 break statement

The last do, while, for, or switch statement can be exited

with a break statement The execution of the program continued

after the interrupted statement

8.9.8 continue statement

The continue statement refers to the last do, for, or

while statement In these loops, continue causes a jump the

location which determines whether the loop will be repeated or not

8.9.9 return statement ~

The return statement causes execution to return from a function

call. Execution continues after the function call. An expression may

stand behind return. The expression is converted to the type

given in the definition of the function.

If the program execution reaches the end of function block, the

compiler supplies a return statement without expression.

8.9.10 Labels

A label may be placed in front of any statement This label consists

of a name and a colon. The names is thereby defined as a label and

can be jumped to with goto.

c

242

c

Abacus Software SUPER C for the C-128/C-64

8.9.11 goto statement

With the goto statement one can jump to label. The execution of

the program then continues behind this label Such an statement

requires that the name be defined within the same block.

The use of labels as well as gotov s is not recommended They
tend to destroy the advantages of structured programming. Also,

one should avoid jumping into a block because local definitions will
not be performed No variables are present and therefore also not
initialized

8.9.12 Empty statement

An empty statement consists of only a semicolon ;. They are

mostly used to place a label at the end of block. For example:

label:;

The empty statement is also used to create loops which are not
supposed to repeat any statement

8.10 Scope

By the scope of an object we mean the range of its validity. A
distinction is made between two scopes: the scope on which a name

is bound, and the scope on which an object is bound.

8.10.1 Scope of a name

By this term we mean the range of the program in which a declared

name is tied to it declaration. Static global names apply over the

entire source file. Global names declared without storage class
apply also to other source files bound to the one in which they are

declared and in which a corresponding declaration is made.

243

Abacus Software SUPER C for the C-128/C-64

Externally declared names refer to a global definition and make this

name known globally.

Local predeclarations can be made within a block. Local f~

predeclarations work like global predeclarations in Super C. They V_
serve only to designate once more which global objects will be used

in the block. Several declarations of the same name with the same

type do not hurt

All other local names apply only within the defined block. Note that

global and also local names can be covered up by declarations in a
"deeper" block. The most recent valid declaration always applies

within a block.

Another characteristic applies in Super C. All names must normally

be declared in C. If one wants to use objects before their definition,

they must be predeclared. This is normally only done with global

objects. In Super C, static objects can also be predeclared with the

storage class extern. If you want to prevent objects from

applying outside their source files, you may not predeclare these

objects. f~

Note that the compiler can look for global definitions and

predeclarations only within one source file. If a name is used in a
global definition in one file and a declaration with the same name

but different type in another file, the compiler will never discover

this. The linker binds these files together without an error message,

but the program will probably not work correctly.

There are normally two classes of names in C: first, all struct,

union, enum, and component names, and second, all other

names. This rule is not implemented in Super C, however. This is

not a problem, since it is not a good idea to use the same name for

more than one thing in a program.

c

244

c

c

c

Abacus Software SUPER C for the C-128/C-64

8.10.2 Scope of an object

By the scope of an object we mean the range in which memory

space exists for the object in the program.

For global definitions, the memory space applies over the whole

program. If a static object is defined in each of two files which are

bound together into one program, they are treated as two separate

objects whose memory space exists over the whole program. The

memory space only addressable in the file in which it is defined

because of the scope of a static name.

Local static objects are retained over the entire program. Only

auto and register objects are created at their declaration

and then erased again as soon as the block in which they were

defined is left

8.11 Preprocessor

A C compiler is equipped with something call a preprocessor. The

preprocessor alters the source text according to specific rules before

it is sent to the actual compiler. This does not change the source text
on the diskette. The preprocessor is built into the compiler in Super

C and it operates on the text as soon as it is read by the compiler.

All preprocessor commands occupy a separate line in the source

text. The first character of a preprocessor line must be a #

character. The effect of a preprocessor command applies until the

end of the source file and is not dependent on the scopes of C

declarations.

8.11.1 Macros

Names can be defined as macros with the preprocessor. If these

names appear in the program text following, they will be replaced

with a replacement string.

#de£ine name replacement_string

245

Abacus Software SUPER C for the C-128/C-64

The defined macro name has precedence above all scopes, meaning
that it is first checked whether a name is defined as a macro. This
also applies for keywords. ^

A macro definition can also be made with parameters.

#de£ine name(namelfname2,...) replacement^string

The macro replacement is similar to a function call. An argument
list as with a function must follow the defined macro name in the
program text The parenthesis (of the argument list must come

directly after the macro name or the preprocessor will recognize it
as a macro without parameters. The name and the list are replaced
by the replacement string. First, however, all of the names in the
replacement string which match the parameter names are replaced
with corresponding argument strings from the call. Note that no
names may occur in the argument strings which match those in the

parameters.

The C preprocessor does not have command of the C language, _
however. It replaces the text without recognizing its relationship f
and its meaning. C macros must be used carefully and with
consideration.

The macros serve to define program constants and small
"functions.11 A macro call is the concern of the compiler and does

not take up any time at the program run time. Complex macro

definitions are better realized with functions because these require
less space in the C program. The replacement text is recompiled at
each macro call.

#unde£ name

causes a defined macro to be erased.

c

246

c

c

c

Abacus Software SUPER C for the C-128/C-64

8.11.2 Chaining files

Multiple source files can be combined with a preprocessor
command

#include "filename"

This preprocessor line will be replaced by the entire source text
filed under the name filename when the program is compiled

Additional #include calls may be found in this file. The files
may be nested up to six deep in Super C. As many files as desired

can be combined by placing such instructions one after the other in
the same file, however.

Chained text files count as one source text The chaining is not to
be confused with the binding of several separately compiled files.

In other C systems the filename can also be enclosed in < and >,

which causes a different search procedure to take place. This

command is not necessary because of the size of the floppy.

8.11.3 Conditional compilation

In C, program sections can be selected for compilation. This allows

the same source text to be used for various program versions. The

selection of the text range to be compiled is done with an if
statement

#if constant

#i£de£ name

#ifndef name

are the selection instructions. The text following these instructions

is selected if the constant after #if has a value other than zero, if

the name after ffifdef is defined as a macro, of if the name

after #ifndef is not defined as a macro.

247

c

Abacus Software SUPER C for the C-128/C-64

In this case the text behind the selection instructions is compiled up

to a command:

#endi£

or:

Seise

The last command indicates that there is an else portion which is

skipped. The else portion must be concluded with #endi£ at

some point.

If the logical value in a selection statement is false (if the number is

zero, etc.), the program section behind the selection statement is

skipped. If an else portion is present, this is compiled.

The constant after if can be a constant expression. The

conditional compilation instructions can be nested, up to eight

levels in Super C.

8.11.4 Line numbering v-

In more complex systems the line numbering and source file name

can be influenced through the command:

#line constant name

This is not necessary in Super C and is not implemented.

8.12 Implicit declarations

Certain specifications within a declaration can be omitted. These are

then supplemented by default values.

If the storage class is not given in a global definition, it means that

the definition applies over the whole program. If no type is given, (
int is assumed.

If no storage class is given in a local declaration, auto is

assumed. One exception is the declaration of a function which is

248

c

c

c

Abacus Software SUPER C for the C-128/C-64

assigned the storage class extern in local declarations and is

thereby only predeclared If only the storage class is given in a local

declaration, Int is assumed as the type. Both specifications,

storage class and type, can not be omitted in a local declaration

because the declarator will otherwise be recognized as an

expression.

If the compiler does not recognize a name, if the name is not

declared, it is automatically predeclared as a global name with the

type int or as a function which returns type int. This should

not be overused in larger programs for reasons of style*

8.13 Operations on different data types

8.13.1 Structures and unions

A structure or union cannot be used for all operations. One can

select a component with the operators . and ->. The address of a

structure or union can be determined with the & operator.

In many implementations, structures can be assigned to structures

of the same type or passed to functions as arguments. A function

may also be able to return a structure as a result. This is not

possible in Super C.

In all compilers, pointer to structures and unions can be passed to

functions as arguments, of course.

With structures it is possible to avoid the usual type checking. The

right operand of the operators . and -> need not refer to the

declaration of the left operand; any component declaration is valid.

The left operand need only be an L-value and it will be used as a

structure or union. With the -> operator the left operand can be an

pointer value. Caution is urged with these constructions. They are

not portable.

249

Abacus Software SUPER C for the C-128/C-64

8.13.2 Functions

Only two things can be done with functions: they can be called or /"~

their address can be determined V

The name of a function standing alone in the program represents the

address of the function. One can pass functions as arguments, for

instance.

int a()

main ()

b(a);

}
int b(fp)

int (*fp)<);

{ ...
<*fp)(...);

The address of the function a is passed to function b. Function a v_

can be called in b.

8.13.3 Arrays, pointers

The identifer of the array alone is always converted to a pointer

value to the first element in the array. The name is thereby a

constant and not an L-value. The index operator [] is converted

to addition, a [b] is converted to (* (a+ (b))). a is a pointer

value and b an integer value. The addition works in the conversion

such that (a+ (b)) points to an array element which is b

elements removed from the first The * operator generates an

L-value from the address. The whole expression correponds to that

which is expected when one uses a [b]. This operation is

commutative, although it does not look it r

This applies correspondingly for multi-dimensioned arrays. If one

has an array;

int a[5] [4];

250

c

c

c

Abacus Software SUPER C for the C-128/C-64

for example, a is first an array. The elements of this array are again

arrays, a [3] is an array and is treated as such. The elements of

this array are int elements. The index 3 in this expression means

that element three of the array a is being handled. The elements are

stored line by line in the memory of the object a, meaning that the

last index varies the fastest The first element is the array a [0],

then the array a [1], and so on.

If the * operator is applied to an array, the expression refers to the
first element (element 0) of the array. Note that when the number of
array elements is given in the declaration of an array, the elements
are counted starting at zero.

8.13.4 Conversion of pointer values

A pointer value can be converted to an integer value. In Super C the

type unsigned int is used. The conversion returns the

memory address in Super C.

An integer value can be converted to a pointer value. This is

different from machine to machine since larger computers require
that the address of an object be divisible by the SIZE. This problem

does not exist in Super C. In any case it is guaranteed that a
conversion from a pointer value to an integer value and back again

results in the original value.

8.14 Constant expressions

Constant expressions can be used, for example, after case, after

#if, in an enum specifier, and in initialization.

Constant expressions consist of constants and character strings
which can be combined with the operators:

sizeof - ~

and all of the binary operators except for assignment and logical

operations.

251

Abacus Software SUPER C for the C-128/C-64

+ -*/%$ | A

Parentheses can also be inserted. Calling of functions is not
allowed.

The addresses of already declared global or static objects can be
used as constants with the & operator. Array and function names
with indices and argument lists are also handled as constant
addresses.

8.15 Portability

Not only the value range of the various types need be noted when

transporting progams from one machine to another. The following

processing methods are open to the C compilers and, in order to
promote portability, should not be used excessively.

In Super C the order of the bytes within an object is always stored

from low to high, the least-significant byte first. The actual /*-

processing of register objects are handled as auto in Super V

C. The order of the evaluation of arguments need not proceed
strictly left to right

8.16 Differences from standard compilers

Although the Super C compiler understands almost all elements of

C, there are a few differences between it and some other compilers
which must be mentioned here.

Some compilers understand certain original language elements such
as =+ instead of +=. This was changed in later versions. The
Super C compiler does not recongnize these earlier constructions. If

a corresponding program is to be compiled, it must fit or be made

to fit the modern standard.

No lists of auto can be initialized in Super C. Each initialized V_

auto variable must be concluded with ;:

252

Abacus Software SUPER C for the C-I28/C-64

auto int x=5;

auto int y=4;

The two name classes for structure names and other names are not
realized in Super C. This is not really a problem though, since one

should not use the same name for two different things.

Super C also offers possibilities which other systems do not offer.

Do not use these in programs which are to transported to other

machines.

Addresses can be given as case constants. The specification of a

boundary character is possible when reading strings with scanf,

sscanf, and fscanf.

Some compilers do not recognize the construction while () as
an infinte loop.

8.17 Differences from the C-Compiler 64

The language scope of the Super C compiler has hardly changed

from from that of its predecessor Super C-64. Only some standard

functions and macro definitions have been changed in order to
realize better compatibility to UNIX:

stdio. h was called stdio. c

EOF was called EOI in C for the C-64

fgets was called gets

fputs was called puts

fgetf was called getf

fputf was called put f

The function inkey was removed.

The function CMOVE is now called cmove.

The return values of the functions strcpy, strcat, free,

and gets have changed.

253

S
G
T
T
A
&

T
A
B

1 A

C
T
R
L

R
u
n

S
T
O
P

c
e
r
t

2

S
H
I
F
T

L
O
C
K

A
r

S
H
I
F
T

3

1 4

E
a
-

Z
u

5

X
J

&

T
"
"

C
■

Y
"

S
I

H
|

B
S

1
o
b

3
1

N
|

a

H
1

L
I

p
.

}
I ;
^

?

J
S
h
i
f
t
«
?
"
c
e
□

S
?
A
C
E

O
R

H
o
n
e

=

S
H
I
F
T

t
N
S

K
L

R
E
S
T
O
R
E

R
E
T
U
R
N
!

t

T
H

T
6

C
c
h
a
r
a
c
t
e
r

s
e
t

S
U
P
E
R
C

V
-
2

c
r
o *
1

a

S
E
T
T
A
f
e

A

C
T
R
L

R
u
m

R
W
»

C
B
M

a

A

2 h

r

S
H
I
F
T

3

$

2
L

5

^
■

X
"*

&

T

C
■

#

y

9
1

V
"

O
1

H
|

8
%

9

1

3
1

N
1

S
H
I
F
T
S
f
t
C
S

S
t
V
N
C
E

M

■

4
- 0

°
-

1

L
1

<
:

1
t

|
C

3

\

%
V
k

*

■
a t

a

S
H
t
f
T

O
R

H
o
n
E

n

I
N
S

D
E
L

R
E
S
T
O
R
C

R
k
t
u
r
n

C
B
M

c
h
a
r
a
c
t
e
r

s
e
t

S
U
P
E
R

C
V
-
2

n
n

I o 3

8
A
L
T

L
O
C
K

U
M
c
F
n

N
O

1

c
t
r
l

r
u
n

s
t
o
p

S
H
I
F
T

U
J
C
X

&

fi

I
I Z

3

v
r

S
H
I
F
T

s

z

$

EJ
"

>
n

u
X

5

R
t

D
■

j

T

y
■

c
•
V

&

Y
™

S
I

8

H
|

1
■

3
1

N
1
M

1

<-

P
-

9

T
1

N

*

?
?

S
H
»
T
C
T
A
C
E
0

H
o
n
e

S
H
I
F
T

I
N
S

R
E
S
T
O
R
E

R
E
T
U
R
N

ft
%

C
c
h
a
r
a
c
t
e
r

*
\

f
h

K *
5

«1

5 Z

0

S •

+

t
o s n a
s

Abacus Software SUPER C for the C-128/C-64

1.3 Keyboard V3 CBM character set

<P

01

r

i

NO

lA N

•

ii

§L
rfVk

— 1

#

w OO

A*

in

#<*

r el

— T

or

or

i %

i

i
0-

1
o

1
—

1

1

1

Ul

T*

X

g

Of

II

-

X

■

a

■

a

1 r 1

it

A •

V «"

r

—

2

CO

■

■

VJ

X

J

N

35

U)

k

CO

s.
O

CC
U

e
CO

(I)
CO

<D
4J
O
to
u

<a

o

a

♦

+

a*

00

1

<o

in

a-

8
(A

N

r

•

c

— i

SV

4- +

w CO

- V

•$ in

s ri

— v

0/

i

r

i

i

I
Lo

1
r -

1

1

1
—. i-

1-
1 a

-i

1 *

-r

0 ^

X

• a

£

1

ii

~~ X

1 a

■

1 o
p

L

*~ X

11

fc

V •>

/ r

\ z

— a

■

X >
■

1 o

n

J

h
u

256

0
9

0
)

o0
3

S3

n
B
D
D
B
Q
Q
H
O
f
f
i
B

SB

^
x
>
-
m
~
-
«

—
«

*
■
«
•

•
<
■
■

-
-
"
-
»

□
*

S
B
&
E
D
D
a
0
S
C
j
Q
a
i
a
f
i
S
I
5
K
a
i
i
j
B
a
K

p
B

O
«
X

u
t
x
m
o
j
w
_
i
x
:
2
o

t>
v
-
a
£

•
-
—
^
j
*
-
,

E
c
o

Abacus Software SUPER C for the C-128/C-64

2.2 CTRL-codes V2

The following CTRL codes can be accessed by keypress and within

a program. We have included the corresponding key sequence and

the print codes in octal.

000

003

005

010

011

015

016

021

022

023

024

034

035

036

037

201

203
205

206

207

210

211

212

213

214

215

216

220

221

222

223
224

225

226

227

230

[STOP]

[CTRL]+[2]

[TAB]

[SHDFT]+{TAB}

[RETURN]

[CTRL]+[n]

[C-DOWN]

[CTRL]+[9}

[HOME]

[DEL]

[CTRL]+[3]
[C-RIGHT]

[CTRL]+[6]

[CTRL]+[7]

[CTRL]+[1]

[SHIFT]+[STOP]
[Fl]
[F3]

[F5]

[F7]

[SHIFTJ+ [Fl]

[SHIFT]+ [F3]

[SHIFT]+ [F5]

[SHIFT]+ [F7]

[SHIFT]+[RETURN]

[CRTL]+[1]

[C-UP]

[CTRL]+[0]

[SHIFT]+[HOME]

[SHIFT]+[DEL]

[CBM]+[2]

[CBM]+[3]

[CBM]+[4]

[CBM]+[5]

End character of strings

Stop-key

white

Tab (editor)

Set clear tab (editor)

RETURN key, Vi1

C-character set switch

Cursor down

Reverse on

Home

Delete

red

Cursor right

green

blue

orange

Fl

F3

F5

F7

F2

F4

F6

F8

CBMkey

white

Cursor up

Reverse off

CLR

Insert

brown

It red

dk. grey

It green

c

c

258

c

Abacus Software

231

232

233

234

235

236

237

[CBM]+[6]

[CBM]+[7]

[CBM]+[8]

[CTRL]+[5]

[C-LEFT]

[CTRL]+[2]

[CTRL]+[4]

SUPER C for the C-128/C-64

It green

It blue

It grey

It purple

Cursor left

yellow

cyan

2.3 CTRL-codes V3

The following CTRL codes can be accessed by keypress and within
a program. We have included the corresponding key sequence and

the print codes in octal.

c

c

000

002

003

005

007

011

012

015

016

021

022

023

024

030

033

034

035

036

037

201
203

204

205

206

207

[CRTL]+[b]

[STOP]

[CTRL]+[2]

[CRTLMg]

[TAB]

[LINE-FEED]

[RETURN]

[CTRL]+[n]

[C-DOWN]

[CTRL]+[9}

[HOME]

PEL]

[SHBFT]+[TAB]

[ESC]

[CTRL]+[3]

[C-RIGHT]

[CTRL]+[6]

[CTRL]+[7]

[CTRL]+[1]

[SHIFT]+[STOP]

[HELP]

[Fl]

[F3]

[F5]

End character of strings

Set bottom window

(80 column only)

Stop-key

white

Bell

Tab (editor)

Line-feed

RETURN key, \n'

C-character set switch

Cursor down

Reverse on

Home

Delete

set, clear tab

ESCAPE

red

Cursor right

green

blue

orange

HELP

Fl

F3

F5

259

Abacus Software SUPER C for the C-128/C-64

210 [F7] F7
211 [SHIFT]+[F1] F2

212 [SHIFT]+ [F3] F4

213 [SHIFT]+ [F5] F6
214 [SHIFT]+ [F7] F8
215 [SHIFT]+[RETURN]

220 [CRTL]+[1] white
221 [C-UP] Cursor up

222 [CTRL]+[0] Reverse off

223 [SHIFT]+[HOME] CLR

224 [SHIFT1+[DEL] Insert

225 [CBM]+[2] brown

226 [CBM]+[3] It red
227 [CBM]+[4] dk. grey

230 [CBM]+[5] It green

231 [CBM]+[6] It green

232 [CBM]+[7] It blue

233 [CBM]+[8] It grey

234 [CTRL]+[5] It purple

235 [C-LEFT] Cursor left
236 [CTRL]+[2] yeUow

237 [CTRL]+[4] cyan

C

C

c

260

c

c

c

Abacus Software SUPER C for the C-128/C-64

2.4 ESC-Codes V3

Escape sequences consist of pressing the ESC key and an

additional character. This sequence can be activated by keypresses

or in progrom codes. The ESC character is accessible in SUPER-C
with *\e', but this is not compatible with most C systems. For
"portable" code use f\33l which is the equivalent of ESCAPE.

[ESC], [1] enable C character set

[ESC], [2] enable CBM character set

[ESC], [@] erase screen from cursor position to end

[ESC], [a] Auto insert mode on

[ESC], [b] set bottom of window

[ESC], [c] Auto insert mode off

[ESC], [d] Delete one line

[ESC], [e] cursor off flash

[ESC], [f] curosr on flash

[ESC], [g] enable bell

[ESC], [h] disable bell

[ESC], [i] insert one line

[ESC], [j] jump to start of line

[ESC], [k] jump to end of line

[ESC], [1] scrolling off

[ESC], [m] scrolling on

[ESC], [n] REVERSE off (80 column)

[ESC], [o] INSERT, QUOTTSmRVS off

[ESC], [p] erase to end of line

[ESC], [q] erase to start of line

[ESC], [r] REVERSE on (80 column)

[ESC], [s] Solid block cursor (80 column)

[ESC], [t] set top of window

[ESC], [u] underline cursor (80 column)

[ESC], [v] scroll up one line

[ESC], [w] scroll down one line
[ESC], [x] switch 40/80 column screen

[ESC], [y] all TABs normal

[ESC], [z] erase all TABs

261

Abacus Software SUPER C for the C-128/C-64

3. Function Overview

This list should give all the functions in the SUPER-C libraries. s~

Keep in mind the following: v_

(like VI) when the function is identical to the older C-64
version,

(similar to VI) the functions are similar to the olderC-64 version.

(V3 only) available in version V3 only.

void erronO

void erroffo

void nmionO

void nmioffO

int qerrorO

void error(string#fnr)

char *string;

int fnr;

void cxit()

(like

(like

(like

(like

(like

(like

(like

VI)

VI)

VI)

VI)

VI)

VI)

VI)

c

file open(prim,sek,name,buffer (similaiar to VI)

int prim,sek;

char *name;

char *buffer; (optional)

file close(fd) (like VI)

file fd;

c

262

Abacus Software SUPER C for the C-128/C-64

c

c

c

int putc(c, fd)

char c;

file fd;

int fputc(c, fd)

char c;

file fd;

char getc(fd)

file fd;

char fgetc(fd)

file fd;

char getcharO

int putchar(c)

char c;

char *getsdine,n)

char Mine;

int n;

char *fgets(line,n,fd>

char Mine;

int n;

file fd;

int putsdine)

char *line;

int fputs(line,fd)

char *line;

file fd;

int fgetfdine,n,fd)

char Mine;

int n;

file fd;

(like VI)

(like VI)

(like VI)

(like VI)

(similaiar to VI gets)

(similaiar to VI puts)

(like VI getf)

263

Abacus Software SUPER C for the C-128/C-64

int fputf(line,n,fd>

char *Une;

int n;

file fd;

file fopen(name,mode)

char *name, *mode;

file fclose(fd)

file fd;

int strlen(str)

char *str;

int strcmp<str1,str2)

char *str1,*str2;

int strncmp<str1,str2,n)

char *str1,*str2;

int n;

char *strcat<str1,str2)

char *str1,*str2;

char *strncat(str1,str2fn)

char *str1f*str2;

int n;

char *strcpy(str1,str2)

char *str1,*str2;

char *strncpy(str1,str2,n)

char *str1,*str2;

int n;

char *strchr(str,c)

char *str# c;

(like VI)

(like VI)

(like VI)

(like VI)

c

c

(similaiar to VI)

c

264

Abacus Software SUPER C for the C-128/C-64

c

c

c

char *strrchr(str,c)

char *str, c;

void cur8or(Une,pos) (like VI)

int line, pos;

void exec(string)

char *string;

void cmove<target,n,source) (like V1CM0VE)

char *target;

int n;

char *source;

void move(target,n,source,mem) (nur V2) (wie V1)

char *target;

int n;

char *source;

int mem;

char *alloc(size)

int size;

char *free(size)

int size;

char *settime(string)

char *string;

char *gettime()

int keys<string)

char *string;

long call(p)

char *p;

void fastO

(like VI)

(like VI)

(V3 only)

265

Abacus Software SUPER C for the C-128/C-64

void slow() (V3 only)

void window(lcol,tline,rcol,bUne) (V3 only) _

int lcol,tUne,rcot,blfne;

char vdcin(reg) (V3 only)

int reg;

void vdcout<reg,c) (V3 only)

int reg;

char c;

void io»out(adr,vaL,colram) (V3 only)

char *adr,val;

int coIram; (optional)

char io»in(edr,colram) {V3 only)

char *adr;

int co I ram; (optional) f~

int is80() (V3 only)

void graphic()

void graphonO

void graphoff()

int isgraphO

void backgr(colexfcolbk)

int colex,colbk;

void clrmap(cnr)

int cnr;

void colors(col1#col2,col3) I
int col1fcol2,col3;

266

Abacus Software SUPER C for the C-128/C-64

void Betcol(col)

int col;

void dot(x,y)

int x,y;

int dotin(x,y)

int x,y;

int bdot(x,y>

int x,y;

void Une(x1,y1,x2,y2)

int x1,y1fx2,y2;

void bline(x1,y1,x2fy2)

Int x1#y1,x2fy2;

/^ char *roline(x1#y1,x2,y2,put)

int x1,y1,x2,y2;

char *put;

char *oline<x1,y1fx2,y2,get)

int x1,y1#x2,y2;

char *get;

void setplot(xfy)

int x,y;

void plot(xfy)

int xfy;

void shape(x1#y1,x2fy2)

int x1#y1,x2,y2;

CvoidfUt(x,y)

Int x,y;

267

Abacus Software SUPER C for the C-128/C-64

char *pushobj(x1ly1,x2,y2,put>

int x1#y1,x2,y2; f~
char *put;

char *plotobj(x1fy1,x2,y2,get)

fnt x1fy1,x2,y2;

char *get;

char *fplotobj<x1fy1#x2,y2lget)

int x1#y1,x2,y2;

char *get;

char *bplotobj(x1#y1#x2,y2,get)

Int x1fy1,x2,y2;

char *get;

char mapv(x,y)

int x,y;

double sin(d) ^
double d;

double cos(d)

double d;

double ton(d)

double d;

double atan(d)

double d;

double abs(d)

double d;

double sgn(d)

double d; /~

double rnd(d)

double d;

268

Abacus Software SUPER C for the C-128/C-64

C

c

double sqr(d)

double d;

double sqrt(d)

double d;

double log(d)

double d;

double exp(d)

double d;

int isupper(c)

char c;

int islower(c)

char c;

int isalpha(c)

char c;

int isdigit(c)

char c;

int isspace(c)

char c;

char tolower(c)

char c;

char toupper(c)

char c;

c

269

Abacus Software SUPER C for the C-128/C-64

4. Listing of the header Hies

V2: stdio.h

1 /* library headerfile for 'libel' and 'libcs.l' */

2 /* C-Coapiler V2 Super-C ♦/

3

4 idefine STDIO 0

5 idefine NULL 0

6 idefine CR '\n'

7 idefine CRSUP '\221'

6 idefine CRSDOWN '\2i'

9 idefine CRSRI6HT '\35'

10 idefine CRSLEFT '\235'

11 idefine DELETE '\b'

12 idefine INSERT \224'

13 idefine HOKE '\23'

14 idefine CLR '\223'

!5 idefine REVERSQN '\22'

16 idefine REVERBOFF r\222(

1?

19 idefine NIL 0

i<? idefine EMPTY Vtt

20 idefine MAXINT 32767

21 idefine HAXL0N6 2147483647L

22

23 idefine ST (*(char*)0x90)

24 idefine EOF (ST & 0x40)

25

26 idefine putcharU0) putc(X0,STDIO)

27 idefine caove()ll,X2,X3) BOve(XlfX2,X3,0x35)

28

29 typedef int file;

30

31 extern file openOjCloseO^openOjfcloseO;

32 extern int putcO,getc()^getcO.fputcU;

33 extern char *gets(),*fget&0;

34 extern int puts(),fputs(),fgetfO,fputfO;

35 extern void erron{),erroff0vnsian()fnsioff0;

36 extern void error!)fexit0;

270

Abacus Software SUPER C for the C-128/C-64

c

c

c

PA6E: 2 stdio.h

DATE: 4/21/86

37 extern int qerrorOj

38 extern void cursor(},iove(),exec();

39 extern int strlenO,strcap(),strncapnj

40 extern char ♦5trcat()listrncat(),»strcpyO,*strncpy();
41 extern char *strchrO,*5trrchrO;

42 extern char *allocO,tfree<);

43 extern char *settiae(),tgettine();

44 extern int keysO;

45 extern long callO;

46

47 extern void printf(),sprintf(),fprintf0;

48 extern int scanfO, sscanfO, fscanft);

53 char Uscreen)[483 = «*»(,»;

51 char ({color)E48J = 0xd808;

52 char (icharraal)[83= Bxd000;

53 char (tcharrao2)[83- 0xd800;

54

55 char getcharO

56 (char c;

57

58 Hhile((c=getc(STDI0)>==8);

59 return c;

68 }

61

271

Abacus Software SUPER C for the C-128/C-64

V3: sthdio.h

1 /# library headerfile for 'libel* and 'libcs.T §/

2 /* C-Coopiler V3 Profi-C/Super-C t/ f~
3 V~

4 idefine STDIO 0

5 idefine NULL 0

6 idefine CR '\n'

7 idefine CRSUP '\221'

8 idefine CRSDQKN '\2i'

9 tdefine CRSRI6HT '\35'

10 «define CRSLEFT '\235'

U idefine DELETE '\b'

12 ftdefine INSERT '\224'

13 «define HOME '\23'

14 fldefine CLR '\223'

15 idefine REVERSON '\22'

16 fldefine REVERSOFF \222*

17

18 idefine NIL 0

!9 tdefine EKPTY BB

20 idefine MAXINT 32767

21 idefine HAXLONG 2147483647L

22

23 idefine ST (*(char*)Bx9B)

24 idefine EOF (ST & 0x40)

25

26 idefine putchar(X0) putc(X0,STDIO)

27

28 typedef int file;

29

30 extern file open0,closet),fopen(),fclose0;

31 extern int putcOjgetcO^getcOjfputcU;

32 extern char *getsO,*fgetsO;

33 extern int putsO.fputsO^getf(),fputf0;

34 extern void erron(),erroff O^oionO^aioff0;

35 extern void errorO,exitO;

36 extern int qerrort);

37 extern void cursor(),coovet),exec()j

38 extern int strlen(),strcapO,strncQp()5

39 extern char tstrcatUjHtrncatO^strcpyO^strncpyO;

272

c

c

c

Abacus Software SUPER C for the C-128/C-64

PAGE: 2 stdio.h

DATE: 4/21/86

40 extern char *strchr{),*strrchr();

41 extern char *alloc(),*freeO;

42 extern char f5ettiae(>,tgettiie();

43 extern char io_in(),vdcin();

44 extern int is8B(),keys();

45 extern void io,out(),vdcout()^ast()f5loH()tHindoH();
46 extern long callO;

47

48 extern void print* (),sprintf 0,fprint!0;

49 extern int scanfi), sscantt), fscanfU;

58

51 char («screen)[40] = 0x8400;

52 char (tcolor)[40] = 0xd880;

53 char (*charraal)[83= 0x1080;

54 char (*charraa2)[8]= 0x1000;

55

56 char getcharO

57 { char c;

58

59 while((c=getc(STDIOI)==0);

60 return c;

61 }

62

c

273

Abacus Software

V2: graphich

PAGE:

DATE:

1

2
7
i)

4

5

6

7

8

9

10

11

12

13

!4

15

16

M

18

19

28

21

22

23

24

25

26

27

28

29

38

31

32

33

34

35

36

SUPER C for the C-128/C-64

1 graphich

4/21/86

/» headerfile for 'libgraph.r */

/t C-Coapiler V2 Super-C */

extern void graphic!)vgraphon(),graphoff();

extern void backgrO,colorsO,clniap(),5etcolO,fill()5

extern int dot0,dotin(),bdot0;

extern int line()fbline0,5hape0;

extern int i5graph(),setplot(),plot();

extern char aapv<),taline()T*oline();

extern char *plotobj(),ftpushobj();

extern char tbplotobjl),HplotobjO;

extern char nask, *b»ap;

idefine black %

Idefine white 1

idefine red 2

idefine cyan 3

idefine purple 4

idefine green 5

idefine blue 6

idefine yellow 7

idefine orange 8

Idefine brown 9

idefine pink IB

idefine dgrey 11

idefine grey 12

idefine 1 green 13

idefine lblue 14

idefine Igrey 15

char (*videoK4B]=BxBc0B, /* Video rae in Graphic-Mode

ftbitoap^BxaBBB, /t Bit map in Graphic-Hode

*vic=Bxd088; /♦ Base address Video Interface

c

c

c
Chip */

274

c

c

c

Abacus Software SUPER C for the C-128/C-64

V3: graphich

PAGE: 1 graphich

DATE: 4/21/86

1 /§ headerfile for libgraph.l */

2/* t/

3

4 extern void graphic!) ,graphonO,graphoff0;

5 extern void backgrOjColorsOjClrQapOjSetcolOjfillO;
6 extern int dot(),dotin(),bdotO;

7 extern int line(),blineO,shapeO;

8 extern int isgraphO,setplotUvplDt();

9 extern char fiapv<),tfilineU,*oiine<);

10 extern char *plotobj(),*pushobj();

11 extern char tbplotobjO.ffplotobjO;
12

13 extern char aask, fbaap;

14

15 Idefine black 0

16 Idefine white 1

17 idefine red 2

18 idefine cyan 3

19 Idefine purple 4

28 idefine green 5

21 idefine blue 6

22 idefine yellow 7

23 idefine orange B

24 idefine brown 9

25 idefine pink 10

26 idefine dgrey 11

27 idefine grey 12

28 idefine lgreen 13

29 idefine lblue 14

30 idefine lgrey 15

31

32 char (*video)[40J=0xe00B, /# Video rant i» Graphic-Hode if

33 ♦biteap=0xc000; /♦ Bit map of Graphic-Mode */
34

35

36

275

Abacus Software SUPER C for the C-128/C-64

V2/V3: ctype.h

PAGE: 1 ctype.h V~
DATE: 4/21/86

1 /0 headerfiie 'ctype' ♦/

2 /t C-Coapiier V2/V3 Super-C */

3

4 idefine isupper(X) (X>='A' It X<='Z')

5 «define islcwer(X) (X>=V & X<=V)

6 Idefine isalpha(X) UX>='A' It X<='2')!(X>=la' It X<='2')!X==' i

7 idefine isdigitlX) (X>='(T k X<='9')

8 idefine isspace(X) (X==' '!X==4 '!X=='\tliX=='\n<:X=='\r')

9

IB Idefine toloMer(Y) dsupper(Y) ? Y It 0x7f : Y>

11 idefine toupper(Y) (isloMer(Y) ? Y i 0x80 : Y)

12

13 /* header file 'ctype' */

c

V2/V3: math.h

PA6E; 1 oath.h

DATE: 4/21/86

1 /t headerfile for 'libaath.l'

2 /* C-Cocpiler V2/V3 Profi-C/Super-C

a idefine PI 3.14159265359

ci Idefine E 2.71828182846

t

1 extern double 5in(),cosD,tan();

3 extern double atan(),absO,5gn();

9 extern double sqrOjSqrtj

10 extern double log(),expO;

11

12

276

c

c

Abacus Software SUPER C for the C-128/C-64

5. Listing "textc"

PAGE: 1 text.c

DATE: 4/21/86

1 He can display 16 colors

2 on the screen. The source text does

3 not produce thei. The colors

4 are used to high-light the cost important

5 lines of the source text.

6

7

8

9 Color list:

10 CBH+1 black

11 CBH+2 Hhite AAblackAA

12 CBH+3 red

13 CBH+4 cyan

14 CBH+5 violet

15 CBH+6 green

16 CBH+7 blue

17 CBM+8 yell on

18 CTRL+1 orange

19 CTRL+2 broMn

20 CTRL+3 light red

21 CTRL+4 dark gray

22 CTRL+5 gray

23 CTRL+6 light green

24 CTRL+7 light blue

25 CTRL+8 light gray

26

27

28

29 The Editor can display two character sets:

30

31 the BASlC-character set and a

32 special C-character set

33

34 !°m&1O*+,-./B123456789:;<=>?

35 §abcdefghijklonopqrstuvHxy2[\]A

36 ^ABCDEFGHUKLMNOPQRSTUVWXYZd}^

277

Abacus Software SUPER C for the C-128/C-64

PA6E: 2 text.c

DATE: 4/21/86 f~

37 —and 2 x 32 Graphic characters

38

39 With CSHIFTHECBH3 (64) or [ESC] [1/23 (12B) it is possible to switch

48 between the two character sets.

41

42 The character set includes the following

43 special C-characters: \ A { J } *

44

45 tihen in the CBH-character eode, it Mill

46 be difficult to find the special C

47 characters, please use the C- character oode.

48

49 The Characters; _ is done nith left arrow key

:e (CSH1FT3 k [Q] on 64)

51 and the Left-arrow key (64 oniyiis the

52 Editor TAB key. TAB SET and release is

53 done by using [SHIFTHUeft-arrow] (64 only) [SHIFT! + [TABJ (128 only)

5* To obtain the character ! use the

55 iC=J+M.

56

57

58 These lines stand at the start of our goal.

59 Our goal is to stark a block once.

60 Set the goal line of the previous line.

61

62

63

64 This line is the end of the Block ttm#fttt*t*tmtftf«t«mttft*ttttft*

65 This is the beginning of the text block that we will erase

66

67

68 GREEN

69

7B Block to be erased only

71

72 has

278

Abacus Software SUPER C for the C-128/C-64

c

c

c

PAGE: 3 text.c

DATE: 4/21/86

73

74 one

75

76 Nuober

77 1

7B 2

79 3

8B 4

81 5

82 6

83 7

64 8

85 9

86 Block to be IB

87 erased 11

36 12

S? 13

90 14

91 15

?2 16

93 17

54 IB

95 These are the last lines of the block

96 that kb Mill erase with the erase coaoand »> line 95 <«

97 This Text is after the block we

98 Mish to erase.

99

100

101 This line is before the blue text block

102 Here begins the Block for soving.

103

104 2. . 0.0.20

105 H.) }}} ft.

106 l%=l=-:-:l -

107

279

Abacus Software SUPER C for the C-128/C-64

PAGE: 4 text.c

DATE: 4/21/86

109 This is the last line of the blue block.

Ufl This line is not in the blue text block

ill

112 This is the next line to the 'last line'

113

c

280

Abacus Software SUPER C for the C-128/C-64

c

c

c

5. Listing "sample.c"

PA6E:

DATE:

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

17

18

19

2B

21

22

23

24

25

26

27

28

29

3B

31

32

33

34

35

36

1 saople.c

4/21/86

iindude "stdio.h"

idefine CASE(Z) case '\Z': printfim'\\V D);break

oaint)

(char c;

putc(CLR,STDlQ);

putsCDisplay the value for key pressed\nn,5TDI0);

NhileO

{

c-getchar();

char cj /*This line is incorrect*/

printf("Character: ");

if((c tt Bx7f) >= 0x20)

if(c==\\' !! c=='\" ii c=='\H')

printff'WZc' n,c);

else

printf(D'Xc' B,c);

else

} /«This line is incorrect*/

switch(c)

{

CASE(n);

CASE(t);

CASE(f);

CASE(r);

CASE(b);

default! printfC'WXo' a,c);break;

}

printf("\nASC-Code: I3d BXZ02x BX-SoNnXn"^^^);

}

}

281

Abacas Software SUPER C for the C-128/C-64

Index

address,81, 82 /-

alloc(), 175 L
arguments, 72

arithmetic, 52, 83

arrays, 45, 81, 84, 85, 87, 88, 250

assignments, 56

atan(), 205

auto, 76, 210, 213

autoexec

B-version, 34

backgr(), 191

bdot(), 192

bit operations, 55, 226

blineO, 195
block, 61, 129 ,239

block commands (editor), 21

boot, 5, 116 s~

bplotobO, 199 L
break, 66, 66

C-command processor, 131

C-program, 140, 159

c-system, 117

cl, 117,118

call(), 177
case, 251

CAST

cc, 30

CCP, 6

ce, 15

char, 47, 182,211,230

cl

close(),166

clrmapO, 191 r
cmove(), 174 (
colors(), 191

com (resid.), 7, 110

282

c

c

c

Abacus Software SUPER C for the C-128/C-64

commands

editor, 15-26

RAM disk, 121

CCP, 155

processor, 144

resident, 6

transient, 8, 111
component, 91

conditional evaluation, 57

constants, 49

control string, 125

control structures, 60,150

continue, 67,242

copy, 10,112

cos(), 204

cursorO, 173

default, 241

#define, 246

declarations, 74, 86,90,229,234
declarator, 233,234

decrement, 54

device (prg), 8,105, 111
dir (resid), 6,109

directory (editor), 135

do, 66, 240

dot(), 192

dotinO, 192
double, 40,182, 230

editor commands, 123

else, 248

#else, 248

end (resid.), Ill

#endif, 248

enum, 236,251

EOF, 97,187

erase (editor), 21,132

err (resid.), 6-9, 139

erroffO, 156,165
erronO 156,165

errorO 156,165

283

Abacas Software SUPER C for the C-128/C-64

exitO, 165
exp(), 173, 206

extension, 106

extern, 213

f, 114

fast (resid.), 110

fastO, 178
fclose(), 170

fgeteO, 168
fgetf(), 169

fgetsO, 169
filename (editor), 105,134

fillQ, 198
float, 182, 211, 230

fopen(), 170

for, 44, 65, 240

format instructions, 40,180

fplotobjO, 199

fprintfO, 168

fputcO, 168 (
fputfO, 169 v-
fputs(), 169

freeO, 175
fscanf(), 186,188

functions, 69, 92, 95

getc(), 168

getcharO, 38,168

gets(), 169
gettime(), 169

goto (editor), 22

goto, 68, 240

graphicO, 190

graphoffO, 190

graphon(),190

hunt (editor), 24

if, 61, 241

#IF, 247

#ifdef, 247

284

Abacus Software SUPER C for the C-128/C-64

#ifhdef, 247

#include, 38,247
iC increment, 54,

initializations, 76,236

int, 185, 237

io_inO, 179
io out(), 179
is80(), 179

isalpha(), 190

isdigitO, 190
isgraphO, 190
islowerO, 190
isspace(), 190

isupperO, 190

keys(), 128,177

kill (editor), 134

labels, 68,242

library, 33,163,164,189

lineO, 195
linker option, 150,162

linkfile, 27

load (editor), 20,133

log(), 206

long, 230

loops, 41

lram, 10,13,115

lvalue, 40,219

macro, 79,80

mapvO, 201, 245

mathematical functions, 222,223
memory classes, 51,162,202

mlineO, 195
monitor, 109

move (editor), 22,133

move(), 174

names, 48,232

new (editor), 15,135

NMI, 157

285

Abacus Software SUPER C for the C-128/C-64

nmioffO, 100, 156, 165
nmion() 100,156,165

object, 39

global, 51,73

local, 51,76

olineO, 195
open(), 166

operand, 219

operators, 53

arithmetic, 52

logical, 52

precedence, 58shift-

parameter, 128,234

Pascal, 1,38

plotO, 197
plotobjO, 199
pointer, 1, 81,85,87,88,250

preprocessor, 245

print (editor), 136

printf(), 38, 180

program file, 27, 96

program structures, 69

pushobj(), 199

putc(), 168

putcharO, 168
puts(), 169

RAM disk, 13, 106, 119, 121

register, 76, 213

replace (editor), 132

return, 242

save (editor), 19

scanf(), 184,188

screen colors, 18

set (resid.),108, 110

setcol(), 191

setplot(), 197

settimeO, 176

shape(), 198

286

c

c

c

Abacus Software SUPER C for the C-128/C-64

short, 230

sin(), 204

size, 251

sizeof, 251

slow (resid.), 111
slow(), 178

sourcefile, 27

sprintf(), 180

sqr(), 206

sqrt(). 206

sram, 115

sscanf(), 184

starting Super C, 5,103, 104

static, 45,213

stdio (prg), 13, 37, 98
strcat(), 172

strchrO, 173

strncmpO, 171

strcpyO, 172
string, 129, 187, 212

strlen(), 171

strncat(), 172

strncmp, 172

strncpyO, 173
strrchr(), 173

struct, 235

structure, 89,90,92,93,249

switch, 63,241

symbolic constants, 44

sysgen, 115, 116

tan(), 205

text field, 16,209

time (resid.), 110
tod (resid.), 110

tolower(), 208

toupperO, 208

transfer (editor), 23,130,132

types, 48, 118,214

type conversions, 54,230

typedef, 95

287

Abacus Software SUPER C for the C-128/C-64

#undef, 246

union, 231, 249

UNIX, 1, 106, 253

unsigned, 251

variant, 89, 94

vdcin(), 178

vdcout(), 178

while, 42, 64, 239

windowQ, 178

c

c

c

288

WOT
BOOKS

Abacus^^HSoftware

MAd o*lo pnMoM fto tin OM al no kaWo MeNiaSoa oa
-*-) i|»l>iy ipMctt awipMa BASK 7.0. T»«» •ikKallM Ma*

' "iMOMWMOnMO book k) conk* wtt coanomd
i a»d oommoMod BASKS foAOM tri Cte
mltt* •«

FM4 wtt Wo tor ovonjOM. CoMra
10 cofcm* W-ro» frapfdo. wto-

ratton ipikt Mflm pro
wtt coanomd Ootoe.iwKwfbroul.M

trig*. Conteg rautton, ipikot. Mflwm pro-
IIM8 »c*K,MMttithg. KCw JIMS

totMrnr guk)» tor ante* * ad-
vaacad lam. Co*o» laqjoMkl • Ofep
MEW CM, a drad kom* con). d^
and*. OmciIm* DOS laMhM. M
Cdia tIMS

Utfli todomonafc d CAO wMw
fefaMDl

ggBfiHBffi H

■ lo proofMilna: pnOwm . . .

i; aeicugft OMeripilort el «■ qX*.+!Bm. tny «nO u»»lui
; immmi win hundradi ol (Kftafcijoooa no cpMtUng •««*<»,

wtmpW; wewrw comrmwdi: utt- ttMM. nro-ptgo. poMora. Uio
tlM;rajcamgra, $10 *J BAWOtawpwMrend more. tlSH

ANATOMY Of C-a« teaVhwi. gujdo » ftp tPJCK. . W« »« C^4 CoHorton ot

r: .!??"?*• _y^. yyf** r^^"* o«i»-»-uio Wdmlquos: aduancod gtophlca.

•Walirftgo. *90ap IIMS cPALnoro. ETapp I1»*»

1««l REPAIH * MMNTEMAHCe
Handbook ooKtfcot Ino dtak drivo kord-

war*. Indwdw oJmnaiica and lodinkiuoa
k)kooplS4tnn>lng. tOOpp Sl».M

AOVAMCEO MACMIRt LAHQUAOE

KaCa NnMkeok

c

ttlM

MACKME lANOUAQE C-«« Loom
MIO ooo* wito IM program*. Many *a»

pin and tumgi tor am(*u» umntiir.
■onkx. ••kauMx. tWap II4JJ

CRAWCS BOOR C-*» • bad rofanwea

covon ba*k) and advanced grapMca.

Spcto*. antaailon. Hlrai, MoMeotor.

SO-graphlca, rRO. CAO. pro-
UOpp HIM

d»pd> fciBo to cwnpuww In odonoo. Toplca; 8wp*y-»ap gyldo lo dialgnhg ardwrMng
, pnyMBS. vIOlOQJft BttfOA#wRya yOUf Own OtMtMUlO QOJIIMa WWi OlrOMMtfM

t*Spp tIMS ttmtm gaw o»mra»r. ttOpp S14JS

latPCEK.gtrMo: raany
pmgnm. Hgk opood opoiallng OfOwa

bwirapO. tknort. dodo. HO. rod «r»o.
i*mm^Ap^g)fj_poro. fttOpp SldS

MUrtER BOOK C4«VIC.a. Undar-
•tand Cowmodoro. Epoon<awpdkra prM-

ora and 1S30 pkwar. Pockod: uOHm; gi*-

pMcs dump; JO-ploC ojanmnntf MPSaOt

ISEAB FOR USC ON C-U TkaaMa:

aunoipMaaa.oalaMar.rackiaao.oodi
too, «m pk«M«. id drtfe

iler fcaoka

COkVOER BOOK C-UIC-\t» Al fM
nood to know about compaim: kow tSoy
work: dotlgeing and witlng few awn;

gonataUig BacMna oadt. Wlh working

ki ••ott «f oar trttifrt «•

ablo an tfMoCM loM -M ttM onlorha
Bom fcqn your fcnteard. »odrywnod

bAtM tl4Moac*

SHH2XXX1

Abacusliil Software
P.O. Box 7219 Dept H8 Grand Rapids, Ml 49510 ■ Telex 709-101 -Phone (616) 241-5510
Optional diskettes ratable for al book tttes - $14.95 each. Other book* ftaoftwareaJtoav-Jable. Call fot the r-OT

nearest dealer. Or order dfrectV from ABACUS using your MC. Visa or Arnmcaid Add $4i» per o«der for shlppirHi. Foreign

orders add $10.00 per book. Cal now or write for your free catalog. Dealer inquires weloonie-over 1400 ds«]enruiJoriw<de.

BASIC
Compiler

Giveyour BAStC programs tho tpood
and parfoimanoo mey dosorvo

4
p

^v* Of^VU **P* y*WW PC9*

grams Si to 35x. Many
options: Haxlbla rrwmory

manaaamant: diolea of
compiling to macWna
coda, compact p-coda or
both.*128v««ton?40orl
Wcolumn monitor output

and FAST-moda opara-
ten. '128 Corpawt «|.
tansiva eo-paaa pro-
erammai's Qidda covors
compEter dlracfivaa and
opti two Itvots of

Ramarkabty aasy-t»-use
intaractfva drawbq pack-

For school or aoftwara
davatoptnent. Laam C on
your Commodora wfeh our kv

dapth tutorial. CompBa C pro-

Orams Into /asf maehlnaO

languaga. C-129 vartton haa

addad fa

g

faaturaa:

oparailno ayctam: OOK RAM

tffek for fast adltlng and

compOng Unkar comUnaa

up to 10 tnodulas: Cotnbina

MA. and C using CALL; S1K
avaflabto for obtod coda;

Fast loading (8 aac 1571.18 aac. 1541): Two standard VO Qbrarya ptus
twoad«£ltof^tt)ririo»-ma^tunctkm(t^cc».aqrt.ota)A20*flf^
commands (Bna. O. dot. ate). C.12S $59.95

C44 $59.95

Easily craata profosstoflAl

filgn ojuallty ctutns and

graphs without pregfonuning.

You can immadtataly changa

4
Ing iMturat to craata

output tot!

trixprintara.
il

you to input vfahavboard
i Oghtpan.

to
or high quaQty gp
Two o/aphic acrtans tor
COPVlnafromona
othar. DRAW,UTC,
CIRCU. ARC. EUPSE
ovaJtobtt. FILL obtoet*

TERNS: add TEXT: SAVE and RECALLdi>$Ad£E
^ f bWbto ih U OBJECT

C-121$69.98

C-64 $19.98

Not Just a oompUar. but a

nplatasystamfcydavatap-

Ing applications In Pascal

with graphics and sound

leaturos. Exlansiva adilor

soarch. rsptaca. auto,

fast machina coda, tf you

want to htarn Pascal or to

davatop aoflwam using tty—

bast tools avaSabto-SUPB

Pascal Is your first chotcl
C-64 $59.98

bar fJOng. ate to suft your

naads. Acoapta data from

CateRasuM and itMPXan.

C-128 varsfan haa 3X tha

laaobtion of tha *64 varaton.

Outouta to most prtrtara.
C12S —

OTHER TITLES AVAILABLE:
OOBOLConvOw

Now you con w&nt COBOL* tna^afest widoly usod

prografTtlnQ longuago, otkMm^PISBDL on your 64. COBOL
Is easy to team becauseJR^WW road. COBOL Comptter

k itpS di CQ tt

and SyfriboQc Dobupjc^of.

x, CompQer, Interpreter

C-64 $39M

tdPortfoQoUai

On* of the most powerful spreadsheets wtth fntegratod

graphtet, Indudes menu or keyword selection*, onQne hefp
mxwmim, dbxi prDxecoon. wuioowtng, tny Tuncuons sna more.

PowerGraph, the graphics package. Is Included to create
InteBroSodgnaphsefKtcriarts. C-64 SM.05

Analysis System for the C-64
jOerforfi ~ "Ada CompQer for the C-64

VIdeoBasIc Language for the C-64

$59.95

$39.05

$39.95

Complete portfolio management system for the Individual or

professional Investor. Easily manage your portfolios, obtain

up-to-tho-mtnute quotes and news, and perform selected

analysis. Enter quotes manually or automatically through

Warner Computer Systems. C-64 $39.98

Xper
XPER Is the first 'export system* for the C-128 and C-64. WhSe

ordinary data base systems are good for reproducing facts,

XPERc^doffvoknovi^odgofroniamount^noffactsandbo^

you make expert decisions. Large capacity. Complete with
editing and reporting. C-64 $59.93

re c
Phone (616) 241-5510P.O. Box 7219 DeptM9 Grand Rapids, Ml 49510 • Telex 709-101

Cal now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)

241-5510. Other software and books are avaBabto-CaU and ask for your free catalog. Add $4.00 for shipping

per Older. Foreign orders add $12.00 per Elem. Dealer Inquires wefcome-14G0+ nationwide.

c from Abacus

AbjcuififflSHSoftware

Detailed guide presents the I We CHUM mild* Intormsfloa oo FiaodwUi into tor everyone. Conn Insiders' guide loi novice * «c>- Leam fundamentals el CAO while
operating system, explains graphic BASIC 7.0. This eihaustive hand- 60 column hi-res graphic*, win- vanced users. Covers sequential * developing your own sysiem. Design
chfes. Memory Management On*. M bock b complete win commented dowlng, memory layout. Kernel relative tile». * «rea acceu com- objects on your screen to dun? to e
eoumn graphics and commented BASIC 7.0 ROM tilings. Coming routines, sprites, software pro- mands. Describee DOS routines, printer. Inckides listing* lor "84 win
ROM icings BOOpp HOBS SumWtt $10 05 Helton,eulosaning. 300pp SIOOS Commented Istings. SIOOS Simon's Basle. joepp uses

AbacusQmSoftware AbacusHJUflSoflwirc

Introduction to programing: problem Presents, doiens ol programming
enarysa: thorough description c4 all r*iick-niner« Easy and useful
BASIC commands with hundreds of
eiampui; monisor commands: uti).

ties, rruch more

techniques on the operating system,

, stacks. i«ro page, poiniers. the
SIS OS BASIC interpreter and more. StsOS

Essential guide lor everyone Inter-
etled In CP/M on Hie tit Simple
•ipunuoo ol the operating system,

memory usage, CP/M utility pro

grams, subrrct fita 4 mor» $1003

ANATOMY or C44 Insiders guide to the

«4 Memals. C<aphlce, sound. K). kemat.

meaory mape, more. Complete commented

ROU bungs. S

ANATOMY

handbook on

eiample* and

IS4I ROM HB

MACHINE LANOUAOC

»5IO code write last programs. Many sam

ples and Bstings lor complete assembler,

monrar, » simulator. 200pp H*M

ORAPWC8 BOOK CM • best reference

covers basic and advanced graphics.

Sprues, animation. Hires, Multicolor,

licjhtpen, 3O-graphlcs, IRQ, CAO, pre-

tectsne. curves, more. ISOpp StO.M

TRICKS « TIPS FOR C-«4 Collection ol

easy-to-use techniques: advanced graphice.

improved daia input, enhanced BASIC.

CfVU.mwe. Z7lpp 110*5

SCICNCtVENOINEERINO ON C-«4 In

depth mtro to computers In science. Topics:

chemistry, physics, biology, astronomy,

eleouoniot, others. IWpP S10.0S

Handbook describes the disk drive hard

ware. Includes schematic* and techniques

to keep 1541 running. JOOpp SIO.OS

ADVANCEO MACHINE LAHOUAOE
Not covered elsewhere: - video controller,

interrupts, timers, clocks. VO. real time,

eoended BASIC, more. JIOpp SI4.0S

PRINTER BOOK C-«4fVIC-2« Under

stand Commodore. Epson-compattiie print

ers and 1S30 plotter. Packed: unities; gra

phics (Jump; 30-plol; coflimented MPS40I

ROM listings, more. *Mpp SI 0.0S

Comprehensive guide; many sample

programs. High speed operating system

last lie bating and saving. »5pp SI4.0S

IDEAS FOR USE ON C-64 Themes:

auto eipenset, calculalor, recipe lie. stock

kits. d»! planner, window advertising,

others. Indudee ladings. lOOpp S12.0S

COMPILER BOOK CM/C-1M AD you

need lo know about compilers: how they

work; designing end writing your own;

generating machine code. With working

oiamcto compiler. WOpp SI 0.03

Adventure OsmewrHer'e Handbook

Step^y-ttep guide lo designing and writing

your own adventure games. With automated

adventure game generator. MOpp SI4.0S

PEEKS 4 POKES FOR THE C 04

Include* In-depih eiplanalions ol PEEK,

POKE. USR. and other BASC command*.

Leam the "Inside" tricks to get the most out

olyeur-M. JOOpp SI4.0S

Optional Diskettes lor book*

For your convenience, the programs
contained in each ol our bocks are avaB-

abte on cUkette to save you time entering

them from your keyboard. Specify name of

bock when ordering. (14.03 each

we»id«nana or Comedo* BueMei UedwiM toe.

r AbacustanSoftware
P.O. Box 7219 Dept.M9 Grand Rapids, Ml 49510 • Telex 709-101 - Phone (616) 241-5510
Optional diskettes available for all book titles • $14.95 each. Other books & software also available. Call for the name of your

nearest dealer. Or order directly from ABACUS using your MC, Visa or Amex card. Add $4.00 per order for shipping. Foreign

orders attf tio.OO per book. Call now or write for your free catalog. Dealer inquires welcome-over 1400 dealers nationwide.

