COMMODORE® $128^{\text {m/ }} / 64^{\text {m }}$

CD128-405

:

CONTAINS 2 SEPARATE DISKETTE PROGRAMS

 Side 1 C-128, 80 Character Screen - 64 Column Spreadsheet. Side 2 C-64, 40 Character Screen - 26 Column Spreadsheet.
GAMES WORTHPLAYING
 Metamorphoses Development Lid. (e) 1985 Commodore" $128^{\text {" }}$ \& 64° are registered trademarks of Commodore intemational, Inc.

PREFACE

Cosmi's Swiftcalc is a personal tool for calculating all kinds of problems. Easy to use, it is practical for very simple calculations to the most complex. You can use it up to figure sales taxes, mortgage payments, expense reports, budgets, business plans, cost estimates, virtualiy any math you can set down on a piece of paper.

That's what SwiftCalc is: an electronic sheet of paper on your video screen that remembers how to do your calculations. It's automatic: once you've told it how to figure sales tax, for example, all you need to do is give it a new price, then sit back and watch it do the rest. More complicated work, like an annual budget broken down by month, is made oasy. (We've already designed a personal budget for you-included on the diskette.) You can go ahead and enter your income and expenses now, then analyze your budget by changing your entries. Quickly find out how much you would have left if your income increases $\$ 100.00$ in September, your heating bilis rise, but you are able to cut down on auto expenses.

Swiftcalc has the features you should expectin a fulf-featured spreadsheet program: math, statistics, table lookup, and present value functions, printer controls, plus two very desirable enhancements. The first: its "pop-up menus." The second:
programmed operation.
Swiftcalc's pop-up menus make operation very easy. All your choices are laid out in front of you on the screen, saving your memory, and Swiftcalc catches your errors, saving you from making damaging mistakes.
lts programmed operation gives you special ability to solve problems. You can make a spreadsheet that tells a user when and what to enter, and even automatically print the results when the proper entries have been made or the proper result reached.

The first part of this manual is designed to tutor you in the use of Swiftcalc. The second part is your reference guide, which summarizes SwiftCalc's features.

Enjoy.

TABLE OF IlLUSTRATIONS

lliustration Pago
Applications Menu x
The Worksheet Screen 1
A Split Screen 3
The Command Menu 4
Re-calculation Menu 18
Format Cell Menu 23
Currency Signs Menu 24
Range Commands Menu 29
Printer Set-up Menu 30
Split Screen Menu 39
Screen Split 40
Worksheet Commands Menu 42
Disk Commands Menu 42
Delete File Menu 42
Delete Row/Column Menu 50
Insert Row Column Menu 50
Select Program Menu 55

CONTENTS

Preface iii
Table of Iliustrations iv
Introduction ix
Getting Started $\mathbf{x i} \mathbf{i}$
What you need
How to start SwiftCalcThe Keyboard
PART 1 USING SWIFTCALC
1 Fundamentals 1
The ScreenThe Status LineThe Command LineThe Label Bars
Managing the cursor 2
Windows and Scrolling Pop-ip Menu operation 3
The Command Menu 4GO TO Cell
Entry and edit 5
Cell Entry Termination Text entry Number entry Formula entry
2 Building a Spreadsheet 8
The Worksheet Grid 9
Saving your work 10
Entering row labels
Entering separators 11
Column Widths
Entering column labels 12
Entry shorthand 13
Copying cells
Entering numbers 14
Entering Formulas 16
SwiftCalc hierarchy The cell equation 17
Re-calculation
Iteration 20
Erasing 21
Pointing 22
The esum function
Formatting celis 23
The general format rule
How Swift Calc rounds numbers 25
Formula or value? 26
4 Range Commands 28
Defining rangesPrinting29
Serial or Parallel printer?Printer set-upSet-up parameters saved!
Named ranges 32
Copying formulas 33Relative referenceFixed referenceFlexibility of Range Copy
Range Format 36
Range Erase 37Range Sort
5
Split-Screen Windows 39
Windows
Synchronization and Swapping
6 Managing disk files 42
Saving and Loading spreadsheets 43
Format a diskSave new workRecall a spreadsheetReplace the disk ileDelete a fileValidate a disk
Saving and Loading ranges 45
7 Additional Commands 46
Free Space
Format commands
Global，range，cell
Negative Values
Currency signs
Commas
\％sign
Zero－suppression
Precision
Plot＊＊＊
Demonstration of Plot $* * *$ 49
Default format 50
Insert or Delete Rows or Columns
Change color 51
Clear sheet command 52
8 Programming SwiftCalc 53e Function sequence control
Programming SwiftCalc
To write a program
To run a program 55
9 Using Functions 56
Function syntax＠ASSIGN，®COUNT，QGOTO57
＠IF，仓IFGOTO，巳LOAD 58
＠LOOKUP，©MAX，QMEAN，EMIN 58
＠巴NUMBER，＠PRINT，巴PV，セQUIT，QSAVE，巴SORT 60
＠SUM，®SQRT，©STD，®TEXT，＠VAR 61
PART 2 REFERENCE TO SWIFTCALC
10 OPERATING ELEMENTS 62
11 OUTLINE OF MENUS 74
12 LIST OF FUNCTIONS 76
13 ERROR MESSAGES 77
Appendices
A Hints 78
B Glossary 80
C Solving iterative problems: The IRR Demo 83
D Screen colors 84
E Quick-reference chart 85
Index

INTRODUCTION

Swiftcalc replaces pencil, pad of paper and the modern calculator with its electronic worksheet. The worksheet, cor, when filled out. the spreadsheet, since it is all spread out in frontof youl, is a table of entries organized into rows and columns. Each intersection of a row and column in the table is called acell, and into each cell a text label, a number, or a formula can be entered. When using the worksheet, the formula is not displayed in the cell--it calculates automatically and displays its result in the cell. When viewing the worksheet, then, only labels, your entries and the results are displayed. The whole worksheet, or any part of it, can be printed, giving the best features of pen, pad and printing calculator with much more efficiency and control.

The process of creating and using a spradsheet frees you from the use of mundane tools. Before Swiftcalc, recalculating meant tedium, with careful review of lengthy calculator tapes or computer printouts, or repetitious scrawling of numbers on reams paper.

With Swiftcalc, recalculation is immediate and easy. Since the formulas express the mathematical relationships between the cells, changing an entry instantaneously produces the correct result in all the related cells. When in programmed operation, a calculated answer automatically replaces the original entry, making recalculation automatic. You have many ways to ask "What if?" and observe the changes.

For example, what if:
I make a small down payment and stretch the payments?

My expenses decrease 5% ?
Collections of receivables improve?
I compare cost-of-sales to increased sales forecasts?
Production costs decrease?
My budget provides for more ready cash?

The ability to immediately see and compare the results of your questions allow fine-tuned analysis of plans, forecasts and technical computations to a level until now impractical. Besides the considerable improvement over "hand calculation" methods, you may find that SwiftCalc offers an improvement over existing programmed solutions programmed in BASIC or other languages.

Use of SwiftCalc's cells is very flexible. You can move, insert, erase columns, rows, cells, and rangescblockstof cells as required: save or load them from disk: print them. All computation, disk and print operations are programmable, and formulas and programs may be printed. You can set each cell, a range of cells, or the whole spread sheet to the decimal accuracy required for your results, and widen columns as necessary.

Its pop-up menus simplify the learning, and are a powerful aid when using Swiftcalc. You will soon be getting results. Included on the diskettes are four applications for your immediate personal use: auto expenses, monthly expense report, 12-month personal budget, auto payment calculation, and a demonstration interest-calculation (The IRR Demol program. These applications are provided for your convenience and as a learning tool: as with any spreadsheet created by someone else, review them carefully to insure that their that formulas and procedures produce results to your satisfaction.

PICTURE OF SCREEN

SHOWING
APPLICATIONS MENU

Applications Menu

How to Use This Manual

Though knowledge of its fundamentals will make Swiftcalc immediately useful, its value to you increases considerably as you iearn its extensive abilities. Practice and experiment-you can't hurt the computer or Swiftcalc-and you'll be ploased at your progress.

This manual is constructed to involve you by gradually, increasing your knowlodge and skill by contructing an example spreadsheet. A review of the table of contents shows the learning sequence to be followed through Part 1, Using Swiftcale.

Part 2, Reference to swiftcalc, is your technical reference manual, tabulated for ready reference. The pop-up menus and error-trapping greatly reduce need to refer to the manual for operating Swiftcalc, but reforence to the use of its special functions will likely be frequent and necessary as you build more powerful spreadsheets

The last page of the manual is auick-reference Guide, provided for your convenionco.

GETTING BTARTED

```
To prepare to use SwiftCalc:
```

What you need:

1. A Commodoro 64 or C 128 computer.
2. A Commodore 1541 or 1571 disk drive.
3. A video monitor or television set and appropriate Commodore connectors. NOTE! The Commodore C 128 requires connection to the RGBI port, and provides an 80-character wide display.
4. The Swiftcalc program disk.
5. Some blank disks.
6. (Optional), a printer:
a. Commodore printer connected to serial port.
b. Parallel printer, interfaced through serial port.
c. Parallel printer interfaced through user port with a user-port to parallel cable.

How to etart SwiftCalc

Please refer to your equipment manuals as necessary.
To load the Cominodore 64 version.

1. Connoct and power up your computer, monitor, disk drive and printer.
2. Install the Swiftcalc disk in the drive.
3. When the READY prompt is displayed, enter LOAD"E". 8
Pross the RETURN key.
4. When the READY prompt reappears, type

RUN
and press RETURN.
6. When the Quick-reference screen displays, press f 5 (Function key 5), called the GO key, and the worksheet appears.

To load the C128 version.

1. Connect your computer, monitor, disk drive and printer. Do not power up your computer, but do power up the disk drive and other peripherals.
2. Install the Swiftcalc disk in the drive.
3. Power up the C 128 computer.
4. The program automatically loads from the disk into the computer.
5. When the Quick-reference screen displays, press any key, and the worksheet appears.

All versions:

7. Before you can proceed, the second line down from the top of the screen, called the Command Line, prompts:

Centronics Printer, Yes or No?

If your printer is connected to the computer's serial port, either directiy or through an interface, answer No.

If your printer is Centronics paralle, connected by a cable from the user port to the printer, answer Yes.

The cursor, or "cell pointer" is in positiom Al on the worksheet: that is, in Column A, Row 1.
8. If you are not going to load one of the applications on the Swiftcalc disk, remove the program disk from the drive and return it to its envelope.

You are ready to work with Swiftcalc. Before turning to Part 1 , please familiarize yourself with the keyboard, described on the following pages and in Appendix E. The Quick-reference Chart.

THE KEYBOARD

Swiftcalc controls your computer's keyboard, and the keys perform only as SwiftCalc directs.

The Function keys.

When a pop-up menu is called, the cursor is positioned on the menu and controlled with the function keys.
f1 Two modes:

1. On a menu: Jumps the cursor to the EXIT command, always the topmost menu selection.
2. During formula entry and range selection: Pointer mode, when the cursor names the cells used as terms in formulas.
f3 Moves the cursor one line up the menu.
f5 f5 is called the $G 0$ key, and pressing it makes the menu selection.
3. On the worksheet: when the cursor is on the worksheet, (or spreadsheet), pressing GO calls the Command Menu.
4. On a menu: when pressed while the cursor is over a menu item, that menu item is selected and executed.
5. ERROR condition: when interrupted by an error condition, pressing GO clears the error condition and returns to the worksheet.
f7 Moves the cursor one line down the menu.
f1 is SHIFTed to get $\mathbf{f 2}$, f3 SHIFTed to get f^{4}, $\mathbf{f 5}$ to get f6, and f7 to get fis.
f2 Causes the spreadsheet to recalculate immediately. In programmed mode, it calls the Program Menu.
f4 Jumps the cursor 20 lines up the page.
f 6 Exits from the menu to the work sheet.
$f 8$ Jumps the cursor 20 lines down the page.

Cursor Movement keys

The screen scrolis smoothly or jumps according to the cursor action.
Aetion
Up
UP 20 lines
Down
Down 20 lines
Right
Left
Upper left of screen
TOCeII AI
GOTO CELL
SWAP OVER

Key (with explanation)
CRSR Up Arrow or f3
f4 (SHIFTEd f3)
CRSR Down Arrow or f7
f8 (SHIFTed f7)
CRSR Right Arrow
CRSR Left Arrow
HOME (First press of key)
HOME (Second press of key)
See Command Menu, Section 1.
See Spifi-Screen Windows. Section 5 .

Execute Entry keys

```
Execute menu selection
Terminate entry
Stop execution
Enter text
Force entry of text
Enter numbers
Enter formulas
```

Enter program
f5, the co key.
RETURN
STOP

a thruz, and $=1,1=$

- followed by any character.
p centers text in cell.
) forces text to justify right.
0 thru 8, + -
+ (add). - (negative or subtract).
- (multipiy), (divide), Copen parenthesis requires close parenthesis), and
- calls SwiftCalc's mathematical
functions.
© followed by the program name must be entered in Column Z. See Section 8 . Programming SwiftCalc.

Edit Operations

Editing takes place on the screen's Command Line.

Edit Cell
Cursor right
Cursor left
Delete character Insert character

Terminate edit
Deletecell
Deleterange
Delete row or column Insert row or column Clear Worksheet

```
Lino.
CRSR Right Arrow
CRSR Left Arrow
DEL
INST, or just enter text: SwiftCalc
auto-inserts.
RETURN
See Range Commands, Section 4.
See Range Commands.
See Section 7, Additional Commands.
See Section 7.
See Section 7. ine.
CRSR Right Arrow
CRSR Left Arrow
DEL
INST, or just enter text: SwiftCalc auto-inserts.
RETURN
See Range Commands, Section 4.
See Range Commands.
See Section 7, Additional Commands.
See Section 7.
See Section 7 .
```

In the next section, Fundamentals, you will begin operating SwiftCalc. Please refer to the keyboard listings on these pages as often as necessary.

C 128 additional key functions
The C 128's keyboard is different than the Commodore 64's. The upper row of the keyboard has four more cursor keys: UP, DOWN, LEFT, and RIGHT. For convenience, they operate like the function keys.

The function keys are arranged differently, but perform the same functions.

C128 Key:	Additional function:
CONTROL UP	20 itnes up
" DOWN	20 lines down
" RIGHT	5 cells right
" LEFT	5 cells left
ESCape	Calls the Select Program Menu.
RETURM	Also the GO key, like f 5 .
SHIFT RETURN	Also EXITs a menu, like f6.

Section 1 -- FUNDAMENTALS

THE SCREEN

The top three lines of the screen display are permanent and display the status Line, the Command Line, and the column-label bar. Below them, a portion of the worksheet is displayed.

The Status Line
The Status line is the first line on the screen. The cell cursor's coordinates are displayed on this line, followed immediately by the contents of the indicated cell.

The Command Line
Data are entered on this line, then executed upon pressing the RETURN key.

The Label Bars
The column bar labelled $A, B, C .$. and the row bar, labelled $1,2, \ldots a r e$ permanent. Where the bars meet are two characters that signify the re-calculation mode, ar, for example, means automatic by row.

PICTURE OF BLANK SCREEN
WITH CURSOR ON AI

The Worksheet Screen

Managing the Cursor

The cursor is used in three ways in Swiftcalc. First, when you are moving it on the worksheet, it is the cell cursor, and covers a single cell. Each cell is one character high and as many characters wide as the column it is in.

On the Command Line, information is entered and edited one character at a time, so the cursor is a character cursor when on the command Iine.

On a Menu, the cursor marks the menu selection, and then is the selection cursor.

Before reading the next section, you may wish to review the previous section, Getting Started, for the cursor movement, execution, and edit commands.

Windows and Scrolling

The screen is a "window" to only part of your worksheet s columns and rows. By pressing the CRSR Down Arrow key, you may move your cursor down to the 21 st row and see the row numbers change as you scroll vertically down the sheet. Then press the CRSR Right Arrow key: the cursor will move to the right. When it reaches the rightmost column, watch the column numbers change as you scroll horizontally.

You are scrolling the window. Please note that the Status Line always displays the current cell coordinate of the cursor, whereever you scroll.

Slowly now, press the HOME key twice, and note where you are after the first press--in the cell at the upper right corner of the workksheet. After the second press, you're back in cell Al.

It is often important to compare sections of a spreadsheet that are many columns or rows apart. With SwiftCalc's Split-Screen option, you may split the workshet vertically on any column and horizontally on any row, and scroll the splitted sections separately to match and view any two sections of the sheet.

You can permit the splitted sections to scroll independentiy of one another in both the horizontal and vertical directions, or may lock them together. When horizontally split and locked, column alignment is locked: free scrolling is allowed in the vertical direction, but the columns scroll, locked together, when the cursor moves horizontally.

When vertically split and locked, horizontal scrolling is free, but row alignment is locked.

PICTURE OF VERTICALLY
 SPLIT SCREEN
 WITH DATA

A Split Screen

Pop-up Menu operation

All of Swiftcalc's commands are available to you through its Pop-up Menus, which may be called and exited at will. Certain menu selections will ask you to make entries on the command line, but control is always returned to the most recently used menu, or directly to the workshet.

Menus are controlled with the Go key. Instructions, will read, for example, "Press the GO key," or "Select" a menu item.

Here are the fundamental rules for running the menus:

* Use the special function keys to move up or down the menu, and press $G O$ to make your selection.
* The top selection in each menu is EXIT. Moving the cursor to EXIT, then pressing GO will return you the last menu used--in the case of the Command Menu, to the workshet.
* Some menu operations return you directly to the previous menu or the worksheet.
* A menu may be exited at any time by pressing SHIFTed GO, which returns you to the worksheet.
* The STOP key halts any operation and returns you to the worksheet.
* ERROR CONDITIONS halt all operations, and an error message is displayed on the status Line. Pressing f6 releases the error condition. (Error Messages are described in Section 13.)

The Command Menu

PICTURE OF COMMAND MENU SCREEN

The Command Menu

Press the GO key. The main menu, the Command Menu pops up. All the other menus are accessed through the Command Menu.

GOTO cell

The selection cursor is on the first menu item after EXIT.
Press GO.
The words Goto cell appear on the Command Line, followed by the character cursor, which is prompting you to make an entry.

Type in 0200 and press RETURN, or GO.
Note that SwiftCalc has immediately moved to the location named, and the row/column labels and Status Line verify it. Any cell on the sheet may be accessed in this manner, or scrolled to.

Entry and Edit

When Swiftcalc sees a text character, it intelligently realizes that all the following characters on the line are to be interpreted as text. Number characters, coordinate values lifee A1 or $\mathbf{0} 200$), and formula characters automatically trigger formula entry.

To force non-text characters to be entered as text, the first entry on the line must be a doublequote ${ }^{\text {a }}$, vertical arrow key \boldsymbol{t}. or the greater-than character >.

Type your name into the keyboard, using upper and lower case and your middie name in full. As you type, the characters will appear on the Command Line. When you are finished, press RETURN to enter your name into the cell.

If you have made a mistake, and have not yet completed your entry with RETURN, move the character cursor back over your name with the CRSR Left Arrow key, then edit as follows:

To delete a character, move the cursor over the character and press the DEL key.

To insert a character, move the cursor over the character that must make way for your insertion, and merely type in the new character.

To replace a character, first delete, then insert.

Cell Entry Termination

Cell entry may be terminated with the RETURN key, or any cursor movement key but the Left Cursor Arrow key.

If you wish to edit the cell, you have two methods. First, place the cell cursor on the cell, then:

1. Follow the entry sequence above as though the cell had no existing contents: they will be overwritten.
2. Press the Edit Cell Key, ... found at the upper left corner of the keyboard. This recalls the contents of the cell to the Command Line. Then, use the editing techniques listed above.

Press GO when halted by an ERROR MESSAGE.

Number entry

Enter a number, with or without a decimal, and press RETURN when done. For a negative number, precede the number with the - sign. To edit a number, follow the same editing procedures as for text, described above.

Formula entry

A formula is composed of terms consisting of numbers, cell
coordinates, and special mathematical functions connected by the math operators,,+- 1 , and $*$ The formula is interpreted upon pressing RETURN, displaying the result of the formula in the cell. These are formula entry rules:

* If entry starts with a number it can be extended into a formula merely by adding terms with the arithmetic operators, $+-* /$.
* To start the formula with a cell coordinate, enter + or - before entering the alpha value that begins the coordinate.

Not $A 1+$ eSQRT (Q200)
But +A1+eSQRT(Q200)
If the coordinate is typed in without an arithmetic operator, Swiftcalc interprets the alpha character as forcing text entry.

* Start the formula with an efunction.

eSQRT (Q200) + A1

SwiftCalc Math

Swiftcalc interprets mathematical formulas from left to right, a term at a time, but not algebraically. (See Section 3 for a more detailed explanation of Swiftcalc Hierarchy. J Therefore, it is important to use parentheses to manage the calculation sequence of a cell formula. When RETURN is pressed to enter a formula, Swiftcalc counts the pairs of open and closed parentheses, and prints the ERROR MESSAGE "Uneven brackets" when it discovers an incomplete pair.

The next section, Building a spreadsheet, provides practice, and more detailed instructions for commanding the worksheet and entering data.

SECTION 2 -- BUILDING A SPREADSHEET

So far, you have learned how to start Swiftcalc, and its fundamental concepts of operation.

You have also begun learning the process of entering data into the worksheet in the form of text, numbers and formulas. To oversimplify, these are all the techniques necessary to build a spreadsheet. Just as a living organism is built a cellat a time, so is the dynamic mathematical organism of the spreadsheet.

In this chapter, we will start with the fundamental techniques, then use powerful Range Commands and the special Functions to accelerate the growth of this mathematical organism.

So that you will have an example for comparison, we will construct the Car Costs Report provided on the Swiftcalc disk. As you will do when constructing spreadsheets in the future, we will imprave it as we see fit. When you are finished, you will be able to tailor it to your special requirements and have not only a convenient calculating tool, but an auto expense record keeper.

Many references can be found in bookstores showing different applications on spreadsheets. Spreadsheet programs operate on similar principles, so most of the references can be useful. As Swiftcalc's unique abilities are presented to you, numerous applications, from simple to complex, will come tomind. You'li find them within the grasp of SwiftCalc.

The Worksheot Grid

Load Swiftcalc according to the instructions in Getting started.
The row and column numbers serve as coordinates to locate and label the worksheet's cells. Depending on the version, columns extend from A to Z or from A to BL, rows from 1 to 254 . When a spreadsheet is printed, only the information on the sheet prints: the row and column numbers don't.

If you were to keep a formal record of your annual auto expenses, you might set a sheet like this to record and sum expenses.

CAR COSTS

This spreadsheet looks almost exactly like what you will enter into Swiftcalc's worksheet, with major difference. Invisible, but most definitely there, will be formulas at each cell at the intersection of a month column and the Miles Per Gallon row and TOTAL row. When data is entered into the spreadsheet, results will automatically be produced as the formulas direct.

New data can be entered, and the results immediately known. Formulas or data can be changed at any time, with like results.

Since legible results are as important as accurate results, the
format commands are designed to make the spreadsheet easy to read. Dollars and cents as 23333.4500 is harder to read than \$23.333.45. As a matter of fact, this is the default display mode of Swiftcalc on startup, with two decimal places and commas every three places in front of the decimal. You have to change it if you want different decimal precision, or no commas.

Saving your work

If interrupted while building your spreadsheet, you can save the work-in-progress. Jump to Section 6, Managing Disk Files.

Entering row labels

To begin, press the HOME key: this will put the ciursor over cell Al. With the CRSR Down Arrow, move to cell A6. (We're leaving space above this row so we can imitate the spreadsheet format laid out above.,

Type in the following keystrokes. Please note that CRSR Down Arrow produces the same result as RETURN, and that to make a narrower column of labels, the labels are shortened somewhat.

Type the word. then Press:

Payment	CRSR Down Arrow
Repairs	CRSR Down Arrow
Maintenance	CRSR Down Arrow
Fuel Cost	CRSR Down Arrow
Fuel Oty (GAL)	CRSR Down Arrow
Odometer reading	CRSR Down Arrow
Other expenses	RETURN

The cell cursor should remain in cell Al2 over the words Other expenses.

If an error was made, please review Entry and Edit in the previous section for editing and error recovery procedures.

Entering separators

Next, enter the dashed line in cell All by first moving to Al3 and typing the double quote ". Remember, the dash is a minus sign, if we don't put in ", or before it, Swiftcalc will think you're entering a number or formula. Type in a dashed line equal in length to your longest line of text.

Proced with the following labels as shown separated by dashed horizontal lines as in the example.

> In cell A14, enter >MPG In cell A16, enter >TOTAL

The alignment isn't right, but you'll fix it in a moment.

Column Widths

The text is wider than the column, and when we later enter numbers into column B your row labels will visually interfere with them. Calculations will be cor'rect, but your spreadsheet may be unreadable.

To widen the column:
Your action

Command Line

Press GO for the Command Menu Select Column-Width Use <=CRSR $=$, to adjust width Press CRSR Left or Right Use <=CRSR \Rightarrow to adjust width When the column width is satisfactory, press RETURN.

If you wish to escape from the operation, or have taken a wrong turn somewhere, press the EXIT key or the STOP key, or move to EXIT menu selection and press GO. All these operations will return you to the worksheet.

You don't have to put in the column of colons as shown in the example, but they look good, don't they? You can edit them onto

```
your existing labels, but here's a better way.
```

Move the cursor to column B and execute ColumnWidth again. Make the column just one or two characters wide and enter the colons as text, using RETURN or the CRSR Down Arrow.

Entering column labels

If you chose not to put in the column of colons, move the cursor to cell B4, if you did, move to cell C4. From here on in it will be assumed you entered the colons in column B, and references will be to Column C.

Entering column labels is the same as row label entry, but move to the right with the CRSR Right Arrow key, rather than down.

Type the word,

January
February
March
April
May
June
July
August
September
October
November
December
then Press

CRSR Right Arrow
CRSR Right Arrow RETURN

The cell cursor should be over the word December.

Now, to center the Month titles in their columns for each column:

Your action	Command Line
Move cursor over January text	
Press the cell edit key January	

```
Press (center text)
    January
Press CRSR Right Arrow
Repeat the edit sequence.

> January
> February
> February, etc.
```


Entry shorthand

Hereafter, the flexibility and speed of entry provided by the cursor UP, DOWN, and Right Arrow keys will not be emphasized. Please assume:

Entries are terminated with RETURN
Selections are made by pressing ©O.
Use of RETURN and GO will be stated only for purposes of clarity.

Copying colis

Typing in the bar lines everywhere you want them is tedious and unnecessary. Any single cell can be copied to any other cell or area of cells.

Follow carefully this sequence of instructions.

```
Your Action Command Line
Move to cell A5
Press GO
Select Range Commands
Select Range Copy
Move to Al3
Press GO
```

Range to copy from A5
Range to copy from A13
Range to copy to A5
Press GO

The cursor should now be in cell A5 over the dashed ine you just copied into it. Following the procedure below, copy A5 into the range C5 through N5.

```
Select Range Copy Range to copy from AS
Press G0
Range to copy from A5
Range to copy to A5
```

```
Move to C5
Press the comma (,) key
Type in N5, or move to N5
Press GO
Now, copy the range C5 through N5 into C13 through N13:
    Move to C5
    Select Range Copy Range to copy from C5
    Press the , key
    Enter N5
    Press GO
    Move to C13
    Press GO
You should now have a line across all the columns in row 13. You can
copy this the line of dashes into the other rows from either row 5 or
row 13. If, for some reason, you want to format the dashes
differently, edit one cell and proliferate it to your heart's desire.
Later, you will copy (or replicate) formulas with this powerful
technique, and eliminate the opportunities for error that would be
caused if you had to enter each of them individuall.
```


Entering Numbers

Normally, when building a spreadshet, the formulas are entered next. Instead, you will enter some numbers in the January column. Then you can verify the workings of the first formula when you do enter it.

Cell	Enter
C6	555
C7	125.33
C8	1.20
C9	64.80
C10	58
C11	18334
C12	130.01

You may wish to reduce the fuel to one decimal place and the odometer reading to o decimal places. Wait until later, when you can reformat a whole range of values. If the word ERROR appears in any cell, widening the column should make it disappear and display the value.

Your "Other" expense is those sheepskin seat covers you've always wanted.

Again, the editing procedures are the same as before, and alas! You've found a missing repair bill of $\$ 123.46$!

Move to C7 and press the edit key.
Just type in $123.46+$ and watch the Command Line.
Press RETURN; the result of the addition is in c7.
You've just entered your first formula.

Soction 3 -- ENTERING FORMULAS

The first formula on the Car Costs spreadsheet will calculate the MPG. If you haven't already done so, please enter the text, Last odometer reading, in cell A2, reserving cell c2 for entry of the reading, then enter 17000 in C2. Now you're ready for the MPG formula.

$$
\begin{array}{ll}
\text { The formula: } \quad \text { Subtract the last odometer reading in C2 } \\
& \text { from the current reading in cil. Divide } \\
& \text { this difference by Fuel Quantity(GAL) in } \\
& \text { cell cio. }
\end{array}
$$

Algebraically: (Current odometer - Last Odometer)/fuel Qty
In cell terms: (C11-C2)/C10

Swiftcalc hierarchy

Swiftcalc honors the priority of parentheses, but does not follow the rules of algebraic hierarchy. It evaluates the terms from left to right. Since SwiftCalc honors parentheses, it will calculate the difference between the parentheses, then divide by cio. However, this formula will also produce the correct result:

In Swiftcalc: +C11-C2/C10
How it works: Entering the plus sign forces formula entry, rather than interpreting the C as text. Cil is entered, followed by the minus operator. In algebraic hierarchy, the entire term would be evaluated, the division calculated first and then the subtraction. In Swiftcalc hierarchy, the difference is immediately calculated. The next operator and termexecute in sequence, and the difference is divided by the contents of cio. As you add operators and terms, each executes as they are entered right to left, unless segregated by parentheses. Within parentheses, Swiftcalc hierarchy rules.

> TIP: Analyze your formulas.
> \quad When in doubt, use parentheses.

Enter the formula:

Your action	Command Line
Move to cell C14	
Type in +C11-C2/C10	
Press RETURN	
The result appears in C14-C2/C10	

The Cell Equation
Look at the status Line. After the cell coordinate cit, the formula displays, just as you entered it. Yet in the cell, the result displays! This ability is what makes Swiftcalc such a convenient and powerful calculation tool. A cell that contains a formula always displays the result of the formula. To test the dynamic value of this,

Your action
Move to C11
Enter a different number

Your MPG changes with the new entry!

The SwiftCalcequation: Cell=Formula
The number displayed = The formula that produced it.

Re-calculation

In certain rare situations. it is possible to get an incorrect result from a reasonable-looking formula. You can now test your formula by pressing the Re-calculation key to force the spreadsheet torecalculate. If values change, re-calculate until no changes occur.

Later, when building or using complex spreadsheets, this possibility--that a reasonable-looking formula may not produce correct results--should be eliminated. But, an important fundamental for your use of spreadsheet programs is understanding how it can happen. A second important fundamental is this tip:

```
    TIP: Do not use any spreadsheet, from
        whatever source, without first
        testing it. The recommended way
        to do this is to test the sheet
        with values that will produce
        known results.
It will be well worth your time to study the following, which is a
scenario describing how hidden errors can happen.
First, how the spreadsheet calculates and re-calculates:
At the intersection of the column and row label bars,
in the upper left corner, are the two letters ar, which
signify that SwiftCalc's calculation mode is set to
automatically calculate by row.
From the Command Menu, select Re-calculation.
```

```
                                    PICTURE OF SCREEN
                                    SHOWING
                                    RECALCULATION MENU
```


Re-calculation Menu

Exercise selections from this menu to see how the various combinations are displayed. You can mix manual/automatic with row/column, but programmed mode, explained in detail in Section 8, Programming SwiftCalc, is fixed in pc, programmed by column.

Definition

Automatic

Automatic	Upon entry of RETURN, SwiftCalc passes at least once through the whole worksheet and executes what it finds in each cell.
Manual	Produces the same result as automatic, but is calculation is triggered by pressing the Recalculation key.
By Row	The path Swiftcalc follows while passing through the spreadsheet is one row at a time from column A to the rightmost column, starting with row 1 and proceeding to row 254.
By Column	The path is one column at a time from row 1 to row 254, from column A proceeding to the rightmost column.
Programmed	Programs are written in the rightmost column. This option displays a menu of programs when the Recalculation key or the ESCape key is pressed. Then, selection of the program from this Program Menu runs it.

The cause of the calculation errors:

[^0]3. Further suppose that the value in C11 is not entered, but is calculated from a formula using D15 as a term. This vicious circle, in which Cio changes C14 which changes Dis which changes C10 which changes Cit and so on, is called a circular reference.

Iteration

A circular reference is not a hypothetical, or rare, occurence. Many spreadsheet applications use iterations, which depend on circular references. The IRR Demo program on your Swiftcalc disk, (describeed in Appendix CJ, does. In the IRR Demo, an estimated interest rate is entered, then the future cash flows over a periods of time and ε present-day target cash value are entered.

Using the estimated interest rate, the values of the cash flows are calculated to the present day and subtracted from the target amount, producing a difference.

A Swiftcalce function tests this difference. if it is not o, the amount of the difference is used to adjust the estimated interest rate. Recalculation occurs automatically until the difference reduces to 0 : then the function test causes calculation to stop. The interest rate that produced the difference of o is the correct IRR, which means Internal Rate of Return. The IRR is the interest rate that will produce a break-even from a cash outlay and periodic cash returns.
5. To test a spreadshect for this condition after either a manual or automatic calculation, press the Re-calculation key and note if any cells change value.
6. Methods to correct this condition:
a. Press the Re-calculation key until no change occurs.

```
b. Redesign the spreadsheet to eliminate
the cause.
c. Determine by test whether row or
    column sequencing of calculations
    eliminates it.
d. Add the necessary @ function tests to
provide iteration.
```


A REMINDER

YOU WILL FIND that this possibility of getting incorrect results is overemphasized here, but is a fundamental principle for your working knowledge of spreadsheets that provides insurance against bad decisions. For example: a correct, checked out, stock analysis spreadsheet will help you make a good decision, because you have confidence in its results.

Erasing

The contents of a cell can be edited away, but editing is much less convenient than erasing its contents. To do this, and also prepare for the next exercise, pointing, erase the formula in cell Ci4 as follows:

Your action	Command Line
Move to Ci4	
Press GO	
Select Range Commands	
Select Range Erase	
Press GO	

The cell C14 is blank. For verification, check the Status Line: the formula is gone. If you wish to learn more about ranges now, see Section 4 , Range Commands, for description of ranges and use of the Range Commands Menu.

Pointing

Pointing is a very efficient formula-building technique. Observe the Command Line while rebuilding the formula in C14 using this powerful technique, implemented with Pointer key.

Your action	Command Line
Move to C14	
Enter +	+
Press Pointer	$+C 14$
Move to C11	+C11
Press -	+C11-
Press Pointer	+C11-C14
Move to C2	+C11-C2
Press	+C11-C2/C14
Move to C10	+C11-C2/C10
Press RETURN	

The result again!
You are free at anytime to enter cel! coordinates by keying in or Pointing. The techniques can be intermixed: a coordinate can be edited out with the DELete key and re-entered either way. If a formula is too complex for editing, erase and rewrite. practice as you learn, learn as you practice.

The esum Function

e Functions are formula terms that do mathematical, logic and other special tasks which greatly enhance the power and flexibility of Swiftcalc. For a summary of the functions available to you, please scan Section 12 of this manual: LIST OF FUNCTIONS. Section 9 , Using Functions, covers them in detail.

The next formula will compute the Total Monthly Cost in the January column, where we have our other numbers. One way to do this: Place the cursor in C16, enter + and Point each cell from C6 through Ci2, making the formula $+C 6+C 7+C 8+C 9+C 10+C 11+C 12$. But there's a better way, using the eSUM function:

Your action	Command Line
Move to C16	
Enter e	e
Type in suml.	@SUMC
Press Pointer	eSUMCC16
Move to C 6	@SUMCC6
Press	@SUMCC6, C16
Move to c9	@SUM(C6,C9
Press J	@SUM (C6, C9)
Press +	@SUM(C6, C9) +
Press Pointer	eSUM(C6, C9) + C16
Move to C12	$\operatorname{esum}(C 6, C 9)+$ C12
Press RETURN	

The sum displays in C16, and should be 1,000.00.

Formatting Cells

Not all the values on the spreadsheet are in the most aceptable format. Dollars and cents figures like Payment, Repairs, Maintenance, Fuel Cost, and Other Expenses are OK, since the default setting on startup is two decimal places, with commas. You might like to add the dollar sign to these figures, then reduce fuel Q ty (GAL), Odometer reading and MPG to one decimal place, their customary accuracy.
PICTURE OF SCREEN
SHOWING
FORMAT CELL MENU

Format Cell Menu

```
Your action
Move to C6
Select Format Cell
Select Currency Signs
Select s dollars
```


PICTURE OF SCREEN
 SHOWING
 CURRENCY SIGNS MENU

Currency Signs Menu

Please note that the symbol only has been added to display, with no effect on decimal accuracy or computation. The \% format is also only a symbol, with no effect on computations.

Before continuing, EXIT to worksheet. you may then repeat the action above for each cell in which you would like to see the dollar sign displayed.

The General Format Rule
The general rule for formatting Swiftcalc is this: Set the worksheet format before entering data, then format celis and ranges after data has been entered.

To change Fuel Oty, Odometer readings and MPG to one decimal place:

Your action

Command Line

Move to C2
Press GO
Select Format Cell
Select Precision 0-8 Number of places (0-8)
Enter 1
Press GO
EXIT to worksheet
Repeat the procedure for cells C10, C11 and C14.

How Swiftcalc rounds numbers

Swiftcalc is unique in the way it works with rounded numbers. First, as would be expected, the numbers are calculated and rounded to the precision set for that particular cell. The default startup condition rounds each answer to two decimal places. But, whatever the decimal precision, the program behaves according to the following example.

At a precision of two: 0.005 rounds to 0.01
0.004 rounds to 0.00
9.995 rounds to 10.00
9.994 rounds to 9.99

The uniqueness of Swiftcalc is in the improved way it calculates with rounded results. A source of inaccuracy when working with numbers on a computer is the difference between the number displayed and the number actually stored inside the computer, and which of them is used when calculating. Described below and in the table on the next page are two situations used by spreadsheets when rounding.

Situation 1

```
In this situation, regardless of the decimal
setting of the displayed cell, all values are
computed with the full significance of the
computer, and the number is rounded only on the
display, but not rounded in the computer's emory.
Calculating with numbers of more significant
places than the display is
```

sometimes desirable for scientific calculations, but the rounded result is the preferred value for business and statistics.

Situation 2

Some spreadsheets display the numbers unrounded, and compute with the full internal precision. This also produces incorrect results, as shown below.

The Sum

Situation 1

SWIFT

12.36641	etc.	12.37	12. 36	12.37
25.25650	etc.	25.26	25.25	25.26
37.62291		37.62	37.62	37.63

The first column of the example, summed at full precision, is correct and unrounded.

Situation \#1 produces a result 0.01 too low, since it is not adding the numbers displayed, but actually producing The Sum shown in the first column. In Situation \#2 the result appears to be 0.01 too high for the numbers displayed!

In Swiftcalc, the addition is actually performed with the numbers which have already been rounded, correct to the penny, or mil, or digit, depending on the precision you require.

Now that you know that Swiftcalc calculates with the results rounded as displayed, when you change the precision of any cell, recalculate by pressing the Re-calculation key.

Formula or value?

Your formulas need not be buried forever inside Swiftcalc, available to you only for an occasional peek on the status line. You can display them. To do this, scroll the column in which the

```
formulas reside toward the left hand edge of the screen, (so you can
see an especially long formula in its entirety).
```

Your action
Press GO
Select Worksheet Commands
Select Formula or Value?
The formulas display. You may scroll the screen and operate just
like when it displayed only values.
This Formula or Value? selection toggles the display, in that it
works like a push button switch. To return the display to the
display of values, repeat the above sequence. But for the moment,
wait until the opportunity to print the formulas, shown in the next
section, Range Commands.

Beetion 4 -- RANGE COMMAND8

Defining ranges

A range is any area of a sheet described with cell coordinates.
It may be: * a single cell.

* a group of cells in a row.
* a group of cells in a column.
* a group of celis more then one row high by more than one column wide.

Examples of range descriptions:

The range:

C2

A6, A19

C4.N4

A1, C19

AI, N19

The range description:
The cell C2

A group of cells in column A that includes cells A6 through A19. In the Car Costs spreadsheet you have been building with this manual. it contains the row labels.

A group of cells in row 4 that includes cells C4 through N4. In Car Costs, it contains the month column labels.

A rectangular area three columns wide by 19 rows high: the label column through the January column in Car Costs.

A rectangular area 14 columns wide by 19 rows high, containing the entire Car Costs spreadsheet.

```
"Named" range A range of any dimension may be
                                    called by a special Command Line
                                    prompt: Named Ranges are described
                                    in more detail on Page 32.
```


Printing

Printing is executed from the Range Command Menu.

PICTURE OF SCREEN

SHOWING
RANGE COMMAND MENU

Range Commands Menu

Serial or Parallel printer?
Please refer to Getting started--before you could use the worksheet, the Command line contained the query, Centronics printer, Yes or No. To answer, press Y or N and press the RETURN key.

Choice: What it means:
No Your printer, regardiess what type,
is connected to the computer
through its serial port.

```
Yes Your printer is parallel,
interfaced to the Commodore user
port by a cable.
```


Printer setup

As a matter of convenience and good practice, if a spreadsheet is printed on $81 / 2^{\prime \prime}$ by $11^{\prime \prime}$ paper and laid out so you don't have to turn the paper sideways, it is easier to read in a binder-asa record or as a page in a report. For wide spreadsheets, one solution is to buy a 13 inch wide printer, print the spreadsheet across the page, then fold the right-hand edge of the page in. Then it can be folded open and read in the normal page orientation when bound. If you are limited by an 8 1/2"wide printer, you may find it desirable to lay out your spreadsheets on the screen so it prints on an 8 1/2" by 11" page, or with Range. Print, print your spreadsheet in segments, so they can be cut and pasted on to a page. It's your choice. Swiftcalc gives you control over the printer's behavior. You can use printers of different widths according to your needs. lf you are limited to 8 1/2" wide paper, you can change the printer's character pitch (Most competitive printers offer the option) and print more characters across the page.

PICTURE OF SCREEN

SHOWING
PRINTER SET-UP MENU

Printer Set-up Menu

- 30 -

EXAMPLE PROBLEM: I must print a 14-column spreadsheet that is 132 characters wide, and lan only print on 8 1/2" wide paper. The sheet is 20 rows high, which poses no problem. My printer manual shows that the ASCII codes listed below will set up the printer. The decimal equivalents are the values used by SwiftCalc.

Printer Action

Carriage Return
Line Feed
Form Feed
17.1 Pitch

8 lines per inch

ASCII Codes
CR 13
LF
FF
GS
ESCape 8

Decimal

Equivalent

Proceed as follows:

Command Line

Press GO
Select Worksheet Commands
Select Printer Setup
Select Page Width Page Width 80
($8^{\prime \prime} \times 17.1 \mathrm{char} / "=136.8$)
Edit out 80 , Enter 136 Page width 136
Press GO
Select Start of Print
Edit in 29,27.56
Start of print
Press GO
Select End of Line
Edit in 13,10
End of Line 13
Press GO
Select End of Print End of print 13,13
Edit in 13,12
End of print 13,12
Press Go
EXIT to Command Menu
Select Range Commands
Select Range Print Range to print
Enter A1.N2O Range to Print A1, N20

Setup parameters saved!

Swiftcalc's Printer Setup Menu parameters: Page Width setting, Start-of-Print codes, End-of-Line codes, and End-of-Print (End of Page) codes are saved with your spreadsheet. Once the sheet is set up properly, you don't have to do it again each time you print.

At the end of the last section, in formula or Value?, you were asked to keep the formula on the screen. To print them without changing SwiftCalc's default setup parameters:

Your action Command Line
Move to C2
Select Range Print Range to print C2
Enter , Range to print C2,C2
Move to C20 Range to print C2,C20
(Check your printer.) Press GO

Select Formula or Value? to display values again.

Named ranges

A shorthand method for calling ranges in answer to a Command Line prompt is to use Named Ranges. On the spreadsheet you have been building, entering the name of the month would print the named month's column. To name a range, one additional instruction must be entered in any blank spreadsheet cell.

Your action

Move to C25
Enter [january]C2, C20 Press GO
Select Range Print
(Check your printer.)
Enter CJa
(The complete name, or

Command Line

[JANUARY1C2,C20
Range to Print
Range to print [Ja

```
any beginning portion
of the name sufficient
to identify it, may be
entered: [J, [Ja, [Jan,
etc., to[January are OK.J
Press GO
```

Entering February D2, D20 in D25, and repeating this procedure in each column for each month allows you to print any month when prompted without concerning yourself with the actual range values. A whole spreadsheet can be printed by merely entering $[$ s when [sheetlA1,C19 is in any cell!

Because calculation and recalculation scan the entire worksheet, the name ranging cell can be anywhere on the sheet. Any size spreadsheet can be named, and you can place as many different, related or unrelated, spreadsheets on the worksheet as capacity allows.

You can respond to any range prompt with a Named range. Review the capabilities listed on the Range Command Menu: usefulness is only I imited by imagination.

Copying formulas

Hold on to your hat. Building the spreadsheet is speeding up.
First, let's solve a little problem. The MPG formula for January depends upon the beginning odometer reading up in ch for to calculate mileage. To calculate February's MPG correctly, the difference between D11 and C11 must be calculated. A value in the second row, especially only in C2, is useless in months february through December.

Your action
Command Line
Move to D14
Enter +D11-C11/D10 +D11-C11/D10
Press GO

If you're unhappy that the word ERROR is displayed, it's caused
by a divide by 0 in 0 10, and will go away when data is entered in that cell. Now, to copy the formula

Your action

Move to D14
Select Range copy
Press GO
Move to E14
Enter .
Move to N14
Press GO

Command Line
Range to copy from D14
Range to copy to D14
Range to copy to E14
Range to copy to E14, D14
Range to copy to E14,N14

Now copy C16 to the range D16,N16.

Relative reference

Place your cursor in each cell from D 14 through Nit and observe the formulas on the Status Line. Notice that the cell terms have changed relative to the column they are in! When copying spreadsheet cells, SwiftCalc remembers the relative positions of the columns and rows, and adjusts the formulas to maintain that relative difference.

Fixed Reference

There are occasions when you wish to keep a cell term constant in a formula, while others change relatively. To fix any cell reference, precede the term with the s sign, like this: \$C2. To demonstrate this fixed reference, add cost to date in row 18 and Cost/Mile in row 19. Cost per mile will print monthly, but show the cost to date divided by the mileage to date.

Your action

Command Line
Move to A18
Enter >Cost to date Cost to date
Press GO
Move to C18

Enter +	+
Press Pointer	+ C18
Move to C16	+C16
Press GO	

The formula in Ci8 is +C16, which can be read as 0+C16. The result is in C18 is the duplicate of the value in C16.

Another way to duplicate the value in a cell is with the eASSIGN function. It assigns the value designated by the first term to the cell designated by its second term. In the eASSIGN function, C16,C18 does not mean the range Ci6 through Ci8.

Move to A25
Enter eASSIGN(C16,C18) eASSIGN(C16,C18)
Press GO

To accumulate the monthly costs requires a different formula in D18.

Move to Dis
Enter +C18+D16 +C18+D16
Press GO

Now copy it from D18 to E18,N18.
Calculate cost per mile using fixed reference:
Move to C20
Enter +C18/(C11-sC2) +C18/(C11-\$C2)
Press GO

As you copy the formula above from C20 to D20 through N20, C2 will be fixed and not change. The parentheses in the formula are necessary so the difference will be calculated before the division occurs. Otherwise, C18 would be divided by Cil and then C2 would subtract from that answer.

To verify that the cells were entered and copied correctiy, san them and observe the status Line.

TIP: Any cell term may be made a constant by fixed reference.

Now the cost to date and the Cost/Mile will be correct to the last month data is entered.

Fiexibility of Range Copy
The simplified manner notation Swiftcalcuses makes range operations flexible and powerful, which is indicated by the examples of Range Copy below.

Type of	copy	From - To	Description	
Row to	row	$\begin{aligned} & A 9, C 9-A 10 \\ & A 9, C 9-A 12, A 14 \end{aligned}$	Copies one Copies one	row. row to three rows.
Column	to column	$\begin{aligned} & A 1, A 9--B 6 \\ & A 1, A 9--B 6, C 6 \end{aligned}$	Copies one Copies one columns.	column. column to three
Cellto	cel\|(s)	$\begin{aligned} & A 5--C 6 \\ & A 5--A 8, C 8 \end{aligned}$	One cell to Copies one cells.	```one cell. cell to three```
Area to	Area	A5,D8--G10	Copies area G10, J13.	A5,D8 to area

Range Format

Enter data into the area C6, N12, taking care not to omit fuel cost, Fuel Qty (GAL) and Odometer readings. Cost entries can be entered as you wish. If Payment is regular and monthly, copy it across its row.

Though your results display efficiently and accurately, the format of the Fuel Qty (GAL), Odometer reading, and MPG rows are incorrect. Make it right with Range Format.

```
Select Range Format
Enter,N10
```

Press GO

Repeat this operation in ranges C11,N11 and C14, N14. Then prettify your spreadsheet with separator lines, etc., as you wish.

Range Erase

Range Erase merely blanks the range you select. To test it, blank the data areas for October, November and December.

Your action Command Line

Move to L6
Select Range Erase Range to erase L6
Enter ,N12
Press GO

Done. But now you are at the right end of the sheet, want to enter new values, and can't see the spreadsheet row labels. This is a nuisance easily eliminated in the next section, Split-Screen Windows.

Range Sort
Range Sort rows data in order according their alphanumeric rank. Sorting is done along a column, causing the order of rows of data to change. The exercise below shows you how to set up a sort by following these three rules.

* Sort on any column in a range: the entire row within the range will be sorted.
* The column on which the sort is being performed must contain the same data type.
* All cells within the range must contain numbers or text: no formulas are allowed.

Enter the "before \& after" table below, do the operations following the able.

Before Range Sort

$\begin{array}{llllll}\text { A } & \text { C } & \text { A } & \text { B }\end{array}$

1	Sugar	60.00
2	Cream	40.00
3	Milk	70.00

Your action

Move to Al
Select Range Sort Range to sort Al
Enter.
Enter C3
Press GO
Press GO

After Range Sort

1	Cream	40.00	Green
2	Milk	70.00	Brown
3	Sugar	60.00	Smith

Screen action or Command Line

Range to sort $A 1$.
Range to sort A1,C3
Column to sort Al

Re-sort the range by repeating the above procedure, but select the other columns. The cursor can be in any row in the column.

Section 5 -- SPLIT-SCREEN WINDOWS

Windows

In Section 1, Fundamentals, the fact that the screen was a window into part of the worksheet, and that scrolling the window eventually presented the whole sheet--but only in parts. Split Screen provides the convenience of viewing together parts of the spreadsheet that are normally far apart. It splits the screen into two windows that operate independently of one another. Each can be scrolled independently, so you have the freedom to compare any two parts of a spreadsheet, no matter how big it is or what its shape is. if it is necessary to keep rows or columns aligned, you may choose the synchronization option.

PICTURE OF SCREEN
 WITH
 SPLIT SCREEN MENU

Split Screen Menu

Synchronization \& Swapping

To try synchronization, use the sheet you have been building, or load Car Costs from the Swiftcalc program disk.
Your action Command Line
Move to Column $C(a n y c e l l)$

Select Split Screen Select Vertical Split Press GO

Enter Y , Press GO EXIT to screen

Select position for split Synchronized movement? Enter Yes or No

PICTURE OF SCREEN
 WITH
 SCREEN SPLIT

A screen spift

Your cursor should be in the right half. If not, Select Swap Over. Swap Over moves the cursor from one side of the split to the other. so that you may choose which split to scroll.

Your action

Scroll up or down

Scroll right to bring the December column into view.

Screen Action

Synchronization forces the rows to scroll together vertically.
(Horizontal split and
synchronization forces the columns to scroll together horizontally.j

The left-hand screen, which remains fixed, while the right-hand screen scrolls.

```
If the left-hand screen's labels are misaligned, Swap Over, scroll
them into view and Swap Over again.
To test unsynchronized scrolling, select Close Split, split again,
and answer No to synchronization.
To test horizontal split:
Move to row six
Select Horizontal Split
Yes to synchronization.
Exit to screen
```

Split screen provides the ability to visually compare any two
workshoet areas.

Section 6 -- MANAGING DISK FILES

Disk files are controlled from three menus:

* Spreadsheets are saved and loaded, and the spreadsheet directory called, from the Worksheet Commands menu.
* Ranges are saved and loaded, and the "Ranges saved" directory called, from the Range Commands menu.
* The Disk Commands menu provides:

Validation--economizes use of the disk surface.

Delete file--Produces a complete Swiftcalc file directory, from which the file to be deleted is selected. This menu can also be EXITed.

Format Disk--Formats a new disk for the recording of information. Disks for other applications may be formatted.

- 42 -

Saving and Loading spreadsheets
To save your spreadsheets, a formatted disk must be used! Please follow the steps below and use a blank, new disk or an old disk that holds information you no longer need. If you have disks already formatted, skip to To save new work, below.

To format a disk:

```
Your action
                                    Screen action or Command Line
                                    Check the disk drive.
                                    Is it connected and
                                    powered up? Is a blank
                                    disk installed in the
                                    drive?
                                    Select Command Menu
                                    Select Disk Commands
                                    Select Format Disk
                                    Disk name
                                    Enter a name for the
                                    disk in this format:
                                    Name, XX where the name
                                    is alphanumeric char-
                                    acters of your choice
                                    and the XX stands for
                                    two digits.
                                    Example: My Sheets,01 Disk name My Sheets,01
                                    Press RETURN
```

It takes a few minutes to format the disk. With a formatted disk in the drive, you are ready to manage your spreadsheet files.

To save new work:

Select Command Menu
Select Worksheet Commands
Select Save Sheet Replace Sheet? Enter Yes or No
Enter N
Press RETURN Worksheet Name (14 char. max)
Enter a name
Press RETURN
When the disk light active light goes out, the file is saved. To recall a speadsheet:
Select Load Sheet Spreadsheet directory displays Select file, by name. Please note that the directory suffix for spreadsheets is.G.
The spreadsheet displays on the screen when loading is complete. To replace the disk file:

Select Save Sheet

Enter Y
Press Return

Select file

Replace Sheet? Enter Yes or No

Spreadsheet directory displays
To delete a file:
Select Disk Commands
Select Delete File
Select file
A complete directory of SwiftCalc files
displays.
Are you sure? Enter Yes or No
Decide and Enter Y or N
The Delete File Directory may be EXITed.
To validate a disk, select Validate Disk.

Saving and loading ranges allows a portion of a spreadsheet to be saved to disk, and then loaded in to another spreadsheet. It is an overlay process, in that cells in a savedrange, say C6, Cil2 will replace the contents of these same cells in the spreadsheet currently displayed.

Save Range is used to save selected data and formulas from a spreadsheet.

Load Range is used to enter or replace selected data or formulas in a spreadsheet

Procedures for saving and loading ranges are identical to those for saving and loading spreadsheets, except that the Save Range and Load Range commands are on the Range Command Menu. Note the following points, however.

* Column width and printer setup information are not saved with a range as they are with a spreadsheet.
* The Command Line queries are the same for ranges and spreadsheets.
* The range file suffix is . R.
* The Range Load directory displays range files exclusively.
* The Load Sheet directory displays spreadsheet files exclusively.
* The Delete File directory displays both range and sheet files.
* Sheet loading overwrites the entire display.
* Range loading overlays the entire display, but only matches and overwrites its specified cell range.

8oation 7 -- ADBIflonAL COMMAND8

This section covers commands displayed on previousiy shown menus, but not explained. This section:

* Compares and lists the Format Commands.
* Shows SwiftCalc's start-up default format.
* Demonstrates plotting and Row/Column Delete/Insert.
* Shows how to change screen colors.
* Explains the Clear Sheet command.

Free Space

The Free Space command, on the Command Menu, displays the remaining unused worksheet memory, expressed in numbers of characters. When this number reaches zero, you have no more space for your spreadsheet. On startup, you have space for over 33,000 letters and digits. This number may vary slightly according to your system setup.

Format commands
Three levels of format control are available:

Format	Where found	Description
Celı	Command Menu	Formats a single cell.
Range	Range Commands	Formats range specified, after range prompt.
Global	Worksheet Commiands	Formats entire sheet: normally used to set up the blank worksheet, before entering data.

All of the format options are available at each level, with one exception: plotting is not available from Giobal format.

The format menus are below. The first item on the actual menu, EXIT, is omitted.

Usage notes

Negative Values

-vesign
()

CR/DR

Currency signs
currency off
s

- comma

Dipplays the - sign before a negative number.
Encloses negative numbers in parentheses. A trailing space is added to positive numbers in place of the right parentheses, for alignment of decimal points. Adds the letters dr after negative numbers, and cr after positive numbers.

Precedes the number with the dollar sign. Precedes the number with the English pound sign.
No currency signs are displayed.
on
of f
\% sign

```
On
    Off
Performs no calculations: includes the per cent symbol after the number displayed. Example: 3.3\% Per cent sign is not included.
```

A comma is inserted every three digits left of the decimal point. Example: 1,999,453.22
No commas are inserted.
Example: 1999453.22

Zero-suppression

show	The cell's zero value (or result)
	is displayed. Example: 0.00
blank	Zero values are displayed as a blank cell.
Precision 0-8	Displays the number of decimal
	places according to your entry in
	response to the Command Line
	prompt, and automatically rounds
	the number displayed.
	Examples: After the prompt
	Precision 0-8, with response 2
	RETURN:
	0.005 rounds to 0.01
	0.004 rounds to 0.00
	9.995 rounds to 10.00
	9.994 rounds to 9.99

Plot mixt
on
of f
Plotting on converts the number to
a row of asterisks. The length of
the row of asterisks is propor-
tional to the size of the number,
and is independent of the cell
(column) width. Negative numbers
are treated as o.
The numeric values display.

Demonstration of Piot ziz

The advantage of plotting, as always, is to produce a quickly-read visual scalar comparison of related numbers.

To demonstrate how plotting works, use the Car costs worksheet you have been building.

```
Your action
Screen action or Command Line
Move to NN6
Select Range Commands
Select Range Format
Press.
Move to N2O
Select Plot ***
Select.plotting on
```

Your action

Screen action or Command Line

Move to N6
Select Range Commands Select Range Format Press. Move to N2O
Select Plot ***
Select. plotting on

Range to format N6
Range to format N6,N6
Range to format N6,N2O
Plot *** menu displays
Numeric values display as line of dots.

This is intentionally not a good example of ploting--the mileage number is too large--erase that one value with Range Erase and observe what happens. Print N6, N2O with Range Print. Experiment with the plot display, until you get a feel for Swiftcalc ploting. Often, creating a second column with the values scaled by multiplying or dividing by a factor, will show the relationships you desire.

Default format

The default global format is:

Format

Negative values	-ve sign on
Currency signs	off
\% comma	on
\% sign	off
Zero-suppression	blank
Precision 0-8	2
Plot ***	off

Insert or Delete rows or Columns

Inserting and deleting are separate menu selections on the workshet Commands menu.

You can either place your cell cursor in the the selected row or
column and make your selection, or, when the Command Line prompt appears. Swiftcalc is automatically in point mode. Just move your to the selected row or column and press RETURN.

PICTURE OF SCREEN
 SHOWING
 DELETE ROW/COLUMN MENU

Delete Row/Column Menu

PICTURE OF SCREEN
SHOWING
INSERT ROW COLUMN MENU

Insert Row/Column Menu

When a row is deleted, the entire row and its contents are eliminated from the worksheet and the contents of all the rows below it move up one row. The relative formula values in all other rows, including the rows that moved, that reference the moved rows are decremented by one to maintain the correct cell reference.

When a column is deleted, the entire column and its contents are eliminated from the worksheet and the contents of all the columns to the right of it move one column left. The relative formula values in all other columns, including the columns that moved, that reference those columns are decremented by one to maintain the correct cell references.

When a row is inserted, the contents of the row beneath the cursor and all the rows below it move down one row. The relative formula values in all other rows, including the rows that moved, that reference those rows are incremented by one to maintain the correct cell reference. A blank row appears under the cursor.

When a column is inserted, the contents of the column beneath the cursor and the columns to the right of it move one column right. The relative formula values in all other columns, including the columns that moved, that reference those columns are incremented by one to maintain the correct cell references. A blank column appears under the cursor.

NOTE! Range Erase merely blanks the cells in the range without moving any rows or columns.

To move rows or columns
Swiftcalc does not have a move column or move row command: To move a row, first insert a blank row (or rows), making space for your move, then Range Copy the rows you want to move into the blankd space you've made. Use Range Erase or Delete Row to eliminate the copy source when you wish to. Use the same technique for copying columns.

Change color

The colors available to you may not appear on your CRT exactly as they are numbered and named below. There are number of causes for this: the tube itself, its age, whether its monitor- or TVconnected, black and white TV instead of color, interference, etc. You can select color combinations that look good, even if in shades of gray.

1	White	9	Brown
2	Red	10	Light Red
3	Cyan	11	Light Gray
4	Purgle	12	MediumGray
5	Green	13	Light Green
6	Blue	14	Light Blue
7	Yellow	15	DarkGray
8	Orange	16	Black

The default color set is displayed with the prompt upon selecting Change Color. It consists of a string of eight numbers separated by commas.

The prompt: Enter color codes: 2,5,6,12,12,16,1,1 Please write your system's best color combination below.

Position	1	2	3	4	5	6	7	8

Clear Sheot

When you choose to erase your whole workshet by selecting Clear Sheot, Swiftcalc asks you:
Really clear the Sheet? Yes or No

STOP and think: Have 1 saved the spreadsheet to disk?

> Does the disk file need to be updated?

Should l print it before l destroy it?
And answer accordingly by entering Y for Yes or N for No and press RETURN.

Soction 8 -- PROGRAMMING SWIFTCALC

Swiftcalc's sequence of execution--by row or by column--is controlled by the re-calculation menu, but altered by use of special e functions and programming.

- function Sequence Control

The e functions that control sequence are:

General	Specific	
Form	Form	Operation
egoto cell)	QGOTO(Z254)	Jumps to the cell, from where the calculation
		sequence is continued.
eIFGOTOCtest, true cell, false cell)	@IFGOTO(1 1 $=6, A 6, A 20)$	If the logical
		result of test is
		true, calculation
		sequence will jump to the
		true coll. If not true,
		sequencing jumps to the
		false coll.

For explanation of the functions, please see Section 9 , Using Functions. For a summary, see Section 12, List of Functions.

Programming SwiftCalc

With programs, you can set up an automatic sequence of operations that not only include computations, but also promptedentries of text and values, function sequence control, and automatic printing, saving and loading of ranges.

Once a program is written, it is selected from the recalculation menu.

To write a program:

* First, select manual re-calculation.
* Move to any cell in column Z to enter a program.
* Give the program a name--up to 20 characters long.
* Type the name into the cell in column Z, preceding the name with the sign, for example, SUM.
* Enter the program instructions in the rows below the name. (See the example program below.)
* End the program with eQuIT.

Set up the worksheet as follows. On the C 128 , replace all coordinate references Z with BL.

R 0 w s 1 2 3 4 5 6 7 8

COLUMNS
A $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Y

1
2
3
6
$\begin{array}{ll} & \text { \#LOAD } \\ \text { Filename? } & \text { @TEXT }(Y 7, Y 8) \\ \text { (Car Costs) } & \text { @LOAD }(Y 8) \\ & \text { @PRINT(A1,N20) } \\ & \text { @QUIT }\end{array}$
\# SUM
eSUM(A1, A3)
@ASSIGN(Z2,A4)
QQUIT

The bold values are spreadsheet entries that result from program operation.

The program \#SUM sums the range $A 1, A 3$ and then assigns the result produced by cell $Z 2$ to cell A4.

The \#LOAD program's eTEXt function places the contents of cell Y7 on the Command Line as a prompt, then places the response, Car Costs, in cell Y8. The eLOAD function loads the named file. ePRINT prints the range A1,N20.

To run a program:

Your action Screen action or Command Line

Select Re-calculation Select Programmed EXIT to worksheet Press Recalculation key Select Option menu displays.

```
    SCREEN DISPLAY
    OF
SELECT OPTION MENU
```


Select Program Menu

Select SUM
Press GO
Inspecting A4 discloses the value 6. The program load is exercised by the same procedure.

Section 9 -- USING FUNCTIONS

Swiftcalc contains powerful and unique functions for mathematics, statistics, program sequence control, data entry and program management of disk files and printing.

Function syntax

The general syntax of a function is:

eFUNCTION(Parameters within parentheses)

Function parameters are described below, and detailed description of the function is found on the page indicated. The eAND and eOR functions are described through use in examples.

Page 57
eASSIGN(exp,r)
eCOUNT (r1,r2)
EGOTO(r)

Page 60

ENUMBER(rt,r)
QPRINT (r1,r2)
ePV(p\$,p\%,pt)
eQUIT
ESAVE(rt,r1,r2)
eSORT(rc,r1,r2)

Page 58
CIF (p?,p+,p-)
еIFGOTO (p ? , $r+, r-)$
eloAD (rt)

Page 59
eLOOKUP(rr, r1,r2,rc,r)
emAX (r1,r2)
©MEAN(r1, r2)
CMIN(r1, r2)

Page 61
$\operatorname{eSUM}(r 1, r 2)$
ESQRT (exp)
eSTD(r1,r2)
©TEXT(rt,r)
QVAR(r1,r2)

Parameter definitions

```
r1.r2 = range expression = number, cell or formula
    r = target cell p? = testexpression
    r+ = target cell if true p+ = result if true
    r- = target cell if false p- = result iffalse
    rt = cell containing text ps = dollar amount
    rc = cell in reference column p% = interest rate, from o to 1
    rr lookup reference cell pt = time period for ePV
```


The Functions

The examples used to define the functions demonstrate the comprehensive forms the parameters can take. Since it is easier to show with examples, the function definitions will use the spreadsheet below.

	A	B	C	D	E	F	G
1	7	8	9				Costs
2	4	5	6				
3	1	2	3				
4							

FUNCTION:
©ASSIGN(exp,r)
@COUN T(r1,r2)

QGOTO(r)

DOES:

This function assigns the content of one cell or the results of a calculation to another.

```
@ASSIGN(A1,D6) assigns the value 7 to D6.
@ASSIGN(A1*2,D8) assigns the value 14 to D8.
eASSIGN(G1,H1) assigns the text Costs to H1.
@ASSIGN(5.45,H2) assigns the value 5.45 to H2.
```

Counts the cells containing numbers in the range, excluding zero-value and text cells.
@COUN T(A1.D3) gives a result of 9 COUNT (B1, B4) gives a result of 3

Causes calculation sequence to jump to the referenced cell.

QGOTO (Z254) directs calculation to the last cell, causing immediate exit from the calculation sequence.

elookup (rr,r1,r2,rc,r)
Searches the range ri, refor the value contained in cell ri. The contents of the cell at the intersection of the row in which the value is found and the column that conttains cell rcis assigned tocellr.

	A	B	C
1	PC		18M
2	Commodore	C64	100
3	\| BM	PC	30
4	Acorn	Electron	500
5			

EMAX(r 1, r2)

CMEAN (r 1, r2)

EMIN(r1,r2)

Produces the average of all cells in the range, excluding zero-value and text cells.

```
@MEAN(A1,D3) gives a result of 5 (45/9)
EMEAN(A1,A3) gives a result of 4 (12/3)
```

Produces the smallest value in the range.

```
@MIN(A1,C3) gives a result of 1
@MIN(A1,C1) gives a result of 7
```

@NUMBER(rt,r)	The contents of the text cell ridisplay as a Command Line prompt. The number entered in response to the prompt is assigned to cellr.
	eNUMBER(G1, G2) displays the prompt Costs on the command line. The number entered in response is placed in cell G2.
QPRINT(r1, r2)	Prints the specified range.
	epRINT(A1, B3) prints the block including upper left corner Al and lower right corner B3.
@PV(ps, $\mathrm{p} \%, \mathrm{pt})$	Returns the present value of the amount ps at the percentage p\% over the period pt.
	ρ can be a cell name or value. $p \%$ can be a cell name or value between 0 and 1. pt can be cell name or value between 0 and 255.
	ePV(1000,0.12,5) gives the value 567.43 @PV(1000,0.12,A2) gives the value 335.52
EQUIT	Stops re-calculation and is used to end a program: programs are written in the rightmost column of the worksheet.
@SAVE(rt,r1, r2)	Saves the range of cells ritor2 under the (text) name contained in cell rt.
	eSAVE(G1, A1, B3) saves the range Al, Bu under, the name Costs.
eSORT (rc,r1,r2)	Sorts the range ri,r2 according to the numbers or text in the column containing the cell re. Operates under the same parameters as the command
	Range Sort.
	©SORT(B1, A1, C3) starting in row 1 and proceeding through row 3 , sorts the range according to the values in column B.

$\operatorname{esum}(\mathrm{r} 1, \mathrm{r} 2)$	Adds the values in the range of cells.
	@ $\operatorname{Sum}\left(A_{1, C 3)}\right.$ gives a result of 45
	@SUM(B2,B3) gives a result of 7
ESQRT(exp2)	Produces the square root of the expression.
	@SORT(A1*C1/B3) gives a result of 5.61
estd (r1,r2)	Calculates the standard deviation of the range, excluding zero-value and text cells.
	@STD(A1, $\mathrm{D}^{\text {a }}$) gives a result of 2.58
	eStD (A1, A3) gives a result of 2.44
етехт(rt,r)	The contents of the text cell rt display as a Command Line prompt. The text entered in response to the prompt is assigned to cell r.
	eTEXT(G1, G2) Displays the prompt Costs on the command line. The text entered in response is placed incell G2.
@VAR(r1,r2)	Calculates the variance of the range, excluding zero-value and text cells.
	eVAR(A1, D3) gives a result of 6.67 eVAR(A1, A3) gives a result of 6.00

Section 10 -- OPERATING ELEMENTS

CONTENTS

Page
The SwiftCalc Spreadsheet 63
Entering Commands 65Responses to promptsHow to Point
Editing 67
Cell Contents 67
Numbers 68
Mathematical operators 69
Logical Operators 69
Text 70
Cell coordinates 71
Cell references 72
Relative cell reference Fixed cell reference
File handiling 73
Error handifing 73

The SwiftCalc Spreadsheet

The worksheet is a grid of cells arranged in intersecting rows and columns. The sheet is 26 or 64 columns wide by 254 rows high. An area one column wide by one row high is called acell. Each cell is one character high and can be from one to 22 characters wide.

The area of the worksheet where information is entered into cells is called the spreadsheet.

Each cell may contain a text label, a numeric value, or a formula that calculates a numeric result. Text labels are displayed as is, numeric values displayed according to specified formats, and formulas display their result as a formatted numeric value.

Normally, when viewing the spreadsheet, only text and values are seen by the operator. While a cell may contain a formula. only its numeric result is displayed. A special option allows the formulas to display instead of their result.

The text label can exceed the size of the cell, overprinting the blank cells to the right, but being overprinted by cells to the right that contain text or values. Labels shorter than the width of the cell are normally left-justified, but can be centered or rightjustified in the cell.

Numeric values are right-justified in the cell, and displayed with precision fromzero to eight decimal places. Numeric values can also be changed to a bar-chart plot.

The formulas are created from SwiftCalc's mathematical functions, numbers, and terms that are references to the values in other cells.

That the value displayed in one cell is dependent upon the values in other cells is the key feature of the spreadsheet. When the independent value changes, the dependent value changes also. This process is called re-calculation, and occurs automatically upon each entry of information into the spreadsheet, or may be made to "manually" re-calculate on a keystroke.

Whether automatic or manual, the sequence of re-calculation
sequence is automatically followed by Swiftcalc from cell to cell, and may be directed to proceed from top to bottom of each column before proceding to the next column, or from left to right in each row before proceeding to the next row.

Occasionally, a spreadsheet is written such that a formula references a cell that contains a formula which back-references the cell of the first formula. This back-reference is called a circular reference. The result: a circular reference means that one re-calculation may leave inaccurate vaues in the back-referenced cells. Built into Swiftcalc are decisional functions that make the re-calculation process automatic until the references balance--that is, the cell values no longer change on recalculation.

A portion of the worksheet is displayed on the screen of the CRT. The display is virtually a "window" into the contents of the workshet. The window may be scrolled to view different parts of the sheet. The window may also be split into two windows, each of which can be scrolled separately, so different areas of the sheet can be juxtaposed.

Across the top of the window, on the third line from the top of the screen, are the letters identifying the columns, down the left hand edge are numbers identifying the rows. As the window is scrolled, the column and row identifiers change to show which area of the shet you are viewing.

Scrolling is accomplished by moving the cell cursor.
In the worksheet window is a screen object called the cell cursor, which marks the active cell.

The active cell is changed by moving the cell cursor with the computer's cursor keys. When the cell cursor reaches the edge of the window, it scrolls the screen in the direction of movement.

The active cell receives the entry of information into the sheet. The coordinates of the active cell, by column and row, are displayed on the first line, called the status Line, of the screen along with the contents of the cell. While the cell displays the result of the formula, the status Line displays the
formula resident in the active cell. The term "active cell" only refers to the fact that it is selected by the cursor for inputand does not refer to any calculation characteristics or the program mode of SwiftCalc.

Entry is displayed on the third line of the screen, called the Command Line, and is completed by pressing a key to terminate the entry operation. The contents of a cell may be recalled to the third line, edited, and returned to the sheet.

The computer's HOME and CLeaR keys may be used to jump the window up and down quickly, the cursor may be caused to jump 20 rows at a time in addition to cell by cell movement to columns and rows, and a command is provided to jump immediately to any cell.

Entering Commands

Swiftcalc is controlled by Pop-up menus, that list the program's commands. When a key (the GO key) is pressed, they appear on the screen with the list of commands for the task selected. The cursor is used to select the command.

When the worksheet is displayed, it is re-calculating or waiting for you to enter information or a command.

Most of the keyboard's keys are reserved for text, number and formula entry. Keys reserved for commands are:

STOP, which ends any operation, manual re-calculation. RETURN entry termination.
Cursor movement.
Menu exit.
The Pointer.
Select.
Pressing the Select key, called GO, makes the main Command Menu, popup. Commands selected on this menu either execute immediately, or pop-up a subsidiary menu. Selection is made with the GO key. regardiess of the menu, including the EXIT command displayed on each menu in addition to the convenient exit key.

EXIT returns you to the previous menu, all the way to the main Command Menu, or directly to the worksheet. Some commands produce a text prompt on the Command Line, which must be answered before proceeding.

To seloct a command:

1. Move the cursor to the desired active cell.
2. Press the GO key, which causes the Command Menu to pop up.
3. Move the cursor up or down to the command of choice and press GO.
4. If a subsidiary menu pops up, repeat step 3 .
5. If a prompt appears on the Command Line: answer the prompt and terminate with GO or the RETURN key.
a. If another prompt appears, repeat step 4.
b. If a subsidiary menu appears, repeat step 3 .
6. Depending upon the command,
a. Return to the worksheet is automatic, or
b. Select EXIT command or use the exit key to return to the spreadsheet.

Responses to prompts.
Responses to prompts require entry of yes or no answers, entry new file names, cell coordinates, or entry of decimal precision.

When existing disk files are loaded, the promptis a pop-up menu displaying the names of the files.

Otherwise, responses are entered from the keyboard as alphanumeric characters, or when a cell coordinate entry is required, it may be either entered as characters or pointed.

How to Point:

1. When prompted for a single cell coordinate, press the Pointer key and move the cursor over the cell desired: the cell coordinate appears on the Command Line. Terminate entry.
2. The command is completed and exit is automatic, or
```
3. A second coordinate is needed to satisfy the prompt.
    Press the comma key and either enter the cell coordinate
    or repeat step 1.
```


Editing

The contents of any cell are edited in two ways:

1. Make it the active cell and enter as though the the cell were blank. (Editing of the line is described in the step below.) When entry is completed, terminate entry.
2. Make it the active cell and press the Edit Cell key. The contents of the active cell, whether they are text label, number, or formula, appear on the Command Line. The cursor keys are used to move to the correct character position, and characters inserted or deleted as necessry. On the Command Line, Swiftcalc auto-inserts. For example, to correct Expnse to Expense, move the cursor over the letter and type the letter e: the letters nse conveniently move aside for the letter e. The cursor can be anywhere on the command line to terminate editing.

Cell Contents

Cells are either blank or contain information, which may be text, numbers, or formulas.

Cell Contents	Description \& Use
Number	The digits 0-9, the plus (+) and the minus (-) sign automatically force number entry.
Label	Alphanumeric characters other than the numeric
	keys, the arithmetic operatorsand the e key, (which calls the functions).
	Text entry is always forced when the first
	character on the line is the double quote (").
	the right-justification key ($>$) , or the
	centering key ($\mathbf{1}_{\text {) }}$. By editing one of these
	characters into the cell, a number or formula
	can be instantly converted to a text label.
Formula	Mathematical terms composed of numbers and
	arithmetic operators, extended by cell
	coordinates, logical operators, and functions
	Entry is forced by entry of numeric characters
	or functions, or by extension of a number by
	adding operators and other mathematical terms
	Used to express the mathematical relationships
	of the spreadsheet's cells.

Numbers

Numbers may be integers or decimal fractions with format attributes added.

Examples of formats with attributes:

$$
100.001
$$

$\$ 99.95$
13.5%
$\$ 11.234 .23$
11,234. 23
$999,999,999.99999$
The numbers are calculated to 14 digit accuracy and to eight decimal p!aces of precision, rounded up on half and down on less than
one half of the place beyond the precision setting.
The smallest displayable number is:

$$
0.00000001
$$

The largest displayable number is:

```
999,999,999,999.99
```

When spreadsheet mathematics produces a number a number with more characters than the column width, the word ERROR is displayed, which is removed by widening the column or correcting the mathematical condition that produces the error.

Mathematical operators are:

Operator Meaning

$+\quad$ Addition

- Subtraction, also use in front of a number or term to denote negative.
* Multiplication

1 Division
() Parentheses force completion of calculation within.

This manual's Section 3 describes the SwiftCalc's right-to-left mathematical hierarchy, with honored parentheses.

Section 9, Using Functions, describes Swiftcalc functions for math, statistics, and financial calculations, and data management.

Logical operators are described below and examples of the logical functions AND and OR are demonstrated in section 9.

Logical operators

Some Swiftcalc functions evaluate the result of a logical test, then take different action according to the true or false result
of the test. Besides the AND and OR functions, the following comparison operators can be used:

Operator Meaning

<		Less than			
< $=$	Or $\quad=$ <	Less than	or	equal to	
=		Equal to			
>		Greater tha			
$\rangle=$	or $=$ >	Greater tha		or eq	Ual
<>	or > <	Not equal			

The functions eIfGOTO and eIf, explained in section 9 , test the results of logic statements.

Text

A cell may contain up to x characters of text, which, when larger than the column width, writes over the blank cells to the right of the text cell. If cells to the right are not blank, their contents display, and writeover does not occur.

Text characters are recognized automatically as labels. The keyboard characters not used as commands are recognized as text, as summarized in the table under Formulas, above.

Examples of text, with reason:

```
Text
Smith Starts with alpha character.
automatic Starts with alpha character.
TJune
* 144/12
>1985 Totals
"0.003
"A5
```


Reason

```
Smith Starts with alphacharacter.
automatic starts with alphacharacter.
Starts with column-centering character
Starts with column-centering character.
Starts with column-right-justification character.
0.003
"A5
Starts with force-text character.
Starts with force-text character: prevents Swiftcalc form interpreting it as a cell coordinate.
```


Coll coordinates

References to cells are by coordinates decribing first the column, then the row, of the cell. A cell in column H of the 26 columns labelfed A through Z, and in row 80 of the 254 rows labelled 1 through 254 is described by the coordinates H8O.

If the value displayed in $H 80$ is the sum of the values in cells c22 and N55, then when $H 80$ is the active cell, the Status Line displays: $\mathrm{H} 8 \mathrm{O}+\mathrm{C} 22+\mathrm{N} 55$
which may be interpreted as:

$$
\mathrm{H} 80=+\mathrm{C} 22+\mathrm{N} 55
$$

Regardiess whether the contents of C2 and N55 are entered numbers or formulas, H8O displays the resulting sum of the values displayed in thosecells.

A group of cells in a column, row, or area of the sheet is described by naming the highest or leftmost cell, entering a comma, then naming the lowest or rightmost cell.

Description Meaning
A5 The single cell A5.
A5.A10 The range of cells in column A including row 5 through row 10.
A5,N5 The range of cells in row 5 including column A through column N.
A5, N10 Includes the range of cells in the area whose upper left corner is cell AS and lower left corner is N10.

The comana (,) is the range operator sinceit specifies a range of cells. Please note that in certain functions, described in Section 9. Using Functions, the comma is also used as a parameter separator.

Please see section 4, Range Commands for additional detail, including the ability to Name a range of cells.

Cell references

Creating a speadsheet often necessitates the movement of rows and columns, or the duplication of formulas from one location on the spreadsheet to one or many others.

Relative cell reference

Two examples:

1. On a budget spreadsheet, another expense row is added. The formula in the cell at the bottom of the column of expenses totals the range of cells that include all expenses--the range C10.C20. With SwiftCalc's commands the new expense row is inserted between rows C15 and Cl6, moving the last expense row to C21. When we view the formula in the cell where the total is calculated, the range has changed to cio, c21! This automatic change in the referenced cell is necessary to produce the correct result relative to the changed size of the range.
2. On the same spreadsheet, the first total using the range C10,C21 is in the January column. Each of the remaining 11 months can use the same formula, but with the range corrected to produce the total for its own column: february's range is D10,D21; March's E20,E21 and so on. Using SwiftCalc's range copying commands, the formula is copied from Column A to the next 11 columns. On viewing the February's formula, it diplays the range D10, D21-and this change also occurs in all the other columns. When copying formulas, the relative position of the referenced cells is maintained. It's as though the references to other cells were cast rigidiy such that when the formula moves, the references move rigidly with the formula.

Fixed cell reference

On the same budget spreadsheet, it's decided to make one cell the reference cell for the cost-per-mileage value fin dollars per miles. Then, when each month's mileage total is entered, the month's mileage is calculated and multiplied against the cost
per mileage cell to produce an expense figure. When the formula is copied to each month's column, the mileage differences must change relatively as in the above example, but the cost-permileage cell reference must remain fixed. If the cost-permileage cell is A5, the formula would look something like this when copied:

Column Formula

D	$(D 11-C 11) * S A 5$
E	$(E 11-D 11) * S A 5$
F	$(F 11-E 11) * S A 5$
\cdots	(Nil-M11)*SA5

The dollar sign (s) when prefixing a cell coordinate (not as a numeric format symboll fixes the reference so it will not change when copied.

File handiing

Swiftcalc implements the comprehensive file handing features of the computer system for its data files. Please refer to Section 6, Managing Disk Files to learn how to prepare disks for use, how to save your work, and recall (load) it for later use.

Error-handifing

System errors are displayed on the comand line, and are relieved by pressing GO The summary of these errors Status Line messages and their meaning is described in Section 13 , ERROR MESSAGES.

Calculation or format errors are flagged by the word ERROR displayed in the offending cell. Correction of the error eliminates it.

```
Section 11 -- OUTLINE OF MENUS
Press GO to select. Commands that exit directly to the sheet are noted. To
stop, press f6 or press the STOP key. EXIT returns you to the previous menu.
Command Menu
    EXIT
    Goto Cell
    Range Commands
        EXIT
        Range Copy
        Range format
        EXIT
        Negative values
            EXIT
                    -ve sign
                    () parentheses
                    cr/dr notation
            Currency signs
                    EXIT
                    s dollars
                    pounds
                    currency off
            - comma
                    EXIT
                    , comma on
                    comma off
            % sign
                    EXIT
                    * sign on
                    % sign off
            zero-suppression
                    EXIT
                    show zeros
                blank zeros
            Precision 0-8
            Plot ***
                EXIT
                    plotting on
                    plotting off
        Range Erase
        Range Sort
        Range Save
        (If Yes)
            EXIT
            Disk directory To sheet
        (If No) Worksheet name:(14 char. max) To sheet
        Range Load
            EXIT
            Disk directory To sheef
        Range Print
```

Prompt
Go to Cell

Range to Copy From
Range to Copy To
Range to Format

Number of Decimal places (0-8)

Range to Blank	To sheet
Range to Sort	
Column to Sort	To sheet
Range to Save:	
Replace Sheet? Enter Yes or No:	

Replace Sheet? Enter Yes or No:

Worksheet name: $(14$ char. max $)$	To sheet To sheet
Range to Print	To sheet
To sheet	

To sheet

```
Worksheet commands
    EXIT
    Global Format
        (Format menu)
    Sheet Column-Width
    Sheet Column-Width
    EXIT
    Delete Row
        Delete Column
    Insert Row/Column
    EXIT
    Insert Row
    Insert Column
    Save Sheet
    (If Yes)
        EXIT
    Disk directory
    (If No)
    Load Sheet
    EXIT
        Disk directory
Printer Setup
    EXIT
    Page Width 80
    Start of Print
    End of Line
    End of Print
    End of Pr
    Formula or value?
    Clear Sheet
Format Cell
    (Format menu)
Column width
Split Screen
    EXIT
    Vertical Split
    Horizontal Split
    Swap Over
    Close Split
Re-Calculation
    EXIT
    Manual
    Automatic
    Programmed
    By Row
    By Column
Disk Commands
    EXIT
    Validate disk
    Delete file
        EXIT
        Disk directory
    Format Disk
Free space 34114
Use <=CRSR=> to adjust To Sheet
Delete Row
Delete Column
Insert Row
Insert Column
Replace Sheet? Enter Yes or No:
Worksheet name:(14 char. max) To sheet
Enter Page Width
Enter Printer Codes:
Enter Printer Codes:
Enter Printer Codes:
Enter color codes:
    To sheet
Really clear the sheet? To sheet
Use <=CRSR=> to adjust To sheet
Select position & press GO
Syncronized movement?
Select position & press GO
Syncranized movement?
To sheet
Disk Name
To sheet
T
    ExIT
```

```
r1,r2=range oxpression = number, cell or formula
    r = target cell
    r+ = target cell if true
    r- = target cell if false
    p? = test expression
    - = p+ = result if true
    r = cellotmeresult if false
    rc=cell inreference column m% = interestrate, fromo to 1
    rr = lookup reference cell pt = time period for present value
    ps = dollar amount
eAND(exp), eOR(exp) performs the logical AND and OR.
eASSIGN(exp,r)
eCOUNT(r1,r2)
egOTO(r) directs calculation sequence to cellr.
QIF(p?,p+,p-) tests, then produces the true or false result.
eIFGOTO(p?,r+,r-) tests, then directs sequence to true or false cell.
eLOAD(rt) loads range file whose name is in cell rt.
    assigns the expression to cell r.
    counts the celts in the range containing numbers.
eLOOKUP(rr,r1,r2,rc,r) places incell r the value in range r 1, r2 picked by
CMAX(r 1, r2)
    produces the maximum number in the range.
CMEAN(r 1,r2)
    calculates the mean value of a range.
emIN(r 1,r2)
eNUMBER(rt.r)
EPRINT(r1,r2)
ePV(ps,p%,pt)
eQUIT
eSAVE(rt,r1,r2)
eSORT(rc,r1,r2)
eSQRT(exp)
eSTD(r1,r2)
esum(r1,r2)
eTEXT(rt,r)
eVAR(r1,r2)
    produces the minimum number in the range.
    Numeric response to the prompt text in rt is put inr.
    prints the range.
    present value of ps at rate p% for period pt.
    stops calculation sequence.
    saves range rl,r2 to filename contained in cell rt.
    sorts range ri,r2 on the column that cell rc is in.
    calculates the square root of the expression.
    calculates the standard deviation of the range.
    calculates the sum of the numbers in the range.
    Text response to the prompt text in rt is put in r.
    calculates the variance of the range.
```


Section 13 -- ERROR MESSAGES

Error messages appear on the Status Line, programprogress is halted, and the cursor marks the offending error. Use the GO or EXIT key to release the error. Edit to correct errors in syntax.

ERROR	Description
Range Error	A correct range description cannot be extracted from the information given.
Uneven brackets (J	An incomplete pair of brackets was entered.
Unsure of meaning	Program doesn't understand your instructions.
Cells are Al to X only	A nonexistent cell was addressed.
Unknown function	(e) is followed by an incorrect function.
Number too large	The number exceeds 999,999,999,999.
Too many decimal points	Only one decimal point per number allowed.
GOTo can't jump to itself	egoto must jump to a different cell.
IFGOTO can only go to a cell	An attempt was made to jump to a number or expression.
Number or cell address only	Only a number or cell reference is allowed.
ASSIGN to a different cell	Use a different cell reference for assignment.
Numbers and commas only	The command will only accept numbers separated by commas.
Numbers between 1-255 only	An attempt was made to enter a number outside this range.
Only 15 codes allowed	The command will only allow 15 numbers to be entered.
PV format PV(amt,\%,duration)	An error was detected in the use of the PV function.
Prompt with a text cell	An attempt was made to use a prompt cell without text in it.
The sheet is full!	The sheet is full! Erase unused data from your spreadsheet, if possible.
Backgr'd color must be unique	An attempt was made to change background color to match an existing color selection.
Error in Math	A syntax error was made in the expression. $-77-$

APPENDIX A

HINTS

Save work-in-progress. A power failure or other interruption can destroy valuable time.

Duplicate your files on a backup diskette.
To rename a disk file, save under a new name: delete the old.

Look to simplify your spreadsheets, rather than expand them.

Verify the results of a spreadsheet, whatever the source.

Try to organize your spreadsheets to be read in normal orientation on an $81 / 2^{\prime \prime}$ by $1^{\prime \prime \prime}$ sheet. \quad t reads much better when included in a report. Many low-cost printers offer compressed character sizes, allowing up to 136 characters across $\mathbf{8 " ~}^{\prime \prime}$ width.

The Swiftcalc system is also a record keeping system. Format a new disk, for example, then store the Expense report on it. Each month, as you call the blank report and enter data into it, store it by the month's name: January, february, etc. At the end of the year, you can correct and sum the entire year.

More than one spreadsheet at a time can reside on the worksheet.
Range Save and Load provide the ability to pass data between spreadsheets.

Think about combining related functions on the worksheet. Expenses, trial balance, Cost of sales; Income Statement and Balance Sheet can calculate simultaneously, making them easier to balance. The fact that labels can be longer than the cells and powerful editing features allow addition of extraordinary items.

Analyze your data with comparison tables, or print the sheet each time you vary the data to make a permanent record for comparison.

A technique for saving computed cell values with Range Save: with @ASSIGN, assign the values to empty cells, then Range Save those cells. At the end of the year, a program to extract those ranges and sum them automates the task of annual totals.

When editing a cell, delete, then type, Swiftcalc auto-inserts.
Don't trouble yourself with trapped errors, but read the message, press GO to relieve the condition, and edit to correct it.

Save keystrokes on each spreadsheet by using Named Ranges to print the spreadsheet.

It saves time to enter numeric data into the spreadsheet while in manual re-calculation mode. When finished, press f2 to calculate. Another way to save time: at the lower right hand corner of your spreadsheet area, eGOTO Z254 (or BL254), and skip the automatic scanning of all the cells in between.

Copy cells when you can. It's more efficient.
Complex equations can be broken up, with intermediate values placed in cells you plan not to print.

Mathematical functions not available in Swiftcalc can be derived either by formula, iterated, or extracted from tables with elookup.

Iterative solutions can be reached without programming: see the IRR Demo.

Position the cell cursor before selecting the command that prompts for it. It's faster and less confusing.

Get in the habit of using GO instead of RETURN. The few instances where only RETURN is required, GO doen't respond.

Take time to determine the best color combination for your display and record the code sequence in a convenient place.

With Swiftcalc, a parallel interfaced printer requires only a cable between the printer and the Commodore's user port, not a complex interface box.

APPENDIX B

SWIFTCALC GLOSSARY

global
glossary
grid
hierarchy
interface
iteration jump
label
load
menu
mode numeric operator
overlay
overwrite
parallel
parameter
plot
pointing
Pop-up Menu
precision program
round
row
save
scalar
scroll
screen
select separators

An operator that affects or uses the entire worksheet. A vocabulary of specialized terms with accompanying definitions.
The rectangular pattern of cells that comprise the worksheet.
Mathematical hierarchy: the rules of order sequencing calculations. Algobraic hierarchy: Transcendental functions are calculated first, then in order: exponentials, multiplication and division, least addition and subtraction, with parentheses and bracket precedence honored. Swiftcalc hierarchy: Proceeds from left to right, and honors parentheses.
The means of connecting the components of an operating system.
Repeated sequence.
On the worksheet, departure from sequence by GOTO Cell, eIFGOTO, egoto.
Text characters (not numeric values) in acell.
Move data or information from storage to use.
A list of choices.
System or program behavior, dependent upon commands.
On the worksheet, displayed values.
A symbol that represents a mathematical, or program, operation.
When loaded, ranges overlay like a transparency with printing on it: you can see through the overlay, but not the printing. The specified range prints over (overwites) that range on an existing spreadsheet.
When spreadsheets are loaded, the worksheet grid is entirely replaced.
As used, a printer interface that conveys the eight bits of information that comprise a character to the printer on eight lines simultaneously.
A variable or arbitrary constant whose value determines the form of an expression or function.
Graphic representation of numeric values: in Swiftcalc, a bar of asterisks.
The technique provided by Swiftcalc that allows you to enter a cell coordinate by moving to it, rather than typing it in. Swiftcalc's handy presentation of program operator's, (or commands). Sometimes also called pull-down menus.
The number of places to the right of the decimal point. A coherent sequence of operators organized to do a particular function.
Increasing or eliminating one place beyond the selected precision to produce a more significant results.
Swiftcalc's rounds ou on 0.5 or more of the precision, down on less than 0.5.
A worksheet area one character high and 26 cells wide.
Move information from the computer to storage media.
A number on a scale.
Move the window by manipulating the cursor.
The viewable image surface of the CRT.
The act of executing a menu command.
Lines composed of labels (like hyphens) that separate areas of the spreadsheet for easier reading and interpretation.

```
sequence A series of commands.
serial
set-up Operations necessary to prepare the system to handle
sort
spreadsheet
status
suffix
synchronization Coordination of the movement of split windows so that they c
swap(over) Moving the ceil cursor from one split window to the other.
terminate
text
toggles Alternating states produced by the same repeated operation:
    Alternatingstates produced by the same repeated operat
    other state, from display of cell values to display of cell
    formulas, and vice versa.
validate Reorganization of disk files for more efficient use of the
    disk memory surface.
value
window
worksheet
    As used, a printer interface that conveys the eight bits of
    information that comprise a character to the printer single
    file on one wire.
    programs and data.-
    Ordering data according to specified parameters.
    Ordering data according to specified param
    As used, the state of the cursor in celli coordinates and the
    contents of the cell.
    As used, the disk file notation attached to the file name to
    indicate whether it is a range (.R), or spreadsheet (.G).
    an move relative to each other in one axis direction, but 
    not the other: i.e., vertical axis vs. horizontal axis.
    To end, or execute an operation.
    Alphanumeric characters used exclusively as labels or
    separators
    An assigned or calculated numerical quantity.
    The portion of the worksheet displayed.
    The entireggrid of cells, 26 rows by 254 columns, available
    for the entry of data. Usually used to describe a lined pad
    of paper organized in rows and columns. See olectronic
    worksheet.
zero-suppression: The option to display no characters--a blanked cell--in
    which the value is zero.
```


APPENDIX C

Solving Iterative Problems -- THE IRR DEMO

This example shows the Net Present Value function (epV) used to calculate the Internal Rate of Return (IRR). Before you enter the sheet below, be sure Manual and By row re-calculation are set. Press the stop key if you accidentally start calculation.

How it works

First, enter the cash outlay and periodic cash inflows, then press the Recalculation key. In response to the prompt Starting IRR?, enter a number between 0 and. 99 (suggested value $=$.15) and press RETURN. The program cycles through the calculations until Net PV in cell Cif is equal to or less than 0.

When the Re-calculation key is pressed, calculation starts in cell Al and proceeds across row 1, then row 2, and so on, until re-directed by the elfgOTO function. The function in Al places the text prompt in A2 on the Command Line, then puts the responsein cell Ci. The eASSIGN in Dicopies the number you entered from C1 into C3. Proceeding to row 3, the eASSIGN function in cell C2 adds 0.005 to the value in C3 and puts the result back in C3. Each cell in each row is calculated in turn. The elfaro function in Cis directs the calculation sequence to cell A2 when its test is false. and to 2254 when true, thereby exiting the calculations

In each loop through the calculation, the Present IRR is displayed. On exit it is the correct value, since it is the rate that produced a present value of the cash flows equal to the initial outlay.

[^1]
APPENDIX D

SCREEN COLORS

SwiftCalc's screen colors and their numeric codes are:

White	1
Red	2
Cyan	3
Purple	4
Green	5
Blue	6
Yellow	7
Orange	8
Brown	9
Light Red	10
LightGray	11
MediumGray	12
LightGreen	13
Light Blue	14
DarkGray	15
Black	16

Alphabetically:

Black	16
Blue	6
Blue, Light	14
Brown	9
Cyan	3
Grayn Dark	15
Gray, Light	11
Gray, Medium	12
Green	5
Green, Light	13
Orange	8
Purple	4
Red	2
Red, Light	10
White	1
Yellow	7

APPENDIX E
QUICK REFERENCE CHART
Commodore 64 (\& C 128)

FUNCTIONS

```
EDIT KEYS
```

EDIT KEYS
fl Point to cell
fl Point to cell
f3 UP 1 Iine
f3 UP 1 Iine
f5 GO(\& RETURN)
f5 GO(\& RETURN)
f7 DOWN 1 line
f7 DOWN 1 line
TEXT CELL FORMAT
TEXT CELL FORMAT
\& re-editcell > right tcenter m Text + expression
\& re-editcell > right tcenter m Text + expression
eAND(exp) eASSIGN(exp,r) eCOUNT(r1,r2J eGOTO(r)
eAND(exp) eASSIGN(exp,r) eCOUNT(r1,r2J eGOTO(r)
eAND(exp) eASSIGN(exp,r) eCOUNT(r1,r2J eGOTO(r)
@IF(p?,p+,p-) @IFGOTO(p?,r+,r-) @LOAD(r) @LOOKUP(rr,r1,r2,rc,r)
@IF(p?,p+,p-) @IFGOTO(p?,r+,r-) @LOAD(r) @LOOKUP(rr,r1,r2,rc,r)
@IF(p?,p+,p-) @IFGOTO(p?,r+,r-) @LOAD(r) @LOOKUP(rr,r1,r2,rc,r)
@MAX(r1,r2) @MEAN(r1,r2) EMIN(r1,r2) ENUMBER(rt,r)
@MAX(r1,r2) @MEAN(r1,r2) EMIN(r1,r2) ENUMBER(rt,r)
@MAX(r1,r2) @MEAN(r1,r2) EMIN(r1,r2) ENUMBER(rt,r)
@OR(exp) @PRINT'(r1,r2) @PV(ps,p%,pt) 3QUIT
@OR(exp) @PRINT'(r1,r2) @PV(ps,p%,pt) 3QUIT
@OR(exp) @PRINT'(r1,r2) @PV(ps,p%,pt) 3QUIT
eSAVE(rt,r1,r2) eSORT(rc,r1,r2)
eSAVE(rt,r1,r2) eSORT(rc,r1,r2)
eSAVE(rt,r1,r2) eSORT(rc,r1,r2)
@SUM(r1,r2) @TEXT(rt,r) @VAR(r1,r2)
@SUM(r1,r2) @TEXT(rt,r) @VAR(r1,r2)
@SUM(r1,r2) @TEXT(rt,r) @VAR(r1,r2)
exp (mathematical expression) = number, cell or formula
exp (mathematical expression) = number, cell or formula
exp (mathematical expression) = number, cell or formula
r = target cell p? = test expression
r = target cell p? = test expression
r = target cell p? = test expression
r+ = target cell if true p+= result if true
r+ = target cell if true p+= result if true
r+ = target cell if true p+= result if true
r- = target cell if false p- = result if false
r- = target cell if false p- = result if false
r- = target cell if false p- = result if false
r1,r2 = range ps = dollar amount
r1,r2 = range ps = dollar amount
r1,r2 = range ps = dollar amount
rt = cell containing text p% = interest amount, from 0 to 1
rt = cell containing text p% = interest amount, from 0 to 1
rt = cell containing text p% = interest amount, from 0 to 1
rc = cell in reference column pt = time period for present value
rc = cell in reference column pt = time period for present value
rc = cell in reference column pt = time period for present value
rr = table lookup reference cell
rr = table lookup reference cell
rr = table lookup reference cell

* (Pressing CONTROL \& C128 cursor keys in the top row.
* (Pressing CONTROL \& C128 cursor keys in the top row.
* (Pressing CONTROL \& C128 cursor keys in the top row.
Cursor right or left jumps five cells, up or down jumps 20 lines)

```
    Cursor right or left jumps five cells, up or down jumps 20 lines)
```

 Cursor right or left jumps five cells, up or down jumps 20 lines)
    ```

\section*{IMDEX TO SWIFTCALC}
e function--See USING FUNCTIONS ..... 56
function sequence control ..... 53
egoto ..... 53
eIFGOTO ..... 53
eASSIGN function, example ..... 35
esum function, example ..... 23
SUM program ..... 55
LOAD program ..... 55
active cell, defined ..... 65
Applications included ..... xAuto ExpensesExpense ReportPersonal BudgetPayment CalculationIRR Demo
BUILDING A SPREADSHEET, Section ..... 7
Car Costs example spreadsheet ..... 9
cell
coordinates ..... 71
cursor
cursor ..... 2 ..... 2
Edit key ..... 5
Equation ..... 17
references ..... 72
cell.
active, defined ..... 65
Entry and Edit ..... 6
Erasing ..... 21
GOTO ..... 3
Termination, Entry ..... 6
cells,
Copying ..... 13
Formating ..... 23
centering text ..... 13
Centronics ..... \(\times 1 i, 29\)
Change color ..... 51
character
cursor ..... 1
delete ..... 6
insert
85
Chart, Quick reference
20,64
20,64
circular reference
circular reference ..... 3
ciear ERROR CONDITION
ciear ERROR CONDITION ..... 52
color codes, screen ..... 52
colors, screen ..... 51
column
delete ..... 50
insert ..... 51
labels ..... 12
move ..... 51
widths ..... 11
Command Line ..... 1
4
command selection ..... 66
Commands
Entering ..... 65
Format ..... 46
Range ..... 29
CONTENTS
33
Copy, Range
Copying ..... 
13 ..... 
13
cells
formulas ..... 33
Cursor Movement keys ..... xiv
cursorceli2
character ..... 6
definition
2
2
selection
50
50
Default format ..... 44
Delete
Column ..... 50
Row ..... 50
file ..... 42
DELete key ..... 6
Disk. Format ..... 43
Disk, Validate ..... 45
Edit Cell key ..... 6
Edit Operations keys ..... xv
clear sheetdelete character
    delete column
    delete row
    edit cell
    erase cell
    erase range
    insert row
    insert column
    insert character
    terminate edit
    Edit, Entry and 5
    Editing 67
    ENTERING FORMULAS, Section \(3 \quad 16\)
    Entering
    labels 10
    numbers 14
    separators
    Entry and Edit 5
    Entry Shorthand 13
    entry.
    execute keys xiv
    Formula
        6
    Formula
        6
    Number
        6
    Terminate 6
    Text 5
    equation, cell 17
    Erase, Range 37
    erasing cell 21
    ERROR CONDITION, clear A
    Error handiing 73
    ERROR MESSAGES 77
    ERROR MESSAGE, example 6
    ERROR, column width 14
Entry keys, Execute ..... xiv
        enter text
    enter numbers
    enter formulas
    enter program
    STOP
    terminate entry
execution, STOP
expression 56
    xiv, 4
File.

    Delete ..... 43
handiting ..... 73
file,
44
44
Load ..... 44,45
replace a disk ..... 44
Save ..... 44,45
suffix
Fixed Reference35.72
Format Commands ..... 46
Currency signs
- commas
* sign
zero-supression
precision
Plot 紋童
format a disk ..... 43
format definition
cell. ..... 46
global ..... 46
range ..... 46
Format.
36
36
Range
Range ..... 25
formats, Default ..... 49
Formatiing cells ..... 23
Formula ontry ..... 5
Formula or Value? ..... 26
formula sequence
67
Formulas ..... 67
formulas, Copying
46
Free Space
56
function syntax ..... 
56 ..... 
56
Funciions:
Funciions:
76
76
EAND ..... 56
EASSIGN ..... 57
ECOUNT ..... 57
egoto ..... 57
elf ..... 58
eifgoto ..... 58
eload ..... 58
elookup ..... 59
8MAX ..... 59
emean ..... 59
emin ..... 59
enumber ..... 60
eOR ..... 56
ePRINT ..... 60
ePV ..... 60
(Functions: Cont'd)
QOUIT ..... 60
eSAVE ..... 60
ESORT ..... 60
eSORT ..... 61
ESTD ..... 61
esum ..... 61
QTEXT ..... 61
eVAR ..... 61
FUNDAMENTALS, Section 1 ..... 25
General Format Rule ..... \(\times 1 i\)
GETTING STARTED
GETTING STARTED
46
46
global format
global format
80
80
Glossary
Glossary ..... 3
GOTO Cell ..... 5,66
grid9
hierarchy
algebraic ..... 7. 16
Swiftcalc ..... 7,16
Hints ..... 78
How to
start SwiftCalc ..... \(x i i\)
Point ..... 67 ..... 67
Insert
Column ..... 51
Row ..... 51
INSerT key ..... xv, 6
INTRODUCTION ..... \(1 x\)
IRR Demo ..... 83
IRR Demo, reference ..... 20
iteration ..... 20justification
center ..... 13
left ..... 64,71
right ..... 64,71
Keyboard, The ..... \(x i i\) ..... \(x i i\)
Function keys
Cursor MovemenExecute EntryEdit Operations
key,
DELete ..... 6
Edit Cell ..... 6
labels,
Entering row ..... 10
Entering column ..... 12
left justification ..... 64.71
LIST OF FUNCTIONS ..... 76
Load, Range ..... 45
Loading spreadsheets ..... 44
MANAGING DISK FILES, Section 6 ..... 42
Menus, illustrated ..... 3
Currency signs ..... 23
Delete Row/Column ..... 50
Disk Commands ..... 42
Format ..... 23
Insert Row/Column ..... 50
(Menus, Illustrated: Cont'd)
43
Load File ..... 31
Range Commands ..... 29
Re-Calculation ..... 17
Split-Screen ..... 39
Worksheet Commands ..... 42
Menus, operation of Pop-up ..... 3
MENUS, OUTLINE OF ..... 74
monitor ..... \(\times 1,51\)
MORE COMMANDS, Section 7 ..... 46
Free Space ..... 46
Format Commands ..... 46
Default format ..... 49
Demonstration of Plot ..... 50
Insert/Delete Rows/Columns ..... 50
Change color ..... 51
Clear Sheet ..... 52
move
column ..... 51
row ..... 51
Movement, Cursor keys ..... \(x\) iv
Named ranges ..... 32
Number entry ..... 6
numbers.
defined ..... 68
Entering ..... 14
justified ..... 68
rounding ..... 25
OPERATING ELEMENTS ..... 62
operation, Pop-up Menu ..... 3,66
operators
logical ..... 69
mathematical ..... 69
OUTLINE OF MENUS ..... 74
overlay ..... 45
overwrite ..... 45
parallel ..... xii 29
parameters ..... 56
Plot. Demonstration of ..... 49
plots, scaled ..... 50
Pointing ..... 22
Pop-up Menu, Opertion ..... 3,66
port,
serial ..... xii,29
user ..... \(\times i \mathrm{i}, 29\)
PREFACE ..... iii
Print, Range ..... 32
Printing ..... 29
serial printer ..... 29
parallel printer ..... 29
Printer setup ..... 30
ASCIl codes ..... 31
decimal equivalnts ..... 31
parameters saved ..... 32
program name ..... 53
SUM program
SUM program ..... 55
program,
equit ..... 55
run ..... 55
write ..... 53
PROGRAMMING SWIFTCALC, Section ..... 53
prompts.
example, first ..... xiii
response to ..... 67
Ouick-reference screen ..... 85
RANGE COMMANDS, Section ..... 28
Range Copy ..... 13,33
Range Erase ..... 37
Range Format ..... 36
Range Load ..... 45
Range Save ..... 45
Range Sort ..... 37
Range Print ..... 32
range, description of ..... 28
ranges, Named ..... 32
Re-calculation ..... 17
recall a spreadsheet ..... 44
reference.
Chart, Ouick- ..... 85
circular ..... 20
fixed
fixed ..... 34.72
relative ..... 34,72
replace a disk file ..... 44
right justification ..... 64.71
rounding numbers ..... 25
row
row
delete ..... 50
insert ..... 51
labels ..... 10
move ..... 51
Rule, General Format ..... 25
run a program ..... 55
save now work ..... 44
Save, Range ..... 45
saved, parameters ..... 32
Saving spreadsheets ..... 43
scaled plots ..... 50
screen
51
51
colors
colors ..... 52,84
screen.
definition ..... 64
split ..... 2. 39
scrolling ..... 2,65
select a command ..... 66
selection cursor ..... 2
separators, Entering ..... 11
sequence, formula
xii, 29
xii, 29
serial port
52
52
Sort, Range ..... 37
Space, free ..... 46
SPLIT-SCREEN WINDOWS, Section 5 ..... 39
split-screen, reference ..... 2
spreadsheet
definition ..... 64
recall ..... 44
spreadsheets.
Saving ..... 43
Loading ..... 43
Start SwiftCalc. How to ..... \(x i i\)
status Line
status Line ..... 
1
56 ..... 
1
56
syntax, function
39
Swap Over (Windows)
16
16
SwiftCalc hierarchy ..... 
ix ..... 
ix
wiftcalc, How to start
wiftcalc, How to start
39
39
synchronization
synchronization
21
21
terminate entry ..... 6
Text Entry ..... 5
TV ..... xii, 51
user port ..... xii, 29
USING FUNCTIONS, Section 9 ..... 56
Validate a disk ..... 45
Validation ..... 43 ..... 2.39
window
window
write a program ..... 53

\section*{Office Systems for Home and Business}

A. TEXTPRO II/DATAPRO II Ior Commodore* 64/128'" and Atari." All NEW version of COSMI'S best selling word processor and data base system "twin pak" . . . Includes exclusive NEW features Cache RAM and CARAVAN.
B. SWIFT SHEET 128 for Commodore* 128." All new expanded 64 column version of COSMI'S award winning SwittCalc spreadsheet program designed specifically for the Commodore 128 computer. Extensive "user-friendly" documentation.
C. SWIFT-CALC \({ }^{\text {in }}\) SPREADSHEET. Easy to use program will complete calculations. whether simple or complex. Ideal for budgets and forecasts. expense reports, business plans. P \& L and balance sheets. cash flow analysis. job quotations. statistical analysis. interest calculations . . . and more.
SWIFT-SERV \({ }^{\prime \sim}\) MANAGEMENT SYSTEMS COmprehensive package of home management software. Performs most functions you expect from a home computer on any printer. Front end loader and five server modules.
B.

C.


\section*{Check out these other Paul Norman 'Super Hit' Computer Programs!}


Super Huey is a new, experimental high-performance helicopter utilizing the latest in electronic control systems and stabilization, and YOU are going to learn how to fly it! Space age controls and instruments, along with an in flight computer, teach you the intricacies of rotary wing aviation. Test your skill in the sky with challenges of solo flight. exploration, rescue and combat. Study the instructions carefully . . . you're going to be tested!

\section*{CWSml \\ where the action is!}


Zounds! And gadzooks! You were just out to do a little target practice with your bow and arrow when you lost your way. Now the moon is coming out and it's getting darker; the forest is getting more ominous and there are some strange rustling noises coming from the bushes. Egad! You have mistakenly wandered into the "Forbidden Forest!" Only your skill as an archer can protect you now. Here they come! Giant spiders, an enormous bumble bee, huge leaping frogs, a fire breathing dragon, a phantom protected by killer skeletons, an 80 foot snake and, finally. the ghost demogorgon who only appears during flashes of lightning that herald the coming storm. Move quickly, aim accurately, destroy the monsters and you just may escape from the "Forbidden Forest."

\section*{Office Systems for Home and Business}
A.

A. TEXTPRO II/DATAPRO II for Commodore \({ }^{\text {- }}\) 64/128" and Atari." All NEW version of COSMI'S best selling word processor and data base system "twin pak" . . . Includes exclusive NEW features Cache RAM and CARAVAN.
B. SWIFT SHEET 128 for Commodore * 128."* All new expanded 64 column version of COSMI'S award winning SwittCalc spreadsheet program designed specifically for the Commodore 128 computer. Extensive "user-friendly" documentation.
C. SWIFT-CALC'" SPREADSHEET. Easy to use program will complete calculations, whether simple or complex. Ideal for budgets and forecasts. expense reports, business plans, P \& L and balance sheets. cash flow analysis. job quotations. statistical analysis, interest calculations . . . and more. SWIfT-SERV:" MANAGEMENT SYSTEMS COmprehensive package of home management software. Pertorms most functions you expect from a home computer on any printer. Front end loader and five server modules.
B.

C.



\section*{24"x 36" FULL COLOR}

Please send me \(\qquad\) Super Huey poster(s) at \(\$ 5.95\). (Add \(\$ 1.50\) for shipping and handling). Make check or money order payable to: COSMI 415 North Figueroa, Wilmington, California 90744
Name \(\qquad\)
Address
City \(\qquad\) State \(\qquad\) Zip
* California residents add \(39 \mathbb{4}\) sales tax per poster.

\title{
Have you tried these other exciting Cosmi Programs?
}


BEYOND THE FORBIDDEN FOREST in Omni Dimension 4D for Commodore" 64." America's favorite programmer, Paul Norman, has exceeded his best selling title "Forbidden Forest" with the development of Omni Dimension 4D and the all New continuing saga of the intrepid archer who finally has a chance to go "Beyond The Forbidden Forest" to the cave beneath the castle of the Demogorgen.

\section*{C where the action is!}


Take to the super speedway as you race against KING RICHARD PETTY and 18 top pro drivers. Test your skill in qualifying for a pole position and then let'er rip in the real life 3-D main event, where you lock horns with some of the "good ole boys!" Use strategy to plan your pit stops, draft leading cars to pick up time and save fuel, and be prepared for yellow caution flags. Make the right decisions, keep the pedal to the metal, have a little "racing luck" and you might beat Richard to the checkered flag. Just remember ... it's not going to be easy, the KING doesn't like to lose!

415 North Figueroa Street, Wilmington, CA 90744 GAMES WORTH PLAYING```


[^0]:    1. The result in Cit is produced from values in cells C10 and Cil according to the formula +C11-C2/C10.
    2. Suppose that a formula in other cell, say D15, uses the term C14.
[^1]:    Please note that the programmed mode is not required to cause automatic iteration. When the Re-calculation key is pressed in manual mode, the sheet passes through one calculation cycle, exiting iin the last, lower right hand cell. The eifgoto test keeps the calculation sequencing "alive" until the exit conditions are met, then directs the sequence to a natural exit from the sheet.

