


The Visible Computer: 6502 

Machine Language Teaching System 

Commodore 64 Version 

Software Masters'" 
3330 Hillcroft/Suite BB 
Houston, Texas 77057 



Copyright ® 1984 Software Masters 

The Visible Computer: 6502 Program is copyrighted and all rights are 
reserved by Software Masters. Only you, as original purchaser, may 
use The Visible Computer: 6502 computer program and only on a single 
computer system. 

The Visible Computer: 6502 User Manual is copyrighted and all rights 
are reserved by Software Masters. This manual may not be copied, in 
whole or in part, by any means, without the express written permis
sion of Software Masters. 

Warranty 

For a period of ninety days after purchase, Software Masters will re
place defective Visible Computer: 6502 program disks free of charge. 
Replacement cost after ninety days is $5.00. 

Program and Manual by Charles Anderson 

Commodore 64 Version by J.I. Blackshear, Jr. 



i 

i 

I 

I 





Introduction 

The Visible Computer: 6502 Machine Language Teaching System com
bines this manual with a diskette containing a 6502 simulator program 
to provide a systematic way to learn machine language programming 
on the Commodore 64 computer. 

This manual is a tutorial on 6502 machine language and the related 
concepts of binary and hexadecimal numbering systems. The program 
is a simulation of the 6502 microprocessor, slowed down and opened 
up for close inspection. Note: From a programming standpoint, the 
6510 processor used in the C-64 is identical to the 6502; learning one is 
learning the other. 

Prerequisites 
This manual assumes some familiarity on the reader's part with the Ba
sic programming language. Programming is programming, and the 
more experience you have with any form of it, the better. It presup
poses no prior exposure to machine language, and includes 
preliminary chapters on alternate numbering systems and hardware 
fundamentals. 

Hardware Requirements 
To run The Visible Computer, you will need a Commodore 64 computer 
with 1541 disk drive. A printer is optional. Sound capability, through 
either your TV speaker, display monitor, or an external amplifier, is as
sumed, though not absolutely necessary. 

Scope 

Most of the books that profess to teach 6502 machine language work so 
hard at thoroughness, with endless chapters on floating point arithme
tic and control programs for hypothetical daisy wheel printers, that 
they skimp on the fundamental job of delivering the concepts. The 
Visible Computer is designed to get you over the initial hurdles of ma
chine language programming, not to present algorithms for controlling 
elevator systems. 



Learning everything in this manual will not qualify you to work at Mi
crosoft writing 6502 Cobol compilers. However, if you apply yourself, 
it will get you to the point where you will be able to develop indepen
dently in your area of interest, be it arcade games, chess programs, or 
new and wonderful operating systems. And who knows, someday the 
Microsoft recruiter might just give you a call. 

About This Manual 

Chapters 1,2, and 3 are the standard introductory fare of Hex, Binary, 
and Computer Block Diagrams. They may be skipped by those who 
have already been through eleven discussions of hex and binary (and if 
they see one more block diagram of a computer, they'll scream). 

The TVC program disk is not used until Chapter 4. It would be a good 
idea to skip there quickly right now and make sure that your disk 
works correctly. 

The heart of the course is Chapters 6 through 16, where you'll work 
through a series of progressively more difficult 6502 machine language 
programs contained on the TVC disk. By the end of Chapter 16 you will 
have read about, and seen demonstrated, nearly every 6502 instruc
tion, and will have earned the honorary title of TVC Master. 

Chapter 17 shows how to write machine language programs, by taking 
ideas and working through the design and coding phases to produce 
working programs. The role of the assembler is discussed. 

Chapter 18 is a rundown on the options available in assemblers, with 
tips on debugging, techniques for interfacing Basic and machine lan
guage, and a suggested reading list. 
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1. 
What is Machine Language? 

And If It's So hard, Why Do People Use It? This is a fair question, 
and if you haven't asked it yet you probably should have. Before we 
get into the hows of machine language we're going to touch on the 
whys. 

Although Basic gets all the publicity, the language closest to a C-64's 
silicon heart is 6502 machine language. Later chapters of this book will 
develop a more formal definition; for now, it suffices to say that 6502 
machine language is the fundamental language of the Commodore 64 
computer. Not a moment passes during a C-64's powered-on lifetime 
when it is not executing 6502 machine language. In fact, languages like 
Basic are nothing but clever ruses to save poor humans from the 
wicked binary ways of 6502 processors. 

As to the widespread rumor that machine language programming is 
more difficult than programming in Basic, consider these two sets of 
instructions for building a cedar fence in your backyard. 

Basic 
Using 6' by 6" cedar slats, with supporting posts 
every 8 feet, build a fence enclosing your back 
yard. 

Machine Language 

Drive to lumber yard. Purchase 722 6' by 6" ce
dar slats. Load into truck. Drive home. Unload 
truck. Start at northeast corner of back yard. Dig 
a hole three feet deep. Get post from pile. Insert 
post into hole. Cement post. Move 8 feet west. If 
not yet at corner, dig a hole three feet deep. Get 
post from pile. Insert post into hole. . . 

Is the second set of instructions more difficult than the first? Not 
really. It looks more involved, and certainly took longer to write down, 
but the individual jobs that make up the second paragraph are simplic-

l 



2 THE VISIBLE COMPUTER: 6502 

ity itself: "Move 8 feet west", "Get post from pile". So it is with ma
chine language. Working from a limited palette of about 50 simple in
structions, we achieve complex results by combining them cleverly. 

Machine language programmers have to take smaller steps to get 
where they're going. That means it takes more time to write programs. 
Longer to design, longer to code, and much longer to debug. As a rule 
of thumb, 10 times longer than working in Basic. Furthermore, almost 
anything you can do in machine language can be done in Basic. 

So why do people knock themselves out learning and writing machine 
language programs? Two main reasons: l.For speed. 2.For more speed. 
Machine language programs execute ten to one hundred times faster 
than similar programs written in Basic. (Purists and other curmud
geons will object to this statement, and there is something to be said 
for the fact that unless someone had written the machine language 
program named Commodore Basic, Basic would not exist, even as an 
alternative.) Is speed that important? It depends. 

In an accounting program, where the computer spends most of its time 
waiting for the operator to hit a key, or the printer to finish, or a disk 
drive to get something, blinding speed is not important. We hear 
phrases like "printer bound" and "floppy bound". A program that is 
printer bound can only be speeded up by buying a faster printer. Writ
ing accounting programs in assembly language, then, results in pro
grams that wait for user input at very high speed, and cost 10 times as 
much to develop as acceptably speedy programs written in Basic. 
Clearly, an idea whooe time has not come. 

But sometimes speed is desirable, even critical. Most arcade game pro
grams could not function written in Basic. Animation makes tremen
dous demands on a computer system: moving objects around the 
screen requires the carefully coordinated movement of thousands of 
numbers. At Basic speeds games like Pac Man would be exercises in pa
tience, with sluggish ghosts that take minutes to get from one side of 
the maze to the other. So game programs, especially the arcade type, 
are one place where we need the speed of machine language. 

Many times the best tactic is a combination of Basic and machine lan
guage. Take the accounting application from a minute ago. Most of it 
can be written in slow-to-execute, but fast-to-program Basic. Certain 
time consuming jobs can be handled in machine language. For in
stance, sorting. 
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Sorting programs written in Basic, for those of you who have avoided 
learning about such things thus far in your programming careers (and 
your time is coming), are slow. Really slow. Sorting a list of 3,000 em
ployee numbers into a stack with the biggest at the bottom and the 
smallest at the top takes at least two minutes, and maybe as many as 
10, depending on what method we tackle the problem with. (The 
methods available range from the crude—read easy—to the complex. 
Graduate students as yet unborn will earn their degrees with programs 
that sort .01 percent more efficiently than some other program.) 

Two minutes is an important length of time to the operator of an ac
counting package, and ten minutes is an eternity. The strategy fol
lowed by the smart programmer, then, is to use Basic for everything 
except the sort itself—and pass that job to a hard-to-write, but breath-
takingly fast machine language program. After 10 seconds (or one or 
two, depending on how fancy a method we use), the Basic program is 
handed on a silver platter a sorted list of employee numbers. 

Sharing the work between machine language and Basic is a good tech
nique, employed by countless programs, including TVC itself. Mostly 
Basic, machine language where you need the speed. 

To sum up: The best reason for programming a Commodore 64 in ma
chine language is to speed up a process that would be too slow other
wise. Conversely, except as a learning exercise, it is a waste of time to 
use machine language for something that would be acceptably fast 
written in Basic. 



2. 
Alternate Numbering Systems 

If you bought The Visible Computer with the hope that it would some
how save you the effort of climbing Mount Hexadecimal, picking you 
up magically and dropping you safely into the valley of machine lan
guage programming on the other side, sorry, no can do. 

People don't use binary and hexadecimal numbers to make machine 
language programming easy; they use these weird numbering systems 
to make machine language feasible. Although it is arguable, barely, 
that one could learn some machine language without ever learning 
hex, a person who went that route would find himself working twice 
as hard as someone who learned the tools of the trade first and the pro
gramming second. 

A Twelve is a 12 is a 1100 

Most people agree that the symbols " 1 " and "2", printed together, like 
this: 

12 

have a certain numeric meaning. Specifically, "12" represents the 
quantity of periods printed here: 

Or this many commas: 

But there is nothing intrinsically "12-like" about these symbols sitting 
next to each other. If we wanted to form a club that said from now on, 

" * " would stand for 12 and "#" for 17, we could. Let's do that. You and I 
will be the charter members of the " * = 12 and # = 17" Club. 

Until further notice, " * " represents this many things: 

4 



ALTERNATE NUMBERING SYSTEMS 5 

and "#", this many: 

How many eggs in a dozen? Very good, * is correct. What fab group had 
a 1964 hit called She was Just #? Right again, the Beatles. (Fooled 
you—the song's title was really I Saw Her Standing There.) Although 
we'd have to work fairly hard at it the first couple of months, eventu
ally it would become almost as natural as the old way. 

But not when we're doing math. What's * times #? Even for people as 
smart and good looking as members of the club, getting that answer is 
pretty tough. Whereas everyone else's notation, "12 times 17", lends 
itself to computational tricks like carrying and partial products, our 
representation gives not a clue to the answer. We'd have to either 
memorize all the combinations of multiplications and divisions for * 
and #, or give up comparison shopping forever. 

This situation isn't as farfetched as you might imagine. Consider the 
Roman Empire. For all its accomplishments, Rome's state-of-the-art 
method for representing numbers was what we now call Roman nu
merals. (Although I suppose they simply referred to them as "num
bers"). As with our club's method, Roman numerals are okay for some 
things, (like the names of popes and book report outlines), and lousy 
for others, like calculations. 

It's a wonder they built Bridge I considering how hard their engineers 
had to work to do this simple division: 

XXIX / XIV 

Stop and think about it. If you had to solve this problem you'd proba
bly proceed like this: Convert both parts into "normal" notation. Di
vide using conventional techniques. Finally, convert the answer back 
to Roman numerals. Unfortunately, "normal" notation hadn't been in
vented yet, and wouldn't for another 500 years. 

Around 500 AD an Arabian astronomer devised a better system. Not 
only was the new Arabic notation better for representing long num
bers than the Roman method, it greatly facilitated arithmetic calcula
tions. Let's see why the Arabic method is so powerful. Numbers writ
ten with this system can be methodically broken into their component 
parts. 
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The value of a digit depends on its position the number. The value is 
always ten times the value of the same digit one position to the right, 
and one-tenth the value of the same digit one position to the left. This 
positional chart shows how numbers can be broken down into their 
components. 

F o u r t h D i g i t Thi rd D i g i t Second D i g i t F i r s t D i g i t 

10 3 10 2 10 1 10° 
1000 100 10 1 

3,479 b r e a k s i n t o : 

3 * 1000 4 * 100 7 * 10 9 * 1 
3000 + 400 + 70 + 9 

209 i s : 
2 * 100 0 * 10 9 * 1 

2 0 0 + 0 + 9 

The biggest problem keeping previous designers of numerical repre
sentation schemes from implementing a system like this was that they 
never saw a need for a character to represent zero, the quantity noth
ing. Without zero to serve as a placeholder, you can't have positional 
representation. 

The usefulness of the Arabic positional system has nothing to do with 
the symbols that form the counting alphabet. 6's and Ts aren't any bet
ter or worse than Vs and Xs. It's the positional concept that makes it 
better. We will refer to this ingenious and familiar scheme not as "Ara
bic Positional", but as decimal (from the Latin decern, ten), because 10 
is the value that each position is based on. 

But this quantity: 

is by no means magic in the grand scheme of the universe. No more 
"round" or "even" than this number: 
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So why do we use 10 as the base value of our positional notation? 
Class? Anyone have a guess? Right. In all probability, because people 
have 10 fingers, and for millions of years, fingers were all we had for 
representing numbers. On a planet where beings have two hands of 
four fingers each, we can reasonably predict that their positional num
bering system is based on the number: 

The decimal numbering system has remained unchanged for 1,500 
years because it is an extremely useful way of representing numbers. 
There exist computational methods that allow 12-year-olds to calcu
late five digit square roots with nothing but paper and pencil. And in 
all probability it will be popular 1,500 years from now, even though 
the advent of the $4 calculator makes some of its best features (ease of 
manual calculation) moot. If Roman numerals could have hung in 
there until the Age of Cheap Calculators, they would have been in 
good shape. 

Unfortunately, for programming computers, especially in machine lan
guage, decimal falls flat on its well known face. Because of the way 
they work, computers have a working vocabulary of only two digits. 
It's easy to make an electronic device store a 1 or a 0, and hard to make 
one that can store zero 0 through 9. A sensor that can detect whether a 
light bulb is on or off is trivial. A device that can consistently detect 10 
discrete levels of brightness is far more complex. 

Computers need a two digit, or binary, positional numbering system. 
Every fancy trick done by computers boils down to manipulations of 
l's and 0's. 

We don't need unique symbols to represent values 2 through 9 because 
they can be formed by combinations of l's and 0's, just as decimal 
doesn't need more than ten symbols to represent values greater than 
9. 

Here's a positional chart for the first four places in the binary number
ing system. 
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Binary Positional Chart 

Fourth Digit Third Digit Second Digit First Digit 

23 22 2 1 20 
8 4 2 1 

1010 breaks into: 

1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 = 10 dec. 

1110 is: 

1 * 8 + 1 * 4 + 1 * 2 + 0 * 1 = 14 dec. 

In programming small computers, the most common lengths of binary 
numbers are eight and 16 digits. Bits are numbered from right to left as 
shown in this diagram. This is the first of many cases we'll encounter 
in machine language where we start counting at zero, not one, so get 
used to it. Bit 0 is often called the least significant bit (LSB), and bit 7, 
the most significant bit (MSB). 

It is also common to retain leading zeros when working with binary. 
For example, you might see 101 written as 00000101. 

7 6 5 4 3 2 1 0 

ozmnMiEii] 
Binary numbers can be added and subtracted with the same tech
niques we know for decimal. 

1 11 <— carrys 
1010 1010 1001 

+ 0100 + 0010 + 0011 
TTIU" TTUD" TTU0" 

Carrys happen a lot in binary addition, and borrows are common in 
subtraction. Otherwise, nothing too taxing about binary arithmetic. 

"Round numbers" in binary are the powers of two: 1, 2, 4, 8, 16, 32, 64, 
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128, 256, 512, 1024, 2048, 4096... These values will turn up through
out your machine language programming career, so get acquainted 
with them. 

Here's a formula (the only one in this book) to calculate the largest 
number X you can store in n positions of base B numbers: 

X = Bn - 1 

The largest value you can represent in three digits of decimal is 999 
(103 - 1). Base seven can represent numbers as big as 342 (73 - 1) in 
three places. Binary can only get as high as 7 (23 - 1). Representing 
even modest quantities in binary tends to be wasteful of paper. Count
ing to 10: 

0 
01 
10 

101 
110 
111 

1000 
1001 
1010 

To handle the range of numbers we encounter in day to day life takes a 
lot of binary digits. 

365 = 101101101 

1*28 + 0*27 + 1*26 + 1*25 + 0*24 + 1*23 + 1*22 + 0*2! + 1*2° 

531 = 1000010011 

1*29 + 0*28 + 0*27 + 0*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*2! + 1*2° 

Numbers like 1000010011 and 101101101 have a tendency to confuse 
people. It helps a little if we clump binary digits ("bits") into even 
groups. Four bits make a nibble. Eight bits make a byte (isn't that pre
cious]) In nibble form, 531 is 0010 0001 0011. That's a little better, but 
not much. 

Of course, just because computers need to run internally with binary 
numbers doesn't mean that humans who use computers have to deal 
with all l's and 0's. Basic programmers can and do live in a fantasy 
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world where decimal is king. Unfortunately, machine language pro
grammers must frequently deal with the computer in straight, undi
luted binary. 

One way around the computers-love-binary-but-people-love-decimal 
problem is to let the human think in decimal—and convert into and out 
of binary as necessary to communicate with the machine. Good idea, 
but converting between binary and decimal is, as mathematicians say, 
nontrivial. Going from binary to decimal is easiest, so let's start there. 

"Take a binary number. Starting from the leftmost (most significant) 
digit, accumulate the decimal equivalent of each position. 

Position: 5 4 3 2 1 0 
Decimal Equivalent: 32 16 8 4 2 1 

0000 1001 is 8 + 1 = 9 

0001 1010 is 16 + 8 + 2 =26 

0010 0101 is 32 + 4 + 1 = 37 

If you can remember the powers of two and do addition, you can con
vert from binary to decimal. 

Decimal to Binary 
Going this direction is harder. The conversion resembles a simplified 
form of long division. 

Converting 2 1 decimal 
to binary: 7 6 5 4 3 2 1 0 

Largest Power of two that 16121 
divides into 2 1 is 16: i L 

J- nnnsHEiDn 
Next, try to divide the next 8 I 5 

lowest power of two into -=-
the remainder. n Z D E H H n n 

4 | 5 

And so on until you have 1 
a remainder of 0. 0 I 6 B 8 1 B • B * 8 ~*~l I 

2 \1~ 

2 1 decimal = 10101 binary ° 
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Don't practice this any longer thatiit takes to get the general idea. You 
can buy calculators that eat base conversions for breakfast. 

Even with base conversion calculators, the chasm between binary-lov
ing, paper-wasting computers and 10 fingered, tree-loving human be
ings is a mile wide. Numbers that are very "round" in binary, such as 
1000 0000 0000, are very jagged in decimal (2,048). And vice versa: 
2,000 decimal is 0111 1101 0000 binary. Luckily, there's a bridge, called 
hexadecimal, across the binary/decimal gap. 

Suppose Phones Had Two Buttons 

Suppose the phone company decided to release a new, improved tele
phone: "DigiPhone, The Phone of Tomorrow'", with only two buttons, 
1 and 0. They'd have a big advertising campaign to convince people 
that the DigiPhone would be faster, more modern, and generally better 
in every way than the old, decimal phones. 

Everyone's telephone number is converted to binary: 844-7171 be
comes 1000-0000 1110 0100 1100 0011. Area codes get expanded from 
three digits to 10, enough to cover all 1,000 possible area codes. The 
phone book doubles in size, but that 's no problem—they make the type 
twice as small. 

But the American people are not adjusting well to the new system. 
They say it's almost impossible to correctly dial, much less memorize, a 
phone number like: 

(0010 1100 1001) 0101-0000 1000 1001 0011 1000 

One mistake and you're calling a McDonald's in Kansas City instead of 
your grandmother in Rockford, Illinois. 
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The phone company has already built 286 million DigiPhones and 
they 're not about to junk them. But they do offer a compromise. They 
take out full page ads in newspapers across the country: 

"Here's what we'll do, America. We'll go back to 
our old phone books and publish everyone's num
ber in the old 10 button form. Numbers will be 
easy to remember, just like before. When you 
need to call someone, convert it to 2 bu t ton 
format and make the call." 

"Converting your old fashioned decimal telephone 
number into modern, digital form is a breeze. 
First, try to divide 8,388,608 into the number. If it 
fits, the first digit is one, if it doesn't, the first 
digit is zero. Next, divide 4,194,304 into the re
mainder. If it fits, the second digit is a one. Other
wise , it's a zero. Next,..." 

People let the phone company know that a ten minute calculator ses
sion each time they made a call was a less than perfect solution. A com
pany think tank huddled for a week and announced a second compro
mise. 

The solution? A new phone book, with numbers listed in a new, fairly 
easy to remember format that converts easily, almost automatically, 
into binary. The great breakthrough? Something called hexadecimal. 
Easier for people to remember than binary. Not quite as easy as the 
decimal they've been using since the first grade, but much easier than 
binary. And easy to convert into and out of binary for dialing. 

Whereas decimal has 10 symbols in its counting alphabet, and binary 
two, hexadecimal has 16. This is a problem because there aren ' t sym
bols laying around to represent the six values for 10-15. Although we 
could have invented new symbols, it was expedient to use something 
that people and other writing machines already knew how to write. It 
was decided that the first six letters of the alphabet would stand for 
the missing symbols: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. 
Music set a precedent when it stole letters to stand for Do-Re-Mi-Fa-So-
La-Ti. 

Armed with the notion that letters can sometimes be numbers, here's a 
positional chart for hex. 
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Hexadecimal Positional Chart 

Fourth Digit Third Digit Second Digit First Digit 

163 162 161 16° 
4096 256 16 1 

A3F breaks into: 

10 * 256 + 3 * 16 + 15 * 1 = 2,623 

D006 is: 

13 * 4096 + 0 * 2 5 6 + 0 * 1 6 + 6 * 1 = 53,254 

The utility of hex isn't the ease with which it converts into and out of 
decimal—it's how well it works with binary. Hex gives humans good, 

"ball park" feel for numbers (admittedly, not as comfortable as deci
mal), with straightforward, one-to-one conversions into binary. A03 
may look strange to you now, but it's a heck of a lot easier to deal with 
than 1010 0000 0011. How easy is it to convert between hex and 
binary? Examine this chart that counts in all three bases. 

Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Binary 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Hex 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
0A 
0B 
OC 
0D 
0E 
OF 

Decimal 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Binary 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0010 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
0000 

Hex 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
IB 
1C 
ID 
IE 
IF 
20 
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See the relationship between hex and binary? One hex digit can stand 
in for each binary nibble. Once you've memorized the hex equivalent 
of each of the 16 nibble patterns, conversion between hex and binary 
is a snap. A hex telephone number like 4-56CA0 becomes: 

4 = 0100 
5 = 0101 
6 = 0110 
C = 1100 
A = 1010 
0 = 0000 

Put it all together and you've got the binary equivalent: 

0100-0101 0110 1100 1010 0000 

Converting from binary to hex is equally simple. Substitute the hex 
equivalent of each nibble, and you've got it. 

0011 0111 0001 1000 1100 0010 
3 7 1 8 C 2 3718C2 

There are two problems left in acclimating ourselves to this new num
bering system: First, how do we tell whether a number like 345 is hex 
or decimal just by looking at it, and second, how on earth do we pro
nounce something like F3C0? 

To clear up the former situation, 6502 programmers agreed to always 
precede hex numbers with a dollar sign ("$"). This convention will be 
followed in this book. It has nothing to do with Basic's use of " $ " to 
indicate string variables. 345 is a decimal number. $345 is a hex num
ber equal to 837 in decimal. 

For most of you the long term problem will be how to internally verbal
ize hex numbers containing letters. No one conquers this entirely, but 
as a rule, call the thing by each character if it contains a "funny" num
ber. $C13 is "cee-one-three". Also, try calling $F000, "ef-thousand" 
and $ COO, "cee-hundred". 
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Logical Operators 

Binary numbers have some properties that go beyond simply repre
senting decimal values and wasting paper. Numbers as simple as 1 and 
0 lend themselves to some special tricks involving what are called the 
logical (or boolean, after George Boole, 19th century English mathe
matician) operators. These operators are and, or, and exclusive or. 

The logical operators are not unlike the four common arithmetic oper
ators, plus, minus, multiply, and divide. The biggest difference is that 
they operate on binary numbers only one digit long. Sometimes the 
terms "true" and "false" are used in place of 1 and 0. Examples of log
ical operations are: 

1 AND1 
0OR1 

True AND True 

Frequently, logical operations are shown schematically, as a "black 
box" with two inputs, a mysterious internal process, and one output. 

The Rules 

An AND operation yields a 1 if and only if both inputs are 1. 

An OR operation yields a 1 if one or both inputs are 1. 

An EOR operation yields a 1 if the inputs are different. 
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That's it for the rules. Not much to them. You've probably used logical 
operators in Basic programs, perhaps without knowing it. Basic's IF 
statement is based on logical operations. 

IF (expression is true) THEN do this. 
IF A > B THEN GOTO 1000 

To handle this line, Basic first resolves the assertion portion of the 
command (A > B) to a simple logical value: either true or false, if A is 
less than or equal to B, false is inserted. If A is greater than B, a true is 
inserted. By definition, falses cause THEN statements to be bypassed, 
and trues cause them to be executed. 

IF A OR B THEN GOTO 1000 

will cause a branch to 1000 if either variable A or variable B is nonzero. 
(Basic considers anything nonzero to be a 1). Logical operators can be 
grouped and combined to express complex relationships. 

IF A > B or (FLAG and G < 14) THEN GOTO 1000 

This comes natural to most people, because we phrase such expres
sions everyday: 

"If I can find it and you give me the money, I'll buy 
it." 

"If it doesn't rain tomorrow or if you leave the car, 
I'll go downtown" 

"If the copy machine is working, or Bill has the 
flyers printed and I can get them in time, you'll 
get your brochure. " 
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Final Exam/Alternate Numbering Systems 

Fill in the blanks. 

BINARY HEX BINARY HEX 

1001 1010 $F0 

1111 1011 $02 

0000 0001 $CA 

1111 0000 $0C 

1100 1101 $DD 

0101 1010 $11 

1011 1011 $E6 

Convert 10111 to decimal. 
Convert 69 to binary. 
Perform these logical operations. 

0 AND 1 = 1 EOR 1 = 

1 AND 0 = 0 EOR 0 = 

0 O R l = 1 AND 1 = 

1 0 R 1 = 0 O R 0 = 

1 EOR 1 = 1 EOR 0 = 

0 EOR 1 = 0 AND 0 = 
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3. 
Hardware 

A Control Data Corporation Cyber 6600 computer is big enough to fill a 
medium sized house. A Commodore 64 doesn't weigh 10 pounds soak
ing wet (perish the thought). But these machines have a lot in com
mon; in fact, at the block diagram level they are identical. 

Central Processing Unit (CPU) 

The absolute monarch of every computer is the Central Processing 
Unit. The CPU makes all the decisions and puts the other components 
through their paces. Although there are almost as many different cen
tral processing units as there are computers, they each share the same 
duties of control, decision, and calculation. 

Memory 

Memory is second fiddle to the CPU, but still an indispensable member 
of the team. The CPU goes to memory for the stream of numbers that 
govern its operation, a machine language program. The fundamental 

18 
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operation of a computer is the CPU reading numbers out of memory 
and writing numbers into memory. Were it not for the need to occa
sionally communicate with human beings, CPU and memory could 
happily function without the other two components. 

Mass Storage 

Mass storage holds data that isn't needed immediately and there isn't 
room for in memory at the moment. Mass storage usually has desirable 
financial qualities compared to memory; it costs less per byte. Exam
ples include disk drives and cassette tape. 

Input/Output (I/O) 

These are links that connect the binary, numerical world of a computer 
with the world of people, devices such as printers, keyboards, and joy
sticks. 

The Commodore 64 

The Commodore 64 uses the 6510 microprocessor as CPU. A micropro
cessor is an integrated circuit (IC, or chip) that has an entire CPU 
squeezed onto it. The CPU of a large mainframe computer may consist 
of a thousand or more IC's. The 6510 is a top-of-the-line member of the 
6500 series of processors. However, since from a software standpoint it 
behaves exactly like the more familiar 6502, we will refer to it in this 
book as a 6502. When someone writes machine language programs for 
the 6510, they are using 6502 machine language. 

The 6502 was introduced in 1975 by a small California company named 
MOS Technology. The designers of the 6502 borrowed from and impro
ved upon an earlier microprocessor, the Motorola 6800. It is a tribute to 
the quality of their design job that the 6502 is still a powerful, work
able processor for small computers. MOS Technology was subsequently 
bought out by Commodore Business Machines. Every personal com
puter ever built by Commodore, beginning with the 4K PET in 1977, 
has been designed around the 6502 processor. 

Commodore is far from the only company using the 6502 in their ma
chines. Apple and Atari computers feature it. Many devices that are 
not full blown computers, such as display terminals and video games, 
have a 6502 calling the shots. 
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The 6502 's greatest challenger for supremacy in the 8 bit microproces
sor field is Zilog's Z-80. Although the 6502 and the Z-80 have more 
similarities than differences, the Z-80 is considered a register-oriented 
processor and the 6502 a memory-oriented processor. The Z-80 has 
more on-board storage, and the 6502 more flair in dealing with 
memory. 

The 6502 is said to be an eight bit microprocessor because it deals with 
memory in eight bit chunks. This number stems ultimately from the 
fact that eight of the 40 pins on the 6502 handle the transfer of binary 
numbers into and out of the chip. Each leg transmits and receives the 
electronic equivalent of 1 and 0. 

Eight bits is enough to represent numbers from 0 through 255. Al
though this sounds like a serious limitation, a little programming, 
teamed with the 6502's tremendous speed, allows the use of numbers 
as big as we want. Tremendous speed? In the the time it takes to press 
and release the return key, a 6502 can do 50,000 eight bit additions. 

16 of the 6502 's 40 pins are used to specify addresses to memory. This 
amounts to a 16 digit binary number, and means there are 65,536 (216) 
memory cells potentially addressable by a 6502. Memory can be 
thought of as a series of numbered cubbyholes, 65,536 of them, maybe 
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in a giant roll-top desk; each cubbyhole has a slip of paper that can 
hold a number from 0 - 255 (actually, eight tiny slips of paper just big 
enough for a one or a zero). Reading memory is the act of first specify
ing the cubbyhole and then reading back the number stored there. 
Writing to memory involves locating a specific cubbyhole, and scrib
bling a new number on the slip of paper, erasing whatever was there 
before. 

The 6502 in a powered-up C-64 is continuously engaged in a fast dialog 
with its memory. If you were to put your ear against the keyboard, and 
were very quiet, you might hear something like this (then again, you 
might not): 

6502: Memory—Give me the contents of cell 45601. 
MEMORY: Okay. That number is... uh, 134. 
6502: Now I need the contents of 45602. 
MEMORY: That's going to be. . . 101. 
6502: Hmmmm... Very interesting. (He thinks for a microsecond 

or two). Okay, I need you to put 59 in location 101. 
MEMORY: You got it. 

There are three basic types of memory cells that make up the memory 
mechanism a 6502 will find attached to its address and data pins. 

RAM 

RAM is the most useful type of memory cell, and not coincidentally, . 
the most plentiful. RAM stands for Random Access Memory, meaning 
you can ask one microsecond for location 3 and the next microsecond 
for location 6,319. As opposed to cassette tape, a sequential storage 
medium. If you want the last byte on a tape you must go through the 
first 22,000 to get it. A memory cell implemented with RAM will obedi
ently read and write data at the command of the CPU. When you turn 
off the power to a C-64's RAM, within a few milliseconds, the numbers 
stored there disappear. (Who among us hasn't gnashed his teeth be
cause of this at least once.) 

ROM 

Like RAM, a memory cell implemented with ROM contains numbers 
that the 6502 can read (in any order; it's just as random access as RAM). 
The difference is that the numbers in a ROM cell are permanently en-
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graved at the factory, and cannot be changed, no matter how many 
times the CPU tries to write to it. Thus the acronym: Read Only 
Memory. This is both a liability and a blessing. It's not very flexible 
(what if you want to do something with the computer that doesn't 
need these numbers?), but has the endearing quality of withstanding 
being turned off without losing the numbers stored there. 

I/O Locations 
I/O locations are the third type of memory cell. These are memory loca
tions that are tied to elements of the computer outside the CPU-ROM/ 
RAM clique. I/O locations let the 6502 communicate with the rest of 
the machine. Some I/O addresses allow external devices to leave mes
sages for the 6502. In the rolltop desk analogy, these cubbyholes have a 
trap door in the back, and some third party is responsible for the num
bers that appear there. 

The 6502 looks at the slip of paper in cell number 56,320 marked 
"PORT A" when it needs to know what's happening with the first joy

stick. Address 56,320, $DC00, is inside a chip called the 6526 CIA. 
(complex interface adapter). The CIA acts as a window, or port, 
through which external activities can be observed and influenced. 

Divide and Conquer 

A useful way to organize 65,536 (64K, where 1 K = 210 = 1,024) 
memory locations is to group them into 256 "pages" of 256 locations 
each. Think of memory as a book with 256 pages, and 256 words 
(bytes) on each page. Page 3 is locations 768-1023, or $300 - $3FF. The 
page concept is a natural for hex representation, as every address 
breaks neatly into a page and a location within the page. Memory cell 
$3411 is the $ 11th byte of page $34. 

Just because the 6502 has the potential to access 65,536 memory loca
tions doesn't mean that every 6502 in the world can count on having 
that many locations available to it. The design engineer who wants to 
use a 6502 as the brains of a microwave oven, may decide that he 
doesn't need more than 1,000 bytes of ROM and 100 bytes of RAM to 
build the world's smartest microwave oven. 

The 6502 that finds itself installed in such a microwave still has the ca
pacity to access 65,536 locations, but only a thousand are really there. 
If it tries to access one of the unimplemented addresses, it's like a robot 
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in a Toyota factory blindly trying to arc-weld a Corolla stalled 10 feet 
up the assembly line. It thinks it's reading an instruction at location 
$C000, but it's seeing random, arbitrary garbage. 

So what locations have what on the C-64? The 6502 programmer has 
to know, lest he try to store his data in ROM. The memory map is a use
ful tool for seeing at a glance the basic layout of the 64K addressing 
range. 

Commodore 64 Memory Map 

Page Number 

Decimal Hex Function 

255 FF 
Kernal (ROM-8K) 

224 E0 
I/O Addresses (4K) 

208 DO 
Utility RAM (4K) 

192 CO 

Basic Interpreter (ROM-8K) 
160 A0 

Basic Program Area (RAM-39K) 

8 08 
Screen Memory (RAM-IK) 

4 04 
Basic & Kernal Work Area (RAM-IK) 

0 00 
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I thought my 64 had 64K RAM 

It does, even though adding up the blocks of RAM in this memory map 
will only total 45K. Commodore got sneaky and piled ROM and I/O ad
dresses "on top" of certain RAM areas. Cell $A037 is stored in a ROM 
chip by default, although it is possible to turn off the ROM at this ad
dress so that the underlying RAM cells in the range $A000-$BFFF are 
turned on. The technique of turning off an area of memory while 
turning on another is called bank selecting. If we didn't bank select, 
when the CPU tried to read one of these shared addresses, there 'd be a 
fight on the data bus as RAM tried to say one thing and ROM something 
else. 

A Trip Through the Memory Map, From Bottom Up 

The nature of the processor forces designers of 6502-based computers 
to populate the lowest memory locations with RAM, for important sys
tem functions. Soon we'll learn why. 

Screen Memory 

The C-64 uses so-called "memory mapped" video, a modern technique 
that is both flexible and inexpensive. The memory range $400-$7FF 
leads a double life. It is part of the 6502's memory map, and appears to 
the CPU to be garden variety RAM. It is simultaneously an important 
input for the C-64's video circuitry, that part of the machine that de
cides what dots to light up and what dots to leave dark on your screen. 

Basic 

Next comes 39K of RAM, normally used for Basic programs and data. 
This is the 39K the C-64 is referring to when you turn it on ("38911 
BASIC BYTES FREE"). Basic itself (an 8K machine language program) 
comes next, stored in ROM. From $C000 through $CFFF are 4,096 

"utility" RAM locations, often used to store machine language routines 
to be used with Basic programs. 

At the Top 

$D000-DFFF are I/O addresses, locations tha t allow the 6502 to com
municate with the rest of the computer, and consequently with human 
beings. Included in this range are two CIA's with 16 ports each, a 6581 
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Sound Interface Device (SID), with numerous control locations for 
sound generation, and a 6566 Video Interface Controller (VIC) for 
managing the display. VIC is the heart of the C-64's video mechanism; 
he looks at display memory and figures out what to put on the screen. 
Acronymically speaking, C-64 I/O is simply two CIA's, a VIC and a SID. 

The top 8K addresses are ROM, and contain a series of utility programs 
that perform various odd jobs such as reading the keyboard and posi
tioning the cursor, called the Kernal. 

Mass Storage 

65,536 bytes is a lot of RAM, but sometimes not enough. The 1541 disk 
drive can store 170,000 eight bit numbers on one disk—and we can 
have as many individual disks as we can afford. Ironically, the 1541 is a 
computer in its own right; it has its own 6502, which runs a boring lit
tle program that has it listening all day for commands from the "boss" 
computer, and fulfilling requests to read or write information. 

The connection between C-64 and disk drive is a serial (one bit at a 
time) interface, with an effective transfer rate of about 350 bytes per 
second. Once the main CPU gets the data from the disk drive into 
RAM, it can deal with these numbers in the normal, fast way. Like 
ROM, a disk retains its data when power is removed. 

But How Does It Work? 

The movie TRON notwithstanding, the world of the 6502 is as far re
moved from human experience as anything could possibly be, more 
like the whirling cams and levers of a bottle capping machine, than 
men in funny hats playing catch with luminous Frisbees. Even so, an 
analogy relating the 6502 to the actions of human beings is a good way 
to explain how machine language works. 

Consider, if you will, the loading dock of Giant Metropolitan Software 
Publishing House, Inc. Delivery trucks move ponderously in and out of 
loading bays. Workers with dollies and fork lifts move refrigerator-
sized cartons of blank disks coming in and completed programs and 
manuals going out. 

The undisputed boss of the dock is the foreman, an imposing figure in 
sky blue jump suit and orange Astros cap, directing workmen to and 
fro, signing paperwork, glancing occasionally at a clipboard in his left 
hand. 
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He runs things tight, by The Book. The Book is a much worn spiral 
notebook of maybe 150 pages chained to his desk. The label on the torn 
cover, although now illegible from years of use, once said: "SHIPPING 
DOCK PROCEDURES MANUAL". Each page is numbered. Some pages 
have only two or three lines on them, others, 10 or 15. Page 12, for ex
ample, says, in careful lettering: 

PROCEDURE 12 UPB — UPS BLUE SHIPMENT 

STEPS: 

1. PACKING LIST FOLLOWS WORK ORDER 
2. AFFIX BLUE LABEL STICKER 
3. LEAVE AT UPS AREA 
4 . DONE 

Every morning the foreman finds a thick stack of work orders waiting 
in his in basket. Each has some inter-office mumbo jumbo on it, and, in 
the upper left hand corner, the all important shipping dock procedure 
number. Not all of the sheets in the stack are work orders; most need 
the sheet or two of paperwork with them to be complete. 

The dock foreman's most important tool is his green work order clip
board. After his morning coffee he takes the first one from the stack 
and clips it to the clipboard. As long as that work order is on the clip
board, he devotes his energies totally to performing the operations re
quired to fulfill it. 

There's a bunch of writing on each work order, but he's only interested 
in the procedure number. Today's first one has a procedure number of 
22. "TPC", he mumbles to himself as he flips to page 22 of the proce
dure manual. (He knows 22 by heart, but turns to the page anyway. 
He's that kind of man.) 

PROCEDURE 22 TPC — TEXPAK C.0.D 

STEPS: 

1. PACKING LIST FOLLOWS WORK ORDER 
2. CALL TEXPAK FOR PICKUP 
3. FILL OUT C.O.D. FORM 
4. MOVE PACKAGE TO SHIPPING AREA 
5. DONE 
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When he finishes the last step of TPC, if it takes five minutes, or 15, he 
comes back to his desk, unclips the old work order and puts it and the 
packing list that went with it face down in the OUT basket. Without a 
pause, he takes the next work order from the In box, tacks it to the 
clipboard, and goes to work on it. All day long: Get a work order. Look 
up procedure. Perform the work order. Get a work order. Look up pro
cedure... 

A 6502 runs the same way: Access a memory location. Decode the con
tents of that location. The instruction may require the next byte or 
two in memory for execution. Execute the command, and proceed to 
the next memory location for the next instruction. 

The Fantastic Voyage 

Remember the movie Fantastic Voyage? Where some intrepid scien
tist/military types are shrunk to the size of a microbe to assist in the re
moval of a tumor from a valuable (I guess!) scientist's brain? 

Through the magic of the printed word, we're going to do the same 
thing. Only without Raquel Welch in the crew. Take that back—she can 
come too. We climb into our manta ray shaped submarine and buckle 
up. Brace yourself. Soldiers are blasting us with strange violet light. 
We're shrinking. We're getting smaller. . .smaller. . .smaller. . . 

We're so tiny now that the period at the end of this sentence looks like 
the Astrodome. We lift off (this submarine can fly, too) and head 
straight for a nearby C-64. It looks as big as Mount St. Helens. We slip 
easily through a crack in the keyboard, into a bizarre, alien landscape 
of ribbon cables and clock crystals. We drift eerily for what seems 
hours. Suddenly, dead ahead is a huge black monolith. The objective of 
our mission: the 6502 microprocessor. . . 



4. 
Getting Started 

It's time to get acquainted with program portion of The Visible Com
puter. If you have anything plugged into the expansion port, remove it. 
TVC will not run with any other software resident in the computer. 
Turn on the monitor (or TV), disk drive, and computer, in that order. 

Insert the TVC disk, and run it by entering: 

LOAD "TVC",8,1 

If the Software Masters copyright message does not appear within 10 
seconds, repeat these steps. If you have followed instructions exactly, 
and still can't get the program to run, contact your dealer or Software 
Masters for assistance. 

The copyright screen will remain for several seconds, after which TVC 
will begin to load into memory. In about 90 seconds, the main display 
will appear. 

You're now looking at something that few have ever seen: the innards 
of a working microprocessor. 

Each of the boxes holding a hex number is a register. A register is a 
place inside the processor where we can store binary numbers, a lot 
like a memory location. The 6502 can perform marvelous feats with a 
few simple operations on the contents of these 10 registers. In the next 
chapter we'll begin to see how this is done. 

Speaking of memory, the 6502's contact with its 65,536 address loca
tions is via the two registers labeled "mem", for memory. The 16 bit 
register is for the address; the eight bit register is for the data stored at 
that address. During program execution, this is where numbers appear 
that are being stored in and retrieved from memory. 

The message window in the upper left hand corner is where TVC out
lines the steps it follows in executing 6502 instructions. When TVC is 
not actively running a program (now, for instance), this window is 
blank. 

28 
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We'll put off talking about the disassembly area until we learn what 
disassembly is. The status box in the lower right part of the screen dis
plays various tidbits germane to TVC's execution. At the very bottom 
is the command line, where you'll enter commands to control TVC. 
The "#" (number sign) is the monitor prompt. It serves as a reminder 
that entries should be statements recognizable by TVC. 

The line next to the prompt is the cursor, and, like the flashing block 
cursor of Basic, shows you where you are on the screen when typing. 

The Visible Computer consists of two major parts: the monitor and the 
6502 simulator. The monitor controls ("monitors") the simulator. The 
simulator is the part that actually executes 6502 programs. Through
out this manual we will use phrases like "in the monitor" and 

"returning to the monitor." You are "in the monitor" when the prompt 
is at the bottom of the display. You are "in the simulator" whenever 
the prompt is not at the bottom of the screen. 

Monitor Commands 

TVC has more than 20 commands in its vocabulary. You tell it some
thing, and, if what you told it is something it understands how to do, 
it'll do it. 

Entering Commands 
To issue a command, type your request and press return. If a command 
consists of more than one part, use a space between the parts to sepa
rate them. 

To fix a mistake, use the delete key to erase the error, and retype. (The 
C-64 screen editor does not function within TVC, and attempting to 
use these techniques may clobber the display.) If TVC cannot under
stand your instruction, it will tell you so with error messages. 

Commands have the general form: 

COMMAND [argumentl] [argument2] 

Argument is a 25 dollar computer word that means "modifier". Some 
TVC commands need no arguments; others need additional informa
tion to be complete, just as some Basic commands ("END", "NEW") 
stand alone, while others ("IF", "GOSUB") don't make sense unless 
you include more information. 
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Examples of one word monitor commands are ERASE and RESTORE. 

The monitor command BASE (change a register's base to hex, binary, 
or decimal) needs two arguments; one to indicate the thing we're 
changing the base of, and another to specify the new base. BASE PC 
BIN changes the display mode of the program counter to binary. 

You must separate a command and its arguments by one or more 
spaces. You must not use spaces within a command or argument. For 
example, if you entered the ERASE command as ER ASE, the com
mand interpreter of TVC would understand it to mean: "Perform ER 
using argument ASE". Which, upon trying to find command ER, 
produces an error. If you can't get a command to work, check your syn
tax, and don't forget the spaces in commands that have arguments. 

Now to get our feet wet with a couple of commands. First, we'll call up 
the calculator and see if two plus two equals four. I know that's a ques
tion of great concern to many of you. 

Type CALC and press return. (Typing an instruction and pressing the 
return key is called "entering" in this manual.) If you make a mistake, 
back up with delete and fix it. If "Command" appears in the status 
window, TVC could not understand what you entered. 

Eventually you should see the following on the command line: 

<HEXXCALC> 00 

The "HEX" means that the current calculator base is hex. All numbers 
produced by the calculator will be displayed in hex {without dollar 
signs), and all numbers you enter must contain only characters valid in 
hex. In other words, no hex numbers like G3#B, or decimal numbers 
like FC3. Do not include dollar signs; if the calculator's base is hex, the 
dollar sign is understood. The calculator base can be changed to binary 
by typing a Ctrl-B (Type Ctrl-B by holding down the CTRL key and 
pressing B), and a Ctrl-D for decimal. For now leave it in hex (Ctrl-H). 
Enter: 

2 + 2 

2 + 2 is replaced by 04. If you didn't get four for an answer, make sure 
you include the spaces between the two's and the plus sign. Now try 
these problems: 
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3 + 3 
4 * 4 
6/2 
3EA * C (Try that on your Casio!) 

To convert between bases, follow these steps. Converting 65,000 deci
mal to hex: 

Ctrl-D 
65000 <return> 
Ctrl-H 

Convert it to binary with Ctrl-B, and back to decimal with Ctrl-D. With 
the base decimal, try adding FF to 3. The BASE error that results is 
TVC telling you that you have entered characters not valid in the cur
rent base. FF is not a valid decimal number. 

Answers are displayed with leading zeros, and for binary numbers, 
with spaces separating each nibble. This calculator has certain 
properties that make it undesirable for everyday checkbook balancing 
and miles per gallon calculations. It is an integer calculator; numbers 
with decimal points are not allowed as input. Divisions produce trun
cated (chopped off, as opposed to rounded off) results, (e.g., 6 /2 = 3; 
5/2 = 2; 9/10 = 0) 

You may not enter negative numbers. Dashes entered anyplace except 
as the operator are treated as invalid characters. If you do a subtrac
tion that produces a negative number, by subtracting a larger number 
from a smaller number, the answer will be displayed in two's comple
ment form (later we'll learn what that is). Lastly, you may not enter, or 
produce via calculations, numbers greater than 65,535. These quirks 
are a result of the calculator's purpose in life, to help you write ma
chine language programs. 

When you've had all the fun you can stand changing numbers back 
and forth between bases, return to the monitor by pressing Fl . Got the 
monitor prompt back? Next, try this short and sweet command: 

ERASE 

Wow. Spectacular. ERASE clears a space where you can experiment 
with the display. But since it's sad to see a lonesome little monitor 
prompt all by itself, bring the display back with the RESTORE com-
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mand. If you like, you can issue these two commands over and over. 
For the more adventurous, let's move on. 

Enter: WINDOW OPEN. Now we're erasing only a part of the display. 
When you know more about 6502 programming, you'll appreciate the 
choice of registers that remain onscreen when the window is open. 
Again, we don't want to leave our display looking so empty, so replace 
the part that got erased with WINDOW CLOSE. 

What's So Great About Hex? 

TVC defaults to a display mode of hex for all registers except P, but you 
don't have to leave it that way. Change the base of all the registers to 
binary with: 

BASE ALL BIN 

Change only the A register to decimal with BASE A DEC. Mix and 
match any combination of hex, binary and decimal. Get it looking like 
you want a 6502 to look. By the way, the names of memory's address 
and data registers are MEMA and MEMD, respectively. 

This concludes our first session with TVC. We've learned what the 
monitor is, and have experimented with the commands CALC, 
ERASE, RESTORE, WINDOW, and BASE. In the next chapter we'll go 
in up to our knees and splash around a little. 



5. 
Working With Memory 

TVC Memory Allocation 

Page Number 

FF 
:: Kernal (8K) 
EO 
:: I/O (4K) 
DO 
:: Reserved for TVC (2K) 
C8 
:: Screen Memory (IK) 
C4 
:: Primary User Memory (IK) 
CO 
:: Basic (8K) 
AO 

:: Reserved for TVC (39K) 

02 
:: Stack Page 
01 
:: Page Zero 
00 

In this chapter we'll learn how TVC subdivides the C-64's memory 
map. Then we'll practice the monitor techniques of examining and 
changing the contents of memory. 

Although you can read bytes from anywhere in memory, only the 
ranges $C000-$C7FF and $0000-$01FF can be written to. If you were 

34 
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allowed to populate other areas with the numbers of your choice, you 
might hur t TVC; perhaps crash it, maybe just subtly alter a single func
tion. TVC will appear to accept an order to place a value at $4003 (no 
error messages), but will not obey it. It handles ROM and I/O locations 
the same way. Later, when you've passed a few milestones in your stu
dies, you'll learn a command that lets you to write addresses anywhere 
in the memory map. (Although you'll never have any luck writing to 
ROM. no matter how much you learn.) 

The IK primary user area ($C000-$C3FF) is plenty of room for most 
machine language programs. 

A Window into Memory 

Display the contents of 16 memory locations by entering: 

WINDOW MEM 

Unless you tell it otherwise with the LC or RC commands, TVC displays 
addresses $C000-$C007 and $0000-$0007 in the memory window. You 
can change the base of the memory window to decimal with BASE 
MEM DEC. BASE MEM HEX changes it back. If you want to change the 
value of a location, there are three options. 

Direct Loads 

The quickest way to write to a memory location is a direct load. Enter 
the address and the value you want stored there, separated by a space. 
Both address and value must be numbers valid in the current monitor 
base (the second entry on the TVC status line—hex, if you haven' t 
changed it since startup). To put $CA in location $C006, enter: 

C006 CA 

See the contents of $C006 change? How nice. C004 3 writes a three 
into location $C004. To use decimal numbers, set the monitor base to 
decimal with BASE MON DEC. Now addresses and data must be given 
in decimal. 49158 4 places a four into $C006. We're going to be using 
hex almost exclusively, so change the monitor base back to hex (BASE 
MON HEX). 

Remember memory mapping? How what 's on the display is a function 
of a special area of memory called screen memory? We're going to ver-
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ify that by writing the code for a lower case "g" into screen memory, 
and consequently, onto the display. TVC, for good reasons of its own, 
has moved screen memory from its normal place in the C-64 memory 
map ($400-$7FF), to $C400-$C7FF. It's organized the same way; each 
address is $C000 greater. 

The screen is subdivided into twenty five rows of 40 character posi
tions each, for a total of 1,000 characters. The shape that the VIC chip 
draws in the row 0, column 0 position (upper left hand corner) of your 
screen at any given moment is controlled by the number stored at loca
tion $C400. The bit pattern displayed just to the right of it, at row 0, 
column 1 is controlled by the value in location $C401. The last column 
position of the first row is at $C427. The first column of the second row 
is at $C428. 

Let's put a "g" in the third column of the second line of the display. 
That's going to be memory location $C400 + (1*$28) + 3, or $C42B. 
The code for "g" happens to be $07. 

Here goes: 

C42B7 

Instantly the VIC chip responded to the new value and produced a 
different dot pattern in the corresponding part of the screen. 

Direct loads are okay for a couple of quick writes, but if we want to 
write data in 50 consecutive locations, it's a lot of work specifying the 
address each time. A more efficient way to change several consecutive 
locations is the EDIT function. Invoke editing by entering: 

EDIT C000 

This causes editing to start at memory location $C000. To change loca
tion $C000, enter a number (naturally, an 8 bit number valid in the cur
rent monitor base). The number you enter replaces the previous value, 
in memory and onscreen. The address advances by one and the process 
repeats. There are a couple of tricks you can do with your first key
stroke. Cursor left displays the contents of the previous location. Cur
sor right (or return) jumps to the next location, without changing the 
number stored at the first address. 

Change the values stored at $C000 - $C007 to $11, $22, $33, $44, $55, 
$66, $77, and $88. Move forwards and backwards through this range 
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with the the cursor key. Do the values returned by EDIT agree with the 
memory window? 

F l cancels EDIT and returns you to the monitor. 

If you write to a valid location not displayed in the window, the 
change is made in memory, but not onscreen. There are two commands 
which change the memory locations displayed, LC (change left col
umn) and RC (change right column). 

To list locations $FF00-$FF07, enter: 

LC FFOO 

If you want, you can display the same locations in the right column. It's 
a free country. 

Loading From Disk 

The LOAD command loads memory with data stored on disk as either 
program or sequential files. The demonstration 6502 machine lan
guage programs we will be using shortly are loaded this way. You can 
also use LOAD to write zeros into your working area, to clean it up. 
This is done by LOADing a file on the TVC disk consisting of nothing 
but zeros, named, appropriately enough, ZEROS. Try it now. 

LOAD ZEROS 

This zeros addresses $C000-$C3FF, the TVC user area. The memory 
window should reflect the change. TVC cannot deal with file names 
that have spaces embedded within them, e.g., MY PROGRAM, because 
it uses spaces to separate arguments. None of the demonstration files 
on the TVC disk have embedded spaces, but keep this restriction in 
mind when loading your own programs later on. 

As you might imagine, there is a counterpart to LOAD named SAVE. 
SAVE writes all or part of the user area to disk. 

Loading Registers 

Earlier we learned how to used the BASE command to change the dis
play mode of a register. There's also a way to change a register's con
tents. Next to the monitor prompt, enter the name of the register and 
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the value you want to put there. As with all monitor commands, ex
press the value in the current monitor base. To place $89F in PC, enter: 

PC89F 

You may not write numbers larger than $FF into an eight bit register, or 
larger than $FFFF to a 16 bit register. Practice with it. Change the base 
of registers you've written numbers to. Do you get the same conver
sions you get on paper or with the calculator? 

Appendix C is a reference on the TVC commands. Even though there 
are some we won't be using for some time, turn there now and quickly 
look through it. 



6. 
First Programs 

Let's get a clean start for our first program. If you haven't just now 
loaded TVC, enter the RESTART command to put the 6502 simulator 
into its default state. 

TVC is a program that makes your computer screen behave like a 6502 
microprocessor. The simulator runs much more slowly than a real 
6502, roughly a million times slower. Furthermore, it is transparent so 
we can see inside as it works. Behind the scenes, making the simulated 
6502 tick, is your computer's real 6502. 

A Tour of the 6502 

The 6502 has eight 8 bit registers. A register, remember, is just a box 
where we can store binary numbers. Their abbreviated names: A, S, P, 
X, Y, DL, DB, and IR. There are two 16 bit registers, PC and AD. We'll 
discuss each register individually, as they have more personality than 
the typical memory location. 

A The A register, or accumulator, although not especially 
large, is probably the most important register in a 6502. It 
gets a workout in almost every program. 

S Directly above it is S, the "stack pointer" register. S is used 
for stack operations. 

P The P register (Processor Status) holds the distinction of 
having probably the most unnatural abbreviation of all 6502 
registers. It also is the only one that defaults to a binary dis-
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play, because we are more interested in P's individual bits 
than their collective value. 

X Next are the 6502's twins, the X and Y registers. They are 
virtually interchangeable, and get a lot of use, though not as 

Y much as A. They are often called index registers because of 
their use in something called indexed addressing. 

PC The big register beneath X is the program counter. It serves 
as a placemark to remind the 6502 where it is in memory and 
what instruction it should execute next. Fans of the pro
gram counter could make a good case for it being the most 
important register in the 6502. At the very least it's twice as 
big as the accumulator. 

DL DL, the data latch, is the 6502's bus station, the crossroads 
of data coming into and out of the processor to and from 
memory. No data comes into or leaves the 6502 without 
passing through this register. 

DB DB, the data buffer, is a place where we can temporarily 
shuffle a number off in the middle of an instruction until 
we're ready for it. 

IR IR is the instruction register. This is where a 6502 deposits 
the instruction currently being executed. It's the 6502's 
equivalent of the dock foreman's clipboard, a place where 
an instruction can be studied ("decoded") to figure out 
what it is and how to execute it. 

AD AD is the address latch, the register that holds the memory 
location to be accessed during reads and writes. 

The 6502's 16 bit registers, AD and PC, have a dual personality; some
times they behave like one big 16 bit register, other times like a pair of 
8 bit registers. When used in this way, the high order halves are called 
PCH and ADH, and the low order halves, PCL and ADL. 

A, S, P, X, Y, and PC are sacred abbreviations agreed on by all 6502 pro
grammers. The other registers, DL, DB, IR, and AD, have more flexible 
names, as they were invented by the author of this manual. That's 
right. You could buy 11 books on 6502 machine language, and not one 
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would mention the DL, DB, IR, or AD registers. The reason is that a 
programmer doesn't have to worry about these registers to write 6502 
programs. They're in every 6502, essential for running things, but 
since they perform temporary, scratch pad functions, the programmer 
need not concern himself with them. Since TVC simulates the inner 
workings of a 6502, we couldn't leave them out. 

Now to put some of this knowledge into action. Let's load and execute 
the first of the demonstration programs, named, appropriately 
enough, PROG1. Load PROG1 (no space between the "G" and the "1") 
into memory, all two bytes of it, with the command: 

LOAD PROG1 

Unless you specify otherwise, LOAD loads data starting at address 
$C000, so PROG1 now resides in RAM beginning at $C000. PROG1 is a 
simple affair that will accomplish one small feat. It will cause a $33 (51 
decimal, 0011 0011 binary) to appear in the accumulator. I know you 
could easily do that with the monitor command: A 33, but bear with 
me. 

Let's look at the data that makes up PROG1. Put the window in 
memory mode with the WINDOW MEM command. PROG1 consists of 
the $A9 at $COO0 and the $33 at $C001. Hmmmm. . . The program is 
going to put a $33 in the accumulator and one of the two bytes in the 
program is a $33. Could be a connection. 

The zeros that follow mark PROGl's end. CLOSE the WINDOW. We 
want to see the whole processor/memory setup for our first program. 
Next, put TVC in its slowest, most helpful state with the command: 
STEP 3. 

I know you're anxious to get started, but before we turn the simulator 
loose on PROG1, consider the current contents of the registers. Since 
we just booted TVC, the registers are in their default condition. Most, 
but not all, hold zeros. For now, don't worry about poorly abbreviated 
P and its binary contents, or the $FF in the stack pointer. I call your 
attention rather to the $C000 stored in the program counter. 

$C000 is where in memory the 6502 that's about to come to life will 
find the instruction it will execute. It is no coincidence that LOAD 
placed PROG1 at $C000. If we were to make the program counter 
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something other than $C000, say $1AFF, the simulator would not exe
cute PROG1, but rather whatever unknown data it found laying 
around at $1AFF. 

To activate the simulator, press return without entering anything at 
the monitor prompt. Things happen fast now, so pay attention. 

The Simulator 

This is our first excursion into the 6502 simulator. It doesn't have 
nearly as many commands to worry about as the monitor. It executes 
programs while you watch. The message window displays "fetch". 
This means an instruction fetch, the first phase of instruction execu
tion, is in progress. When the 6502 has fetched a byte and placed it in 
the instruction register, the fetch cycle ends, and the execution phase 
begins. 

The second line of the message window contains a more cryptic mes
sage. 

T: PC - > AD 

This translates into English as Transfer: The contents of the Program 
Counter to the Address Latch. This is a microstep, a building block of a 
machine language instruction. The nine TVC microsteps are listed in 
Appendix D. The transfer microstep, which blinks the source and then 
the destination register, is the most common, used by every instruction 
at least twice. 

The transfer will occur as soon as you exit the pause you're in. Pressing 
"C" invokes the calculator, the only monitor function available from 

within the simulator. Exiting the calculator with Fl returns you to the 
pause. 

Restart the simulator by pressing the spacebar. AD now contains 
$C000; note that PC is still $C000. A transfer doesn't affect the con
tents of the source register. 

READ is the next microstep of the FETCH process. A read happens 
fast, so be ready. It consists of the following steps: 

1. The contents of the address latch are trans
ferred to memory's address bus. 
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2. Memory fetches the contents of that address 
and transfers it to memory's data bus. 

3. That value is transmitted to the 6502's data 
latch. 

Before we let this Read happen, a pop quiz: What value will be read 
from location $C000? Answer: $A9. It won' t have changed from a min
ute ago when we looked at it from the monitor. Okay, press the space
bar. 

The 6502 is still in the fetch cycle. It's taken a work order from the In
box, but hasn ' t got it to the clipboard yet. Until it gets this byte to the 
instruction register (IR), the 6502 doesn't have any idea of what the in
struction is, much less how to complete it. The next step, then, is to 
put the instruction in IR so we can get on with decoding and executing 
it. As soon as the $A9 is in IR, the fetch phase ends, and the execute 
phase begins. "Fetch" is replaced in the message window by "LDA IM-
MED", the 6502 saying to itself "I need to load my accumulator with 
the next byte in memory." A Load Accumulator, Immediate, also 
known as instruction number $A9. 

And it knows what to do next. First: Increment the program counter. 
Now it contains $C001. Transfer it to the address bus. Do you feel a 
READ coming on? Yes. Read the contents of location $C001 into the 
data latch. Copy the number you found there, a $33 (big surprise), into 
the accumulator. 

We're almost done. Something called "CONDition FLAGS" happens 
that blinks the P register. We'll talk about this phenomenon later. The 
last step is to increment the program counter. We do this not to assist in 
the execution of this instruction, but to prepare for the next one. 
When you're in the monitor, the program counter always points to the 
next instruction, not the end of the one just completed. 

A real 6502 doesn't have the luxury of sitting around doing nothing 
while a monitor takes over for half an hour. It has to execute one in
struction after another, bing-bing-bing, hundreds of thousands of 
times a second, without so much as a break to pat itself on the back. 
After every instruction, the value in the program counter is the ad
dress of the first byte of the next instruction. 

That last increment of the program counter completed the instruction, 
and deposited us in the monitor. The last act of the simulator is to list 
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the instruction just performed in the disassembly window. For now, 
consider the disassembly window a mysterious trail of the last five in
structions the simulator has executed. 

What would happen if we were to enter the simulator now? Press 
return and find out. It'll fetch the $00 that's in $C002, put it in IR and 
digest it. $00 is a 6502 instruction called BRK (software break), that 
puts you right back in the monitor without doing anything. It's a signal 
to the simulator that the program is over and we want to get back to 
the monitor. Later we will learn more about this unique instruction. 

Congratulations! You have just watched your first program. If you 
were able to follow along, you have learned about 90% of the funda
mental basis of machine language. Don't worry about memorizing the 
exact sequence of microsteps. The important thing is that having the 
6502 execute the sequence of bytes: $A9 $33 caused it to load the ac
cumulator with $33. 

Before you go on to the next session and more complex programs, be 
sure you understand how this one works. You can have an instant re
play of PROG1 by setting the program counter back to $C000 with PC 
C000. While you're at it, why don't you change memory location 
$C001 from $33, to say, your age—then PROG1 can serve the useful 
purpose of telling the accumulator how old you are. 

Moving Right Along 

So far we know exactly two of the fifty-six 6502 instructions. LDA, 
also known as $A9: "load the accumulator with the byte following this 
one", and BRK, $00, "Break out of the program and return to the mon
itor". "LDA" and "BRK" are not haphazardly chosen abbreviations; 
they are official 6502 mnemonics (neh-mow-ics). A mnemonic is a 
memory aid, based on the theory that it's easier for human beings to 
associate "LDA" with the act of loading the accumulator than $A9. 
The 6502 has no idea, of course, what LDA means; if you want a 6502 
to load its accumulator you have to give it the opcode $A9. Each 6502 
instruction has a three letter mnemonic. Some of the abbreviations are 
better than others, but all are easier to remember than a number. 

Remember me saying that the accumulator is the most important regis
ter on the 6502? That makes LDA-$A9 a good instruction to know. 
Loading is all well and good, but what about storing a value in the ac-
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cumulator somewhere in memory? Is there a way to do that? You bet. 
LOADPROG2. 

PROG2 introduces the flip side of LDA, STA (Store Accumulator; op
code $85). This instruction causes the contents of the accumulator to 
be placed in the memory location of our choice. PROG2 will first LDA 
with $66, and then STA it at memory location $43 (a page zero ad
dress). PROG2 is longer than PROG1, a whopping two instructions, 
four bytes. Take a look at it with either WINDOW MEM or EDIT. It be
gins, as did PROG1, at $C000. Notice the $43 at $C003. A coincidence? 
You know better. 

With the program counter set back to $C000, and with WINDOW 
CLOSE and STEP 3 in effect, step your way through this two instruc
tion program. PROG2 will be only half done when you first return to 
the monitor, since we return to the monitor after completing each full 
instruction. Press return to execute the second instruction. Pay special 
attention to STA-$85. STA is a tad more involved than LDA-$A9. 

When the 6502 sees an $85 in the clipboard register, it knows it must 
get one more byte out of memory, just as it did with LDA. But what it 
does with the second byte (a $43) is different. 

First it transfers it to the address bus. Since AD is 16 bits wide, and 
we're loading it with an eight bit number, the most significant byte be
comes zero. We have now formed the zero page address $0043. Putting 
a number on the processor's address bus is always a precursor to a read 
or write of memory. Next, we transfer the accumulator to the cross
roads register, DL. The stage is now set for the WRITE microstep. 

A write consists of the following steps: 

1. The contents of the address latch are trans
ferred to memory's address bus. 

2. The contents of the data latch are sent to mem
ory's data bus. 

3. Memory inserts the value into the selected lo
cation. 

After the write, STA is complete except for a final increment of the 
program counter to make it point to the next instruction. No flag con
ditioning this time. 

When you get back to the monitor, check the contents of memory loca-
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tion $0043 with either WINDOW MEM (and an LC 40) or EDIT and ver
ify that it really got the value PROG2 put there. Run this program sev
eral times. Use different values for $C001 and $C003. Do not change 
the opcode values, the $A9 in $C000 or the $85 in $C002. Change them 
and you change the instruction from LDA to who knows what. 

That's three instructions down, 53 to go. But we're about to learn 10 
more with astounding ease. 

Loading and Storing Other Registers 

The accumulator is top dog on the 6502, but occasionally we need to 
load and store some of the other registers. There are instructions for 
just that: LDY and STY for the Y register. LDX and STX for X. 

MNEMONIC OPCODE OPERATION 

LDX $A2 Load X register 
LDY $A0 Load Y r e g i s t e r 
STX $86 S t o r e X r e g i s t e r 
STY $84 Store Y register 

PROG3 demonstrates all the instructions we've learned. LOAD it, set 
PC to $C000, and step through it. Each of the new instructions func
tions exactly like its accumulator counterpart. Now we're really 
starting to accomplish things; three consecutive memory locations 
loaded with $FF. Great. 

All of the instructions so far have been two-byters: An opcode byte to 
give the 6502 its orders, and a second byte to use in completing the or
der. The 6502 also has one byte instructions, instructions so self ex
planatory they don't need a second byte to finish the job. Such instruc
tions are said to be "implicit", or implied. 

The six Transfers are representative of the Implied group of 6502 in
structions. They're for moving data between registers. 

MNEMONIC OPCODE OPERATION 

TAX $AA Transfer A to X 
TAY $A8 Transfer A to Y 
TXA $8A Transfer X to A 
TYA $98 Transfer Y to A 
TXS $9A Transfer X to stack pointer 
TSX $BA Transfer stack pointer to X 
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Don't confuse the 6502 transfer instructions with the "T:" microstep. 
A "T:" is only one phase of a 6502 transfer instruction like TYA, or for 
that matter, any 6502 instruction. 

Two of the transfer series are demonstrated in PROG4. For now, take 
the others on faith. LOAD and STEP 3 your way through it. Notice that 
the 6502 knows it need not fetch any additional bytes out of memory 
after the instruction fetch to complete a transfer instruction. It knows 
what to transfer where by looking at the opcode byte. 

Ultimately, PROG4 accomplishes the same function as PROG3 (the not-
so-earth-shaking feat of writing $FF into locations $40, $41 and $42), 
but does it faster. It takes less time to execute a one byte transfer in
struction than a two byte load instruction. It's also two bytes shorter. 

Now we're making some progress; 13 instructions down, 43 to go. 



7. 
Processor Status Register 

The P (processor status) register is something of an oddity in the 6502 
family. Not only does it have a confusing abbreviation, it is also the 
only register where we are more interested in contents on a bit rather 
than byte level. In other words, if both P and A happen to contain 0011 
0011, we will usually interpret A as the number $33, and P as contain
ing ones in positions 0, 1, 4, and 5, and zeros in positions 2, 3, 6, and 7. 
These bits are so important they have their own names. P defaults to 
binary display so that each bit falls under its abbreviation. 

Speaking of defaults, why are bits 4 and 5 set? Because that's what you 
usually find in this register inside a real 6502 running in a C-64. The 
full names of these rugged individualists: 

Position Name 

7 N Negative flag 
6 V overflow flag 
5 
4 B Break flag 
3 D Decimal Mode flag 
2 I In ter rupt Disable flag 
1 Z Zero flag 
0 C Carry flag 

Two things: A "flag" is a bit of unusual importance. Bit 5 of the proces
sor status register is not used. It's there, obviously, but we have no con
trol over it, nor will we ever be interested in its value. 

Instructions that Affect the P Register 

There are implied (one byte) instructions to set and clear many, though 
not all, of the P register flags. "Set" and "clear" are handy verbs 
describing the act of forcing a bit to become either a one or a zero, re
spectively. "Reset" is used interchangeably with "clear" in this man
ual. 

48 
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MNEMONIC OPCODE OPERATION 

CLC $18 Clear carry flag 
CLD $D8 C l e a r decimal mode i n d i c a t o r 
CLI $58 C l e a r i n t e r r u p t d i s a b l e i n d i c a t o r 
CLV $B8 C l e a r overf low f l a g 
SEC $38 S e t c a r r y f l a g 
SED $F8 S e t dec imal mode i n d i c a t o r 
SEI $78 S e t i n t e r r u p t d i s a b l e i n d i c a t o r 

This list of commands seems incomplete; there are no instructions for 
setting or clearing the negative and zero bits, and none for setting 
overflow. There don't need to be, as we shall see. 

The Zero Flag: 6502 Historian 

The Z flag contains a single binary fact about previously executed in
structions. It is "conditioned" (set or cleared) by the 6502 every time it 
executes a load or transfer instruction. If you load a zero into the accu
mulator, Z will be set. This is backwards from common sense, so I re
peat: If you load X, Y, or A with a zero ($00; 0000 0000), the Z bit will 
be set. It will stay set until such time as another load or transfer comes 
along that loads a nonzero value into a register. Once cleared, it will 
stay that way until the next zero load comes along to set it. 

The Negative Flag 

The N flag is also conditioned with every load and transfer instruction. 
If you load or transfer a number that has bit 7, the most significant bit, 
set, N will be set. Any 8 bit number greater than $7F has this bit set 
(check it out!). Conversely, loading or transferring values with this bit 
clear, will clear the N flag. N gets its name from the fact that fre
quently bit 7 is used to indicate negative numbers. We will describe the 
signed number situation in more detail later on, but quickly, the con
vention is: If bit 7 is set, the number is negative. If it is reset, the num
ber is positive. If you are not using signed numbers, the behavior of the 
N flag can be disregarded. 

This conditioning effect, in conjunction with instructions to be pre
sented in the next chapter, allow the programmer to test conditions 
that existed on previous load and transfer instructions. The technique 
is to examine the state of the Z or N bits, and decide what to do next on 
the basis of that finding. This is related to Basic's IF / THEN statement. 
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Basic 
IF A - 0 THEN GOTO 1000 
A = A + 1 
etc. 

Machine Language 
TXA 
[If Accumulator = 0, GOTOXXXX] 

In the next chapter we'll learn an instruction to fill in the brackets. 

PROG5 demonstrates both the implied clear/set instructions and the 
conditioning effect of loads and transfers. LOAD PROG5, but before 
you run it, we're going to explore a feature of TVC for anticipating 
what a program will do without actually running it. 

Disassembly: The L(ist) Command 

With PROG5 LOADed, enter: C000 L. As with all monitor commands, 
separate the L from the C000 with a space. What appears in the disas
sembly window is a sneak preview of the first five instructions in 
PROG5. Unlike the instructions put there by the simulator after ex
ecuting an instruction, the address is not in inverse video. 

C00Q: 38 SEC 
C001: F8 SED 
C002: 78 SEI 
COO 3: 18 CLC 
C004: D8 CLD 

Disassembly is an awkward word for the extremely useful process of 
presenting a machine language program in a form more palatable than 
plain hex. The hex is there too, address and contents—but the hu
manized version of the instruction is what we're after. 

A disassembled instruction usually contains two parts: mnemonic and 
operand (implied instructions, e.g., DEX, are operand free). In "LDA # 
$33", LDA is the mnemonic, and #$33 the operand. Both assist, some
times subtly, the programmer in determining what the instruction 
does. 
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You can disassemble anywhere in the memory map, but don't expect 
reasonable results unless the numbers stored there are actually ma
chine language programs. Enter: 500 L. Address $500 is part of TVC it
self. TVC is largely a Basic program, and Basic programs do not directly 
make sense to either a disassembler or a 6502. Another way to go 
wrong is to start disassembly in the wrong place. Even though PROG5 
sitting there at $C00O is a valid machine language program, if you start 
listing it at $C00A, you'll get question marks because the first byte (the 
data byte of the LDX instruction that starts at $C009) is an undefined 
opcode. 

A tipoff that you're disassembling something other than machine lan
guage is the appearance of "???" mnemonics. Of the 256 possible eight 
bit values that could have been 6502 opcodes, the designers of the 
6502 gave only 151 defined meanings. Give the disassembler one of 
these unimplemented opcodes, such as $02, or $FF, and it says: Huh? 
Probe around inside ranges known to contain machine language, such 
as the Kernal ($E000-$FFFF). Although even the Kernal area is not 
solid machine language, you'll see many marvelous mnemonics and 
operands, including many we haven't learned yet. 

The "next instruction line" of the status area, if you haven't already 
guessed, holds the disassembled form of the instruction that is either 
about to be executed (if you are in the monitor) or is currently being 
executed (if you are in the simulator). Minus the address (which is 
defined to be the program counter, anyway), and the hex values them
selves. 

The next instruction display changes whenever the program counter, 
or memory pointed at by the program counter, is changed. Change the 
program counter to $C100. The instruction line should have changed. 
Now write $18 to $C100. Again it should have changed. We're about to 
run PROG5, so put PC back to $C000. 

Disassembling a machine language program is not the same as execut
ing it, any more than listing a Basic program is the same as running 
one. Although now PROG5 will be anticlimactic, having already seen 
what instructions are in it, work your way through it with the simula
tor. Those of you with printers can have a little extra fun by activating 
the output-simulator-disassembly-to-printer feature of TVC with the 
command: 

PRINTER ON 
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TVC will now output to the printer one line of disassembly after every 
instruction executed by the simulator. For further information on the 
printer command, consult Appendix C. 

PROG5's Set/Clear instructions are straightforward enough, but pay 
special attention to the COND FLAGS microstep of the loads and stores 
that follow. Each load conditions the N and Z flags. If we load a regis
ter with a zero, the 6502 will set Z. If it was already set, it'll stay set. N 
is altered at the same moment. It will be set whenever a load occurs 
that sets bit 7 of the register that is loaded, and reset when bit 7 is re
set. For now, just observe the conditioning process and don't worry 
about why it goes to this trouble. 

Tinker around with the data portion of the load instructions. What do 
the Z and N flags do with a load of $FF? Or $31? Find out, and meet me 
at the start of the next chapter. 



8. 
Branches: Decision Making 

If you're like me, the first Basic program you ever saw didn't do much 
for you. It probably went something like this: 

100 INPUT "WHAT IS YOUR NAME ";A$ 
110 PRINT "THAT'S A NICE NAME, ";A$ 
120 END 

Unless you were exceptionally creative with your input (THAT'S A 
NICE NAME, GRAND CAYMAN ISLAND), it wore thin quickly. But my 
first encounter with testing and looping was almost a religious experi
ence. 

100 N = 0 
110 PRINT N , N * N 
120 N = N + 1 
130 IF N <= 10 THEN 110 
140 END 

Somehow the concept of testing, and if necessary repeating, a series of 
instructions was fascinating: "Wow, I could change the 10 in line 130 
to 1000. . . or 1000000 . . . Or change line 110 to print the cube root 
too!" 

Put simply, decision making and looping is what programming comput
ers is all about. This is as true for machine language as it is for Basic. To 
execute our first decision-and-loop 6502 program we'll need some new 
instructions: The Decrement/Increment series, and a Branch or two. 

There are 4 implied instructions to increment (increase by one) and de
crement (decrease by one) the contents of the X and Y registers. They 
are: DEX, DEY, INX, and INY. 

MNEMONIC OPCODE OPERATION 

DEX $CA Decrement X register 
DEY $88 Decrement Y register 
INX $E8 Increment X register 
INY $C8 Increment Y register 
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These instructions have a "wraparound" effect. If you decrement a 
register that contains $00, it goes to $FF. If you increment a register 
that contains $FF, it goes to $00. There is also a way to increment and 
decrement memory locations. Strangely enough, there isn't an inc/dec 
pair for the accumulator, although there is a way to accomplish the 
same thing. 

Like loads and transfers, these instructions condition the N and Z flags. 
If we execute DEX at a moment when the X register contains $01, we 
get $00 in X, a set Z flag, and a clear N flag. This makes the inc/dec in
structions useful in counting loops. Load the X (or Y) register with the 
number of times you want the loop to occur. Next, do the operation(s) 
you intend to repeat. Now decrement X to reflect that you've been 
through the loop one time. Last comes something that can both test the 
Z bit, to see if X has been reduced to zero yet, and depending on the 
result of the test, cause us to jump back and repeat the process again. 

These conditions are met by the BNE instruction. Pronounced 
"Branch if Not Equal", with an opcode of $D0, this instruction is the 

equivalent of the Basic statement: 

IF A <> 0 THEN GOTO 1000 

BNE is one member of the branch family of 6502 instructions. There 
are seven others, two for each of the four testable flags of the P regis
ter (C, N, Z, and V). One that tests for the desired bit set, another for 
the same bit clear. 

MNEMONIC OPCODE OPERATION 

BCC $90 Branch on c a r r y c l e a r 
BCS $B0 Branch on c a r r y s e t 
BEQ $F0 Branch on result =0 (Z Set) 
BNE $D0 Branch on result ^ 0 (Z Clear) 
BMI $30 Branch on r e s u l t minus (N Se t ) 
BPL $10 Branch on result plus (N Clear) 
BVC $50 Branch on overf low c l e a r 
BVS $70 Branch on overf low s e t 

Branches are said to use relative addressing because of the way they 
are executed. A branch instruction is two bytes long; an opcode byte 
(which tells the 6502 what bit to test, and for what value), and a sec
ond, offset byte to tell it where to go if the test passes. This "telling it 
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where to go" is tricky, and has to do with why their addressing form is 
called relative. 

If the condition specified by the test is true, then the second byte is 
used to calculate a new value for the program counter. The program 
counter, remember, is the placemark in memory that keeps the 6502 
executing instructions in sequence. If the test fails (as it would for a 
BNE when the Z bit is set), the program counter advances normally by 
one and things proceed as if there had been no branch instruction at 
all. 

If the test succeeds, the program counter is modified by having the sec
ond byte added to it. For example, if PC contained $C005 (having just 
read from memory the second byte, say a $10, of a BNE instruction), 
and the 6502 determines that the test has passed, it forms the new PC 
by adding $10 to the $C005 already there. The next instruction to be 
executed would be the one at $C015 ($C005 + $10). 

Does this mean that branches can only happen in the forward direc
tion? No, negative branches are possible, although understanding how 
a negative branch is calculated is a little more difficult. If the data byte 
of the branch instruction is $80 or greater (Hint: bit 7, the sign bit, set), 
the 6502 knows to do a subtraction on the program counter rather 
than an addition. We will leave the details of this subtraction until a 
later section. (Sneak preview: $FF = - 1 , $FE = -2 , $FD = -3...) 
Branches can go either way, depending on the data byte, by making 
the program counter either larger or smaller. We may branch about 128 
bytes in either direction. 

Branching is demonstrated in PROG6. LOAD and disassemble (L) it. It 
begins by loading X with $04; we are evidently intending to do some
thing four times. Next are two set/clear instructions, there only to give 
the program some busy work to do in the loop. Next comes the new in
struction DEX. DEX conditions the Z flag; if it didn't, this program 
wouldn't work. The branch instruction BNE consists of an opcode byte 
($D0) at $C00|*and an offset ($FB) at $C00t>. $FB, being greater than 
$80 has bit 7 set, and therefore is a negative branch; the program 
counter will be reduced some amount if the BNE test passes. 

C000: A2 04 LDX #$04 
C002: 38 SBC 
C003: 18 CLC 
C004: CA DEX 
C005: DO FB BNE $C002 
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The TVC disassembler goes out of its way to help you understand 
where the branch will end up if the test passes. BNE $C002 means 

"Branch if not equal to location $C002". This is friendlier than saying 
BNE $FB, leaving you to figure out where the branch will go. 

The first time we encounter the DEX instruction, X will be reduced to 
$03. This is nonzero, so Z will be cleared and the branch test will suc
ceed, causing the loop to repeat. Finally, after four repetitions, the test 
fails and BRK ends the program. 

Since this program is significantly longer in execution time (though not 
in length) than previous programs, now is a good time to learn how to 
control the speed of the simulator. We've been using Step 3 exclusively. 
What do the other step values do? 

Step 2 executes an entire instruction without pausing at each micros-
tep. You can force the simulator to pause by pressing the spacebar. 
When the instruction is over, you are returned to the monitor. 

Step 1 is similar to Step 2, except that you don't enter the monitor be
tween instructions, but instead plunge ahead with the next instruc
tion. Fl forces the simulator to enter the monitor at the completion of 
the current instruction. 

Step 0 is TVC's flat out, high speed mode. It saves time by skipping the 
process of writing to the screen during execution. The only things up
dated are the disassembly window and the next instruction area. The 
registers will not reflect their true values until you return to the moni
tor. "Flat out" and "high speed" are relative terms. "Flat out", TVC 
operates at something on the order of one millionth as fast as a real 
6502. 

If you are in step modes 1, 2, or 3, you can slow down or speed up the 
action by typing one of the number keys (1-9), while the simulator is 
running. 1 is fastest, 9 slowest. Now press return, and happy looping. 



9. 
Addressing Modes 

We've moved so quickly that we've glossed over some very good ques
tions you might have had. One being: "If there are only 56 instruc
tions, why are there 151 opcodes?" The answer is tied up in something 
called addressing modes. 

The 6502 is good at addressing modes; in fact, it makes some of its con
temporaries (like the Z-80) look positively anemic in this regard. In a 
nutshell, addressing modes determine not what instruction to 
perform, but where to get the data the instruction will use. So far the 
demonstration programs have worked with a small subset of the many 
addressing modes available on the 6502. All loads have used immedi
ate addressing, the form that tells the 6502 to load a register with the 
next byte following in memory. All stores have used zero page form, 
which specifies a memory location on page zero. 

What if we wanted to load the accumulator, not with a number that we 
knew ahead of time when the program was written, but with the con
tents of a memory location outside the program. The Basic statement: 

LET A = 14 

is the equivalent of the way we've loaded the accumulator so far. More 
common in Basic is the statement: 

LET A = B 

Accomplishing this in 6502 machine language requires a LDA of a 
different color. There is another opcode that decodes as LDA, but not 
the LDA-$A9 that makes the load occur from the next byte. It's LDA-
$A5, and it makes the load occur from the memory location specified 
in the next byte. This is a slippery idea, I'll admit, but crucial to your 
future happiness as a world famous machine language programmer. 

PROG7, another two-byte special, will clear up the mystery. Load and 
list it. Notice that the disassembly is not quite identical to that for 
PROG1. 
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PROG1 

C000:A9 33 LDA #$33 

PROG7 

C000:A5 33 LDA $33 

Opcodes $A5 and $A9 cause the disassembler to produce the same 
mnemonic, LDA, but different operands. The "#" is your clue to un
derstanding what kind of LDA you've got. By 6502 convention, a num
ber sign in the operand means that the value to load is "immediate", 
contained in the byte occurring next in memory. The absence of the 
number sign in the second instruction tells us that the load will occur 
from the memory location specified in the operand, in this case from 
location $0033. 

We just learned a new opcode, $A5, but not a new instruction. $A5 is 
LDA using the zero page addressing mode. $A9 is LDA using immedi
ate addressing. Now execute PROG7. Pay close attention to how it gets 
$0033 into AD. Similar to the STA $33 instruction of PROG2. 

What, there's more? Now a third way to LDA. Some of you have been 
asking: "What if I want to load the accumulator with a value stored 
somewhere in memory, but not a location down in page zero? Say an 
address like $A09 or $BFFF?" 

Very good question. And yes, there is a way to do it. You may specify 
any of the 65,536 locations using absolute addressing. An instruction 
using absolute addressing requires three bytes: an opcode byte, and 
two bytes that specify the memory location the operation is to use. 

Load PROG8 and list it. PROG8 will load the accumulator from $B1C, 
when we let it, which we will in just a second. First, a close examina
tion of the disassembly. 

C000:AD 1C 0B LDA $0B1C 

Notice that the least significant byte of the address comes first. 6502 
convention is to store two byte values in sequential memory locations 
with the least significant byte stored first (lowest address). There's no 
special reason for this; they just adopted a convention and stuck with 
it. Again we find the disassembler working hard to make life easier for 
us. It rearranges the operand into normal left-to-right form. It's a lot 
easier to grasp the meaning of "LDA $0B1C" than "AD 1C0B". 
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Now execute PROG8. As you might expect, it takes longer to run than 
the other forms of LDA we've used. The data buffer is used to tempo
rarily store the first byte of the address until we're ready for it. How
ever, except for the extra memory fetch and transfer to the address 
bus, it runs exactly like the other two, finishing up with a flag condi
tioning and a final increment of the program counter. 

So there you have it. One instruction, LDA, and three different op
codes ($A9 for immediate; $A5 for zero page; $AD for absolute). Can 
we use absolute addressing to access zero page locations? Yes, you may. 
There is no rule against the instruction: 

C000:AD 12 00 LDA $0012. 

Then why is there a zero page addressing mode at all? Because only 
two bytes are needed instead of three. Absolute addressing takes more 
storage and more time to execute. For efficiency, 6502 programmers 
place their most frequently accessed variables in page zero. As a re
sult, the zero page is prime real estate in the 6502 memory map. Al
though in theory you can use page zero for program storage, this is 
rarely done; it would be like using a square block in downtown Chicago 
to grow tomatoes. 

There are only 256 locations, and everybody wants to use them. If 
you're writing a machine language program that will be called from 
Basic, you'll have to be careful to use zero page locations that Basic 
and the Kernal routines don't use. To determine what locations are 
safe, consult the table on pages 310-316 of the Commodore 64 Pro
grammer's Reference Guide. Four known safe addresses are $FB-FE. 

If you don't have a copy of the Programmer's Reference Guide, get 
one. This 500 page book can be found at most bookstores and is full of 
facts you'll need when writing 6502 programs for the C-64. 

The load and store instructions of the index registers have these ad
dressing modes also. This table summarizes the opcodes for all three 
addressing modes for LDA, STA, LDX, STX, LDY, and STY. 
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INSTRUCTION ADDRESSING MODE OPERATION 
ABS IMM ZP 

LDA $AD $A9 $A5 Load accumulator 
STA $8D $85 Store accumulator 
LDX $AE $A2 $A6 Load X register 
STX $8E $86 Store X register 
LDY $AC $A0 $A4 Load Y register 
STY $8C $84 Store Y register 

There aren't any immediate addressing stores, because a store immedi
ate doesn't make sense. That's like saying LET 14 = A in Basic. 

A final ominous word before we move on to more jumping around fun 
in the next chapter. I said earlier that the 6502 is a champion at ad
dressing modes. You don't get to be a champion having just three 
modes for a popular instruction like LDA. You get to be a champion by 
having eight. 



10. 
Subroutines: The Stack 

Next on the agenda are three instructions that, like a successful 
branch, alter program flow by changing the program counter. Unlike 
the branches, the 6502 has no choice in the matter. 

The new instructions are: JuMP (JMP, $4C), Jump to SubRoutine (JSR, 
$20) and ReTurn from Subroutine (RTS, $60). All three have direct 
counterparts in Basic. 

MNEMONIC OPCODE OPERATION 

JMP $4C Jump to new address (Basic GOTO) 
JSR $20 Jump to subroutine (Basic GOSUB) 
RTS $60 Return from subroutine (Basic RETURN) 

JMP is a three byte, absolute instruction that puts the address of our 
choice in the program counter, thus shuffling us off to wherever in 
memory we've got instructions that need executing. As with all abso
lute instructions, the destination address is stored in memory with the 
least significant byte first. One use for JMP is to extend the range of a 
branch. A branch on its own is limited to about 128 bytes in either di
rection. If you use a branch in combination with a JMP, you can go as 
far as you want. 

Instead of: 

C010: BEQ $F000 (can't branch that far) 
C0L2: ETC... 

Use: 
C010: BNE $C015 
C012: JMP $F000 
C015: ETC... 

Load PROG9 and list it. PROG9 is full of jumps—six of them, to be ex
act. But the disassembly lists just the first one. If you want the disas
sembler to show you what's out there waiting at $C100 after the first 
jump, you have to ask for it specifically. 

Now execute it. What you have at the end of PROG9 is an infinite 
loop. Like a cat chasing its tail, this program will never go anywhere. 
Although not a problem when we're executing programs with a simu-
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lator that lets us quit with a press of F l , it can be a serious problem un
der real 6502 execution. 

A different sort of jump is controlled by the JSR/RTS pair. They're used 
like the GOSUB/RETURN combination of Basic. In fact, most every 
programming language has some way to implement this concept. 

Executing a 3 byte (absolute) JSR instruction will, just like a JMP in
struction, divert program flow to the address contained in the operand 
portion of the instruction. But with an important difference: before it 
goes to the new address, the 6502 saves where it is now, by storing the 
current contents of the program counter in memory. This enables the 
6502 to find its way back when it finishes the subroutine. 

How JSR and RTS Work 

Even though it is not strictly necessary to understand the underlying 
mechanics of the JSR/RTS pair to use them, I'm not going to let you off 
that easy. That's okay for Basic programmers, to accept a gift without 
worrying about where it came from. Machine language programmers 
look every gift horse square in the mouth to see the pitfalls lurking 
there. 

JSR and RTS use something called the stack to accomplish the feat of 
returning after a subroutine has been completed. The 6502 stack is two 
things, working together: the stack pointer register (S), and $100 bytes 
of memory ranging from $ 100 - $ IFF, the stack page. Although there is 
nothing to stop the machine language programmer from using the 
stack page of memory for general purpose program and data storage, it 
is strongly recommended that you reserve this area for the stack. With 
freedom comes responsibility. 

The Classic Cafeteria Tray Analogy 

The stack can be visualized as a stack of trays in a spring loaded con
tainer at the beginning of a cafeteria line. The tray at the top, ready to 
be pulled off next is the one most recently entered. The one at the bot
tom may have been there since Mother's Day. This is called a LIFO data 
structure, for Last In, First Out. As opposed the serving line, which is a 
FIFO (First In, First Out) data structure, also known as a queue. 

If we put two green trays on a stack of red ones, we know that the next 
two trays pulled off will be green. To implement the stack for useful 
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purposes of storage, we need only two operations: Push (put a tray on 
the stack) and Pull (take a tray off the stack). We don't care if there are 
50 trays or 15 when when we issue a Pull command, only that we get 
the one most recently put there. If I push a $45 ($45 written on a tray 
with a magic marker) onto the stack, and then an $FF, when I turn 
around and execute a pull, I'll get the $FF tray back first. 

How is a one byte register and $100 memory locations like a cafeteria? 
The trays are one byte numbers that the 6502 pushes and pulls. The 
holder is the stack page—but instead of moving all 256 bytes down one 
every time we push a value on the stack, the only thing that moves is 
the contents of the stack pointer. The stack pointer always points to 
the most recent entry in the stack minus one. If S contains $FF, and we 
execute a push, the value we push winds up stored at $1FF, and S is 
decremented to $FE. The first position in the stack is $1FF, and subse
quent entries (i.e., more recent ones) use successively lower memory 
locations. 

Microsteps of a Push 

1. Transfer stack pointer to ADL. ADH = 1 (for stack opera
tions, ADH is "hardwired" to 1 to force address references 
to be in the stack page) 

2. Transfer register to be stored to data latch 

3. Write 

4. Decrement stack pointer 
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Microsteps of a Pull 

1. Increment stack pointer 

2. Transfer stack pointer to ADL. ADH = 1 

3. Read 

4. Transfer data latch to selected register 

By convention, the stack pointer always points to the first vacant 
space in the stack. A Pull therefore increments the stack pointer before 
the read; a Push decrements the stack pointer after the write. Now 
that you're thoroughly confused, watch PROGlO's JSR-RTS pairs put 
the stack through its paces. 

Load and list the first few instructions. As with programs that contain 
JMPs, the disassembly shows the first five instructions in sequence, 
not those at the destination of a JSR. If you want to see that code, 
you'll have to ask for it. 

This program "calls" (to use a popular synonym for gosub) a routine at 
$C200 to load the X and Y registers with $FF's, and a second routine at 
$C100 that stores X and Y in a pair of consecutive zero page addresses. 

The things to watch: JSR's put data on the stack (what data? The two 
halves of the program counter, PCH and PCL). RTS's pull data off the 
stack and into the program counter. For this program, do a WINDOW 
MEM and use RC 1F8 to display locations $1F8-$1FF. That's where the 
action will be. 

Note that PCH is pushed first during JSR, and so must be pulled last 
during RTS. The address that goes into memory is the address of the 
last byte of the JSR instruction. RTS takes care of a final increment of 
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the program counter to fully restore it to where we want to be, point
ing to the instruction after the JSR. Also notice that pulling a byte 
from the stack does not erase it; it is not changed until something else 
is pushed there. 

Nesting 
The subroutine at $C100 demonstrates how one subroutine can call an
other. The RTS at $C182 makes us return to the point of the most re
cent subroutine call, the one at $C100. The 6502 and its 256 byte stack 
allow you to go 128 subroutines deep, and still find your way back to 
the calling program. 

The Stack for its Own Sake 

There are four other instructions that use the stack. They are implied, 
one byte commands to push and pull the accumulator and P register. 

MNEMONIC OPCODE OPERATION 

PHA $48 Push accumulator on stack 
PLA $68 Pull accumulator from stack 
PHP $08 Push processor s ta tus reg is te r 
PLP $28 Pull processor s ta tus reg is te r 

You will probably not have occasion to use PHP or PLP for awhile, 
even though this is the only way to load or store the processor status 
register. Usually P just sits there. 

PHA and PLA, however, get lots of use as a means of temporarily 
storing a number without tying up a register or memory location. Sup
pose the accumulator contains the result of an important operation, 
but before we can use that result, we need the accumulator for an
other calculation. We have two options: save the intermediate value in 
an unused register or memory location, or, push it on the stack. In 
many cases the latter course is best. When we are ready for the 
intermediate value, we pull it back into the accumulator. 

There are two things to watch out for when you use the stack for data 
storage: First, there are a limited number of bytes in the stack and you 
will overwrite data with the 257th push (wraparound effect). If you 
are sharing the stack with Basic and the kernel (such as when a ma
chine language program is called from Basic), you have even fewer 
stack bytes available. 
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Second, if you are currently "within" a subroutine (i.e., a JSR has 
been executed without a corresponding RTS), you must be careful not 
to tamper with the stack so that the RTS will not work. This can hap
pen two ways: Pushing a number and not pulling it before the RTS, or 
pulling a number without a preceding push. Both cause RTS to use two 
bytes that point somewhere, but not to the end of the JSR that called 
this routine. 

PROG 11 demonstrates care and feeding of the stack. The first subrou
tine (at $C100) is a painfully slow delay loop. How can we get out? 
(We're willing to accept on faith that eventually X will be reduced to 
zero, and RTS executed.) By getting out, I mean getting back to the 
main loop that called this subroutine. Pretend you don't remember 
that we started at $C000. 

There are a couple of ways to do this. We could haul off and use the 
monitor to load X with 1 (doesn't take long to decrease a 1 to zero), and 
let the RTS occur normally. Or, we could peek into the stack page, fig
ure out what bytes are the return address of the subroutine, and load 
the program counter (plus one, of course) with those numbers. 

The easiest way is the monitor's POP command. Executing a POP 
places the top two bytes of the stack (plus one) in the program counter, 
and increments the stack pointer by two. POP is the monitor's equiva
lent of RTS, and is useful in situations where you weren't watching 
closely and got into a subroutine without knowing how you came to be 
there. POP the address of the calling program to find out. 

The subroutine at $C200 demonstrates how not to use PHA and PLA. 
By the time we get to the RTS that should return us the main program, 
the data at the top of the stack is part return address, part left-over 
pushed accumulator contents. Ouch. 

Jump, Indirect 
Both JMP and JSR are three byte instructions using absolute address
ing. JMP has a second addressing mode called indirect, opcode $6C. In 
mnemonic form: 

JMP ($2000) 

Like JMP, absolute, JMP, indirect is a three byte instruction that 
diverts program flow, without saving a return address; the mechanism 
for determining the address jumped to is different, however. 
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JMP ($2000) tells the 6502 to jump to the address stored in memory lo
cations $2000 and $2001. Not to jump to $2000 and start executing 
code, but to look there for the values to place in the program counter. 
If $2000 contains $F0 and $2001, $FD, then the program counter will 
end this instruction containing $FDF0. This is conceptually one level 
deeper than a normal JMP and you are entitled to feel a bit queasy at 
this moment. If you think of JMP as a load instruction for the program 
counter (which it is; we just don't call it that), then JMP absolute is a 
load immediate. JMP indirect is a load absolute. Since the program 
counter is 16 bits wide, two loads must be made from sequential loca
tions. With a little imagination, the operand's use of parentheses im
plies how the indirect jump works. 

The 6502 is a great microprocessor, but the folks at MOS Technology 
made one little goof (hardware can have bugs, too) in the JMP indirect 
instruction. Under certain conditions, it doesn't work. Luckily, people 
discovered this problem years ago, so you don't have to; just remember 
that it's there. 

The bug affects indirect jumps tha t cross page boundaries. JMP 
($20FF) will fetch the bytes from $20FF and $2000 to form the new 
program counter, instead of from $20FF and $2100. This quirk has 
been faithfully copied in TVC. 

PROG 12 contains an indirect JMP. The first time through the instruc
tion: JMP ($C200), we end up at $C010. Later, the same instruction 
puts us somewhere else. 

Now, a Message From Our Sponsor 

Why should machine language programmers organize their programs 
in subroutines? For the same two reasons that a smart Basic program
mer does. First, for efficiency, so that separate parts of a program may 
share a section of code without each having to duplicate it. Second, for 
clarity of structure. 

If you are to become a successful machine language programmer, you 
will need to make things as easy on yourself as possible, by writing pro
grams that are clear and easy to follow. The "rat's nest" technique of 
jumps to jumps to jumps will have you spending more time figuring out 
what you did yesterday than on today's work. A good structure for ma
chine language and Basic programs is to use subroutines liberally, 
sometimes even if they are called only once. 
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The Ideal Basic Program 

100 GOSUB 1000 
110 GOSUB 2000 
120 GOSUB 3000 
130 GOSUB 4000 
140 GOTO 110 

The Ideal Machine Language Program 

JSR $1000 
LOOP: JSR $2000 

JSR $3000 
JSR $4000 
JMP LOOP 

To climb down from my soapbox, let me say that even in well struc
tured programs, you will make enough mistakes to satisfy your inborn 
programmer's desire for debugging sessions. 



11. 
Instructions That Work: ADC/SBC 

So far we haven't learned any instructions that really sink their teeth 
into a programming problem. We've loaded and stored and jumped 
over, under, around, and through, but haven't accomplished much in 
the process. A 6502 with only the instructions we've learned so far 
would be like a car with a great stereo, and plush seats, but no engine. 
This chapter introduces a pair of high octane computational instruc
tions, ADC (add with carry) and SBC (subtract with borrow). These in
structions may use any of the three all-purpose addressing modes 
we've used so far. 

INSTRUCTION ADDRESSING MODE OPERATION 
ABS IMM ZP 

ADC $6D $69 $65 Add wi th c a r r y 
SBC $ED $E9 $E5 S u b t r a c t w i t h borrow 

We've made reference to the accumulator's importance without saying 
why it's such a popular place; now we'll see. The accumulator is where 
numbers have to be to have SBC and ADC operations performed on 
them. You can't use any other register. 

To add $23 to $14, load the accumulator with $23 and ADC #$14 to it. 
The answer, $37, replaces the $23 that was in the accumulator. Results 
accumulate there. The accumulator is always involved in half of a 
computation and holds the result. 

The operation of the ADC instruction is as simple as adding two eight 
bit numbers, something that humans learn to tackle in the second 
grade. The only thing remotely tricky has to do with why it's called 

"ADC", add with carry, and not just "ADD". The word "carry" means 
exactly the same process that humans use when they add numbers on 
paper. 

l 11 
34 66 

+ 19_ + 44_ 
53 110 

69 
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The 6502 needs the carry flag to keep track of whether an addition has 
produced a result greater than can be held in the accumulator. The ac
cumulator can't grow, so C is drafted to be its ninth bit. Is nine bits 
enough to represent the largest possible result of eight bit addition? 
Check it out. 

$FF 
+ $ F F 

$1FE (1 1111 1110) 

Apparently so. Anytime an ADC produces a value greater than 255, 
the carry flag is set. 

$7F $31 
+ $82^ + $16 

$01 + a c a r r y $47 no c a r r y 

ADC also conditions the Z and N flags, according to the same rules we 
have already learned for these flags. If an ADC causes a zero to be in 
the accumulator, the Z bit will be set. If it causes bit 7 of the accumula
tor to be set, then the N flag will be set. Otherwise, N and Z will be re
set. 

Not only does an ADC condition carry going out, it also includes carry 
in the addition; if carry happens to be set going into an ADC, the result 
will be one greater than otherwise. This is a slight annoyance when we 
need to quickly add a couple of eight bit numbers, as we must execute 
a CLC before ADC to insure that we get the right answer, but is a bless
ing for more complex calculations, as we shall see. 

PROG 13 demonstrates ADC in action, using immediate addressing. 
Bring in PROG 13 and execute it. Play around with different values for 
the data bytes until you are comfortable with your understanding of 
how ADC computes a new value for A, based on the operands and the 
carry bit going in, and second, its conditioning of the Z, N, and C flags 
going out. 

Multiprecision Arithmetic 

Despite the potential confusion in having to consider the state of the 
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carry bit on every addition, the C flag is the key to performing calcula
tions on numbers greater than 255. 

Even though the accumulator is limited to eight bits, it is possible to 
add and subtract numbers much larger than 255 using multiprecision 
arithmetic. This means using two or more bytes in memory to repre
sent values. How big a number can you store in two bytes? 

21 6-1 = 65,535 

In three? 

2 2 4 - l = 16,777,215 

We quickly come up to a range of useful magnitudes. PROG14 is a two 
byte addition, using the zero page forms of ADC, LDA, and STA. Be
fore we run it, we'll need to EDIT some numbers into page zero for it to 
use. Do this addition: 

$13PC (A) 
+ $4597 (B) 

$???? (C) 

You might want to first run this problem through the calculator to see 
if the program produces the same result (it better!). We're going to use 
zero page memory locations $F0 - $F5 to store operands A and B, and 
the answer, C. Use $F0 and $F1 for A, $F2 and $F3 for B. Initialize $F4 
and $F5 with zeros. Use EDIT mode to write the data into memory. As 
always, LSB in the lowest location. $F0 should get $FC, $F1 should 
contain $13, and so on. 

Run the program a few times with different data. What happens if 
your addition produces a value greater than we can store in 16 bits? Is 
the carry flag still enough to handle the result? 

Subtraction 

The 6502 also has an instruction for subtracting one byte numbers, 
SBC, Subtract with Borrow. It functions more or less like ADC with a 
confusing twist. Like ADC, it uses the accumulator for the first oper
and and a memory location for the second, with the accumulator get
ting the result. Subtracting 2 from $14: 
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LDA #$14 
SBC #$02 

The confusing part concerns the borrow flag; namely, there is no bor
row flag. (B is the break flag, and has nothing whatever to do with sub
traction.) Borrow is defined to be the opposite of carry. If C is set, bor
row is reset; if C is reset, borrow is set. Confusing? You bet it is. 

Take the subtraction: 

7 
- 2 

To perform this problem on the 6502, place 7 in the accumulator, and 
execute SBC #$02. As with ADC, the answer includes the carry flag in 
some way. If C is set when this instruction is executed, you'll get 5 in 
the accumulator for an answer, because a set carry bit means no bor
row. If C was clear, then the answer will be 4, because a clear C bit 
means a borrow occurred previously. 

Like ADC, SBC conditions the carry flag going out, too. Whenever a 
bigger number is subtracted from a smaller one, a borrow is generated 
(carry is cleared). 

$14 $14 $14 
- $22 - $12 - $14 
- $0E $02 $00 

Borrow No Borrow No Borrow 
(Carry clear) (Carry set) (Carry set) 

PROG 15 contains some exercises that demonstrate SBC and its back
wards use of the carry bit. Load and list it. 

PROG15 

SBC (Clear borrow, by setting carry) 
LDA #$07 
SBC #$02 
CLC (Set borrow, by clearing carry) 
LDA #$07 
SBC #$02 
LDA #$14 
SBC #$22 
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Experiment with different values until you understand how carry 
affects subtractions going in, and how subtractions condition carry go
ing out. 

Multiprecision Subtraction 

Situations arise that require multiprecision subtraction. PROG 16 dem
onstrates a 2 byte subtraction. LOAD and list it. PROG 16 will subtract 
the two byte number stored at $F2, $F3 from the two byte number 
stored at $F0,$F1, and put the answer in $F4,$F5. Use EDIT to set up 
this problem: 

$73A1 
- $46B1 

Now execute it. The carry bit winds up set at the end of this program, 
meaning no borrow resulted from the overall subtraction of these two 
numbers. And this is what you'd expect, since $46B1 is smaller than 
$73A1. Tinker with the values until you are able to predict each time 
the behavior of the imaginary borrow flag going into and coming out of 
SBC instructions. 

Multiplication and Division 

Regrettably, the 6502 has no built-in multiply and divide instructions. 
Some of the newer microprocessors (8086, 68000, Z-8000) do. But 
with a little programming we can use multiple applications of addition 
and subtraction to get the same result. 

To multiply n times m, add m to itself n times. To divide n by m, count 
how many times m can be subtracted from n. This sounds involved, 
and for a human it's not recommended, but a speedy rascal like the 
6502 can do this a hundred times in the beat of a hummingbird's wing. 

For example, 12 X 4 is equivalent to: 

12 + 12 + 12 + 12 

or, 

4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 
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PROG17 is an eight bit multiply. The values stored in $F0 and $F1 are 
multiplied together, with the result going to $F2 and $F3. Verify for 
yourself that two bytes are sufficient storage to cover the greatest pos
sible 8 bit multiply. Before you execute it, give it some numbers to use. 
To save time, keep $F1 fairly small, say less than $10. 

PROG18 is an eight bit division. The number in $F0 is divided by the 
number in $F1. $F2 gets the quotient and $F3 the remainder. These 
two programs only scratch the surface of the subject of machine lan
guage multiplication and division algorithms, i.e., there are better 
ways to do it. 



12. 
Beyond Adding and Subtracting 

Thus far we've encountered two groups of 6502 instructions that actu
ally get their hands dirty and perform calculations: The ADC/SBC pair, 
and the increment/decrement series. This chapter introduces two 
more groups of instructions to tackle problems with: The logical and 
shift instructions. 

These commands differ from the ones seen previously in that they use 
the contents of registers (usually the accumulator) on a bit basis rather 
than on a cumulative basis. When we added $14 to $78 in the last chap
ter, we were happy to consider the $8C that turned up in the accumu
lator as just that: the quantity $8C. For the logical and shift instruc
tions, however, we are usually more interested in a number's 
individual bits than their collective value. 

Shift and Rotate 

The 6502 has commands for sliding the bits in the accumulator one po
sition to the left or right. As did ADC and SBC, these instructions treat 
carry as the ninth bit of the accumulator. 

An ASL (Arithmetic Shift Left) shifts all the bits in a memory location 
or the accumulator one position to the left. All the bits slide over one 
position to the left, bit 7 goes into C (whatever was in C is lost), and a 
zero replaces whatever moved out of bit 0. 
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Cute, but what good is it? First, it gives us a way to test any bit in the 
accumulator and branch accordingly. Suppose we've done an opera
tion and we need to sample the contents of bit 5 and branch depending 
on what we find there. There is no BA5, "Branch on Accumulator Bit 5 
Set", so we proceed as follows: Three consecutive ASL instructions to 
slide bit 5 into carry, then BCS to test and branch. 

A shift left has the surprising effect of multiplying by two. Try it. 

$20 (0010 0000) X 2 = $40 (0100 0000) 
$37 (0011 0111) X 2 = $6E (0110 1110) 
$64 (0110 0100) X 2 = $C8 (1100 1000) 

You multiply by four with two ASL's, by eight with three, and so on. 

LSR (Logical Shift Right) is like ASL only we move right instead of left. 
Bit zero goes to the carry bit and a zero is shifted into bit 7. This divides 
the accumulator by two. Again, don't take my word for this. Experi
ment with the TVC calculator. The value left in the accumulator is the 
quotient; the values shifted out of bit 0 are the remainder. 

The rotate instructions are only slightly different. A rotate doesn't 
shift in a zero, it rolls in the contents of the carry flag. 
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Rotations do not produce multiplication and division by multiples of 
two, unless you clear the carry bit ahead of time. 

(Historical aside: ROR, the Hawaii of 6502 instructions, was the last in
struction to be added to the 6502 instruction set. In fact, the earliest 
6502's did not have ROR at all.) 

None of the other registers may be shifted or rolled; however, you may 
shift and roll memory locations. Both absolute and zero page modes 
are available for shifts of memory. 

INSTRUCTION ADDRESSING MODE OPERATION 
ABS ACC ZP 

ASL $0E $0A $06 Arithmetic shift left 
LSR $4E $4A $46 Logical shift right 
ROL $2E $2A $26 Rotate left 
ROR $6E $6A $66 Rotate right 

Shifts and Rolls of the accumulator are one byte, implied instructions, 
which for some reason are not grouped with the other implied instruc
tions, but rather are the only members of so called "accumulator" ad
dressing. 
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PROG20 is a multiprecision shift. The two byte value at $C100 and 
$C101 (low order byte first, of course) is multiplied by four by the ap
plication of two ASL/ROL pairs. Shifting the low order byte puts its old 
bit 7 in carry; we get that value into bit zero of the high order byte with 
a roll of the high order byte. 

The Logical Instructions 

The standard assortment of logical operators are available to the 6502 
programmer. 

AND Logical And 

ORA Logical Or (Inclusive Or) 

EOR Logical Exclusive Or 

Like SBC and ADC, these instructions operate on the accumulator. In 
addition, they condition the Z and N flags according to the same rules. 

Like the shifts, the logical instructions are cases where the trees are 
more important than the forest. What occurs in the instruction AND # 
$33 is eight simultaneous logical ANDs of each bit of the accumulator 
and the corresponding bit of the selected memory location. For exam
ple: 

0011 0011 ($33) 1100 0000 ($C0) 
AND 0100 0110 ($46) AND 0100 1111 ($4F) 
= 0000 0010 ($02) = 0100 0000 ($40) 

One use for AND is to force selected bits of the accumulator to zero. To 
force bits 6 and 7 of the accumulator to zero, without affecting the 
other bits, AND the accumulator with $3F. To force every bit position 
but #2 to zero, and leave #2 in whatever state it was in before, AND 
the accumulator with $04. Verify on paper that this works. 

ORA is useful for setting selected bits. To set bits 4 through 7 of the ac
cumulator, without affecting the values in positions 0 through 3, use 
ORA #$F0. To set only bits 3 and 7, use ORA $88. 



BEYOND ADDING AND SUBTRACTING 7 9 

EOR can be used to complement a number (reverse the polarity of each 
bit). EOR #$FF will flip every bit in the accumulator; ones become ze
ros and zeros ones. Two applications of EOR #$FF leave the accumula
tor unchanged. 

0011 0111 $37 
EOR 1111 1111 $FF 

1100 1000 $C8 

1100 1000 $C8 
EOR 1111 1111 $FF 

0011 0111 $37 

Compare 
A powerful tool in test-and-loop situations is CMP, Compare Memory 
with Accumulator. There's also a CPX and a CPY for the index regis
ters. A compare subtracts the selected memory location from the accu
mulator (or X or Y) and sets the N, Z, and C flags accordingly, but does 
not affect the value in the accumulator. So what good is a subtraction 
that doesn't affect the accumulator? Plenty. 

INSTRUCTION ADDRESSING MODE OPERATION 
ABS IMM ZP 

CMP $CD $C9 $C5 Compare memory wi th accumulator 
CPX $EC $E0 $E4 Compare memory wi th X r e g i s t e r 
CPY $CC $C0 $C4 Compare memory wi th Y r e g i s t e r 

Following is a program to demonstrate the compare instruction, but 
first a digression on the subject of joysticks. 

Joystick Fundamentals 
Stripped of bright plastic and fancy pistol grips, a joystick reduces to 
five switches, each of which can be either open or closed. There's one 
switch for the fire button and one for each direction. If you push the 
stick diagonally, two direction switches close at the same time. 

These switches are mapped into the first five positions of I/O address 
$DC00 for for port A and $DC00>for port B. 
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P o s i t i o n Swi tch 

4 F i r e 
3 R igh t 
2 Le f t 
1 Down 
0 Up 

Set bits in $DC00 or $DC01 reflect open (not pressed) switches. That is, 
if the fire button is pressed, bit 4 will be a 0. FCHECKPROG is a subrou
tine that determines whether or not the fire button of joystick B is 
pressed. If the fire button is pressed, the subroutine returns with $FF 
in the accumulator. If the fire button is not pressed, the accumulator 
returns as zero. 

START: JSR FCHECK 
BRK 

FCHECK:LDA $DC01 
AND #$1F mask out top three bits 
CMP #$10 is fire pressed? 
BCC NOFIRE If bit 4 is set, A is $10 or above. If 

Bit 4 is reset, A is less than $10, a 
borrow occurs (Carry is cleared) 

LDA #$FF 
RTS 

NOFIRE LDA #$00 
RTS 

Load and execute FCHECKPROG. As you run it, be aware that TVC 
checks the joystick port at the moment of the read microstep of that 
location, so do your pressing then. If you don't have a joystick plugged 
into port B, $DC01 will behave as though there's a joystick plugged in 
with aft the switehes-eentinuously pressed. 

Special Case: The Bit Instruction 

The last 6502 logical instruction is BIT, a hybrid of AND and CMP. BIT 
(Bit Test) performs an AND operation between the accumulator and 
memory location—but, like CMP, conditions flags without altering the 
accumulator. As a bonus, BIT also transfers bits 6 and 7 of the memory 
location under test to the V and N flags, respectively. It is useful in 
checking I/O addresses that contain status information, particularly if 
bit 6 or 7 is the one that we're watching. 

The logical instruction are supported by the three addressing modes 
we have encountered so far. 
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INSTRUCTION ADDRESSING MODE OPERATION 
ABS IMM ZP 

AND $2D $29 $25 And memory with accumulator 
EOR $4D $49 $45 Eor memory with accumulator 
ORA $0D $09 $06 Or memory with accumulator 
BIT $2C $24 Test memory with accumulator 

PROG21 demonstrates AND and ORA setting and clearing bits in the 
accumulator. The subroutine at $C200 uses AND as a logical operator. 
If memory locations $C100 and $C101 both contain $FF, return with 
the accumulator equal to $FF. Otherwise, return with $00 in the accu
mulator. 



13. 
Indexing: Special Uses for X and Y 

We mentioned in passing a while back that X and Y could be used as 
index registers. The time has come to find out what an index register 
is, and learn some new addressing modes in the process. So far we've 
encountered five addressing modes. Two of the five, Relative and Im
plied, are special cases. Relative addressing is for branches only. Im
plied instructions (TAX, CLC) have no other form. 

The other three addressing modes, Immediate, Zero Page, and Abso
lute, are more general, allowing the same instruction to be used in 
different situations. We have a choice in how we may load the accumu
lator; with a number contained in the instruction itself (immediate ad
dressing), or with the contents of an address specified in the instruc
tion (absolute and zero page addressing). 

To this list of general purpose addressing modes we now add four in
dexed addressing modes: Absolute, X; Absolute, Y; Zero Page, X; and 
Zero Page, Y. Operands to indicate these new addressing modes are as 
follows: 

LDA $4000,X 
LDA $4000,Y 
LDA $00,X 
LDX $00, Y 

Indexing can be explained by presenting a problem that can't be easily 
handled by the addressing techniques we already know. Suppose we 
need to move a a cluster of $10 bytes residing in addresses $C100 
through $C10F, to make room for something else. With the addressing 
modes we've learned up to now, we can accomplish this "block move" 
with the following program: 

LDA $C100 
STA $C200 
LDA $C101 
STA $C201 
LDA $C102 
STA $C202 
LDA $C103 
STA $C203 
etc... 
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To move all 16 bytes we'd need 32 instructions at three bytes apiece. 
Not very efficient to use 96 bytes of program to make room for 16 
bytes of data. And what if we had to move 100 bytes? Or 8000? 
Wouldn't it be nice if there was a way to handle this situation with 
some incrementing and looping? Enter indexed addressing, in which 
the X and Y registers are used as offsets from a base address. 

Bases? Offsets? Let me show you what I mean. 

So far we only know one way to load the accumulator from $0903, 
LDA absolute. But what if we use a new addressing mode for LDA that 
provides a two byte base address of $0900, and tells the 6502 to modify 
that base address with the current contents of the X register. If we exe
cute the instruction LDA $0900,X (hex form $BD $00 $09) at a moment 
when the X register contains three, the accumulator is loaded from 
$0903. If we then increment X and execute the same instruction, the 
accumulator will load from $0904. 

Indexed addressing makes block moves a breeze. PROG22 demon
strates a more elegant solution to the move problem. 

$C000 LDX #$00 
$C002 LDA $C100,X 

STA $C200,X 
INX 
CPX #$10 
BNE $C002 
BRK 
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From 32 instructions, 96 bytes, to 6 instructions, 13 bytes. Quite a sav
ings. And we can move as many as 256 bytes without the program 
growing one whit. As you step through this program, the thing to 
watch is the new microstep "CALC ADDRS" (calculate address), in 
which the address bus is modified by the X register. Otherwise, in con
ditioning of flags, and ultimate result, LDA absolute, X, is exactly like 
LDA absolute. 

Arrays 
Another important application of indexing is in arrays. Absolute, X ad
dressing allows us to easily form up-to-256 element arrays, with pro
gram controlled access of each element. For example, suppose we 
wrote a payroll system entirely in machine language. Forget that we 
said in Chapter 1 how dumb that would be. 

For accounting purposes, Binary Inc.'s payroll system must know the 
age of every employee in the company. A natural way to store these 
ages is in an array, with one entry for each employee. 

Array Position Contents 
(Employee No.) (Age)' 

0 $40 Mr. Boole , P r e s i d e n t 
1 $16 Mr. Watson, Vice P r e s i d e n t 
2 $20 Mr. Smith, Accounting 

255 $10 B r i a n , m a i l c l e r k 

Assume the table is stored at $C100-$C1FF. When the program needs 
to know how old a given employee is, it uses his employee number to 
index the correct element in the array. As long as employee numbers 
are less than 256, and there aren't any employees older than 255, this 
can be done as simply as: 

LDX (employee number) 
LDA $C100,X 

Suppose Binary is required by Federal Corporate Witholding Guideline 
T-19342.12 to submit quarterly reports listing the total age of every 
employee of the company. Not the average age (that's form A-
19342.12), but the sum of each employee's age. COUNTPROG does just 
that. Load it now and examine this listing. 



INDEXING: SPECIAL USES FOR X AND Y 85 

COUNTPROG 

START: LDX #$00 
STX $FB 
STX $FC 

TOP: LDA $C100,X 
CLC 
AC© $FB 
STA $FB 
BCC SKIP 
INC $FC 

SKIP: INX 
BNE TOP 
BRK 

COUNTPROG steps through the $100 element age table at $C100, from 
the bottom up, accumulating a total in zero page locations $FB,$FC, 
where $FB is the least significant byte. The X register serves as both 
loop counter and index register. 

First, X and the zero page addresses that make up the age accumulat
ing locations (call them "Total") are initialized to zero. We then enter a 
loop that loads the accumulator with the age of employee #X, and adds 
that eight bit value to the 16 bit value in $FB-$FC. 

The add step rates more detail. First we clear carry—if we didn't, we'd 
add an extra year to the total on some adds. Next, add the accumulator 
(now holding employee X's age) to Total's LSB, and immediately write 
the result back to the LSB. If this operation produces a carry, for in
stance, as it would in the case of Total = $3F2 and Age = $21, the MSB 
is incremented by one. In this example, after the ADD step, the accu
mulator holds 13, and carry is set. The BCC test fails and we fall 
through to INC $FC, where Total's MSB becomes $04. Verify with the 
calculator that ($3F2 + $21) is $413. If the addition hadn't produced a 
carry, we would have skipped the increment of Total's MSB. 

256 repetitions of the loop will occur before the BNE test fails, causing 
the program to encounter the ending BRK. Now run COUNTPROG. It's 
going to take a while, so go fix yourself a sandwich. When it finishes, 
divide Total by 256 with TVC's calculator to get the average age of a 
Binary Inc. employee. 

The Y register can be used interchangeably with X in most indexing op
erations. This table summarizes opcode values for the load and store 
instructions for these new addressing modes. 
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INSTRUCTION ADDRESSING MODE 
ABS,X ABS,Y 

LDA $BD $B9 
STA $9D $99 
LDX $BE 
STX 
LDY $BC 
STY 

Notice that for the first time an opcode table has gaping holes. There 
isn't an opcode for STX ABS, Y. Nor is there one for LDY ABS, Y Not all 
addressing modes are available for all instructions. This is partially due 
to a logical conflict: Does it make sense to load the very register you've 
used to locate the memory location you 're loading it with? But it stems 
mainly from the physical limitations of integrated circuit technology, 
circa 1975. Much as we 'd like to have them, there wasn' t room on the 
chip to provide every addressing mode for every instruction. 

The most important instructions were given the most addressing 
modes: ADC, SBC, EOR, AND, ORA, CMP, LDA, and STA. Consult ap
pendix F for the addressing modes available for each instruction. 

Indexing on Page Zero 

That's two new addressing modes, Absolute, Y and Absolute, X. Indis
pensable, but like all three byte instructions, real memory hogs. There 
are also two byte, space saving, Zero Page,X and Zero Page,Y address
ing modes. 

INSTRUCTION ADDRESSING MODE 
ZP, X ZP, Y 

LDA $B5 $B9 
STA $95 $99 
LDX $B6 
STX $96 
LDY $B4 
STY $94 

PROG23 demonstrates zero page indexed addressing. Watch for wrapa
round. If adding X to AD in the CALC ADDRSS microstep produces a 
value greater than $00FF, ADL wraps around so that it always contains 
a zero page address. LDA $80,X, if executed at a moment when X con
tains $90, will load the accumulator from $10. 



14. 
The Kernal: Canned Subroutines 

The C-64 has eight thousand bytes worth of built-in subroutines at the 
top of the memory map called the Kernal. These programs perform 
utility chores such as moving data to and from disk, and reading the 
keyboard. The Kernal has more than 40 functions you can tap to con
trol the Commodore 64. If your program needs to do any of these tasks, 
this is the method of choice. 

One such Kernal subroutine is named GETIN. Here's what the Pro
grammer's Reference Guide has to say about this function: 

Function name: GETIN 
Purpose: Get a character. 
Call Address: $FFE4 
Communication registers: A 
Registers Affected: A, X, Y 

Description: 

...This subroutine removes one character from the keyboard queue 
and returns it as an ASCII value in the accumulator. If the queue is 
empty, the value returned in the accumulator will be zero. Characters 
are put into the queue automatically by an interrupt driven keyboard 
scan routine which calls the SCNKEY routine. The keyboard buffer 
can hold up to ten characters. After the buffer is filled, additional 
characters are ignored until at least one character has been removed 
from the queue. 

How to use: 

1. Call this routine using a JSR instruction. 
2. Check for a zero in the accumulator (empty buffer) 
3\ Process keystroke. 

Interrupt driven? SCNKEY routine? Queue? What is all this stuff? 
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At this point, we don' t care, and we don't need to. The beauty of using 
a Kernal routine is that you don't have to know how it works. You only 
have to know how to use it. 

GETIN is a simple tool. When your programs needs to know what the 
human is doing at the keyboard, it calls $FFE4, and when that subrou
tine re turns , the accumulator holds the ASCII value of the key 
pressed. Even though GETIN is a complicated guy, with internal sub
routine calls of its own, and strange interactions with various and sun
dry elements of keyboard hardware—we don't have to know about 
this stuff to use it. 

ASCII 

Commodore uses a modified form of the ASCII (as-key, American 
Standard Code for Information Interchange) character set used by 
most computers and peripherals, so it is possible, if not ahvays easy, to 
hook a Commodore 64 up to other manufacturer's equipment (like an 
Epson printer), and have them agree on the number that represents a 
comma and so on. Appendix C of the Programmer's Reference Guide 
lists the ASCII value returned by GETIN for each key. 

There are three good reasons for letting Commodore's routines do the 
work for you. First, your program requires less memory because you 
don't have to include code to perform these functions. Second, your 
program takes less time to write and debug because you don' t have to 
consider the peculiarities of disk or keyboard hardware to get the job 
done. GETIN is already written and debugged. 

Third, should Commodore, in its wisdom, someday invent a new com
puter, with a new keyboard, requiring a different method of reading 
keystrokes, your programs will still run—because you used GETIN to 
get characters from the keyboard, rather than reading the keyboard 
directly. GETIN changed, one of Commodore's programmers had to 
deal with the new keyboard—but your program doesn't. It only cares 
that a JSR $FFE4 returns a keystroke in the accumulator. 

Commodore has committed to supporting the Kernal routines in future 
machines. As long as GETIN still has the same "calling conventions", 
(same JSR address, returning a value in the same way), your 64 pro
grams will run unmodified on the new machine. This technique of hid
ing the details of a problem, of making a program's components as in-
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dependent of each other as possible, is central to the concept of 
structured programming. 

Another Kernal function tells time. One of the C-64's talents is keep
ing track of how many sixtieths of a second (or jiffies, where 60 jiffies 
= 1 second) have gone by since it was turned on. Although it is simple 
enough to look at the memory locations where this 24 bit counter is 
stored ($A0-$A2, according to the Programmer's Reference Guide), 
doing so puts your program at the mercy of Commodore's whims. The 
C#128 might store the time at $B0-$B2. Better to call the Kernal func
tion RDTIM. 

Function Name: RDTIM 
Purpose: Read system clock. 
Call Address: $FFDE 
Communication Registers: A, X, Y 
Registers Affected: A, X, Y 
Description: 

This routine is used to read the system clock. The clock's resolution is 
one 60th of a second. Three bytes are returned by the routine. The Y 
register contains the most significant byte, the X register contains the 
next most significant byte, and the accumulator contains the least sig
nificant byte. (Note: This order is stated backwards, A-X-Y, in the Pro
grammer's Reference Guide discussion of RDTIM.) 

Let's step through RDTIM with the simulator. No need to load a PROG; 
we're going to write this one on the spot. Using the EDIT function, 
place these values at $C000 through $C003: 

20 DE FF 00 

We just wrote the instruction JSR $FFDE, a call to RDTIM, followed by 
an ending break. Set the program counter to $C000, if it isn't already, 
and step through it. Don't worry at this point why RDTIM is so 
concerned with the interrupt disable flag, and why it insists on writing 
back the values it read a moment ago. RDTIM is complete when you hit 
theBRKat$C003. 

It probably returned a counter value of 00 00 00 jiffies. Hmmmmm. 
This implies that approximately 0.00 seconds have elapsed since we 
turned on the computer. Since TVC requires more than a minute to 
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load, this calls for some investigation. 

If you browse through page zero with EDIT, you'll notice that this area 
is all zeros. This seems contrary to earlier s ta tements about the 
crowded conditions in low memory, resulting from Basic's and the 
Kernal's storage of important data there. Surely this important data 
isn't all zeros. 

We confess. TVC has a " fake" zero page (gasp!). All this time you've 
had a wonderfully uncluttered page zero to work with. 256 pristine 
bytes of zeros, free for the asking. This is possible because TVC, clever 
simulator that it is, fakes us out when we ask it to read from or write to 
an address in the range $0000 - $00FF; it stores this range elsewhere. 

The C-64's jiffy counting mechanism uses addresses in the real, bona 
fide zero page, which is not available to the beginning TVC user. Ac
cess to the real zero page requires a TVC master. 

Master Mode 

Thus far we've been in non-master mode exclusively. This is a good 
place for beginners to be; non-master mode makes it just about impos
sible for you to hang up the computer, short of prying the 6502 out of 
its socket with a fingernail file. Writes to locations inside the TVC pro
gram and other dangerous areas are not allowed, and I/O references 
that can do messy things are locked out. 

To enter master mode, simply ask: MASTER ON. 

The M (for "master") and Z (for "zero page share") flags on the status 
line illuminate. You are now a Visible Computer Master. (Feels great, I 
know.) You're also a giant step closer to the real world where a single 
wrong move can confuse your computer so thoroughly that you'll have 
to turn it off and on again to set things straight. 

Many, indeed, most of the locations in page zero are critical to the 
health of Basic and the Kernal. Do an LC 88. That $60 at location $8A, 
for example, is critical to your machine's ability to input characters 
from the keyboard. Change it and see what happens. 

We'll wait for a couple of minutes while you get TVC running again. 
Tap, tap, tap.. . Fidget. Twiddle thumbs.. . While we 're waiting, let me 
reassure you that running a program, no matter how bugged, can ' t 
physically damage your computer. The only thing a bugged program 
can hurt is your ego. 
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Okay, back? Be sure to make yourself a master again. 

Location $8A is not unique; there are many addresses that have to 
have the correct value all the time. That great engine that is C-64 Ba
sic needs its zero page locations intact so that it can go on correctly ex
ecuting the program named "The Visible Computer". The Kernal 
needs zero page locations to deal with matters such as writing text to 
the display. If just one of them is changed, the whole house of cards 
that is the Commodore 64 operating system can come crashing down. 

Anyway, the point is, as a machine language programmer, you have a 
lot of control, and the price of that control is increased responsibility. 
You've become an equal partner with Basic and the Kernal, and need 
to be a team player. Again, four safe zero page locations (unused by 
both the Kernal and Basic) are $FB-$FE. 

Rewrite the JSR $FFDE that was at $C000 before we pulled the plug, 
and run through RDTIM again. This time it should return a nonzero 
value. To calculate how many jiffies have accumulated since you last 
applied power, convert this six digit hex number into decimal. 

For example, suppose RDTIM returned Y = $03, X = $31, and A = $F0. 
$0331F0 = (3*65536) + (3*4096) + (l*256) + (15*16) = 209,392 jiffies. 
That's (209,392 / 60), or 3,490 seconds, a little less than an hour. 

Now display the timer locations with'LC A0v<Note that they aren't con
stantly changing. TVC doesn't consider the possibility of something 
other than itself writing to memory. Force it to recheck these locations 
with another LC A0 and you'll see updated values. Soon we'll learn 
about the mysterious mechanism that does jiffy counting. 



15. 
Indexing, Part II 

Indexing is a powerful technique that allows a program to access 
different addresses with the same instruction. This section introduces 
two more indexed addressing modes: Indirect, Indexed and Indexed, 
Indirect. 

Let's review the concept of indirect addressing. Back in Chapter 10 we 
used indirect jumps (remember feeling queasy? That was JMP indi
rect). An indirect addressing mode doesn't specify the address to per
form an instruction with—it specifies the address that stores the ad
dress with which to perform the instruction. 

A garden variety JMP $B136 puts $B136 in the program counter and 
that's that. JMP ($B136) instructs the 6502 to fetch the contents of lo
cations $B136 and $B137 and use those contents to form the new pro
gram counter. This enables us to change where the jump points under 
program control. 

The 6502 has two addressing modes that use the indirect concept in 
conjunction with the index registers. Two forms are available: one that 
uses the X register only, called indexed, indirect, and one that uses the 
Y register exclusively, called indirect, indexed. (Yes, the names are 
confusing.) 

Indirect, Indexed 
Suppose you faced a situation that required a block move of greater 
than 256 bytes. You could tackle this problem with two consecutive ap
plications of normal absolute, indexed addressing as shown below 
(Moves $200 bytes from $3000 to $4000). 

LDX #$00 
LOOPl: LDA $3000,X 

STA $4000 ,X 
INX 
BNE LOOPl 

L00P2: LDA $3100 ,X 
STA $4100 ,X 
INX 
BNE L00P2 
BRK 
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While this program would work, it is lacking in elegance. Two loops in
stead of one. If we needed to move four pages of memory we'd need 
four loops. Enter Indirect, Indexed addressing. In mnemonic form: 

LDA($45),Y 

The operand's arrangement of the parentheses is a clue to how indi
rect, indexed addressing works. Since the Y is outside the parentheses, 
it's trying to tell us that the indirect portion of the instruction will be 
carried out first, and the indexing applied second. 

For example, executing LDA ($45),Y: Memory location $0045 is read 
and the value stored in the data buffer. Next, location $0046 is read. 
Suppose we read a $00 from $0045, and a $20 from $46. We have now 

"indirectly" formed the address $2000, (as always, LSB first). Finally, 
apply indexing. If Y was equal to 6 when we executed this instruction, 
we will load the accumulator from location $2006. If we were to incre
ment location $46 (making it $21), executing LDA ($45), Y again would 
fetch the byte stored at $2106. 

Even though it takes several fetches of memory to execute (IND),Y in
structions, and consequently more time than other addressing modes, 
they are extremely efficient for code length. (IND),Y instructions re
quire only two bytes; one to specify the instruction and addressing 
mode; the second, the first of the consecutive zero page addresses that 
will form the base address. 

Despite their two byte length, they can specify a location anywhere in 
memory. Indirect, indexed addressing is a big reason for the space 
crunch in page zero—every program needs a couple of zero page point
ers. (Pairs of zero page locations used in this way are frequently called 
pointers because their contents "point" in memory to where an opera
tion should occur.) 

Only the Y register can be used this way. There is no LDA ($45),X in
struction. There's a demonstration program named CLEARPROG for 
(IND), Y addressing. Load and list it. 
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COOO: LDY #$00 
LDA #$C4 ; make pointer pair $FB, $FC point to 
STY $FB ; first screen memory address ($C400) 
STA $FC 
LDX #$04 ; 4 pages of memory to write to 
LDA #$20 ; $20 is control code for blank space 

LOOP: STA ($FB),Y ; write space code to screen address 
INY ; finished a page yet? 
BNE LOOP ; branch if not... 
INC $FC ; now pointer pair points to next page 
DEX ; 
BNE LOOP ; done after four pages 
RTS 

C080 JSR $C000 
BRK 

CLEARPROG writes a $20, the control code for space, to all $400 
screen memory addresses, effectively erasing the display. Actually 
only the first 1,000 addresses are used; writing to the unused 24 loca
tions at the end is unnecessary but harmless. 

We're using the popular free zero page pair $FB-$FC to point succes
sively to every location in screen memory. First we make $FB-$FC 
point to $C400, and initialize X with 4 and A with $20. X is decre
mented after each page of writes. After four pages, the program termi
nates. 

Don't execute more than a few cycles of this program. If we let it run 
all the way through to the BRK at $C083, eventually the screen would 
be cleared, but you would be bored into a coma. It's time to learn an 
important new command. 

The GO Command 
GO causes a program in memory to be executed not by the simulator, 
but by the 6502 itself. If you are in master mode, and if the next in
struction is a JSR, then TVC passes execution of that subroutine di
rectly to the 6502. When and if the 6502 encounters an RTS at the end 
of the subroutine, TVC regains control and redisplays the X, Y, P, A, 
and PC registers with the values they acquired in the subroutine. 

There are a million and one ways (conservative estimate) that a ma
chine language program can go wrong, and almost all of them will 
cause you to lose control of ("lock up"; "hang"; "kill"; "crash"; 
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"blow away"; "bomb") the computer. You may spray a deadly hail of 
bytes into the TVC program, or your sick program may send the 6502 
on a wild goose chase (e.g.: C000: 4C 00 08 JMP C000), in which case 
pressing the RUN/STOP and RESTORE keys simultaneously may regain 
control. (The RESTORE key is connected to the 6502 in a more intimate 
way that the rest of the keys, having an effect on it more like the 
power switch than a mere keypress.) 

In severe cases of crashed computer syndrome, your only recourse is 
to turn the machine off and back on and start from scratch. Suffice it 
to say, bugged machine language programs are not especially forgiving. 
Luckily, CLEARPROG is pretested and guaranteed to work. 

Get the program counter pointing to the JSR instruction provided at 
$C080. GO won' t work if you're not on a JSR. Now brace yourself and 
GO. Doesn't take long, does it? RESTORE the display. Change the $20 
at $C00B to a different value and you change what the screen be
comes. $07 produces all "g '"s . $BF, inverse question marks. Have fun 
while you can, because we ' re about to spin your head completely 
around. 

Indexed, Indirect 

If you liked indirect indexed, you'll love indexed, indirect. Whereas in
direct indexed addressing is only available with the Y register, indexed 
indirect is only available with the X register. Confusing? You know it. 
The mnemonic form is: 

LDA($45,X) 

Again, an examination of the operand and some educated guessing 
furnish clues to how this addressing form works. Indexed indirect uses 
X to index a particular pointer pair out of several, which then points to 
an address in memory. For example, suppose addresses $10 - $17 held 
these values: 

$10= $00 $14= $00 
$11= $C0 $15= $C2 
$12= $10 $16= $00 
$13= $C1 $17= $C3 

Eight locations make up four pointer pairs. The first points to $C000, 
the second to $C110, the third to $C200, and the fourth to $C300. In-
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dexed indirect addressing uses the X register to select one pointer pair 
of many. LDA ($10,X) will load the accumulator from $C000 if X is 0, 
from $C110 if X is 2, from $C200 if X is 4, and from $C300 if X is 6. 
Pointer pairs don't have to be aligned on even addresses. If X is 3, LDA 
($10,X) loads from $00C1. 

Indexed, indirect addressing is usually used to select under program 
control which of several tables will be used in an operation. In practice 
it doesn't get as much use as (IND),Y, but the day will come when you'll 
be glad it's there. 

More Binary, Inc. Payroll Problems 
Through an interoffice memo, you've just learned of Binary, Inc.'s new 
retirement plan. All employees under the age of 48 are now required 
to double their monthly contribution to the retirement fund. Coinci-
dentally, the youngest member of the board of directors is 48. Binary's 
overworked programming team is given the task of modifying the de
duction calculation portion of the payroll system. 

Here's the job: Using the employee age table as input, build a "retire
ment plan" table, with the following characteristics: If an employee is 
to be on the new retirement plan (he's 47 or younger), put his age in 
the table. If an employee stays on the old plan, his spot in the new ta
ble gets a zero. While you're at it, total how many people will be stay
ing on the old plan. The age table, as always, is at $C100. The retire-
'ment table should be built at $C200. 
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BTABLEPROG 

START: LDA #$C1 ; set up two zero page pointer pairs 
LDY #$C2 ; $FB,$FC points to $C100 (age table) 
LDX #$00 ; $FD,$FE points to $C200 (new table) 
STX $FB 
STX $FD 
STA $FC 
STY $FE ; Y counts occurrences of over 47 folks 
LDY #$00 ; initialize it to zero 

LOOP: LDA ($FB,X) ; read from age table (X = 0) 
CMP #$30 ; $30 = 48 decimal 
BCC YOUNG ; clear carry means set borrow (age<48) 
LDA #$00 
INY ; increment counter for people over 47 

YOUNG: LDX #$02 
STA ($FB,X) ; write to new table (X = 2) 
LDX #$00 ; clear X 
INC $FB ; and increment pointers to prepare 
INC $FD ; for next pass through loop 
BNE LOOP 
BRK 

The active ingredient of BTABLEPROG (build table program) is the 
CMP #$30 step. The value in the accumulator fetched from the age ta
ble has 48 subtracted from it (on a trial basis only—the accumulator 
isn't affected, just the flags). If that value was 47 or less, a borrow oc
curs, and carry is cleared to reflect that fact. The BCC skips over a null
ing of the accumulator, to the STA ($FB,X) that writes to the equiva
lent spot of the retirement table. 

Load BTABLEPROG. If you have doubts about any part of it, especially 
the comparison step, run a few cycles with the simulator. Then zap it 
with GO. This program executes more or less instantaneously under 
6502 execution. Before you can GO it, you'll need to write a JSR $C000 
instruction somewhere, say $C080. To write this instruction and a fol
lowing BRK, EDIT the values: 20, 00, CO, and 00 at $C080. Now GO it. 
How many people are 48 or older at Binary, Inc.? (Answer: 12—11 
board members and the chairman's brother-in-law.) 

Only the heavyweights of the 6502 instruction set have these powerful 
index/indirect addressing modes available to them: ADC, AND, EOR, 
SBC, OR A, CMP, STA, and of course, LDA. For opcode values consult 
appendix F. 



16. 
Some Fine Points 

You may have noticed that this manual is filled with phrases like "this 
is a powerful group of instructions", or "this instruction gets a lot of 
use". This chapter concerns a couple that aren't so powerful, or don't 
get a lot of use, or both. 

NOP (No OPeration), opcode $EA, implied addressing, doesn't do a 
thing. Nada. When the 6502 executes a NOP, the only effect is that the 
program counter will end up one bigger, and a little time will have been 
wasted. What good is an instruction that does nothing? It has two uses: 
as a short delay in a carefully timed counting loop, and most 
importantly, as a means of plugging blank spaces in memory, usually as 
a debugging technique. 

If you were debugging this program: 

0800:20 00 10 JSR $1000 
0803:20 00 20 JSR $2000 
0806:20 00 30 JSR $3000 

and determined that the second subroutine had a problem, you could 
quickly check out the third subroutine by writing over the middle JSR 
instruction with three NOP instructions. 

0800:20 00 10 JSR $1000 
0803:EA NOP 
0804:EA NOP 
0805:EA NOP 
0806:20 00 30 JSR $3000 

When we execute this program now, after the subroutine at $1000 re
turns we fall through to the subroutine at $3000. Appropriately 
enough, there is no demonstration program for NOP. 

NOP's potential as an innocuous time waster brings up the subject of 
instruction execution times. Normally, we are only concerned that a 
program run fast, or at least fast enough. Sometimes we have to know 
exactly much time an instruction requires. The basic unit of time for 
the 6502 is the instruction cycle. In the C-64, one instruction cycle 
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takes one microsecond (.000001 second). All instructions need two or 
more instruction cycles. In general, the less reading and writing of 
memory an instruction requires, the faster it runs. DEX and SEC are 
fast, requiring only 2 cycles. LDA $45 takes 3 cycles. LDA ($01),X re
quires six cycles. 

RTI 
RTI (return from interrupt) is an instruction you may never use, al
though one is executed 60 times a second every moment a C-64 is 
turned on. But first, the sixty-four-dollar question: What's an inter
rupt? 

Three of the 6502's 40 pins allow circuitry external to the 6502 to alter 
its normal fetch/execute/fetch/execute pattern. Like the bits in the 
status register, these pins are important enough to have their own 
names. They are: Reset, Non-Maskable Interrupt (NMI), and Interrupt 
Request (IRQ). All three cause the 6502 to stop what it's doing and go 
do something else. Some are more courteous to the program that's be
ing interrupted than others, however. 

Reset 

There's only one way to generate a signal on the reset pin of the 6502 in 
a C-64: turn the machine on. A few milliseconds after you flip the 
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power switch, a circuit applies a pulse to the reset line. The 6502 drops 
what it was doing (probably nothing coherent, anyway) and performs 
an indirect jump to $FFFC (i.e., to the address stored in locations 
$FFFC and $FFFD). The reset program at the destination of the jump 
takes care of a complicated series of startup tasks that need doing be
fore the machine can say, in light blue letters on a dark blue back
ground: 

**** COMMODORE 64 BASIC V2 **** 

64K RAM SYSTEM 38911 BASIC BYTES FREE 

READY. 

The reset handling program executed at power-up time, and the mem
ory locations that point to it ($FFFC, $FFFD), had better be in ROM, 
rather than RAM. Why? 

IRQ (Interrupt Request) 

60 times a second the 6502 installed in a Commodore 64 receives a 
pulse on its IRQ pin. Like a reset, this causes the 6502 to drop what it's 
doing and do something else, but to first save where it is now so that it 
can get back later. This is accomplished by saving the program counter 
and P register on the stack. Once saved, the program counter is loaded 
with the address stored in locations $FFFE and $FFFF, the highest two 
locations in the memory map. The interrupt routine performs its func
tion, and returns to the interrupted program with an RTI (ReTurn from 
Interrupt). RTI is like an RTS that pulls the status register first, and 
program counter second. 

The Kernal's interrupt handling program takes care of three basic jobs: 
display control, keyboard scanning, and jiffy counting. 

Such interrupt-activated programs are often called "background" 
tasks. Sixty times a second the 6502 in a C-64 stops working on the 
main, "foreground" task (TVC, at this moment) and fiddles around 
with jiffy counting and keyboard scanning. However, since the proces
sor can pick up smoothly where it left off, and since the interrupt pro
gram consumes relatively little time, TVC appears to have the proces
sor all to itself. 

Interrupt programs must be careful to preserve registers that are al
tered during the course of the interrupt service routine. You can imag-
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ine the fun of debugging a foreground program in which 60 times a sec
ond the X register is mysteriously zeroed. The only registers saved 
automatically during an interrupt are PC and P; if the interrupt pro
gram wants to use any of the others, it must save them in a safe place 
beforehand, and restore them just before returning to the main pro
gram. 

Two bits of the P register are directly related to interrupt requests. The 
I flag, interrupt disable, is used to "mask out" interrupts. If I is set, the 
6502 ignores signals on the IRQ pin. That's how IRQ gets its name; it re
quests, rather that demands, attention. You may want to disable inter
rupts, for example, when you're in the midst of handling an interrupt 
already. 

BRK: The Whole Truth 

Have you wondered why the P register has a B flag that doesn't have 
anything to do with borrow? Or why BRK is sometimes called a soft
ware interrupt? 

BRK makes the 6502 behave as though an interrupt request had oc
curred on the IRQ pin. An indirect JMP is made to the same program, 
pointed to by $FFFE and $FFFF. The only difference is that the B flag 
of the status register is set by a BRK and cleared by an IRQ. This gives 
the interrupt handling program a way to determine if the break was 
due to software or hardware. If it finds the break flag set, it knows the 
interrupt was due to BRK. Otherwise, it has a bonafide hardware in
terrupt on its hands. 

BRK is for debugging 6502 programs. By setting BRK instructions at 
key points in your program, you can usually find out what's working 
and what isn't. TVC's simulator doesn't execute a BRK the way a 6502 
does; it treats BRK as a signal to stop execution. By they way, BRK can
not be masked by setting I, either in real life or with the simulator. 

If the 6502 encounters a BRK while executing a subroutine via TVC's 
GO command, TVC regains control and updates the A, S, X, Y, P, and 
PC registers with the values they held at the moment of the BRK. By 
convention, the program counter is the address of the BRK instruction 
plus two. 
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Watch an Interrupt 
Let's watch the simulator field an interrupt request. 

INTPROG 

$C000: CLI 

JMP $C000 

C300: STA $FB 
PLA 
PHA 
ASL 
ASL 
ASL 
BMI BREAK 
INC $FE 

BREAK: LDA $FB 
RTI 

Load INTPROG and begin executing it in step mode 1. At some point, 
request an interrupt by pressing T . If the I flag is set, the simulator 
will ignore the request. Otherwise, when the current instruction fin
ishes, TVC's 6502 simulator will respond to the command. 

You'll see the program counter and status register pushed on the stack. 
The status register value pushed on the stack will have a clear B flag; 
the handling program will check this stack image of P to determine if 
this is a BRK or IRQ generated interrupt. Next, the interrupt disable 
flag is set. Unless we specifically clear it, interrupts will be locked out 
until the interrupt handling program finishes. The program counter 
then loads from locations SFFFE and $FFFF, in effect jumping to the 
handling program at $C300, which was loaded into memory along with 
INTPROG. 

The handling program first checks to see if this is a hardware or soft
ware interrupt request. It saves A before doing anything else; a para
mount duty of interrupt programs is preserving the foreground pro
gram's registers. Then we pull the byte at the top of the stack (the 
interrupted program's status register) into A, and immediately push it 
back. This gets the byte that used to be the status register into A where 
it can be examined. If we hadn't pushed the accumulator after the 
pull, the stack would have been messed up. RTI would have used the 
MSB of the return address as the value to put back in P, and who knows 
what would be pulled into the program counter. 
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Three ASL's of the accumulator slide bit 4 into bit 7. After considerable 
work, we 've made the negative flag equal to the B flag at the moment 
of the interrupt. If set, we have a software break, and return to the 
calling program immediately. If reset, we ' re in the midst of an IRQ in
t e r rup t , and increment a one byte counter in page zero before 
re turn ing . The re tu rn to t he foreground program is smooth; 
everything is as it was before, as though the interrupt never hap
pened. From the standpoint of the foreground program, the only evi
dence of the interrupt's occurrence is the ghostly increment of $FE. 

Non-Maskable Interrupt 

NMI is similar to IRQ, only it has a different vector ($FFFA) and it may 
not be ignored. The 6502 always responds to an NMI regardless of the I 
flag. In many designs (but not the C-64), NMI is connected to a power 
supply sensor. When the sensor gives warning that the incoming AC 
line has dropped below some minimum value, the time remaining to 
the system is short, maybe only a hundreth of a second. We can't 
afford to be polite and wait for another interrupt to finish. The NMI 
vector points to a program that may activate a backup power source, 
or simply close vulnerable files and wait quietly for the end. 

In the C-64 the RESTORE key is tied directly to the 6502's NMI pin. 
Each time you press RESTORE, a non-maskable interrupt is generated. 
The Kernal's NMI handling program looks to see if the RUN/STOP key is 
down also, and if it is, control is transferred to a routine which warm 
starts the program in control, usually Basic. If RUN/STOP is not down, 
the Kernal quickly returns control to the needlessly interrupted pro
gram. 

Because NMI always gets the computer's attention, the RUN/STOP RE
STORE combination is able to break into infinite loops and similar 
problem conditions and restore control. 

Signed Numbers 

All the programs we've seen so far have assumed that the numbers be
ing added, subtracted, decremented, etc. were always positive. Many 
times machine language programs face the same problem as the over
drawn checkbook, how to handle numbers less than zero. Or, put an
other way, what shows up in the accumulator when we subtract 6 
from 3? You won't see any minus signs anywhere, that 's for sure. 
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Any guesses as to how to represent negative numbers? (It has some
thing to do with bit 7, hint, hint.) As a suggestion, how about using the 
lower 7 bits as the absolute value of a byte, and the 7th bit as a sign 
flag. Thus: 0 0 1 1 i m = + $3F 

1011 1111 = - $3F 

and 

0100 1010 = + $4A 
1100 1010 = - $4A 

That wasn't so bad, was it? Almost the way people do it—if there's no 
minus sign, numbers are positive; here, if we have a clear sign bit, we 
mean positive. A nice, sensible solution. 

Using the most significant bit as a plus/minus indicator limits the range 
of values that can be represented with a single byte to -127 through 
+ 127. (Again the formula: 27- l = 127.) Two byte numbers can use the 
7th bit of the most significant byte for the sign, with the remaining 15 
bits storing the absolute value. This yields the range -32,767 through 
32,767 (ring a bell somewhere about the storage limitations of Basic in
teger variables?). 

But hold on. Even though this scheme has a certain pleasing logic, it 
has a nontrivial problem: It doesn't work. Adding 3 + (-6) should 
produce -3 . Does it? 

0000 0011 (3) 
+ 1000 0110 (-6) 

1000 1001 (-9) 

No. Any way you slice it, -9 is not - 3 . How about 26 + (-14)? 

0001 1010 (1A) 
+ 1000 1110 (-0E) 

1010 1000 (-28) 

Not even close. And there's another problem. We have two bit patterns 
that mean zero: "Positive zero", 0000 0000, and "negative zero", 1000 
0000. Ouch. 

Logical, maybe—correct, uh-uh. Rather than subject you to a whole se
ries of potential solutions that don't work, let us proceed immediately 
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to a way to represent negative numbers that does work, two's comple
ment. 

As with nonfunctional method #1, bit 7 still indicates whether a num
ber is negative or positive. It's the other 7 digits that are handled 
differently. A two's complement is formed by complementing (revers
ing) each bit and adding one to the result. We represent -$19 with the 
two's complement form of positive $ 19. 

$19 = 0001 1001 
-$19 = 1110 0110 + 1 = 1110 0111 

$64 = 0110 1000 
-$64 = 1001 0111 + 1 = 1001 1000 

While somewhat less logical than the first method, two's complement 
representation possesses the desirable property of actually working 
when we put it into action adding numbers. It also solves the problem 
of two zeros. There's just one, 0000 0000. 

Performing the addition 3 + (-6): 

First express -6 into two's complement form: 

-6 = two's complement of 6 = two's complement of 0000 0110 = 

1111 1001 + 1 = 1111 1010. 

Now do the addition: 

0000 0011 (3) 
+ 1111 1010 (-6) 

1111 1101 (?) 

Since the result has bit 7 set, we know the answer is negative, and by 
performing a two's complement to switch it to positive, we can see if 
we got the right answer. 

Two's complement of 1111 1101 = 0000 0010 + 1 = 0000 0011 = 3. 

It worked. We got -3 for an answer. Since the function of this book is to 
get you started in machine language, not to win you the George Boole 
Chair of Binary Studies at Stanford, there will be no rigorous proof at-
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tempted here of why this method works. (Audible sigh of disappoint
ment.) 

To practice, use PRACTICEPROG to add one byte negative numbers to 
positive numbers. Represent negative numbers with two's comple
ment form; if you're lazy (and/or smart), you'll use the calculator for 
this. Subtract the number you want in two's complement form from 
zero (e.g., to obtain the two's complement form of $3411, perform the 
subtraction: $0 - $3411). 

A final note: For many, signed arithmetic proves to be one of the most 
elusive aspects of machine language. If this presentation left you more 
confused than enlightened, take comfort in the fact that most machine 
language programs don't need signed numbers. And when the day 
comes, six months or five years from now when you'll need to know it, 
I think you'll find you can pick it up. 

Binary Coded Decimal 

The Decimal flag (D) of the P register hasn ' t seen much action. In fact, 
except for a couple of sets and clears back in Chapter 7, we 've ignored 
it entirely. 

The D flag controls how the SBC and ADC instructions work. If reset, 
as it has been so far in all the demonstration programs (or should have 
been) SBC and ADC perform standard binary arithmetic. If D is set, the 
6502 adds and subtracts using binary coded decimal (BCD) numbers. 

BCD is a numbering system in a limbo midway between binary and 
decimal. Because you will almost certainly have no immediate use for 
additions and subtractions of binary coded decimal numbers, (unless 
you're planning to write a floating point package and are worried 
about rounding errors), no further mention of it will be made here. 
Just remember to keep this flag clear or all your adds and subtracts will 
be wrong. One of the first instructions executed when a C-64 comes to 
life during a power-on reset is CLD (Clear Decimal Mode). Leave it that 
way. 



17. 
Putting It All Together 

So far we've been using 6502 programs without much consideration to 
how they were produced in the first place. We said LOAD and there 
they were. Since the purpose of this manual is to get you writing ma
chine language programs, it's about time we wrote a couple, taking 
ideas all the way to working 6502 programs. 

Bubble Sort 

The first program is a demonstration of a sorting technique called bub
ble sort. There are more sophisticated sorting techniques around, in 
fact, there aren't many less sophisticated, but when you're using ma
chine language, and moderate amounts of data, there's no reason to 
get fancy. 

A bubble sort works by systematically "bubbling" the lightest (small
est) numbers in an unsorted list to the top. We start at the bottom and 
compare each number with the value above it. If they're not in the 
right order already, they are swapped and we move up to the next pair. 
When we've worked our way to the top of the list, the smallest number 
is guaranteed to be at the top. Next, we repeat the entire process, ex
cept that we don't check the topmost number; we know it's the small
est already. After pass 2, the top two elements in the list are correct. 

After n - 1 passes through an n element list, we are done. Let's work 
through a sample bubble sort of a four element list. We'll need to make 
three passes (4-1) through it, the first making three comparisons, the 
second two comparisons, the last, only one. 

The arrow points to the lowest member of the pair under test. 

Pass 1 34 
19 
77 

—> 22 

107 
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Starting at the bottom: Compare 22 to 77. Since 22 is less than 77, bub
ble it up a notch by swapping it with 77. Advance the pointer. Now the 
list looks like this: 

Pass 1 34 
19 

—> 22 
77 

Compare 22 to 19. We don't need a swap this time. Move the pointer. 

Pass 1 34 
—> 19 

22 
77 

Compare 19 to 34. Swap. This completes one pass through the list. The 
smallest value in the list is now at the top. Move the pointer down to 
the bottom and repeat the process, only this time, stop one comparison 
sooner, since the top value is already correct. 

Pass 2 19 
34 
22 

—> 77 

Compare 77 to 22. No swap necessary, advance the pointer. 

Pass 2 19 
34 

—> 22 
77 

Compare 22 to 34. Swap. End of Pass 2 (top 2 values now correct). 

Pass 3 19 
22 
34 

—> 77 

The last pass requires only one comparison, 77 to 34. No swap needed. 
The list is now sorted. 
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That's the sorting method, or algorithm, known as bubble sort. With a 
minor change to the comparison step we could just as easily sort the list 
in reverse order. 

Basic Bubble Sort 

Back to the machine language payroll system. To comply with 
government form 3212.1-C, Binary, Inc. must submit a sorted list of 
the ages of its 256 employees. A Basic attack on the problem might be: 

FOR COUNT = 0 TO 254 
(WORKING FROM BOTTOM TO TOP, TEST EVERY ADJACENT PAIR 
AND SWAP IF NECESSARY) 

NEXT COUNT 

Fleshing out the interior of the loop: 

FOR POINTER = 0 TO (254-C0UNT) 
IF ARRAY(POINTER) < ARRAY(P0INTER+1) THEN SWAP 

NEXT POINTER 

One of bubble sort's few merits is that we don't have to check the top 
of the list each time. That's why the inner loop goes to (254-COUNT). 

The swap of an out-of-order pair becomes: 

TMP = ARRAY (POINTER) 
ARRAY(POINTER) = ARRAY(POINTER+1) 
ARRAY(POINTER+1) = TMP 

Putting it all together, here's a program that could do the job. 

FOR COUNT = 0 TO 254 
FOR POINTER = 0 TO (254 - COUNT) 

IF ARRAY(POINTER) < ARRAY(POINTER+1) THEN GOSUB SWAP 
NEXT POINTER 

NEXT COUNT 

SWAP: TMP = ARRAY(POINTER) 
ARRAY(POINTER) = ARRAY(POINTER+1) 
ARRAY(POINTER+1) = TMP 
RETURN 
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This Basic rendition of bubble sort is surprisingly simple and appall
ingly slow. Even for short arrays there's a lot of comparing and swap
ping to do. In the neighborhood of 32,000 comparisons for a list of 256 
numbers, and roughly half that many swaps, depending on how well 
the list is sorted already. 

Next Step: Assembly Language 

Now that we've massaged the bubble sort algorithm into program 
form, let's translate it into the mnemonics and operands of the 6502 in
struction set. We're going to use labels in places because we don't want 
to tie ourselves down to real addresses yet. 

This form of the program is called assembly language. It's not machine 
language yet—the 6502 can't cope with "STA COUNT", anymore than 
it can understand the whispered command, "Store your accumulator 
in address $FB, please". Before SORTPROG can be run, we must "as
semble" it into the l's and 0's of 6502 machine language. 
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Assembling even a short program into object code is a tedious job. Af
ter a half hour of flipping pages in reference manuals, calculating rela
tive branch values, and replacing labels with addresses, pretty soon 
learning machine language doesn't seem like such a good idea after all. 

Once we've translated the source program into a flock of bytes, (call it 
the object program), we must edit these numbers into the computer. 
And hope we get every byte right, and don't change STA's into LDA's 
along the way. 

A test to see how good a job we've done of assembling and entering is 
to disassemble memory where we placed the object program, and see if 
the result resembles the original source program. It probably won't 
and we'll need to make a patch or two. Even once we get it entered 
right, the program still won't work if the original source program had 
logical errors. If we do much rearranging at all of the source program, 
we'll have to re-assemble from scratch. 
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There's a better way. 

The phase of the machine language programming process least suited 
to the talents of humans (and best suited to those of a computer) is the 
assembly itself. Wouldn't it be nice if we had a program that could as
semble source programs automatically? 

Happily, such programs, called assemblers, exist. An assembler 
converts 6502 assembly language (source) programs into 6502 machine 
language (object) programs. One fly in the ointment is that you won't 
have much luck getting an assembler to make sense of a pen and paper 
source program. You'll need a special program called an editor, a pro
grammer's word processor, to produce the source program. Many as
semblers include an editor as part of the package. Using an editor is ul
timately faster than writing on paper, although it takes some getting 
used to. 

1 ORG $C000 
2 
3 TABLE EQU $C100 
4 COUNT EQU $FB 
5 
6 START LDA #$FE ; PREPARE FOR 255 PASSES 
7 STA COUNT 
8 TOP LDY #$00 ; START AT BOTTOM OF LIST 
9 LOOP LDA TABLE,Y ; GET ARRAY (Y) 
10 INY 
11 CMP TABLE,Y ; COMPARE W/ ARRAY(Y+l) 
12 BCS NOSWAP ; BRANCH IF NO BORROW 
13 TAX ; ELSE SWAP 
14 LDA TABLE,Y 
15 DEY 
16 STA TABLE,Y 
17 INY 
18 TXA 
19 STA TABLE,Y ; SWAP COMPLETE 
20 NOSWAP CPY COUNT ; AT TOP YET? 
21 BNE LOOP ; NO, COMPARE NEXT PAIR 
22 DEC COUNT ; DONE 255 PASSES YET? 
23 BNE TOP ; NO... 
24 RTS 

This editor-produced source program for SORTPROG looks remarkably 
like the hand written version, with a few exceptions. Every line is 
numbered. The editor that produced it uses line numbers as a means of 
editing, the same way Basic does. 
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Semicolons are this assembler's equivalent of Basic's REM. All lines be
ginning with an semicolon are comments intended to enlighten the 
person reading the source program. The assembler ignores them. 

Lines 3 and 4 are equates. ".EQ" is a pseudo op that makes the assem
bler associate the name "COUNTR" with the number $FA. In writing 
the source program, you can use the name instead of the number. No
tice that the assembler doesn't generate any bytes for .EQ statements. 
Pseudo ops are mnemonics for controlling the assembler, not the 6502. 
The ORG pseudo op in line 1 tells the assembler to generate code 
starting with address $C000. 

Once the source program is ready, in a separate step the assembler 
translates it into object code. A short program like SORTPROG assem
bles in seconds, with guaranteed accuracy. Is that better than half an 
hour, and making mistakes to boot? (Rhetorical question.) Once assem
bled, we can save the object program to disk, or run it, or whatever. 

1 ORG $C000 
2 
3 TABLE EQU $C100 
4 COUNT EQU $FB 
5 

C000: A9 FE 6 LDA #$FE ; PREPARE FOR 255 PASSES 
C002: 85 FB 7 STA COUNT 
C004: A0 00 8 TOP LDY #$00 ; START AT BOTTOM OF LIST 
C006: B9 00 CI 9 LOOP LDA TABLE,Y ; GET ARRAY(Y) 
COO 9: C8 10 I NY 
C00A: D9 00 Cl 11 CMP TABLE,Y ; COMPARE W/ ARRAY (Y+l) 
C00D: B0 0D 12 BCS NOSWAP ; BRANCH IF NO BORROW 
C00F: AA 13 TAX ; ELSE SWAP 
C010: B9 00 Cl 14 LDA TABLE,Y 
C013: 88 15 DEY 
C014: 99 00 Cl 16 STA TABLE,Y 
C017: C8 17 INY 
C018: 8A 18 TXA 
C019: 99 00 Cl 19 STA TABLE,Y ; SWAP COMPLETE 
C01C: C4 FB 20 NOSWAP CPY COUNT ; AT TOP YET? 
C01E: DO E6 21 BNE LOOP ; NO, COMPARE NEXT PAIR 
C020: C6 FB 22 DEC COUNT ; DONE 255 PASSES YET? 
C022: DO E0 23 BNE TOP ; NO... 
C024: 60 24 RTS 

That's how SORTPROG came into existence. Now, how does it work? 
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Line by line: 

Lines 6-7: Initialize counter to $FE. Counts passes through the list. 
We're done when this is reduced to zero. We count down, instead of 
up, to simplify the step that keeps us from checking topmost elements 
already known to be in the right order. 

Line 8: Starting point of outer loop. Puts us at the bottom of the list for 
the start of each pass. The Y register is the pointer. 

Line 9: Starting point of the inner loop, where we work our way up, 
pair by pair, until we reach the top. 

Lines 9-19: The actual comparing and swapping. Test each consecu
tive pair. If the byte with the lower address is smaller than the ad
dressed byte, swap them. 

Line 20: Have we gone all the way through the list yet? Remember, we 
don't need to go any higher than we 've already done passes. 

Line 22: An entire pass has been completed. If this was the 255th pass, 
we ' re done. Otherwise, make another pass. 

Load SORTPROG. It loads complete with the unsorted employee age 
array at $C100 - $C1FF. Unless you've really got a handle on every 
step, use the simulator for a couple of comparisons. Understanding the 
comparison step requires understanding the borrow flag. Take a whole 
day if you must to get it down pat, but do it, once and for all. When you 
get around to GOing it, you'll find that SORTPROG handles these 
32,000 comparisons and 16,000 swaps in about one second. 

How old is the youngest employee of Binary, Inc.? The oldest? 

Extra Credit 

Change SORTPROG's five absolute, Y instructions from STA/LDA 
$C100,Y to STA/LDA $C400,Y. Now t h e page of memory in 
SORTPROG's sights is screen memory, the first six and a half lines of 
theTVC display... 

Now for Something Completely Different 

What kind of program should we write next? Something with a little 
more suss... No, already done that. No, too complicated. How about.. . 
no, too easy. I've got it: Play music with the keyboard. Catchy name: 

"ASCII Organ". While we ' re at it, we'll flash colored bars on the screen 
along with the music, Close Encounters-fashion. 
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Good idea, but somewhat open-ended. Let's firm up ASCII Organ's de
sign, specifying in English as precisely as possible what the program 
will and will not do. 

ASCII Organ turns the keyboard into a 12 note organ, assigning notes 
to keys on the top row, from the " 1 " key on the left (lowest note) to 
the minus key on the right (highest note). Each key will be a half tone 
higher in pitch than the key to its left. All programs need an escape 
route, and ASCII Organ's will be the Fl key. 

The screen will display a bar of color for each note, low notes at the 
bottom, high notes at the top. Since we have 12 notes, and 25 lines on 
the screen, we'll use two lines for each color. Note 1 will appear on 
lines 23 and 22 as color 1, white. Note 2 uses lines 21 and 20, and is red, 
and so on, up to note 12, lines 1 and 0, color "gray 2". These are the 
standard colors values listed in appendix B. 

As important as saying what the program will do is saying what it 
won't do. ASCII organ won't play more than one note at a time. It 
won't control duration. Each note will last the same length of time, 1/2 
second, regardless of how long a key is pressed. It also won't control 
volume. Hey, I said it had a catchy name, not that it would put Ham
mond out of business. 

Before we can describe a machine language program to do these 
things, sit still for a quick lecture on C-64 sound. 
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Making Sound with the Commodore 64 

The C-64 has a chip named SID (Sound Interface Device) devoted to 
generating sound. Much as VIC, the video controller, figures out what 
to do with the display by looking at screen memory, SID makes sounds 
according to the values in I/O addresses $D400 - $D41C. Although en
tire books have been written on the subject of making sounds with the 
C-64, an undemanding musician like ASCII Organ barely needs to lift a 
finger to make music. In fact, you can generate tones with EDIT, just 
by writing into a few SID control locations. 

Four writes is all it takes. Place $61 at $D400, $08 at $D401, $F0 at 
$D406, and $21 at $D404. Make sure you're a master before writing to 
these addresses, or the values won't get through TVC's protective 
check. 

$D400 is a 16 bit control register that tells SID the pitch to play; placing 
$0861 (4145 decimal) there makes SID generate a 128 hertz tone. To 
calculate what pitch a given value in $D400-$D401 will produce, mul
tiply by .0596. $D404 controls the timbre of the tone. $D406 controls 
sustain. SID uses $D404's bit position zero as an on-off switch. The in
stant we write to $D404, the selected note begins to play. 

Turn SID off by writing $00 to $D404. 

A peculiarity of these SID control locations is that they always read as 
zero no matter what values you've placed there. To appreciate what a 
great tone producer SID is, consider what an Apple II program has do 
to generate the simplest of sounds. That computer doesn't have tone 
generation hardware, only a speaker tied to an I/O address. When you 
read that location, the speaker, almost imperceptibly, says: "click". 
That's it—no beep, no tone, just "click". 

To create a sustained tone, one calls a machine language program that 
repeatedly clicks the speaker hundreds or thousands of times a second. 
The pitch of the emitted tone depends on how long you wait between 
clicks. If you wait 2,000 microseconds (1/500 of a second) between 
clicks, you get a note of 500 hertz. The only way to waste exactly 2,000 
microseconds between clicks is to run a delay loop, the time wasting 
properties of which are known exactly. There's no clock ticking away 
to help you. 
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To make matters worse, you must also time how long you want the 500 
hertz note to last. An Apple program playing a simple tone is two care
fully timed loops, one running inside the other—an inner, pitch loop, 
and an outer, duration loop. 

LOOP: CLICK SPEAKER 
GOSUB DELAY 
INCREMENT COUNTER; IF NOT DONE, GOTO LOOP 

And waveform control? Multiple voices? Volume control? Forget it. So 
appreciate how much work SID does for you. If he didn't do it, guess 
who'd have to. 

Now that we know a nickel's worth about making sounds on the C-64, 
the next step to making ASCII Organ a reality is to concoct a series of 
steps for making it happen. Again, let's use Basic (in a very syntax-re
laxed form) to express the problem. 

GOSUB INITIALIZE SCREEN 
GOSUB INITIALIZE SID 

START: GOSUB GETKEY 
IF KEY = Fl THEN END 
IF NO KEY PRESSED GOTO START 

GOSUB CHKKEY 
IF KEY UNDEFINED, GOTO START 

GOSUB BEEP/DRAW BAR 
GOTO START 

We're using a method called top-down programming. We start at the 
highest, overall level of the problem, and put off details into subrou
tines. You don't have to know how to make a tone or check a fire but
ton to write the main level of ASCII Organ; you make the assumption 
that such a function can be programmed, give it a name, and specify its 
calling conventions. 

Once the top level is solid, you move down to firm up the next level, 
and so on, until pretty soon, you're down at the bedrock of the prob
lem. For example, subroutine BEEP/DRAW BAR has sub-levels of its 
own. 

SUBROUTINE BEEP 

LOAD SID FREQUENCY REGISTER 
START PLAYING NOTE 
GOSUB DRAW BAR 
TURN OFF NOTE 
RETURN 
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By putting DRAW BAR into yet a third level, we keep BEEP clean and 
simple. 

SUBROUTINE DRAW BAR 

DRAW BAR 
WASTE TIME FOR 1/2 SECOND 
ERASE BAR 
RETURN 

Load ORGANPROG. Before we get into a detailed discussion of it, GO 
the program and play around for a bit. (We put a JSR $C000 at $C200 
for your GOing convenience.) For instructions, consult the definition. 
The first person to send in a tape of Moonlight Sonata played on the 
ASCII Organ wins a special No Prize and a hearty "Well done" . 

Now, How Does It Work? 

Refer to the assembly language listing at the end of this chapter as we 
work through ASCII Organ. The simulator can assist your efforts at un
derstanding the program, but keep a couple of things in mind. 

Don't try to simulate every step. Not only would this take days, some 
routines (GETIN, for one), won' t work at all under the simulator. In
stead, step through the main level of the program, using GO to execute 
selected subroutines all at once. 

Second, the display used by ASCII Organ is the same one used by TVC 
(only one per computer). As a result, TVC will interfere with ASCII Or
gan's efforts, and vice versa. Remember the RESTORE instruction. 

Routine by Routine 

Subroutine INITSCRN is surprisingly complicated. Why isn't it a simple 
rehash of that old favorite CLEARPROG, you ask? I'll tell you, after a 
digression on character colors. 

Color Memory 

When a Commodore 64 is first turned on, characters are presented as 
light blue letters on a dark blue background. TVC displays white char
acters against a black background. Why? How? (It has nothing to do 
with TVC's relocation of screen memory from $0400 to $C400.) 
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The answer concerns a hidden range of memory that serves as input 
for VIC, the display controller chip, just as screen memory does. There 
are 1,024 bytes of RAM from $D800-$DBFF (labeled as I/O in TVC's 
memory maps), organized just like screen memory, called color RAM. 
The least significant nibble of each location in this range tells VIC what 
color to display characters in. 

The low order four bits of location $D800 determine the color of the 
character in row 0, column 0. Location $D801 is for row 0, column 1, 
and so on. The Kernal wrote $0E, the code for light blue, into color 
RAM at power-up time. TVC changed these 1,000 locations to 3, pro
ducing cyan characters (see appendix B). If you change $D801 to 2, 
you'll see the character in that cell (the v in Visible Computer) change 
to red. 

The background color for the whole screen is controlled by a single VIC 
control address: $D021. EDIT a 3 there. The display blanks out. Why? 
TVC is still sitting in EDIT, waiting for you to do something about ad
dress $D022—but VIC is now displaying cyan characters against a cyan 
background. EDIT $D021 back to 0 (cursor left, then 0, then return). 

What's all of this got to do with ASCII Organ? To display a solid line of 
red on the display, two things have to happen. First, every location in 
color memory corresponding to where on the screen the red bar will be 
must have a least significant nibble of 2. That takes care of the red part 
of the problem. Next, how do we make it a solid bar, and not just a line 
of red commas or question marks? 

We'll use character number $A0, the inverse blank space. Since $20 is 
the space character, nothing appears on the screen when this charac
ter is output. If we invert it, by setting the high bit ($20 is 0010 0000; 
$A0 is 1010 0000), we get a character that is solid color. Parts of the 
TVC display are built out of inverse spaces, such the message window. 
If 40 inverse space characters are placed in a row that color memory 
has determined will be red, presto: a solid red bar. 

Back to Our Story... 

INITSCRN clears the screen through a double whammy of writes to 
both screen and color memory. First it sets the background color to 
black (even though it probably was already). Next it points zero page 
pair $FB,$FC to the first location in screen memory ($C400), and 
$FD,$FE to the first spot in color memory ($D800). Then it enters a 
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loop, similar to CLEARPROG's, that cranks through 1,024 memory lo
cations. Each color memory address gets a zero, character color black. 
Since the screen background color was set to black earlier, this has the 
effect of erasing the screen. 

Meanwhile, every position in screen memory is getting an inverse 
space. As soon as color memory is made something other than black, 
solid blocks of color will appear. When four pages of screen and color 
memory writes are finished, INITSCRN returns. 

INITSID 
This second initializing subroutine makes sure SID is ready to go when 
the main loop needs it. First we write zeros into SID's $1C control ad
dresses, to put SID into a suitably turned off, known state. $D418, 
SID's volume address, is set to maximum, and we return. Where possi
ble, the assembler pitches in to make the programmer's work easier. In 
line 91, the operand SID+ 4 is converted into address $D404 at assem
ble time. 

GETIN 

is the Kernal function we learned about in Chapter 14. It returns with 
the ASCII value of the depressed key in the accumulator. If 0 returns in 
the accumulator, no key was pressed. 

CHKKEY 

CHKKEY helps out the already complicated BEEP/DRAW subroutine 
by reducing the confusion of possible keystrokes returned by GETIN. 
When CHKKEY finishes, location $FC, also known as NOTE, holds a 
value from 0 through 12. If 0, the key pressed is not defined to mean 
anything in ASCII Organ (e.g., return, or "T"). If $FC is nonzero, it 
contains the selected note. 

These checks are a surprising amount of work. First we test for the 
zero, plus, and minus keys, as their value as notes (10-12) bears no re
semblance to their ASCII value as keys ($30, $2B, and $2D). The num
ber keys, 1 - 9, on the other hand, have ASCII values nicely ordered 
from $31 to $39, and can be tested as a group. 

First we test for the minus key, ASCII code $2D. If that's what really is 
in the accumulator, CHKKEY stores a $0C (note 12) in $FC, and 
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returns. If it wasn't the minus key, we test individually for the plus 
and zero keys; they become notes 11 and 10, respectively. 

If we still haven't found a match, there are two possibilities remaining. 
It's either one of the continuous number keys, or an undefined key. 
The program finds out by assuming that it is a number key. 

The number keys have ASCII values from $31 to $39. We subtract $30 
from the value in the accumulator. If there was in fact a number key 
stored there, the accumulator would now be in the range 1-9 (we 
tested specifically for value $30, "0", earlier). This assumption is 
tested by comparing the accumulator with #$0A; if this compare gen
erates a borrow, we have a number key. The BCS test would then fail 
(set borrow = clear carry), and we store the key value (already in the 
range 1-9) into NOTE. 

If the BCS passed, the key is undefined, and we leave CHKKEY with
out having changed NOTE from the zero we wrote there in the second 
instruction of the subroutine. CHKKEY has now set the table for 
BEEP, by turning a bewildering array of possible keystroke values into 
a tidy package at $FC. 

BEEP 

The glamour girl of ASCII organ, subroutine BEEP plays the tone cor
responding to the value in NOTE, and calls subroutine DRAW to put 
the colored bar on the screen. Making VIC play a specific pitch requires 
placing the frequency values for that pitch into the 16 bit pitch control 
register at $D400,$D401. Beep uses two short arrays to store these fre
quency values, PITCHL for the LSB, PITCHH for the MSB, and uses X 
as an index. 

The tables store pitch values from C through B. 
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Note C o n t r o l Value P i t c h (Hz) 
MSB LSB Decimal 

1 C 08 61 2145 128 
2 C# 08 El 2273 135 
3 D 09 68 2408 143 
4 D# 09 F7 2551 152 
5 E 0A 8F 2703 161 
6 F 0A 30 2864 167 
7 F# 0B DA 3034 181 
8 G 0B 8F 3215 192 
9 G# 0C 4E 3406 203 
10 A 0D 18 3608 215 
11 A# OE EF 3823 228 
12 B OF D2 4050 241 

We used the HEX pseudo op to generate these tables at the end of the 
program. The assembler turns the line: 

202PITCHLHEXOO,61,E1,68,F7,8F,30,DA 

from text into bytes at assembly time, just as it does 6502 instructions. 
It also automatically makes the connection between PITCHL and the 
address of the table, so the source program can reference the symbolic 
name of the table, not a number. The first byte in each table is zero, 
since the note values used to index this array range from 1-12, not 0-
11. The ORG at line 196 makes the tables start on a nice, even page 
boundary, and isn't really necessary. 

For example, suppose the plus key was pressed. That's note number 
11, so we'd read the 11th element of each table: $EF from PITCHL, 
$0E from PITCHH. That's pitch value $0EEF. 

After the pitch has been set, we turn the tone on with a write to 
$D404. BEEP next calls DBAR to draw a bar in the appropriate spot in 
the appropriate color. Note that the only thing BEEP does after DBAR 
returns is shut off the tone by placing a zero in $D404. Our guiding de
sign says notes last one-half second, and since note duration control 
clearly doesn't happen in BEEP, this timing must happen somewhere 
else. Specifically, in DBAR. 
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DBAR 

DBAR is three levels down in our methodical division of the problem. 
First it sets the jiffy clock to zero, using Kernal function SETTIM. SET-
TIM is RDTIM in reverse. The values in Y, X, and A are copied into the 
clock's addresses. Next, DBAR uses NOTE to index into yet another 
pair of arrays. The values retrieved from tables BSL (Bar Start Low) 
and BSH are the LSB and MSB, respectively, of the first address in 
color memory that needs changing. 

Again, assume that the plus key has been pressed. We have a note 
value of 11, and a 228 hertz (3823 * .0596) tone playing. The 11th entry 
in array BSL is $50; the 11th entry of BSH is $D8. $D850 is the first 
color memory location we'll modify to draw the bar for this note. For 
note 11 we want a bar drawn on lines 2 and 3 of the display (remember, 
high notes at the top). $D850 is the 1st column of row 2; the first of the 
80 locations in color memory that need modification. 

$D850 goes into pointer pair $FD,$FE, the note number in A, and we 
delegate the job of actually writing to color memory to subroutine 
BAR. Before we look at BAR, look at what DBAR is up to after BAR 
returns. First it reads the jiffy clock with RDTIM, and checks A (LSB of 
time counter) to see if 30 jiffies have gone by yet. If they haven't, we 
repeat the test. During ASCII Organ execution, 95% of the processor's 
time is spent here in repeated RDTIM calls. 

When time is up, BAR is called again, this time with a bar color of zero 
(black), to erase the colored bar drawn in the first call. Actually, we're 
being sneaky in how we call BAR this second time. By jumping to it, 
rather than JSRing, we cause the RTS at the end of BAR to return us all 
the way to BEER 

BAR 

We're now down four subroutines deep. (The main program called 
BEEP which called DBAR which called BAR.) Here's where ASCII Or
gan actually puts color on the screen, alternately displaying and eras
ing the inverse spaces stored in screen memory. BAR writes the note/ 
color value in the accumulator to $50 locations in color memory, 
starting with the address loaded in pointer pair $FD, $FE. $50 is 80 
decimal, representing two consecutive rows of screen locations. 
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Top down programming keeps every module of ASCII Organ more or 
less equal in complexity. A big part of the skill of programming is know
ing how to carve apparently monolithic problems into manageable 
slices. Your ability to do this will improve with practice. 

ASCII ORGAN LISTING 

]_ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

2 * * 
3 * A S C I I O R G A N * 
4 * * 
5 * * 
6 * BY: J IM BLACKSHEAR * 
7 * AND * 
8 * BRIAN BOULDIN * 
9 * * 
^0 *********************************** 
11 
12 
13 
14 ORG $C000 
15 
16 NOTE EQU $FC 
17 BGCOLOR EQU $D021 
18 SID EQU $D400 
19 VOLUME EQU $D418 
20 SETTIM EQU $FFDB 
21 RDTIM EQU $FFDE 
22 GETIN EQU $FFE4 
23 
24 
25 
2g *********************************** 
27 * * 
28 * MAIN PROGRAM * 
29 * * 
30 *********************************** 
31 
32 

C000: 20 IF CO 33 JSR INITSCRN ; INIT SCREEN & COLOR MEM 
C003: 20 47 CO 34 JSR INITSID ; INIT SID 
C006: 20 E4 FF 35 TOP JSR GETIN ; GET KEYSTROKE 
C009: C9 00 36 CMP #$00 ; 0 = NO KEY PRESSED 
C00B: F0 F9 37 BEQ TOP 
C00D: C9 85 38 CMP #$85 ; QUIT IF Fl PRESSED 
C00F: F0 0D 39 BEQ QUIT 
C011: 20 61 CO 40 JSR CHKKEY ; TURN KEYSTROKE INTO 0-12 
C014: A5 FC 41 LDA NOTE ; 0 = UNDEFINED KEY 
C016: F0 EE 42 BEQ TOP 
C018: 20 8A CO 43 JSR BEEP ; PLAY TONE, DRAW BAR 
C01B: 4C 06 CO 44 JMP TOP ; AD INFINITUM... 
C01E: 60 45 QUIT RTS 

46 
47 
4g *********************************** 
49 * * 
50 * INIT SCREEN * 
51 * * 
52 *********************************** 
53 
54 

C01F: A9 00 55 INITSCRN LDA #$00 ; SET BACKGROUND COLOR 
C021: 8D 21 DO 56 STA BGCOLOR ; TO BLACK C024: A9 C4 57 LDA #$C4 ; SET UP TWO POINTER PAIRS 
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C026: A2 D8 58 LDX #$D8 
C028: AO 00 59 LDY #$00 ; ($FB,$FC) — > $C400 (SCREEN) 
C02A: 84 FB 60 STY $FB 
C02C: 85 FC 61 STA $FC ; ($FD,$FE) — > $D800 (COLOR) 
C02E: 84 FD 62 STY $FD 
C030: 86 FE 63 STX $FE 
C032: A2 04 64 LDX #$04 ; DO FOUR PAGES OF WRITES 
C034: A9 00 65 LOOPl LDA #$00 ; STORE BLACK TO 
C036: 91 FD 66 STA ($FD),Y ; COLOR MEMORY, 
C038: A9 A0 67 LDA #$A0 ; INVERSE SPACES 
C03A: 91 FB 68 STA ($FB),Y ; TO SCREEN MEMORY 
C03C: C8 69 INY ; DO A FULL PAGE 
C03D: DO F5 70 BNE LOOPl 
C03F: E6 FC 71 INC $FC ; ADJUST MSB OF POINTERS 
C041: E6 FE 72 INC $FE 
C043: CA 73 DEX 
C044: DO EE 74 BNE LOOPl ; DONE AFTER FOUR PAGES 
C046: 60 75 RTS 

76 
77 
•yg *********************************** 

79 * * 
80 * INIT SID * 
81 * * 
32 *********************************** 
83 

84 

C047: A9 00 85 INITSID LDA #$00 

C049: A2 1C 86 LDX #$1C ; ZERO ALL $1C 

C04B: 9D 00 D4 87 LOOP2 STA SID,X ; SID CONTROL ADDRESSES 

C04E: CA 88 DEX 

C04F: DO FA 89 BNE LOOP2 

C051: A9 20 90 LDA #$20 ; WRITE $20 TO 

C053: 8D 04 D4 91 STA SID+4 ; TIMBRE CONTROL LOCATION 

C056: A9 F0 92 LDA #$F0 ; WRITE $F0 TO SUSTAIN 

C058: 8D 06 D4 93 STA SID+6 ; CONTROL LOCATION 

C05B: A9 OF 94 LDA #$0F ; SET VOLUME TO MAX. 

C05D: 8D 18 D4 95 STA VOLUME 

C060: 60 96 RTS 

97 

98 

gg *********************************** 
100 * * 
101 * CHECK KEY * 
102 * * 
]_Q3 *********************************** 
104 
105 

C061: A2 00 106 CHKKEY LDX #$00 ; INITIALIZE NOTE 
C063: 86 FC 107 STX NOTE 
C065: C9 2D 108 CMP #$2D ; IS IT MINUS KEY? 
C067: DO 05 109 BNE PLUS ; NOPE... 
C069: A9 0C 110 LDA #$0C ; IF IT WAS, STORE 12 
C06B: 85 FC 111 STA NOTE ; IN NOTE AND RETURN 
C06D: 60 112 RTS 
C06E: C9 2B 113 PLUS CMP #$2B ; PLUS KEY? 
C070: DO 05 114 BNE ZERO ; NAW... 
C072: A9 0B 115 LDA #$0B ; BUT IF IT WAS, PLUS 
C074: 85 FC 116 STA NOTE ; IS NOTE 11 
C076: 60 117 RTS 
C077: C9 30 118 ZERO CMP #$30 ; HOW ABOUT 0 KEY? 
C079: DO 05 119 BNE CNVT ; BRANCH IF NOT 
C07B: A9 0A 120 LDA #$0A ; 0 KEY IS NOTE 10 
C07D: 85 FC 121 STA NOTE 
C07F: 60 122 RTS 
C080: 38 123 CNVT SEC ; CLEAR BORROW 
C081: E9 30 124 SBC #$30 ; 
C083: C9 0A 125 CMP #$0A ; IF A < 10, A=NUMBER KEY 
C085: B0 02 126 BCS EXIT ; ELSE, KEYSTROKE UNDEFINED 
C087: 85 FC 127 STA NOTE 
C089: 60 128 EXIT RTS 

129 
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130 
131 *********************************** 
132 * * 
133 * BEEP * 
134 * * 
335 *********************************** 

136 
137 

C08A: A6 FC 138 BEEP LDX NOTE ; GET NOTE PRESSED 
C08C: BD 00 CI 139 LDA PITCHL,X ; READ LSB OF PITCH 
C08F: BC 10 CI 140 LDY PITCHH,X ; AND MSB FROM TABLE... 
C092: 8D 00 D4 141 STA SID ; STORE IN BOTH 
C095: 8C 01 D4 142 STY SID+1 ; HALVES OF PITCH REG. 
C098: A0 21 143 LDY #$21 ; TURN ON GATE 
C09A: 8C 04 D4 144 STY SID+4 ; TONE STARTS NOVJ 
C09D: 20 A6 CO 145 JSR DBAR ; DRAW THE BAR 
C0A0: A0 00 146 LDY #$00 ; RETURNS IN 30 JIFFIES 
C0A2: 8C 04 D4 147 STY SID+4 ; SHUT OFF TONE 
C0A5: 60 148 RTS 

149 
150 
251 *********************************** 
152 * * 
153 * DRAW BAR * 
154 * * 
155 *********************************** 
156 
157 

C0A6: A9 00 158 DBAR LDA #$00 ; RESET JIFFY CLOCK 
C0A8: AA 159 TAX 
C0A9: A8 160 TAY 
C0AA: 20 DB FF 161 JSR SETTIM 
COAD: A6 FC 162 LDX NOTE ; GET NOTE 
COAF: BD 20 CI 163 LDA BSL,X ; READ DATA FOR COLOR 
C0B2: BC 30 CI 164 LDY BSH,X ; MEM POINTER PAIR $FD,$FE 
C0B5: 85 FD 165 STA $FD ; FROM TABLE 
C0B7: 84 FE 166 STY $FE 
C0B9: 8A 167 TXA ; A TELLS BAR WHAT COLOR TO 
C0BA: 20 C9 CO 168 JSR BAR ; DRAW; $FD,$FE TELLS WHERE 
C0BD: 20 DE FF 169 WAIT JSR RDTIM ; CHECK THE CLOCK 
COCO: C9 IE 170 CMP #$1E ; RETURN WHEN LSB 
C0C2: DO F9 171 BNE WAIT ; IS 30 DECIMAL... 
C0C4: A9 00 172 LDA #$00 ; DRAW BAR IN BLACK 
C0C6: 4C C9 CO 173 JMP BAR ; BAR'S RTS RETURNS TO MAIN. P. 

174 
175 
^7g *********************************** 
177 * * 
178 * BAR * 
179 * * 
2Q0 *********************************** 
181 
182 

C0C9: AO 00 183 BAR LDY #$00 
COCB: 91 FD 184 BARl STA ($FD) ,Y ; WRITE COLOR VALUE TO 
COCD: C8 185 INY ; COLOR MEM 
COCE: CO 50 186 CPY #$50 ; DO 50 LOCATIONS 
CODO: DO F9 187 BNE BARl 
C0D2: 60 188 RTS 

189 
]_9Q *********************************** 

191 * * 
192 * DATA TABLES * 
193 * * 
194 *********************************** 
195 
196 ORG $C100 
197 
igg ***************** 
199 * PITCH LSB * 
200 ***************** 
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201 
C100: 00 61 El 202 PITCHL HEX 00,61,El,68,F7,8F,30,DA 

68 F7 8F 
30 DA 

C108: 8F 4E 18 203 HEX 8F,4E,18,EF,D2,00,00,00 
EF D2 00 
00 00 

204 ***************** 
205 * PITCH MSB * 
2Q5 ***************** 
207 

C110: 00 08 08 208 PITCHH HEX 00 ,08 ,08,09,09,OA,OB,OB 
09 09 OA 
OB OB 

C118: OC OD OE 209 HEX 0C,OD,0E,0E,0F,00,00,00 
OE OF 00 
00 00 

2io **************************** 
211 * BAR STARTING ADDRESS LSB * 
212 **************************** 
213 

C120: 00 70 20 214 BSL HEX 00,70,20,DO,80,30,EO,90 
DO 80 30 
EO 90 

C128: 40 FO AO 215 HEX 40,F0,AO,50,00,00,00,00 
50 00 00 
00 00 

216 **************************** 
217 * BAR STARTING ADDRESS MSB * 
218 **************************** 
219 

C130: 00 DB DB 220 BSH HEX 00 ,DB,DB,DA,DA,DA,D9,D9 
DA DA DA 
D9 D9 

C138: D9 D8 D8 221 HEX D9,D8,D8,D8,D8 
D8 D8 



18. 
Where Do I Go From Here? 

Buy an assembler. Quick. Now that you know what one can do, 
never again waste time looking up opcodes or calculating relative 
branches. Two assemblers available for the Commodore 64 are: 

Merlin 64 

Roger Wagner Publishing, 10761 Woodside Avenue, Suite E, Santee, 
CA 92701. 

Commodore 64 Macro Assembler Development System 

Commodore Business Machines, Professional Computer Division, 487 
Devon Park Drive, Wayne, PA 19087. 

Whichever assembler you decide on, don't expect to be doing great 
things with it the first day you peel off the wrapper. With all this power 
come a host of new things to learn. You'll have to adjust to the editing 
commands, the keystrokes for deleting, adding, and rearranging lines 
in your source program. You may have to unlearn some commands you 
learned to run a word processing program. 

You'll have to learn your assembler's pseudo ops, those special mne
monics that are not 6502 instructions, but rather commands for the as
sembly process to follow, such as determining where in memory a 
source program will be assembled to run. Expect to work as hard 
learning to effectively use an assembler as you did getting this far in 
machine language. 

J Used My Assembler to Write a Program But it Doesn 't Work and I 
Don't Know Why. Programs never work the first time, especially ma
chine language programs. A machine language program that takes a 
wrong turn can go a lot of places and do a lot of bad things in a hurry. To 
debug it you can either use The Visible Computer, or a machine lan
guage monitor such as Micromon 64. 

Bill Yee's Micromon-64 is an excellent debugging environment. Com
pact, complete, and free (if you buy a copy of Compute's First Book of 
Commodore 64). It has commands to disassemble, set breakpoints, 
compare memory ranges, fill memory with constant values, search for 
particular combinations of values, single step through programs, and 

128 
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more. There's a simplified, nonsymbolic assembler built in. If you're 
writing machine language routines called from Basic, Micromon lets 
you quickly move between Basic and the debugger. Micromon is $1000 
bytes long, and usually runs out of utility RAM at $C000, although it 
can be relocated elsewhere. 

Basic and Machine Language: Sharing the Work 

We said way back in Chapter 1 that the smart programmer doesn't use 
machine language unless he has to. Even then, he first tries to get the 
job done with a hybrid program, with Basic providing the main frame
work and machine language for the part that needs speed. To accom
plish sharing requires an understanding of what Basic is and isn't. 

What is Basic? 

Commodore 64 Basic is an 8K 6502 machine language program that 
normally resides in ROM from $A000 - $BFFF. Basic hogs, and right
fully so, most of the addresses in page zero for its internal variables. If 
it didn't, Basic programs would run even slower. Pages 310-316 of the 
Programmer's Reference Guide give a detailed breakdown on what lo
cations are used for what. 

Basic creates an environment that lets a programmer work with con
cepts instead of registers and addresses. Where you can say X = Y + Z 
without considering where to store variable X. Where you can copy a 
formula like R = SIN (2*THETA) almost straight out of a math book, 
without worrying how sines are calculated. Basic goes a long way to
ward bridging the enormous gap between the English language and 
standard algebraic representation, and the 8 bit, 56 instruction world 
of the 6502. 

If you learned one thing in this book, it's that a 6502 can no more un
derstand: 

1000 INPUT "ENTER YOUR NAME ";A$ 

than it can play chess or calculate income taxes. 6502 programs can be 
written to do these things, but the 6502 just rolls, shifts, jumps, adds 
and subtracts. 

A Basic program is an elaborate data table constructed and maintained 
by the machine language routines residing in $A000 - $BFFF that we 
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refer to collectively as Basic. The data table begins at $801 and works 
up. Actually, it works up from $801 and down from $9FFF: you run out 
of memory when the two parts meet. When a Basic program is execut
ing, the 6502 is not executing any of this data directly, that is, if we 
could somehow catch the 6502 in the act of running a Basic program, 
we would never find program counter values less than $A000. 

Instead, the 6502 is busy running subroutines that look at the data ta
ble (Basic program) to figure out what to do and where to go next. If 
Basic is told to do something unreasonable, such as divide by zero or 
jump to a nonexistent line, he's not in the same situation as the 6502 
jumping to non-code areas of memory, or encountering undefined op
codes. Basic remains in control, calmly printing error messages and 
waiting for further instructions. That's why faulty Basic programs are 
much less likely to crash the computer than bugged machine language 
programs. 

How to Organize Basic and Machine Language 

To call a machine language subroutine from Basic, use the SYS instruc
tion. Give it the decimal version of your routine's starting address. To 
call a subroutine at $C000, use SYS 49152. When your machine lan
guage subroutine executes a final RTS, Basic will pick up execution 
with the statement immediately after the call. A full 4K of RAM is 
available from $C000-$CFFF for just this purpose. 

Parameter Passing 
Just before your subroutine takes control, the A, X, Y, and P registers 
are loaded from locations $30C-$30F, respectively. If you have previ
ously poked values that your machine language routine needs into 
these addresses, you can thereby communicate facts from Basic to ma
chine language. Similarly, when your subroutine returns, the registers 
are stored back in $30C-$30F. 

If a few more bytes of information are needed, you can poke them into 
memory, at the place where the machine language subroutine expects 
to find data. Heaven knows, peeking and poking is second nature to 
most C-64 Basic programmers already. If the application requires a lot 
of data transfer between Basic and machine language, the machine 
language subroutine can act on the desired Basic variables directly. 
This is more difficult, as it requires a thorough understanding of how 
Basic stores variables internally. 
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The End of the Road 

That's it for the tutorial part of the Visible Computer. Obviously, at this 
point you haven't learned everything there is to know about machine 
language. As with any discipline, learning machine language involves 
more than reading one book. Here are three sure-fire ways to improve 
your programming skills: 

Read good books. Several good ones are listed below. There are good 
ones I've left out, but beware of the Judging-by-the-Cover syndrome 
in programming books. There are some bad ones out there. 

Study other people's assembly language programs. The Kernal 
listing in Abacus Software's The Anatomy of the Commodore 64 is a 
rich collection of ways to get things done in machine language. Com
puter magazines publish all manner of assembly language programs ev
ery month, usually with extensive comments and description. Pick one 
and dig in. 

Give yourself projects. Pick a task that seems suited to your capabili
ties (although sometimes the most innocent projects prove to be bot
tomless pools of complications). Maybe you could write a bubble sort 
capable of sorting more than one page of data. Or one that let you pass 
the size and address of the array when you call it. Try to modify ASCII 
Organ to use the joystick to control volume, or note duration. Think 
small and ease your way into more complex stuff. 

Suggested Reading 

6502 Programming 

By Rodnay Zaks. Sybex, Inc. 2344 Sixth Street, Berkeley, California 
94710. 

A detailed reference guide, with extensive discussions of signed num
bers, and demonstration programs implementing various arithmetic 
and sorting problems. 

6502 Assembly Language Programming 

by Lance A. Leventhal. Osborne/McGraw Hill. 630 Bancroft Way, 
Berkeley, California 94701. 

Another reference volume; get either the Sybex book or this one, but 
not both. 
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Programming a Microcomputer: 6502 

By Claxton Foster. Addison-Wesley Publishing Company, Inc. Reading, 
Massachusetts 01867. 

A funny little book, with some of the worst diagrams, but best descrip
tions you'll find anywhere. You'll need to read between the lines of 
this book somewhat, as its target vehicle is not the Commodore 64, but 
the KIM single board computer—but that's half the fun. Highly recom
mended. 

Compute's First Book of Commodore 64 

Numerous Authors. Compute Publications, Inc. Greensboro, North 
Carolina 27403. 

Some of the meatiest articles from Compute and Compute's Gazette re
printed. Several articles on linking Basic and machine language. Micro-
mon-64 instructions (and right to use) included. 

Compute's First Book of Commodore 64 Sound and Graphics 

Numerous Authors. Compute Publications, Inc. Greensboro, North 
Carolina 27403. 

More Compute and Compute's Gazette reprints. 

Anatomy of the C-64 

Angerhausen, et al. Abacus Software, P.O. Box 7211, Grand Rapids, 
Michigan 49510 

A C-64 reference book. Especially noteworthy for its fully commented 
ROM listings. 

The Commodore 64 Music Book 

James Vogel and Nevin B. Scrimshaw. Birkhauser Boston, Inc. 

130 pages about how to put SID through his paces. 



Appendix A 
Behind the Scenes of TVC 

TVC Memory Map 

Page Number 

FF 
:: Kernal 
EO 
:: I/O 
DO 
:: Character Generator 
C8 
:: Screen Memory 
C4 
:: Primary User Memory 
CO 
:: Easic Interpreter 
AO 
:: User Stack 
9F 
:: User Zero Page 
9E 
:: TVC ML Routines, Screen Images 
90 
:: TVC (Basic Program) 
04 
:: Basic/Kernal Work Areas 
02 
:: Stack 
01 
:: Zero Page 
00 

The Visible Computer: 6502 is a machine language/Basic hybrid. The 
Basic part does most of the work; it would have been almost as easy to 
write The Visible Computer: 6502 on the IBM PC, a machine based on 
the 8088 processor. Machine language routines are used primarily to 
calculate the result of arithmetic, logical, and shift instructions, as Ba
sic is singularly unsuited to this kind of bitwise manipulation. 
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To protect itself from the user, TVC maintains separate zero and stack 
pages. You can verify this by comparing reads of $0000-$01FF and 
$9E00-$9FFF. 

Although TVC allows master users access to the real zero page, there is 
no way to share the stack. The simulator always uses the bogus stack 
page at $9F00, and a subroutine passed to the 6502 via the GO com
mand will use the real 6502 stack. Any data written to the stack page 
during a GO will not appear to be there when you get back to TVC. 

TVC reads addresses $FFFE and $FFFF as $00, $C3, during EDIT and 
Window reads, and after a keyboard interrupt. This facilitates vec
toring simulated interrupts to a user handling program. 

Locations $00 and $01, the 6510's on-chip I/O registers, cannot be writ
ten to, even in master mode. 

Disclaimer 

The Visible Computer: 6502 is a tool for teaching machine language 
programming; a secondary function is the debugging of 6502 pro
grams. It is not intended to be a rigorous copy of the 6502 's internal 
workings. Although it correctly executes all 151 defined opcodes, it 
may arrive at identical results through different mechanisms. The 
term "microstep" has a conceptual kinship to microcode, but any simi
larity between the real working microcode of a 6502 and the micros-
teps of TVC is coincidental. 
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Screen Reference 

135 



Standard Color Codes 

Black 0 Orange 8 
White 1 Brown 9 
Red 2 L i 9 h t Red 10 

Cyan 3 G r aV x 1]-
Purple 4 GraY 2 12 

Green 5 Light Green 13 
Blue 6 Light Blue 14 
Yellow 7 Gray 3 15 
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Monitor Commands Reference 

Monitor mode is indicated by the " # " (number sign) prompt on the last 
line of the display. This indicates TVC's readiness to accept one of the 
following commands. 

Monitor commands have the general form: 

<command> [argument 1] [argument2] 

You must separate a command and its arguments by one or more 
spaces. You must not use spaces within a command or argument. 

This command list uses the following conventions: 

address A 16 bit number valid in the current monitor base. 
value A number valid in the current base. 
register An on-screen register. They are: DL, DB, IR, A, S, P, X, Y, 

PC, AD, MEMA, and MEMD. 
filename A valid disk file name, without embedded spaces: "TEST-

FILE"; "PROGRAM1". 

Slashes ("/") separate equivalent command parameters. 
Square brackets ("[]") enclose optional parameters. 

The Commands 

BASE 

Change display or monitor base. 

Syntax: BASE register/ALL/MEM/MON HEX/BIN/DEC 

Controls how numbers will be displayed on the screen, or interpreted 
when entered in the monitor. In place of register one may use ALL to 
change the base of all registers, MEM to change base of memory dis
play, and MON to change monitor input base. 

Example: BASE PC BIN 
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BORDER 

Syntax: BORDER value 

Change screen border color. 

BORDER changes the border color to the color value specified by pa
rameter value, where 0 < = value < = 15. Follows standard C-64 color 
code convention (see appendix B). 

Example: BORDER 6 

CALC 
Turn on calculator. 

Syntax: CALC 

This command invokes a four function, three base, integer calculator. 
The four functions are: + , -, *, and /. As with monitor commands, the 
operands and operator must be separated by spaces. 

Your first keystroke has a special effect. A Control H, B, or D (for Hex, 
Binary, Decimal), changes the calculator base and redisplays the num
ber in that base. Fl exits back to the monitor (or to a simulator pause, 
depending on how you got here). Any other character clears the line 
and waits for your input. 

To use the calculator for base conversion, enter the number you want 
converted, and use one of the base conversion keystrokes. To convert 
$3CF into decimal: Set calculator base to hex with Ctrl-H. Enter: 3CF 
<return>. Type Ctrl-D to see the number in decimal, Ctrl-B for binary. 

To multiply $3FF by $10, enter: 3FF * 10. 

If an operation produces a value greater than 65,535, or a negative 
value less than -32,767, a range error is given. Negative values are dis
played in two's complement form. 

Answers are displayed with the same routines that refresh the regis
ters, and therefore include leading zeros and, with binary numbers, 
embedded spaces. You need not include leading zeros, and must not in
clude spaces within numbers. 

Example: CALC 

EDIT 

Edit memory. 
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Syntax: EDIT address 

Entering EDIT mode displays the EDIT prompt, followed by the se
lected location and its contents. As with the calculator function, the 
first keystroke has special significance. 

The return and cursor right keys advance to the next address. Cursor 
left displays the previous address. Fl exits EDIT mode back to the 
monitor. Any other character enters the standard input routine. When 
return is pressed, your entry is checked for validity in the current 
monitor base. If valid and within range, it replaces the value formerly 
at that address. 

If that value is part of the instruction pointed at by the program 
counter, the next instruction line is updated. See the MASTER com
mand for a discussion of what locations can be written to. 

Example: EDIT $C100 

ERASE 

Erase display. 

Syntax: ERASE 

Clears display, but does not prevent subsequent processes from writing 
to it. 

Example: ERASE 

GO 

Transfer program execution to 6502. 

Syntax: GO 

Master mode only. If the next command is a JSR, execution of that sub
routine is passed directly to the 6502. 

Assuming the routine does no damage in the process of running, and 
there is no way TVC can protect itself in this situation, TVC will regain 
control when the 6502 executes an RTS at the end of the subroutine. 

During 6502 execution, "6502 Mode" appears on the error line of the 
monitor status area. When control is returned, the programmer's regis
ters, the disassembly window, and the next instruction line are up
dated. 

Example: GO 
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L 

Disassemble Memory. 

Syntax: [address] L 

Disassembles 5 instructions beginning at address. If no address is spe
cified, disassembly picks up where it left off previously. 

Example: C000 L 

LC/RC 

Set first address of right or left memory columns. 

Syntax: LC/RC address 

The effect of this command will not been seen unless the memory win
dow is open. 

Example: RC 900 

LOAD 

Load binary information from disk. 

Syntax: LOAD filename 

Enters programs and data stored in disk files into memory, beginning at 
$C000. If a file is larger than the $400 byte work space, it is truncated 
at that point. 

If the memory window is open, LOAD redisplays these addresses, even 
if they were not affected by the load. The next instruction line is also 
updated. 

Example: LOAD MAGNUMOPUS 

LOAD MEMORY 

A shortcut to editing ram. 

Syntax: address value 

If address is a location that may be wri t ten to, value replaces the cur
rent contents of address. See the MASTER command for more 
information. 

Example: A00 FF 
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LOAD REGISTER 

Manually load register with selected value. 

Syntax: register value 

If one of 16 bit registers is specified, value can range from 0-65,535. 
Otherwise, loads greater than 255 produce range errors. 

Example: PC 300 

MASTER 

Enter/exit master mode. 

Syntax: MASTER ON/OFF 

Master mode is for experienced users of TVC who desire more flexibil
ity in debugging and executing programs. It is indicated by the letters 

"M" and "Z" on the status line, and has the following effects: 

1. Enables the GO command. 
2. Allows writing to all memory locations, not just $C000-$C7FF. 
3. Maps actual (system) zero page. 

Example: MASTER OFF 

POP 

Pop program counter from stack. 

Syntax: POP 

Simulates an RTS by loading the program counter with the stack's two 
topmost bytes and incrementing the stack pointer by two. The value 
placed in the PC as a result of this instruction will be meaningful only if 
the top of the stack contains the return address of the calling routine. 
If S contains $FE or greater, POP is ignored. 

Useful as a way of backing out of slow, monotonous routines (such as a 
delay loop), or in figuring out how you came to be in a section of code. 

Example: POP 

PRINTER 

Turn printer on or off. 
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Syntax: PRINTER ON/OFF [value] 

Determines whether or not disassembly will be sent to a printer. Print
ing occurs only after the simulator's execution of each instruction. If 
you have selected this option, a "P" will appear on the status line. Pa
rameter value is an eight bit number sent to the printer as a secondary 
address parameter. 

If a printer is not connected, is off-line, or if you have a nonstandard 
interface, when you use this function, TVC may lock up, forcing you to 
reload to regain control. The printer must be configured as device 4. 

Example: PRINTER ON 80 

RESTART 
Restart TVC. 

Syntax: RESTART 

Restores TVC to its load time default values. Does not affect user mem
ory. 

Example: RESTART 

RESTORE 

Restore display. 

Syntax: RESTORE 

Undoes the work of the ERASE command by redrawing screen, accor
ding to the current window and register base settings. 

Example: RESTORE 

SAVE 
Save binary data to disk. 

Syntax: SAVE filename [value] 

Saves value bytes, where 1< = value < = $400, beginning with $C000 
to the floppy disk in drive 8 under the name filename. If value is un
specified, $400 bytes are saved. 

The standard conditions must be met for this command to succeed. 
Namely, the drive door closed on an initialized, un-write protected 
disk with some room on it. Do not attempt to defeat the write protec-
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tion of the TVC disk. To overwrite a file of the same name, use SAVE 
@0 .filename. 

Examples: SAVE MAGNUMOPUS CO 

SCREEN 

Syntax: SCREEN value 

Change screen background color. 

Changes the screen background color to the color value specified in pa
rameter value, where 0 < = value < = 15. Follows standard C-64 color 
code convention (see appendix B). 

Example: SCREEN 6 

STEP 

Set simulator step mode. 

Syntax: STEP 0/1/2/3 

Sets the stepping rate of the 6502 simulator. The effect of each step 
value is summarized in appendix D. 

Example: STEP 3 

WINDOW 

Set screen window. 

Syntax: WINDOW OPEN/CLOSE/MEM 

This command controls what is shown in the "window" area of the dis
play (approximately the central third). There are three options: 

CLOSE, the default setting, displays the entire processor/memory 
combination. OPEN clears memory area. MEM displays 16 memory lo
cations. (See RC and LC functions). The programmer's registers (PC-A-
X-Y-P-S) always remain onscreen. 

Example: WINDOW MEM 
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Appendix D 
6502 Simulator Reference 

The 6502 simulator is the portion of The Visible Computer that runs 
6502 machine language. The simulator interactively executes the 151 
defined instructions of the 6502 instruction set, by animating the mi-
crosteps necessary to perform each. Undefined opcodes are trapped 
and refused. 

The Message Window 

If the simulator is active, the first line of the message window will dis
play either "FETCH" (if the fetch cycle is in progress), or the mne
monic and addressing mode of the instruction under execution. 

Microsteps 

The second line of the message window displays the microstep cur
rently being executed. Microsteps are individual small tasks accom
plished in sequence to complete a given instruction. The nine TVC mi
crosteps are: 

CALC ADDRS Use the X or Y register to modify AD. 
COMPUTE Perform an arithmetic, shift, or logical operation. 
COND FLAGS Condition the flags. 
DEC Decrement a register. 
INC Increment a register. 
READ Read into the data latch the contents of the ad

dress in AD. 
T: (transfer) Transfer a number from one register to another. 

The source register is unchanged. 
TEST FLAG Examine P register flag. 
WRITE Write the number in the data latch to memory lo

cation AD. 

Controlling the Simulator 

The simulator is largely controlled by the monitor command STEP. The 
effect of each of the four step values is outlined here. 
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Step mode 3: The slowest, most instructive mode. The simulator 
pauses at each microstep. Pressing the spacebar will cause execution 
to proceed to the next microstep. When the instruction is complete, 
the monitor is entered. 

Step mode 2: Pauses do not occur automatically at microsteps. A pause 
may be forced by pressing the space bar. The monitor is entered after 
the completion of a full instruction. 

Step mode 1: Like mode (2) but instead of entering the monitor after 
completion of an instruction, the next instruction in memory is exe
cuted. Fl will force monitor entry after completion of the current in
struction. 

Step mode 0: Similar to step mode (1) but without update of the 
display. Only the disassembly and next instruction areas are kept cur
rent. As with (1), you can force monitor entry with Fl . When you en
ter the monitor, the programmer's registers are updated to their proper 
values. Because this mode skips time consuming display routines, it 
gives the greatest execution speed, approximately .5 instructions per 
second. 

Speed Control 

The number keys control execution speed. 1 produces the fastest exe
cution, 9 the slowest. Speed control is ignored in step mode 0. 

Pausing the Simulator 

You can force the simulator to pause by pressing the spacebar. To re
sume execution, press the spacebar again. Pressing C activates the cal
culator, the only monitor function available from within the simulator. 
Exiting the calculator returns you to the pause state. 

Interrupt Request 

Typing I while the simulator is active generates an interrupt request. If 
interrupts are enabled (I flag = 0), the B bit will be cleared, PC and P 
pushed on the stack, and an interrupt handling program at $C300 en
tered. 
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Appendix E 
Error Messages 

BAD OPCODE The simulator encountered an undefined instruc
tion. 

BASE TVC is unable to digest a numeric value you have 
given it. Make sure you use values valid in the se
lected base, without embedded spaces. 

COMMAND The command interpreter cannot understand your 
instruction. Try again, and watch your syntax. 

DISK FULL You are trying to SAVE a file to a disk that has no 
room for it. Use another disk. 

DIV BY 0 The calculator was told to divide by zero. 

MISMATCH Disk mismatch error. Happens when you try to use 
a Commodore disk not in 1541 format. 

NAME You tried to save a file with the same name as an 
existing file. To replace original file, use SAVE 
©^.filename. 

NOT FOUND File not found. Check your spelling, and 
remember, no embedded spaces. 

NOT JSR A GO command has been issued without JSR as the 
next instruction. 

NOT MASTER You tried to execute GO without being in master 
mode. 

RANGE You entered a number too large for the situation. 
For example, trying to load the X register with 
$101. 

READ ERROR Covers a multitude of sins related to disk opera
tions, including: Drive doors left open, disks 
inserted upside down or not at all, uninitialized 
diskettes, and real problems like faulty disk drives. 

W.PROTECT You attempted a SAVE on a write protected disk. 
Note: Do not attempt to defeat the write protec-
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tion of the TVC disk. Use an ordinary initialized 
diskette to save your files. 

ER XXXXX-XX An internal error has occurred in TVC. This error is 
caused by either a bug in the program or something 
your activities in master mode have done to dam
age it. If you feel the first case is likely we'd like to 
know about it. Drop us a letter listing the exact er
ror message and a description of what you were do
ing when you got the error. You must reload TVC to 
recover from an internal error. 
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Appendix F 
6502 Reference 
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This material reprinted from the Apple IIReference Manual through 
the courtesy of Apple Computer Inc. 




