

The Visible Computer: 6502

Machine Language Teaching System

Commodore 64 Version

Software Masters'"
3330 Hillcroft/Suite BB
Houston, Texas 77057

Copyright ® 1984 Software Masters

The Visible Computer: 6502 Program is copyrighted and all rights are
reserved by Software Masters. Only you, as original purchaser, may
use The Visible Computer: 6502 computer program and only on a single
computer system.

The Visible Computer: 6502 User Manual is copyrighted and all rights
are reserved by Software Masters. This manual may not be copied, in
whole or in part, by any means, without the express written permis
sion of Software Masters.

Warranty

For a period of ninety days after purchase, Software Masters will re
place defective Visible Computer: 6502 program disks free of charge.
Replacement cost after ninety days is $5.00.

Program and Manual by Charles Anderson

Commodore 64 Version by J.I. Blackshear, Jr.

i

i

I

I

Introduction

The Visible Computer: 6502 Machine Language Teaching System com
bines this manual with a diskette containing a 6502 simulator program
to provide a systematic way to learn machine language programming
on the Commodore 64 computer.

This manual is a tutorial on 6502 machine language and the related
concepts of binary and hexadecimal numbering systems. The program
is a simulation of the 6502 microprocessor, slowed down and opened
up for close inspection. Note: From a programming standpoint, the
6510 processor used in the C-64 is identical to the 6502; learning one is
learning the other.

Prerequisites
This manual assumes some familiarity on the reader's part with the Ba
sic programming language. Programming is programming, and the
more experience you have with any form of it, the better. It presup
poses no prior exposure to machine language, and includes
preliminary chapters on alternate numbering systems and hardware
fundamentals.

Hardware Requirements
To run The Visible Computer, you will need a Commodore 64 computer
with 1541 disk drive. A printer is optional. Sound capability, through
either your TV speaker, display monitor, or an external amplifier, is as
sumed, though not absolutely necessary.

Scope

Most of the books that profess to teach 6502 machine language work so
hard at thoroughness, with endless chapters on floating point arithme
tic and control programs for hypothetical daisy wheel printers, that
they skimp on the fundamental job of delivering the concepts. The
Visible Computer is designed to get you over the initial hurdles of ma
chine language programming, not to present algorithms for controlling
elevator systems.

Learning everything in this manual will not qualify you to work at Mi
crosoft writing 6502 Cobol compilers. However, if you apply yourself,
it will get you to the point where you will be able to develop indepen
dently in your area of interest, be it arcade games, chess programs, or
new and wonderful operating systems. And who knows, someday the
Microsoft recruiter might just give you a call.

About This Manual

Chapters 1,2, and 3 are the standard introductory fare of Hex, Binary,
and Computer Block Diagrams. They may be skipped by those who
have already been through eleven discussions of hex and binary (and if
they see one more block diagram of a computer, they'll scream).

The TVC program disk is not used until Chapter 4. It would be a good
idea to skip there quickly right now and make sure that your disk
works correctly.

The heart of the course is Chapters 6 through 16, where you'll work
through a series of progressively more difficult 6502 machine language
programs contained on the TVC disk. By the end of Chapter 16 you will
have read about, and seen demonstrated, nearly every 6502 instruc
tion, and will have earned the honorary title of TVC Master.

Chapter 17 shows how to write machine language programs, by taking
ideas and working through the design and coding phases to produce
working programs. The role of the assembler is discussed.

Chapter 18 is a rundown on the options available in assemblers, with
tips on debugging, techniques for interfacing Basic and machine lan
guage, and a suggested reading list.

Table of Contents

1. What Is Machine Language? 1

2. Alternate Numbering Systems 4
Positional Numbering Systems
Binary and Hexadecimal
The Logical Operators
Self Test

3. Hardware 18
Computer Block Diagram
The 6502/6510 Microprocessor
Memory Types
C-64 Memory Map
How Machine Language Works

4. Getting Started 28
Booting Up
The TVC Display
Talking to the Monitor
TVC Calculator
ERASE RESTORE WINDOW BASE

5. Working With Memory 34
TVC Memory Map
Displaying and Altering Memory
Writing to Registers

6. First Programs 39
The Registers
PROG1: Loading the Accumulator
The 6502 Simulator
Microsteps
PROG2: Storing the Accumulator
PROG3: Loading and Storing X and Y
PROG4: The Transfer Instructions

7. Processor Status Register 48
P Register Flags
Setting and Clearing the Flags
Conditioning Z and N
PROG5: Disassembly
PRINTER Command

8. Branches: Decision Making 53
Decrement/Increment Instructions
BNE: The Branch instructions
PROG6: Looping
The Step Command: Simulator Control

9. Addressing Modes 57
PROG7: Zero Page
PROG8: Absolute

10. Subroutines: The Stack 61
PROG9: JMP
The Stack
Pushes and Pulls
PROG10: JSR/RTS
PROG11: Stack Pitfalls: POP
PROG12: JMP Indirect

11. Instructions That Work: ADC/SBC 69
ADC: The Accumulator
The Carry Flag
PROG13: ADC
PROG 14: Multiprecision Addition
SBC: The Borrow Flag
PROG15: SBC
PROG16: Multiprecision Subtraction
PROG17: Multiplication
PROG 18: Division

12. Beyond Adding and Subtracting 75
The Shift Instructions
PROG20: Multiprecision shift

The Logical Operators
Reading the Joystick
FCHECKPROG
PROG21: AND/OR

13. Indexing: Special Uses for X and Y 82
PROG22: Block Move
Arrays
TOTALPROG
PROG23: Zero Page indexing

14. The Kernal: Canned Subroutines 87
Kernal Functions
GETIN
RDTIM
MASTER Mode
Sharing Page Zero

15. Indexing, Part II 92
Indirect, Indexed
CLEARPROG
GO Command
Indexed, Indirect
BTABLEPROG

16. Some Fine Points 98
NOP
Interrupts
RTI
INTPROG
Signed Numbers/Two's Complement
PRACTICEPROG
Binary Coded Decimal

17. Putting It All Together 107
Writing Machine Language Programs
Bubble Sort Algorithm
SORTPROG
ASCII Organ

Making Sound with SID
Color Memory
ASCII Organ Listing

18. Where Do I Go From Here? 128
Buy an Assembler
Basic and Machine Language Hybrids
What is Basic?
Suggested Reading

Appendices
A. Behind the Scenes of TVC 133
B. TVC Character Set/Standard Color Chart 135
C. Monitor Commands Reference 137
D. Simulator Reference 144
E. Error Messages 146
F. 6502 Reference 148

1.
What is Machine Language?

And If It's So hard, Why Do People Use It? This is a fair question,
and if you haven't asked it yet you probably should have. Before we
get into the hows of machine language we're going to touch on the
whys.

Although Basic gets all the publicity, the language closest to a C-64's
silicon heart is 6502 machine language. Later chapters of this book will
develop a more formal definition; for now, it suffices to say that 6502
machine language is the fundamental language of the Commodore 64
computer. Not a moment passes during a C-64's powered-on lifetime
when it is not executing 6502 machine language. In fact, languages like
Basic are nothing but clever ruses to save poor humans from the
wicked binary ways of 6502 processors.

As to the widespread rumor that machine language programming is
more difficult than programming in Basic, consider these two sets of
instructions for building a cedar fence in your backyard.

Basic
Using 6' by 6" cedar slats, with supporting posts
every 8 feet, build a fence enclosing your back
yard.

Machine Language

Drive to lumber yard. Purchase 722 6' by 6" ce
dar slats. Load into truck. Drive home. Unload
truck. Start at northeast corner of back yard. Dig
a hole three feet deep. Get post from pile. Insert
post into hole. Cement post. Move 8 feet west. If
not yet at corner, dig a hole three feet deep. Get
post from pile. Insert post into hole. . .

Is the second set of instructions more difficult than the first? Not
really. It looks more involved, and certainly took longer to write down,
but the individual jobs that make up the second paragraph are simplic-

l

2 THE VISIBLE COMPUTER: 6502

ity itself: "Move 8 feet west", "Get post from pile". So it is with ma
chine language. Working from a limited palette of about 50 simple in
structions, we achieve complex results by combining them cleverly.

Machine language programmers have to take smaller steps to get
where they're going. That means it takes more time to write programs.
Longer to design, longer to code, and much longer to debug. As a rule
of thumb, 10 times longer than working in Basic. Furthermore, almost
anything you can do in machine language can be done in Basic.

So why do people knock themselves out learning and writing machine
language programs? Two main reasons: l.For speed. 2.For more speed.
Machine language programs execute ten to one hundred times faster
than similar programs written in Basic. (Purists and other curmud
geons will object to this statement, and there is something to be said
for the fact that unless someone had written the machine language
program named Commodore Basic, Basic would not exist, even as an
alternative.) Is speed that important? It depends.

In an accounting program, where the computer spends most of its time
waiting for the operator to hit a key, or the printer to finish, or a disk
drive to get something, blinding speed is not important. We hear
phrases like "printer bound" and "floppy bound". A program that is
printer bound can only be speeded up by buying a faster printer. Writ
ing accounting programs in assembly language, then, results in pro
grams that wait for user input at very high speed, and cost 10 times as
much to develop as acceptably speedy programs written in Basic.
Clearly, an idea whooe time has not come.

But sometimes speed is desirable, even critical. Most arcade game pro
grams could not function written in Basic. Animation makes tremen
dous demands on a computer system: moving objects around the
screen requires the carefully coordinated movement of thousands of
numbers. At Basic speeds games like Pac Man would be exercises in pa
tience, with sluggish ghosts that take minutes to get from one side of
the maze to the other. So game programs, especially the arcade type,
are one place where we need the speed of machine language.

Many times the best tactic is a combination of Basic and machine lan
guage. Take the accounting application from a minute ago. Most of it
can be written in slow-to-execute, but fast-to-program Basic. Certain
time consuming jobs can be handled in machine language. For in
stance, sorting.

WHAT IS MACHINE LANGUAGE? 3

Sorting programs written in Basic, for those of you who have avoided
learning about such things thus far in your programming careers (and
your time is coming), are slow. Really slow. Sorting a list of 3,000 em
ployee numbers into a stack with the biggest at the bottom and the
smallest at the top takes at least two minutes, and maybe as many as
10, depending on what method we tackle the problem with. (The
methods available range from the crude—read easy—to the complex.
Graduate students as yet unborn will earn their degrees with programs
that sort .01 percent more efficiently than some other program.)

Two minutes is an important length of time to the operator of an ac
counting package, and ten minutes is an eternity. The strategy fol
lowed by the smart programmer, then, is to use Basic for everything
except the sort itself—and pass that job to a hard-to-write, but breath-
takingly fast machine language program. After 10 seconds (or one or
two, depending on how fancy a method we use), the Basic program is
handed on a silver platter a sorted list of employee numbers.

Sharing the work between machine language and Basic is a good tech
nique, employed by countless programs, including TVC itself. Mostly
Basic, machine language where you need the speed.

To sum up: The best reason for programming a Commodore 64 in ma
chine language is to speed up a process that would be too slow other
wise. Conversely, except as a learning exercise, it is a waste of time to
use machine language for something that would be acceptably fast
written in Basic.

2.
Alternate Numbering Systems

If you bought The Visible Computer with the hope that it would some
how save you the effort of climbing Mount Hexadecimal, picking you
up magically and dropping you safely into the valley of machine lan
guage programming on the other side, sorry, no can do.

People don't use binary and hexadecimal numbers to make machine
language programming easy; they use these weird numbering systems
to make machine language feasible. Although it is arguable, barely,
that one could learn some machine language without ever learning
hex, a person who went that route would find himself working twice
as hard as someone who learned the tools of the trade first and the pro
gramming second.

A Twelve is a 12 is a 1100

Most people agree that the symbols " 1 " and "2", printed together, like
this:

12

have a certain numeric meaning. Specifically, "12" represents the
quantity of periods printed here:

Or this many commas:

But there is nothing intrinsically "12-like" about these symbols sitting
next to each other. If we wanted to form a club that said from now on,

" * " would stand for 12 and "#" for 17, we could. Let's do that. You and I
will be the charter members of the " * = 12 and # = 17" Club.

Until further notice, " * " represents this many things:

4

ALTERNATE NUMBERING SYSTEMS 5

and "#", this many:

How many eggs in a dozen? Very good, * is correct. What fab group had
a 1964 hit called She was Just #? Right again, the Beatles. (Fooled
you—the song's title was really I Saw Her Standing There.) Although
we'd have to work fairly hard at it the first couple of months, eventu
ally it would become almost as natural as the old way.

But not when we're doing math. What's * times #? Even for people as
smart and good looking as members of the club, getting that answer is
pretty tough. Whereas everyone else's notation, "12 times 17", lends
itself to computational tricks like carrying and partial products, our
representation gives not a clue to the answer. We'd have to either
memorize all the combinations of multiplications and divisions for *
and #, or give up comparison shopping forever.

This situation isn't as farfetched as you might imagine. Consider the
Roman Empire. For all its accomplishments, Rome's state-of-the-art
method for representing numbers was what we now call Roman nu
merals. (Although I suppose they simply referred to them as "num
bers"). As with our club's method, Roman numerals are okay for some
things, (like the names of popes and book report outlines), and lousy
for others, like calculations.

It's a wonder they built Bridge I considering how hard their engineers
had to work to do this simple division:

XXIX / XIV

Stop and think about it. If you had to solve this problem you'd proba
bly proceed like this: Convert both parts into "normal" notation. Di
vide using conventional techniques. Finally, convert the answer back
to Roman numerals. Unfortunately, "normal" notation hadn't been in
vented yet, and wouldn't for another 500 years.

Around 500 AD an Arabian astronomer devised a better system. Not
only was the new Arabic notation better for representing long num
bers than the Roman method, it greatly facilitated arithmetic calcula
tions. Let's see why the Arabic method is so powerful. Numbers writ
ten with this system can be methodically broken into their component
parts.

6 THE VISIBLE COMPUTER: 6502

The value of a digit depends on its position the number. The value is
always ten times the value of the same digit one position to the right,
and one-tenth the value of the same digit one position to the left. This
positional chart shows how numbers can be broken down into their
components.

F o u r t h D i g i t Thi rd D i g i t Second D i g i t F i r s t D i g i t

10 3 10 2 10 1 10°
1000 100 10 1

3,479 b r e a k s i n t o :

3 * 1000 4 * 100 7 * 10 9 * 1
3000 + 400 + 70 + 9

209 i s :
2 * 100 0 * 10 9 * 1

2 0 0 + 0 + 9

The biggest problem keeping previous designers of numerical repre
sentation schemes from implementing a system like this was that they
never saw a need for a character to represent zero, the quantity noth
ing. Without zero to serve as a placeholder, you can't have positional
representation.

The usefulness of the Arabic positional system has nothing to do with
the symbols that form the counting alphabet. 6's and Ts aren't any bet
ter or worse than Vs and Xs. It's the positional concept that makes it
better. We will refer to this ingenious and familiar scheme not as "Ara
bic Positional", but as decimal (from the Latin decern, ten), because 10
is the value that each position is based on.

But this quantity:

is by no means magic in the grand scheme of the universe. No more
"round" or "even" than this number:

ALTERNATE NUMBERING SYSTEMS 7

So why do we use 10 as the base value of our positional notation?
Class? Anyone have a guess? Right. In all probability, because people
have 10 fingers, and for millions of years, fingers were all we had for
representing numbers. On a planet where beings have two hands of
four fingers each, we can reasonably predict that their positional num
bering system is based on the number:

The decimal numbering system has remained unchanged for 1,500
years because it is an extremely useful way of representing numbers.
There exist computational methods that allow 12-year-olds to calcu
late five digit square roots with nothing but paper and pencil. And in
all probability it will be popular 1,500 years from now, even though
the advent of the $4 calculator makes some of its best features (ease of
manual calculation) moot. If Roman numerals could have hung in
there until the Age of Cheap Calculators, they would have been in
good shape.

Unfortunately, for programming computers, especially in machine lan
guage, decimal falls flat on its well known face. Because of the way
they work, computers have a working vocabulary of only two digits.
It's easy to make an electronic device store a 1 or a 0, and hard to make
one that can store zero 0 through 9. A sensor that can detect whether a
light bulb is on or off is trivial. A device that can consistently detect 10
discrete levels of brightness is far more complex.

Computers need a two digit, or binary, positional numbering system.
Every fancy trick done by computers boils down to manipulations of
l's and 0's.

We don't need unique symbols to represent values 2 through 9 because
they can be formed by combinations of l's and 0's, just as decimal
doesn't need more than ten symbols to represent values greater than
9.

Here's a positional chart for the first four places in the binary number
ing system.

8 THE VISIBLE COMPUTER: 6502

Binary Positional Chart

Fourth Digit Third Digit Second Digit First Digit

23 22 2 1 20
8 4 2 1

1010 breaks into:

1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 = 10 dec.

1110 is:

1 * 8 + 1 * 4 + 1 * 2 + 0 * 1 = 14 dec.

In programming small computers, the most common lengths of binary
numbers are eight and 16 digits. Bits are numbered from right to left as
shown in this diagram. This is the first of many cases we'll encounter
in machine language where we start counting at zero, not one, so get
used to it. Bit 0 is often called the least significant bit (LSB), and bit 7,
the most significant bit (MSB).

It is also common to retain leading zeros when working with binary.
For example, you might see 101 written as 00000101.

7 6 5 4 3 2 1 0

ozmnMiEii]
Binary numbers can be added and subtracted with the same tech
niques we know for decimal.

1 11 <— carrys
1010 1010 1001

+ 0100 + 0010 + 0011
TTIU" TTUD" TTU0"

Carrys happen a lot in binary addition, and borrows are common in
subtraction. Otherwise, nothing too taxing about binary arithmetic.

"Round numbers" in binary are the powers of two: 1, 2, 4, 8, 16, 32, 64,

ALTERNATE NUMBERING SYSTEMS 9

128, 256, 512, 1024, 2048, 4096... These values will turn up through
out your machine language programming career, so get acquainted
with them.

Here's a formula (the only one in this book) to calculate the largest
number X you can store in n positions of base B numbers:

X = Bn - 1

The largest value you can represent in three digits of decimal is 999
(103 - 1). Base seven can represent numbers as big as 342 (73 - 1) in
three places. Binary can only get as high as 7 (23 - 1). Representing
even modest quantities in binary tends to be wasteful of paper. Count
ing to 10:

0
01
10

101
110
111

1000
1001
1010

To handle the range of numbers we encounter in day to day life takes a
lot of binary digits.

365 = 101101101

1*28 + 0*27 + 1*26 + 1*25 + 0*24 + 1*23 + 1*22 + 0*2! + 1*2°

531 = 1000010011

1*29 + 0*28 + 0*27 + 0*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*2! + 1*2°

Numbers like 1000010011 and 101101101 have a tendency to confuse
people. It helps a little if we clump binary digits ("bits") into even
groups. Four bits make a nibble. Eight bits make a byte (isn't that pre
cious]) In nibble form, 531 is 0010 0001 0011. That's a little better, but
not much.

Of course, just because computers need to run internally with binary
numbers doesn't mean that humans who use computers have to deal
with all l's and 0's. Basic programmers can and do live in a fantasy

10 THE VISIBLE COMPUTER: 6502

world where decimal is king. Unfortunately, machine language pro
grammers must frequently deal with the computer in straight, undi
luted binary.

One way around the computers-love-binary-but-people-love-decimal
problem is to let the human think in decimal—and convert into and out
of binary as necessary to communicate with the machine. Good idea,
but converting between binary and decimal is, as mathematicians say,
nontrivial. Going from binary to decimal is easiest, so let's start there.

"Take a binary number. Starting from the leftmost (most significant)
digit, accumulate the decimal equivalent of each position.

Position: 5 4 3 2 1 0
Decimal Equivalent: 32 16 8 4 2 1

0000 1001 is 8 + 1 = 9

0001 1010 is 16 + 8 + 2 =26

0010 0101 is 32 + 4 + 1 = 37

If you can remember the powers of two and do addition, you can con
vert from binary to decimal.

Decimal to Binary
Going this direction is harder. The conversion resembles a simplified
form of long division.

Converting 2 1 decimal
to binary: 7 6 5 4 3 2 1 0

Largest Power of two that 16121
divides into 2 1 is 16: i L

J- nnnsHEiDn
Next, try to divide the next 8 I 5

lowest power of two into -=-
the remainder. n Z D E H H n n

4 | 5

And so on until you have 1
a remainder of 0. 0 I 6 B 8 1 B • B * 8 ~*~l I

2 \1~

2 1 decimal = 10101 binary °

ALTERNATE NUMBERING SYSTEMS 11

Don't practice this any longer thatiit takes to get the general idea. You
can buy calculators that eat base conversions for breakfast.

Even with base conversion calculators, the chasm between binary-lov
ing, paper-wasting computers and 10 fingered, tree-loving human be
ings is a mile wide. Numbers that are very "round" in binary, such as
1000 0000 0000, are very jagged in decimal (2,048). And vice versa:
2,000 decimal is 0111 1101 0000 binary. Luckily, there's a bridge, called
hexadecimal, across the binary/decimal gap.

Suppose Phones Had Two Buttons

Suppose the phone company decided to release a new, improved tele
phone: "DigiPhone, The Phone of Tomorrow'", with only two buttons,
1 and 0. They'd have a big advertising campaign to convince people
that the DigiPhone would be faster, more modern, and generally better
in every way than the old, decimal phones.

Everyone's telephone number is converted to binary: 844-7171 be
comes 1000-0000 1110 0100 1100 0011. Area codes get expanded from
three digits to 10, enough to cover all 1,000 possible area codes. The
phone book doubles in size, but that 's no problem—they make the type
twice as small.

But the American people are not adjusting well to the new system.
They say it's almost impossible to correctly dial, much less memorize, a
phone number like:

(0010 1100 1001) 0101-0000 1000 1001 0011 1000

One mistake and you're calling a McDonald's in Kansas City instead of
your grandmother in Rockford, Illinois.

12 THE VISIBLE COMPUTER: 6502

The phone company has already built 286 million DigiPhones and
they 're not about to junk them. But they do offer a compromise. They
take out full page ads in newspapers across the country:

"Here's what we'll do, America. We'll go back to
our old phone books and publish everyone's num
ber in the old 10 button form. Numbers will be
easy to remember, just like before. When you
need to call someone, convert it to 2 bu t ton
format and make the call."

"Converting your old fashioned decimal telephone
number into modern, digital form is a breeze.
First, try to divide 8,388,608 into the number. If it
fits, the first digit is one, if it doesn't, the first
digit is zero. Next, divide 4,194,304 into the re
mainder. If it fits, the second digit is a one. Other
wise , it's a zero. Next,..."

People let the phone company know that a ten minute calculator ses
sion each time they made a call was a less than perfect solution. A com
pany think tank huddled for a week and announced a second compro
mise.

The solution? A new phone book, with numbers listed in a new, fairly
easy to remember format that converts easily, almost automatically,
into binary. The great breakthrough? Something called hexadecimal.
Easier for people to remember than binary. Not quite as easy as the
decimal they've been using since the first grade, but much easier than
binary. And easy to convert into and out of binary for dialing.

Whereas decimal has 10 symbols in its counting alphabet, and binary
two, hexadecimal has 16. This is a problem because there aren ' t sym
bols laying around to represent the six values for 10-15. Although we
could have invented new symbols, it was expedient to use something
that people and other writing machines already knew how to write. It
was decided that the first six letters of the alphabet would stand for
the missing symbols: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
Music set a precedent when it stole letters to stand for Do-Re-Mi-Fa-So-
La-Ti.

Armed with the notion that letters can sometimes be numbers, here's a
positional chart for hex.

ALTERNATE NUMBERING SYSTEMS 13

Hexadecimal Positional Chart

Fourth Digit Third Digit Second Digit First Digit

163 162 161 16°
4096 256 16 1

A3F breaks into:

10 * 256 + 3 * 16 + 15 * 1 = 2,623

D006 is:

13 * 4096 + 0 * 2 5 6 + 0 * 1 6 + 6 * 1 = 53,254

The utility of hex isn't the ease with which it converts into and out of
decimal—it's how well it works with binary. Hex gives humans good,

"ball park" feel for numbers (admittedly, not as comfortable as deci
mal), with straightforward, one-to-one conversions into binary. A03
may look strange to you now, but it's a heck of a lot easier to deal with
than 1010 0000 0011. How easy is it to convert between hex and
binary? Examine this chart that counts in all three bases.

Decimal

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hex

00
01
02
03
04
05
06
07
08
09
0A
0B
OC
0D
0E
OF

Decimal

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Binary

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0010

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

Hex

10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20

14 THE VISIBLE COMPUTER: 6502

See the relationship between hex and binary? One hex digit can stand
in for each binary nibble. Once you've memorized the hex equivalent
of each of the 16 nibble patterns, conversion between hex and binary
is a snap. A hex telephone number like 4-56CA0 becomes:

4 = 0100
5 = 0101
6 = 0110
C = 1100
A = 1010
0 = 0000

Put it all together and you've got the binary equivalent:

0100-0101 0110 1100 1010 0000

Converting from binary to hex is equally simple. Substitute the hex
equivalent of each nibble, and you've got it.

0011 0111 0001 1000 1100 0010
3 7 1 8 C 2 3718C2

There are two problems left in acclimating ourselves to this new num
bering system: First, how do we tell whether a number like 345 is hex
or decimal just by looking at it, and second, how on earth do we pro
nounce something like F3C0?

To clear up the former situation, 6502 programmers agreed to always
precede hex numbers with a dollar sign ("$"). This convention will be
followed in this book. It has nothing to do with Basic's use of " $ " to
indicate string variables. 345 is a decimal number. $345 is a hex num
ber equal to 837 in decimal.

For most of you the long term problem will be how to internally verbal
ize hex numbers containing letters. No one conquers this entirely, but
as a rule, call the thing by each character if it contains a "funny" num
ber. $C13 is "cee-one-three". Also, try calling $F000, "ef-thousand"
and $ COO, "cee-hundred".

ALTERNATE NUMBERING SYSTEMS 15

Logical Operators

Binary numbers have some properties that go beyond simply repre
senting decimal values and wasting paper. Numbers as simple as 1 and
0 lend themselves to some special tricks involving what are called the
logical (or boolean, after George Boole, 19th century English mathe
matician) operators. These operators are and, or, and exclusive or.

The logical operators are not unlike the four common arithmetic oper
ators, plus, minus, multiply, and divide. The biggest difference is that
they operate on binary numbers only one digit long. Sometimes the
terms "true" and "false" are used in place of 1 and 0. Examples of log
ical operations are:

1 AND1
0OR1

True AND True

Frequently, logical operations are shown schematically, as a "black
box" with two inputs, a mysterious internal process, and one output.

The Rules

An AND operation yields a 1 if and only if both inputs are 1.

An OR operation yields a 1 if one or both inputs are 1.

An EOR operation yields a 1 if the inputs are different.

16 THE VISIBLE COMPUTER: 6502

That's it for the rules. Not much to them. You've probably used logical
operators in Basic programs, perhaps without knowing it. Basic's IF
statement is based on logical operations.

IF (expression is true) THEN do this.
IF A > B THEN GOTO 1000

To handle this line, Basic first resolves the assertion portion of the
command (A > B) to a simple logical value: either true or false, if A is
less than or equal to B, false is inserted. If A is greater than B, a true is
inserted. By definition, falses cause THEN statements to be bypassed,
and trues cause them to be executed.

IF A OR B THEN GOTO 1000

will cause a branch to 1000 if either variable A or variable B is nonzero.
(Basic considers anything nonzero to be a 1). Logical operators can be
grouped and combined to express complex relationships.

IF A > B or (FLAG and G < 14) THEN GOTO 1000

This comes natural to most people, because we phrase such expres
sions everyday:

"If I can find it and you give me the money, I'll buy
it."

"If it doesn't rain tomorrow or if you leave the car,
I'll go downtown"

"If the copy machine is working, or Bill has the
flyers printed and I can get them in time, you'll
get your brochure. "

ALTERNATE NUMBERING SYSTEMS 17

Final Exam/Alternate Numbering Systems

Fill in the blanks.

BINARY HEX BINARY HEX

1001 1010 $F0

1111 1011 $02

0000 0001 $CA

1111 0000 $0C

1100 1101 $DD

0101 1010 $11

1011 1011 $E6

Convert 10111 to decimal.
Convert 69 to binary.
Perform these logical operations.

0 AND 1 = 1 EOR 1 =

1 AND 0 = 0 EOR 0 =

0 O R l = 1 AND 1 =

1 0 R 1 = 0 O R 0 =

1 EOR 1 = 1 EOR 0 =

0 EOR 1 = 0 AND 0 =

THE VISIBLE COMPUTER: 6502

3.
Hardware

A Control Data Corporation Cyber 6600 computer is big enough to fill a
medium sized house. A Commodore 64 doesn't weigh 10 pounds soak
ing wet (perish the thought). But these machines have a lot in com
mon; in fact, at the block diagram level they are identical.

Central Processing Unit (CPU)

The absolute monarch of every computer is the Central Processing
Unit. The CPU makes all the decisions and puts the other components
through their paces. Although there are almost as many different cen
tral processing units as there are computers, they each share the same
duties of control, decision, and calculation.

Memory

Memory is second fiddle to the CPU, but still an indispensable member
of the team. The CPU goes to memory for the stream of numbers that
govern its operation, a machine language program. The fundamental

18

HARDWARE 19

operation of a computer is the CPU reading numbers out of memory
and writing numbers into memory. Were it not for the need to occa
sionally communicate with human beings, CPU and memory could
happily function without the other two components.

Mass Storage

Mass storage holds data that isn't needed immediately and there isn't
room for in memory at the moment. Mass storage usually has desirable
financial qualities compared to memory; it costs less per byte. Exam
ples include disk drives and cassette tape.

Input/Output (I/O)

These are links that connect the binary, numerical world of a computer
with the world of people, devices such as printers, keyboards, and joy
sticks.

The Commodore 64

The Commodore 64 uses the 6510 microprocessor as CPU. A micropro
cessor is an integrated circuit (IC, or chip) that has an entire CPU
squeezed onto it. The CPU of a large mainframe computer may consist
of a thousand or more IC's. The 6510 is a top-of-the-line member of the
6500 series of processors. However, since from a software standpoint it
behaves exactly like the more familiar 6502, we will refer to it in this
book as a 6502. When someone writes machine language programs for
the 6510, they are using 6502 machine language.

The 6502 was introduced in 1975 by a small California company named
MOS Technology. The designers of the 6502 borrowed from and impro
ved upon an earlier microprocessor, the Motorola 6800. It is a tribute to
the quality of their design job that the 6502 is still a powerful, work
able processor for small computers. MOS Technology was subsequently
bought out by Commodore Business Machines. Every personal com
puter ever built by Commodore, beginning with the 4K PET in 1977,
has been designed around the 6502 processor.

Commodore is far from the only company using the 6502 in their ma
chines. Apple and Atari computers feature it. Many devices that are
not full blown computers, such as display terminals and video games,
have a 6502 calling the shots.

20 THE VISIBLE COMPUTER: 6502

The 6502 's greatest challenger for supremacy in the 8 bit microproces
sor field is Zilog's Z-80. Although the 6502 and the Z-80 have more
similarities than differences, the Z-80 is considered a register-oriented
processor and the 6502 a memory-oriented processor. The Z-80 has
more on-board storage, and the 6502 more flair in dealing with
memory.

The 6502 is said to be an eight bit microprocessor because it deals with
memory in eight bit chunks. This number stems ultimately from the
fact that eight of the 40 pins on the 6502 handle the transfer of binary
numbers into and out of the chip. Each leg transmits and receives the
electronic equivalent of 1 and 0.

Eight bits is enough to represent numbers from 0 through 255. Al
though this sounds like a serious limitation, a little programming,
teamed with the 6502's tremendous speed, allows the use of numbers
as big as we want. Tremendous speed? In the the time it takes to press
and release the return key, a 6502 can do 50,000 eight bit additions.

16 of the 6502 's 40 pins are used to specify addresses to memory. This
amounts to a 16 digit binary number, and means there are 65,536 (216)
memory cells potentially addressable by a 6502. Memory can be
thought of as a series of numbered cubbyholes, 65,536 of them, maybe

HARDWARE 21

in a giant roll-top desk; each cubbyhole has a slip of paper that can
hold a number from 0 - 255 (actually, eight tiny slips of paper just big
enough for a one or a zero). Reading memory is the act of first specify
ing the cubbyhole and then reading back the number stored there.
Writing to memory involves locating a specific cubbyhole, and scrib
bling a new number on the slip of paper, erasing whatever was there
before.

The 6502 in a powered-up C-64 is continuously engaged in a fast dialog
with its memory. If you were to put your ear against the keyboard, and
were very quiet, you might hear something like this (then again, you
might not):

6502: Memory—Give me the contents of cell 45601.
MEMORY: Okay. That number is... uh, 134.
6502: Now I need the contents of 45602.
MEMORY: That's going to be. . . 101.
6502: Hmmmm... Very interesting. (He thinks for a microsecond

or two). Okay, I need you to put 59 in location 101.
MEMORY: You got it.

There are three basic types of memory cells that make up the memory
mechanism a 6502 will find attached to its address and data pins.

RAM

RAM is the most useful type of memory cell, and not coincidentally, .
the most plentiful. RAM stands for Random Access Memory, meaning
you can ask one microsecond for location 3 and the next microsecond
for location 6,319. As opposed to cassette tape, a sequential storage
medium. If you want the last byte on a tape you must go through the
first 22,000 to get it. A memory cell implemented with RAM will obedi
ently read and write data at the command of the CPU. When you turn
off the power to a C-64's RAM, within a few milliseconds, the numbers
stored there disappear. (Who among us hasn't gnashed his teeth be
cause of this at least once.)

ROM

Like RAM, a memory cell implemented with ROM contains numbers
that the 6502 can read (in any order; it's just as random access as RAM).
The difference is that the numbers in a ROM cell are permanently en-

22 THE VISIBLE COMPUTER: 6502

graved at the factory, and cannot be changed, no matter how many
times the CPU tries to write to it. Thus the acronym: Read Only
Memory. This is both a liability and a blessing. It's not very flexible
(what if you want to do something with the computer that doesn't
need these numbers?), but has the endearing quality of withstanding
being turned off without losing the numbers stored there.

I/O Locations
I/O locations are the third type of memory cell. These are memory loca
tions that are tied to elements of the computer outside the CPU-ROM/
RAM clique. I/O locations let the 6502 communicate with the rest of
the machine. Some I/O addresses allow external devices to leave mes
sages for the 6502. In the rolltop desk analogy, these cubbyholes have a
trap door in the back, and some third party is responsible for the num
bers that appear there.

The 6502 looks at the slip of paper in cell number 56,320 marked
"PORT A" when it needs to know what's happening with the first joy

stick. Address 56,320, $DC00, is inside a chip called the 6526 CIA.
(complex interface adapter). The CIA acts as a window, or port,
through which external activities can be observed and influenced.

Divide and Conquer

A useful way to organize 65,536 (64K, where 1 K = 210 = 1,024)
memory locations is to group them into 256 "pages" of 256 locations
each. Think of memory as a book with 256 pages, and 256 words
(bytes) on each page. Page 3 is locations 768-1023, or $300 - $3FF. The
page concept is a natural for hex representation, as every address
breaks neatly into a page and a location within the page. Memory cell
$3411 is the $ 11th byte of page $34.

Just because the 6502 has the potential to access 65,536 memory loca
tions doesn't mean that every 6502 in the world can count on having
that many locations available to it. The design engineer who wants to
use a 6502 as the brains of a microwave oven, may decide that he
doesn't need more than 1,000 bytes of ROM and 100 bytes of RAM to
build the world's smartest microwave oven.

The 6502 that finds itself installed in such a microwave still has the ca
pacity to access 65,536 locations, but only a thousand are really there.
If it tries to access one of the unimplemented addresses, it's like a robot

HARDWARE 23

in a Toyota factory blindly trying to arc-weld a Corolla stalled 10 feet
up the assembly line. It thinks it's reading an instruction at location
$C000, but it's seeing random, arbitrary garbage.

So what locations have what on the C-64? The 6502 programmer has
to know, lest he try to store his data in ROM. The memory map is a use
ful tool for seeing at a glance the basic layout of the 64K addressing
range.

Commodore 64 Memory Map

Page Number

Decimal Hex Function

255 FF
Kernal (ROM-8K)

224 E0
I/O Addresses (4K)

208 DO
Utility RAM (4K)

192 CO

Basic Interpreter (ROM-8K)
160 A0

Basic Program Area (RAM-39K)

8 08
Screen Memory (RAM-IK)

4 04
Basic & Kernal Work Area (RAM-IK)

0 00

24 THE VISIBLE COMPUTER: 6502

I thought my 64 had 64K RAM

It does, even though adding up the blocks of RAM in this memory map
will only total 45K. Commodore got sneaky and piled ROM and I/O ad
dresses "on top" of certain RAM areas. Cell $A037 is stored in a ROM
chip by default, although it is possible to turn off the ROM at this ad
dress so that the underlying RAM cells in the range $A000-$BFFF are
turned on. The technique of turning off an area of memory while
turning on another is called bank selecting. If we didn't bank select,
when the CPU tried to read one of these shared addresses, there 'd be a
fight on the data bus as RAM tried to say one thing and ROM something
else.

A Trip Through the Memory Map, From Bottom Up

The nature of the processor forces designers of 6502-based computers
to populate the lowest memory locations with RAM, for important sys
tem functions. Soon we'll learn why.

Screen Memory

The C-64 uses so-called "memory mapped" video, a modern technique
that is both flexible and inexpensive. The memory range $400-$7FF
leads a double life. It is part of the 6502's memory map, and appears to
the CPU to be garden variety RAM. It is simultaneously an important
input for the C-64's video circuitry, that part of the machine that de
cides what dots to light up and what dots to leave dark on your screen.

Basic

Next comes 39K of RAM, normally used for Basic programs and data.
This is the 39K the C-64 is referring to when you turn it on ("38911
BASIC BYTES FREE"). Basic itself (an 8K machine language program)
comes next, stored in ROM. From $C000 through $CFFF are 4,096

"utility" RAM locations, often used to store machine language routines
to be used with Basic programs.

At the Top

$D000-DFFF are I/O addresses, locations tha t allow the 6502 to com
municate with the rest of the computer, and consequently with human
beings. Included in this range are two CIA's with 16 ports each, a 6581

HARDWARE 25

Sound Interface Device (SID), with numerous control locations for
sound generation, and a 6566 Video Interface Controller (VIC) for
managing the display. VIC is the heart of the C-64's video mechanism;
he looks at display memory and figures out what to put on the screen.
Acronymically speaking, C-64 I/O is simply two CIA's, a VIC and a SID.

The top 8K addresses are ROM, and contain a series of utility programs
that perform various odd jobs such as reading the keyboard and posi
tioning the cursor, called the Kernal.

Mass Storage

65,536 bytes is a lot of RAM, but sometimes not enough. The 1541 disk
drive can store 170,000 eight bit numbers on one disk—and we can
have as many individual disks as we can afford. Ironically, the 1541 is a
computer in its own right; it has its own 6502, which runs a boring lit
tle program that has it listening all day for commands from the "boss"
computer, and fulfilling requests to read or write information.

The connection between C-64 and disk drive is a serial (one bit at a
time) interface, with an effective transfer rate of about 350 bytes per
second. Once the main CPU gets the data from the disk drive into
RAM, it can deal with these numbers in the normal, fast way. Like
ROM, a disk retains its data when power is removed.

But How Does It Work?

The movie TRON notwithstanding, the world of the 6502 is as far re
moved from human experience as anything could possibly be, more
like the whirling cams and levers of a bottle capping machine, than
men in funny hats playing catch with luminous Frisbees. Even so, an
analogy relating the 6502 to the actions of human beings is a good way
to explain how machine language works.

Consider, if you will, the loading dock of Giant Metropolitan Software
Publishing House, Inc. Delivery trucks move ponderously in and out of
loading bays. Workers with dollies and fork lifts move refrigerator-
sized cartons of blank disks coming in and completed programs and
manuals going out.

The undisputed boss of the dock is the foreman, an imposing figure in
sky blue jump suit and orange Astros cap, directing workmen to and
fro, signing paperwork, glancing occasionally at a clipboard in his left
hand.

26 THE VISIBLE COMPUTER: 6502

He runs things tight, by The Book. The Book is a much worn spiral
notebook of maybe 150 pages chained to his desk. The label on the torn
cover, although now illegible from years of use, once said: "SHIPPING
DOCK PROCEDURES MANUAL". Each page is numbered. Some pages
have only two or three lines on them, others, 10 or 15. Page 12, for ex
ample, says, in careful lettering:

PROCEDURE 12 UPB — UPS BLUE SHIPMENT

STEPS:

1. PACKING LIST FOLLOWS WORK ORDER
2. AFFIX BLUE LABEL STICKER
3. LEAVE AT UPS AREA
4 . DONE

Every morning the foreman finds a thick stack of work orders waiting
in his in basket. Each has some inter-office mumbo jumbo on it, and, in
the upper left hand corner, the all important shipping dock procedure
number. Not all of the sheets in the stack are work orders; most need
the sheet or two of paperwork with them to be complete.

The dock foreman's most important tool is his green work order clip
board. After his morning coffee he takes the first one from the stack
and clips it to the clipboard. As long as that work order is on the clip
board, he devotes his energies totally to performing the operations re
quired to fulfill it.

There's a bunch of writing on each work order, but he's only interested
in the procedure number. Today's first one has a procedure number of
22. "TPC", he mumbles to himself as he flips to page 22 of the proce
dure manual. (He knows 22 by heart, but turns to the page anyway.
He's that kind of man.)

PROCEDURE 22 TPC — TEXPAK C.0.D

STEPS:

1. PACKING LIST FOLLOWS WORK ORDER
2. CALL TEXPAK FOR PICKUP
3. FILL OUT C.O.D. FORM
4. MOVE PACKAGE TO SHIPPING AREA
5. DONE

HARDWARE 27

When he finishes the last step of TPC, if it takes five minutes, or 15, he
comes back to his desk, unclips the old work order and puts it and the
packing list that went with it face down in the OUT basket. Without a
pause, he takes the next work order from the In box, tacks it to the
clipboard, and goes to work on it. All day long: Get a work order. Look
up procedure. Perform the work order. Get a work order. Look up pro
cedure...

A 6502 runs the same way: Access a memory location. Decode the con
tents of that location. The instruction may require the next byte or
two in memory for execution. Execute the command, and proceed to
the next memory location for the next instruction.

The Fantastic Voyage

Remember the movie Fantastic Voyage? Where some intrepid scien
tist/military types are shrunk to the size of a microbe to assist in the re
moval of a tumor from a valuable (I guess!) scientist's brain?

Through the magic of the printed word, we're going to do the same
thing. Only without Raquel Welch in the crew. Take that back—she can
come too. We climb into our manta ray shaped submarine and buckle
up. Brace yourself. Soldiers are blasting us with strange violet light.
We're shrinking. We're getting smaller. . .smaller. . .smaller. . .

We're so tiny now that the period at the end of this sentence looks like
the Astrodome. We lift off (this submarine can fly, too) and head
straight for a nearby C-64. It looks as big as Mount St. Helens. We slip
easily through a crack in the keyboard, into a bizarre, alien landscape
of ribbon cables and clock crystals. We drift eerily for what seems
hours. Suddenly, dead ahead is a huge black monolith. The objective of
our mission: the 6502 microprocessor. . .

4.
Getting Started

It's time to get acquainted with program portion of The Visible Com
puter. If you have anything plugged into the expansion port, remove it.
TVC will not run with any other software resident in the computer.
Turn on the monitor (or TV), disk drive, and computer, in that order.

Insert the TVC disk, and run it by entering:

LOAD "TVC",8,1

If the Software Masters copyright message does not appear within 10
seconds, repeat these steps. If you have followed instructions exactly,
and still can't get the program to run, contact your dealer or Software
Masters for assistance.

The copyright screen will remain for several seconds, after which TVC
will begin to load into memory. In about 90 seconds, the main display
will appear.

You're now looking at something that few have ever seen: the innards
of a working microprocessor.

Each of the boxes holding a hex number is a register. A register is a
place inside the processor where we can store binary numbers, a lot
like a memory location. The 6502 can perform marvelous feats with a
few simple operations on the contents of these 10 registers. In the next
chapter we'll begin to see how this is done.

Speaking of memory, the 6502's contact with its 65,536 address loca
tions is via the two registers labeled "mem", for memory. The 16 bit
register is for the address; the eight bit register is for the data stored at
that address. During program execution, this is where numbers appear
that are being stored in and retrieved from memory.

The message window in the upper left hand corner is where TVC out
lines the steps it follows in executing 6502 instructions. When TVC is
not actively running a program (now, for instance), this window is
blank.

28

GETTING STARTED 29

30 THE VISIBLE COMPUTER: 6502

We'll put off talking about the disassembly area until we learn what
disassembly is. The status box in the lower right part of the screen dis
plays various tidbits germane to TVC's execution. At the very bottom
is the command line, where you'll enter commands to control TVC.
The "#" (number sign) is the monitor prompt. It serves as a reminder
that entries should be statements recognizable by TVC.

The line next to the prompt is the cursor, and, like the flashing block
cursor of Basic, shows you where you are on the screen when typing.

The Visible Computer consists of two major parts: the monitor and the
6502 simulator. The monitor controls ("monitors") the simulator. The
simulator is the part that actually executes 6502 programs. Through
out this manual we will use phrases like "in the monitor" and

"returning to the monitor." You are "in the monitor" when the prompt
is at the bottom of the display. You are "in the simulator" whenever
the prompt is not at the bottom of the screen.

Monitor Commands

TVC has more than 20 commands in its vocabulary. You tell it some
thing, and, if what you told it is something it understands how to do,
it'll do it.

Entering Commands
To issue a command, type your request and press return. If a command
consists of more than one part, use a space between the parts to sepa
rate them.

To fix a mistake, use the delete key to erase the error, and retype. (The
C-64 screen editor does not function within TVC, and attempting to
use these techniques may clobber the display.) If TVC cannot under
stand your instruction, it will tell you so with error messages.

Commands have the general form:

COMMAND [argumentl] [argument2]

Argument is a 25 dollar computer word that means "modifier". Some
TVC commands need no arguments; others need additional informa
tion to be complete, just as some Basic commands ("END", "NEW")
stand alone, while others ("IF", "GOSUB") don't make sense unless
you include more information.

GETTING STARTED 31

Examples of one word monitor commands are ERASE and RESTORE.

The monitor command BASE (change a register's base to hex, binary,
or decimal) needs two arguments; one to indicate the thing we're
changing the base of, and another to specify the new base. BASE PC
BIN changes the display mode of the program counter to binary.

You must separate a command and its arguments by one or more
spaces. You must not use spaces within a command or argument. For
example, if you entered the ERASE command as ER ASE, the com
mand interpreter of TVC would understand it to mean: "Perform ER
using argument ASE". Which, upon trying to find command ER,
produces an error. If you can't get a command to work, check your syn
tax, and don't forget the spaces in commands that have arguments.

Now to get our feet wet with a couple of commands. First, we'll call up
the calculator and see if two plus two equals four. I know that's a ques
tion of great concern to many of you.

Type CALC and press return. (Typing an instruction and pressing the
return key is called "entering" in this manual.) If you make a mistake,
back up with delete and fix it. If "Command" appears in the status
window, TVC could not understand what you entered.

Eventually you should see the following on the command line:

<HEXXCALC> 00

The "HEX" means that the current calculator base is hex. All numbers
produced by the calculator will be displayed in hex {without dollar
signs), and all numbers you enter must contain only characters valid in
hex. In other words, no hex numbers like G3#B, or decimal numbers
like FC3. Do not include dollar signs; if the calculator's base is hex, the
dollar sign is understood. The calculator base can be changed to binary
by typing a Ctrl-B (Type Ctrl-B by holding down the CTRL key and
pressing B), and a Ctrl-D for decimal. For now leave it in hex (Ctrl-H).
Enter:

2 + 2

2 + 2 is replaced by 04. If you didn't get four for an answer, make sure
you include the spaces between the two's and the plus sign. Now try
these problems:

32 THE VISIBLE COMPUTER: 6502

3 + 3
4 * 4
6/2
3EA * C (Try that on your Casio!)

To convert between bases, follow these steps. Converting 65,000 deci
mal to hex:

Ctrl-D
65000 <return>
Ctrl-H

Convert it to binary with Ctrl-B, and back to decimal with Ctrl-D. With
the base decimal, try adding FF to 3. The BASE error that results is
TVC telling you that you have entered characters not valid in the cur
rent base. FF is not a valid decimal number.

Answers are displayed with leading zeros, and for binary numbers,
with spaces separating each nibble. This calculator has certain
properties that make it undesirable for everyday checkbook balancing
and miles per gallon calculations. It is an integer calculator; numbers
with decimal points are not allowed as input. Divisions produce trun
cated (chopped off, as opposed to rounded off) results, (e.g., 6 /2 = 3;
5/2 = 2; 9/10 = 0)

You may not enter negative numbers. Dashes entered anyplace except
as the operator are treated as invalid characters. If you do a subtrac
tion that produces a negative number, by subtracting a larger number
from a smaller number, the answer will be displayed in two's comple
ment form (later we'll learn what that is). Lastly, you may not enter, or
produce via calculations, numbers greater than 65,535. These quirks
are a result of the calculator's purpose in life, to help you write ma
chine language programs.

When you've had all the fun you can stand changing numbers back
and forth between bases, return to the monitor by pressing Fl . Got the
monitor prompt back? Next, try this short and sweet command:

ERASE

Wow. Spectacular. ERASE clears a space where you can experiment
with the display. But since it's sad to see a lonesome little monitor
prompt all by itself, bring the display back with the RESTORE com-

GETTING STARTED 33

mand. If you like, you can issue these two commands over and over.
For the more adventurous, let's move on.

Enter: WINDOW OPEN. Now we're erasing only a part of the display.
When you know more about 6502 programming, you'll appreciate the
choice of registers that remain onscreen when the window is open.
Again, we don't want to leave our display looking so empty, so replace
the part that got erased with WINDOW CLOSE.

What's So Great About Hex?

TVC defaults to a display mode of hex for all registers except P, but you
don't have to leave it that way. Change the base of all the registers to
binary with:

BASE ALL BIN

Change only the A register to decimal with BASE A DEC. Mix and
match any combination of hex, binary and decimal. Get it looking like
you want a 6502 to look. By the way, the names of memory's address
and data registers are MEMA and MEMD, respectively.

This concludes our first session with TVC. We've learned what the
monitor is, and have experimented with the commands CALC,
ERASE, RESTORE, WINDOW, and BASE. In the next chapter we'll go
in up to our knees and splash around a little.

5.
Working With Memory

TVC Memory Allocation

Page Number

FF
:: Kernal (8K)
EO
:: I/O (4K)
DO
:: Reserved for TVC (2K)
C8
:: Screen Memory (IK)
C4
:: Primary User Memory (IK)
CO
:: Basic (8K)
AO

:: Reserved for TVC (39K)

02
:: Stack Page
01
:: Page Zero
00

In this chapter we'll learn how TVC subdivides the C-64's memory
map. Then we'll practice the monitor techniques of examining and
changing the contents of memory.

Although you can read bytes from anywhere in memory, only the
ranges $C000-$C7FF and $0000-$01FF can be written to. If you were

34

WORKING WITH MEMORY 35

allowed to populate other areas with the numbers of your choice, you
might hur t TVC; perhaps crash it, maybe just subtly alter a single func
tion. TVC will appear to accept an order to place a value at $4003 (no
error messages), but will not obey it. It handles ROM and I/O locations
the same way. Later, when you've passed a few milestones in your stu
dies, you'll learn a command that lets you to write addresses anywhere
in the memory map. (Although you'll never have any luck writing to
ROM. no matter how much you learn.)

The IK primary user area ($C000-$C3FF) is plenty of room for most
machine language programs.

A Window into Memory

Display the contents of 16 memory locations by entering:

WINDOW MEM

Unless you tell it otherwise with the LC or RC commands, TVC displays
addresses $C000-$C007 and $0000-$0007 in the memory window. You
can change the base of the memory window to decimal with BASE
MEM DEC. BASE MEM HEX changes it back. If you want to change the
value of a location, there are three options.

Direct Loads

The quickest way to write to a memory location is a direct load. Enter
the address and the value you want stored there, separated by a space.
Both address and value must be numbers valid in the current monitor
base (the second entry on the TVC status line—hex, if you haven' t
changed it since startup). To put $CA in location $C006, enter:

C006 CA

See the contents of $C006 change? How nice. C004 3 writes a three
into location $C004. To use decimal numbers, set the monitor base to
decimal with BASE MON DEC. Now addresses and data must be given
in decimal. 49158 4 places a four into $C006. We're going to be using
hex almost exclusively, so change the monitor base back to hex (BASE
MON HEX).

Remember memory mapping? How what 's on the display is a function
of a special area of memory called screen memory? We're going to ver-

36 THE VISIBLE COMPUTER: 6502

ify that by writing the code for a lower case "g" into screen memory,
and consequently, onto the display. TVC, for good reasons of its own,
has moved screen memory from its normal place in the C-64 memory
map ($400-$7FF), to $C400-$C7FF. It's organized the same way; each
address is $C000 greater.

The screen is subdivided into twenty five rows of 40 character posi
tions each, for a total of 1,000 characters. The shape that the VIC chip
draws in the row 0, column 0 position (upper left hand corner) of your
screen at any given moment is controlled by the number stored at loca
tion $C400. The bit pattern displayed just to the right of it, at row 0,
column 1 is controlled by the value in location $C401. The last column
position of the first row is at $C427. The first column of the second row
is at $C428.

Let's put a "g" in the third column of the second line of the display.
That's going to be memory location $C400 + (1*$28) + 3, or $C42B.
The code for "g" happens to be $07.

Here goes:

C42B7

Instantly the VIC chip responded to the new value and produced a
different dot pattern in the corresponding part of the screen.

Direct loads are okay for a couple of quick writes, but if we want to
write data in 50 consecutive locations, it's a lot of work specifying the
address each time. A more efficient way to change several consecutive
locations is the EDIT function. Invoke editing by entering:

EDIT C000

This causes editing to start at memory location $C000. To change loca
tion $C000, enter a number (naturally, an 8 bit number valid in the cur
rent monitor base). The number you enter replaces the previous value,
in memory and onscreen. The address advances by one and the process
repeats. There are a couple of tricks you can do with your first key
stroke. Cursor left displays the contents of the previous location. Cur
sor right (or return) jumps to the next location, without changing the
number stored at the first address.

Change the values stored at $C000 - $C007 to $11, $22, $33, $44, $55,
$66, $77, and $88. Move forwards and backwards through this range

WORKING WITH MEMORY 37

with the the cursor key. Do the values returned by EDIT agree with the
memory window?

F l cancels EDIT and returns you to the monitor.

If you write to a valid location not displayed in the window, the
change is made in memory, but not onscreen. There are two commands
which change the memory locations displayed, LC (change left col
umn) and RC (change right column).

To list locations $FF00-$FF07, enter:

LC FFOO

If you want, you can display the same locations in the right column. It's
a free country.

Loading From Disk

The LOAD command loads memory with data stored on disk as either
program or sequential files. The demonstration 6502 machine lan
guage programs we will be using shortly are loaded this way. You can
also use LOAD to write zeros into your working area, to clean it up.
This is done by LOADing a file on the TVC disk consisting of nothing
but zeros, named, appropriately enough, ZEROS. Try it now.

LOAD ZEROS

This zeros addresses $C000-$C3FF, the TVC user area. The memory
window should reflect the change. TVC cannot deal with file names
that have spaces embedded within them, e.g., MY PROGRAM, because
it uses spaces to separate arguments. None of the demonstration files
on the TVC disk have embedded spaces, but keep this restriction in
mind when loading your own programs later on.

As you might imagine, there is a counterpart to LOAD named SAVE.
SAVE writes all or part of the user area to disk.

Loading Registers

Earlier we learned how to used the BASE command to change the dis
play mode of a register. There's also a way to change a register's con
tents. Next to the monitor prompt, enter the name of the register and

38 THE VISIBLE COMPUTER: 6502

the value you want to put there. As with all monitor commands, ex
press the value in the current monitor base. To place $89F in PC, enter:

PC89F

You may not write numbers larger than $FF into an eight bit register, or
larger than $FFFF to a 16 bit register. Practice with it. Change the base
of registers you've written numbers to. Do you get the same conver
sions you get on paper or with the calculator?

Appendix C is a reference on the TVC commands. Even though there
are some we won't be using for some time, turn there now and quickly
look through it.

6.
First Programs

Let's get a clean start for our first program. If you haven't just now
loaded TVC, enter the RESTART command to put the 6502 simulator
into its default state.

TVC is a program that makes your computer screen behave like a 6502
microprocessor. The simulator runs much more slowly than a real
6502, roughly a million times slower. Furthermore, it is transparent so
we can see inside as it works. Behind the scenes, making the simulated
6502 tick, is your computer's real 6502.

A Tour of the 6502

The 6502 has eight 8 bit registers. A register, remember, is just a box
where we can store binary numbers. Their abbreviated names: A, S, P,
X, Y, DL, DB, and IR. There are two 16 bit registers, PC and AD. We'll
discuss each register individually, as they have more personality than
the typical memory location.

A The A register, or accumulator, although not especially
large, is probably the most important register in a 6502. It
gets a workout in almost every program.

S Directly above it is S, the "stack pointer" register. S is used
for stack operations.

P The P register (Processor Status) holds the distinction of
having probably the most unnatural abbreviation of all 6502
registers. It also is the only one that defaults to a binary dis-

39

40 THE VISIBLE COMPUTER: 6502

play, because we are more interested in P's individual bits
than their collective value.

X Next are the 6502's twins, the X and Y registers. They are
virtually interchangeable, and get a lot of use, though not as

Y much as A. They are often called index registers because of
their use in something called indexed addressing.

PC The big register beneath X is the program counter. It serves
as a placemark to remind the 6502 where it is in memory and
what instruction it should execute next. Fans of the pro
gram counter could make a good case for it being the most
important register in the 6502. At the very least it's twice as
big as the accumulator.

DL DL, the data latch, is the 6502's bus station, the crossroads
of data coming into and out of the processor to and from
memory. No data comes into or leaves the 6502 without
passing through this register.

DB DB, the data buffer, is a place where we can temporarily
shuffle a number off in the middle of an instruction until
we're ready for it.

IR IR is the instruction register. This is where a 6502 deposits
the instruction currently being executed. It's the 6502's
equivalent of the dock foreman's clipboard, a place where
an instruction can be studied ("decoded") to figure out
what it is and how to execute it.

AD AD is the address latch, the register that holds the memory
location to be accessed during reads and writes.

The 6502's 16 bit registers, AD and PC, have a dual personality; some
times they behave like one big 16 bit register, other times like a pair of
8 bit registers. When used in this way, the high order halves are called
PCH and ADH, and the low order halves, PCL and ADL.

A, S, P, X, Y, and PC are sacred abbreviations agreed on by all 6502 pro
grammers. The other registers, DL, DB, IR, and AD, have more flexible
names, as they were invented by the author of this manual. That's
right. You could buy 11 books on 6502 machine language, and not one

FIRST PROGRAMS 41

would mention the DL, DB, IR, or AD registers. The reason is that a
programmer doesn't have to worry about these registers to write 6502
programs. They're in every 6502, essential for running things, but
since they perform temporary, scratch pad functions, the programmer
need not concern himself with them. Since TVC simulates the inner
workings of a 6502, we couldn't leave them out.

Now to put some of this knowledge into action. Let's load and execute
the first of the demonstration programs, named, appropriately
enough, PROG1. Load PROG1 (no space between the "G" and the "1")
into memory, all two bytes of it, with the command:

LOAD PROG1

Unless you specify otherwise, LOAD loads data starting at address
$C000, so PROG1 now resides in RAM beginning at $C000. PROG1 is a
simple affair that will accomplish one small feat. It will cause a $33 (51
decimal, 0011 0011 binary) to appear in the accumulator. I know you
could easily do that with the monitor command: A 33, but bear with
me.

Let's look at the data that makes up PROG1. Put the window in
memory mode with the WINDOW MEM command. PROG1 consists of
the $A9 at $COO0 and the $33 at $C001. Hmmmm. . . The program is
going to put a $33 in the accumulator and one of the two bytes in the
program is a $33. Could be a connection.

The zeros that follow mark PROGl's end. CLOSE the WINDOW. We
want to see the whole processor/memory setup for our first program.
Next, put TVC in its slowest, most helpful state with the command:
STEP 3.

I know you're anxious to get started, but before we turn the simulator
loose on PROG1, consider the current contents of the registers. Since
we just booted TVC, the registers are in their default condition. Most,
but not all, hold zeros. For now, don't worry about poorly abbreviated
P and its binary contents, or the $FF in the stack pointer. I call your
attention rather to the $C000 stored in the program counter.

$C000 is where in memory the 6502 that's about to come to life will
find the instruction it will execute. It is no coincidence that LOAD
placed PROG1 at $C000. If we were to make the program counter

42 THE VISIBLE COMPUTER: 6502

something other than $C000, say $1AFF, the simulator would not exe
cute PROG1, but rather whatever unknown data it found laying
around at $1AFF.

To activate the simulator, press return without entering anything at
the monitor prompt. Things happen fast now, so pay attention.

The Simulator

This is our first excursion into the 6502 simulator. It doesn't have
nearly as many commands to worry about as the monitor. It executes
programs while you watch. The message window displays "fetch".
This means an instruction fetch, the first phase of instruction execu
tion, is in progress. When the 6502 has fetched a byte and placed it in
the instruction register, the fetch cycle ends, and the execution phase
begins.

The second line of the message window contains a more cryptic mes
sage.

T: PC - > AD

This translates into English as Transfer: The contents of the Program
Counter to the Address Latch. This is a microstep, a building block of a
machine language instruction. The nine TVC microsteps are listed in
Appendix D. The transfer microstep, which blinks the source and then
the destination register, is the most common, used by every instruction
at least twice.

The transfer will occur as soon as you exit the pause you're in. Pressing
"C" invokes the calculator, the only monitor function available from

within the simulator. Exiting the calculator with Fl returns you to the
pause.

Restart the simulator by pressing the spacebar. AD now contains
$C000; note that PC is still $C000. A transfer doesn't affect the con
tents of the source register.

READ is the next microstep of the FETCH process. A read happens
fast, so be ready. It consists of the following steps:

1. The contents of the address latch are trans
ferred to memory's address bus.

FIRST PROGRAMS 43

2. Memory fetches the contents of that address
and transfers it to memory's data bus.

3. That value is transmitted to the 6502's data
latch.

Before we let this Read happen, a pop quiz: What value will be read
from location $C000? Answer: $A9. It won' t have changed from a min
ute ago when we looked at it from the monitor. Okay, press the space
bar.

The 6502 is still in the fetch cycle. It's taken a work order from the In
box, but hasn ' t got it to the clipboard yet. Until it gets this byte to the
instruction register (IR), the 6502 doesn't have any idea of what the in
struction is, much less how to complete it. The next step, then, is to
put the instruction in IR so we can get on with decoding and executing
it. As soon as the $A9 is in IR, the fetch phase ends, and the execute
phase begins. "Fetch" is replaced in the message window by "LDA IM-
MED", the 6502 saying to itself "I need to load my accumulator with
the next byte in memory." A Load Accumulator, Immediate, also
known as instruction number $A9.

And it knows what to do next. First: Increment the program counter.
Now it contains $C001. Transfer it to the address bus. Do you feel a
READ coming on? Yes. Read the contents of location $C001 into the
data latch. Copy the number you found there, a $33 (big surprise), into
the accumulator.

We're almost done. Something called "CONDition FLAGS" happens
that blinks the P register. We'll talk about this phenomenon later. The
last step is to increment the program counter. We do this not to assist in
the execution of this instruction, but to prepare for the next one.
When you're in the monitor, the program counter always points to the
next instruction, not the end of the one just completed.

A real 6502 doesn't have the luxury of sitting around doing nothing
while a monitor takes over for half an hour. It has to execute one in
struction after another, bing-bing-bing, hundreds of thousands of
times a second, without so much as a break to pat itself on the back.
After every instruction, the value in the program counter is the ad
dress of the first byte of the next instruction.

That last increment of the program counter completed the instruction,
and deposited us in the monitor. The last act of the simulator is to list

44 THE VISIBLE COMPUTER: 6502

the instruction just performed in the disassembly window. For now,
consider the disassembly window a mysterious trail of the last five in
structions the simulator has executed.

What would happen if we were to enter the simulator now? Press
return and find out. It'll fetch the $00 that's in $C002, put it in IR and
digest it. $00 is a 6502 instruction called BRK (software break), that
puts you right back in the monitor without doing anything. It's a signal
to the simulator that the program is over and we want to get back to
the monitor. Later we will learn more about this unique instruction.

Congratulations! You have just watched your first program. If you
were able to follow along, you have learned about 90% of the funda
mental basis of machine language. Don't worry about memorizing the
exact sequence of microsteps. The important thing is that having the
6502 execute the sequence of bytes: $A9 $33 caused it to load the ac
cumulator with $33.

Before you go on to the next session and more complex programs, be
sure you understand how this one works. You can have an instant re
play of PROG1 by setting the program counter back to $C000 with PC
C000. While you're at it, why don't you change memory location
$C001 from $33, to say, your age—then PROG1 can serve the useful
purpose of telling the accumulator how old you are.

Moving Right Along

So far we know exactly two of the fifty-six 6502 instructions. LDA,
also known as $A9: "load the accumulator with the byte following this
one", and BRK, $00, "Break out of the program and return to the mon
itor". "LDA" and "BRK" are not haphazardly chosen abbreviations;
they are official 6502 mnemonics (neh-mow-ics). A mnemonic is a
memory aid, based on the theory that it's easier for human beings to
associate "LDA" with the act of loading the accumulator than $A9.
The 6502 has no idea, of course, what LDA means; if you want a 6502
to load its accumulator you have to give it the opcode $A9. Each 6502
instruction has a three letter mnemonic. Some of the abbreviations are
better than others, but all are easier to remember than a number.

Remember me saying that the accumulator is the most important regis
ter on the 6502? That makes LDA-$A9 a good instruction to know.
Loading is all well and good, but what about storing a value in the ac-

FIRST PROGRAMS 45

cumulator somewhere in memory? Is there a way to do that? You bet.
LOADPROG2.

PROG2 introduces the flip side of LDA, STA (Store Accumulator; op
code $85). This instruction causes the contents of the accumulator to
be placed in the memory location of our choice. PROG2 will first LDA
with $66, and then STA it at memory location $43 (a page zero ad
dress). PROG2 is longer than PROG1, a whopping two instructions,
four bytes. Take a look at it with either WINDOW MEM or EDIT. It be
gins, as did PROG1, at $C000. Notice the $43 at $C003. A coincidence?
You know better.

With the program counter set back to $C000, and with WINDOW
CLOSE and STEP 3 in effect, step your way through this two instruc
tion program. PROG2 will be only half done when you first return to
the monitor, since we return to the monitor after completing each full
instruction. Press return to execute the second instruction. Pay special
attention to STA-$85. STA is a tad more involved than LDA-$A9.

When the 6502 sees an $85 in the clipboard register, it knows it must
get one more byte out of memory, just as it did with LDA. But what it
does with the second byte (a $43) is different.

First it transfers it to the address bus. Since AD is 16 bits wide, and
we're loading it with an eight bit number, the most significant byte be
comes zero. We have now formed the zero page address $0043. Putting
a number on the processor's address bus is always a precursor to a read
or write of memory. Next, we transfer the accumulator to the cross
roads register, DL. The stage is now set for the WRITE microstep.

A write consists of the following steps:

1. The contents of the address latch are trans
ferred to memory's address bus.

2. The contents of the data latch are sent to mem
ory's data bus.

3. Memory inserts the value into the selected lo
cation.

After the write, STA is complete except for a final increment of the
program counter to make it point to the next instruction. No flag con
ditioning this time.

When you get back to the monitor, check the contents of memory loca-

46 THE VISIBLE COMPUTER: 6502

tion $0043 with either WINDOW MEM (and an LC 40) or EDIT and ver
ify that it really got the value PROG2 put there. Run this program sev
eral times. Use different values for $C001 and $C003. Do not change
the opcode values, the $A9 in $C000 or the $85 in $C002. Change them
and you change the instruction from LDA to who knows what.

That's three instructions down, 53 to go. But we're about to learn 10
more with astounding ease.

Loading and Storing Other Registers

The accumulator is top dog on the 6502, but occasionally we need to
load and store some of the other registers. There are instructions for
just that: LDY and STY for the Y register. LDX and STX for X.

MNEMONIC OPCODE OPERATION

LDX $A2 Load X register
LDY $A0 Load Y r e g i s t e r
STX $86 S t o r e X r e g i s t e r
STY $84 Store Y register

PROG3 demonstrates all the instructions we've learned. LOAD it, set
PC to $C000, and step through it. Each of the new instructions func
tions exactly like its accumulator counterpart. Now we're really
starting to accomplish things; three consecutive memory locations
loaded with $FF. Great.

All of the instructions so far have been two-byters: An opcode byte to
give the 6502 its orders, and a second byte to use in completing the or
der. The 6502 also has one byte instructions, instructions so self ex
planatory they don't need a second byte to finish the job. Such instruc
tions are said to be "implicit", or implied.

The six Transfers are representative of the Implied group of 6502 in
structions. They're for moving data between registers.

MNEMONIC OPCODE OPERATION

TAX $AA Transfer A to X
TAY $A8 Transfer A to Y
TXA $8A Transfer X to A
TYA $98 Transfer Y to A
TXS $9A Transfer X to stack pointer
TSX $BA Transfer stack pointer to X

FIRST PROGRAMS 47

Don't confuse the 6502 transfer instructions with the "T:" microstep.
A "T:" is only one phase of a 6502 transfer instruction like TYA, or for
that matter, any 6502 instruction.

Two of the transfer series are demonstrated in PROG4. For now, take
the others on faith. LOAD and STEP 3 your way through it. Notice that
the 6502 knows it need not fetch any additional bytes out of memory
after the instruction fetch to complete a transfer instruction. It knows
what to transfer where by looking at the opcode byte.

Ultimately, PROG4 accomplishes the same function as PROG3 (the not-
so-earth-shaking feat of writing $FF into locations $40, $41 and $42),
but does it faster. It takes less time to execute a one byte transfer in
struction than a two byte load instruction. It's also two bytes shorter.

Now we're making some progress; 13 instructions down, 43 to go.

7.
Processor Status Register

The P (processor status) register is something of an oddity in the 6502
family. Not only does it have a confusing abbreviation, it is also the
only register where we are more interested in contents on a bit rather
than byte level. In other words, if both P and A happen to contain 0011
0011, we will usually interpret A as the number $33, and P as contain
ing ones in positions 0, 1, 4, and 5, and zeros in positions 2, 3, 6, and 7.
These bits are so important they have their own names. P defaults to
binary display so that each bit falls under its abbreviation.

Speaking of defaults, why are bits 4 and 5 set? Because that's what you
usually find in this register inside a real 6502 running in a C-64. The
full names of these rugged individualists:

Position Name

7 N Negative flag
6 V overflow flag
5
4 B Break flag
3 D Decimal Mode flag
2 I In ter rupt Disable flag
1 Z Zero flag
0 C Carry flag

Two things: A "flag" is a bit of unusual importance. Bit 5 of the proces
sor status register is not used. It's there, obviously, but we have no con
trol over it, nor will we ever be interested in its value.

Instructions that Affect the P Register

There are implied (one byte) instructions to set and clear many, though
not all, of the P register flags. "Set" and "clear" are handy verbs
describing the act of forcing a bit to become either a one or a zero, re
spectively. "Reset" is used interchangeably with "clear" in this man
ual.

48

PROCESSOR STATUS REGISTER 49

MNEMONIC OPCODE OPERATION

CLC $18 Clear carry flag
CLD $D8 C l e a r decimal mode i n d i c a t o r
CLI $58 C l e a r i n t e r r u p t d i s a b l e i n d i c a t o r
CLV $B8 C l e a r overf low f l a g
SEC $38 S e t c a r r y f l a g
SED $F8 S e t dec imal mode i n d i c a t o r
SEI $78 S e t i n t e r r u p t d i s a b l e i n d i c a t o r

This list of commands seems incomplete; there are no instructions for
setting or clearing the negative and zero bits, and none for setting
overflow. There don't need to be, as we shall see.

The Zero Flag: 6502 Historian

The Z flag contains a single binary fact about previously executed in
structions. It is "conditioned" (set or cleared) by the 6502 every time it
executes a load or transfer instruction. If you load a zero into the accu
mulator, Z will be set. This is backwards from common sense, so I re
peat: If you load X, Y, or A with a zero ($00; 0000 0000), the Z bit will
be set. It will stay set until such time as another load or transfer comes
along that loads a nonzero value into a register. Once cleared, it will
stay that way until the next zero load comes along to set it.

The Negative Flag

The N flag is also conditioned with every load and transfer instruction.
If you load or transfer a number that has bit 7, the most significant bit,
set, N will be set. Any 8 bit number greater than $7F has this bit set
(check it out!). Conversely, loading or transferring values with this bit
clear, will clear the N flag. N gets its name from the fact that fre
quently bit 7 is used to indicate negative numbers. We will describe the
signed number situation in more detail later on, but quickly, the con
vention is: If bit 7 is set, the number is negative. If it is reset, the num
ber is positive. If you are not using signed numbers, the behavior of the
N flag can be disregarded.

This conditioning effect, in conjunction with instructions to be pre
sented in the next chapter, allow the programmer to test conditions
that existed on previous load and transfer instructions. The technique
is to examine the state of the Z or N bits, and decide what to do next on
the basis of that finding. This is related to Basic's IF / THEN statement.

50 THE VISIBLE COMPUTER: 6502

Basic
IF A - 0 THEN GOTO 1000
A = A + 1
etc.

Machine Language
TXA
[If Accumulator = 0, GOTOXXXX]

In the next chapter we'll learn an instruction to fill in the brackets.

PROG5 demonstrates both the implied clear/set instructions and the
conditioning effect of loads and transfers. LOAD PROG5, but before
you run it, we're going to explore a feature of TVC for anticipating
what a program will do without actually running it.

Disassembly: The L(ist) Command

With PROG5 LOADed, enter: C000 L. As with all monitor commands,
separate the L from the C000 with a space. What appears in the disas
sembly window is a sneak preview of the first five instructions in
PROG5. Unlike the instructions put there by the simulator after ex
ecuting an instruction, the address is not in inverse video.

C00Q: 38 SEC
C001: F8 SED
C002: 78 SEI
COO 3: 18 CLC
C004: D8 CLD

Disassembly is an awkward word for the extremely useful process of
presenting a machine language program in a form more palatable than
plain hex. The hex is there too, address and contents—but the hu
manized version of the instruction is what we're after.

A disassembled instruction usually contains two parts: mnemonic and
operand (implied instructions, e.g., DEX, are operand free). In "LDA #
$33", LDA is the mnemonic, and #$33 the operand. Both assist, some
times subtly, the programmer in determining what the instruction
does.

PROCESSOR STATUS REGISTER 51

You can disassemble anywhere in the memory map, but don't expect
reasonable results unless the numbers stored there are actually ma
chine language programs. Enter: 500 L. Address $500 is part of TVC it
self. TVC is largely a Basic program, and Basic programs do not directly
make sense to either a disassembler or a 6502. Another way to go
wrong is to start disassembly in the wrong place. Even though PROG5
sitting there at $C00O is a valid machine language program, if you start
listing it at $C00A, you'll get question marks because the first byte (the
data byte of the LDX instruction that starts at $C009) is an undefined
opcode.

A tipoff that you're disassembling something other than machine lan
guage is the appearance of "???" mnemonics. Of the 256 possible eight
bit values that could have been 6502 opcodes, the designers of the
6502 gave only 151 defined meanings. Give the disassembler one of
these unimplemented opcodes, such as $02, or $FF, and it says: Huh?
Probe around inside ranges known to contain machine language, such
as the Kernal ($E000-$FFFF). Although even the Kernal area is not
solid machine language, you'll see many marvelous mnemonics and
operands, including many we haven't learned yet.

The "next instruction line" of the status area, if you haven't already
guessed, holds the disassembled form of the instruction that is either
about to be executed (if you are in the monitor) or is currently being
executed (if you are in the simulator). Minus the address (which is
defined to be the program counter, anyway), and the hex values them
selves.

The next instruction display changes whenever the program counter,
or memory pointed at by the program counter, is changed. Change the
program counter to $C100. The instruction line should have changed.
Now write $18 to $C100. Again it should have changed. We're about to
run PROG5, so put PC back to $C000.

Disassembling a machine language program is not the same as execut
ing it, any more than listing a Basic program is the same as running
one. Although now PROG5 will be anticlimactic, having already seen
what instructions are in it, work your way through it with the simula
tor. Those of you with printers can have a little extra fun by activating
the output-simulator-disassembly-to-printer feature of TVC with the
command:

PRINTER ON

52 THE VISIBLE COMPUTER: 6502

TVC will now output to the printer one line of disassembly after every
instruction executed by the simulator. For further information on the
printer command, consult Appendix C.

PROG5's Set/Clear instructions are straightforward enough, but pay
special attention to the COND FLAGS microstep of the loads and stores
that follow. Each load conditions the N and Z flags. If we load a regis
ter with a zero, the 6502 will set Z. If it was already set, it'll stay set. N
is altered at the same moment. It will be set whenever a load occurs
that sets bit 7 of the register that is loaded, and reset when bit 7 is re
set. For now, just observe the conditioning process and don't worry
about why it goes to this trouble.

Tinker around with the data portion of the load instructions. What do
the Z and N flags do with a load of $FF? Or $31? Find out, and meet me
at the start of the next chapter.

8.
Branches: Decision Making

If you're like me, the first Basic program you ever saw didn't do much
for you. It probably went something like this:

100 INPUT "WHAT IS YOUR NAME ";A$
110 PRINT "THAT'S A NICE NAME, ";A$
120 END

Unless you were exceptionally creative with your input (THAT'S A
NICE NAME, GRAND CAYMAN ISLAND), it wore thin quickly. But my
first encounter with testing and looping was almost a religious experi
ence.

100 N = 0
110 PRINT N , N * N
120 N = N + 1
130 IF N <= 10 THEN 110
140 END

Somehow the concept of testing, and if necessary repeating, a series of
instructions was fascinating: "Wow, I could change the 10 in line 130
to 1000. . . or 1000000 . . . Or change line 110 to print the cube root
too!"

Put simply, decision making and looping is what programming comput
ers is all about. This is as true for machine language as it is for Basic. To
execute our first decision-and-loop 6502 program we'll need some new
instructions: The Decrement/Increment series, and a Branch or two.

There are 4 implied instructions to increment (increase by one) and de
crement (decrease by one) the contents of the X and Y registers. They
are: DEX, DEY, INX, and INY.

MNEMONIC OPCODE OPERATION

DEX $CA Decrement X register
DEY $88 Decrement Y register
INX $E8 Increment X register
INY $C8 Increment Y register

53

54 THE VISIBLE COMPUTER: 6502

These instructions have a "wraparound" effect. If you decrement a
register that contains $00, it goes to $FF. If you increment a register
that contains $FF, it goes to $00. There is also a way to increment and
decrement memory locations. Strangely enough, there isn't an inc/dec
pair for the accumulator, although there is a way to accomplish the
same thing.

Like loads and transfers, these instructions condition the N and Z flags.
If we execute DEX at a moment when the X register contains $01, we
get $00 in X, a set Z flag, and a clear N flag. This makes the inc/dec in
structions useful in counting loops. Load the X (or Y) register with the
number of times you want the loop to occur. Next, do the operation(s)
you intend to repeat. Now decrement X to reflect that you've been
through the loop one time. Last comes something that can both test the
Z bit, to see if X has been reduced to zero yet, and depending on the
result of the test, cause us to jump back and repeat the process again.

These conditions are met by the BNE instruction. Pronounced
"Branch if Not Equal", with an opcode of $D0, this instruction is the

equivalent of the Basic statement:

IF A <> 0 THEN GOTO 1000

BNE is one member of the branch family of 6502 instructions. There
are seven others, two for each of the four testable flags of the P regis
ter (C, N, Z, and V). One that tests for the desired bit set, another for
the same bit clear.

MNEMONIC OPCODE OPERATION

BCC $90 Branch on c a r r y c l e a r
BCS $B0 Branch on c a r r y s e t
BEQ $F0 Branch on result =0 (Z Set)
BNE $D0 Branch on result ^ 0 (Z Clear)
BMI $30 Branch on r e s u l t minus (N Se t)
BPL $10 Branch on result plus (N Clear)
BVC $50 Branch on overf low c l e a r
BVS $70 Branch on overf low s e t

Branches are said to use relative addressing because of the way they
are executed. A branch instruction is two bytes long; an opcode byte
(which tells the 6502 what bit to test, and for what value), and a sec
ond, offset byte to tell it where to go if the test passes. This "telling it

BRANCHES: DECISION MAKING 55

where to go" is tricky, and has to do with why their addressing form is
called relative.

If the condition specified by the test is true, then the second byte is
used to calculate a new value for the program counter. The program
counter, remember, is the placemark in memory that keeps the 6502
executing instructions in sequence. If the test fails (as it would for a
BNE when the Z bit is set), the program counter advances normally by
one and things proceed as if there had been no branch instruction at
all.

If the test succeeds, the program counter is modified by having the sec
ond byte added to it. For example, if PC contained $C005 (having just
read from memory the second byte, say a $10, of a BNE instruction),
and the 6502 determines that the test has passed, it forms the new PC
by adding $10 to the $C005 already there. The next instruction to be
executed would be the one at $C015 ($C005 + $10).

Does this mean that branches can only happen in the forward direc
tion? No, negative branches are possible, although understanding how
a negative branch is calculated is a little more difficult. If the data byte
of the branch instruction is $80 or greater (Hint: bit 7, the sign bit, set),
the 6502 knows to do a subtraction on the program counter rather
than an addition. We will leave the details of this subtraction until a
later section. (Sneak preview: $FF = - 1 , $FE = -2 , $FD = -3...)
Branches can go either way, depending on the data byte, by making
the program counter either larger or smaller. We may branch about 128
bytes in either direction.

Branching is demonstrated in PROG6. LOAD and disassemble (L) it. It
begins by loading X with $04; we are evidently intending to do some
thing four times. Next are two set/clear instructions, there only to give
the program some busy work to do in the loop. Next comes the new in
struction DEX. DEX conditions the Z flag; if it didn't, this program
wouldn't work. The branch instruction BNE consists of an opcode byte
($D0) at $C00|*and an offset ($FB) at $C00t>. $FB, being greater than
$80 has bit 7 set, and therefore is a negative branch; the program
counter will be reduced some amount if the BNE test passes.

C000: A2 04 LDX #$04
C002: 38 SBC
C003: 18 CLC
C004: CA DEX
C005: DO FB BNE $C002

56 THE VISIBLE COMPUTER: 6502

The TVC disassembler goes out of its way to help you understand
where the branch will end up if the test passes. BNE $C002 means

"Branch if not equal to location $C002". This is friendlier than saying
BNE $FB, leaving you to figure out where the branch will go.

The first time we encounter the DEX instruction, X will be reduced to
$03. This is nonzero, so Z will be cleared and the branch test will suc
ceed, causing the loop to repeat. Finally, after four repetitions, the test
fails and BRK ends the program.

Since this program is significantly longer in execution time (though not
in length) than previous programs, now is a good time to learn how to
control the speed of the simulator. We've been using Step 3 exclusively.
What do the other step values do?

Step 2 executes an entire instruction without pausing at each micros-
tep. You can force the simulator to pause by pressing the spacebar.
When the instruction is over, you are returned to the monitor.

Step 1 is similar to Step 2, except that you don't enter the monitor be
tween instructions, but instead plunge ahead with the next instruc
tion. Fl forces the simulator to enter the monitor at the completion of
the current instruction.

Step 0 is TVC's flat out, high speed mode. It saves time by skipping the
process of writing to the screen during execution. The only things up
dated are the disassembly window and the next instruction area. The
registers will not reflect their true values until you return to the moni
tor. "Flat out" and "high speed" are relative terms. "Flat out", TVC
operates at something on the order of one millionth as fast as a real
6502.

If you are in step modes 1, 2, or 3, you can slow down or speed up the
action by typing one of the number keys (1-9), while the simulator is
running. 1 is fastest, 9 slowest. Now press return, and happy looping.

9.
Addressing Modes

We've moved so quickly that we've glossed over some very good ques
tions you might have had. One being: "If there are only 56 instruc
tions, why are there 151 opcodes?" The answer is tied up in something
called addressing modes.

The 6502 is good at addressing modes; in fact, it makes some of its con
temporaries (like the Z-80) look positively anemic in this regard. In a
nutshell, addressing modes determine not what instruction to
perform, but where to get the data the instruction will use. So far the
demonstration programs have worked with a small subset of the many
addressing modes available on the 6502. All loads have used immedi
ate addressing, the form that tells the 6502 to load a register with the
next byte following in memory. All stores have used zero page form,
which specifies a memory location on page zero.

What if we wanted to load the accumulator, not with a number that we
knew ahead of time when the program was written, but with the con
tents of a memory location outside the program. The Basic statement:

LET A = 14

is the equivalent of the way we've loaded the accumulator so far. More
common in Basic is the statement:

LET A = B

Accomplishing this in 6502 machine language requires a LDA of a
different color. There is another opcode that decodes as LDA, but not
the LDA-$A9 that makes the load occur from the next byte. It's LDA-
$A5, and it makes the load occur from the memory location specified
in the next byte. This is a slippery idea, I'll admit, but crucial to your
future happiness as a world famous machine language programmer.

PROG7, another two-byte special, will clear up the mystery. Load and
list it. Notice that the disassembly is not quite identical to that for
PROG1.

57

58 THE VISIBLE COMPUTER: 6502

PROG1

C000:A9 33 LDA #$33

PROG7

C000:A5 33 LDA $33

Opcodes $A5 and $A9 cause the disassembler to produce the same
mnemonic, LDA, but different operands. The "#" is your clue to un
derstanding what kind of LDA you've got. By 6502 convention, a num
ber sign in the operand means that the value to load is "immediate",
contained in the byte occurring next in memory. The absence of the
number sign in the second instruction tells us that the load will occur
from the memory location specified in the operand, in this case from
location $0033.

We just learned a new opcode, $A5, but not a new instruction. $A5 is
LDA using the zero page addressing mode. $A9 is LDA using immedi
ate addressing. Now execute PROG7. Pay close attention to how it gets
$0033 into AD. Similar to the STA $33 instruction of PROG2.

What, there's more? Now a third way to LDA. Some of you have been
asking: "What if I want to load the accumulator with a value stored
somewhere in memory, but not a location down in page zero? Say an
address like $A09 or $BFFF?"

Very good question. And yes, there is a way to do it. You may specify
any of the 65,536 locations using absolute addressing. An instruction
using absolute addressing requires three bytes: an opcode byte, and
two bytes that specify the memory location the operation is to use.

Load PROG8 and list it. PROG8 will load the accumulator from $B1C,
when we let it, which we will in just a second. First, a close examina
tion of the disassembly.

C000:AD 1C 0B LDA $0B1C

Notice that the least significant byte of the address comes first. 6502
convention is to store two byte values in sequential memory locations
with the least significant byte stored first (lowest address). There's no
special reason for this; they just adopted a convention and stuck with
it. Again we find the disassembler working hard to make life easier for
us. It rearranges the operand into normal left-to-right form. It's a lot
easier to grasp the meaning of "LDA $0B1C" than "AD 1C0B".

ADDRESSING MODES 59

Now execute PROG8. As you might expect, it takes longer to run than
the other forms of LDA we've used. The data buffer is used to tempo
rarily store the first byte of the address until we're ready for it. How
ever, except for the extra memory fetch and transfer to the address
bus, it runs exactly like the other two, finishing up with a flag condi
tioning and a final increment of the program counter.

So there you have it. One instruction, LDA, and three different op
codes ($A9 for immediate; $A5 for zero page; $AD for absolute). Can
we use absolute addressing to access zero page locations? Yes, you may.
There is no rule against the instruction:

C000:AD 12 00 LDA $0012.

Then why is there a zero page addressing mode at all? Because only
two bytes are needed instead of three. Absolute addressing takes more
storage and more time to execute. For efficiency, 6502 programmers
place their most frequently accessed variables in page zero. As a re
sult, the zero page is prime real estate in the 6502 memory map. Al
though in theory you can use page zero for program storage, this is
rarely done; it would be like using a square block in downtown Chicago
to grow tomatoes.

There are only 256 locations, and everybody wants to use them. If
you're writing a machine language program that will be called from
Basic, you'll have to be careful to use zero page locations that Basic
and the Kernal routines don't use. To determine what locations are
safe, consult the table on pages 310-316 of the Commodore 64 Pro
grammer's Reference Guide. Four known safe addresses are $FB-FE.

If you don't have a copy of the Programmer's Reference Guide, get
one. This 500 page book can be found at most bookstores and is full of
facts you'll need when writing 6502 programs for the C-64.

The load and store instructions of the index registers have these ad
dressing modes also. This table summarizes the opcodes for all three
addressing modes for LDA, STA, LDX, STX, LDY, and STY.

60 THE VISIBLE COMPUTER: 6502

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZP

LDA $AD $A9 $A5 Load accumulator
STA $8D $85 Store accumulator
LDX $AE $A2 $A6 Load X register
STX $8E $86 Store X register
LDY $AC $A0 $A4 Load Y register
STY $8C $84 Store Y register

There aren't any immediate addressing stores, because a store immedi
ate doesn't make sense. That's like saying LET 14 = A in Basic.

A final ominous word before we move on to more jumping around fun
in the next chapter. I said earlier that the 6502 is a champion at ad
dressing modes. You don't get to be a champion having just three
modes for a popular instruction like LDA. You get to be a champion by
having eight.

10.
Subroutines: The Stack

Next on the agenda are three instructions that, like a successful
branch, alter program flow by changing the program counter. Unlike
the branches, the 6502 has no choice in the matter.

The new instructions are: JuMP (JMP, $4C), Jump to SubRoutine (JSR,
$20) and ReTurn from Subroutine (RTS, $60). All three have direct
counterparts in Basic.

MNEMONIC OPCODE OPERATION

JMP $4C Jump to new address (Basic GOTO)
JSR $20 Jump to subroutine (Basic GOSUB)
RTS $60 Return from subroutine (Basic RETURN)

JMP is a three byte, absolute instruction that puts the address of our
choice in the program counter, thus shuffling us off to wherever in
memory we've got instructions that need executing. As with all abso
lute instructions, the destination address is stored in memory with the
least significant byte first. One use for JMP is to extend the range of a
branch. A branch on its own is limited to about 128 bytes in either di
rection. If you use a branch in combination with a JMP, you can go as
far as you want.

Instead of:

C010: BEQ $F000 (can't branch that far)
C0L2: ETC...

Use:
C010: BNE $C015
C012: JMP $F000
C015: ETC...

Load PROG9 and list it. PROG9 is full of jumps—six of them, to be ex
act. But the disassembly lists just the first one. If you want the disas
sembler to show you what's out there waiting at $C100 after the first
jump, you have to ask for it specifically.

Now execute it. What you have at the end of PROG9 is an infinite
loop. Like a cat chasing its tail, this program will never go anywhere.
Although not a problem when we're executing programs with a simu-

61

62 THE VISIBLE COMPUTER: 6502

lator that lets us quit with a press of F l , it can be a serious problem un
der real 6502 execution.

A different sort of jump is controlled by the JSR/RTS pair. They're used
like the GOSUB/RETURN combination of Basic. In fact, most every
programming language has some way to implement this concept.

Executing a 3 byte (absolute) JSR instruction will, just like a JMP in
struction, divert program flow to the address contained in the operand
portion of the instruction. But with an important difference: before it
goes to the new address, the 6502 saves where it is now, by storing the
current contents of the program counter in memory. This enables the
6502 to find its way back when it finishes the subroutine.

How JSR and RTS Work

Even though it is not strictly necessary to understand the underlying
mechanics of the JSR/RTS pair to use them, I'm not going to let you off
that easy. That's okay for Basic programmers, to accept a gift without
worrying about where it came from. Machine language programmers
look every gift horse square in the mouth to see the pitfalls lurking
there.

JSR and RTS use something called the stack to accomplish the feat of
returning after a subroutine has been completed. The 6502 stack is two
things, working together: the stack pointer register (S), and $100 bytes
of memory ranging from $ 100 - $ IFF, the stack page. Although there is
nothing to stop the machine language programmer from using the
stack page of memory for general purpose program and data storage, it
is strongly recommended that you reserve this area for the stack. With
freedom comes responsibility.

The Classic Cafeteria Tray Analogy

The stack can be visualized as a stack of trays in a spring loaded con
tainer at the beginning of a cafeteria line. The tray at the top, ready to
be pulled off next is the one most recently entered. The one at the bot
tom may have been there since Mother's Day. This is called a LIFO data
structure, for Last In, First Out. As opposed the serving line, which is a
FIFO (First In, First Out) data structure, also known as a queue.

If we put two green trays on a stack of red ones, we know that the next
two trays pulled off will be green. To implement the stack for useful

SUBROUTINES: THE STACK 63

purposes of storage, we need only two operations: Push (put a tray on
the stack) and Pull (take a tray off the stack). We don't care if there are
50 trays or 15 when when we issue a Pull command, only that we get
the one most recently put there. If I push a $45 ($45 written on a tray
with a magic marker) onto the stack, and then an $FF, when I turn
around and execute a pull, I'll get the $FF tray back first.

How is a one byte register and $100 memory locations like a cafeteria?
The trays are one byte numbers that the 6502 pushes and pulls. The
holder is the stack page—but instead of moving all 256 bytes down one
every time we push a value on the stack, the only thing that moves is
the contents of the stack pointer. The stack pointer always points to
the most recent entry in the stack minus one. If S contains $FF, and we
execute a push, the value we push winds up stored at $1FF, and S is
decremented to $FE. The first position in the stack is $1FF, and subse
quent entries (i.e., more recent ones) use successively lower memory
locations.

Microsteps of a Push

1. Transfer stack pointer to ADL. ADH = 1 (for stack opera
tions, ADH is "hardwired" to 1 to force address references
to be in the stack page)

2. Transfer register to be stored to data latch

3. Write

4. Decrement stack pointer

64 THE VISIBLE COMPUTER: 6502

Microsteps of a Pull

1. Increment stack pointer

2. Transfer stack pointer to ADL. ADH = 1

3. Read

4. Transfer data latch to selected register

By convention, the stack pointer always points to the first vacant
space in the stack. A Pull therefore increments the stack pointer before
the read; a Push decrements the stack pointer after the write. Now
that you're thoroughly confused, watch PROGlO's JSR-RTS pairs put
the stack through its paces.

Load and list the first few instructions. As with programs that contain
JMPs, the disassembly shows the first five instructions in sequence,
not those at the destination of a JSR. If you want to see that code,
you'll have to ask for it.

This program "calls" (to use a popular synonym for gosub) a routine at
$C200 to load the X and Y registers with $FF's, and a second routine at
$C100 that stores X and Y in a pair of consecutive zero page addresses.

The things to watch: JSR's put data on the stack (what data? The two
halves of the program counter, PCH and PCL). RTS's pull data off the
stack and into the program counter. For this program, do a WINDOW
MEM and use RC 1F8 to display locations $1F8-$1FF. That's where the
action will be.

Note that PCH is pushed first during JSR, and so must be pulled last
during RTS. The address that goes into memory is the address of the
last byte of the JSR instruction. RTS takes care of a final increment of

SUBROUTINES: THE STACK 65

the program counter to fully restore it to where we want to be, point
ing to the instruction after the JSR. Also notice that pulling a byte
from the stack does not erase it; it is not changed until something else
is pushed there.

Nesting
The subroutine at $C100 demonstrates how one subroutine can call an
other. The RTS at $C182 makes us return to the point of the most re
cent subroutine call, the one at $C100. The 6502 and its 256 byte stack
allow you to go 128 subroutines deep, and still find your way back to
the calling program.

The Stack for its Own Sake

There are four other instructions that use the stack. They are implied,
one byte commands to push and pull the accumulator and P register.

MNEMONIC OPCODE OPERATION

PHA $48 Push accumulator on stack
PLA $68 Pull accumulator from stack
PHP $08 Push processor s ta tus reg is te r
PLP $28 Pull processor s ta tus reg is te r

You will probably not have occasion to use PHP or PLP for awhile,
even though this is the only way to load or store the processor status
register. Usually P just sits there.

PHA and PLA, however, get lots of use as a means of temporarily
storing a number without tying up a register or memory location. Sup
pose the accumulator contains the result of an important operation,
but before we can use that result, we need the accumulator for an
other calculation. We have two options: save the intermediate value in
an unused register or memory location, or, push it on the stack. In
many cases the latter course is best. When we are ready for the
intermediate value, we pull it back into the accumulator.

There are two things to watch out for when you use the stack for data
storage: First, there are a limited number of bytes in the stack and you
will overwrite data with the 257th push (wraparound effect). If you
are sharing the stack with Basic and the kernel (such as when a ma
chine language program is called from Basic), you have even fewer
stack bytes available.

66 THE VISIBLE COMPUTER: 6502

Second, if you are currently "within" a subroutine (i.e., a JSR has
been executed without a corresponding RTS), you must be careful not
to tamper with the stack so that the RTS will not work. This can hap
pen two ways: Pushing a number and not pulling it before the RTS, or
pulling a number without a preceding push. Both cause RTS to use two
bytes that point somewhere, but not to the end of the JSR that called
this routine.

PROG 11 demonstrates care and feeding of the stack. The first subrou
tine (at $C100) is a painfully slow delay loop. How can we get out?
(We're willing to accept on faith that eventually X will be reduced to
zero, and RTS executed.) By getting out, I mean getting back to the
main loop that called this subroutine. Pretend you don't remember
that we started at $C000.

There are a couple of ways to do this. We could haul off and use the
monitor to load X with 1 (doesn't take long to decrease a 1 to zero), and
let the RTS occur normally. Or, we could peek into the stack page, fig
ure out what bytes are the return address of the subroutine, and load
the program counter (plus one, of course) with those numbers.

The easiest way is the monitor's POP command. Executing a POP
places the top two bytes of the stack (plus one) in the program counter,
and increments the stack pointer by two. POP is the monitor's equiva
lent of RTS, and is useful in situations where you weren't watching
closely and got into a subroutine without knowing how you came to be
there. POP the address of the calling program to find out.

The subroutine at $C200 demonstrates how not to use PHA and PLA.
By the time we get to the RTS that should return us the main program,
the data at the top of the stack is part return address, part left-over
pushed accumulator contents. Ouch.

Jump, Indirect
Both JMP and JSR are three byte instructions using absolute address
ing. JMP has a second addressing mode called indirect, opcode $6C. In
mnemonic form:

JMP ($2000)

Like JMP, absolute, JMP, indirect is a three byte instruction that
diverts program flow, without saving a return address; the mechanism
for determining the address jumped to is different, however.

SUBROUTINES: THE STACK 67

JMP ($2000) tells the 6502 to jump to the address stored in memory lo
cations $2000 and $2001. Not to jump to $2000 and start executing
code, but to look there for the values to place in the program counter.
If $2000 contains $F0 and $2001, $FD, then the program counter will
end this instruction containing $FDF0. This is conceptually one level
deeper than a normal JMP and you are entitled to feel a bit queasy at
this moment. If you think of JMP as a load instruction for the program
counter (which it is; we just don't call it that), then JMP absolute is a
load immediate. JMP indirect is a load absolute. Since the program
counter is 16 bits wide, two loads must be made from sequential loca
tions. With a little imagination, the operand's use of parentheses im
plies how the indirect jump works.

The 6502 is a great microprocessor, but the folks at MOS Technology
made one little goof (hardware can have bugs, too) in the JMP indirect
instruction. Under certain conditions, it doesn't work. Luckily, people
discovered this problem years ago, so you don't have to; just remember
that it's there.

The bug affects indirect jumps tha t cross page boundaries. JMP
($20FF) will fetch the bytes from $20FF and $2000 to form the new
program counter, instead of from $20FF and $2100. This quirk has
been faithfully copied in TVC.

PROG 12 contains an indirect JMP. The first time through the instruc
tion: JMP ($C200), we end up at $C010. Later, the same instruction
puts us somewhere else.

Now, a Message From Our Sponsor

Why should machine language programmers organize their programs
in subroutines? For the same two reasons that a smart Basic program
mer does. First, for efficiency, so that separate parts of a program may
share a section of code without each having to duplicate it. Second, for
clarity of structure.

If you are to become a successful machine language programmer, you
will need to make things as easy on yourself as possible, by writing pro
grams that are clear and easy to follow. The "rat's nest" technique of
jumps to jumps to jumps will have you spending more time figuring out
what you did yesterday than on today's work. A good structure for ma
chine language and Basic programs is to use subroutines liberally,
sometimes even if they are called only once.

68 THE VISIBLE COMPUTER: 6502

The Ideal Basic Program

100 GOSUB 1000
110 GOSUB 2000
120 GOSUB 3000
130 GOSUB 4000
140 GOTO 110

The Ideal Machine Language Program

JSR $1000
LOOP: JSR $2000

JSR $3000
JSR $4000
JMP LOOP

To climb down from my soapbox, let me say that even in well struc
tured programs, you will make enough mistakes to satisfy your inborn
programmer's desire for debugging sessions.

11.
Instructions That Work: ADC/SBC

So far we haven't learned any instructions that really sink their teeth
into a programming problem. We've loaded and stored and jumped
over, under, around, and through, but haven't accomplished much in
the process. A 6502 with only the instructions we've learned so far
would be like a car with a great stereo, and plush seats, but no engine.
This chapter introduces a pair of high octane computational instruc
tions, ADC (add with carry) and SBC (subtract with borrow). These in
structions may use any of the three all-purpose addressing modes
we've used so far.

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZP

ADC $6D $69 $65 Add wi th c a r r y
SBC $ED $E9 $E5 S u b t r a c t w i t h borrow

We've made reference to the accumulator's importance without saying
why it's such a popular place; now we'll see. The accumulator is where
numbers have to be to have SBC and ADC operations performed on
them. You can't use any other register.

To add $23 to $14, load the accumulator with $23 and ADC #$14 to it.
The answer, $37, replaces the $23 that was in the accumulator. Results
accumulate there. The accumulator is always involved in half of a
computation and holds the result.

The operation of the ADC instruction is as simple as adding two eight
bit numbers, something that humans learn to tackle in the second
grade. The only thing remotely tricky has to do with why it's called

"ADC", add with carry, and not just "ADD". The word "carry" means
exactly the same process that humans use when they add numbers on
paper.

l 11
34 66

+ 19_ + 44_
53 110

69

70 THE VISIBLE COMPUTER: 6502

The 6502 needs the carry flag to keep track of whether an addition has
produced a result greater than can be held in the accumulator. The ac
cumulator can't grow, so C is drafted to be its ninth bit. Is nine bits
enough to represent the largest possible result of eight bit addition?
Check it out.

$FF
+ $ F F

$1FE (1 1111 1110)

Apparently so. Anytime an ADC produces a value greater than 255,
the carry flag is set.

$7F $31
+ $82^ + $16

$01 + a c a r r y $47 no c a r r y

ADC also conditions the Z and N flags, according to the same rules we
have already learned for these flags. If an ADC causes a zero to be in
the accumulator, the Z bit will be set. If it causes bit 7 of the accumula
tor to be set, then the N flag will be set. Otherwise, N and Z will be re
set.

Not only does an ADC condition carry going out, it also includes carry
in the addition; if carry happens to be set going into an ADC, the result
will be one greater than otherwise. This is a slight annoyance when we
need to quickly add a couple of eight bit numbers, as we must execute
a CLC before ADC to insure that we get the right answer, but is a bless
ing for more complex calculations, as we shall see.

PROG 13 demonstrates ADC in action, using immediate addressing.
Bring in PROG 13 and execute it. Play around with different values for
the data bytes until you are comfortable with your understanding of
how ADC computes a new value for A, based on the operands and the
carry bit going in, and second, its conditioning of the Z, N, and C flags
going out.

Multiprecision Arithmetic

Despite the potential confusion in having to consider the state of the

INSTRUCTIONS THAT WORK: ADC/SBC 71

carry bit on every addition, the C flag is the key to performing calcula
tions on numbers greater than 255.

Even though the accumulator is limited to eight bits, it is possible to
add and subtract numbers much larger than 255 using multiprecision
arithmetic. This means using two or more bytes in memory to repre
sent values. How big a number can you store in two bytes?

21 6-1 = 65,535

In three?

2 2 4 - l = 16,777,215

We quickly come up to a range of useful magnitudes. PROG14 is a two
byte addition, using the zero page forms of ADC, LDA, and STA. Be
fore we run it, we'll need to EDIT some numbers into page zero for it to
use. Do this addition:

$13PC (A)
+ $4597 (B)

$???? (C)

You might want to first run this problem through the calculator to see
if the program produces the same result (it better!). We're going to use
zero page memory locations $F0 - $F5 to store operands A and B, and
the answer, C. Use $F0 and $F1 for A, $F2 and $F3 for B. Initialize $F4
and $F5 with zeros. Use EDIT mode to write the data into memory. As
always, LSB in the lowest location. $F0 should get $FC, $F1 should
contain $13, and so on.

Run the program a few times with different data. What happens if
your addition produces a value greater than we can store in 16 bits? Is
the carry flag still enough to handle the result?

Subtraction

The 6502 also has an instruction for subtracting one byte numbers,
SBC, Subtract with Borrow. It functions more or less like ADC with a
confusing twist. Like ADC, it uses the accumulator for the first oper
and and a memory location for the second, with the accumulator get
ting the result. Subtracting 2 from $14:

72 THE VISIBLE COMPUTER: 6502

LDA #$14
SBC #$02

The confusing part concerns the borrow flag; namely, there is no bor
row flag. (B is the break flag, and has nothing whatever to do with sub
traction.) Borrow is defined to be the opposite of carry. If C is set, bor
row is reset; if C is reset, borrow is set. Confusing? You bet it is.

Take the subtraction:

7
- 2

To perform this problem on the 6502, place 7 in the accumulator, and
execute SBC #$02. As with ADC, the answer includes the carry flag in
some way. If C is set when this instruction is executed, you'll get 5 in
the accumulator for an answer, because a set carry bit means no bor
row. If C was clear, then the answer will be 4, because a clear C bit
means a borrow occurred previously.

Like ADC, SBC conditions the carry flag going out, too. Whenever a
bigger number is subtracted from a smaller one, a borrow is generated
(carry is cleared).

$14 $14 $14
- $22 - $12 - $14
- $0E $02 $00

Borrow No Borrow No Borrow
(Carry clear) (Carry set) (Carry set)

PROG 15 contains some exercises that demonstrate SBC and its back
wards use of the carry bit. Load and list it.

PROG15

SBC (Clear borrow, by setting carry)
LDA #$07
SBC #$02
CLC (Set borrow, by clearing carry)
LDA #$07
SBC #$02
LDA #$14
SBC #$22

INSTRUCTIONS THAT WORK: ADC/SBC 73

Experiment with different values until you understand how carry
affects subtractions going in, and how subtractions condition carry go
ing out.

Multiprecision Subtraction

Situations arise that require multiprecision subtraction. PROG 16 dem
onstrates a 2 byte subtraction. LOAD and list it. PROG 16 will subtract
the two byte number stored at $F2, $F3 from the two byte number
stored at $F0,$F1, and put the answer in $F4,$F5. Use EDIT to set up
this problem:

$73A1
- $46B1

Now execute it. The carry bit winds up set at the end of this program,
meaning no borrow resulted from the overall subtraction of these two
numbers. And this is what you'd expect, since $46B1 is smaller than
$73A1. Tinker with the values until you are able to predict each time
the behavior of the imaginary borrow flag going into and coming out of
SBC instructions.

Multiplication and Division

Regrettably, the 6502 has no built-in multiply and divide instructions.
Some of the newer microprocessors (8086, 68000, Z-8000) do. But
with a little programming we can use multiple applications of addition
and subtraction to get the same result.

To multiply n times m, add m to itself n times. To divide n by m, count
how many times m can be subtracted from n. This sounds involved,
and for a human it's not recommended, but a speedy rascal like the
6502 can do this a hundred times in the beat of a hummingbird's wing.

For example, 12 X 4 is equivalent to:

12 + 12 + 12 + 12

or,

4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4

74 THE VISIBLE COMPUTER: 6502

PROG17 is an eight bit multiply. The values stored in $F0 and $F1 are
multiplied together, with the result going to $F2 and $F3. Verify for
yourself that two bytes are sufficient storage to cover the greatest pos
sible 8 bit multiply. Before you execute it, give it some numbers to use.
To save time, keep $F1 fairly small, say less than $10.

PROG18 is an eight bit division. The number in $F0 is divided by the
number in $F1. $F2 gets the quotient and $F3 the remainder. These
two programs only scratch the surface of the subject of machine lan
guage multiplication and division algorithms, i.e., there are better
ways to do it.

12.
Beyond Adding and Subtracting

Thus far we've encountered two groups of 6502 instructions that actu
ally get their hands dirty and perform calculations: The ADC/SBC pair,
and the increment/decrement series. This chapter introduces two
more groups of instructions to tackle problems with: The logical and
shift instructions.

These commands differ from the ones seen previously in that they use
the contents of registers (usually the accumulator) on a bit basis rather
than on a cumulative basis. When we added $14 to $78 in the last chap
ter, we were happy to consider the $8C that turned up in the accumu
lator as just that: the quantity $8C. For the logical and shift instruc
tions, however, we are usually more interested in a number's
individual bits than their collective value.

Shift and Rotate

The 6502 has commands for sliding the bits in the accumulator one po
sition to the left or right. As did ADC and SBC, these instructions treat
carry as the ninth bit of the accumulator.

An ASL (Arithmetic Shift Left) shifts all the bits in a memory location
or the accumulator one position to the left. All the bits slide over one
position to the left, bit 7 goes into C (whatever was in C is lost), and a
zero replaces whatever moved out of bit 0.

75

76 THE VISIBLE COMPUTER: 6502

Cute, but what good is it? First, it gives us a way to test any bit in the
accumulator and branch accordingly. Suppose we've done an opera
tion and we need to sample the contents of bit 5 and branch depending
on what we find there. There is no BA5, "Branch on Accumulator Bit 5
Set", so we proceed as follows: Three consecutive ASL instructions to
slide bit 5 into carry, then BCS to test and branch.

A shift left has the surprising effect of multiplying by two. Try it.

$20 (0010 0000) X 2 = $40 (0100 0000)
$37 (0011 0111) X 2 = $6E (0110 1110)
$64 (0110 0100) X 2 = $C8 (1100 1000)

You multiply by four with two ASL's, by eight with three, and so on.

LSR (Logical Shift Right) is like ASL only we move right instead of left.
Bit zero goes to the carry bit and a zero is shifted into bit 7. This divides
the accumulator by two. Again, don't take my word for this. Experi
ment with the TVC calculator. The value left in the accumulator is the
quotient; the values shifted out of bit 0 are the remainder.

The rotate instructions are only slightly different. A rotate doesn't
shift in a zero, it rolls in the contents of the carry flag.

BEYOND ADDING AND SUBTRACTING 77

Rotations do not produce multiplication and division by multiples of
two, unless you clear the carry bit ahead of time.

(Historical aside: ROR, the Hawaii of 6502 instructions, was the last in
struction to be added to the 6502 instruction set. In fact, the earliest
6502's did not have ROR at all.)

None of the other registers may be shifted or rolled; however, you may
shift and roll memory locations. Both absolute and zero page modes
are available for shifts of memory.

INSTRUCTION ADDRESSING MODE OPERATION
ABS ACC ZP

ASL $0E $0A $06 Arithmetic shift left
LSR $4E $4A $46 Logical shift right
ROL $2E $2A $26 Rotate left
ROR $6E $6A $66 Rotate right

Shifts and Rolls of the accumulator are one byte, implied instructions,
which for some reason are not grouped with the other implied instruc
tions, but rather are the only members of so called "accumulator" ad
dressing.

78 THE VISIBLE COMPUTER: 6502

PROG20 is a multiprecision shift. The two byte value at $C100 and
$C101 (low order byte first, of course) is multiplied by four by the ap
plication of two ASL/ROL pairs. Shifting the low order byte puts its old
bit 7 in carry; we get that value into bit zero of the high order byte with
a roll of the high order byte.

The Logical Instructions

The standard assortment of logical operators are available to the 6502
programmer.

AND Logical And

ORA Logical Or (Inclusive Or)

EOR Logical Exclusive Or

Like SBC and ADC, these instructions operate on the accumulator. In
addition, they condition the Z and N flags according to the same rules.

Like the shifts, the logical instructions are cases where the trees are
more important than the forest. What occurs in the instruction AND #
$33 is eight simultaneous logical ANDs of each bit of the accumulator
and the corresponding bit of the selected memory location. For exam
ple:

0011 0011 ($33) 1100 0000 ($C0)
AND 0100 0110 ($46) AND 0100 1111 ($4F)
= 0000 0010 ($02) = 0100 0000 ($40)

One use for AND is to force selected bits of the accumulator to zero. To
force bits 6 and 7 of the accumulator to zero, without affecting the
other bits, AND the accumulator with $3F. To force every bit position
but #2 to zero, and leave #2 in whatever state it was in before, AND
the accumulator with $04. Verify on paper that this works.

ORA is useful for setting selected bits. To set bits 4 through 7 of the ac
cumulator, without affecting the values in positions 0 through 3, use
ORA #$F0. To set only bits 3 and 7, use ORA $88.

BEYOND ADDING AND SUBTRACTING 7 9

EOR can be used to complement a number (reverse the polarity of each
bit). EOR #$FF will flip every bit in the accumulator; ones become ze
ros and zeros ones. Two applications of EOR #$FF leave the accumula
tor unchanged.

0011 0111 $37
EOR 1111 1111 $FF

1100 1000 $C8

1100 1000 $C8
EOR 1111 1111 $FF

0011 0111 $37

Compare
A powerful tool in test-and-loop situations is CMP, Compare Memory
with Accumulator. There's also a CPX and a CPY for the index regis
ters. A compare subtracts the selected memory location from the accu
mulator (or X or Y) and sets the N, Z, and C flags accordingly, but does
not affect the value in the accumulator. So what good is a subtraction
that doesn't affect the accumulator? Plenty.

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZP

CMP $CD $C9 $C5 Compare memory wi th accumulator
CPX $EC $E0 $E4 Compare memory wi th X r e g i s t e r
CPY $CC $C0 $C4 Compare memory wi th Y r e g i s t e r

Following is a program to demonstrate the compare instruction, but
first a digression on the subject of joysticks.

Joystick Fundamentals
Stripped of bright plastic and fancy pistol grips, a joystick reduces to
five switches, each of which can be either open or closed. There's one
switch for the fire button and one for each direction. If you push the
stick diagonally, two direction switches close at the same time.

These switches are mapped into the first five positions of I/O address
$DC00 for for port A and $DC00>for port B.

80 THE VISIBLE COMPUTER: 6502

P o s i t i o n Swi tch

4 F i r e
3 R igh t
2 Le f t
1 Down
0 Up

Set bits in $DC00 or $DC01 reflect open (not pressed) switches. That is,
if the fire button is pressed, bit 4 will be a 0. FCHECKPROG is a subrou
tine that determines whether or not the fire button of joystick B is
pressed. If the fire button is pressed, the subroutine returns with $FF
in the accumulator. If the fire button is not pressed, the accumulator
returns as zero.

START: JSR FCHECK
BRK

FCHECK:LDA $DC01
AND #$1F mask out top three bits
CMP #$10 is fire pressed?
BCC NOFIRE If bit 4 is set, A is $10 or above. If

Bit 4 is reset, A is less than $10, a
borrow occurs (Carry is cleared)

LDA #$FF
RTS

NOFIRE LDA #$00
RTS

Load and execute FCHECKPROG. As you run it, be aware that TVC
checks the joystick port at the moment of the read microstep of that
location, so do your pressing then. If you don't have a joystick plugged
into port B, $DC01 will behave as though there's a joystick plugged in
with aft the switehes-eentinuously pressed.

Special Case: The Bit Instruction

The last 6502 logical instruction is BIT, a hybrid of AND and CMP. BIT
(Bit Test) performs an AND operation between the accumulator and
memory location—but, like CMP, conditions flags without altering the
accumulator. As a bonus, BIT also transfers bits 6 and 7 of the memory
location under test to the V and N flags, respectively. It is useful in
checking I/O addresses that contain status information, particularly if
bit 6 or 7 is the one that we're watching.

The logical instruction are supported by the three addressing modes
we have encountered so far.

BEYOND ADDING AND SUBTRACTING 81

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZP

AND $2D $29 $25 And memory with accumulator
EOR $4D $49 $45 Eor memory with accumulator
ORA $0D $09 $06 Or memory with accumulator
BIT $2C $24 Test memory with accumulator

PROG21 demonstrates AND and ORA setting and clearing bits in the
accumulator. The subroutine at $C200 uses AND as a logical operator.
If memory locations $C100 and $C101 both contain $FF, return with
the accumulator equal to $FF. Otherwise, return with $00 in the accu
mulator.

13.
Indexing: Special Uses for X and Y

We mentioned in passing a while back that X and Y could be used as
index registers. The time has come to find out what an index register
is, and learn some new addressing modes in the process. So far we've
encountered five addressing modes. Two of the five, Relative and Im
plied, are special cases. Relative addressing is for branches only. Im
plied instructions (TAX, CLC) have no other form.

The other three addressing modes, Immediate, Zero Page, and Abso
lute, are more general, allowing the same instruction to be used in
different situations. We have a choice in how we may load the accumu
lator; with a number contained in the instruction itself (immediate ad
dressing), or with the contents of an address specified in the instruc
tion (absolute and zero page addressing).

To this list of general purpose addressing modes we now add four in
dexed addressing modes: Absolute, X; Absolute, Y; Zero Page, X; and
Zero Page, Y. Operands to indicate these new addressing modes are as
follows:

LDA $4000,X
LDA $4000,Y
LDA $00,X
LDX $00, Y

Indexing can be explained by presenting a problem that can't be easily
handled by the addressing techniques we already know. Suppose we
need to move a a cluster of $10 bytes residing in addresses $C100
through $C10F, to make room for something else. With the addressing
modes we've learned up to now, we can accomplish this "block move"
with the following program:

LDA $C100
STA $C200
LDA $C101
STA $C201
LDA $C102
STA $C202
LDA $C103
STA $C203
etc...

82

INDEXING: SPECIAL USES FOR X AND Y g 3

To move all 16 bytes we'd need 32 instructions at three bytes apiece.
Not very efficient to use 96 bytes of program to make room for 16
bytes of data. And what if we had to move 100 bytes? Or 8000?
Wouldn't it be nice if there was a way to handle this situation with
some incrementing and looping? Enter indexed addressing, in which
the X and Y registers are used as offsets from a base address.

Bases? Offsets? Let me show you what I mean.

So far we only know one way to load the accumulator from $0903,
LDA absolute. But what if we use a new addressing mode for LDA that
provides a two byte base address of $0900, and tells the 6502 to modify
that base address with the current contents of the X register. If we exe
cute the instruction LDA $0900,X (hex form $BD $00 $09) at a moment
when the X register contains three, the accumulator is loaded from
$0903. If we then increment X and execute the same instruction, the
accumulator will load from $0904.

Indexed addressing makes block moves a breeze. PROG22 demon
strates a more elegant solution to the move problem.

$C000 LDX #$00
$C002 LDA $C100,X

STA $C200,X
INX
CPX #$10
BNE $C002
BRK

84 THE VISIBLE COMPUTER: 6502

From 32 instructions, 96 bytes, to 6 instructions, 13 bytes. Quite a sav
ings. And we can move as many as 256 bytes without the program
growing one whit. As you step through this program, the thing to
watch is the new microstep "CALC ADDRS" (calculate address), in
which the address bus is modified by the X register. Otherwise, in con
ditioning of flags, and ultimate result, LDA absolute, X, is exactly like
LDA absolute.

Arrays
Another important application of indexing is in arrays. Absolute, X ad
dressing allows us to easily form up-to-256 element arrays, with pro
gram controlled access of each element. For example, suppose we
wrote a payroll system entirely in machine language. Forget that we
said in Chapter 1 how dumb that would be.

For accounting purposes, Binary Inc.'s payroll system must know the
age of every employee in the company. A natural way to store these
ages is in an array, with one entry for each employee.

Array Position Contents
(Employee No.) (Age)'

0 $40 Mr. Boole , P r e s i d e n t
1 $16 Mr. Watson, Vice P r e s i d e n t
2 $20 Mr. Smith, Accounting

255 $10 B r i a n , m a i l c l e r k

Assume the table is stored at $C100-$C1FF. When the program needs
to know how old a given employee is, it uses his employee number to
index the correct element in the array. As long as employee numbers
are less than 256, and there aren't any employees older than 255, this
can be done as simply as:

LDX (employee number)
LDA $C100,X

Suppose Binary is required by Federal Corporate Witholding Guideline
T-19342.12 to submit quarterly reports listing the total age of every
employee of the company. Not the average age (that's form A-
19342.12), but the sum of each employee's age. COUNTPROG does just
that. Load it now and examine this listing.

INDEXING: SPECIAL USES FOR X AND Y 85

COUNTPROG

START: LDX #$00
STX $FB
STX $FC

TOP: LDA $C100,X
CLC
AC© $FB
STA $FB
BCC SKIP
INC $FC

SKIP: INX
BNE TOP
BRK

COUNTPROG steps through the $100 element age table at $C100, from
the bottom up, accumulating a total in zero page locations $FB,$FC,
where $FB is the least significant byte. The X register serves as both
loop counter and index register.

First, X and the zero page addresses that make up the age accumulat
ing locations (call them "Total") are initialized to zero. We then enter a
loop that loads the accumulator with the age of employee #X, and adds
that eight bit value to the 16 bit value in $FB-$FC.

The add step rates more detail. First we clear carry—if we didn't, we'd
add an extra year to the total on some adds. Next, add the accumulator
(now holding employee X's age) to Total's LSB, and immediately write
the result back to the LSB. If this operation produces a carry, for in
stance, as it would in the case of Total = $3F2 and Age = $21, the MSB
is incremented by one. In this example, after the ADD step, the accu
mulator holds 13, and carry is set. The BCC test fails and we fall
through to INC $FC, where Total's MSB becomes $04. Verify with the
calculator that ($3F2 + $21) is $413. If the addition hadn't produced a
carry, we would have skipped the increment of Total's MSB.

256 repetitions of the loop will occur before the BNE test fails, causing
the program to encounter the ending BRK. Now run COUNTPROG. It's
going to take a while, so go fix yourself a sandwich. When it finishes,
divide Total by 256 with TVC's calculator to get the average age of a
Binary Inc. employee.

The Y register can be used interchangeably with X in most indexing op
erations. This table summarizes opcode values for the load and store
instructions for these new addressing modes.

86 THE VISIBLE COMPUTER: 6502

INSTRUCTION ADDRESSING MODE
ABS,X ABS,Y

LDA $BD $B9
STA $9D $99
LDX $BE
STX
LDY $BC
STY

Notice that for the first time an opcode table has gaping holes. There
isn't an opcode for STX ABS, Y. Nor is there one for LDY ABS, Y Not all
addressing modes are available for all instructions. This is partially due
to a logical conflict: Does it make sense to load the very register you've
used to locate the memory location you 're loading it with? But it stems
mainly from the physical limitations of integrated circuit technology,
circa 1975. Much as we 'd like to have them, there wasn' t room on the
chip to provide every addressing mode for every instruction.

The most important instructions were given the most addressing
modes: ADC, SBC, EOR, AND, ORA, CMP, LDA, and STA. Consult ap
pendix F for the addressing modes available for each instruction.

Indexing on Page Zero

That's two new addressing modes, Absolute, Y and Absolute, X. Indis
pensable, but like all three byte instructions, real memory hogs. There
are also two byte, space saving, Zero Page,X and Zero Page,Y address
ing modes.

INSTRUCTION ADDRESSING MODE
ZP, X ZP, Y

LDA $B5 $B9
STA $95 $99
LDX $B6
STX $96
LDY $B4
STY $94

PROG23 demonstrates zero page indexed addressing. Watch for wrapa
round. If adding X to AD in the CALC ADDRSS microstep produces a
value greater than $00FF, ADL wraps around so that it always contains
a zero page address. LDA $80,X, if executed at a moment when X con
tains $90, will load the accumulator from $10.

14.
The Kernal: Canned Subroutines

The C-64 has eight thousand bytes worth of built-in subroutines at the
top of the memory map called the Kernal. These programs perform
utility chores such as moving data to and from disk, and reading the
keyboard. The Kernal has more than 40 functions you can tap to con
trol the Commodore 64. If your program needs to do any of these tasks,
this is the method of choice.

One such Kernal subroutine is named GETIN. Here's what the Pro
grammer's Reference Guide has to say about this function:

Function name: GETIN
Purpose: Get a character.
Call Address: $FFE4
Communication registers: A
Registers Affected: A, X, Y

Description:

...This subroutine removes one character from the keyboard queue
and returns it as an ASCII value in the accumulator. If the queue is
empty, the value returned in the accumulator will be zero. Characters
are put into the queue automatically by an interrupt driven keyboard
scan routine which calls the SCNKEY routine. The keyboard buffer
can hold up to ten characters. After the buffer is filled, additional
characters are ignored until at least one character has been removed
from the queue.

How to use:

1. Call this routine using a JSR instruction.
2. Check for a zero in the accumulator (empty buffer)
3\ Process keystroke.

Interrupt driven? SCNKEY routine? Queue? What is all this stuff?

87

88 THE VISIBLE COMPUTER: 6502

At this point, we don' t care, and we don't need to. The beauty of using
a Kernal routine is that you don't have to know how it works. You only
have to know how to use it.

GETIN is a simple tool. When your programs needs to know what the
human is doing at the keyboard, it calls $FFE4, and when that subrou
tine re turns , the accumulator holds the ASCII value of the key
pressed. Even though GETIN is a complicated guy, with internal sub
routine calls of its own, and strange interactions with various and sun
dry elements of keyboard hardware—we don't have to know about
this stuff to use it.

ASCII

Commodore uses a modified form of the ASCII (as-key, American
Standard Code for Information Interchange) character set used by
most computers and peripherals, so it is possible, if not ahvays easy, to
hook a Commodore 64 up to other manufacturer's equipment (like an
Epson printer), and have them agree on the number that represents a
comma and so on. Appendix C of the Programmer's Reference Guide
lists the ASCII value returned by GETIN for each key.

There are three good reasons for letting Commodore's routines do the
work for you. First, your program requires less memory because you
don't have to include code to perform these functions. Second, your
program takes less time to write and debug because you don' t have to
consider the peculiarities of disk or keyboard hardware to get the job
done. GETIN is already written and debugged.

Third, should Commodore, in its wisdom, someday invent a new com
puter, with a new keyboard, requiring a different method of reading
keystrokes, your programs will still run—because you used GETIN to
get characters from the keyboard, rather than reading the keyboard
directly. GETIN changed, one of Commodore's programmers had to
deal with the new keyboard—but your program doesn't. It only cares
that a JSR $FFE4 returns a keystroke in the accumulator.

Commodore has committed to supporting the Kernal routines in future
machines. As long as GETIN still has the same "calling conventions",
(same JSR address, returning a value in the same way), your 64 pro
grams will run unmodified on the new machine. This technique of hid
ing the details of a problem, of making a program's components as in-

THE KERNAL: CANNED SUBROUTINES 89

dependent of each other as possible, is central to the concept of
structured programming.

Another Kernal function tells time. One of the C-64's talents is keep
ing track of how many sixtieths of a second (or jiffies, where 60 jiffies
= 1 second) have gone by since it was turned on. Although it is simple
enough to look at the memory locations where this 24 bit counter is
stored ($A0-$A2, according to the Programmer's Reference Guide),
doing so puts your program at the mercy of Commodore's whims. The
C#128 might store the time at $B0-$B2. Better to call the Kernal func
tion RDTIM.

Function Name: RDTIM
Purpose: Read system clock.
Call Address: $FFDE
Communication Registers: A, X, Y
Registers Affected: A, X, Y
Description:

This routine is used to read the system clock. The clock's resolution is
one 60th of a second. Three bytes are returned by the routine. The Y
register contains the most significant byte, the X register contains the
next most significant byte, and the accumulator contains the least sig
nificant byte. (Note: This order is stated backwards, A-X-Y, in the Pro
grammer's Reference Guide discussion of RDTIM.)

Let's step through RDTIM with the simulator. No need to load a PROG;
we're going to write this one on the spot. Using the EDIT function,
place these values at $C000 through $C003:

20 DE FF 00

We just wrote the instruction JSR $FFDE, a call to RDTIM, followed by
an ending break. Set the program counter to $C000, if it isn't already,
and step through it. Don't worry at this point why RDTIM is so
concerned with the interrupt disable flag, and why it insists on writing
back the values it read a moment ago. RDTIM is complete when you hit
theBRKat$C003.

It probably returned a counter value of 00 00 00 jiffies. Hmmmmm.
This implies that approximately 0.00 seconds have elapsed since we
turned on the computer. Since TVC requires more than a minute to

90 THE VISIBLE COMPUTER: 6502

load, this calls for some investigation.

If you browse through page zero with EDIT, you'll notice that this area
is all zeros. This seems contrary to earlier s ta tements about the
crowded conditions in low memory, resulting from Basic's and the
Kernal's storage of important data there. Surely this important data
isn't all zeros.

We confess. TVC has a " fake" zero page (gasp!). All this time you've
had a wonderfully uncluttered page zero to work with. 256 pristine
bytes of zeros, free for the asking. This is possible because TVC, clever
simulator that it is, fakes us out when we ask it to read from or write to
an address in the range $0000 - $00FF; it stores this range elsewhere.

The C-64's jiffy counting mechanism uses addresses in the real, bona
fide zero page, which is not available to the beginning TVC user. Ac
cess to the real zero page requires a TVC master.

Master Mode

Thus far we've been in non-master mode exclusively. This is a good
place for beginners to be; non-master mode makes it just about impos
sible for you to hang up the computer, short of prying the 6502 out of
its socket with a fingernail file. Writes to locations inside the TVC pro
gram and other dangerous areas are not allowed, and I/O references
that can do messy things are locked out.

To enter master mode, simply ask: MASTER ON.

The M (for "master") and Z (for "zero page share") flags on the status
line illuminate. You are now a Visible Computer Master. (Feels great, I
know.) You're also a giant step closer to the real world where a single
wrong move can confuse your computer so thoroughly that you'll have
to turn it off and on again to set things straight.

Many, indeed, most of the locations in page zero are critical to the
health of Basic and the Kernal. Do an LC 88. That $60 at location $8A,
for example, is critical to your machine's ability to input characters
from the keyboard. Change it and see what happens.

We'll wait for a couple of minutes while you get TVC running again.
Tap, tap, tap.. . Fidget. Twiddle thumbs.. . While we 're waiting, let me
reassure you that running a program, no matter how bugged, can ' t
physically damage your computer. The only thing a bugged program
can hurt is your ego.

THE KERNAL: CANNED SUBROUTINES 91

Okay, back? Be sure to make yourself a master again.

Location $8A is not unique; there are many addresses that have to
have the correct value all the time. That great engine that is C-64 Ba
sic needs its zero page locations intact so that it can go on correctly ex
ecuting the program named "The Visible Computer". The Kernal
needs zero page locations to deal with matters such as writing text to
the display. If just one of them is changed, the whole house of cards
that is the Commodore 64 operating system can come crashing down.

Anyway, the point is, as a machine language programmer, you have a
lot of control, and the price of that control is increased responsibility.
You've become an equal partner with Basic and the Kernal, and need
to be a team player. Again, four safe zero page locations (unused by
both the Kernal and Basic) are $FB-$FE.

Rewrite the JSR $FFDE that was at $C000 before we pulled the plug,
and run through RDTIM again. This time it should return a nonzero
value. To calculate how many jiffies have accumulated since you last
applied power, convert this six digit hex number into decimal.

For example, suppose RDTIM returned Y = $03, X = $31, and A = $F0.
$0331F0 = (3*65536) + (3*4096) + (l*256) + (15*16) = 209,392 jiffies.
That's (209,392 / 60), or 3,490 seconds, a little less than an hour.

Now display the timer locations with'LC A0v<Note that they aren't con
stantly changing. TVC doesn't consider the possibility of something
other than itself writing to memory. Force it to recheck these locations
with another LC A0 and you'll see updated values. Soon we'll learn
about the mysterious mechanism that does jiffy counting.

15.
Indexing, Part II

Indexing is a powerful technique that allows a program to access
different addresses with the same instruction. This section introduces
two more indexed addressing modes: Indirect, Indexed and Indexed,
Indirect.

Let's review the concept of indirect addressing. Back in Chapter 10 we
used indirect jumps (remember feeling queasy? That was JMP indi
rect). An indirect addressing mode doesn't specify the address to per
form an instruction with—it specifies the address that stores the ad
dress with which to perform the instruction.

A garden variety JMP $B136 puts $B136 in the program counter and
that's that. JMP ($B136) instructs the 6502 to fetch the contents of lo
cations $B136 and $B137 and use those contents to form the new pro
gram counter. This enables us to change where the jump points under
program control.

The 6502 has two addressing modes that use the indirect concept in
conjunction with the index registers. Two forms are available: one that
uses the X register only, called indexed, indirect, and one that uses the
Y register exclusively, called indirect, indexed. (Yes, the names are
confusing.)

Indirect, Indexed
Suppose you faced a situation that required a block move of greater
than 256 bytes. You could tackle this problem with two consecutive ap
plications of normal absolute, indexed addressing as shown below
(Moves $200 bytes from $3000 to $4000).

LDX #$00
LOOPl: LDA $3000,X

STA $4000 ,X
INX
BNE LOOPl

L00P2: LDA $3100 ,X
STA $4100 ,X
INX
BNE L00P2
BRK

92

INDEXING, PART II 93

While this program would work, it is lacking in elegance. Two loops in
stead of one. If we needed to move four pages of memory we'd need
four loops. Enter Indirect, Indexed addressing. In mnemonic form:

LDA($45),Y

The operand's arrangement of the parentheses is a clue to how indi
rect, indexed addressing works. Since the Y is outside the parentheses,
it's trying to tell us that the indirect portion of the instruction will be
carried out first, and the indexing applied second.

For example, executing LDA ($45),Y: Memory location $0045 is read
and the value stored in the data buffer. Next, location $0046 is read.
Suppose we read a $00 from $0045, and a $20 from $46. We have now

"indirectly" formed the address $2000, (as always, LSB first). Finally,
apply indexing. If Y was equal to 6 when we executed this instruction,
we will load the accumulator from location $2006. If we were to incre
ment location $46 (making it $21), executing LDA ($45), Y again would
fetch the byte stored at $2106.

Even though it takes several fetches of memory to execute (IND),Y in
structions, and consequently more time than other addressing modes,
they are extremely efficient for code length. (IND),Y instructions re
quire only two bytes; one to specify the instruction and addressing
mode; the second, the first of the consecutive zero page addresses that
will form the base address.

Despite their two byte length, they can specify a location anywhere in
memory. Indirect, indexed addressing is a big reason for the space
crunch in page zero—every program needs a couple of zero page point
ers. (Pairs of zero page locations used in this way are frequently called
pointers because their contents "point" in memory to where an opera
tion should occur.)

Only the Y register can be used this way. There is no LDA ($45),X in
struction. There's a demonstration program named CLEARPROG for
(IND), Y addressing. Load and list it.

94 THE VISIBLE COMPUTER: 6502

COOO: LDY #$00
LDA #$C4 ; make pointer pair $FB, $FC point to
STY $FB ; first screen memory address ($C400)
STA $FC
LDX #$04 ; 4 pages of memory to write to
LDA #$20 ; $20 is control code for blank space

LOOP: STA ($FB),Y ; write space code to screen address
INY ; finished a page yet?
BNE LOOP ; branch if not...
INC $FC ; now pointer pair points to next page
DEX ;
BNE LOOP ; done after four pages
RTS

C080 JSR $C000
BRK

CLEARPROG writes a $20, the control code for space, to all $400
screen memory addresses, effectively erasing the display. Actually
only the first 1,000 addresses are used; writing to the unused 24 loca
tions at the end is unnecessary but harmless.

We're using the popular free zero page pair $FB-$FC to point succes
sively to every location in screen memory. First we make $FB-$FC
point to $C400, and initialize X with 4 and A with $20. X is decre
mented after each page of writes. After four pages, the program termi
nates.

Don't execute more than a few cycles of this program. If we let it run
all the way through to the BRK at $C083, eventually the screen would
be cleared, but you would be bored into a coma. It's time to learn an
important new command.

The GO Command
GO causes a program in memory to be executed not by the simulator,
but by the 6502 itself. If you are in master mode, and if the next in
struction is a JSR, then TVC passes execution of that subroutine di
rectly to the 6502. When and if the 6502 encounters an RTS at the end
of the subroutine, TVC regains control and redisplays the X, Y, P, A,
and PC registers with the values they acquired in the subroutine.

There are a million and one ways (conservative estimate) that a ma
chine language program can go wrong, and almost all of them will
cause you to lose control of ("lock up"; "hang"; "kill"; "crash";

INDEXING, PART II 95

"blow away"; "bomb") the computer. You may spray a deadly hail of
bytes into the TVC program, or your sick program may send the 6502
on a wild goose chase (e.g.: C000: 4C 00 08 JMP C000), in which case
pressing the RUN/STOP and RESTORE keys simultaneously may regain
control. (The RESTORE key is connected to the 6502 in a more intimate
way that the rest of the keys, having an effect on it more like the
power switch than a mere keypress.)

In severe cases of crashed computer syndrome, your only recourse is
to turn the machine off and back on and start from scratch. Suffice it
to say, bugged machine language programs are not especially forgiving.
Luckily, CLEARPROG is pretested and guaranteed to work.

Get the program counter pointing to the JSR instruction provided at
$C080. GO won' t work if you're not on a JSR. Now brace yourself and
GO. Doesn't take long, does it? RESTORE the display. Change the $20
at $C00B to a different value and you change what the screen be
comes. $07 produces all "g '"s . $BF, inverse question marks. Have fun
while you can, because we ' re about to spin your head completely
around.

Indexed, Indirect

If you liked indirect indexed, you'll love indexed, indirect. Whereas in
direct indexed addressing is only available with the Y register, indexed
indirect is only available with the X register. Confusing? You know it.
The mnemonic form is:

LDA($45,X)

Again, an examination of the operand and some educated guessing
furnish clues to how this addressing form works. Indexed indirect uses
X to index a particular pointer pair out of several, which then points to
an address in memory. For example, suppose addresses $10 - $17 held
these values:

$10= $00 $14= $00
$11= $C0 $15= $C2
$12= $10 $16= $00
$13= $C1 $17= $C3

Eight locations make up four pointer pairs. The first points to $C000,
the second to $C110, the third to $C200, and the fourth to $C300. In-

96 THE VISIBLE COMPUTER: 6502

dexed indirect addressing uses the X register to select one pointer pair
of many. LDA ($10,X) will load the accumulator from $C000 if X is 0,
from $C110 if X is 2, from $C200 if X is 4, and from $C300 if X is 6.
Pointer pairs don't have to be aligned on even addresses. If X is 3, LDA
($10,X) loads from $00C1.

Indexed, indirect addressing is usually used to select under program
control which of several tables will be used in an operation. In practice
it doesn't get as much use as (IND),Y, but the day will come when you'll
be glad it's there.

More Binary, Inc. Payroll Problems
Through an interoffice memo, you've just learned of Binary, Inc.'s new
retirement plan. All employees under the age of 48 are now required
to double their monthly contribution to the retirement fund. Coinci-
dentally, the youngest member of the board of directors is 48. Binary's
overworked programming team is given the task of modifying the de
duction calculation portion of the payroll system.

Here's the job: Using the employee age table as input, build a "retire
ment plan" table, with the following characteristics: If an employee is
to be on the new retirement plan (he's 47 or younger), put his age in
the table. If an employee stays on the old plan, his spot in the new ta
ble gets a zero. While you're at it, total how many people will be stay
ing on the old plan. The age table, as always, is at $C100. The retire-
'ment table should be built at $C200.

INDEXING, PART II 97

BTABLEPROG

START: LDA #$C1 ; set up two zero page pointer pairs
LDY #$C2 ; $FB,$FC points to $C100 (age table)
LDX #$00 ; $FD,$FE points to $C200 (new table)
STX $FB
STX $FD
STA $FC
STY $FE ; Y counts occurrences of over 47 folks
LDY #$00 ; initialize it to zero

LOOP: LDA ($FB,X) ; read from age table (X = 0)
CMP #$30 ; $30 = 48 decimal
BCC YOUNG ; clear carry means set borrow (age<48)
LDA #$00
INY ; increment counter for people over 47

YOUNG: LDX #$02
STA ($FB,X) ; write to new table (X = 2)
LDX #$00 ; clear X
INC $FB ; and increment pointers to prepare
INC $FD ; for next pass through loop
BNE LOOP
BRK

The active ingredient of BTABLEPROG (build table program) is the
CMP #$30 step. The value in the accumulator fetched from the age ta
ble has 48 subtracted from it (on a trial basis only—the accumulator
isn't affected, just the flags). If that value was 47 or less, a borrow oc
curs, and carry is cleared to reflect that fact. The BCC skips over a null
ing of the accumulator, to the STA ($FB,X) that writes to the equiva
lent spot of the retirement table.

Load BTABLEPROG. If you have doubts about any part of it, especially
the comparison step, run a few cycles with the simulator. Then zap it
with GO. This program executes more or less instantaneously under
6502 execution. Before you can GO it, you'll need to write a JSR $C000
instruction somewhere, say $C080. To write this instruction and a fol
lowing BRK, EDIT the values: 20, 00, CO, and 00 at $C080. Now GO it.
How many people are 48 or older at Binary, Inc.? (Answer: 12—11
board members and the chairman's brother-in-law.)

Only the heavyweights of the 6502 instruction set have these powerful
index/indirect addressing modes available to them: ADC, AND, EOR,
SBC, OR A, CMP, STA, and of course, LDA. For opcode values consult
appendix F.

16.
Some Fine Points

You may have noticed that this manual is filled with phrases like "this
is a powerful group of instructions", or "this instruction gets a lot of
use". This chapter concerns a couple that aren't so powerful, or don't
get a lot of use, or both.

NOP (No OPeration), opcode $EA, implied addressing, doesn't do a
thing. Nada. When the 6502 executes a NOP, the only effect is that the
program counter will end up one bigger, and a little time will have been
wasted. What good is an instruction that does nothing? It has two uses:
as a short delay in a carefully timed counting loop, and most
importantly, as a means of plugging blank spaces in memory, usually as
a debugging technique.

If you were debugging this program:

0800:20 00 10 JSR $1000
0803:20 00 20 JSR $2000
0806:20 00 30 JSR $3000

and determined that the second subroutine had a problem, you could
quickly check out the third subroutine by writing over the middle JSR
instruction with three NOP instructions.

0800:20 00 10 JSR $1000
0803:EA NOP
0804:EA NOP
0805:EA NOP
0806:20 00 30 JSR $3000

When we execute this program now, after the subroutine at $1000 re
turns we fall through to the subroutine at $3000. Appropriately
enough, there is no demonstration program for NOP.

NOP's potential as an innocuous time waster brings up the subject of
instruction execution times. Normally, we are only concerned that a
program run fast, or at least fast enough. Sometimes we have to know
exactly much time an instruction requires. The basic unit of time for
the 6502 is the instruction cycle. In the C-64, one instruction cycle

98

SOME FINE POINTS 99

takes one microsecond (.000001 second). All instructions need two or
more instruction cycles. In general, the less reading and writing of
memory an instruction requires, the faster it runs. DEX and SEC are
fast, requiring only 2 cycles. LDA $45 takes 3 cycles. LDA ($01),X re
quires six cycles.

RTI
RTI (return from interrupt) is an instruction you may never use, al
though one is executed 60 times a second every moment a C-64 is
turned on. But first, the sixty-four-dollar question: What's an inter
rupt?

Three of the 6502's 40 pins allow circuitry external to the 6502 to alter
its normal fetch/execute/fetch/execute pattern. Like the bits in the
status register, these pins are important enough to have their own
names. They are: Reset, Non-Maskable Interrupt (NMI), and Interrupt
Request (IRQ). All three cause the 6502 to stop what it's doing and go
do something else. Some are more courteous to the program that's be
ing interrupted than others, however.

Reset

There's only one way to generate a signal on the reset pin of the 6502 in
a C-64: turn the machine on. A few milliseconds after you flip the

100 THE VISIBLE COMPUTER: 6502

power switch, a circuit applies a pulse to the reset line. The 6502 drops
what it was doing (probably nothing coherent, anyway) and performs
an indirect jump to $FFFC (i.e., to the address stored in locations
$FFFC and $FFFD). The reset program at the destination of the jump
takes care of a complicated series of startup tasks that need doing be
fore the machine can say, in light blue letters on a dark blue back
ground:

**** COMMODORE 64 BASIC V2 ****

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

The reset handling program executed at power-up time, and the mem
ory locations that point to it ($FFFC, $FFFD), had better be in ROM,
rather than RAM. Why?

IRQ (Interrupt Request)

60 times a second the 6502 installed in a Commodore 64 receives a
pulse on its IRQ pin. Like a reset, this causes the 6502 to drop what it's
doing and do something else, but to first save where it is now so that it
can get back later. This is accomplished by saving the program counter
and P register on the stack. Once saved, the program counter is loaded
with the address stored in locations $FFFE and $FFFF, the highest two
locations in the memory map. The interrupt routine performs its func
tion, and returns to the interrupted program with an RTI (ReTurn from
Interrupt). RTI is like an RTS that pulls the status register first, and
program counter second.

The Kernal's interrupt handling program takes care of three basic jobs:
display control, keyboard scanning, and jiffy counting.

Such interrupt-activated programs are often called "background"
tasks. Sixty times a second the 6502 in a C-64 stops working on the
main, "foreground" task (TVC, at this moment) and fiddles around
with jiffy counting and keyboard scanning. However, since the proces
sor can pick up smoothly where it left off, and since the interrupt pro
gram consumes relatively little time, TVC appears to have the proces
sor all to itself.

Interrupt programs must be careful to preserve registers that are al
tered during the course of the interrupt service routine. You can imag-

SOME FINE POINTS 101

ine the fun of debugging a foreground program in which 60 times a sec
ond the X register is mysteriously zeroed. The only registers saved
automatically during an interrupt are PC and P; if the interrupt pro
gram wants to use any of the others, it must save them in a safe place
beforehand, and restore them just before returning to the main pro
gram.

Two bits of the P register are directly related to interrupt requests. The
I flag, interrupt disable, is used to "mask out" interrupts. If I is set, the
6502 ignores signals on the IRQ pin. That's how IRQ gets its name; it re
quests, rather that demands, attention. You may want to disable inter
rupts, for example, when you're in the midst of handling an interrupt
already.

BRK: The Whole Truth

Have you wondered why the P register has a B flag that doesn't have
anything to do with borrow? Or why BRK is sometimes called a soft
ware interrupt?

BRK makes the 6502 behave as though an interrupt request had oc
curred on the IRQ pin. An indirect JMP is made to the same program,
pointed to by $FFFE and $FFFF. The only difference is that the B flag
of the status register is set by a BRK and cleared by an IRQ. This gives
the interrupt handling program a way to determine if the break was
due to software or hardware. If it finds the break flag set, it knows the
interrupt was due to BRK. Otherwise, it has a bonafide hardware in
terrupt on its hands.

BRK is for debugging 6502 programs. By setting BRK instructions at
key points in your program, you can usually find out what's working
and what isn't. TVC's simulator doesn't execute a BRK the way a 6502
does; it treats BRK as a signal to stop execution. By they way, BRK can
not be masked by setting I, either in real life or with the simulator.

If the 6502 encounters a BRK while executing a subroutine via TVC's
GO command, TVC regains control and updates the A, S, X, Y, P, and
PC registers with the values they held at the moment of the BRK. By
convention, the program counter is the address of the BRK instruction
plus two.

102 THE VISIBLE COMPUTER: 6502

Watch an Interrupt
Let's watch the simulator field an interrupt request.

INTPROG

$C000: CLI

JMP $C000

C300: STA $FB
PLA
PHA
ASL
ASL
ASL
BMI BREAK
INC $FE

BREAK: LDA $FB
RTI

Load INTPROG and begin executing it in step mode 1. At some point,
request an interrupt by pressing T . If the I flag is set, the simulator
will ignore the request. Otherwise, when the current instruction fin
ishes, TVC's 6502 simulator will respond to the command.

You'll see the program counter and status register pushed on the stack.
The status register value pushed on the stack will have a clear B flag;
the handling program will check this stack image of P to determine if
this is a BRK or IRQ generated interrupt. Next, the interrupt disable
flag is set. Unless we specifically clear it, interrupts will be locked out
until the interrupt handling program finishes. The program counter
then loads from locations SFFFE and $FFFF, in effect jumping to the
handling program at $C300, which was loaded into memory along with
INTPROG.

The handling program first checks to see if this is a hardware or soft
ware interrupt request. It saves A before doing anything else; a para
mount duty of interrupt programs is preserving the foreground pro
gram's registers. Then we pull the byte at the top of the stack (the
interrupted program's status register) into A, and immediately push it
back. This gets the byte that used to be the status register into A where
it can be examined. If we hadn't pushed the accumulator after the
pull, the stack would have been messed up. RTI would have used the
MSB of the return address as the value to put back in P, and who knows
what would be pulled into the program counter.

SOME FINE POINTS 103

Three ASL's of the accumulator slide bit 4 into bit 7. After considerable
work, we 've made the negative flag equal to the B flag at the moment
of the interrupt. If set, we have a software break, and return to the
calling program immediately. If reset, we ' re in the midst of an IRQ in
t e r rup t , and increment a one byte counter in page zero before
re turn ing . The re tu rn to t he foreground program is smooth;
everything is as it was before, as though the interrupt never hap
pened. From the standpoint of the foreground program, the only evi
dence of the interrupt's occurrence is the ghostly increment of $FE.

Non-Maskable Interrupt

NMI is similar to IRQ, only it has a different vector ($FFFA) and it may
not be ignored. The 6502 always responds to an NMI regardless of the I
flag. In many designs (but not the C-64), NMI is connected to a power
supply sensor. When the sensor gives warning that the incoming AC
line has dropped below some minimum value, the time remaining to
the system is short, maybe only a hundreth of a second. We can't
afford to be polite and wait for another interrupt to finish. The NMI
vector points to a program that may activate a backup power source,
or simply close vulnerable files and wait quietly for the end.

In the C-64 the RESTORE key is tied directly to the 6502's NMI pin.
Each time you press RESTORE, a non-maskable interrupt is generated.
The Kernal's NMI handling program looks to see if the RUN/STOP key is
down also, and if it is, control is transferred to a routine which warm
starts the program in control, usually Basic. If RUN/STOP is not down,
the Kernal quickly returns control to the needlessly interrupted pro
gram.

Because NMI always gets the computer's attention, the RUN/STOP RE
STORE combination is able to break into infinite loops and similar
problem conditions and restore control.

Signed Numbers

All the programs we've seen so far have assumed that the numbers be
ing added, subtracted, decremented, etc. were always positive. Many
times machine language programs face the same problem as the over
drawn checkbook, how to handle numbers less than zero. Or, put an
other way, what shows up in the accumulator when we subtract 6
from 3? You won't see any minus signs anywhere, that 's for sure.

104 THE VISIBLE COMPUTER: 6502

Any guesses as to how to represent negative numbers? (It has some
thing to do with bit 7, hint, hint.) As a suggestion, how about using the
lower 7 bits as the absolute value of a byte, and the 7th bit as a sign
flag. Thus: 0 0 1 1 i m = + $3F

1011 1111 = - $3F

and

0100 1010 = + $4A
1100 1010 = - $4A

That wasn't so bad, was it? Almost the way people do it—if there's no
minus sign, numbers are positive; here, if we have a clear sign bit, we
mean positive. A nice, sensible solution.

Using the most significant bit as a plus/minus indicator limits the range
of values that can be represented with a single byte to -127 through
+ 127. (Again the formula: 27- l = 127.) Two byte numbers can use the
7th bit of the most significant byte for the sign, with the remaining 15
bits storing the absolute value. This yields the range -32,767 through
32,767 (ring a bell somewhere about the storage limitations of Basic in
teger variables?).

But hold on. Even though this scheme has a certain pleasing logic, it
has a nontrivial problem: It doesn't work. Adding 3 + (-6) should
produce -3 . Does it?

0000 0011 (3)
+ 1000 0110 (-6)

1000 1001 (-9)

No. Any way you slice it, -9 is not - 3 . How about 26 + (-14)?

0001 1010 (1A)
+ 1000 1110 (-0E)

1010 1000 (-28)

Not even close. And there's another problem. We have two bit patterns
that mean zero: "Positive zero", 0000 0000, and "negative zero", 1000
0000. Ouch.

Logical, maybe—correct, uh-uh. Rather than subject you to a whole se
ries of potential solutions that don't work, let us proceed immediately

SOME FINE POINTS 105

to a way to represent negative numbers that does work, two's comple
ment.

As with nonfunctional method #1, bit 7 still indicates whether a num
ber is negative or positive. It's the other 7 digits that are handled
differently. A two's complement is formed by complementing (revers
ing) each bit and adding one to the result. We represent -$19 with the
two's complement form of positive $ 19.

$19 = 0001 1001
-$19 = 1110 0110 + 1 = 1110 0111

$64 = 0110 1000
-$64 = 1001 0111 + 1 = 1001 1000

While somewhat less logical than the first method, two's complement
representation possesses the desirable property of actually working
when we put it into action adding numbers. It also solves the problem
of two zeros. There's just one, 0000 0000.

Performing the addition 3 + (-6):

First express -6 into two's complement form:

-6 = two's complement of 6 = two's complement of 0000 0110 =

1111 1001 + 1 = 1111 1010.

Now do the addition:

0000 0011 (3)
+ 1111 1010 (-6)

1111 1101 (?)

Since the result has bit 7 set, we know the answer is negative, and by
performing a two's complement to switch it to positive, we can see if
we got the right answer.

Two's complement of 1111 1101 = 0000 0010 + 1 = 0000 0011 = 3.

It worked. We got -3 for an answer. Since the function of this book is to
get you started in machine language, not to win you the George Boole
Chair of Binary Studies at Stanford, there will be no rigorous proof at-

106 THE VISIBLE COMPUTER: 6502

tempted here of why this method works. (Audible sigh of disappoint
ment.)

To practice, use PRACTICEPROG to add one byte negative numbers to
positive numbers. Represent negative numbers with two's comple
ment form; if you're lazy (and/or smart), you'll use the calculator for
this. Subtract the number you want in two's complement form from
zero (e.g., to obtain the two's complement form of $3411, perform the
subtraction: $0 - $3411).

A final note: For many, signed arithmetic proves to be one of the most
elusive aspects of machine language. If this presentation left you more
confused than enlightened, take comfort in the fact that most machine
language programs don't need signed numbers. And when the day
comes, six months or five years from now when you'll need to know it,
I think you'll find you can pick it up.

Binary Coded Decimal

The Decimal flag (D) of the P register hasn ' t seen much action. In fact,
except for a couple of sets and clears back in Chapter 7, we 've ignored
it entirely.

The D flag controls how the SBC and ADC instructions work. If reset,
as it has been so far in all the demonstration programs (or should have
been) SBC and ADC perform standard binary arithmetic. If D is set, the
6502 adds and subtracts using binary coded decimal (BCD) numbers.

BCD is a numbering system in a limbo midway between binary and
decimal. Because you will almost certainly have no immediate use for
additions and subtractions of binary coded decimal numbers, (unless
you're planning to write a floating point package and are worried
about rounding errors), no further mention of it will be made here.
Just remember to keep this flag clear or all your adds and subtracts will
be wrong. One of the first instructions executed when a C-64 comes to
life during a power-on reset is CLD (Clear Decimal Mode). Leave it that
way.

17.
Putting It All Together

So far we've been using 6502 programs without much consideration to
how they were produced in the first place. We said LOAD and there
they were. Since the purpose of this manual is to get you writing ma
chine language programs, it's about time we wrote a couple, taking
ideas all the way to working 6502 programs.

Bubble Sort

The first program is a demonstration of a sorting technique called bub
ble sort. There are more sophisticated sorting techniques around, in
fact, there aren't many less sophisticated, but when you're using ma
chine language, and moderate amounts of data, there's no reason to
get fancy.

A bubble sort works by systematically "bubbling" the lightest (small
est) numbers in an unsorted list to the top. We start at the bottom and
compare each number with the value above it. If they're not in the
right order already, they are swapped and we move up to the next pair.
When we've worked our way to the top of the list, the smallest number
is guaranteed to be at the top. Next, we repeat the entire process, ex
cept that we don't check the topmost number; we know it's the small
est already. After pass 2, the top two elements in the list are correct.

After n - 1 passes through an n element list, we are done. Let's work
through a sample bubble sort of a four element list. We'll need to make
three passes (4-1) through it, the first making three comparisons, the
second two comparisons, the last, only one.

The arrow points to the lowest member of the pair under test.

Pass 1 34
19
77

—> 22

107

108 THE VISIBLE COMPUTER: 6502

Starting at the bottom: Compare 22 to 77. Since 22 is less than 77, bub
ble it up a notch by swapping it with 77. Advance the pointer. Now the
list looks like this:

Pass 1 34
19

—> 22
77

Compare 22 to 19. We don't need a swap this time. Move the pointer.

Pass 1 34
—> 19

22
77

Compare 19 to 34. Swap. This completes one pass through the list. The
smallest value in the list is now at the top. Move the pointer down to
the bottom and repeat the process, only this time, stop one comparison
sooner, since the top value is already correct.

Pass 2 19
34
22

—> 77

Compare 77 to 22. No swap necessary, advance the pointer.

Pass 2 19
34

—> 22
77

Compare 22 to 34. Swap. End of Pass 2 (top 2 values now correct).

Pass 3 19
22
34

—> 77

The last pass requires only one comparison, 77 to 34. No swap needed.
The list is now sorted.

PUTTING IT ALL TOGETHER 109

That's the sorting method, or algorithm, known as bubble sort. With a
minor change to the comparison step we could just as easily sort the list
in reverse order.

Basic Bubble Sort

Back to the machine language payroll system. To comply with
government form 3212.1-C, Binary, Inc. must submit a sorted list of
the ages of its 256 employees. A Basic attack on the problem might be:

FOR COUNT = 0 TO 254
(WORKING FROM BOTTOM TO TOP, TEST EVERY ADJACENT PAIR
AND SWAP IF NECESSARY)

NEXT COUNT

Fleshing out the interior of the loop:

FOR POINTER = 0 TO (254-C0UNT)
IF ARRAY(POINTER) < ARRAY(P0INTER+1) THEN SWAP

NEXT POINTER

One of bubble sort's few merits is that we don't have to check the top
of the list each time. That's why the inner loop goes to (254-COUNT).

The swap of an out-of-order pair becomes:

TMP = ARRAY (POINTER)
ARRAY(POINTER) = ARRAY(POINTER+1)
ARRAY(POINTER+1) = TMP

Putting it all together, here's a program that could do the job.

FOR COUNT = 0 TO 254
FOR POINTER = 0 TO (254 - COUNT)

IF ARRAY(POINTER) < ARRAY(POINTER+1) THEN GOSUB SWAP
NEXT POINTER

NEXT COUNT

SWAP: TMP = ARRAY(POINTER)
ARRAY(POINTER) = ARRAY(POINTER+1)
ARRAY(POINTER+1) = TMP
RETURN

110 THE VISIBLE COMPUTER: 6502

This Basic rendition of bubble sort is surprisingly simple and appall
ingly slow. Even for short arrays there's a lot of comparing and swap
ping to do. In the neighborhood of 32,000 comparisons for a list of 256
numbers, and roughly half that many swaps, depending on how well
the list is sorted already.

Next Step: Assembly Language

Now that we've massaged the bubble sort algorithm into program
form, let's translate it into the mnemonics and operands of the 6502 in
struction set. We're going to use labels in places because we don't want
to tie ourselves down to real addresses yet.

This form of the program is called assembly language. It's not machine
language yet—the 6502 can't cope with "STA COUNT", anymore than
it can understand the whispered command, "Store your accumulator
in address $FB, please". Before SORTPROG can be run, we must "as
semble" it into the l's and 0's of 6502 machine language.

PUTTING IT ALL TOGETHER 111

Assembling even a short program into object code is a tedious job. Af
ter a half hour of flipping pages in reference manuals, calculating rela
tive branch values, and replacing labels with addresses, pretty soon
learning machine language doesn't seem like such a good idea after all.

Once we've translated the source program into a flock of bytes, (call it
the object program), we must edit these numbers into the computer.
And hope we get every byte right, and don't change STA's into LDA's
along the way.

A test to see how good a job we've done of assembling and entering is
to disassemble memory where we placed the object program, and see if
the result resembles the original source program. It probably won't
and we'll need to make a patch or two. Even once we get it entered
right, the program still won't work if the original source program had
logical errors. If we do much rearranging at all of the source program,
we'll have to re-assemble from scratch.

112 THE VISIBLE COMPUTER: 6502

There's a better way.

The phase of the machine language programming process least suited
to the talents of humans (and best suited to those of a computer) is the
assembly itself. Wouldn't it be nice if we had a program that could as
semble source programs automatically?

Happily, such programs, called assemblers, exist. An assembler
converts 6502 assembly language (source) programs into 6502 machine
language (object) programs. One fly in the ointment is that you won't
have much luck getting an assembler to make sense of a pen and paper
source program. You'll need a special program called an editor, a pro
grammer's word processor, to produce the source program. Many as
semblers include an editor as part of the package. Using an editor is ul
timately faster than writing on paper, although it takes some getting
used to.

1 ORG $C000
2
3 TABLE EQU $C100
4 COUNT EQU $FB
5
6 START LDA #$FE ; PREPARE FOR 255 PASSES
7 STA COUNT
8 TOP LDY #$00 ; START AT BOTTOM OF LIST
9 LOOP LDA TABLE,Y ; GET ARRAY (Y)
10 INY
11 CMP TABLE,Y ; COMPARE W/ ARRAY(Y+l)
12 BCS NOSWAP ; BRANCH IF NO BORROW
13 TAX ; ELSE SWAP
14 LDA TABLE,Y
15 DEY
16 STA TABLE,Y
17 INY
18 TXA
19 STA TABLE,Y ; SWAP COMPLETE
20 NOSWAP CPY COUNT ; AT TOP YET?
21 BNE LOOP ; NO, COMPARE NEXT PAIR
22 DEC COUNT ; DONE 255 PASSES YET?
23 BNE TOP ; NO...
24 RTS

This editor-produced source program for SORTPROG looks remarkably
like the hand written version, with a few exceptions. Every line is
numbered. The editor that produced it uses line numbers as a means of
editing, the same way Basic does.

PUTTING IT ALL TOGETHER 113

Semicolons are this assembler's equivalent of Basic's REM. All lines be
ginning with an semicolon are comments intended to enlighten the
person reading the source program. The assembler ignores them.

Lines 3 and 4 are equates. ".EQ" is a pseudo op that makes the assem
bler associate the name "COUNTR" with the number $FA. In writing
the source program, you can use the name instead of the number. No
tice that the assembler doesn't generate any bytes for .EQ statements.
Pseudo ops are mnemonics for controlling the assembler, not the 6502.
The ORG pseudo op in line 1 tells the assembler to generate code
starting with address $C000.

Once the source program is ready, in a separate step the assembler
translates it into object code. A short program like SORTPROG assem
bles in seconds, with guaranteed accuracy. Is that better than half an
hour, and making mistakes to boot? (Rhetorical question.) Once assem
bled, we can save the object program to disk, or run it, or whatever.

1 ORG $C000
2
3 TABLE EQU $C100
4 COUNT EQU $FB
5

C000: A9 FE 6 LDA #$FE ; PREPARE FOR 255 PASSES
C002: 85 FB 7 STA COUNT
C004: A0 00 8 TOP LDY #$00 ; START AT BOTTOM OF LIST
C006: B9 00 CI 9 LOOP LDA TABLE,Y ; GET ARRAY(Y)
COO 9: C8 10 I NY
C00A: D9 00 Cl 11 CMP TABLE,Y ; COMPARE W/ ARRAY (Y+l)
C00D: B0 0D 12 BCS NOSWAP ; BRANCH IF NO BORROW
C00F: AA 13 TAX ; ELSE SWAP
C010: B9 00 Cl 14 LDA TABLE,Y
C013: 88 15 DEY
C014: 99 00 Cl 16 STA TABLE,Y
C017: C8 17 INY
C018: 8A 18 TXA
C019: 99 00 Cl 19 STA TABLE,Y ; SWAP COMPLETE
C01C: C4 FB 20 NOSWAP CPY COUNT ; AT TOP YET?
C01E: DO E6 21 BNE LOOP ; NO, COMPARE NEXT PAIR
C020: C6 FB 22 DEC COUNT ; DONE 255 PASSES YET?
C022: DO E0 23 BNE TOP ; NO...
C024: 60 24 RTS

That's how SORTPROG came into existence. Now, how does it work?

114 THE VISIBLE COMPUTER: 6502

Line by line:

Lines 6-7: Initialize counter to $FE. Counts passes through the list.
We're done when this is reduced to zero. We count down, instead of
up, to simplify the step that keeps us from checking topmost elements
already known to be in the right order.

Line 8: Starting point of outer loop. Puts us at the bottom of the list for
the start of each pass. The Y register is the pointer.

Line 9: Starting point of the inner loop, where we work our way up,
pair by pair, until we reach the top.

Lines 9-19: The actual comparing and swapping. Test each consecu
tive pair. If the byte with the lower address is smaller than the ad
dressed byte, swap them.

Line 20: Have we gone all the way through the list yet? Remember, we
don't need to go any higher than we 've already done passes.

Line 22: An entire pass has been completed. If this was the 255th pass,
we ' re done. Otherwise, make another pass.

Load SORTPROG. It loads complete with the unsorted employee age
array at $C100 - $C1FF. Unless you've really got a handle on every
step, use the simulator for a couple of comparisons. Understanding the
comparison step requires understanding the borrow flag. Take a whole
day if you must to get it down pat, but do it, once and for all. When you
get around to GOing it, you'll find that SORTPROG handles these
32,000 comparisons and 16,000 swaps in about one second.

How old is the youngest employee of Binary, Inc.? The oldest?

Extra Credit

Change SORTPROG's five absolute, Y instructions from STA/LDA
$C100,Y to STA/LDA $C400,Y. Now t h e page of memory in
SORTPROG's sights is screen memory, the first six and a half lines of
theTVC display...

Now for Something Completely Different

What kind of program should we write next? Something with a little
more suss... No, already done that. No, too complicated. How about.. .
no, too easy. I've got it: Play music with the keyboard. Catchy name:

"ASCII Organ". While we ' re at it, we'll flash colored bars on the screen
along with the music, Close Encounters-fashion.

PUTTING IT ALL TOGETHER 115

Good idea, but somewhat open-ended. Let's firm up ASCII Organ's de
sign, specifying in English as precisely as possible what the program
will and will not do.

ASCII Organ turns the keyboard into a 12 note organ, assigning notes
to keys on the top row, from the " 1 " key on the left (lowest note) to
the minus key on the right (highest note). Each key will be a half tone
higher in pitch than the key to its left. All programs need an escape
route, and ASCII Organ's will be the Fl key.

The screen will display a bar of color for each note, low notes at the
bottom, high notes at the top. Since we have 12 notes, and 25 lines on
the screen, we'll use two lines for each color. Note 1 will appear on
lines 23 and 22 as color 1, white. Note 2 uses lines 21 and 20, and is red,
and so on, up to note 12, lines 1 and 0, color "gray 2". These are the
standard colors values listed in appendix B.

As important as saying what the program will do is saying what it
won't do. ASCII organ won't play more than one note at a time. It
won't control duration. Each note will last the same length of time, 1/2
second, regardless of how long a key is pressed. It also won't control
volume. Hey, I said it had a catchy name, not that it would put Ham
mond out of business.

Before we can describe a machine language program to do these
things, sit still for a quick lecture on C-64 sound.

116 THE VISIBLE COMPUTER: 6502

Making Sound with the Commodore 64

The C-64 has a chip named SID (Sound Interface Device) devoted to
generating sound. Much as VIC, the video controller, figures out what
to do with the display by looking at screen memory, SID makes sounds
according to the values in I/O addresses $D400 - $D41C. Although en
tire books have been written on the subject of making sounds with the
C-64, an undemanding musician like ASCII Organ barely needs to lift a
finger to make music. In fact, you can generate tones with EDIT, just
by writing into a few SID control locations.

Four writes is all it takes. Place $61 at $D400, $08 at $D401, $F0 at
$D406, and $21 at $D404. Make sure you're a master before writing to
these addresses, or the values won't get through TVC's protective
check.

$D400 is a 16 bit control register that tells SID the pitch to play; placing
$0861 (4145 decimal) there makes SID generate a 128 hertz tone. To
calculate what pitch a given value in $D400-$D401 will produce, mul
tiply by .0596. $D404 controls the timbre of the tone. $D406 controls
sustain. SID uses $D404's bit position zero as an on-off switch. The in
stant we write to $D404, the selected note begins to play.

Turn SID off by writing $00 to $D404.

A peculiarity of these SID control locations is that they always read as
zero no matter what values you've placed there. To appreciate what a
great tone producer SID is, consider what an Apple II program has do
to generate the simplest of sounds. That computer doesn't have tone
generation hardware, only a speaker tied to an I/O address. When you
read that location, the speaker, almost imperceptibly, says: "click".
That's it—no beep, no tone, just "click".

To create a sustained tone, one calls a machine language program that
repeatedly clicks the speaker hundreds or thousands of times a second.
The pitch of the emitted tone depends on how long you wait between
clicks. If you wait 2,000 microseconds (1/500 of a second) between
clicks, you get a note of 500 hertz. The only way to waste exactly 2,000
microseconds between clicks is to run a delay loop, the time wasting
properties of which are known exactly. There's no clock ticking away
to help you.

PUTTING IT ALL TOGETHER U 7

To make matters worse, you must also time how long you want the 500
hertz note to last. An Apple program playing a simple tone is two care
fully timed loops, one running inside the other—an inner, pitch loop,
and an outer, duration loop.

LOOP: CLICK SPEAKER
GOSUB DELAY
INCREMENT COUNTER; IF NOT DONE, GOTO LOOP

And waveform control? Multiple voices? Volume control? Forget it. So
appreciate how much work SID does for you. If he didn't do it, guess
who'd have to.

Now that we know a nickel's worth about making sounds on the C-64,
the next step to making ASCII Organ a reality is to concoct a series of
steps for making it happen. Again, let's use Basic (in a very syntax-re
laxed form) to express the problem.

GOSUB INITIALIZE SCREEN
GOSUB INITIALIZE SID

START: GOSUB GETKEY
IF KEY = Fl THEN END
IF NO KEY PRESSED GOTO START

GOSUB CHKKEY
IF KEY UNDEFINED, GOTO START

GOSUB BEEP/DRAW BAR
GOTO START

We're using a method called top-down programming. We start at the
highest, overall level of the problem, and put off details into subrou
tines. You don't have to know how to make a tone or check a fire but
ton to write the main level of ASCII Organ; you make the assumption
that such a function can be programmed, give it a name, and specify its
calling conventions.

Once the top level is solid, you move down to firm up the next level,
and so on, until pretty soon, you're down at the bedrock of the prob
lem. For example, subroutine BEEP/DRAW BAR has sub-levels of its
own.

SUBROUTINE BEEP

LOAD SID FREQUENCY REGISTER
START PLAYING NOTE
GOSUB DRAW BAR
TURN OFF NOTE
RETURN

118 THE VISIBLE COMPUTER: 6502

By putting DRAW BAR into yet a third level, we keep BEEP clean and
simple.

SUBROUTINE DRAW BAR

DRAW BAR
WASTE TIME FOR 1/2 SECOND
ERASE BAR
RETURN

Load ORGANPROG. Before we get into a detailed discussion of it, GO
the program and play around for a bit. (We put a JSR $C000 at $C200
for your GOing convenience.) For instructions, consult the definition.
The first person to send in a tape of Moonlight Sonata played on the
ASCII Organ wins a special No Prize and a hearty "Well done" .

Now, How Does It Work?

Refer to the assembly language listing at the end of this chapter as we
work through ASCII Organ. The simulator can assist your efforts at un
derstanding the program, but keep a couple of things in mind.

Don't try to simulate every step. Not only would this take days, some
routines (GETIN, for one), won' t work at all under the simulator. In
stead, step through the main level of the program, using GO to execute
selected subroutines all at once.

Second, the display used by ASCII Organ is the same one used by TVC
(only one per computer). As a result, TVC will interfere with ASCII Or
gan's efforts, and vice versa. Remember the RESTORE instruction.

Routine by Routine

Subroutine INITSCRN is surprisingly complicated. Why isn't it a simple
rehash of that old favorite CLEARPROG, you ask? I'll tell you, after a
digression on character colors.

Color Memory

When a Commodore 64 is first turned on, characters are presented as
light blue letters on a dark blue background. TVC displays white char
acters against a black background. Why? How? (It has nothing to do
with TVC's relocation of screen memory from $0400 to $C400.)

PUTTING IT ALL TOGETHER 119

The answer concerns a hidden range of memory that serves as input
for VIC, the display controller chip, just as screen memory does. There
are 1,024 bytes of RAM from $D800-$DBFF (labeled as I/O in TVC's
memory maps), organized just like screen memory, called color RAM.
The least significant nibble of each location in this range tells VIC what
color to display characters in.

The low order four bits of location $D800 determine the color of the
character in row 0, column 0. Location $D801 is for row 0, column 1,
and so on. The Kernal wrote $0E, the code for light blue, into color
RAM at power-up time. TVC changed these 1,000 locations to 3, pro
ducing cyan characters (see appendix B). If you change $D801 to 2,
you'll see the character in that cell (the v in Visible Computer) change
to red.

The background color for the whole screen is controlled by a single VIC
control address: $D021. EDIT a 3 there. The display blanks out. Why?
TVC is still sitting in EDIT, waiting for you to do something about ad
dress $D022—but VIC is now displaying cyan characters against a cyan
background. EDIT $D021 back to 0 (cursor left, then 0, then return).

What's all of this got to do with ASCII Organ? To display a solid line of
red on the display, two things have to happen. First, every location in
color memory corresponding to where on the screen the red bar will be
must have a least significant nibble of 2. That takes care of the red part
of the problem. Next, how do we make it a solid bar, and not just a line
of red commas or question marks?

We'll use character number $A0, the inverse blank space. Since $20 is
the space character, nothing appears on the screen when this charac
ter is output. If we invert it, by setting the high bit ($20 is 0010 0000;
$A0 is 1010 0000), we get a character that is solid color. Parts of the
TVC display are built out of inverse spaces, such the message window.
If 40 inverse space characters are placed in a row that color memory
has determined will be red, presto: a solid red bar.

Back to Our Story...

INITSCRN clears the screen through a double whammy of writes to
both screen and color memory. First it sets the background color to
black (even though it probably was already). Next it points zero page
pair $FB,$FC to the first location in screen memory ($C400), and
$FD,$FE to the first spot in color memory ($D800). Then it enters a

120 THE VISIBLE COMPUTER: 6502

loop, similar to CLEARPROG's, that cranks through 1,024 memory lo
cations. Each color memory address gets a zero, character color black.
Since the screen background color was set to black earlier, this has the
effect of erasing the screen.

Meanwhile, every position in screen memory is getting an inverse
space. As soon as color memory is made something other than black,
solid blocks of color will appear. When four pages of screen and color
memory writes are finished, INITSCRN returns.

INITSID
This second initializing subroutine makes sure SID is ready to go when
the main loop needs it. First we write zeros into SID's $1C control ad
dresses, to put SID into a suitably turned off, known state. $D418,
SID's volume address, is set to maximum, and we return. Where possi
ble, the assembler pitches in to make the programmer's work easier. In
line 91, the operand SID+ 4 is converted into address $D404 at assem
ble time.

GETIN

is the Kernal function we learned about in Chapter 14. It returns with
the ASCII value of the depressed key in the accumulator. If 0 returns in
the accumulator, no key was pressed.

CHKKEY

CHKKEY helps out the already complicated BEEP/DRAW subroutine
by reducing the confusion of possible keystrokes returned by GETIN.
When CHKKEY finishes, location $FC, also known as NOTE, holds a
value from 0 through 12. If 0, the key pressed is not defined to mean
anything in ASCII Organ (e.g., return, or "T"). If $FC is nonzero, it
contains the selected note.

These checks are a surprising amount of work. First we test for the
zero, plus, and minus keys, as their value as notes (10-12) bears no re
semblance to their ASCII value as keys ($30, $2B, and $2D). The num
ber keys, 1 - 9, on the other hand, have ASCII values nicely ordered
from $31 to $39, and can be tested as a group.

First we test for the minus key, ASCII code $2D. If that's what really is
in the accumulator, CHKKEY stores a $0C (note 12) in $FC, and

PUTTING IT ALL TOGETHER 121

returns. If it wasn't the minus key, we test individually for the plus
and zero keys; they become notes 11 and 10, respectively.

If we still haven't found a match, there are two possibilities remaining.
It's either one of the continuous number keys, or an undefined key.
The program finds out by assuming that it is a number key.

The number keys have ASCII values from $31 to $39. We subtract $30
from the value in the accumulator. If there was in fact a number key
stored there, the accumulator would now be in the range 1-9 (we
tested specifically for value $30, "0", earlier). This assumption is
tested by comparing the accumulator with #$0A; if this compare gen
erates a borrow, we have a number key. The BCS test would then fail
(set borrow = clear carry), and we store the key value (already in the
range 1-9) into NOTE.

If the BCS passed, the key is undefined, and we leave CHKKEY with
out having changed NOTE from the zero we wrote there in the second
instruction of the subroutine. CHKKEY has now set the table for
BEEP, by turning a bewildering array of possible keystroke values into
a tidy package at $FC.

BEEP

The glamour girl of ASCII organ, subroutine BEEP plays the tone cor
responding to the value in NOTE, and calls subroutine DRAW to put
the colored bar on the screen. Making VIC play a specific pitch requires
placing the frequency values for that pitch into the 16 bit pitch control
register at $D400,$D401. Beep uses two short arrays to store these fre
quency values, PITCHL for the LSB, PITCHH for the MSB, and uses X
as an index.

The tables store pitch values from C through B.

122 THE VISIBLE COMPUTER: 6502

Note C o n t r o l Value P i t c h (Hz)
MSB LSB Decimal

1 C 08 61 2145 128
2 C# 08 El 2273 135
3 D 09 68 2408 143
4 D# 09 F7 2551 152
5 E 0A 8F 2703 161
6 F 0A 30 2864 167
7 F# 0B DA 3034 181
8 G 0B 8F 3215 192
9 G# 0C 4E 3406 203
10 A 0D 18 3608 215
11 A# OE EF 3823 228
12 B OF D2 4050 241

We used the HEX pseudo op to generate these tables at the end of the
program. The assembler turns the line:

202PITCHLHEXOO,61,E1,68,F7,8F,30,DA

from text into bytes at assembly time, just as it does 6502 instructions.
It also automatically makes the connection between PITCHL and the
address of the table, so the source program can reference the symbolic
name of the table, not a number. The first byte in each table is zero,
since the note values used to index this array range from 1-12, not 0-
11. The ORG at line 196 makes the tables start on a nice, even page
boundary, and isn't really necessary.

For example, suppose the plus key was pressed. That's note number
11, so we'd read the 11th element of each table: $EF from PITCHL,
$0E from PITCHH. That's pitch value $0EEF.

After the pitch has been set, we turn the tone on with a write to
$D404. BEEP next calls DBAR to draw a bar in the appropriate spot in
the appropriate color. Note that the only thing BEEP does after DBAR
returns is shut off the tone by placing a zero in $D404. Our guiding de
sign says notes last one-half second, and since note duration control
clearly doesn't happen in BEEP, this timing must happen somewhere
else. Specifically, in DBAR.

PUTTING IT ALL TOGETHER 123

DBAR

DBAR is three levels down in our methodical division of the problem.
First it sets the jiffy clock to zero, using Kernal function SETTIM. SET-
TIM is RDTIM in reverse. The values in Y, X, and A are copied into the
clock's addresses. Next, DBAR uses NOTE to index into yet another
pair of arrays. The values retrieved from tables BSL (Bar Start Low)
and BSH are the LSB and MSB, respectively, of the first address in
color memory that needs changing.

Again, assume that the plus key has been pressed. We have a note
value of 11, and a 228 hertz (3823 * .0596) tone playing. The 11th entry
in array BSL is $50; the 11th entry of BSH is $D8. $D850 is the first
color memory location we'll modify to draw the bar for this note. For
note 11 we want a bar drawn on lines 2 and 3 of the display (remember,
high notes at the top). $D850 is the 1st column of row 2; the first of the
80 locations in color memory that need modification.

$D850 goes into pointer pair $FD,$FE, the note number in A, and we
delegate the job of actually writing to color memory to subroutine
BAR. Before we look at BAR, look at what DBAR is up to after BAR
returns. First it reads the jiffy clock with RDTIM, and checks A (LSB of
time counter) to see if 30 jiffies have gone by yet. If they haven't, we
repeat the test. During ASCII Organ execution, 95% of the processor's
time is spent here in repeated RDTIM calls.

When time is up, BAR is called again, this time with a bar color of zero
(black), to erase the colored bar drawn in the first call. Actually, we're
being sneaky in how we call BAR this second time. By jumping to it,
rather than JSRing, we cause the RTS at the end of BAR to return us all
the way to BEER

BAR

We're now down four subroutines deep. (The main program called
BEEP which called DBAR which called BAR.) Here's where ASCII Or
gan actually puts color on the screen, alternately displaying and eras
ing the inverse spaces stored in screen memory. BAR writes the note/
color value in the accumulator to $50 locations in color memory,
starting with the address loaded in pointer pair $FD, $FE. $50 is 80
decimal, representing two consecutive rows of screen locations.

124 THE VISIBLE COMPUTER: 6502

Top down programming keeps every module of ASCII Organ more or
less equal in complexity. A big part of the skill of programming is know
ing how to carve apparently monolithic problems into manageable
slices. Your ability to do this will improve with practice.

ASCII ORGAN LISTING

]_ *

2 * *
3 * A S C I I O R G A N *
4 * *
5 * *
6 * BY: J IM BLACKSHEAR *
7 * AND *
8 * BRIAN BOULDIN *
9 * *
^0 ***********************************
11
12
13
14 ORG $C000
15
16 NOTE EQU $FC
17 BGCOLOR EQU $D021
18 SID EQU $D400
19 VOLUME EQU $D418
20 SETTIM EQU $FFDB
21 RDTIM EQU $FFDE
22 GETIN EQU $FFE4
23
24
25
2g ***********************************
27 * *
28 * MAIN PROGRAM *
29 * *
30 ***********************************
31
32

C000: 20 IF CO 33 JSR INITSCRN ; INIT SCREEN & COLOR MEM
C003: 20 47 CO 34 JSR INITSID ; INIT SID
C006: 20 E4 FF 35 TOP JSR GETIN ; GET KEYSTROKE
C009: C9 00 36 CMP #$00 ; 0 = NO KEY PRESSED
C00B: F0 F9 37 BEQ TOP
C00D: C9 85 38 CMP #$85 ; QUIT IF Fl PRESSED
C00F: F0 0D 39 BEQ QUIT
C011: 20 61 CO 40 JSR CHKKEY ; TURN KEYSTROKE INTO 0-12
C014: A5 FC 41 LDA NOTE ; 0 = UNDEFINED KEY
C016: F0 EE 42 BEQ TOP
C018: 20 8A CO 43 JSR BEEP ; PLAY TONE, DRAW BAR
C01B: 4C 06 CO 44 JMP TOP ; AD INFINITUM...
C01E: 60 45 QUIT RTS

46
47
4g ***********************************
49 * *
50 * INIT SCREEN *
51 * *
52 ***********************************
53
54

C01F: A9 00 55 INITSCRN LDA #$00 ; SET BACKGROUND COLOR
C021: 8D 21 DO 56 STA BGCOLOR ; TO BLACK C024: A9 C4 57 LDA #$C4 ; SET UP TWO POINTER PAIRS

PUTTING IT ALL TOGETHER 125

C026: A2 D8 58 LDX #$D8
C028: AO 00 59 LDY #$00 ; ($FB,$FC) — > $C400 (SCREEN)
C02A: 84 FB 60 STY $FB
C02C: 85 FC 61 STA $FC ; ($FD,$FE) — > $D800 (COLOR)
C02E: 84 FD 62 STY $FD
C030: 86 FE 63 STX $FE
C032: A2 04 64 LDX #$04 ; DO FOUR PAGES OF WRITES
C034: A9 00 65 LOOPl LDA #$00 ; STORE BLACK TO
C036: 91 FD 66 STA ($FD),Y ; COLOR MEMORY,
C038: A9 A0 67 LDA #$A0 ; INVERSE SPACES
C03A: 91 FB 68 STA ($FB),Y ; TO SCREEN MEMORY
C03C: C8 69 INY ; DO A FULL PAGE
C03D: DO F5 70 BNE LOOPl
C03F: E6 FC 71 INC $FC ; ADJUST MSB OF POINTERS
C041: E6 FE 72 INC $FE
C043: CA 73 DEX
C044: DO EE 74 BNE LOOPl ; DONE AFTER FOUR PAGES
C046: 60 75 RTS

76
77
•yg ***********************************

79 * *
80 * INIT SID *
81 * *
32 ***********************************
83

84

C047: A9 00 85 INITSID LDA #$00

C049: A2 1C 86 LDX #$1C ; ZERO ALL $1C

C04B: 9D 00 D4 87 LOOP2 STA SID,X ; SID CONTROL ADDRESSES

C04E: CA 88 DEX

C04F: DO FA 89 BNE LOOP2

C051: A9 20 90 LDA #$20 ; WRITE $20 TO

C053: 8D 04 D4 91 STA SID+4 ; TIMBRE CONTROL LOCATION

C056: A9 F0 92 LDA #$F0 ; WRITE $F0 TO SUSTAIN

C058: 8D 06 D4 93 STA SID+6 ; CONTROL LOCATION

C05B: A9 OF 94 LDA #$0F ; SET VOLUME TO MAX.

C05D: 8D 18 D4 95 STA VOLUME

C060: 60 96 RTS

97

98

gg ***********************************
100 * *
101 * CHECK KEY *
102 * *
]_Q3 ***********************************
104
105

C061: A2 00 106 CHKKEY LDX #$00 ; INITIALIZE NOTE
C063: 86 FC 107 STX NOTE
C065: C9 2D 108 CMP #$2D ; IS IT MINUS KEY?
C067: DO 05 109 BNE PLUS ; NOPE...
C069: A9 0C 110 LDA #$0C ; IF IT WAS, STORE 12
C06B: 85 FC 111 STA NOTE ; IN NOTE AND RETURN
C06D: 60 112 RTS
C06E: C9 2B 113 PLUS CMP #$2B ; PLUS KEY?
C070: DO 05 114 BNE ZERO ; NAW...
C072: A9 0B 115 LDA #$0B ; BUT IF IT WAS, PLUS
C074: 85 FC 116 STA NOTE ; IS NOTE 11
C076: 60 117 RTS
C077: C9 30 118 ZERO CMP #$30 ; HOW ABOUT 0 KEY?
C079: DO 05 119 BNE CNVT ; BRANCH IF NOT
C07B: A9 0A 120 LDA #$0A ; 0 KEY IS NOTE 10
C07D: 85 FC 121 STA NOTE
C07F: 60 122 RTS
C080: 38 123 CNVT SEC ; CLEAR BORROW
C081: E9 30 124 SBC #$30 ;
C083: C9 0A 125 CMP #$0A ; IF A < 10, A=NUMBER KEY
C085: B0 02 126 BCS EXIT ; ELSE, KEYSTROKE UNDEFINED
C087: 85 FC 127 STA NOTE
C089: 60 128 EXIT RTS

129

126 THE VISIBLE COMPUTER: 6502

130
131 ***********************************
132 * *
133 * BEEP *
134 * *
335 ***********************************

136
137

C08A: A6 FC 138 BEEP LDX NOTE ; GET NOTE PRESSED
C08C: BD 00 CI 139 LDA PITCHL,X ; READ LSB OF PITCH
C08F: BC 10 CI 140 LDY PITCHH,X ; AND MSB FROM TABLE...
C092: 8D 00 D4 141 STA SID ; STORE IN BOTH
C095: 8C 01 D4 142 STY SID+1 ; HALVES OF PITCH REG.
C098: A0 21 143 LDY #$21 ; TURN ON GATE
C09A: 8C 04 D4 144 STY SID+4 ; TONE STARTS NOVJ
C09D: 20 A6 CO 145 JSR DBAR ; DRAW THE BAR
C0A0: A0 00 146 LDY #$00 ; RETURNS IN 30 JIFFIES
C0A2: 8C 04 D4 147 STY SID+4 ; SHUT OFF TONE
C0A5: 60 148 RTS

149
150
251 ***********************************
152 * *
153 * DRAW BAR *
154 * *
155 ***********************************
156
157

C0A6: A9 00 158 DBAR LDA #$00 ; RESET JIFFY CLOCK
C0A8: AA 159 TAX
C0A9: A8 160 TAY
C0AA: 20 DB FF 161 JSR SETTIM
COAD: A6 FC 162 LDX NOTE ; GET NOTE
COAF: BD 20 CI 163 LDA BSL,X ; READ DATA FOR COLOR
C0B2: BC 30 CI 164 LDY BSH,X ; MEM POINTER PAIR $FD,$FE
C0B5: 85 FD 165 STA $FD ; FROM TABLE
C0B7: 84 FE 166 STY $FE
C0B9: 8A 167 TXA ; A TELLS BAR WHAT COLOR TO
C0BA: 20 C9 CO 168 JSR BAR ; DRAW; $FD,$FE TELLS WHERE
C0BD: 20 DE FF 169 WAIT JSR RDTIM ; CHECK THE CLOCK
COCO: C9 IE 170 CMP #$1E ; RETURN WHEN LSB
C0C2: DO F9 171 BNE WAIT ; IS 30 DECIMAL...
C0C4: A9 00 172 LDA #$00 ; DRAW BAR IN BLACK
C0C6: 4C C9 CO 173 JMP BAR ; BAR'S RTS RETURNS TO MAIN. P.

174
175
^7g ***********************************
177 * *
178 * BAR *
179 * *
2Q0 ***********************************
181
182

C0C9: AO 00 183 BAR LDY #$00
COCB: 91 FD 184 BARl STA ($FD) ,Y ; WRITE COLOR VALUE TO
COCD: C8 185 INY ; COLOR MEM
COCE: CO 50 186 CPY #$50 ; DO 50 LOCATIONS
CODO: DO F9 187 BNE BARl
C0D2: 60 188 RTS

189
]_9Q ***********************************

191 * *
192 * DATA TABLES *
193 * *
194 ***********************************
195
196 ORG $C100
197
igg *****************
199 * PITCH LSB *
200 *****************

PUTTING IT ALL TOGETHER 127

201
C100: 00 61 El 202 PITCHL HEX 00,61,El,68,F7,8F,30,DA

68 F7 8F
30 DA

C108: 8F 4E 18 203 HEX 8F,4E,18,EF,D2,00,00,00
EF D2 00
00 00

204 *****************
205 * PITCH MSB *
2Q5 *****************
207

C110: 00 08 08 208 PITCHH HEX 00 ,08 ,08,09,09,OA,OB,OB
09 09 OA
OB OB

C118: OC OD OE 209 HEX 0C,OD,0E,0E,0F,00,00,00
OE OF 00
00 00

2io ****************************
211 * BAR STARTING ADDRESS LSB *
212 ****************************
213

C120: 00 70 20 214 BSL HEX 00,70,20,DO,80,30,EO,90
DO 80 30
EO 90

C128: 40 FO AO 215 HEX 40,F0,AO,50,00,00,00,00
50 00 00
00 00

216 ****************************
217 * BAR STARTING ADDRESS MSB *
218 ****************************
219

C130: 00 DB DB 220 BSH HEX 00 ,DB,DB,DA,DA,DA,D9,D9
DA DA DA
D9 D9

C138: D9 D8 D8 221 HEX D9,D8,D8,D8,D8
D8 D8

18.
Where Do I Go From Here?

Buy an assembler. Quick. Now that you know what one can do,
never again waste time looking up opcodes or calculating relative
branches. Two assemblers available for the Commodore 64 are:

Merlin 64

Roger Wagner Publishing, 10761 Woodside Avenue, Suite E, Santee,
CA 92701.

Commodore 64 Macro Assembler Development System

Commodore Business Machines, Professional Computer Division, 487
Devon Park Drive, Wayne, PA 19087.

Whichever assembler you decide on, don't expect to be doing great
things with it the first day you peel off the wrapper. With all this power
come a host of new things to learn. You'll have to adjust to the editing
commands, the keystrokes for deleting, adding, and rearranging lines
in your source program. You may have to unlearn some commands you
learned to run a word processing program.

You'll have to learn your assembler's pseudo ops, those special mne
monics that are not 6502 instructions, but rather commands for the as
sembly process to follow, such as determining where in memory a
source program will be assembled to run. Expect to work as hard
learning to effectively use an assembler as you did getting this far in
machine language.

J Used My Assembler to Write a Program But it Doesn 't Work and I
Don't Know Why. Programs never work the first time, especially ma
chine language programs. A machine language program that takes a
wrong turn can go a lot of places and do a lot of bad things in a hurry. To
debug it you can either use The Visible Computer, or a machine lan
guage monitor such as Micromon 64.

Bill Yee's Micromon-64 is an excellent debugging environment. Com
pact, complete, and free (if you buy a copy of Compute's First Book of
Commodore 64). It has commands to disassemble, set breakpoints,
compare memory ranges, fill memory with constant values, search for
particular combinations of values, single step through programs, and

128

WHERE DO I GO FROM HERE? 129

more. There's a simplified, nonsymbolic assembler built in. If you're
writing machine language routines called from Basic, Micromon lets
you quickly move between Basic and the debugger. Micromon is $1000
bytes long, and usually runs out of utility RAM at $C000, although it
can be relocated elsewhere.

Basic and Machine Language: Sharing the Work

We said way back in Chapter 1 that the smart programmer doesn't use
machine language unless he has to. Even then, he first tries to get the
job done with a hybrid program, with Basic providing the main frame
work and machine language for the part that needs speed. To accom
plish sharing requires an understanding of what Basic is and isn't.

What is Basic?

Commodore 64 Basic is an 8K 6502 machine language program that
normally resides in ROM from $A000 - $BFFF. Basic hogs, and right
fully so, most of the addresses in page zero for its internal variables. If
it didn't, Basic programs would run even slower. Pages 310-316 of the
Programmer's Reference Guide give a detailed breakdown on what lo
cations are used for what.

Basic creates an environment that lets a programmer work with con
cepts instead of registers and addresses. Where you can say X = Y + Z
without considering where to store variable X. Where you can copy a
formula like R = SIN (2*THETA) almost straight out of a math book,
without worrying how sines are calculated. Basic goes a long way to
ward bridging the enormous gap between the English language and
standard algebraic representation, and the 8 bit, 56 instruction world
of the 6502.

If you learned one thing in this book, it's that a 6502 can no more un
derstand:

1000 INPUT "ENTER YOUR NAME ";A$

than it can play chess or calculate income taxes. 6502 programs can be
written to do these things, but the 6502 just rolls, shifts, jumps, adds
and subtracts.

A Basic program is an elaborate data table constructed and maintained
by the machine language routines residing in $A000 - $BFFF that we

130 THE VISIBLE COMPUTER: 6502

refer to collectively as Basic. The data table begins at $801 and works
up. Actually, it works up from $801 and down from $9FFF: you run out
of memory when the two parts meet. When a Basic program is execut
ing, the 6502 is not executing any of this data directly, that is, if we
could somehow catch the 6502 in the act of running a Basic program,
we would never find program counter values less than $A000.

Instead, the 6502 is busy running subroutines that look at the data ta
ble (Basic program) to figure out what to do and where to go next. If
Basic is told to do something unreasonable, such as divide by zero or
jump to a nonexistent line, he's not in the same situation as the 6502
jumping to non-code areas of memory, or encountering undefined op
codes. Basic remains in control, calmly printing error messages and
waiting for further instructions. That's why faulty Basic programs are
much less likely to crash the computer than bugged machine language
programs.

How to Organize Basic and Machine Language

To call a machine language subroutine from Basic, use the SYS instruc
tion. Give it the decimal version of your routine's starting address. To
call a subroutine at $C000, use SYS 49152. When your machine lan
guage subroutine executes a final RTS, Basic will pick up execution
with the statement immediately after the call. A full 4K of RAM is
available from $C000-$CFFF for just this purpose.

Parameter Passing
Just before your subroutine takes control, the A, X, Y, and P registers
are loaded from locations $30C-$30F, respectively. If you have previ
ously poked values that your machine language routine needs into
these addresses, you can thereby communicate facts from Basic to ma
chine language. Similarly, when your subroutine returns, the registers
are stored back in $30C-$30F.

If a few more bytes of information are needed, you can poke them into
memory, at the place where the machine language subroutine expects
to find data. Heaven knows, peeking and poking is second nature to
most C-64 Basic programmers already. If the application requires a lot
of data transfer between Basic and machine language, the machine
language subroutine can act on the desired Basic variables directly.
This is more difficult, as it requires a thorough understanding of how
Basic stores variables internally.

WHERE DO I GO FROM HERE? 131

The End of the Road

That's it for the tutorial part of the Visible Computer. Obviously, at this
point you haven't learned everything there is to know about machine
language. As with any discipline, learning machine language involves
more than reading one book. Here are three sure-fire ways to improve
your programming skills:

Read good books. Several good ones are listed below. There are good
ones I've left out, but beware of the Judging-by-the-Cover syndrome
in programming books. There are some bad ones out there.

Study other people's assembly language programs. The Kernal
listing in Abacus Software's The Anatomy of the Commodore 64 is a
rich collection of ways to get things done in machine language. Com
puter magazines publish all manner of assembly language programs ev
ery month, usually with extensive comments and description. Pick one
and dig in.

Give yourself projects. Pick a task that seems suited to your capabili
ties (although sometimes the most innocent projects prove to be bot
tomless pools of complications). Maybe you could write a bubble sort
capable of sorting more than one page of data. Or one that let you pass
the size and address of the array when you call it. Try to modify ASCII
Organ to use the joystick to control volume, or note duration. Think
small and ease your way into more complex stuff.

Suggested Reading

6502 Programming

By Rodnay Zaks. Sybex, Inc. 2344 Sixth Street, Berkeley, California
94710.

A detailed reference guide, with extensive discussions of signed num
bers, and demonstration programs implementing various arithmetic
and sorting problems.

6502 Assembly Language Programming

by Lance A. Leventhal. Osborne/McGraw Hill. 630 Bancroft Way,
Berkeley, California 94701.

Another reference volume; get either the Sybex book or this one, but
not both.

132 THE VISIBLE COMPUTER: 6502

Programming a Microcomputer: 6502

By Claxton Foster. Addison-Wesley Publishing Company, Inc. Reading,
Massachusetts 01867.

A funny little book, with some of the worst diagrams, but best descrip
tions you'll find anywhere. You'll need to read between the lines of
this book somewhat, as its target vehicle is not the Commodore 64, but
the KIM single board computer—but that's half the fun. Highly recom
mended.

Compute's First Book of Commodore 64

Numerous Authors. Compute Publications, Inc. Greensboro, North
Carolina 27403.

Some of the meatiest articles from Compute and Compute's Gazette re
printed. Several articles on linking Basic and machine language. Micro-
mon-64 instructions (and right to use) included.

Compute's First Book of Commodore 64 Sound and Graphics

Numerous Authors. Compute Publications, Inc. Greensboro, North
Carolina 27403.

More Compute and Compute's Gazette reprints.

Anatomy of the C-64

Angerhausen, et al. Abacus Software, P.O. Box 7211, Grand Rapids,
Michigan 49510

A C-64 reference book. Especially noteworthy for its fully commented
ROM listings.

The Commodore 64 Music Book

James Vogel and Nevin B. Scrimshaw. Birkhauser Boston, Inc.

130 pages about how to put SID through his paces.

Appendix A
Behind the Scenes of TVC

TVC Memory Map

Page Number

FF
:: Kernal
EO
:: I/O
DO
:: Character Generator
C8
:: Screen Memory
C4
:: Primary User Memory
CO
:: Easic Interpreter
AO
:: User Stack
9F
:: User Zero Page
9E
:: TVC ML Routines, Screen Images
90
:: TVC (Basic Program)
04
:: Basic/Kernal Work Areas
02
:: Stack
01
:: Zero Page
00

The Visible Computer: 6502 is a machine language/Basic hybrid. The
Basic part does most of the work; it would have been almost as easy to
write The Visible Computer: 6502 on the IBM PC, a machine based on
the 8088 processor. Machine language routines are used primarily to
calculate the result of arithmetic, logical, and shift instructions, as Ba
sic is singularly unsuited to this kind of bitwise manipulation.

133

134 THE VISIBLE COMPUTER: 6502

To protect itself from the user, TVC maintains separate zero and stack
pages. You can verify this by comparing reads of $0000-$01FF and
$9E00-$9FFF.

Although TVC allows master users access to the real zero page, there is
no way to share the stack. The simulator always uses the bogus stack
page at $9F00, and a subroutine passed to the 6502 via the GO com
mand will use the real 6502 stack. Any data written to the stack page
during a GO will not appear to be there when you get back to TVC.

TVC reads addresses $FFFE and $FFFF as $00, $C3, during EDIT and
Window reads, and after a keyboard interrupt. This facilitates vec
toring simulated interrupts to a user handling program.

Locations $00 and $01, the 6510's on-chip I/O registers, cannot be writ
ten to, even in master mode.

Disclaimer

The Visible Computer: 6502 is a tool for teaching machine language
programming; a secondary function is the debugging of 6502 pro
grams. It is not intended to be a rigorous copy of the 6502 's internal
workings. Although it correctly executes all 151 defined opcodes, it
may arrive at identical results through different mechanisms. The
term "microstep" has a conceptual kinship to microcode, but any simi
larity between the real working microcode of a 6502 and the micros-
teps of TVC is coincidental.

Appendix B
Screen Reference

135

Standard Color Codes

Black 0 Orange 8
White 1 Brown 9
Red 2 L i 9 h t Red 10

Cyan 3 G r aV x 1]-
Purple 4 GraY 2 12

Green 5 Light Green 13
Blue 6 Light Blue 14
Yellow 7 Gray 3 15

136 THE VISIBLE COMPUTER: 6502

Appendix C
Monitor Commands Reference

Monitor mode is indicated by the " # " (number sign) prompt on the last
line of the display. This indicates TVC's readiness to accept one of the
following commands.

Monitor commands have the general form:

<command> [argument 1] [argument2]

You must separate a command and its arguments by one or more
spaces. You must not use spaces within a command or argument.

This command list uses the following conventions:

address A 16 bit number valid in the current monitor base.
value A number valid in the current base.
register An on-screen register. They are: DL, DB, IR, A, S, P, X, Y,

PC, AD, MEMA, and MEMD.
filename A valid disk file name, without embedded spaces: "TEST-

FILE"; "PROGRAM1".

Slashes ("/") separate equivalent command parameters.
Square brackets ("[]") enclose optional parameters.

The Commands

BASE

Change display or monitor base.

Syntax: BASE register/ALL/MEM/MON HEX/BIN/DEC

Controls how numbers will be displayed on the screen, or interpreted
when entered in the monitor. In place of register one may use ALL to
change the base of all registers, MEM to change base of memory dis
play, and MON to change monitor input base.

Example: BASE PC BIN

137

138 THE VISIBLE COMPUTER: 6502

BORDER

Syntax: BORDER value

Change screen border color.

BORDER changes the border color to the color value specified by pa
rameter value, where 0 < = value < = 15. Follows standard C-64 color
code convention (see appendix B).

Example: BORDER 6

CALC
Turn on calculator.

Syntax: CALC

This command invokes a four function, three base, integer calculator.
The four functions are: + , -, *, and /. As with monitor commands, the
operands and operator must be separated by spaces.

Your first keystroke has a special effect. A Control H, B, or D (for Hex,
Binary, Decimal), changes the calculator base and redisplays the num
ber in that base. Fl exits back to the monitor (or to a simulator pause,
depending on how you got here). Any other character clears the line
and waits for your input.

To use the calculator for base conversion, enter the number you want
converted, and use one of the base conversion keystrokes. To convert
$3CF into decimal: Set calculator base to hex with Ctrl-H. Enter: 3CF
<return>. Type Ctrl-D to see the number in decimal, Ctrl-B for binary.

To multiply $3FF by $10, enter: 3FF * 10.

If an operation produces a value greater than 65,535, or a negative
value less than -32,767, a range error is given. Negative values are dis
played in two's complement form.

Answers are displayed with the same routines that refresh the regis
ters, and therefore include leading zeros and, with binary numbers,
embedded spaces. You need not include leading zeros, and must not in
clude spaces within numbers.

Example: CALC

EDIT

Edit memory.

APPENDIX C 139

Syntax: EDIT address

Entering EDIT mode displays the EDIT prompt, followed by the se
lected location and its contents. As with the calculator function, the
first keystroke has special significance.

The return and cursor right keys advance to the next address. Cursor
left displays the previous address. Fl exits EDIT mode back to the
monitor. Any other character enters the standard input routine. When
return is pressed, your entry is checked for validity in the current
monitor base. If valid and within range, it replaces the value formerly
at that address.

If that value is part of the instruction pointed at by the program
counter, the next instruction line is updated. See the MASTER com
mand for a discussion of what locations can be written to.

Example: EDIT $C100

ERASE

Erase display.

Syntax: ERASE

Clears display, but does not prevent subsequent processes from writing
to it.

Example: ERASE

GO

Transfer program execution to 6502.

Syntax: GO

Master mode only. If the next command is a JSR, execution of that sub
routine is passed directly to the 6502.

Assuming the routine does no damage in the process of running, and
there is no way TVC can protect itself in this situation, TVC will regain
control when the 6502 executes an RTS at the end of the subroutine.

During 6502 execution, "6502 Mode" appears on the error line of the
monitor status area. When control is returned, the programmer's regis
ters, the disassembly window, and the next instruction line are up
dated.

Example: GO

140 THE VISIBLE COMPUTER: 6502

L

Disassemble Memory.

Syntax: [address] L

Disassembles 5 instructions beginning at address. If no address is spe
cified, disassembly picks up where it left off previously.

Example: C000 L

LC/RC

Set first address of right or left memory columns.

Syntax: LC/RC address

The effect of this command will not been seen unless the memory win
dow is open.

Example: RC 900

LOAD

Load binary information from disk.

Syntax: LOAD filename

Enters programs and data stored in disk files into memory, beginning at
$C000. If a file is larger than the $400 byte work space, it is truncated
at that point.

If the memory window is open, LOAD redisplays these addresses, even
if they were not affected by the load. The next instruction line is also
updated.

Example: LOAD MAGNUMOPUS

LOAD MEMORY

A shortcut to editing ram.

Syntax: address value

If address is a location that may be wri t ten to, value replaces the cur
rent contents of address. See the MASTER command for more
information.

Example: A00 FF

APPENDIX C 141

LOAD REGISTER

Manually load register with selected value.

Syntax: register value

If one of 16 bit registers is specified, value can range from 0-65,535.
Otherwise, loads greater than 255 produce range errors.

Example: PC 300

MASTER

Enter/exit master mode.

Syntax: MASTER ON/OFF

Master mode is for experienced users of TVC who desire more flexibil
ity in debugging and executing programs. It is indicated by the letters

"M" and "Z" on the status line, and has the following effects:

1. Enables the GO command.
2. Allows writing to all memory locations, not just $C000-$C7FF.
3. Maps actual (system) zero page.

Example: MASTER OFF

POP

Pop program counter from stack.

Syntax: POP

Simulates an RTS by loading the program counter with the stack's two
topmost bytes and incrementing the stack pointer by two. The value
placed in the PC as a result of this instruction will be meaningful only if
the top of the stack contains the return address of the calling routine.
If S contains $FE or greater, POP is ignored.

Useful as a way of backing out of slow, monotonous routines (such as a
delay loop), or in figuring out how you came to be in a section of code.

Example: POP

PRINTER

Turn printer on or off.

142 THE VISIBLE COMPUTER: 6502

Syntax: PRINTER ON/OFF [value]

Determines whether or not disassembly will be sent to a printer. Print
ing occurs only after the simulator's execution of each instruction. If
you have selected this option, a "P" will appear on the status line. Pa
rameter value is an eight bit number sent to the printer as a secondary
address parameter.

If a printer is not connected, is off-line, or if you have a nonstandard
interface, when you use this function, TVC may lock up, forcing you to
reload to regain control. The printer must be configured as device 4.

Example: PRINTER ON 80

RESTART
Restart TVC.

Syntax: RESTART

Restores TVC to its load time default values. Does not affect user mem
ory.

Example: RESTART

RESTORE

Restore display.

Syntax: RESTORE

Undoes the work of the ERASE command by redrawing screen, accor
ding to the current window and register base settings.

Example: RESTORE

SAVE
Save binary data to disk.

Syntax: SAVE filename [value]

Saves value bytes, where 1< = value < = $400, beginning with $C000
to the floppy disk in drive 8 under the name filename. If value is un
specified, $400 bytes are saved.

The standard conditions must be met for this command to succeed.
Namely, the drive door closed on an initialized, un-write protected
disk with some room on it. Do not attempt to defeat the write protec-

APPENDIX C 143

tion of the TVC disk. To overwrite a file of the same name, use SAVE
@0 .filename.

Examples: SAVE MAGNUMOPUS CO

SCREEN

Syntax: SCREEN value

Change screen background color.

Changes the screen background color to the color value specified in pa
rameter value, where 0 < = value < = 15. Follows standard C-64 color
code convention (see appendix B).

Example: SCREEN 6

STEP

Set simulator step mode.

Syntax: STEP 0/1/2/3

Sets the stepping rate of the 6502 simulator. The effect of each step
value is summarized in appendix D.

Example: STEP 3

WINDOW

Set screen window.

Syntax: WINDOW OPEN/CLOSE/MEM

This command controls what is shown in the "window" area of the dis
play (approximately the central third). There are three options:

CLOSE, the default setting, displays the entire processor/memory
combination. OPEN clears memory area. MEM displays 16 memory lo
cations. (See RC and LC functions). The programmer's registers (PC-A-
X-Y-P-S) always remain onscreen.

Example: WINDOW MEM

THE VISIBLE COMPUTER: 6502

Appendix D
6502 Simulator Reference

The 6502 simulator is the portion of The Visible Computer that runs
6502 machine language. The simulator interactively executes the 151
defined instructions of the 6502 instruction set, by animating the mi-
crosteps necessary to perform each. Undefined opcodes are trapped
and refused.

The Message Window

If the simulator is active, the first line of the message window will dis
play either "FETCH" (if the fetch cycle is in progress), or the mne
monic and addressing mode of the instruction under execution.

Microsteps

The second line of the message window displays the microstep cur
rently being executed. Microsteps are individual small tasks accom
plished in sequence to complete a given instruction. The nine TVC mi
crosteps are:

CALC ADDRS Use the X or Y register to modify AD.
COMPUTE Perform an arithmetic, shift, or logical operation.
COND FLAGS Condition the flags.
DEC Decrement a register.
INC Increment a register.
READ Read into the data latch the contents of the ad

dress in AD.
T: (transfer) Transfer a number from one register to another.

The source register is unchanged.
TEST FLAG Examine P register flag.
WRITE Write the number in the data latch to memory lo

cation AD.

Controlling the Simulator

The simulator is largely controlled by the monitor command STEP. The
effect of each of the four step values is outlined here.

144

APPENDIX D 145

Step mode 3: The slowest, most instructive mode. The simulator
pauses at each microstep. Pressing the spacebar will cause execution
to proceed to the next microstep. When the instruction is complete,
the monitor is entered.

Step mode 2: Pauses do not occur automatically at microsteps. A pause
may be forced by pressing the space bar. The monitor is entered after
the completion of a full instruction.

Step mode 1: Like mode (2) but instead of entering the monitor after
completion of an instruction, the next instruction in memory is exe
cuted. Fl will force monitor entry after completion of the current in
struction.

Step mode 0: Similar to step mode (1) but without update of the
display. Only the disassembly and next instruction areas are kept cur
rent. As with (1), you can force monitor entry with Fl . When you en
ter the monitor, the programmer's registers are updated to their proper
values. Because this mode skips time consuming display routines, it
gives the greatest execution speed, approximately .5 instructions per
second.

Speed Control

The number keys control execution speed. 1 produces the fastest exe
cution, 9 the slowest. Speed control is ignored in step mode 0.

Pausing the Simulator

You can force the simulator to pause by pressing the spacebar. To re
sume execution, press the spacebar again. Pressing C activates the cal
culator, the only monitor function available from within the simulator.
Exiting the calculator returns you to the pause state.

Interrupt Request

Typing I while the simulator is active generates an interrupt request. If
interrupts are enabled (I flag = 0), the B bit will be cleared, PC and P
pushed on the stack, and an interrupt handling program at $C300 en
tered.

THE VISIBLE COMPUTER: 6502

Appendix E
Error Messages

BAD OPCODE The simulator encountered an undefined instruc
tion.

BASE TVC is unable to digest a numeric value you have
given it. Make sure you use values valid in the se
lected base, without embedded spaces.

COMMAND The command interpreter cannot understand your
instruction. Try again, and watch your syntax.

DISK FULL You are trying to SAVE a file to a disk that has no
room for it. Use another disk.

DIV BY 0 The calculator was told to divide by zero.

MISMATCH Disk mismatch error. Happens when you try to use
a Commodore disk not in 1541 format.

NAME You tried to save a file with the same name as an
existing file. To replace original file, use SAVE
©^.filename.

NOT FOUND File not found. Check your spelling, and
remember, no embedded spaces.

NOT JSR A GO command has been issued without JSR as the
next instruction.

NOT MASTER You tried to execute GO without being in master
mode.

RANGE You entered a number too large for the situation.
For example, trying to load the X register with
$101.

READ ERROR Covers a multitude of sins related to disk opera
tions, including: Drive doors left open, disks
inserted upside down or not at all, uninitialized
diskettes, and real problems like faulty disk drives.

W.PROTECT You attempted a SAVE on a write protected disk.
Note: Do not attempt to defeat the write protec-

146

APPENDIX E 147

tion of the TVC disk. Use an ordinary initialized
diskette to save your files.

ER XXXXX-XX An internal error has occurred in TVC. This error is
caused by either a bug in the program or something
your activities in master mode have done to dam
age it. If you feel the first case is likely we'd like to
know about it. Drop us a letter listing the exact er
ror message and a description of what you were do
ing when you got the error. You must reload TVC to
recover from an internal error.

THE VISIBLE COMPUTER: 6502

Appendix F
6502 Reference

148

APPENDIX F 149

150 THE VISIBLE COMPUTER: 6502

A P P E N D I X F 151

152 THE VISIBLE COMPUTER: 6502

APPENDIX F 153

This material reprinted from the Apple IIReference Manual through
the courtesy of Apple Computer Inc.

