B ' : |
15]
ey 7 {
5

. ACCUMULATOR

L e
%0 6502 Assembly'La

' Monitor. Feat resdnc
. Assembly/Disassembly
! Relocate,Breakpointand

i

The information in this manual has been
reviewed and is believed to be enfirely reliabla.
Mo responsibility, however, is assumed for
inoccuracies. The material in thismanual is far
information purposes only, and is subject to
change without notice.

= 1982 COMMODORE INTERNATIONAL
All rights reserved. Ne part of this program or
accompanying instryction lzoflet may be
duplicated, copied, transmitted or reproduced
in any form or by any means withaut the prior
writtan permission of Commodore Home
Computer Division,

Commodorae Home Computer Division
675 Ajax Avenue, Slough Trading Esiate,
Slough, Berks, SLT 4BG England.

Printed in England

MACHINE CODE MONITOR
(VICMON) USER MANUAL

TABLE OF CONTENTS

Section One — Introduction to VICMON

1.1 TARSHOGTON vy min mo vt s o s g b e R A 1
12 The VICMOMMERUE]D v o ol b s e s s i pest i 1
s ER (5 VG 3 N £ T R VNG Cey e PO e TP S (0 S L P T [
1.4 Starting the VICMON System ..o it erieirareneeaenan % i, 3
1.5 Commang EORMOY v crimiam i s di i b e e ey e v S e e 2
A EnlsERg Eenmands Ll e e e S e e T b AT 2
1.7 Error INGIEIION v v o g i v s s N et Mk e s e 2
Section Two — The Commands of VICMON

2.1 Introduetinn. o v s e S e PPE e s K|
22 KON RVETIIEONIE, o oo s o i T S B T 3
23 TheLammands: v e s s e v s s T e E 3
230 A — Assemble .. e 3
232 B — Breakpoint B —— O R S T 3
233 D e PISUSEEMBle s s e A R R R 4
234 E —Enable Virtual Zero Page ... 5
235 IF —FlINBITIOR s e s i s s e T s A R N
DTG Bl iy o T A e S S e T S A e
237 H —Huynt ,,....... EES— No o K RS vty T T e S
238 L ARIBIDTBE ocnoosiomnnin arem o el B R R R B

P e R T o
I L O T O S
2311 M — Memory Display

2T N —Momber omsssmsaea s

2303 G — Quick Troce .. e
2314 R - REQISTRIS: v s s e DR A R R S AR A A A
2315 RB— Remove Breakpoint . veiaii i ios duniiadiositishbnms saviinsyoadaine v 9
23185 —80ve . .iiiiiiiieiiii ey e st i et e e 9
e A O o 14
LRIB We=Walk iiiciiemimiiimisammbmi s G R e, TR 19
FATD X B IO BESIC o er oo s o st e et e et e 19
Section Three — Using VICMON as a Debugging Tool

31 | et o e T e R
32 THOERONBIE PIOUIOMY 2omnoins e ynns ammis s b b g e 8 8Ad AR AT 8 eF b A Bk B ot b
08 TEVEPIEIEIPEAN, oot s o R BB o B VR P
3.3.1 Inputting the Program ..., i

332 Localing the Fau?l

34 gl 1 R e T ORI
[T R TR SR E EANS GRUE ORI (7 SN Y. 15

iii

ot

L B B e ol
G Rt b L0 B st

WWWNK KN —

TABLE OF FIGURES

Title
An Example Initial VICMON Display . .ooviaiiiiiianiioniinisiriiarenssnen 1
RegittarDisplay i iony i ivsviaisem Sues sl i i slsa i i iny ca b ds 4
Example of Character String Display ...o.ciiiiiiiieiiiriiiiaiiiieieiriiein 6
Display Printable Charaeters .o vvu oo e 7
An Exomple of Register Displays ..o o e o ieniieny 9
Flowchart of Example Programcoeciereiicieiciaiciciieieeaaeearinanas 1
Result of First Attempt ta Run Example Programoooiviiiiniviciiineionnn, 12

Screen Filled with A's

SECTION ONE
INTRODUCTION TO VICMON

1.1 Introduction :

VICMON is the nicknoma of the hexodecimal
machine code monitor designed to encble ecsy
debugging of maching eadea progroms which
are resident in a VIC 20 computer system.

This manual dees not set outte teach machine
tode programming on the VIC. Before alempfing
tousemachine code on the VIC you should refer
ta the following:

MOS 6502 Programming Manuals

VIC Programmers’ Reference Guide

VIC Zera Page Memory Map.
Useful reading:

6502 Assembly Language Programming
by Leventhal,
These are available from mest COMMODORE

Computer declers.

VICMON and this manual are intended fer use
by people with some programming experience
ond some knowledge of 8502 CBM machine
code progromming, but ahigh level of expertise
is not required.

1.2 The VICMON Manual

This manual is divided info three parts which
are oullined balaw.
SECTION ONE — INTRODUCTION TO
VICMON
This secficn outlines VICMON in general
terms. It explains the conventions used by this
manual when describing the command formaits,
How lo start VICMON is also included.
SECTION TWO — THE COMMANDS OF
VICMON
In this section, each VICMON command is
explained, its format shown and an example
given. The commands ara in alphabatical order.
SECTIOMN THREE — USING VICMON AS A
DEBUGGING TOOL
This section uses onactual machine language
rogram to show how VICMON can be used to
ocate faults in the pregram.

1.3 VICMON Functions
VICMON offers the following functions:

* Displaying chosen areas of memory.

#* Changing contenls of memory locations.

* Moving blocks of memory.

Filling selected blocks of memory.
Searching memory for a paftern,

Examining and changing registers.

Setting breakpoints.

Executing programs with breakpointcontrol,
Storing and retrieving dota and programs,
Executing pragroms ot three diffarant spead
options. ;

1.4 Starting the VICMON
System
The YICMON cortridge must always be
inserted or removed from the VIC with the power
off. The cartridge is inseriad into the expansion
port with the !ugel on the cartridge facing up,
IFa VIC 1010 Memory Expansion Board is in
use, this should also be turned off, ICMON
may be used in conjunction with VIC 1212
Progrommers’ Aid and/or VIC 1211A Super
Expander carridges. However, please note that
some operations may conflict if changing from
one carlridge fo another. Therefore the VICmary .
have ta be tumed off to effectively make the
switch. VICMON moy also be used with
expansion RAM inthe Memory Expansion Board.
To start using YICMON type 5Y524576 or
SYS6x4096, and then press the RETURN key.
The VIC screen will now display the values
currently held in the 6502's registers. An oxample
is shown in Figure 1-1. VICMON is ready to
accept your commands.

4%k

Figure 1-1 An exomple iniic! VICMON display,

1.5 Command Format

Most VICMON commands are o single
alphabetic character followed by the command
paramelers, if required. The commands are
explained in detail in Section Two. The
paramelers include the start address or start
and end addresses, op-codes, operands, hex
values, efc. The conventions and limitations for
them are definad in Section 2.2.

Command statemenls (except for J) are
terminated and execution of them is initiated by
pressing the RETURN key.

A summary of the cammands, their formats
and where they are described is given on the
back cover of this manual.

1.6 Entering Commands
Whilstthe VIC is operating under VICMON you
are prompted with a “.”. To enter a command
simply type the command letter(s) and the para-
meter{s). {f more than one parameter is required,
separate them with spaces, commas, colens or
any other convenient symbol, The commeond
{exceptfor J) is terminated ond execution is
begun when the RETURN key is pressed.

1.7 ErrorIndication

Any errors you make when inpulting the
command statements are indicated by a question
mark following the position of the error. You
may re-zpe or correct the command using the
standard VIC editing focilities, Press RETURN
to initiate the corrected command.

SECTION TWO
THE COMMANDS OF VICMON

2.1 Introduction

In Section Two, sach VICMON command is
givenin alphabetical order. The required formot
is shown and the purpose ond function of the
command ore explained. A simple example is
included which shows the command, a typical
response whan it is used and an explanation of
the resu lis of executing it,

In Section Three a more defaited example is
shown using on aclual mechine code program
which is then “debugged” using VICMON.

2.2 Conventions

The paramelers in the command formals are
representad as follows:
{addr) atwo byte hex address, .g. 04BD
(dev) asingla byte hex device number, e.g.

[opcede) a valid 6502 assembly mnemonic,
e.q, LDA

(operand) a valid operand for the preceding

instruchion, e.g. #%01

asingle byte hex value, e.g, FF

asiring of litera| data enclosed in

quotes orhex values. Successive items

are separated with commas.

{refy o twa byte hex address, e.g. 206@

{offsel] atwobytehexoflsel value, e.g. 3000,

2.3 The Commands

23.1 A-—ASSEMBLE

Formal : Aladdr] (opcode) [operond}

Purpose : Towssemblecode starting froma
specified address.

The command allows you to input assembly
code line by line and have it siored as machine
code. When the command is entered, the
upproprlmle code is written in memaory

eginning at the specified address. Ths address
e next available memory location beyond

(value]
(data)

Ihql required by the specified op code and
oparand is then prompted awcnmg input of
additional cade.
To terminate the A command, simply press
RETURN when the new address is prompted,
If you input an illegal op code or operand,
VICMON will place a question mork affer the

illegal quantity and will return you to the monitor
with a prompt {*] on @ new line, i you foil 1o
spemf}reltherﬂmop code or aperand, VICMON
will ignore the line ond returnyou tothe monitor
with @ prompt {) on a new line.

NOTE: All aperands must be given os hex
numbers preceded by a dolior sign, i.e. fyped(ls

$nn.
EXAMPLE : To enter the following machine
coda:
LDA #3519
JSR & FFD2
RTS
beginning ot address $1660.
COMMAND: A 1008 LDA #3519 (RETURN)
DISPLAY . A1880LDA# $19
AT002,
TYPE : JSR $FFD2 (RETURN]}
DISPLAY : A1GGILDA #3519
A 1832 JSR § FFD?2
A1085
TYPE + RTS (RETURN}
DISPLAY . AIGGYLDA #8519
A2 ISR § FFD2
A1E35RTS
A B3
RESULT : The machine cede equivalent of

the speuﬁed assembly languoge
code is stored in memory from
loeation 1980 o 1685 inclusive.

232 B—BREAKPOINY
Fermat B [oddr)
or: B (oddr], n
where nis a four digit HEX
number indicating how many
times that address will be
encountered before the breok
Qccurs.
: To set o breokpoint so that o
Erogram does not execute fully
vt instend stops at the specified
location.
A breokpoint allows you to run your program
up fo a specified address. If you used G (see
Section 2.3.4) to initiate the run, the contents of 3

Purpose

the registers are displayed automatically,
allowing you to determine if they are as expected,
The Q) mode of exaculion [see Section 2.3.13)
will also stop at the breokpoint but the registers
will nat be displayed. You will be swifched fo the
W mode. (See Section 2,3,18.) To display the
regislers,;arass the STOP key and then use the R
command. [See Section 2.3.14.}

MNote that the run terminotes before the
instruction in the specified address is executed.
You must be careful not fo set a breakpoint
between an op code and its operand or in the
midst of data, Doing so will cause the breck-
point to be i?nored and the resulting run fo be
unpredictable.

It is possible to execute an address aspecified
number of imes and braok en the subsequent
pass. This is done by specifying the number of
lerations {the n in the formal stalement above),
no number is given offer the oddress, the
program will break when that address is
encountered the first fime.

Type in the breakpoint command and press
the RETURN key. Now run the program using
the G or Q command. The program will run up
te tha breakpoint and slop (unless the program
has logical faults which prevent its reaching the
specified address).

You can only set one breakpeint before you
begin running your program. When a break-
point is reached you miry then sel @ new breok-
point if you wish, You can resume the prograom
execution afler a breakpoint using any of the run
commands {G,Q, W, 1},1.2, youore not resirictad
1o using the same method of running throughout,

Ifa breakpeointis never reached, execution can
be slopped by pressing the STOP key and then
the RESTORE key. This will return you o BASIC.
You should re-enter VICAMON ond set an earlier
breakpaint o isolale your problem. (See Section
Three.)

EXAMPLE : Assume that you have a program
in memory from location 1084 to
location 1208. To stop the
program execution before 1350;

COMMAND: B 185¢ {RETURN}

COMMAND: Q 10@a (RETLIRN)

RESULT : The program will slowly execute,
stopping before line 1658 is
axecuted. You will be left in the
WALK mode.

EXAMPLE : To set a breokpeint so that the

rogram will stop the third time
acation 1188 is reachead:

COMMAND: B 1100, 6363 (RETURN)

4 COMMAND: G 1050 (RETURN)

RESULT : The program wil| run, stopping
bafore location 1108 is executad
the third time. The contenls of the
ragisters af that point will be
disployed in the format shown in

Figure 2-1.

Figure 2-1 Register Display

233 D-—DISASSEMBLE
Format : D {addr)
or; D (addr), {addr)

: To disassemble code frama
specified point or between a
range of points,

NOTE: Farward or backward scrofling with the
CUrsor movement kE‘VS will confinue fo
disassemble code.

The [command enables you to convert the
code that is stored in the computer's memary
back into assembly languoge notation. Youmaoy
specify a beginning address in which case that
line of code will be disassembled and displayed
in assembly language on the screen_ The VIC
will remain in the disassemble mode and you
may use the cursor to disassemble additional
lines of code, ie. the cursor-down kay will
disnssemble the linels) fallowing the specitied
line and the cursor-up key will disassemble
preceding lines. Note, however, that the dis-
assembly will not begin until the curser reaches
the bottom {or top) of the screen ond the scrolling
begins,

WARNING: Working backwards with the cursar
k?- may notgive a perfectly accurate franslation
of the code,

Alterncitively, you may specify o ronge of
addresses to be disossembled, The lines specified
will be displayed on the screen. If you specify o
range of oddresses that is too long fo be
displayed on the screen gt one lime, the screen
will scroll, The STOP key will tarminate the
scrolling and you will remainin the disassamble

Purpose

3

mode. You may disassemble subsequent lines
with the cursor-down key.

While yau arein the disassemble mode, u line
of code on the screen can be modified by simply
carrecfing or relyping the line and pressing
RETURN. The A command is automatical by
activated. When you have made the change,
you remain in the A mode with the cursor
positioned affer the address on the line
following the corrected line, To ferminate the
assemble mode, clear the screen and press
RETURN.

EXAMPLE : Todisassemble the lines of code
input in the example of the
assemble command ond then fo
change the address inthe second
line to FFD$:

COMMAND: D 1000, 1685 (RETURN])

DISPLAY . 1008 LDA #3219
1962 JSR § FFD2
05 RTS

ACTICN : Move the cursor so that it is
positioned aver the 2 in the FFD2,

TYPE : @ (RETURN)

DisPLAY 1000 LDA #319
A1PP2 JSR $FFDY
AlB05RTS

RESULT : The cade from location 1848 to

location 1985 is disassembiled.
The chonge is mode and then
stored wiith the RETURN key, You
are |eft in the ossemble mode.

2.3.4 E— ENABLE Virtual Zero Page

Format : E {oddr}

Purpose : To set aside a virtual zero page
so that VICMON does not
interfere with your variabl es,

VICMON uses location $88 to 371 of zoro
page. The Kernal uses the rast of the zero poge
and same of the $200-$80@ pages. Since your
program may assign variables which will be
stored on the zero page, running the program
moy interfere with some of the information
already stored there, Ta prevent this, the E
command anohles you to set aside avirdual zero
paga of 256 bytes ot onother lecation. When o
virtual page has been set and your progrom is
run, VICMON automatically swaps the zoro
page contents with the virtual zero page
conlents, thus protecting the YICMON and
Kernal information. When program executionis
terminaied, they are swapped again,

To disable the virtual zero poge when you
have your program running correctly, simply

use the E command with the zero poge address,
i.e. EGDA0.
EXAMPLE : To set virual zero poge beginning
atlocation $1038:
COMMAND:; E 1080 (RETURN})
RESULT : The locations $1009 to $18FF will
be set asida as avirlual zero page.

2.3.5 F—FILLMemory
Format : F{addr), {addr), (value)

Purpose : Tofillmemory between two speci-
fied addresses with a given volue.
The F command enables you 1o put o known
value inlo a specified block of memory. This is
useful for initializing data structures or for
blanking out the confents of any RAM area.
Simply specify the range of the block of memory
ncﬁhe ottern you wish to write in that block,
Naturally you should notspecify addresses from
40000 1o $@1FF (pages zero and one). Similarly,
if you are using o virlual zero poge (see the E
command, Section 2.3.4) you sheuld avoid thot
area as well,
EXAMPLE : Towrite SEA {ano-op instruction)
from location $108¢ 10 $20008
inclusive:

COMMAND: F1063,200d,EA (RETURN)

RESULT : The no-op instruction ($EA) is
writlen in all the addresses from
31000 1o S2009.
236 G-—-GO
Format -G
or; G {addr)
Purpose : To execute o progrom beginning

at the localion currently in the
program counter or beginning
from a specified address,

The G command may be used alone or stated
with onaddress. When G is used alone, the VIC
will execute the program in memory beginning
with the location currently in the program
counter. (Te display the conlents of the program
counter, use the R commond as described in
Seclion 2.3.14.) When an address is given with
the G commaond, execution will begin ot the
location specified,

The G command restores the registers latheir
last known states and if a virtual zero page is
active (sae the E command), exchanges
VICMON's zero page with the virtual zero
page. Execulion of your progrom will confinue
unhl a preset breokpoint, if any (see the B
command) or until the end of tze program is

reached, unless the program has logical fiaws.
|f the execution is terminaled by a breakpoint,
the contents of the registers at that peint will be
displayed. i the program is ferminated by RTS,
when thal command is reached you will be
returned to BASIC. If the last command is BRK,
when it is raached you will be returned to
VICMOCN. i noterminator is attainable dueto a
flaw in the program, you will have fo use the
STOP and RESTORE keys to terminate the
execution, You will then be in BASIC and must
re-enter VICMON,

NOTE: lf your program has changed the screen
and/or lefter celours you may be unable to see
the READY or the register display.

For other means of executing progroms, see
the 1, W ond Q commands, Sections 2.3.9, 18
and 13 respectively.

NOTE: Frequent breokpoints can prevent the

program becoming “runaway .

EXAMPLE : Assume tha! you hove a program
in memory and wish to begin
executing it from location $2008;

COMMAND: G 2000 (RETURN).

RESULT : The rc?ister.-—. willbe restored. The
PCwill be setto 2004 H a virtual
zero page hos been established,
it will be swapped with the
VICMON zera page. The
progrom will begin executing ot
52000,

2.3.7 H—HUNT

Format : H {addr), (oddr], {data)

Purpose : To search through a specific
block of memory and localeall
occurences of particular data or
character strings,

The H command easily locates any specified
choracier pottern that is in the computer’s
memory and displays it an the screen, You moy
use this command fo locote data, which is speci-
fied in hex, or fo find text strings up 1o 88
characters long (one line), which are specified
literally and preceded by a single quote mark.
All locations within the specified range which
contain the requasted characters will be found.
I there are more occurrences than will fit en the
screen, the screen will scrall. The STQP key will
terminate both the scrolling and the HUNT ond
return you to VICMON. The control key will slow
down the rate of the scroll. When all occurences
within the range have been located, you will be

-returned to VICMON,

EXAMPLE ; Assume thot the data string
HAP2F3C is stored in memory

somewhere between location
$CPPP and location § COFF. To -
locate the string:

COMMAND: H Ca8 CBFF A9,2F,3C
(RETURN;)

: Memory is searched between
$COP0 and $CAFF and the
location where $A92F3C is
stored is disployed.

: Assume that the word
COMMODORE is stored in
momory in three locations
between $2000 and $3HIG:

COMMAND: H 2000,3600, 'COMMODORE .
{RETURN)

: See Figure 2-2.

RESULT

EXAMPLE

DISPLAY

Figure 2-2 Exampleof Character Sting Display.
23.8 I —INTERPRET

Format : I {oddr}, (oddr)

or: I jaddr)
: To locate and disploy printable
text charadars within a specific
block of memary,

The Icommand will display in roverse video
any of the 96 printable CBM ASCI| code
equivalents occuring within fhe specified block
of memory. All other charocters in the block will
be indicated by o dot {.). If the specified block
more than fills the screen, the screen will scroll.
The STOP key will terminate the scralling and
the control key will slow dawn the rale of
scrolling. When fhe specified INTERPRET i
terminated, you will remain in the I modo.
Pressing the cursor-down key will display any
CBM ASCIl characters on the next line as the
screen scrolls.

EXAMPLE : Assume that the hex codes for C,
carrioge return, line feed, CB,
carriage relurn, line feed, and
CBM, carriage return, line feed

Purpose

ore stored beginning at location
$1000:

COMMAND: T 1003 (RETURN]

DISPLAY : See Figure 2-3.

Figure 2-3 Display Printable Choracters

239 J—JUMPto subroutine.

Formad 4

: To execute g subroutine call and
return without single-stepping
whilst running a progrem under
the W command.

The W command runs your program one line
atatime, i.e, ofter executing a ling, itwaits for an
input from you before proceeding. Whilst in this
mode, you may wish fo execute a sub-routine all
at once, for example, when you have already
checked it by single stepping. You may wish to
maove through the sub-routine guickly on
subsequent calls. The J command enables you
to dothis, Simply press the) key when the line
containing the subroutine call is displayed. |1 is
not necessary to press the RETURN key. Note
that the J will not appear on the screen,

When the | command is vsed, the correct return
address is pushed on the stack and the subrouting
is executed. When the final RTS instruction is
encountered, the program counter wil| be setto
the return address which was pushed on to the
stock. You will again be in the WALK mode,

Purpose

EXAMPLE : Assume that you are in the WALK
mode and the following code is
on fhe scroen:

147F LDA #5060

1481 JSR $A2C7
COMMAND: J
RESULT + $1484 is pushed on the stack, The

subroutine beginning al $A2C7 is
execyfed, When the RTS is
reached, the slack is popped to
tha PC. You are returned fo W
mode.

23.1¢ L—LOAD

Farmat : L”FILENAME", (dev)

Purpose :Tolood o program file into
memory from ¢ specified device.

The L command enablas you to read o load

file or a program file thatis stored on cassetieor

on diskette and write it into the VIC's RAM. For

disk files, the address ot the firstlocation in BAM

into which the load file will be read must be the

first two bytes of the file. Tape files have the start

address as part of the iniliol header block.

NOTE: Only progran: files that have been
created ysing the S command of ICMON fsee
Section 2.3.16) or SAVE in VIC BASIC may be
loaded with this option.

The command consists of L, the name of the
file ond the number of the device to read from.
The file name must be enclosed in quolation
marks and may be any legal VIC file name, The
device number of the cassetle unitis 01, The
device number of the disk unit is BB,

When the L command is used, the specified
file on the device will be read into memory until
an EQF is encountered, [Hthe EOF is not
encountered, the LOAD will not lerminate and
iﬂu will have fo press the STOP and RESTORE

eys to stop Il

if the device or file is nof present you will get
an ervor message and be returned to BASIC.
EXAMPLE : Assume that you have a disk

program file nomed TEST that is
258 bytes long, the: first bwo bytes
of which are BBCA. To read this
file into memory:

COMMAND: L “TEST", 88 (RETURN}

RESULT : The pragram named TEST which
is on the diskette inthe disk unit is
loaded into memory from CAGG
1o CBOY inclusively.

2.3.11 M—MEMORY

Format : M (addr}, (oddr)
or: M {addr)
Purpose : To display the hex code thot is

stared in a given block of
memary.

The M command will display the contents of
memary from the beginning address in fhe
command up to and including the contents of the
ending address. The display will have the
address and five hex byles on a line. If only one
address is given in the command, five bytes will
be displayed beginning with the cantents of the
specified addrass.

Additional groups of five bytes may be
disployed by causing the screen to scroll, i.e.

using the cursor control keys, Note that if you
specify a second address which is smaller than
the first you will wrop oround from the end of
memory fo the beginning.

The contents af memary may be changed by
typing over the displayed values and then
pressing the RETURN key. If there is a bad RAM
location or if you attempt to modify ROM, a £
will be displayed at the location of the impaossible

change.

EXAMPLE : To display five bytes of memory
beginning ol location $1908 ond
to change the B0 to FF:

COMMAND: M 1680 (RETURN)

DISPLAY :.1008 A€ 00 EA EA FF

ACTION : Position the cursor over the first@
of 0. Type FF and press RETURN.

RESULT : The five bytes of the memory

inning at location $1008 now
raad AW FF EA EA FF.

2.3.12 N—NUMBER

Farmat : N faddr), [addr),(ofsel),
{lowlim] {uplim) W
where offset is o hex value indi-
cating the amount to be added 10
the existing addresses and lowlim
and uplim specily the range of
the operands to be offset and W
is an optional command indicat-
ing thatthe range is o word
table.

: To reassign absolute memory
addresses between specified
rangas when a program has been
relocated with the T command,

With the T command (see Section 2.3.17), you
con relocate your program io another part of
memoery, Of course, if your program contains
absolute addresses, these addresses will no
longer be valid, The N command allows you to
automatically change these values. First you
must calculate the amount you have moved the
program. Note that if you have moved the
program fo a lower memary locotion, you must
caleulate the wrap-oraund value, e.q. if your
pmirum was at $A0PP and is moved o §0488,

ou have moved $6400 since SAGAD + $6400 =
18400, The value $640@ is the offsel.

With the N command you may changeall
absolute addresses or only those within o specific
range. The range is established by setting upper
ondg!ower inclusive limits, You must also specify
the block of memory in which the change is
required, VICMON will toke each operand
within the block and add the amount of ihe offset
toit, i.e. it will overlook three bytes and odd the

Purpose

offset to the next two bytes, Of course, if you

want to change o word table, this would be

disastrous, but VICMON has provided for this
with the optional W at the end of the N command.

When the W is included, every word, i.e. every

bwo bytes, will be offset rather than os described

above,

WARNING: Do not use the N command in the

range of your dota Jocations or you will dasiroy

the data’s usefuiness.

EXAMPLE : Assume that you have used the
TRANSFER command ta relocote
your progrom. [twas in locations
$18040 to $2000 and now is at
$1500 to $2500. To appropri-
ately adjust oll the absoluiz
addresses in that range:

COMMAND: N 1500,2500,0583,1999,2008
(RETURN}

: Within the code in locations
51500 to $2588, all absclute
addresses that fal| between
51000 to $2068 are increased by
S500.

23.13 Q—QUICK TRACE
Farmat ' Q
or; Q@ (oddr)

: To run a program at a slow pace
beginning atthe specified address
and checking for o breakpoint or
your use of the STOP and X keys
oftereach instruction is executed,

The G command, like the G commend (sea

Section 2.3.6), may be used olone or stated with
an address. When itis used alone, VICMON will
execute the progrom in momory beginning with
the location currently in the program counter,
(To display Ihe contenls of the program counler,
use the R command os described in Section
2.3.14.) When an address is given with the Q,
execulion will begin at the lacation specified,

The Q command funclions much as the G

command with one major exception. Whilst G
turns program control completely over ta the
CPU, Q executes one instruction at a time,
checking after each slep 1o see if abreakpoint is
setor if you have asked for execution to
terminate. This breakpoini check allows you 1o
set breakpoints in ROM as well as in RAM,
When the breakpoint is reached, execution will
stop and you will be in the WALK made. (See
Seclion 2.3.18.) To display the registers at this
point, press STOP, R and RETURN,

The user interrupt con be generated from the

keyboard ot any point. Simply press the STOP
key and then the X key. Execution will be

RESULT

Purpose

terminated and the contents of the registers at

that point will be displayed.

EXAMPLE : To execute o progrom in QUICK
TRACE mode beginning ut
$1060;

COMMAND: Q 1060 (RETURN]

RESULT : The PCis setlo 1008. The
registers ore initialized. I o
virtual zero page {see the Ecom-
mand, Section 2.3.4) has been
established, it is swapped with
the zero page. Program execution
is begun at line 1000.

2.3.14 R— REGISTERS

Format 1R
Purpose : Todisplay the conlents ot the
registers.

The R command enables you o view the
current status of the following regisiors in the
VIC 2(3's 6502:

program counter PC
status registor SR
accumulator AC
index register X XR
index register Y YR
stock pointer SP

This can be useful when you are debugging a
program because the R enables you to seeifthe
registers contain the values you expecled. You
may alsa change the values in the registers whilst
inthe R mode by simply typing over u new value
and pressing RETURN. The register disploy is
automatically generated when VICMON is
started up, when o presef breckpoint (see
Section 2.3.2) is reached in the G mode [see
Section 2.3.6), ond when & Q run (see Section
2.3.13) is terminated by the STOP and X key
combinalion.
EXAMPLE : To disploy the contents of the

registers:
COMMAND: R (RETURN])
RESULT : Figure 2-4, for exomple.

Figure 2-4 An example of Register Displays

2.3.15 RB—REMOVE BREAKPOINT

Farmat :RB

Purpose : Taramove o breckpaint.

Breakpoints are set by the B command [see

Section 2.3.2} and can be removed by the RB

command, Simply specify RB and fhe break-

point which was set will be removed. If no
breakpoints existwhen an RB is executed,

VICMON will interpret the command os il it

were on R and display the registers.

EXAMPLE : Assumethot o breokpoini was sel
ctlocation $1050. To remaove thal
breakpaint:

COMMAND: RB 1858 [RETURN)

RESULT : Abreakpoint no longer exists ol
location $1P50.

2.3.16 5—SAVE

Format + § “filename, [dev), (addr) {addr)

Purpose : Towrile the contents of aspecified
RAM area to a particular device.

The S command enables you fo sove a
program on diskette or cassetie so thatitcan be
used at o later time, The command consists of
the name of the file, the number of the device to
he written 1o and the start and end address of the
RAM block, The flile name must be enclosed in
qualation marks and musl obey the syntox rules
for VIC files, i.e. it must begin with an
olphabetical character and be no more than 16
characters long. The device number of the
cassolte unitis 31 and of the disk unit, @8. The
final address must be one larger than the
location of the last byte you wish to wrile.
WARNING: If the final address is nat one larger
than the location of the last byle you wish fo
save, the last byte will be lost,

If the specified device is not present you will
getan error message and be returned 1o BASIC.
NOTE: VICMON will not save memory above
S7FFF i.e. the start address must be $6000 or
areater but not larger than $7FFF and the end
address mus! be greoter than $0000 but no
largerthan $8000. (f you aftemptta save memary
oulside this range, only the file heoder will be
saved, i.e. no datn or program will be written,
EXAMPLE : Assume that you have a progrom

in memory from location $S1808 to
$10FF. To write that program to
the diskette in the disk drive,
naming that progrom TEST 1:
COMMAND:; S "TEST1",08,1000,110¢
{RETURN])
: Afile named TEST 1 will be
written on the diskette. It will

RESULT

conlain the code thal was in RAM
location 51088 to S16FF inclusive.

2.3.17 T—TRANSFER

+ T (addr] {addr},.{addr)

: Totransfer the contents of ¢ block
of memaory from one area of RAM
tc ancther.

The T command enables you to relacate your
program or data fo ancther part of the memony.
This can be useful if you wish fo expand o
program or fo use part of a program elsewhere
without retyping, The command consists of three
addresses. The first two indicate the block of
mamory to be duplicoted. The third address
indicates the slarting address for the copy.

If o program is transferred and the program
conicins?:labsolm«a addresses or word fables,
these specifications in the new location will not
be accurate, The N command (see Section
2.3.11) allows you fo offset these values by the
apprapriate amount so that the relacated
program will run propetly.

EXAMPLE : Assume that you have a block of

data in memory from locafion
S0 1o $3500. To mave that
dota to a new location beginning
at $4666:

COMMAND: T 3000,3500, 4000 (REFURN)

Format
Purpose

RESULT : The dota is now in the block
$3000 to $358¢ and in the block
S4000 ta $4508,
23.18 W—WALK
Formot W
or: W (addr)
Purpose : To execute a progrom one

instruction at a lime.

The W cemmand execules the line of code
indicated by the cddress in the program
counter, if W is used alene. Allernatively you
may specify the address of the instruction o be
exacuted.

When using W, the first instruction is executed
and the second instruction will appear on the
screen. YICMON will wait for you to prass the
spacea bar before it will execule the second line,
When the space bar is pressed, the line will be
exacuted and the next line displayed. Inthisway
you can WALK, i.e. single-step through the
program. Toreturn to VICMON from W, press
the STOP key.

You may use the R command }sce Seclion
2.3.14) fo display the gonlents of the registers at
any point. Press STOP, then the Rkey and then

10 RETURN to accomplish this,

Each subroutine must be single-stapped as
well, unless you use the J command to treat the
entire sub-routina as one step (see Section 2.3.9).
EXAMPLE : Tosingle step through a program

baginning ot lacation 51808:
COMMAND: W 1868 [RETURN)

RESULT : The instruction stored ot address
$10640 is executed and the next
instruction is displayed.

ACTION : Press the SPACE BAR,

RESULT : The second instruction is executed
and the third instruction is
disployed,

2.3.19 X —EXIT to BASIC

Format i X

Purpose : Toterminate VICMON control

and return to BASIC.

Use of the X command relurns you lo BASIC.
Your progrom will remain in memary but any
breakpoint or virtual zero page assignments
will not be preserved.

EXAMPLE : To exit VICMON;
COMMAND: X RETURN])

RESULT : You will be reurned to BASIC and
prompled with READY.

SECTION THREE

USING VICMON AS A
DEBUGGING TOOL

1.1 Introduction

The fallowing is an exomple which shows

-~ some of the editing and foult racing facilities of ket
VICMON. It uses o 6502 assembly langunge SCREEN
rogram and YICMON to show how an error is]
ocaled in the pragram ond fixed. More details S OOUNTER
- on the individual commands used here are O TERO
given in Section Twao. =
Ifyou wish to fry the example, followthe
instructions beginning in Section 3.3 If net, it is 2y
suggested that you at least read through the 1 I
example.
A00 ONE‘—
3.2 The Example Program i ceidld

The program used in this section writesa
screen full of each of the printable characlers in
turn. Two sereen positions are laft blank 1o ‘ T
preventthe screen from scroliing, A flowchart of
the program is shown in Figure 3-1.

L

The program uses the ROM routing $FFD2 to M%’gﬁ“
print a charader, First, the screen is cleared by it
the following commands: -

LDA #593 SETPOINTER
ISRSFFD2 st
|

Then a loop fills all but the last two character e
positions on the screen with spaces. There are STP%'ENFER?Q
506 character localions possible on the sereen, F A I
50 504 have to be filled, This is equivalent to two
lots of 252 {SFC). ol

Onee this hos bean done, an indirect painter
fo the screen is set up in zero page, using the
conlents of $128B fo point fo the start of the @
- screen, Twois addedto thisfo reference the end : G
of sereen for testing. Using a loop, the screan A

{all positions filled with spaces) are filled with

the tirst character (value @) then the second and ADD1 TG
Chi

5o on until all 256 characters have been in each i

positican on the screen whare there had been o
space,

It is necessary fo print 1o the sereen o ensure
that charocters appear when they are stored
direclly to the screen areao {STA ($81) Y. Itis
possible to store valuas in the colour RAM area
of memory instead bul this requires the use of an
additional indirect peinter,

256

[}le]

The poge number of the screen is stared in Figure 3-1 Flowchart of Example Program 1

12

loeation $9288 which means the sereen starls ot
$(50288)00. This method is required because if
yau use expansion memory, the location of the
screen RAM clters.

3.3 The Procedure
3.3.1 INPUTTING THE PROGRAM
These are the sieps fo inpul the program

described obove andto locate o faultinit. Insert

the VICMON ¢ariridge info the VIC or VIC

expansion board. Switch on the computer (and

the expansion board if you are using one). Then
SYS (6% 4096} tostart VICMON. Next using

the A command [see Section 2.3.1) type in the

following code:

1000 LDA 2 $93

1002 JSR $FFD2

10A5 LDY £ 300

1007 LDX 4 509

1007 LDAqt $20

100B JSR $FFD2

100E INX

180F CPX #3FC

1811 BNE $10a9

1013 INY

1014 CPY# $p2

1016 BMI $1869

1018 LDX # $09

101ASTX $81

181 C LDA 30288

101F STA $082

1821 CLC

1022 ADC #5652

1924 STA $00

1026 LDY #4060

1928 TXA

1029 STA (891),Y

1028 INY

182C BNE 51829

102E INC $02

1830 LDA 502

1932 CMP $60

1634 BNE $1029

1636 INX

1837 BNE S101C

1039 BRK

183A BRK

Once you have entered the program save it
on the cassette unit {see Section 2.3.16) with the
following command:

S “PROGRAM” 31,1630,103A (RETURN}
(To save fo diskelte, substitule 88 for @1 in the
above command.)

This is a safeguard so that you do not have to

type the program in again, if for example,
power fo the computer is lost,

Assuming that the program will wark first ime
(o rare accurrence with machine code programs),
use the GO command (see Section 2.3.4) and

type:

G 106G(RETURNJ
If you have typed in the progrom exactly os
listed above, tha lop half of the sereen will display
a series of characters very rapidly, The bottom 3
lines of the screen will be blank. After very
shorttime the program will finish and the screen
will appecr as shown in Figure 3-2.

a=u
- +
g A e & e A o e
e e s e 0 e e s e M e & s
P FerEE 4o
B g e o e et o A e e e
At e e o o o e e e e d i
- R B -8
At et e e R B s o e
—
L]

5. 58 2§ H8 &6 FE

-

Figure 3-2 Resuli of first attempt to run example
progrom

3,3.2 LOCATING THE FAULT

Obviously somathing has gone wrong ond
you must locate the problem. Here is a typical
technique. Firsl, split the program up into twe
secfions, the first of which will clear the screen
ond fill itwith spaces. This sectionends ot $101B,
so sel a breakpoint (see Section 2.3.2) a1 $1018

by typing:

B1018 REII!RN
Soihaiyoucmsgewilclis p;Jaenhg,chonge

the character printed from a spoce ($28) toan A
{$41). Do this with:

A 1009 LDA # $41 (RETURN) (RETURN]

To slow the operation down, use the quick
troce option (see Seclion 2.3.13):

Q 1002 (RETURN}

This execules the pragram ot o pece much
slawer than normal.

H you are using zero page locations for your
program, itis advisable (and usually necessary)
to make use of the virtual zero poge option {see
Section 2.3.4) because YICMON vses the zero
page and your program and YICMON moy
ovarwrile each other. This option is not required

in this firsl section, but will be required in the
second,

Since enobling the virtual zero poge belore
the quick race is executed will result in foking
approximately 2 minutes fo clear the screenand
at least fwice that ime ta fill it with choracters
afterwards, do not enable it now.

As the section of code ($1003-51018) executes,
you will noties that rather thon stopping 3 lines
short of the end of the screen, the characters
ovarflow the and of the screen. The screan scralls
up (4 lines} and then an extra 2 characters are
printed. This means that 4 unwanted choracters
are being printed, The mostlikely couse of this is
that the lest for the number of characters printed
is being performed incorrectly, The volue in the
X register should run between $80 and SFC
while Yi5@ and ¥ is 1. If you lock carefuliy you
will notice tha! once the value of $FC is reached
in X, the value of ¥ isincreased, fit is less than 2,
aspace {“A") is loaded inlo the accumulalor
and is printed. This means that X goes $08-$FF,
$80-3FC giving the tour extra characlers. To fix
this, the branch at §1616 must be altered to point
1o 51907 instead of $1889. Since quick race
leaves you in walk mode, you must press STOP
to return to VICMON. Next, type:

A 1916 BMI 31997 [RETURN] (RETURN)
It you now lype:
Q 1266 (RETURN)
the routine will stop at the correct point on the
screen and appear as in Figure 3.3,

TETaER

IF
i1
-

113333 DIIT1I352333

IIPDDIDITE

2PIITDIIDDIT:

A
=
=]
=
A

222DIT122I2200TDIT
FIOPII123322LD2ITLT
2322I31322322D2323F
I13225T2I1 22T

332]

210
BITIDTI3BITIIDITIDL

$2113131335511230353
155111113335213 3500

231322322

Figure 3-3 Screen filled with A's

Atthis point you can see that the first part of
the routine worked fine. Now you should enable
the virlual zerc page. Press STOF, then type:

E 1808 {RETURN)

This will assign the virtual zero page to o

block of memary storting at location $1808,
Now exacute the code ot o =low rate starting
where it finished before, i.e. $1018 as indicated
by the PC, The QUICK TRACE mode will allow
you to go slowly, stopping execution if you need
{0, so type:

G [RETURN])

The A's on the screenwill slartiurning into @& 's
until about holf way down the screen (257th
character). The remaining A's will be replaced
by left arrow symbols. Then the @ *s will start
turning bock to A's, However, when the last @
changes, nathing will happento tha sereenfora
shorttime andthenthe A's wil| begin turning info
B's. The loft arrow symbols will remain. Note
thatthe screenchoracier for@is@ ,1isA, 2isB,
elc.

Press STOP and X fogether o interrupt the
program, bacause, as you con sea, thereisstill o
problem.

Use the WALK command (see Section 2.3.18)
to single step through the program 1o see if you
can spol where the wrong charocter is coming
from, Type:

W 1818 (RETURN)

After a period of time {the interval depends
upon whether you press the SPACE BAR or hald
itdown) the following will oppear on the sereen:

101 2EINC B2
Q3P LDA g2
1832 CMP
1934 BNE 1829
1929 5TA (01),Y

Atthis pointihe accumulalor containsthe high
byta of the sereen pointer (for the second halt of
the screen), This shows up 0s a lefl arrow on the
screen. If you terminate the WALK mode (press
the STOP keybund display the registers by
typing R (RETURN] {see Section 2.3.13), you will
see:

R
PC SR ACXR YR SP
1028 AG 1F 68 00 F2

The values of PC, SR, YR may vary depending
on when you prassed tha STOP key, i.e. which
instruction is to be performed next.

Althis stage of the program, the accumutator
should contain the same value os the X regisler.
As the high byte of the screen pointer is looded
info the occumulator, it is necessary to transfer
the value fram the X register infa the accumulatar,
The instruction for that is TXA which is a1 $1028,
so tha branch to $1029 must be changed. Type:

A 1834 BNE $1028 (RETURN] (RETURN)
Note that the branch at $182C does not need

to be altered because the value of the
accumulator is not altered within thisinner loop,

14

Remove the breakpeint, restore the spaces in
the initial step, and save the program again, by
typing:

RB (RETURN)

A 1009 LDA#$20 (RETURN) (RETURN)

S “PROGRAM",01,1000,103A (RETURN)
G 1000 (RETURN)

It should now work. If it does nol, compare it
with the following program, by using the D
command fo display the stored code. Spot the
difference, and make any necessary allerations
by using the A command. Remember, when
wriling your own programs or routines you
wauld not have a correct copy of the program o
compare with. However, the same principles of
sefting breakpoints, execuling slowly and
checking registers applies for any progrom,

.. 1000 LDA # $93
-+ 10972 JSR $FFD2
.+ 1665 LDY 4$00
- 1007 LDX #%00
. 1009 LDA #$20
" 100B ISR $FFD2
.+ TO0E INX

- 1GIF CPX 4 8FC
.. 1671 BNE $1069
@3 INY
1014 CPY #$02
.. 1016 BMI $1367
-1 1818 LDX %500
L 101ASTX 301

.1 181C LDA $0288
. 1G1F STA $02
11621 CLC

-1 1922 ADC #$02
11024 STA $00

- 1026 LDY #$00
. 128 TXA

- 1@29 STA ($81),Y
.1 1028 INY

. 182C BNE $1929
- 1@2E INC $02

., 183 LDA $02
1932 CMP $60
21034 BNE $1028
., 1036 INX

., 1037 BNE $101C
.+ 1839 BRK

LU 163A 222

3.4 Summary

Here is o summary of the steps o follow to use
VICMON to debug your own programs:
Initialize VICMON,
Load your program with L

ortypeit in and SAVE L.
Aftempt fo run the program from the start
address using G,
Set breakpaints to determine area of fault.
Disassemble faulty section (or oll of
p::gmm, if it isshort) using D. It is
=

N -

e w

rable ta list the disassembled code an
your printer,

Quuick frace through the faully section,

especially if it invalves screen displays.

Walk through the faulty section.

Display registers ot various points to check

values, if necessary. Use M and 1o display

areas of data or working variables,

9a. Use A ta correct faulty code.

b. Use Mo correct faully data.

10. Keep o nole of changes made. Save the
pragram frequently.

11, Remember thal you may need to use virtuol
zero page (E) while you ore using the quick
trace and walk oplions.

12. Ifyou connot find the problem, go buck ta
your flowcheari(s) and re-think your logic,

R

INDEX

Absolute addresses 3 MEMORY 7
Addr 3 Memary change 8
Address convention 3 Memory Exponsion Board,
ASCII, CBM [VICMON with 1
ASSEMBLE 3 Memory, FILL 5
Assembly Longuoge 1,341 NUMBER 3
Backward serolling 4 Number of iterations 4
BASIC, refurnta 46,7910 Offsat 38

4 BREAKPOINT 3548 Op Code 34
Break point, remove g Operond . 348
BRK 6 Fattern 3
CBM ASCII 4 Program Counter 58,9

P Change absolute oddresses 8 Program Execution 35,10
Change memory 8 Program file 7
Change register valyes 9 Progrommer’s Aid, VICMCN with 1
Commands, entering 2 Prompt 2
Commands format 2 Qluastian mark 2
Command ferminalor 2 QUICK TRACE 28
Control, key 6 Quota, single &
Conventians, farmat 3 RAM, bad location 8
Correcting errors 2 RAM, expansion, with VICMON 1
Dala 35648 Ref 3
Dsbug 1391114 Reference reading]
Device Number 3729 REGISTERS 9
DISASSEMBLE 4 Registers, display 1,459,10
Display initial 1 Relocate 1
Display, memary 7 REMOVE BREAKPOINT 9
Display registers 145,210 RETURN as terminator .
Dollar sign 3 Return to BASIC 4,6
ENABLE Virtual Zero Page 5 ROM, attempt to modify 8
EQF 7 RTS 6,7
Errorindicatar 2 Runoway 6
Example program 11 SAVE 79
Execute a program 35 Serolling 4,67
Exit ta BASIC-X 10 Single quote 6
Expansion Board with VICMON 1 Single stepping FA[]
Expansion RAM with VICMON 1,12 Stack 7
Faults in program 4,6,11,12 Starfing the VICMON system 1
FILL memory 5 STOP key 4,6,7 8,10
GO 3,58 Strings &
Hex code, display 7 Subrauting 72,10
Highlim 8 Super Expander, VICMON with 1
HUNT] 5YS 1
Initial display 1 Tape Files 7
INTERPRET [TRANSFER 810
lterations, number of 4 Virtval Zero Page 5,6,813
JUMP 7 WALK 781
Karnal 5 Wrap around §
LOAD 7 Word table a
Lond file 7 Xand STOP keys 8
Logical faults 4,4 X-EXIT TO BASIC 10
Lowelinm: g Zero Page 568,12
Machine code 13 15

SUMMARY OF COMMANDS

Command Syntax Poge

Assemble A I',cddr],iopcodel,lopucnd R e e ki

Breakpoint B (oddr] auaesesuiews s o S AN g, A % 18
or B [addr)n

Disassemble EREHAY . e srvony e e AR R S A e A 4

or D (addr),(addr}

Encble Vidual ZeroPoge E |addr] i

Fill Memary F laddr},laddr), I\ruluc e)

Go G e s R R A R A T O
or G [uddrl

Hunt HI'cderLuddrn,ldcfaJ e o X T e S N e

Interpre! | (addr),laddr] . .6

or | [addr|

Jump o subroutine e MRS e o o Yo e e -G

Load W i R T AR

Memory M foddfoddn) cisvesnmasisrrisias 7
or M -laddr)

Number N [oddr),(oddr),{offset] {lowlim],juplim},Woooiiia. 8

Quick Trace G i S e R S RS A R R AT RIS 8
or Q [addr)

Registers B0 i e s e A S o B VW TN s 9

Remove Breakpoints BB i i st s e S S A A S A A U istisite ¥

Sove § "filename”, [devr,.addr] Iuddn T o e 9

Transfer T(oddr] oddr;[oddu Uy Sy e

Walk W i B I e 1|
or W (ﬂddr;

Exit to BASIC R T T R A TR L A S R SR S R oasn e 1 10

All commands except J are terminated and execution is begun by pressing the RETURN key.
The parameters in the command formals are represented as follows:

(addr] a two byte hex address, ¢.g. 0400

(dev) a single byle hex device number, e.g. 08

[opcode] o valid 6502 assembly mneumonic, e.g. LDA

(operand] a valid operand for the preceding instruction, e.g. =301

(value) a single byte hex value, e.g. FF

(data) a string of literal data enclosed in quoles or hex values. Successive items are separated

with commas.

(ref) a two byle hex address, e.g. 2000

(offset) a lwo byte hex offset value, e.g. 3000

To start monitar, type SYS24576 or SYS64096

= commaodore W

COMPUTER

