

The information in this manual has been
reviewed ond is believed to be entirely reliable.
No responsibility, however, isossumed for
inocc:uracles. The material in this manual is far
information r;iurposes only, oocl is subiect to
chongc without notice.

© 1982COMMODORE INTERNATIONAL
All rights reserved. No port of this program or
ciccomponying instruction leaflet may be
duplicoled, copied, tronsmi11ed or reproduced
in a11y form or by any means withot.1t the prior
written permission of Commodore Home
Computer Division.

Commodore Home Computer Division
675 Ajox Avenue, Slough T roding Esfole,
Slough, Berks. SL 1 48G England.

Printed in Englond

MACHINE CODE MONJTOR
(VICMON) USER MANUAL

TABLE OF CONTENTS

Sedlon One - lntrodudfon to VICMON
l.l lnlroduction .. . , ... , • •.• • • • . • . • ,, . , .. •. • , . 1
1.2 The VICMON Monucl . • . l
1.3 VICMON Functions • , •.. , • , • , • , • , • , , • .. , •. , •.• , •. , ..• , • , • , •• , , .. , . , • , . , , . , , . , . , • 1
1.4 Starting the VICMON System ' 1
1.5 Commond Formo1 , ... , •. • .. . , , 2

i :~ ~~:~~irn~~~~~:cin-~s-.:::::::::::::: ~
Section Two-The Commands of VICMON
2.1 lntroo111;tion • , . .. , •..• , ..• , • , • •.. , ... , . , , . , • , .. , • , • , • , , , ..• , , , , .. , , , • , •..• , • , . . 3
2.2 Corwentions 3
2.3 The Commonds . . . • , , . , , , .. , , • .. , .. 3
2.3.l A - Assemble 3
2.3.2 B - Br"'°kpoint , . , . 3
2.3.3 D - Disassemble ...• , , . , . , .. , . . . , . • , • . .. , . , • . . , . . , , , • , , , ... 4
2.3.4 E - Enable Virtual Zoro Pogo 5
2.3.5 F - Fill Memory , .. . , . . . , .. , ... , , , , . . . , . . . , , . , .. . , . . , . , , 5
2.3.6 G -Go 5
2.3.7 H - Hunt . . , . , ... , .. , . , . , , , . , , , . , . , , ..• , , . , 6
2.3.8 I - lnterprof 6
2.3.9 J - Jump , •. . , , , , . , , , 7
2.3.10 L - Lood 7
2.3.11 M - Memory Display : •• • •. ..•... . •.•.•.•..... , .•.•.• , . . 7
2.3.12 N - Number •. '.•.. 8
2.3.13 Q - Quick Trace 8
2.3.14 R - Registers . , . , . , , . , . , .. , ... , . . , . . . , , . , •. , , , ..• •. , , . , , ... , •. , . 9
2.3.15 RB- Remove Breakpoint 9
2.3.16 S - S<ive , . ..• , .. , , . , . , .. , , ... , ...•.................. , .. , , . 9
2.3.17 T - Transfer H!
2.3.18 W - Walk .•. •.•... , ..• , •.. , . . •. ..••.. .. . • •.....•......•...• .. : •..• • . ., , .. , . . •• . 10
2.3.19 X -Exit to Basic .. 1(1 ·

Section Three- Using VICMON as a Debugging Tool
3.1 Introduction .. , 11
3.2 The Example Program . , ... , . , . , •....... , •. 11
3,3 The Program 12
3.3. l Inputting the Program .. , . , . , . , . • . . , , , • , . , , .••• . , , . , •.. . , • , , , . .• , •• , • . • , . , • • , , . . • 12
3.3.2 Locotingthe Fault :•.. 12
3.4 Summary .•.•.•.......••.• , • , • .• , ...•... •• , • , • , • , • • , . . . , 14

Index 1s

iii

iv

Figure
l -1
2-1
2-2
2-3
2-4
3-1
3-2
3-3

TABLE OF FIGURES

Title
Ari Example Initial VICMON Display , , , - . . l
Register Display , 4
Example of Character String Display .. • • 6
Display Printable Characters • . 7
Ari Exomple of Register Displays .. , •.•..• , . . , ... , .•. , ..• , . , , . , ,• . . , . 9
flowchart of Example Progrom 11
Result of First AttempHo Run Example Program ... , , , 12
Screen Filled with A's 13

..

J

I

SECTION ONE
INTRODUCTION TO VICMON

1. J Introduction
VICMON is the nickname of the hexodecimcl

mo chine c;ode monitor designed to enable oo~y
debllggi ng of machine code programs which
are resident in a VIC 20 computer sysfem.

This manual does, not setoL.rtto teach modiine
codeprogromming on fhe VIC. Beforeottempling
to use modiinecode on 1hc VIC you should refer
to the following:

MOS 6502 Progranimin9 Manuals
VIC Programmers' Reference Guide
VIC Zero Page Memory Map.

Useful reading:
6502 Amimbly La1l9uoge Progrommi~g

by Leven!hol.
These are avoilable from most COMMODORE

Computer dealers.
Vt CM ON and rhis monuo I are inteflded for use

by peop'le with some programming experience
and some knowledge of6502 CBM machine
code programming, bul a high level of oxperlise
is not required.

1.2 The VICMON Manuol
This manual is divided into three partswliich

are out I ined below.
SECTION ONE - INTRODUCTION TO

VlCMON
This secfion outlines VICMON in general

terms. It explains the conventions used by this
manual when describing the commo11d formots.
How lo slort VICMON is a lso included.
SECTION TVVO - THE COMMANDS OF

VICMON
In this section, each VICMON command is

explained, its format shown and an example
given. Thecommondsare in alphabetical order.
SECTION THREE - USING VJCMON .ASA

DEBUGGING TOOL
This section uses on actual machine longuage

program to show liow VICMON c:an be used ta
locate faults in lhe program.

1.3 VICMON Functions
VJC:::MON offel'S lhe following functions: * Disploying chosen areas of memory. * Changing contents of memory locations. * Moving blocks of memory.

* Filling selected bloc:l<s of memory.
* Seard1ing memory fora pattern.
* Examining and changing registers.
* Setting breakpoints. * O:ecuting programs with breokpointc:ontrol.
* Storing and retrieving data and programs.
* E'l<eC\Jting programs ot three different speed

options. '

1.4 Starting the VICMON
System

The VICMON cartridge must always be
inserted or removed from the VIC with the power
off. The ccrlrid9e is inserled into the exponsioo
port with the label on the cartridge feeing up.

lfo VIC 1010Memory Expansion Boord is in
use, this should olso be turned off. VICMON
may be used in conjunction with VIC 1212
Programmers' Aid ond/or VIC 1211A Super
Expander corlridges. However, please note that

.some operotioris may conflict if dlonging from
one cartridge to another. Therefore the VJCmay .
have to be !urned off to effectively make the
switch. VICMON may also be used with
expansion RAM in the Memory Expansion Board.

To start using VICMON type SYS24576 or
SYS6*4096, and fhM press the RETURN key.

The VIC screen will now display the values
currently held in the 6502's registers. An example
is shown in Fig~re 1-1. VICMON is ready ta
accept your commands.

Figure 1-1 An example im'tial VJCMON display.

2

1.5 Command Fonnat
Most VICMON commands -0re o single

a lphabetic character followed by lhe command
parameters, if required. The commands ors
explained in detail in Scdioo Two. The
parameters include the start address orstort
ond end oddresses, op-codes, oporonds, hex
va lues, etc. The conventions and limitations for
them ore defined in Section 2.2.

Command statements (except for J) ore
tenni!l<lted and execution of them iis initiated by
pressing the RETURN key.

A summary of the commends, their fon'nats
and where they are described is given on the
bockc::overofthis manUQI.

1.6 Entering Commands
Whilstthe VIC is oporoting under VICMON you

ore prompted with a",''. To enter o command
simply type the command lottcr{s) and the paro
meter(s). If more thon one poramet.er is required,
~parole 1hem with SfXlC:es, commas, colons or
any other conve(lient symbol. The command
(except for J) is terminated ond execution is
begun when the RETURN key is pressed.

1.7 Error Indication
Any errors yoo make when in potting the

commaod stQfemen~ are indicoted bye question
mark following the position ofthe error. You
may re-type or correct the commend using the
standard VIC editing facilities, Press RETURN
to iniliot& Iii& corrected command.

SECTION TWO
THE COMMANDS OF VICMON

2 .1 lntrodudion illegal qvontityo•1dwill retumyov tothe monitor

In Section Two, each VICMON command is with o prompt(-) on o new line. tf you foil to

given in olphobetical order. The reqllired fQrmot specify either the op codeoroperoi:id, VICMON

is shown ond the purpose ond function of :!he will ignore !he I ine and return you to lhe monilor

command ore explained. A simple example is with a prompl (·) ona n~w line.

: ~ induded which shows the command, o typicol NOTE:: All operands must be given os hex
re~ponse wherl it i!. used and an e,'(plonofron of numbers preceded by o dollar sign, i.e. typed os
the resu Its of executing rt. $nn.

In Section Three a more detailed example i~ EXAMPLE ; To enter the following machine
shown using on octuol mad1ine code program code:
which i> then "debllgged" using VICMON. LDA #Sl9

2.2 Conventions JSRSFFD2
RTS

The f)arometers in the command formats ore beginning at address $1000. represented os follows:
(oddr) a two byte hex address, e.g. 0400 COMMAND: A 1000 LOA #$19 (RETURN)

(dev) a single byte hex device number, e.g. DISPLAY : .A 1000 LOA# $19

08 .A 1002.

(Of>COde) a valid 6502 assembly mnemonic, TYPE : JSR $FFD2 (RETURN}
e.g. LOA DISPLAY : .A 1000LDA #$19

(opercmd) o valid operond for the preceding .A 100'2 JSR $FFD2
instrnclion, e.g. #$01 .A 1005

(value) a single byte hex value, e.g. FF TYPE : RTS (RETURN}
(doto) o siring of litera I dolo enclosed' in DISPLAY : .A1000 LOA #$19

quotes or hex values. SIJccessiveitems .A 1002 JSR $ FFD2
ore separated with c:ommm. .Al005Rl'S

{reij a two byte hex address, a.g. ~ .A1006
(off:sel} o two byla hox off sci value, e.g. 3000. RESULT : The machiina code eq1Jivolent of

2.3 The Commands
the specified o~embly language
code is stored in memory frcm

2.3.1 A-ASSEMBLE location 1000 to 1005 indusive.

Formal : A (addr) (opcode) (operondf
2.3~ B-BREAKPOINT

Purpose : Toossemblecode siorting from o
Format : B (oddr) specified address.

The commend allows you to input assembly or: B (oddr}, n

tode line by line and hove ii stored as machine where n is o four digit HEX

code. When lhe command is entered, the number indicating how many

appropriate c;ode is written in memo()' times that address will be

be~nning at the s~ified address. Tlie address encountered before the bfeok

of e next ovoilo le memory location beyond 01;curs.

thal required by the specified op code ond Purpose : To set o breakpoint so that o
operand is then prom pied awaiting inpu~ of grogrom does not execute fully
additional c:ode. vt i nsteo d stops at the specified

To terminate the A command, simply pre~s location.
RETURN when lhe new address is prompted. A breakpoint oflows you to rvn yovr program

If you inpul an illegol op code or operand, up tao specified address. IF you used G (see
VlCMON will place o question mark oftedhe Section 2.3.6) lo initiate the run, the contellts of 3

the registers ore displayed aulomaticolly,
allowing you to determine if they oreos expected.
The Q mode of execution (see Section 2.3.13)
wi 11 olso stop al the breakpoint but the registers
willnolbedisplayed. Youwill be switched lo the
W mode. (See Section 2 .3.1 8.) To display the
registers, press the STOP key and 1han use the R
command. (SeeSedion 2.3.14.)

Nole thal the run terminates before the
instruction in the specified address is executed.
You must be careful not to ~et a breakpoint
between an op code and its operand or in the
midst of data. Doing so will cause the break
point to be ignored and the resulting nm to be
unpredictable.

It is possible to execute an address a specified
number of times end break on thQ subscque111
poss. This is done by specifying the nvmber of
iferalions {the n in the format stotemeot above),
If no number is given ofter the odd..-ess, the
progrom wi ll break when loot odd ress is
encountered the first time.

Type in the breakpoint command ond pre~
the RETURN key. Now run the program using
the G or Q command. The program will run up
lo the breakpoint and slop (unless the program
flos logiwlft;l1Jlt$whic;h prevent its reaching the
s.pecified address).

You con only set one breckpaint before yo\J
begin running your program. When o break
point is reached you may then set o new break
point if you wish. You c.an resumetheprogrom
execution ofter a breakpoir\f using ony of the run
commands (G,Q, W,J), i.e.youorenotra~trided
to using the some mcti'lod of funning throughout.

lfa brookpoint is never reached, exec:ufioncon
be stopped by pressing the STOP key and the n
the RESTORE key. This will return you to BASIC
You should re-enterVICMONand set on eorlier
breakpoint to isolate your problem. (See Seclion
Three.}

EXAMPLE : Assume that you hove o progror'r)
in memory from location 1000to
location 1200. To slop the
program execLJtion before Hl50:

COMMAND: B H15{! {RETURN)
COMMAND; Q l 01il0 (RETURN)
RESULT ; The progrom wi li slowJy execute,

stopping before fine HJ50 is
exe<:uted. You will be left in the
WALK mode.

EXAMPLE : To set o breokpoint so that tho
program will slop the third time
location 1l00 is reached:

COMMAND: B 1100, 0003 (RETURN)
4 COMMAND: G 1050 (RETURN)

RESULT : The program wil I run, stopping
before loco lion 1100 is execuled
lhe third time. The contents of ti'le
registers al that point will be
disployed in the format shown in
Figure 2-1.

fjgura 2-1 Register Display

2.3.3 D - DISASSEMBLE
Formal ; D {oddr)

or; D (addr), {addr)

Purpose : To di~assembJecode lromo
specified point o r between a
ronge of pQints.

NOTE: Forward or backward scrofling with t/ie
cvr:;or movement keys will continue lo
disossemble code.

The D command enables ~01.1 lo conver1 the
code that is stored in the computer's memory
back into assembly language notation. You rnoy
specify c beginning address in which case I hat
lineofcodewill be disassembled and displayed
in ossGmbly longuoge on lhe screeo. The VIC
w iU remain in lhe d isassemble mode and you
may use the cursor to d isassemble additional
lines of code, i .e. the cursor-dt:fwn key will
disassemble lhe line(s) following the specified
line ond lhe cursor-up key will disassemble
preceding fines. Note, however, that Ifie dis
assembly will not begin until the cursor reaches
the bottom {or lop) of the screen and the scrolling
begins.
WARNING: Working backwards with the cursor
key may not give a pe1fodlyaccurote frcnsloliol1'
of the code.

Allemalively, you may specify a range of
oddresses lo be d isassembled. The lines specified
will be displayed on the screen. If you specify o
range of addi-esse5 that is too long to be
displayed on lhe screen ot one time, lhescreen
wiO scroll. The STOP key will terminote the
scrolling and you will remoin inthediso!>.~embl.e

,1

J
t

mode. You moy disassemble subsequent line>
wilh tne cursor-down key.

Whileyouoreinthedisossemblemode,a line
of code on the screen con be modified by simply
correcting or relyping the line ond pressing
RETURN. The A command is oulomatical ly
adivoted. Wlien you have mode the chc::m9e,
you remain in the A mode with the cursor
positioned after the address on tlie line
following the corrected line. To lerm inate the
assemble mode, dear lhe screen ond press
RETURN.
EXAMPLE : To diS<lssemble the lines of code

inpul in the example of the
assemble command and then lo
chan90 the address in the~cond
line to ffOO;

COMMAND! D 1000, 1005 (RETURN)
DISPLAY :.1000LDA#$19

ACTION

TYPE
DISPLAY

RESULT

.1002 JSR$ FFD2

.1005 RTS
; Mi:>ve the cursor so that it is

positioned over the 2 in the FFD'2.
: 0(RETURN)
: .1000 LDA-# $19

.A 1002 JSR $Ff00

.Al005RTS
; The code from location 1000to

locotion 1005 is disassembled.
The change is mode and lhen
stored with the RElURN key. You
are left in the assemble modo.

2.3.4 E- ENABLE Virtual Zero Page
Format : E {oddr)
PL1rpose : Tosel aside o virtual zero poge

so.that VICMON does not
interfere with your variobl-es.

YICMON LJS-OS location $00 to $71 of zero
page. The Kernol uses the rest of fhe zero po9e
and some of fhe $200-$800 pages. Since your
program moy ossign variables which wil I be
stored on the zero poge, running the program
may interfere with some of the informotion
already stored there. To prevent this, the E
commc:md enables you to setosideovirlval zero
page of 256 bytes al another location. When a
virtual page lies been sot and your program is
run, VICMON automaticoUy swaps tho z.oro
page contents with the virtLJal zero page
contents, lhus protecting the VICMON and
Ke ma I informotion. When program execution is
termin<Jted, they ore swapped again.

To disable the virtual zero pogcwhen yov
have y·ovr program running correctly, simply

use the E command with the zero page address,
i.e. E0000.
EXAMPLE : To set virtual zero page beginning

ot location $1000:
COMMAND; E 1000 (RETURNj
RESULT : The locations $1000 lo $1GFF wil I

beset aside os a virlual zero page.

2.3.5 F-FILLMemory
Format
Purpose

: F {oddr), {oddr), (value)
: Tofil I memory between twospeci·

fied addresses with o given value.
The F commond enables you to puf a known

valve into a specified block of memory. This is
useful for inilializin9 dote slructure·s or for
blanking out the contents of any RAM area.
Simply spe<:ifythe rcmge of the block ofmeniory
arid the pattl?rn you wish to write in tho I black .
Naturally you should not specify addresses from
$0000 to $01FF (pages zero and one). Similarly,
if you are using o virtual zero poge (see the E
command, Section 2.3.4) you should avoid thot
area os wel I.
EXAN.PLE : To write $EA (o no-op instruction)

from location $1000 to $2000
inclusive~

COMMAN 0; F 1000,2000,EA (RETURN)
RESULT : The no-ap inslrudion ($EA) is

written in all the oddresses from
$1000 to S'.2©0.

2.3.6 G-GO
Formal : G

or: G{cddr)
Purpose ; To execvte o program beginning

at the loco lion currently in tfle
program coLJriler or.beginning
from o specified address.

The G <;ornrnt1nd may be LJScd aloneorstoted
wifh on address. When G is 1Jsed alone, the VIC
will execute the program in memory begiilriing
with lhe location currently in the program
counter. (To di spicy lhe conlent5oflhe progrom
counter, 1JSe the R commandos described in
Seel ion 2.3.14.) When on address is given with
the G commend, exe<:ution will beg in ot the
location specified.

The G command res.lores the r89islers to I heir
lasl known stoles ond if c virtual .zero poge is
active (see the E command), exchanges .
VICMON's zero page with lhevirtuol zero
poge. Execution of your program will continue
Llntil a preset breokpoint, if any [see theB
commend) or until the e11d of the program is 5

reoched, unless the program hos IQgical flaws.
If the execution is terminated by a breakpoint,
the contents of the registers at that point will be
disployed. ff the program is le rm in oted by RTS,
when that command is reached yo~ will be
returned lo BASIC II the lost command is BRK,
when it is reached you will be relumed to
VICMON. ff no terminator is attainable due loo
flaw in the progrom, you will hove to use the
SlOP and RESTORE keys to terrnioote the
execution. You will then be in BASIC ond must
re-enter VICMON.
NOTE: If your program l1as changed the scrocn
and!orleffer colours you may be ur1.oble lo see
the READY or lhe register display.

For other means of executing programs, see
the J, Wand Q commands, Sections 2.3.9, 18
a nd 13 respedively.
NOTE: Frequent breokpoints can prevent the
program becoming "runaway".
EXAMPLE : Assume tho I you hO'f ea program

in momory and wish to begin
executing it from locction $2000:

COMMAND: G 2000 (RETURN) .

RESULT : Therogisterswillbe restored. The
PC will be set lo 52000. If o virtual
zero poge hos been estoblishcd,
it will be swapped with the
VIOAON zero pa9e, The
program will begill executing c l
$2000.

2.3.7 H-HUNT
Format ; H loddr}, (oddr), {data)
Purpose ; To search thr0ugh a specific

block of memory and loco to all
occure<ices of particular doto or
character stririgs.

The H commend easily locotes orl y specified
character pattern thot is in the computer's
memory.and displays it on the screen. You moy
use this commond to locote dota, which is speci
fied in hex, or to find text strings up k> 88
characters long (one lino), which ore specified
literally and preceded by o single quote mork.
All locations within the specified range which
contain the requested chorocters wil I be found.
If there o re more occurrences than w i ll fir on the
screen, the screon will scroll. The STOP key will
lerminole both the scrolling ond tho HUNT ond
return you lo VIOAON. The control k.eywill slow
down the role of the scroll. When all oc.curen<:es
within the range hove been locoted, you will be

· returned to VICMON.
EXAMPLE ; Assume that the data string

6 $A92FJC is stored in memory

somewhe.re betweeri locarlcn
$(000 and location $ C0FF. To
locate the string:

COMMAND: H C000,GJFF ,A9,2F,3C
(RETURN)

RESULT : Memory is seorched between
$(000 and $COFF arid the
location where $A 92F3C is
stored is disployed.0

EXAMPLE : Assume thot the word
COMMODORE is stored in
memory in three locations
between $2000 ond $3000:

COMMAND: H 20'00,3000, 'COMMODORE
(RETIJRN)

DISPLAY : See Figure 2-'2.

Figure 2 · 2 Example of Character $tn'ng Display.

2.3.8 1· - INTERPRET
Formal : I (oddr), (oddr)

or: I f-0ddr)
Purpose : To locate and di spicy printable

text charoclers within o specific
block of memory.

The I command will c;li~ploy in reverse video
ony of the 96 printable CBM ASCII code
~uivolents occuring within the sp<!Crfiec:f block
of momory. All other character.; in lhe block will
be indicated by a dot (.J. If the specified block
more than fills the screen, the screen will scroll.
The STOP key will terminate the sc:rolling and
t~e conkol key will slow down the rate of
scrolling. When Hie specified INTERPRET is
terminated, you will remoin in the I modo.
Pressing rhe cursor-down key will display any
CBM ASCII choroclers on the next line as the
screen scrol Is.
EXAMPLE : Assume !hot the hex codes for C,

carriage retllrn, line feed, CB,
carriage relum, line feed, and
CBM, carriage relurn, line feed

J

~·

.l

I}
i

" I

ore stored be9inning at location
$1000:

COMMAND: I 1000 (RETURN)
DISPLAY : See Figure 2-3.

Figure 2-3 Display Printable CJ1oroders

2.3.9 J-JUMP to subc'ootine.
Formal :J
Purpose : To exe<:vte o subroutine call and

return wilhout single-stopping
whilst running o program under
the W cornmond.

The W command runs yovr program one line
ola time, i.e.afterexeQJtingoline, itwoitsforon
input from you before proceeding. Whilst in this
mode, you may wish to execute o sub-routine oil
at once, for example, when you hove akrody
checked it by single stepping. You may wish lo
move through the sub-routine quickly on
subsequent calls. The J commend enables you
todolhis. Simply press theJ key when the line
containing lhe subroutine coll is displayed. II is
not necessary to pres.• the RETURN key. Note
fhotlhe J will ootappearon the screen.

Whan lhe J command is used, the correct return
address is pus~ on the slack and the s.ubrovtine
is excx:uted. When the final RTS instruction is
encountered, the program counter will be set to
the retum address which was pushed on to the
stock. You will again be in the WALK mode.
EXAMPLE : Assume tho1 you are in the WALK

mode ond the following code is
on the screen:

COM.MAND:J

147F LDA #$00
1481 JSR $Kl.C7

RESULT : $1484 is pushed on the slack. The
subroutine beginning ol $A2C7 is
execuled. When the RTS is
reached, the stock is popped 10
the PC. You ore relumed to W
mode.

2.3.10 L-LOAD
Formot : L "FILENAME", (dev)
Purpose : Toloadoprogramfileinto

memory from a specified device.
The l commend enables you to read a load

file or a program filethot isslored on cassette or
on diskette and wrile it into the VIC's RAM. For
disk files, the address ofthefirstlocation in RAM
i rito which the load file will be rood mus.f be the
firsl two bytes of the file. Tape files hovethestor1
oddres.s as pa rt of the ioiliol header block.
NOTE: Only progfOrll Files Jhal have been
created using the S command of VICMON (s.ee
Sec lion 2.3.16/ or SAVE in VIC BASIC maybe
loaded with this option.

The command consisls of L, lhe nam~ of the
f ile end the number of the devic.e lo read from.
The file name musl be enclosed in quotorion
marks arid moy be ony legol VIC file no me. The
device oumberof the cassette unit is ai. The
de11ice number of 1he disk unit is 0B.

Wh·l'!n the l command is used, the specified
file on the device will be read into memmy until
on EOF is encountered. If the EOF is not
encountered, lhe LOAD will not lerminat"' end
you will hav~ lo press the STOP and RESTORE
keys to s.top 11.

If lhe device o r file isnol present you will get
an errnr message and be returned to BASIC.
EXAMPLE : Assume tf\ot yov hove a disk

program file nomed TEST thal is
258 bytes long, lhe first lwo bytt?S
of which orel:Jl:JCA. To reod lhis
file into memory:

COMMAND: L "TEST", 08 (RETURN)
RESULT : The program named TEST whic;h

is on the diskette in lfl.e disk unit is
loaded into memory from CA00
lo CBOO inclusively.

2.3.11 M-MEMORY
Format ; M (addr}, (o<ldr)

or: M{addr)

P1JrpOse : To d isplay the hex code that is
stored in a grven block of
memory.

The M command will displcry the contenls of
memory from the beginning address in the
command up to and indudingthecontents of the
ending address. The display will hcrvo the
address and five hex b-y1es on o line. If only one
address is given in lhe command, five bytes will
be displayed beginning with the conrents of 1he
specified address.

Additional groups offi11e bytes may be
disployed by cousing Ifie s.cr;!en lo scroll, i.ll. 7

using the a1rsor conlrol keys. Note that if you
specify a second address which is smaller than
the first you w ill wrap around from the end of
memory to the beginning.

The contents of memory may be changed by
typing over lhe displayed values and then
pressing the RETURN key. lftfiere is a bod RAM
location or if you attempt to modify ROM, a?
will be displayed at the location of the impossible
ch<i119e.
EXAMPLE : To disploy five bytes of memory

boginni119 at lacalion $1000 ond
to change the 00 to FF:

COMMAND: M 1000(RETURN)
DISPLAY : .lOOOA0 00 EAEAFF
ACTION ; Position the cursor over the first i:J

of 00. Type FF ood press RETURN.
RESULT : The five bytes of lhc memory

beginningot locotion $1000 now
reodA0 FF EA EA FF.

2.3.12 N - NUMBER
Format : N (oddr),(oddr),(oHsC>I),

(lowlim),(uplim),W
where offset is a hex value indi
cofing the amount to be added to
the exisliog addresses ond fowlim
and uplim specify the range of
the operands to be offset and W
is on optional command indicat
ing that the range is a word
table.

Purpose : To reassign absolutcrncllnory
addresses betv-een sp ecified
ranges when a prograni hos beeo
relocated with the T command.

With the T command (see Section 2.3. 17), yov
con relocate your program to onothor port of
memory. Of course, ifyovr progrom contoins
obsolufe oddresses, rhcsa addresses will no
longer be valid. The N cornmand allows you to
outomotically change these volucs. Firs! yov
mt1sl calculate the amount you hove moved the
program. Nole that if you have moved the
program too lower memory location, you mus!
colculc:rte rhe wrap-around value, o.g. if your
program was ot $A000 ond is moved to $0400,
you have moved $6400 since SA000 + $6400 "'
$10400. Thevolue $6400is the offset.

With tho N command you may chonge oil
absolute oddresse$ oronlylhose within o specific
rongo. The range is established by setting upper
ond lower inclusive fimits, You must also specify
the block of memory in which the change is
required. VICMON will toke each operond
within tho block and odd tho amount o l theoHser

8 lo it, i.e. it will overlook three bytes ond odd the

offset to the next !we bytes. Of course, if you
want to change a word table, this would be
disastrous, bUt VtCMON hos provided for this
withtheoptionolWottheeodof theNcommood.
When the Wis included, every word, i.e. every
two bytes, will be off sot rather than osdescribed
obove. ·
WARNING: Do 110 1 vse the N command in the
range of yovr dolo loc:olions or yov witr destroy
the data's usefulness.
EXAMPLE : Assume that you hove used the

TRANSFER command to relocate
your program. It wcs in locations
$1000 to $2000 ond now is ot
$1500 to $2500. To oppropri
otely odjvst all the obsolv!e
addresses in that range:

COMMAND: N 1500,2500,ijS00, 1000,2000
(RETURN)

RESULT : Within the code in locations
$1500 to S2500, all absolute
addresses tht:itfnll between
$1000 to S200C are increased by
S500.

2.3.13 Q-QUICK TRACE
Format : Q

or: Q (ocldr)
Purpose ; To run a program at a slow pace

beginning otthe specified address
ond checking for a breakpoint or
your use of the STOP and X keys
oftereoch instruction is executed.

The Q command, like the G command (see
Section 2.3.6), moy be used alone or stoled with
an address. When it is used alone, VICMONwill
execute the program i11 momory bcginnirig wilh
the location currently in the program <::ounter,
(To display the contents of the program counlcr,
use the R command os described in Sedion
2.3.14.) When an oddr~s is given with the Q,
execution will begin at fhe locotion spec:ilied.

The Q command functions much as tho G
command with one mojor exception. Whilst G
turns program control completely over to the
CPU, Q executes one inslr\ldion ot o time,
checkin-g after each $tep to see IF o bfcokpoint is
set or if you hove o~ked for execution to
terminate. This breokpolnl check allows you to
set breakpoints in ROM os well os in RAM.
When tho breakpoint is reached, ex~ution will
slop ond you will be in the WALK mode. (See
Section 2.3.18.) To display the registers or this
point, press STOP, Rand RETURN.

The user interrupt can be generated horn lho
keyboard al ony point. Simply press the STOP
key and than tho X key. Execution will be

lL

terminoted end lhe conlenls of lhc registers at
that point will be displayed.
EXAMPLE : To execute c p rogrorn in QUICK

TRACE mode beginning ot
S1000:

COMMAND: Q HlOO (RETURN)
RESULT : The PC is set to 1000. The

registe~ ore initioli£ed. If o
virtual zero poge {see the E corn
mond Sedion 2.3.4) hos been
estob(ished, it is swapped with
the zero pog11. Program execution
is begun al line 1000.

2.3.14 R- REGISnRS
Forrnot : R
Purpose : To d isplay the conlcnts cl the

regislers.

The R command enables you to view the
current stotus of the following regislcrs in the
VIC W's 6502:

prog•om counter PC
stotus reg islcr SR
occurnulator AC
index register X XR
indc~ register Y YR
stock pointer SP

This con be useful when you ore d<ibvgging a
progrom because the R enables you to see i i tho
r~islers contoin the volues you expected. You
may olso change the values in the registers whilst
in the R mode by simply typing over o newv(Jlue
ond pressing RETURN. Tho register display is
outomoticolly generated when VICMON is
started up, when o pr<.-set breokpoint (see
Section 2.3.2) is reached in tho G mode (see
Section 2.3.6), and when a Q rvn (see Section
2.3.13) is terminated by the STOP ond X key
combi nation.
EXAMPLE : To d isp lay 1hc contents of the

registers:
COMMAND: R (RETURN)
RESULT : Figure 2-4, for example.

1
·.' ~ C. -:::. ~· ,_.:.~ C"- X R '~' F-'. ' . f "•
~603E ~3 0e &3 OU r~

::..or·· :::,;~1 .. • ;=,r x~ yr:- ~-:";P
~~~~2 ~ ~~ &3 ~0 ~~ 

:nS~~ ~; ;i ~~ ~~ ~~ 

Figvre 2-4 An f!xomple of Rf!f1isfcr Displays 

2.3. IS RB-REMOVE BREAKPOINT 
Formo1 : RB 
Purpose : To remove o breokpoint. 

Breakpoints ore set by the 8 commond lsoe 
Sect[on 2.3.2} and con be removed by the RB 
command. Simply specify RB and the breok
poinl which wos set will be removed. If no 
breakpoints exist when on RB is executed, 
VICMON will interpret the command os ii it 
were o n R ond display the registers. 

EXAMPLE : Assumethotobrookpointwosset 
ollocotion $1050. To remave 1hot 
breakpoint: 

COMMAND: RB 1050 (RETURN) 
RESULT : A b reakpoint no longer exi~ls ot 

locotion $1050. 

2.3.16 S-SAVE 
Formot : S " filename" ,(dev),(addr),(oddr) 

Purpose : Towritothecontentsofaspecitied 
RAM a rea to a po rticvlor device. 

The S commor1d enobles you 10 save o 
program on diskette or cassette so that i t con~ 
used at o lotor time. The command consi~ts of 
the name of the file, 1he nt1mber of tho de~ice to 
be written to and the s1ort and end address of the 
RAM block. The file name must be enclosed in 
quotation rnarks and must obey the syntax. rules 
for VIC files, i.e. it mu~t begin with on 
olphobctical chorocler and be no more than 16 
characters long. The device number ol the 
cassette unit is 01 and of the disk unit, 00. The 
final odd~s must be one larger then the 
loc.olian of lhe lost byte you wish to write. 
WARNING: If the final oddres.s is not one Jorger 
thon the location of the Inst byte you wisn lo 
save, the lost byte will be lost. 

tr the specified device is not present you will 
get on errormessoge ond be returned to BASIC. 

NOTE: YICMON wilf nof sove mf!mory obove 
S7fff, i.e. the start oddress mlJSl.be $0000 or 
greater but not larger tficn $7 FFF and tl1c end 
add~ mus I be greater than $0000 bill no 
lorgerfhon $8000. If you ol'temptto scv1rn1omory 
outside #Mis range, ortlythe file f1ooderwill ce 
5oved, i.e. no dcrfo or program will b1t written. 
EXAMPLE : Assume that yov hove o progrom 

in memory from locationSHl00)o 
$10FF. To write thot progrorr to 
the d iskette in the disk drive, 
naming that program TEST 1: 

COMMAND: S ' 'TESl1 ",08,1000,1100 
{RETURN) 

RESULT : A file named TEST 1 will~ 
written on the diskette. It wi ll 9 



conto in the coda tho I was in RAM 
location $1000 to SI 0FF inclusive. 

2.3.17 T-TRANSFER 
Fonnol : T (oddr),(addr},(addr) 
Purpose : To tronsferthe contents ofo block 

of memory from one oreo of RAM 
to another. 

The T command enobles you to re~ocote your 
progrom or data to another port of the memory. 
This con be usefvl if yov V'i~h to ellp1;Jnd Q 

program or to use port of o prograrn elsewhere 
without retyping. Thecommond consisls of three 
addresses. The firsl two indicate tho bl.ock of 
memory lo be duplicated. The third address 
indicates the starting address for the copy. 

~f o program is tronsferred and lhe progrom 
contains absolute addresses or word tables .• 
these specifications in the new location will not 
be occurote. The N command (see Section 
2.3.11) allows yciLJ to offset these values by the 
appropriate omount so thot the relocated 
program will run property. 
EXAMPLE , Assume that you hove o block of 

data in memory from kx:ation 
$3000 to $3500. To move thot 
data to a new locotiol" beginning 
at$4000: 

COMMAND: T 3000,3500,4000 (RETURN) 
RESULT : The dota is now in the b lock 

$3000 to $3500 and in the block 
$4000 to $4500. 

2.3.18 W-WALK 
Format : W 

or; W(oddr) 
Purpose ; To execute o progrom one 

instruction ot a lime. 
The W command execut!i!S the line of code 

indicated by the addre~s in the program 
counter, ifW is used olane. Alternatively you 
may specify the address of the instn.iciion to be 
el<eculcd. 

When using W, the first instruction is execl.lted 
ond the second instruction will appear on the 
screen. Vic.MON will woit for you to press the 
space bar before ii will execute the second line. 
When tlie space bar is pr~ssed, the line will be 
executed and the next line d isployed. In this way 
you'tan WALK, i.e. sjng le-step through the 
program.To rctum to VICMON from W, press 
the STOP key. · 

You may use the R command (sre Seclion · 
2.3.1 4) to display the contents of the registers at 
any point. Press STOP, then the R key ond then 

10 RETURN to accomplish this. 

Each subroutine must be single-stepped as 
well, unle$S you vse the J command to treot the 
entire sub-routine os one slep (set> Section 2.3.9). 
EXAMPLE : To single step through a program 

beginning ot location $1000: 
COMMAND: W 1000 (RETURN} 
RESULT : The jostrudion stored otaddress 

$I~ is executed and the next 
instruction is displayed. 

·ACTION : Press !he SPACE BAR. 
RESULT ; The lieCOnd instruction is executed 

ond the third instruction is 
displayed. 

2.3.19 X-EXJTto BASIC 
Format : X 
Purpose : To te-rminate VICMON control 

ond return to BASIC. 
Use of the X command returns you lo BASIC. 

Yoor program will remoin in memory bvt ony 
brookpoint or virn.iol zero page assignments 
will not be preserved. 
EXAMPLE : To exitVICMON: 
COMMAND: X (RETURN) 
RESULT : YouwillberelurnedloBASICand 

•, 
'. 

prompted with REAOY. 



SECTION TH REE 
USING VICMON AS A 

DEBUGGING TOOL 

1.1 Introduction 
The following is an example which shows 

some-0fH1e editir>g and foultlrocing foc iliriesof 
VJCMON. It uses a 6502 a!;,Sembly language 
program and VICMON to show how on error is 
located in the program and fixed. More details 
on the individual commands used here are 
given j n Section Two. 

lfyov wish to fry the example, follow the 
inslructioos beginning in Soction 3.3. If n-01, it is 
suggested that you ot least read th rough the 
example. 

3.2 The Example Program 
The program used in this 'leetian writes a 

screen full of each of the printable characters. in 
turn. Two screen positions ore left blank lo 
prevent the screen from scrolling, A llowch<1rl of 
the program is sho"m in Figure 3-1. 

The program uses rhe ROM routine $FFD2 to 
print a character. Fin;t, lhe screen is doored by 
t'ht:~ fol lowing commands: 

LDA#$93 
JSR$FFD2 

Tucci a loop fills all but the lost two character 
rrositions on !he screen with spaces. There are 
506 character locations possible on tlio screen, 
so 504 have to be filled. Tfiis is equivalent to two 
lots of 252 {SFC}. 

Once this hos been done, on indirect pointer 
to the screen is sel up in zero po9e, using the 
contents of 50288 lo point lo the sic rt of the 
screen. Twoisaddedtolhisto referencetheend 
of sc.-n for testing. Using o loop, tfie screen 
(o il positions filled with spaces) ore filled with 
the first character (value 0) !lien the second end 
so on until a ll 256 characters have been ;n each 
position on Ifie screen where there hod been a 
space. 

Ir is necessary to prinl to the screen lo ensure 
that characters appear when they ore stared 
diroctly to the screen oreo {STA ($0l),Y). It is 
possible to store volues in the colour RAM area 
of memory instead but this requires the us.Q of on 
additional indirect pointer. 

The page n11mber of the screen is stored in 

sr~RT 

Flr-1511 

Figvre 3-1 Flowchart of facmple Progrom ll 



locotion $0288 which means the screen stons ot 
$($0288)00. This method is required because if 
you use expansion merTIQry, the location of the 
screen RAM oilers. 

3.3 The Procedure 
3.3 .1 INPUTTING THE PROGRAM 

These ore lhe sieps to input the program 
des.cribed oboveandto locote o foult in it. Insert 
the VICMON conridge k1to the VIC or VIC 
expansion board. Switch on the computer (ond 
the expansion board if you ore using one}. Then 
type SYS (6*4096} tostortVICMON. Nextusin9 
the A command (see Section 2.3.1) lype in the 
following code: 
1000 LDA# $93 
1002 JSR $FFD2 
1005 LOY #$00 
1007 LOX #$00 
1009 LDAl'~ $20 
100B JSR SFFD2 
100EINX . 
100F CPX #$FC 
1011 BNE $Hl09 
10131NY 
1014 CPY#$02 
1016 BMI $1009 
1018 LOX 11 $00 
101ASTX$01 
101 C LDA$0288 
lCl FSTA$02 
1021 CLC 
1022 ADC# S02 
1024STA$00 
1026 LDY # $00 
1028TXA 
1029 STA {S01),Y 
1028 INY 
102C BNE $1029 
102EINC$02 
1030LDAS02 
1032CMP$00 
H!34BNESHJ29 
10361NX 
1037 BNE srn1c 
1039BRK 
103ABRK 

Once you hove entered the progrom sove it 
on the oossette unit (see Section 2.3.16) with the 
following command: 

S "PROGRAM",01, HJOO, lOOA (RETURN} 
(To $Qveto diskollo,subsiilule 08 for 01 in the 
above command.) 

12 This is a safeguard so that you do not hove to 

lype the program in again, if for example, 
power lo the computer is lost. 

Muming that the program will worlc fiffi time 
(o ra re occurrence with machine code progroms), 
use the GO common<! (see Section 2.3.6) end 
type! 

G 1 ~(RETURN} 
If yotJ have typed in the program exoc:tly as 

listed above, the lop hall of tho scroon wll I display 
a series of characters very ropidly. The bottom 3 
lines of the screen will be blank. After a ve'Y 
short time the program will finish and the screen 
will appear as shown in Figure 3-2. 

Figure 3-2 Result of first afff?mpt lo ron example 
progrom 

3.3.2 LOCATING THE FAULT 
Obviously somelhing has gone wrong ond 

you must locale the: problem. Here is a typica l 
tedinique. First, split the program up into two 
sections, the first of which will door the screeri 
and fill itwithspoccs. This sectionendsot$1018, 
so set a breakpoint (see Section 2-3.2) a t SI 018 
by typing: 

B 1018 IRETURN) 
So that you con see what is hoppetiing, change 

the character printed from a spac:e ($20) to on A 
($41 ). Do this with: 

A 1009 LOA # $41 (RETURN) (RETURN) 
To slow the operotion down, tJse tne quick 

lroce option (see Se<:liort 2.3.13): 
Q 1000 (RETURN} 

This executes the progrom ot a pace much 
s lowerthan normal. 

If you ore using zero poge loeotions for your 
program, ii isod'lisoble (and usuollynecessory} 
to make use of the vir1uol z~o page option {see 
Sec.lion 2.3.4) be<:ouse VICMON vses the zero 
poge and your program and VICMON may 
overwrite eoch of her. This option is not required 



in this firsl section, but will oo required in the 
second. 

Since e11abling lhc virtual zero page before 
the quick lroce is executed will result in toking 
opprol<ima!ely2 mlnures lo door the screenond 
at least twice !hot lime lo f ill it with chorade<s 
olterw<irds, do not enable it now. 

As the section of code ($1000·S10l 8) executes, 
you will notice thor rather rhan stopping3 lines 
shortofthe end oftne screen, the characters 
overflow the end of the screen. The screen scrolls 
up (4 Ii nes} 011d the11 on eKtra 2 charoclers ore 
printed. This moo11s lhol 4 unwonted choL'"oders 
are being printed. The most likelycollseot this is 
tho I the lcsl for Hie number of diorocters prinled 
is being performed incorrectly. The volue in lhe 
X register should run between $00 end $FC 
while Y is 0 and Y is 1. If yov look carefully yov 
will notice lhal once tnc value of SFC is reached 
in X, the volveofY is increosed, If it is les.s than 2, 
a space {"A"] is loaded i11to the accumulator 
ond is printed. This meonsthot X goes $00-$Ff, 
$00-$FC giving the four ex1ro cha raclers. To fix 
this, the branch 01$1016 must be altered to point 
to S1007 insteod ofS1009, Since quick trace 
leaves you in walk mode, you must press STOP 
lo retllrr> to VICMON. Next, type; 

A 1016BMJS1007.{RETURN) (RETURN) 
If you now type: 

Q 1000 (RETURN) 
the rot,Jtine will stop ot the <;orre~t point on th" 
screen orld appear os in Figure 3-3. 

Figure 3-3 Screen filled with A's 

At this point you ccin see !hot the first pan of 
the roulinewotked line.Now youshauldenoble 
the virtual zero page. Press STOP, then J~pe: 

E I 800 (RETURN) 
This w ill assign the virtual zero page too 

block ot memory slorting ot location $1800. 
Now ex acute the code at o slow role starting 
wheTe it finished befofe, i.e. $1018 as indicated 
by rhe PC, The QUICK TRACE mode will ol low 
you to go slowly, ;lopping executioo if you need 
to, so type: 

Q(RETURN) 
The A's on the screen will start turning inr-0 @ ·s 

until about holf way down the screen (257th 
cnorocter). The remoi ning A's will be replaced 
by left arrow symbols. Then Iha @"swill stort 
turning bock to A's. Ho wever, when the last@ 
changes, nolhlng will happen totlie screen fora 
shorttimeandthentheA'swill begin !urning into 
B's. The left arrow symbols will remain. Note 
thatrhescreencharacterfor0is@, 1 isA,2isB, 
etc. , 

Press STOP and X togetner to interrupt the 
program, because, as yoll con see, there is still o 
problem. 

Use the WALK command (sec Seel ion 2.3.18) 
lo single slep through t ne program to see ifyoll 
con spot whe<e the wrong c.harocrer is coming 
from. Type: 

W HllB (RETURN) 
After a period of lime (Ilic interval depends 

L1pon whether yoll press the SPACE BAR or hold 
it down) the following will appear on the screen! 

HYl 0 2'E INC 02 
1030 LDA02 
1032CMP00 
1034 BNE 1029 
l02S'STA (01),Y 

At this poinllhe ocrnmula1or contains the high 
byle of 1he scr~n pointer (for the second half of 
the screen). This shows up as a te£1 orrowon the 
screen. If you terminatE the WALK mode (press 
the STOP key) ond display the registers by 
lypin{I R (RETURN) {soo Section 2.3.13), yov will 
SOC! 

.R 
PC SR AC XR YR SP 

1028 A0 lf 00 00 F2 
The volues of PC, SR, YR may vary depe'nding 

on when you pressed the STOP key, i.e. which 
instruction is to be performed next. 

At this stage of the p.rcigrom, the occvmulotor 
snould contain the some volu& as the X register. 
As the high byte of the :s<;reen pointer is loaded 
into the accumulator, ii is necessary to transfer 
the volue from theX register into the occumulotor. 
The instruction for that is TXA whkh is atSHJ28, 
so the brooch to $1029 mus! be <::hanged. Type; 

A 10346Nf$H!28 (RETURN) (RETURN) 
Note that the branch ol $102C does not need 

to be oltered because the value of the 
accumulator is not altered within this inner loop. 13 



14 

Romovc the breakpoint, restore the spo~es in 
the initial step, ond so'le the program ogoin, by 
typing: 

RB (RETURN) 
A 1009 LDA#$~ (RETURN) (RETURN) 
S "PROGRAM",01, 1000, lOOA (RETURN) 
G 1000 (RETURN} 

It should now work. If it does not, compare it 
with the following progrom, by 11Sin9 lhe D 
commond to display the stored code. Spot t~e 
difference, and make ony necessary alterol1ons 
by using the A command. Ramem~r, when 
wriling your own programs or routines you 
wov Id not hove a correct copy of the-p_rowom to 
compare with. However, th.e some pnnc1ples of 
setting breakpoints, e~ecutmg slowly and 
checking n!gisters applies for any program. 

. , 1000 LDA#$93 

. , 1002 JSR $FF02 

.. 1005 LOY #$00 

. , 1007 LOX #$00 

., 1009 LDA #'$20 

. , 1008 JSR $FFD2 

. , lOOE INX 

. , lOOFCPX#SFC 

. , 1~11 BNE Sl009 

., 10131NY 

. , 1014 CPY #$02 

. , l016BM1$1007 

. , 1018 LDX#$00 

. , 101ASTXS01 
• I 101C LOA $0288 
. , l01FSTA$02 
., HYll CLC 
. • 1022 AOC #$02 
. , 1024 STA$00 
. , 1026 LOY #$00 
. , 1028TXA 
. , 1029STA{$Dl),Y 
. 102BINY 
. : 10'1C BNE $1029 
.. 102E INC S0'2 
., 1030LDA$02 
. , 1032CMPSOO 
'I 1034 BNE $1028 
., 10361NX 
. , 1037 BNE $1C1 C 
. , 10398RK 
.. 103A ??? 

3.4 Summary 
Here is o summery of the steps lo follow to use 

VICMON to debug your own progroms: 
1. lnitiolize VlCMON. 
2. Lood your program with L 

or type it iri and SAVE it. 
3. Attempt lo run the prog rom from the start 

oddress using G. 
4. Set breokpoinhi to determine area of fault. 
5. Disossemble faulty section (or all of 

program, if i I is short) using D. It is 
preferoble to list the disassembled code an 
your printer. . 

6. Quick troce through the foully section, 
especially if it in'lalves screen displays. 

7. Walk through the foully section. 
8. Display registers at various points to ~heck 

values, if ne<:essary. Use M ondl to display 
areas of data or working 'IOriobles, 

9o. Use A to correct faulty code . 
b. Use M to correct faulty data. 

10. Keep a note .of changes mode. Sove the 
program frequently. . 

11. Remember tl1ol you moy need to use virtual 
zero page (E) while you ore usingt~e quick 
troce and walk options . 

12. lf you cannot find the probleni, go b:i~ to 
your flowchart(s) ond re-think yoor logic . 

! 



Absol 11te addresses 
Addr 
Address convention 
ASCll,CBM 
ASSEMBLE 
Assembly Language 
.Backward scrolli119 
BASIC, relurn to 
BREAKPOINT 
Breakpoint, remove 
BRK 
CBMASCll 
Change absolute addresses 
Change memory 
Chonge register volues 
Commands, entering 
Commands formal 
Command lerminalor 
Control, key 
Conventions, formot 
Correcting errors 
Dalo 
Debug 
Device Number 
DISASSEMBLE 
Display initial 
Display, memory 
Display registers 
Dollar sign 
ENABLE Virtual Zero Page 
EOF 
Error indicator 
Example program 
Execute a program 
Exit to BASIC-X 
Expansion Boord witn VICMON 
Expansion RAM with VICMON 
foults in program 
FILL memory 
GO 
Hex code, disploy 
Highlim 
HUNT 
lniliol display 
INTERPRET 
Iterations, number of 
JUMP 
Kemol 
LOAD 
Load file 
logical Faults 
Lowlim 
Machine code 

INDEX 

a 
3 
3 
6 
3 
1,3,4.11 
4 
4,6,7,9,10 
3,5,6,8 
9 
6 
6 
8 
8 
9 
2 
2 
2 
6 
3 
2 
3,5,6,8 
1,3,9,11,14 
3,7,9 
4 
1 
7 
1,4,5,9,10 
3 
5 
7 
2 
11 
3.5 
10 
l 
1,12 
4,6,ll,12 
5 
3,5,8: 
7 
8 
6 
1 
6 
4 
7 
5 
7 
7 
4,6 
8 
1,3 

MEMORY 7 
Memory chcmge 8 
Memory Expansion Boord, 

VICMON with 1 
Memory, FILL 5 
NUMBER 8 
Number of iterations 4 
Offset 3,8 
Op Code 3,4 
Operand· 3,418 
Pattern 5 
Program Counter 5,8,9 
Progrom Execution 3,5, 10 
Program file 7 
Programmer's Aid, YICMONwith l 
Prompt 2 
Quastion mork 2 
QUICK TRACE 2,8 
Quote, single 6 
RAM, bod location 8 
RAM, e)(ponsion, with VICMON 1 
Rel 3 
Reference reoding 1 
REGISTERS 9 
R~ister.;,i:lisploy 1,4.5,9,10 
Relocate lO 
REMOVE BREAKPOINT 9 
RETURN os terminator 2 
Return to BASIC 4,6 
ROM, attempt to modify 8 
RTS 6,7 
R11nowoy 6 
SAVE 7,9 
Scrolling 4,6,7 
Single quote 6 
Single stepping 7,10 
Stock 7 
Starting the VICMON system 1 
STOP key 4,6,7,B,10 
Strings 6 
Subroutine 7,10 
Super Expander, VICMON wilh 1 
SYS 1 
Tope Files 7 
TRANSFER 8,10 
Virtual Zero Poge 5,6,8, 13 
WALK 7,8,10 
Wrap around 8 
Word table a 
X and STOP keys 8 
X-EXITTO BASIC 10 
Zero Poge 516,8112 

15 



SUMMARY OF COMMANDS 

Command 
Assemble 
Brookpoint 

Disassemble 

Enable Virtual Zero Page 
Fill Memory 
Go 

Hunt 
Interpret 

Jump to subroutine 
Load 
Mematy 

Number 
Quick Trace 

Register.; 
Remove Breakpoints 
Sove 
Transfer 
Wolk 

Exit to BASIC 

Syntox Pogc 
A (oddr),(opcodc),(op-01ond) .. . .. . .... . ..... ... . .. .. . ......... 3 
B (od dr) . ... . .. , . , . , . . .. .. . .. . , . , .. , . .. , . .. .. ........ .. .. , .. 3 

or B [oddr),n 
D (oddr) . . ...... , .. .. . ... . ...... . .. .. ....... ..... ........ ... 4 

or D (oddr),(oddr) 
E loddr) .. . ... ..... , ..... . ... . . ... .. . ... . ....... . . .. . ... •... 5 
F (oddr),(oddr),(voluc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 5 
G .............. . .. ...... . .......... . ... . ....... . . . ......... 5 

o r G (oddr) 
H (oddr),(oddr), ldoto) . .. . ... . .. .. . ... . ...... .. .. .. .. , .. , . , . , . 6 
I (oddr),{oddr) . , . .. , .. , ... . ... . ... . .. .. .. . .. . , .. . .......... . . 6 

or I (oddrl 
J .... . .. . .... . . ................................ ..... ........ 7 
L "filenome",(dev) ... . , ... . ..................... ... . . .. .. . ... 7 
M (oddr),(oddr) . . . . . . . . . . . . . . . . . . . . . . . . . . . .....•........ . . 7 

or M ·(oddr) 
N (oddr),(oddrl,(offsetl.(lowlim),(uplim),W .. . .... . . . ........ , .. 8 

Q ··· · ··· · · ················ ··· · ····· · ······· · ··· · ··• · · ·· ·· ·· 8 
or Q [oddr) 

R .. .. ................. .......... ........ .. .. . .............. 9 
RB . . . .. . .. . ...•......•.... .. . . •. . •. .. , . . . . .. . . . . . .. , .. ••. , , . 9 
S "filenome",(devl,{oddr),(oddrl ........ , •.• . .. .. . . . . . .. . ... .. . 9 
T (oddr),(oddr),iodd1) ............ ........................ .... 10 
w . ... ......... .. ..... .. .... . .. ............. ............... . 10 

or W (oddr) 
x .. ... .................................................... 10 

All commands except Jore terminored and execv!ion is bt.'gun by pressing the RETURN key. 

The parameters in the command lormols are represented as follo"'s: 
[oddr) o two byte hex address, e .g . 0400 • 
(dev) o single byto hox device number, e.g . 08 
(opcode) o valid 6502 assembly mneumonic, e.g. LOA 

!operand) a vol id operand for the preceding instruction, e .g. *$01 
value) o single byte hex value, e.g. FF 
(data) o s1ring of literal dolo enclosed in quores or hex voluo~. Successive items oro separated 

with commas. 

!re l) o two byto hex address, e.g. 2000 
offset) a two byte hex offset value, e.g . 3000 

To start monito r, type SYS24576 or SYS64096 

( :: commodore 
COMPUTER 


