VAN
AND MACHINE CODE FOR THE
COMMODORE 64

PETER GERRARD
_ — .. ‘.‘;:.-1" an

Advanced Basic
& Machine Code
for the 64

Peter Gerrard

First published in 1584 by
Gerald Duckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NV

(©1984 by Peter Gerrard

All rights reserved. No pan of this publication
may be reproduced, stored in a retrieval system,
or transmitteéd, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the
publisher.

ISBN O 7156 17856 0

British Library Cataloguing in Publication Data

Gerrard, Peter
Advanced BASIC and machine code for the 64
— {Duckworth home computing)
1. Computer 64 (Computer] — Programming
2. Basic {Computer Program language)
1. Title
001.64'24 QAT76.8.C64

ISBN 0-7166-1786-0

Typeset by The Electronic Village, Richmaond
from text stored on a Commodore 64
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

Preface

-—

o > W b

10.
11.

Contents

. Better Basic Programming

Wonders

Accumulator

Machine Code:
Machine Code:
Machine Code:

Machine Code:

Machine Code:
Machine Code:
Machine Code:
Machine Code:
Machine Code:

Building up a Database

a Starting Point
First Instructions

Flags and Registers and Other

Logical Operators and the

Goodbye to Fergus
Mathematical Operations
Indirect Addressing
Built-in Subroutines

Adding Commands to Basic

Appendix: Some Useful Information

Index

21
50
67

90

118
135
161
172
175
188

203
229

Preface

In order to get the most out of your Commodore 64, it is necessary
to move beyond BASIC and start doing some programming in machine
code. All the best features of the 64 are inaccessible from BASIC other
than by using POKEs and PEEKSs all the time, which is unnecessarily
slow.

This book aims to teach you the rudiments of machine code program-
ming, with a couple of chapters-on BASIC just to limber up. Com-
mands are introduced slowly, with plenty of explanation and sample
listings to work from. A feature used throughout the book is a small
arcade game, which is gradually built up from chapter to chapter, using
commands introduced in each chapter. -

Subjects covered include interrupts, which provide us with the op-
portunity to produce some background music, adding commands to
BASIC, manipulating sprites in machine code, how to perform 8 bit
and 16 bit multiplication, and more. If you want to learn to program
in machine code, this is where to start.

P.G.

I'd like to dedicate this book to John Ryan, whose ceaseless efforts
to see it in print deserve a suitable reward. Without his enthusiasm,
it would have taken much longer to produce. Thanks John.

1
Better BASIC Programming

Introduction

As anyone who has tried to use their Commodore 64 at all seriously
will know, the version of BASIC that it is equipped with is not the most
advanced version around. Indeed, by today’s standards it is rather an-
tiquated, as those of you who have had the opportunity to use, say,
a BBC computer, will readily appreciate.

When it comes to internal specifications, however, the 64 is probably
one of the better machines in the £100-200 price bracket. Given a struc-
tured BASIC there is no doubt that the 64 would be selling in even
greater quantities than it already does. However, what you're given
is a language that has no procedures, no easy-to-use commands for
handling disk drives, and two of the most awkward commands for
looking after graphics and sound: PEEK and POKE.

It is true that there are several packages on the market that enable
you to upgrade the inherent BASIC, items such as BC Basic, Power
and Morepower, Simon’s Basic, and so on. But they all cost money,
and if your budget won't stretch to purchasing anything other than
the machine and a peripheral or two, then you'll have to learn to live
with the Commodore environment and just make the best of a bad job.

Machine Code

Later on in this book we'll be looking at machine code programming,
starting with a very general introduction to the language, and hope-
fully blowing away a few of the myths that surround it. People tend
to speak of machine code programming as if it’s on a par with learn-
ing to translate dwarfish runes, and only scholars hunched over an-
cient, musty manuscripts (or 12-year-old schoolkids hunched over
copies of Revenge of the Mutant Camels) can ever hope to speak this
strange tongue.

If this wasn’t being written for such polite publishers as Duckworth,
my response to that would be a short, but meaningful, word. There
is nothing at all complicated about learning to program in machine
code. You had to learn BASIC, which admittedly is more akin to the
English language than some of the instructions we'll be encountering
later, and machine code is simply another collection of symbols in-
structing the computer to do something.

By the end of this book you won’t be writing anything as stunning
as Easyscript or International Soccer, but at least the rudiments will
be there, and you will be capable of writing acceptable programs that
work much faster than the equivalent program in BASIC. Anyone can
program in machine code: this book will teach you how.

Back to Basics

But for the first couple of chapters we're going to be concentrating
purely on BASIC, and trying to make the best of the language that
the machine presents us with at power-on. 38,911 bytes to play with
is enough for most people, and some very good programs can be writ-
ten within the constraints of Commodore BASIC, as we shall see.

There are some general rules to be observed when programming in
BASIC, which will help to make programs run that little bit faster (later
on in chapter 7 we'll be looking at ways to start slowing programs
down, since machine code is so fast that at times we can’t even begin
to see what's happening) and make them more comprehensible to any-
one who looks through your coding.

Writing legible, easy-to-follow programs is important. Not only for any-
one else to whom you might show your listing, but also for yourself.
If you write a program liberally littered with PEEKS, POKEs, GOSUBs
and GOTOs, which at the time was a model of clarity, try looking at
that program in six months time. It will be nothing more than a jum-
bled mess that no one, not even the author, will be able to figure out.

One of our allies in achieving legible programs is the REM statement.
Although taking up valuable memory, a sprinkling of REM statements
around a program can do a lot to ease understanding of that program
later.

However, REMs can do a little more than that, as has been pointed
out by one David Gristwood. They can be used to highlight portions
of a program listing by printing the said portions in a different colour

10

from the rest of the code. Thus subroutines can be made to stand
out, and parts of the listing that are performing vital tasks can also
be highlighted, making them easier to find when you look at the pro-
gram long after completing it.

Before the portion to be coloured, you'll need a line something like:
Line number REM ”[DEL,RVS TISHIFTEDMIT{COLOURCODE]
followed by RETURN.

COLOURCODE is taken from the following table:

Shifted P - Black Shifted A - Orange
Shifted U - Brown Shifted V - Light Red
Shifted W - Grey #1 Shifted X - Grey #2
Shifted Y - Light Green Shifted Z - Light Blue
Shift and - Yellow Shifted + - Grey #3
up-arrow CBM and - - Purple
CBM and * - Cyan ‘onits - Red
E on its - White own
own

One thing to watch out for when using REM statements, either in this
way or just as a conventional:

10 REM START OF PROGRAM

is to try to avoid jumping to them either as part of a subroutine, or
with a straightforward GOTO statement. REMs eat up memory, and
there may well come a point when you wish to discard some of them
since you're running a little low on memory. There have been many
laws of computing published in the past, but an additional one must
state:

"If a REM statement is removed from a program, you can guarantee
that a subroutine will commence execution at that removed
statement.”’

In other words, you might have a line:

1000 REM START OF SORT ROUTINE

and somewhere else in the program a line that has a GOSUB 1000
in it. Unlike some other BASICs, Commodore 64 BASIC is not very

1

tolerant when it comes to being told to branch to a line that no longer
exists, and the program will come to a grinding halt.

An easy way around this, in the above example, would be to have
line 999 as the REM statement, and then commence the routine proper
on line 1000. In this way it doesn’t matter whether the REM statement
stays or goes.

Conserving memory

Since we've been chiefly concerned with producing legible listings up
till now, it comes as a bit of a body blow to learn that most of the
techniques used for conserving memory make programs that little bit
harder to understand. But there comes a time in every program’s life
when it is necessary to prune things down a little, and the following
points will all help to save space and make the program run that little
bit faster.

(1) Programs look much more legible if lines are spaced out, as in the
following example:

10 FOR I = 1 TO 10 : PRINT I : NEXT I
However, that takes up a lot more space in memory than:
FORI=1TO10: PRINTIzNEXT

Not only have we removed the | parameter after the NEXT statement
(although you can’t always do this if more than one loop is operative
at a time), but we've also got rid of the additional 10 superfluous
spaces. The line may now be harder to read, but ten spaces is ten
bytes, and taken over a long program can save at least as much as
a K of memory.

(2) Each line number takes up a certain amount of memory, whereas
putting colons between separate statements with the same line num-
ber takes up less. Thus, it might look neater to have:

10 A=2

20 B=5

IO C=AxR
40 PRINTC

12

But far less wasteful is:

10 A=2:B=50:C=A%B: FRINTC

(3) Variables should always be declared at the start of a program. Fur-
thermore, whenever a numerical constant is to be used more than once
(e.g. the mathematical constant P}, it saves an awful lot of memory
to define a variable to be equal to PL. Thus, we might have something
like:

10 PI=3.14139
20 PRINT “"THE AREA DF A CIRCLE WITH RADIUS 10 IS “:
30 PRINT PI*i0%1C

Note the use of 10*10 rather than 10 to the power 2. It's a lot quicker
to execute.

Since so many routines on the 64 depend on the use of sound (start-
ing memory location 54272) and sprites {53248), it makes a lot of sense
to define a couple of variables SO =54272 and SP =53248, and then
just refer to other locations as SO plus something or SP plus something.

(4) String variables take up space as soon as they're declared, regard-
less of the length of that string. Make the string longer, and yet more
space is eaten up, but making it shorter still leaves us with a certain
amount of memory occupied. Obviously it isn’t possible to avoid strings
at all times, but their use should be kept to a sensible minimum.

(5) Matrices eat up memory, and if you're going to define a two dimen-
sional matrix of any size, make sure that every element of the array
is used. Whether it is used or not, the Commodore 64 still reserves
some space for it, so if it remains unused it's a criminal waste of
memory.

(6) Subroutines certainly save on memory, since one subroutine and
five GOSUBs to it take up far less space than duplicating the code
five times. But beware. If a subroutine is used only once in a program,
it will occupy more space than merely typing out the code, since the
commands GOSUB and RETURN themselves occupy memory.

{7) It is sometimes convenient 10 separate out mathematical expres-
sions with extra brackets to make them more legible. But brackets take
up memory space, and it is advisable to let operator precedence sort
the expression out rather than unnecessary brackets.

13

{8) And finally, the biggest saving of all. As a number of people have
asked me how certain techniques that I've used in the past in adven-
ture game writing actually work, we'll devote a few pages to one
method of programming that can save two, three, four or more kilo-
bytes of memory.

Data conservation

When writing adventure games, somewhere in the program you'll have
to have a collection of data that forms the map for the game. Since
| usually only use the four cardinal compass points, North, South, East
and West, and rely on movements in other directions {such as up and
down) being sorted out by the program where appropriate, in a 260
location adventure I'll use a two-dimensional array, like this:

DIMP (249,3)

Remember that the first element of an array is always referred to as
element zero. Now dimensioning an array like this takes up an awful
lot of memory: 5009 bytes in fact. What it also does is to reserve a
section of memory at the top of the area set aside for BASIC, that
will be occupied no matter whether we use all the elements of the ar-
ray or not.

Since my adventures are all resident in the machine, with no hopping
off to the disk drive every now and again to get a room description,
all the data for the games must be residing in the machine as well.
A typical element in our P(249,3) array will be a two digit number. Since
our room numbers are running from 0 to 249, and a lot of the rooms
will not allow you to go in particular directions, on average each ele-
ment will be about two digits long.

Since this data has to be read into the program at some point, you
might think that a vast assortment of data statements will be neces-
sary somewhere along the way, and that these will be used to get the
data into our array. But just think for a moment. We've got one thou-
sand numbers to type in, each on average about two digits long, so
together with line numbers, data statements, and associated commas
between each data element, incorporating a collection of data state-
ments in the main body of the program will occupy around 3K of
memory, which is a lot, especially for a complex adventure program.

The solution is to store all this data on tape, and read into the program

14

as soon as we start running it. This way, although we still lose our
5009 bytes for the array, we don’t lose that additional 3K for however
many data statements it takes to define everything. They have got
to be typed in at some point, but that’'s just some work on my part:
the user never gets to see it. So before even considering the rest of
the program, there is one shorter program that consists of thousands
of data statements (well, tens of them anyway), and a short program
to file it all onto tape {or disk) when developing the program.

1000 OFENZ,8,2,"0:RO0M DATA,S,W"
1002 FORI=0TO249:FORI=0TO3

1004 FRINTH#Z,F([,J) :CHRE(13) 3
1006 NEXT J,1

This takes each element of the array in turn and stores it on disk in
the file ROOM DATA. Note the CHR$(13), a carriage return, separat-
ing each item of data. Then that program can be deleted and the rest
of the adventure sorted out. It’s usually more of an adventure getting
the program to work than it is solving the thing!

When it comes to playing the completed game, the first part of the
program contains a routine to read in all the data from disk, rather
like this:

2000 0PENZ2,8,2,"0:RO0M DATA,S,R"
2002 FORI=0T024%:FORJ=0TO3

2004 INPUTH2,F(I,J)

2006 NEXT J,1

2008 RETURK

A saving of around 3K is not to be sniffed at, and any programmer
who uses vast amounts of data like this would be well advised to haul
everything in from tape or disk, rather than having it stored in the main
program. The computer sets aside some memory anyway, there’s no
need for you to set aside even more.

To conclude

There are many other techniques around when it comes to saving

15

memory, making progams run faster, making them more legible and
so on, but a clearmind and a steady head are about the best weapons
at your disposal.

In the next chapter we'll talk about building up a database from scratch,
but to finish off for now, here is a reasonably short program that al-
lows you to draw in multi-colour using a high resolution screen.

Full instructions are included in the program (lines 10000 to 12004),
and we'll explain the rest of the program after the listing.

S GOSUB10QQO

10 POKES3281,7:FOKES3280,0: PRINT"ICLR,BLKIHANG ON
n

20 BASE=Z2%40%6

30 FOR I=BASE TO BASE+7999

40 POKE T,0:NEXT I

50 POKE 53272,PEEK(S3272)0R8

55 POKE 53265,FEEK (53265)0R32

6Q POKE 53270,PEEK(533270)0R16

70 FOR I=1024 TO 2023

80 POKE I,1:NEXT I

0 POKES3281,7

100 X=0:Y=0:A=B:B=A:D=1:E=1:F=1:J=1

110 GETA#

115 IFAs$=" "“"THEN13000

120 IFA$="I"THENY=Y-1: IFY{OTHENY=200

121 IFA$E="M"THENY=Y+1:IFY>200THENY=0

122 IFA$="A"THENX=X-1: IFX{QTHENX=139

123 IFA$="D"THENX=X+1: IFX>159THENX=0

125 IFA$="LF71"THENPOKEDS3281,A:A=A+1: IFAX15THENA=C

tREMF7

126 IFA$="[SHIFTEDF71"THENPOKES3280.B:B=B+1: IFB>15

THENB=0: REMSHIFTEDF7

130 IFA$="LF11"THENGOSUBZ000

131 IFA$="LF31"THENGOSUBIO0O

132 IFA$="LF5]1"THENGOSUR40OO0OO

134 IFAF="Q"THENSOO0O

135 IFA#$="1"THENC=C+1: IFCX*15THENC=0

136 1IFA$F="3"THENG=G+1: IFG>13THENG=0

138 IFA$="5"THENH=H+1: IFH>15THENH=0

140 IFA$="7"THENJ=1-J

200 ROW=INT(Y/8)

210 CHAR=INT (X/4)

220 LINE=YAND7?7

230 BIT=(7-<(XAND3)#2) :BIT=(2"BIT) #D+ (27 (BIT-1)) *E:

BIT=BIT*F

240 BYTE=8192+ROW*3I20+CHAR#*B+L INE

245 IFJ=0THENPOKEBYTE,PEEK (BYTE)AND255-BIT:G0TO110

16

250 POKE BYTE,PEEK (BYTE)ORBIT

260 6OTO110

2000 POKESS296+ROW#40+CHAR.C

2012 D=1:E=1:F=1:RETURN

3000 POKE1024+ROW*40+CHAR .G OR (H*1&)

3012 D=1:E=0:F=1:RETURN

4000 POKE1024+ROW*40+CHAR, (H*1&6) OR G

4012 D=0:E=1:F=1:RETURN

S000 POKES3I265,PEEK (53265) AND223: POKES3270.PEEK (53
270) AND23%: POKES3272,21

5002 END

10000 POKE 33272.23:POKES3280,0:POKES3Z281,0

10002 PRINT"[CLR,YELIWELCOME TO MULTI-COLOUR HIGH

RES ARTIST.

10004 PRINT"LCDI7TO DRAW IN HIGH RES USING MULTI-CO
LOUR M™MODE ON THE “:

100046 PRINT"COMMODORE 64, CERTAIN CONVENTION

S HAVE TO BE OBSERVED."

10008 PRINT"LCDIEACH 8 PIXEL BY 8 PIXEL SQUARE CAN
SHOW FOUR DIFFERENT COLOURS."

10010 PRINT"LCDIONE OF THESE IS THE SCREEN BACKGRO

UND COLOUR, ALTERED BY POKEING":

10012 PRINT"” MEMORY LOCA- TION 53281. THIS BECOME
& THE STANDARD BACKGROUND COLOUR.

10014 PRINT"[CDI7HE OTHER THREE COLOURS COME FROM

10016 PRINT"L[CDISCREEN MEMORY (I.E. LOCATION 1024
ONWARDS) , "3

10018 PRINT" WITH THE TOFP FOUR BITS OF THE RELEVAN

T BYTE DETERMINING ONE":

10020 PRINT" COLOUR. AND THE BOTTOM FOUR ANDTHER

COLOUR. ™

10022 BGOSUBR12000

10024 PRINT“CCLRITHE FINAL COLOUR COMES FROM THE C

OLOUR MEMORY REGISTER, "3

10026 PRINT"STARTING AT MEMORY LOCATION 53296.

10028 PRINT"LCDIIN THIS MODE., OUR HORIZONTAL RESOL
UTION IS REDUCED TO 146G ‘PIXELS "3

10030 PRINT", SINCE IT TAKES TWO BITS TO DETERM
INE THE STATE OFEACH PIXEL."

10032 PRINT"LCDIBIT PAIRING COLOUR DPISPLAYED®
10033 PRINT"LICD] 0Q SCREEN BACKGROUND C
OLOUR"

10034 PRINT® 01 UPPER FOUR BITS OF":PRI
NT" SCREEN MEMORY

16034 PRINT® 10 LOWER FOUR BITS"

10038 PRINT" 11 COLOUR MEMORY"

10039 PRINT"L[CDIAND HENCE THE AVAILABILITY OF 4 CO
LOURS PER CHARACTER SGQUARE."
10040 GDSUB12000: PRINT"ICLRIUSE THE FOLLOWING KEYS

17

10042 PRINT"KEY PRESSED ACTION

10044 PRINT"LCD] F1l CHANGE COLOUR MEMORY
100446 PRINT" F3 CHANGE LOWER 4 BITS

10048 PRINT" FS CHANGE UPPER 4 BITS

10050 PRINT" F7 CHANGE BACKGROUND COLOUR
10052 PRINT"SHIFTED F7 CHANGE BORDER COLOUR
10054 PRINT"ICD1] 1 CHANGE VALUE FOR F1
10056 PRINT" 3 CHANGE VALUE FOR F3

10058 PRINT" S CHANGE VALUE FOR FS

10060 PRINTY 7 TOGGLE ERASE/DRAW MODE
10061 PRINT" OFF AND ON"

10062 PRINT"ILCDI1SHIFTED @ EXIT TO LOAD NEXT PRO
GRAM"

10063 PRINT"LCD1] A MOVE CURSOR LEFT":PRI
NT™ D MOVE CURSOR RIGHT

10064 PRINT" I MOVE CURSOR UP":PRINT"

M HOVE CURSOR DOWN™

10065 PRINT" INSTRUCTION SCREEN":G0OSUB

12000: IFZZ=1THENRETURN

10066 PRINT"ILCLRIBASICALLY THIS PROGRAM IS JUST ME
ANT AS A BIT OF FUN, WHILST BEING":

100468 PRINT" AN INTRODUCT-ION TO MULTI-COLOUR HIGH
~RESOLUTION GRAPHICS AT THE":

10070 PRINT" SAME TIME."

10072 PRINT"LCD1IF YOU FEEL ADVENTUROUS, DISPLAYS
CAN BESAVED TO TAPE OR DISK USING":

10074 PRINT" AN ASSEMBLERSUCH AS EXTRAMON:
H-RES DISPLAY";

10076 PRINT" FILLS MEMORY LOCATIONS 8192 TO 16191

THE HIG

10078 PRINT“CCDIHAVE FUN. '":GOSUB12000: POKES3272,21
:t RETURN

10998 END

10999 RETURN

12000 PRINT"LCD1PRESS SPACE TO CONTINUE"

12002 GETSP#: IFSP$<>" "THEN12002

12004 RETURN

13000 POKES3265.PEEK (S3265) AND223: POKES3270,PEEK (5
3270) AND239: POKES3272,23

13001 POKES3281,0:PRINT"L[VYEL]

13002 ZZ=1:GE0SUB10040

13004 POKES3272,PEEK (53272)0R8: POKES3265,PEEK (S326
3)Y0R3I2: POKES3270,PEEK (53270} 0R14

13005 PRINT"{CLR1";: POKES3281,A~1:60T0110

READY.

18

Certain conventions have been observed in this and the remaining
BASIC programs in this book, so we'd better explain what they are.

This program operates in lower case when displaying the instructions.
The printer used to produce the listing (an Epson FX80) is incapable
of handling lower case when it comes to listing out a Commodore pro-
gram, and so certain strange effects tend to occur. If you look at line
10002 you'll see what | mean. The first word, Welcome, is meant to
appear just like that: capital W, and the rest in lower case. When it
comes to entering the program, type the ‘elcome’ in as normal, and
use the shift key for the W. Whenever you see any letters in italics,
they are to be entered using the shift key.

Another thing that the Epson can’t cope with is the control codes used
to move the cursor around, change the colour of the printing, and
so on, so these have all been amended to make them legible. These
codes work as follows:

[CLR] : Clear screen [HOME] : Cursor home
[DEL] : Delete character [INSTI] : Insert character
[CD] : Cursor down [CU] : Cursor up

[CR] : Cursor right [CL] : Cursor left
[BLK] : Control and the key with the letters BLK on it.

And so on for the rest of the colours. Note that if we want more than
one code to be represented, they’re typed in like this on the listing:

[CLR,YEL]

as in line 10002. DON'T TYPE IN THE COMMA! It's there purely to
make everything more legible to you.

Two other quirks of the Epson need explaining. The strange charac-
ter in lines 115 and 10065 represents the left arrow key (honest), and
the chinaman’s hat in line 230 is the up arrow key.

Program explanation

Line b: go off to the routine to give instructions.

Line 10: change background and border colours, and print hopeful
message.

Lines 20-90: set up and clear multi-colour high res screen.

19

Line 100: declare a few variables, like X and Y position of cursor.
Lines 110-140: get and react on a key being pressed.

Lines 200-260: find location of cursor on high res screen, and update
screen.

Lines 2000-4012: determine what multi-colour we're currently draw-
ing in, and set variables accordingly.

Lines 5000-5002: set everything back to normal and end program.
Lines 10000-10078: instructions.
Lines 12000-12004: pause for space bar routine.

Lines 13000-13005: turn off high res, print up instructions, turn on high
res again, and go back to main body of program.

As the program itself says, just a bit of fun, but it does show that you
can do some interesting things in BASIC!

20

2
Building up a Database

Introduction

One of the more useful programs on any computer is the database.
Opinions seem to differ over what a database shouid be capable of
doing, but essentially it should be able to store and retrieve informa-
tion, rather like a card filing system, and it should also be able to search
through the files and sort them into order on a number of different
fields, rather like an overworked and underpaid secretary.

For the purposes of this book, we're going to present the database
in the form of an address file, and build it up from scratch, explaining
what each routine does and how it does it. In this program there is
enough room to store around 150 ‘cards’, with each card holding 8
different ‘fieids’ of information. These are as follows:

Name of person.

Four fields for the address.
Postcode.

Telephone number.

Date of birth.

The program can search through any of those eight fields for any part
of information within that field. For instance, if the person’s name was
GERRARD, and you decided to search on the key word ARD, it would
still find GERRARD, and also pull out any other names that happened
to have ARD in them.

The program can also sort into order on the first seven fields. You
can’t sort on date of birth, unfortunately, since the time taken to do
that would be a mite prohibitive. Still, it anyone wants to take up the
challenge ...

The listing will be broken down into eleven major ‘chunks’, the ten
parts of the program which manipulate, store, retrieve, file, sort,

21

display, load and save the data, and the eleventh ‘chunk’ will be any
other part of the program that doesnt fit into any of those categories.
Displaying the menu, for instance, and setting up some data in the
first place.

There are some interesting routines contained within the main body
of the listing, so without further ado we’'ll start with all those parts
of the program that do not fit into one of t}heA operations categories.

The peripheral parts of the program

S POKES3280,0: POKES3281 ,0: POKES3272,23:F=0

10 REM 3333 33 % 3 3 3 38 3 30 0 30 36 30 38 36 3 30 36363

15 REM ##% DATABASE PROGRAM *%%*

20 REM %%*x P.G. MAY84 L 22

25 REM 3 3% 9% 35 3 3% 3 3 3 3 3 36 3 36 303636 36 3 3 o3 %

30 DIMF1$(150) ,F2%$(150) ,F3$(150) ,F4%(150) ,F5#(150)
+F&E(150) ,F74$(150) ,FB8% (150)

32 REM DIMENSION FIELD ARRAYS

40 OPEN15,8,15

42 REM OPEN CHANNEL FOR READING ERROR MESSAGES
4999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO YEL
LOW
5000
5010
5015
5020
5025
S030
D035

PRINT"LCLR,YELJI&4BASE : MAIN MENU SELECTION
PRINT: PRINT: PRINT"0) LOAD FILE FROM DISK
PRINT:PRINT"1) SAVE FILE TD DISK
PRINT:PRINT"2) ADD FILE

PRINT:PRINT"3) REMOVE FILE

PRINT:PRINT"4) EXAMINE FILE

FPRINT:PRINT"S) AMEND FILE

5040 PRINT:PRINT"&) DISPLAY ALL FILES
5045 PRINT:PRINT"?7) SEARCH FILE

5050 PRINT:PRINT"8) SORT FILE

S055 PRINT:PRINT"9) QUIT PROGRAM

3060 PRINT:PRINT"PRESS NUMERIC KEY FOR REQUIRED OP
TION. "
5061 GETKEY$: IFKEY$=""THENS30&1

5065 IFKEY#="0"THENSS00:REM LOAD ROUTINE
3070 IFKEY$="1"THEN&60OQ: REM SAVE ROUTINE
S075 IFKEY$="2"THEN&S00:REM ADD ROUTINE
S080 IFKEY#$="3"THEN7000:REM REMOVE ROUTINE
5085 IFKEY$="4"THEN7S500: REM EXAMINE ROUTINE
S090 IFKEY$="S"THENBOOO:REM AMEND ROUTINE
3099 IFKEY#="&"THENBS00: REM DISPLAY ROUTINE
5100 IFKEY#$="7"THENS000:REM SEARCH ROUTINE
5105 IFKEY$="8"THEN?300: REM SORT ROUTINE
5110 IFKEY$="9"THEN100OOO:REM QUIT ROUTINE
5115 60T0S061

22

Explanation

Line 5 - set black border, black background, lower case, and variable
flag F. ' ’

Lines 10-25 - so you know who to blame for the program.
Lines 30-32 - dimension field arrays to 150 each, one for each field.

Lines 40-42 - open up a channel to the disk for reading the error mes-
sages whenever we're loading or saving data.

Lines 4999-5060 - clear screen, and display the program menu option.
Lines 5061-5115 - wait for a key to be pressed and branch to the ap-

propriate part of the program. If nothing's pressed, loop back and wait
until it is.

23

11999
12000
12002
12004
12005
12006
12008
60000
60002
60003
EFT

40004
60006
60008

REM READ ERROR CHANNEL

REM CHECK ERROR CHANNEL
INPUT#15,EN$,EM$,ET$,ES#

IFEM$="0K" THENRETURN

REM TURN ON REVERSE FIELD

PRINT:PRINT"ERROR ON DISK [RVSI":EM$
CLOSE15: CLOSEZ2: END

REM INPUT ROUTINE

CM$= na

REM REVERSE ON,ASTERISK,REVERSE OFF,CURSOR L

PRINT "CRVSI#LOFF,CL1":
GETZ#: IFZ#=""THEN&LOOOS
Z=ASC(Z%): IFZ<>13ANDZ<>20ANDZ< >32AND (Z<470RZ

>S7)AND (Z<&650RZ >90) THEN6OOOS

60010
60012

ZL=LEN(CM#) : IFZL. >27THENS600O14
IFZ>57THENZ=2+128: Z$=CHR$ (Z) : CM$=CM$+Z$: PRIN

TZ%;:60T060004

&0013
0004

40014
40016
60018

24

IFZ<>13ANDZ< >20THENCM$=CM$+Z¢: PRINTZ%: : GOTO6

IFZ=13ANDZLTHENPRINT" ":RETURN
IFZ=20ANDZLTHENCM$=LEFT#$ (CM%,ZL—1) : PRINTZ#%:
GOTO60004

Lines 11999-12008 - read the error channel. If no errors, return to the
main body of the program, but if there are then abort the program
and close all channels to the disk.

Lines 60000-60018 - this is our multi-purpose input routine, and
deserves closer examination.

Line 60002 - declare input string to be a null one.

Line 60004 - print up prompt.

Line 60006 - wait for a key to be pressed.

Line 60008 - get the ASCII value of the key pressed. If that key wasn’t
the RETURN key, the DELETE key, a letter, a number, or the back-

slash key then we don’t want to know, so back to line 60006.

Line 60010 - check the length of the input string. If it's greater than
27 characters, then check to see if the RETURN key’s been pressed.

Line 60012 - if a letter has been pressed, turn it into an upper case
one, add it to the input string, display it, and loop back for more.

Line 60013 - if it’s numeric, or the backslash key, then add it to the
input string, display it, and loop back for more.

Line 60014 - if RETURN has been pressed, and the input string actual-
ly has a character in it, then return from the subroutine. To enter a
blank field then requires that you at least press the space bar.
Line 60016 - if the delete key has been pressed and the input string
has some characters in it, then take off the rightmost character and
echo that to the screen.

Line 60018 - back to the prompt again.

25

LOAD routine

This section of the program is used to load in any data previously saved
onto disk. To convert this program to run on tape, you'li need to delete
lines 40, 5507, and 11999-12008, and convert lines 5506 and 6006 to
read as follows:

5506 OPEN1,1,1,”DATA”
6006 OPEN1,1,0,”DATA”

It will then take an exceedingly long time to file everything onto tape,
but at least it will work.

5499 REM CLEAR SCREEN AND TURN FRINT COLOUR TO BLA
CK ’

5500 POKES3280.,11:POKES3281,11:PRINT"ICLR,BLK1LGAD
ING DATA FILE"

5502 PRINT:PRINT:PRINT"¥HEN DATA DISK IS READY, PR
ESS SPACE BAR, "

5504 GETLO#$: IFLO$<>" "“THENSS04

5504 OPENZ,B8,2,"€0:DATA,S,R"

5507 BGOSUB12000

9508 FORI=1TO15Q

S510 INPUTH2,F1$ (D) ,F2%(I) ,F3$ (1) ,F4$(I) ,FS$(1) ,Fb&
$(1) ,F7%(1) ,FB$(I)

5512 NEXTI

35514 CLOSE2:POKES3I280,0:POKES3281.0: G0OTOS5000

26

Explanation
Line 5499 - simple REM statement explaining what’s going on.

Line 5500 - change background and border colours to grey, and print
a message onto the screen.

Lines 5502-5504 - print another message, and wait while the user gets
the disk ready and puts it in the drive.

Line 5506 - open a sequential file for reading the data file imaginative-
ly called DATA.

Line 5507 - rush off to check the error channel.

Line 5608 - set up a loop to be performed 150 times.

Line 5510 - input the Ith element for each of the 8 data fields.
Line 5512 - continue until the end of the loop.

Line 5514 - close the file, revert the background and border colours
to black, and go back to the menu again.

27

SAVE routine

This is the routine that saves all your precious data onto disk {(or tape
if you choose to amend the program).

Since Commodore disk drives don't particularly like null strings being
saved onto them, we have to incorporate a check for every field on
every ‘card’, and if it's a nuli field pad it out with a single space charac-
ter. This takes a little while, but at least the file gets properly prepared
for saving, and prevents any headaches later.

5999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
CK

6000 POKES3280,11:POKES3281,11:PRINT"LCLR.BLKISAVI
NG DATA FILE"

6002 PRINT:PRINT:PRINT"WHEN DATA DISK IS READY, PR
ESS SPACE BAR. "

4004 GETSA#$: IFSA$<{>" "THEN&0V4

6006 OPENZ,8,2,"@0:DATA,S,W":GOSUB12000

6007 PRINT:PRINT: PRINT"PREPARING FILE.":B30SUB&020
6008 FORI=1TO150

6010 PRINTH#2,F1$(I):CHR$E(13):F28 (1) ;CHR$(13) s F3%$ (1
Ji:CHR$(13)3F4$ (1) sCHR$(13) 5

6012 PRINTH#2,FS#(I)sCHR¥(13)sFo# (1) ;CHRE(13) s F7# (1
JICHRE(13) :FBE (1) sCHR*%(13) 3

6014 NEXTI

6016 CLOSEZ2:POKES3280,0:POKES3281,0: GOTOS000

6020 FORI=1TO150

6022 IFF1$£(I)=""THENF1$(I)=" "

6024 IFF2%#(1)=""THENF1%(I)=" "

6026 IFF3$(I)=""THENF1%(I)=" *

6028 IFF4%(I)=""THENF1£%(I)=" *

6030 IFFS$(I)=""THENF1$(I)=" *

6032 IFF&#(I)=""THENF1$(I)=" "

6034 IFF7$(I)=""THENF1$(I)=" "

6036 IFFB$(I)=""THENF1£$(I)=" ¥

6038 NEXTI

6040 PRINT:PRINT:PRINT"FILE READY FOR SAVING."
6042 RETURN

28

Explanation
Line 5999 - simple REM statement explaining what’s going on.

Line 6000 - change background and border colours to grey, and print
a message onto the screen.

Lines 6002-6004 - print another message, and wait while the user gets
the disk ready and puts it in the drive.

Line 6006 - open a sequential file for writing the data file, and go off
to check the error channel.

Line 6007 - tell the user that the file is being prepared, and go to the
subroutine at line 6020.

Line 6008 - set up a loop to be performed 150 times.

Lines 6010-6012 - print all the data fields for each card onto disk,
separating each one with a carriage return.

Line 6014 - carry on until the loop is finished.

Line 6016 - close the file, revert back to black background and border,
and go off to the main menu again.

Lines 6020-6042 - go through every field on every ‘card’, and if that

field is a null one then pad it out with an empty string. Then rush back
to line 6008 again to carry on saving the file.

29

Adding a file to the record

This routine is called up whenever the user wishes to add a file to the
main collection of ‘cards’. The user can choose which number he wish-
es to call the file, and if you want to put file number 149 immediately
after file 2 then that’s fine by me. However, you might have to wait

a long time if you then decide to flip through every file in turn before
getting to the one you want.

6499 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA

CK

6500 POKES3I281,1:1POKES3IZ280,1:PRINT"ICLR,BLKIADDING
FILE":PRINT:PRINT

6502 INPUT "FILE NUMBER FOR NEW FILE":F:IFF<OORF>1
SOTHENGS02

6503 F(F)=F

6304 PRINT:PRINT:PRINT "NAME "j3:G0OSUB&L&OOOO:F1£(F)=

CM$

6506 PRINT "ADDRESS 1 "3 :GOSUBL0O000:F2% (F)=CM#
6508 PRINT "ADDRESS 2 "3 :GOSUB&QQ00: F3% (F)=CM$

6510 PRINT "ADDRESS 3 "3 :G0OSUBL0O000:F4% (F)=CM$

6512 PRINT "ADDRESS 4 ";:GOSUB&OQQO:FS$ (F)=CM$

6514 PRINT "POSTCODE "::G0OSUB&LOOO0O:F&% (F)=CM$

6516 PRINT "TELEPHONE NUMBER *“;:GOSUB&OOOQO:F7$(F)=

CM%

6518 PRINT “DATE OF BIRTH (DD/HM/YY) “::GOSUB&OOOO
:FB8% (F)=CM$%

6320 PRINT:FRINT:PRINT"RECORD ADDED. ":FORI=1T0O2000
1NEXT

6522 POKES3281,0: POKES3280,0

&524 G0TOS000

30

Explanation
Line 6499 - just the usual REM statement.

Line 6500 - change to a white background and a white border, and
print up a message.

Line 6502 - input the number of the file to be added, and check that
the user doesn’t enter a number less than 1 or greater than 150

Line 6503 - set our file record to equal the number typed in.

Line 6504 - print up the message ‘name’, and go to the input routine
starting at line 60000. On returning, the input string CM$ is assigned
to the first field for this new file.

Lines 6506-6518 - ditto for the other seven fields in our file.

Line 6520 - print up appropriate message, and set up a loop to give
the user time to read it.

Line 6522 - revert to a biack border and a black background.

Line 6524 - back to the main menu again.

31

Removing a file

This routine is called whenever a record is to be removed. This just
sets every field of that record to be a null one, and thus when search-
ing through it or attempting to sort it this record will be treated by
the program as if it no longer existed.

6999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
CK

7000 POKES3280,1:POKES3281.1:PRINT"ICLR.BLKIREMOVE
FILE"

7002 PRINT:PRINT: INFUT “FILE NUMBER TO BE REMOVED"
s F: IFF{O0ORF »150THEN70Q0Q2

7004 PRINT:PRINT:PRINT"ARE YOU SURE (Y OR N)?"
7006 GETRE#: IFRE$="Y"THEN7012

7008 IFRE$="N"THENPOKES3280,0:FOKES3281.0:G0TOS000

7010 GATA7006

7012 F1£(F)="":F2¢$(F)="":F3$(F)="":Fa$s(F)=""

7014 FS$(F)=""1F&$(F)="":F7$(F)=""sFB8%(F)=""

7016 PRINT:PRINT: PRINT"RECORD REMOVED."

7018 FORI=1TO2000:NEXT

7020 POKES3281,0: POKES3280.0:6G0TAS00Q

32

Explanation
Line 6999 - our usual friendly REM statement.

Line 7000 - change to a white border and a white background, and
print up suitable message.

Line 7002 - ask the user for the file number to be removed, and check
that they enter a number greater than 0 and less than 151.

Line 7004 - check that they really want to remove this file.
Line 7006 - they do, so carry on with the routine by going to line 7012,

Line 7008 - they chicken out, so revert to a black border and a black
background and go to the menu routine again.

Line 7010 - nothing’s been pressed, so back to line 7006 again.
Lines 7012-7014 - nullify every field on the Fth card.

Lines 7016-7018 - print out suitable message and set up a loop to give
the user time to read it.

Line 7020 - revert to black background and black border, and go to
the menu section again.

33

Examining a file

This menu option is included to give the user the chance to ook at
selected files simply by inputting a file number. The program will then
display that file on the screen, before going back to the menu again

at the press of a suitable key.

7499 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA

CK

7500 POKES3281.1:PDKES3280,1:PRINT"[CLR,BLKIEXAMIN

E FILE"

7502 PRINT:PRINT: INPUT"FILE NUMBER TO BE EXAMINED"

:FsPRINT: PRINT

7503 IFF<O0O0RF >150THEN7302
7304 PRINT "NAME

7506 PRINT "ADDRESS 1

7508 PRINT "ADDRESS 2

7510 PRINT “ADDRESS 3

7512 PRINT "ADDRESS 4

7514 PRINT "POSTCODE

7316 PRINT “TELEPHONE NUMBER
7518 PRINT "DATE OF BIRTH
7320 PRINT:PRINT:PRINT"PRESS

"IF1$(F)
"1 F2% (F)
";F3$(F)
"iF 4% (F)
"IFS$(F)
"1F &% (F)
"sF7%(F)
" FB$ (F)
SPACE BAR TO CONTINUE

7522 GETANY$: IFANY$< " "THEN7S22

7524 POKES3280,0: POKES3281,0
7526 GOTOS000

34

Explanation
Line 7499 - the usual

Line 7500 - back to white display again, and a message telling you
what’s going on.

Line 7502 - get the user to input the number of the file he wants to
examine.

Line 7503 - check that the file number is not less than zero and that
it isn't greater than 150.

Lines 7504-7518 - display all the fields for the file number entered.
Line 7520 - tell the user to press the space bar to continue.

Line 7522 - and wait until he does.

Line 7524 - revert to black border and black background.

Line 7526 - back to the menu again.

35

Amending a file

This routine comes into play when the user wants to amend an exist-
ing file (if someone moves or changes their telephone number perhaps).
It can also be used to add a file.

If a field is to remain as it is, pressing the RETURN key will take the
user onto the next one. To change it, just use the delete key and the
input routine at 60000 onwards takes care of the rest.

7999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
CK

8000 POKES3280.1:POKES3281,1:PRINT"[CLR,BLK1AMEND
FILE"

8002 PRINT:PRINT: INPUT “FILE NUMBER TO BE AMENDED"
iF

8003 IFF<OORF >1S50THENBOO2

8004 PRINT:PRINT"HIT RETURN TO LEAVE A FIELD UNALT
ERED. "

800& PRINT:PRINT:PRINT"NAME "::CM$=F1% (F):PRINTCMS
: s BOSUB60004: F 1$ (F) =CM$

8008 PRINT"ADDRESS 1 "::CM$=F2%(F):PRINTCM$: : GOSUB
60004 ; F2# (F) =CM$

8010 PRINT"ADDRESS 2 "::CM$=F3%(F):PRINTCM$: : GOSUB
600043 F3% (F) =CM$

8012 PRINT"ADDRESS 3 "::CM$=F4%(F):PRINTCM$: : GOSUB
£0004:F 48 (F)=CM$

8014 PRINT"ADDRESS 4 “::CM$=F5% (F):PRINTCM$; : GOSUB
60004 : F5% (F) =CM$

8016 PRINT"POSTCODE "::CM$=F&F(F) i PRINTCMS: : GOSUBS
0004:F &% (F) =CM$

8018 PRINT “7ELEPHONE NUMBER "::CM$=F7%(F):PRINTCM
%1 : GOSUBLO00A: F7$ (F) =CM$

8020 PRINT “DATE OF BIRTH "::CM$=F8% (F):PRINTCMS::
GOSUBL0004: FA%£ (F)Y=CM*$

8022 PRINT:PRINT:PRINT"RECORD AMENDED."

8024 FORI=1T0O2000:NEXT

8026 FOKES3280,0: POKES3281,0: BOTOS000

36

Explanation
Line 7999 - guess what?

Line 8000 - we're still with our white screen, and a simple message
to let the user know what he's let himself in for.

Line 8002 - get the file number to be amended.
Line 8003 - and make sure it falls within the legal range.

Line 8004 - inform the user that hitting RETURN will leave a field as
it was.

Line 8006 - print up the field to be altered, and put the field descrip-
tion (F1$(F))into the input string CM$. Print CM$ so that the user knows
what he’s changing, and go to the routine starting at line 60004 this
time, so that the input string doesn't get set back to be a null one again.
On returning from the routine, define F1$(F) to be whatever the input
string now contains.

Lines 8008-8020 - as above, for the other seven fields of this file.
Line 8022 - tell the user the good (or bad?) news.

Line 8024 - set up a loop to give time to read the message.

Line 8026 - usual change to black screen, and off to the menu again.

37

Displaying all tHe files

This routine is used to allow the user to flick through every file in turn,
until he's either gone through all 150 of them, or he gets bored and
presses the ‘Q" key to exit from the routine.

This is useful when scanning for some information that you know is
in there somewhere, but for the life of you you can’t remember where.

8499 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
CK

8500 POKES3280,1:POKES3281 ,1:PRINT"[CLR,BLKIDISPLA
Y ALL FILES"

8502 PRINT:PRINT:FORI=1TO150

8503 PRINT"FILE NUMBER "3 I:FRINT

8504 FPRINT "NAME YiF1£ (1)
8506 FRINT "ADDRESS 1 "yF2% (1)
8508 PRINT "ADDRESS 2 “sF3£ (D)
8510 PRINT "ADDRESS 3 "sF4£ (1)
8512 PRINT "ADDRESS 4 "sFS$ (1)
8514 PRINT "POSTCODE "sFo$ (1)

8514 PRINT "TELEPHONE NUMBER ":F7#$(I)

8518 PRINT "DATE OF BIRTH HiFBs(I)

8320 PRINT:PRINT:PRINT"PRESS 'C° FOR NEXT RECORD
8522 PRINT"OR "@° TO RETURN TO MENU

8523 REM CLEAR SCREEM

8524 GETNR#: IFNR$="C"THENPRINT"[CLRIDISPLAY ALL f1I
LES":PRINT:G60TO8530

8526 IFNR$="Q"THENPOKES3281 ,0: POKES3280,0: G0TOS000
8528 GOTOB524

8530 NEXTI

8532 NR$="Q":G0T08S26

38

Explanation
Line 8499 - friendly REM message.

Line 8500 - back to white screen again, and print up a straightforward
message.

Line 8602 - set up a loop that can be performed 150 times.

Line 8503 - tell the user what file number he’s currently looking at.
Lines 8504-8518 - display all the fields for that file.

Lines 8520-8522 - instructions for proceeding.

Line 8524 - check for a key press, and if he presses ‘C’ then it's off
to the next file by going to line 8530 and taking the next step through

the loop.

Line 8526 - the user wants to quit, so revert to our standard black screen
and go back to the menu.

Line 85628 - nothing’s been pressed, so wait until it is.
Line 8530 - next step through loop.

Line 8532 - the loop’s finished, so fool the machine into thinking that
a ‘Q’ has been pressed and go to line 8526 to finish everything off.

39

Searching through a file

This allows the user to search through any field, for any item that may
be contained within that field.

For instance, a search on field 5 (usually the county in the person’s
address) for SHIRE, would pick out LANCASHIRE, BERKSHIRE,
HAMPSHIRE, and so on. A search on field 1 for Ml would pick out
MIKE, MICHAEL, EMILY, etc. A powerful, and reasonably fast,
routine.

8999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
Ck

000 POKES3280,9:POKESE281.7:PRINT"LCLR.BLK ISEARCH
FILE":PRINT:PRINT

2002 PRINT"WHAT FIELD DO YOU WANT TO SEARCH ON?":P
RINT:PRINT

9004 PRINT"NAME (FIELD 1)
2006 PRINT"ADDRESS 1 (FIELD 2)
3008 PRINT"ADDRESS 2 (FIELD 3)
2010 PRINT"ADDRESS 2 (FIELD 4}
%012 PRINT"ADDRESS 4 (FIELD)
9014 PRINT"POSTCODE (FIELD &)
9016 PRINT“TELEPHONE NUMBER (FIELD 7)
9018 PRINT"DATE OF BIRTH (FIELD 8)

2022 PRINT:PRINT:PRINT"PRESS APPROPRIATE NUMERIC K
EYII

2024 GETFS$: IFFS$=""THENZ2024

026 FS=VAL (FS¥%) : IFFS=00RFS>8THEN?024

2028 PRINT:PRINT:PRINT"FIELD NUMBER ":FS

9030 FORI=1TO2000:NEXT

%021 REM CLEAR SCREEN

032 PRINT"LICLRISEARCH FILE":PRINT:PRINT

2034 IFFS=8THEN?2080

7040 PRINT"TEXT TO SEARCH FOR 7?7 "::G50SUB&000O: TX#$=
CMs$

2042 ONFSBOTOR050,9053,90546,905%,70462,90465,70468,90
71

050 TX=ZL:FORI=1TO150:FORJ=1TOLEN(F1%(I))

7051 IFTX$=MID#(F1%(I1),J,TX) THENT112

FOB2 NEXTJI,1:60T09142

9053 TX=ZL:FORI=1TO130:FORJ=1TOLEN(F2$(I))

Q054 IFTX$=MID$(F2%(1) .J,TX) THEN?L112

Q033 NEXTJ,1:G60702142

9056 TX=ZL;FORI=1TDI130: FORJ=1TOLEN(F3#$(1))

F057 IFTX#$=MID$(F3%(I1),J,TX) THENTF112

40

058
059
9060
Q061
062
063
064
065
0656
F067
{048
9069
070
9071
072
073
9080
{082
9084
086
Q088
9100

NEXTJ.I1:60T09142

TX=ZL:FORI=1TO150: FORJ=1TOLEN(F4%{(I))
IFTX$=MID$(F4$ (1) ,J,.TX) THEN9112
NEXTJ,I1:60T09142
TX=ZL:FDRI=1T0O1S50:FORJ=1TOLEN(FS#$ (1))
IFTX$=MID$(FS$ (1) ,J,TX) THEN?112
NEXTJ,I1:60709142

TX=ZL:FORI=1T0150: FORJ=1TOLEN(F&%(1))
IFTX$=MID#$(F&6#$(I) ,J,TX)THENT112
NEXTJ,1:60T09142

TX=ZL:FORI=1TO150: FORJ=1TOLEN(F7%$(1))
IFTX$=MID$(F7%(I) ,J,TX) THEN?112
NEXTJ,1:680T09142

TX=ZL:FORI=1TO150: FORJ=1TOLEN(F8% (1))
IFTX$=MID$(F8% (1) ,J,TX) THEN?112
NEXTJ,1:G0TO09142

PRINT"SEARCH ON DAY (D), MONTH(M) OR YEAR(Y)?"
GETSR#$: IFSR$="D"THENL=1:60T09100
IFSR$="M"THENL=4:G0T09100
IFSR$="Y"THENL=7: GOTO?100

G0T09082

PRINT: PRINT: PRINT" INPUT NUMBER TO SEARCH FOR

"3 : GOSUB&O0O0C0O: IFZL >2THENY1 00

F104
7106
7108
2110
2111
Fii2
7114
7116
9118
7120
@122
9124
9126
9128
9130
9132
133
9134

NS=vAL (CM$)

FORI=1T0150

IFNS=VAL (MID$(FB%$(I) ,L,2))THEN?112
NEXTI:=:60TO9142

REM CLEAR SCREEN

PRINT "[CLRIRECORD NUMEBER “;I:PRINT:PRINT
PRINT "NAME "tF1$(D)

PRINT "ADDRESS 1 "sF2% (1)

PRINT "ADDRESS 2 "sF3%(I)

PRINT "ADDRESS 3 "iF4% (1)

PRINT "ADDRESS 4 "sFS%(I)

PRINT "POSTCODE ";Fes$ (1)

FRINT “TELEPHONE NUMBER “$F7%(I)

PRINT "DATE OF BIRTH "tFB8%(1)

PRINT: PRINT*“PRESS 'C° FOR NEXT RECORD
PRINT"OR "@° TO RETURN TO MENU

REM CLEAR SCREEN

GETNR$: IFNR$="C"THENPRINT"[CLRISEARCH FILES":

PRINT:GOTO?110

2136
7138
142
F144

9146

IFNR$="0Q" THENPOKES3281 ,0: POKES3280,0: GOTOS000
GOTO?134

PRINT: PRINT:PRINT"SEARCH CONCLUDED. "
FORI=1TO2000: NEXT

POKES3I2B0,0: POKES3281 ,0: BOTOS000

4y

Explanation
Line 8999 - REM statement.

Line 9000 - different colours! An orange border and a yellow back-
ground, along with the message about what’s going on.

Line 9002 - message to choose field to search through.

Lines 9004-9022 - which keys to press for what, and telling the user
to press one of them.

Lines 9024-9026 - get a key press, and if it isn't one of the numbers
1 to 8 then go back and wait until it is.

Line 9028 - inform the user which field he's chosen to search through.
Line 9030 - and give him time to read it.

Lines 9031-9032 - clear screen and print message.

Line 9034 - if he's searching for a date {e.g. everyone whose birthday
falls in August), then go off to line 9080, since this routine is handled
differently from the rest.

Line 9040 - get the text to search on using the input routine at 60000.

Line 9042 - depending on the field to be searched, jump to the correct
part of the program.

Line 9050 - set TX to equal the length of the string that we're looking
for. Set up a loop to go through all 150 files, and set a loop to check
through the entire length of the field.

Line 9051 - if a match is found for the search string anywhere in the
Ith field then go to line 9112 to print everything out.

Line 9052 - nothing’s been found, so continue the search. When it's
all over, trot off to line 8142.

Lines 9053-9073 - ditto for all the other fields.

Line 9080 - ask the user if he wants to search on a day, a month or
a year.

42

Lines 9082-9088 - get an input and set the variable L accordingly. L
indicates at which point in the date string we’re going to start looking.

Line 9100 - input the number to look for by using the routine at line
60000 onwards. If the user attempts to search for a string of more than
two characters, forget it, and go back again to input a number.
Line 9104 - set NS to equal the VALue of the number.

Line 9106 - set up a loop to go through all 150 fields.

Line 9108 - if a match is found, then go to line 9112 to print everything
up.

Line 9110 - carry on through all the fields, then trot off to line 9142.
Lines 9111-9128 - display the field where the match has been found.
Lines 9130-9134 - see if the user wants to look for another string, or
he wants to return to the menu. If he decides to quit, it’s back to our

usual black screen again and the menu at line 5000.

Lines 9142-9146 - end of search and back to a black screen and the
menu.

Sorting through the files

This set of routines allows the user to sort the files into order depen-
dent on the contents of any of the first seven fields. The sort is reasona-
bly quick on a low number of fields, but if you've got a full file you
might as well go and make a cup of tea and settle down in front of
the television.

2499 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA

s

CK

500 FPOKES3280,%:POKES3281,8: PRINT“[CLR,BLKIFILE
ORT":PRINT: PRINT

9502 PRINT"WHAT FIELD DO YOU WANT TO SORT ON7?":PRI
NT:PRINT

7504 PRINT"NAME (FIELD 1)

95046 PRINT"ADDRESS 1§ (FIELD 2)

7508 PRINT"ADDRESS 2 (FIELD 3)

7310 PRINT"ADDRESS 3 (FIELD 4)

7512 PRINT"ADDRESS 4 (FIELD 5)

9514 PRINT“POSTCODE (FIELD &)

@516 PRINT"7TELEPHONE NUMBER (FIELD 7)

9522
EY H
7524
2526
7528
2330
9531
CK
@532
9533
9534
9550
552
9354
75546
7560
75462
9564
7566
9370
9972
?574
9576
7580
7582
9584

44

PRINT: PRINT: PRINT"PRESS APPROPRIATE NUMERIC K

GETFF$: IFFF$=""THEN9S24

FF=VAL (FF#$) : IFFF=00RFF >7THEN9524
PRINT: PRINT: PRINT"FIELD NUMBER ":FF
FORI=1T02000: NEXT

REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA

PRINT"[CLR,BLKIFILE SORT":PRINT:PRINT
FORJ=1TO148: IFF1$(J)=""0RF1$(J)=" "THENR&41
ONFFGOTO9550,95460,9570,9580,%590,94600,7610
FORI=1TO149: IFLEFT$(F1£%(I+1),1)=" "THEN9441
IFF1£(I) >F1$(I1+1) THEN94632

NEXTI

GOTO 9641

FORI=1TO149: IFLEFT$ (F2%(I+1) ,1)=" "THEN9441
IFF2%(1) >F2%(1+1) THENT&32

NEXTI

GOTO 7641

FORI=1TO149: IFLEFT®#(F3$([+1),1)=" "THENP&441
IFF3$ (1) >FE$(I1+1) THENDL32

NEXTI

GATO 9541

FORI=1TO149: IFLEFT#(F44(I+1) ,1)=" “"THEN9&41
IFF4% (1) >F4$(1+1) THEN94Z2

NEXTI

95846 GOTO 94641

2590 FORI=1T014%9: IFLEFT#(F3$(I+1),1)=" "THEN?641
9592 IFFS$(1)>FS$(1+1) THEN9432

2594 NEXTI

9596 GOTO 9641

9600 FORI=1T0149: IFLEFT$(F6%(1+1) ,1)=" "THEN9441
94602 IFF6#(1)>F6%(1+1) THENS632

2604 NEXTI

246046 GOTO 9641

2610 FORI=1TO149: IFLEFT$(F7$(I+1) ,1)=" "THENFL4Y
9612 IFF7#(1) >F7%(I+1) THEN9632

9614 NEXTI

P616 GOTO 9641

9632 SHF=FI$(I):FI1$(1)=F1$(1+1):F1$(I+1)=5%

9633 SHE=F2F (1) sF2$ (1) =F2% (I+1) :F2%(1+1)=5%$:8$=F3$(
DsF3$ () =F3$ (I+1):F3$(I+1) =8¢

94634 S$=FA$(]):FA$(I1)=F45(1+1):FA$(I+1)=8%:5S$=F5%(
D:FSHF(1)=FS$(I+1):FS$(I+1)=5%

Q635 SE=Fo$(I):1FL$(1)=Fo$(I+1):Fo$(I+1)=S$:8$=F7%$(
DiF7$(1)=F7$(I+1):F7%(1+1)=5%

6346 S$¥=FOF(1):FBF(I)=FB$(I+1):FB¢(1+1)=5%: GOTOISS
4

F641 NEXTJ

9642 PRINT:PRINT:PRINT"SORT CONCLUDED.":FORI=1T020
00: NEXT

9644 POKES3280,0:POKES3281,0:6G0TOS000

Explanation

Line 9499 - REM statement.

Line 9500 - different colours again, and print up a message.

Lines 9504-9522 - display list of options and get the user to choose one.
Lines 9524-9530 - wait for a key to be pressed, and check that it fits
into our chosen categories. If it doesn’t, loop back until the user presses
something that does, and if it does then tell him what field he's going
to sort on, give him time to read the message, and zoom on to the
next part of the program.

Lines 9531-9532 - just for clarity.

Line 9533 - start of the grand loop to riffle through the sort for each

field. If an empty field is found then that’s it for that field, so go to
line 9641 to take the next step in the loop.

45

Line 9534 - go to the correct part of the program, dependent on which
field we're looking through.

Line 9550 - go through each field in turn, and if a null string is found
then go to line 9641 to take the next step in the grand J loop.

Line 9552 - compare the Ith field with its neighbour, and if a change
has to be made go to line 9632 to swop everything over.

Line 9554 - next step in the | loop.
Line 9556 - and off for the next step in the J loop.
Lines 9560-9616 - as above for the other six fields.

Lines 9632-9636 - swop everything over. We may only be sorting on
one field, but all the other records have to be altered as welll

Line 9641 - next step in the J loop.

Line 9642 - end of sort, so print a message and give the user time to
read it.

Line 9644 : back to a black screen, and back to the menu at line 5000.

The QUIT routine

This routine simply switches everything off, but does allow the user
the chance to return to the menu if he has a change of heart e.g. if
he hasn’t yet saved all the data to disk or tape.

9999 REM CLEAR SCREEN AND TURN PRINT COLOUR TO BLA
CK

10000 POKES3280,1:POKES3281,1:PRINT"L(CLR,BLKIARE Y
OU SURE (¥ OR M) 7?"

10004 REM CLEAR SCREEN

10005 GETSURE#$: IFSURE$="Y"THENPRINT"L[CLR1":END

10010 IFSURE#$="N"THENPOKES3280,0:POKES3281,0:60T05
000

10015 GOTO10005

Explanation
Line 9999 - REM statement.

Line 10000 - revert to white screen, and check that the user is con-
vinced.

Line 10005 - he is, so end the program.
Line 10010 - he's not, so back to a black screen and the menu again.

Line 10015 - nothing suitable has been pressed yet, so back to lin
10005. .

47

Conclusion

This program is certainly not the world's most amazing database,
although it certainly works and could easily be amended if necessary
to file items other than names, addresses, birthdays and telephone
numbers. Stock control is one application that springs to mind.

It serves its purpose in that it shows how what at first sight may seem
a relatively complicated program can be simply built up in a series of
stages, or modules. The prospect is not as daunting as you might at
first think.

Before we leave BASIC entirely, and dive into the depths of machine
code, one thing we're going to do throughout this book is build up
a simple little arcade game (zap the aliens, the usual stuff) in machine
code. However, this game has a BASIC opening, which prints up the
title screen and draws a range of mountains. Type it in and save it
to tape, but don’t run it: we haven’t got any machine code in there yet!

Fergus

Our hero is a character that my wife, for some reason best known to
her, decided to call Fergus. Fergus can be moved around all over the
screen, and has to dodge and shoot the various enemies that come
at him: evil Horaces on skis, Pinball tables, hippies, and other assort-
ed nasty beings.

Be very careful when you type in lines 18-26, which form the moun-
tain range at the bottom of the screen. Follow the REM statements
closely.

As | said, don’t run the program yet. We won’t be doing that till the
end of the next chapter.

4 REM CLEAR SCREEN,PRINT 10 CURSOR RIGHTS, AND THE

N TURN COLOUR TO BLACK

S POKES3I280,71POKES3I281 , 71PRINT"[CLRy10CL { BLKI®* % %%
FERGUS ##%x"

10 FORI=1TOS50: A=INT (RND(.5)#728+41) : B=INT(RND(.5) *

14+1)

12 POKE10Q024+A,45: POKESS52%46+A ,B: NEXT

13 REM CURSOR HOME, THEN PRINT 23 CURSOR DOWNS

14 PRINT"[HOME,23CD]1"y5:

48

15 REM TURN PRINT COLOUR TO GREEN, AND GO INTO REV
ERSE FIELD MODE

16 REM A REPRESENTS THE SHIFTED POUND SYMBOL, AND

B REPRESENTS THE

17 REM ‘%' KEY PRESSED IN CONJUNCTION WITH THE CBM
LOGO KEY

18 PRINT"[GRN,RVS,A,CU,A,CU,A,CU,A,B,CD,B,CD,B,A,C
u,A,CU,A,B,CD,B,CD,B,A,CU,A1";

19 PRINT"[CU,A,CU,A,B,CD,B,CD,B,CD,B,CD,B,A,CU,A,C
u,A,B,CD,B,A,CU,A,CU,A,B,CD";

20 PRINT"LB,CD,B,CD,,B,A,CU,A,CU,A,B,CD,B,CD,BI1"}
21 PRINT"C[4CU,14CR,RVS,28P3"

22 PRINT"[RVS,3CR,2SP,4CR,25P,4CR,45P,10CR,25P3"
24 PRINT"[RVS,2CR,4SP,2CR, 48P ,2CR, &SP, 4CR,25P, 2CR,
3SP,4CR,25P1"

26 PRINT"[RVS,CR,20SP,2CR,108P,2CR,45P1";

27 REM CURSOR HOME, CHANGE PRINT COLOUR TO YELLOW,
AND GO INTO REVERSE MODE

28 PRINT"[HOME, YEL ,RVS1000000 SCORE LIVES 3 HI-S
CORE 0000"

30 FORI=1984T02023: POKEI,160:NEXT

32 FORI=56056T056295: POKEI ,5: NEXT

40 SYS 49152

READY.

3
Machine Code: a Starting Point

Introduction

Most of you will probably have seen some machine code routines in
magazines and publications, and won't have the faintest idea about
what it all means. This is reasonable, since most machine code list-
ings look unintelligible enough to the best of people. However, by the
end of the next couple of chapters you'll be able to pick out most of
what’s going on in a listing, as most machine code programs make
extensive use of a very limited set of commands.

Machine code on the 64 only allows us to use 56 commands anyway,
although it’s fair to point out that most of these commands can oper-
ate in a variety of different ways. But only about half of these com-
mands are commonly used, and only about half of that number are
used very extensively. If you were asked to learn 28 different words
in, say, an obscure African dialect, I'm sure that most of us could
manage that in a few days. We are going to concentrate on those
most commonly used instructions, even if we do cover the whole lot
somewhere in this book.

Most introductions to machine code start off by telling you why you
should learn about it. ‘Programs can be written that operate at lightn-
ing speeds’, is the main reason given. Personaliy | regard those sort
of arguments as a waste of space. You know why you want to learn
all about machine code, or presumably you wouldn’t be holding a copy
of this book in the first place.

Chapters four and five are going to be our first look at machine code
proper, and in this chapter we’re merely going to present you with
a few listings, and an explanation of how they do what they do. If
you get totalily lost and confused, read the next two chapters and then
come back here again.

50

To assemble, or not to assemble

Most people seem to think that you need some kind of an assembler
to program in machine code. An assembler is a program that trans-
lates all the various symbols and numbers that you're going to be typ-
ing in over the course of the next couple of hundred pages, into
something that looks a bit more sensible and intelligible to you. Good
assemblers can go a lot further than that, but this is an introduction
to machine code programming, so we'll ignore the more complicated
stuff for now.

Simple assemblers abound for the Commodore 64, and, courtesy of
‘legend in his own lunchtime’ Jim Butterfield, Duckworth have in the
past published the popular program Extramon. This, in retrospect, was
a great mistake, since only about 2 people out of every thousand have
managed to get the thing working, and the other 998 have all written
in and told us that they can’t get anywhere with it. Understandably
frustrating for them, and not exactly satisfying for us either, so the
program now exists on the tape of the book Sprites and Sounds on
the Commodore 64, as well as being released by Argus Specialist Press
a while ago in their 64 Tape magazine (issue number one, if you want
to track it down).

There are others around, including the packages Sysres, PAL, and
more, so if you're really earnest about getting to grips with machine
code then | suggest that you acquire at least one of these programs
before proceeding further. Without one life will not be impossible, but
it will be very difficulit.

Simple Border Routine

The following program is a reasonably short machine code listing for
drawing a border around the screen. It serves to show the speed of
machine code when compared to the speed of BASIC (and there’s
a more dramatic demonstration to follow later), and since it uses the
grand total of 15 different commands, there won't be too much
difficulty in following what's going on.

As | said, if you do get lost and your brain refuses to function any
more, turn to chapters 4 and b, and then come back here again.

51

BORDER ROUTINE

B#*

PC SR AC XR YR SP
.587D8 33 00 CO 00 Fé

Co00
Co02
Coo4
Co0s
Co09
coocC
COOF
co12
Co1l13
Co15
cois
cois
COlE
coz21
co23
Coza
coz9
cozC
COo2F
Co32
Co35
coss
Co3B
CO3E
Co41
Co44
Co47
Co4a
Co4D
Co50
CO53
CoSé
Cos57
coSse
COSA
CoSB
COSE
Co&0
Cos2
Co63

52

c1

LDA
LDX
LDY
STA
8STA
STA
STA
DEX

#5066
#$27
#$00
$0400, X
$DB0O, X
$07CO0, X
$DBCO, X

$CO06
$0400
$D8B00
$07C0
$DBCO
#3FO
$0400.X
$DB00, X
$0427 ,X
$D827, X
$04FO0, %
$DBFO, X
$0517,X
$D917 ,X
$05E0, X
$D9EO, X
$0607 , X
$DA07, X
$06DO0, X
$DADO, X
$06F7, X
$DAF7,X
$C100

#+28
$C100

#£00
£C023

Now for the difficult part: typing it in. Since we haven’t yet explained
what any of the symbols are, you're going to have to enter it like a
parrot. Get an assembler up and running, and type in the command
D C000. This means disassembie the contents of the computer’s
memory, starting at memory location C000.

Do what? You've probably heard of the terms decimal and hex-
adecimal. These are two different numerical counting systems, and
the one that we're used to using is the decimal one. That is, numbers
are counted to a base of 10, so that the number 1234 really stands for:

4 times 10 to the power 0, pius
3 times 10 to the power 1, plus
2 times 10 to the power 2, plus
1 times 10 to the power 3.

Since 10 to the power of 0 is mathematically defined to equal 1, our
sum comes out to be 4 times 1, or 4, plus 3 times 10, or 30, plus 2
times 100, or 200, plus 1 times 1000, or 1000. Thus the end result is
1000 plus 200 plus 30 plus 4, or 1234: the number we started with.

When working in machine code you‘re not only going to have to un-
derstand decimal, but also hexadecimal. This counting system no
longer uses the base 10, but instead we use the base 16. Thus, if we
were referring to a hexadecimal number 1234, this would be translat-
ed to a decimal number as:

4 times 16 to the power 0, plus
3 times 16 to the power 1, plus
2 times 16 to the power 2, plus
1 times 16 to the powver 3.

This in turn is equal to 4, plus 3 times 16, or 48, plus 2 times 256, or
512, plus 1 times 4096. This gives us our decimal equivalent of the
hexadecimal number 1234 to be equal to 4 plus 48 plus 512 plus 4096,
which equals 4660.

We use the numbers 0 to 9 to represent our counting system: quite
handy for a numerical base of ten. However, you may be wondering
how a numerical base of 16 manages to cope. Well, not only do we
use the numbers 0 to 9, but we also use the letters A, B, C, D, E and
F, where the hexadecimal letter A represents the decimal number 10,
the hexadecimal letter B represents the decimal number 11, and so
on, until we reach the hexadecimal letter F, which represents the
decimal number 15,

53

Thus, the hexadecimal number AQQO (to keep life simple), represents
in decimal:

0 times 16 to the power 0, plus
0 times 16 to the power 1, plus
0 times 16 to the power 2, plus
10 times 16 to the power 3

which equals 40960.

Going back to our earlier command D C000, C000 is a hexadecimal
number. This is equal to C (or 12) times 16 to the power 3, or 49152.
This happens to be the start of the spare 4K of memory which sits
inside the Commodore 64, and occupies memory locations 49152 to
B3247. This is a useful area in which to put some short machine code
routines, since it doesn’t take up any of the computer’s memory.

Let's get back to our program. If you look at the listing, you'll see that
the first line consists of:

C000 A9 66 LDA #566

This tells the computer {and us) that at memory location C000 (or
49152) sits the hexadecimal number A9, equivalent to the decimal
number;

9 times 16 to the power 0, plus
10 times 16 to the power 1

which is equal to the decimal number 169. At memory location 49153,
one further on, sits the hexadecimal number 66, equivalent to the
decimal number:

6 times 16 to the power 0, plus
6 times 16 to the power 1

which is equal to the decimal number 102. Further on we come to
the strange word LDA, followed by # $66. If you look at the table of
machine code instructions at the back of this book, and track down
the one headed LDA, you’ll see that those letters stand for LoaD the
Accumulator. You don’t need to worry about what an accumulator
is just yet, we'll be finding out more about that later. The next lot of
symbols, the # $66, teils us that we're LoaDing the Accumulator with
the hexadecimal number 66, or the decimal number 102. You can treat
this as reasonably analogous to the BASIC statement:

54

LET A=66

In other words, we’re assigning a value to this mysterious object the
accumulator. Looking again through the listing, you'li see that the first
number is always a memory location, the next littie ot (a collection
of one, two or three numbers) is all hexadecimal numbers, and the
third lot is a collection of mnemonics and numbers.

To compare it to BASIC again for a moment, you can regard it as LINE
NUMBER followed by STATEMENT followed by a REM statement
explaining what's going on. In other words, the assembly listings as
presented throughout this book are all fairly similar to BASIC listings,
although what they achieve is way, way beyond what BASIC can ever
hope to do.

Typing in the listing

If you've got an assembler, the command D C000 should have brought
up one page full of memory locations, one lot of hexadecimal num-
bers (probably FF, which doesn’t mean much to the computer: it's
the decimal number 255 to save you working it out), and a collection
of mnemonics, or more usually at this stage a lot of question marks,
since the computer doesn’t know what the hexadecimal number FF
is meant to tell it to do. This is just as well, since it isn't telling it to
do anything at all, as yet. Some disassemblers require that you press
the stop key to prevent pages and pages of information being dis-
played: an annoying and unnecessary requirement.

If you now proceed to type in the first little lot of numbers (A9 66 in
our example) by moving the cursor so that it stands over the first FF
after the CO00 message (and don’t worry about moving the cursor
down to type the 66 in: just enter it straight after the A9 number),
followed by a carriage return, the screen display should change to
resembile the first line of our program, with a lot of FFs and question
marks further down the screen.

Typing in the next row (A2 27) next to the C002, which will now be
immediately under the C000, should bring up the second line of the
program, and so on. Type it all in slowly and carefully, and save it
onto tape with the command:

S "BORDER",01,C000,C063

or onto disk with the command:

55

S "0:BORDER”,08,C000,C063

The S stands for SAVE, the name in guotes follows the usual basic
rules for filenames, the first number after the quotes represents the
device number that we want to save our program onto, and the third
and fourth numbers represent the first memory location that we want
to save and the last memory location respectively.

When you're sure that everything is correct, you can run the program
by coming out of the disassembler {most of them require you to type
an X and a carriage return). Change the background colour to white
so that we can see what’s happening by typing in:

POKE 53281,1

and then type SYS 49152, followed by RETURN. A border will ins-
tantly be drawn around the screen, provided, of course, that you've
typed the program in correctly. Control should then be returned to
you again, and the usual READY message with the flashing cursor
underneath should confidently be displayed on the screen.

Type SYS 49152 a few times (clear the screen before you do, other-
wise nothing will appear to be happening) just to get a feel for the
power of machine code. You don’t yet understand how the program
is doing what it is doing, but at least you can now look at machine
code listings without feeling too daunted. Most of the commands used
in our border routine are in that common group mentioned earlier that
get used all the time, and they will, over the next couple of chapters,
become very familiar friends indeed.

No assembler?

Well, | said it wasn’t impossible without an assembler, merely very
difficult, and that is indeed the case.

You really have to understand how to convert decimal to hexadecimal
and back again, because without an assembler every number you see
in that listing is going to have to be hand converted, and then POKEd
into memory. To get you started, A9 represents the number 169, and
66 the number 192, so your first two POKEs will be:

POKE 49152,169:POKE49153,102 < RETURN >

The next line then says A2 27, which in decimal represents 162 and

56

39, so your next two POKEs will be:
POKE 49154,162:POKE49155,39 <RETURN>

Given time and a lot of patience you’ll eventually get the program into
memory, and can then type in the command SYS 49152 like every-
one else. Only you'll find it very hard to save your program to tape
or disk. Well, impossible in fact, so be prepared for a severe disap-
pointment when you’ve finished drawing a few borders.

Starting to count

Now that you're getting a bit more familiar with what a machine code
program looks like, how it's built up and how to enter it into memory,
the following set of programs should serve to convince you of how
fast this language really is.

These programs were first presented aeons ago by Mike Gross-Niklaus
for the Commodore PET, but a quick dusting off and translating for
the 64 will give a remarkable demonstration. Enter and run the BASIC
program headed '"MILLION COUNT BASIC'.

~

MILLION COUNT BASIC

10 POKES3281,0: POKES3280,0

14 REM CLEAR SCREEN, TURN ON REVERSE MODE, GO INTO
YELLOW PRINT MODE

15 PRINT"[CLR,RVS,YEL,&45P1"

20 SC=1024:N=5

30 FORI=1024T0D1029

40 POKEI,48

50 NEXT

60 D=N

70 A=PEEK (SC+D) 31 A=A+1

80 IFA<SB8THENPOKESC+D,A: GATO&0

90 POKESC+D,48

100 D=D-1

110 IFD=-1THENEND

120 A=PEEK (SC+D)

130 A=A+1

140 GOTO80

READY.

57

The idea of the program is that it counts up to a million in the top
left hand corner of the screen, by the rightmost digit all the time (when
that reaches 8, the one next to it is updated and the rightmost one
set to zero again). If the next digit in reaches the total of nine when
it comes round to updating, that is set to zero as well and the one
next to that updated. The program goes on (and on, and on) until the
count finally reaches a million. Don’t bother waiting for it, as it takes
around 7% hours!

Yes, | know it can be done faster, but the program is meant to be
a direct comparison with the machine code one, something we'll be
coming back to later.

Okay, get the trusty disassembler out and type in the program headed
"MILLION COUNT M/C’.

MILLION COUNT M/C

B
PC SR AC XR YR SP
. 3678C 33 00 74 00 Fé

C000 A2 0S5 LDX ##05
co02 A7 30 LDA #$30
€004 9D 00 04 STA $0400,X
Coo7 CA DEX

coo8 10 FA BPL $CO004
CO0A AZ 05 LDX #%035
CooC BD 00 04 LDA #0400,X
COOF 18 cLC

CO10 &9 Ot ADC #£01
Col12 C? 3A CMF #$3A
C014 FO 04 BER® #CO1C
COl14 9D 00 04 8STA $0400,X
CO1? 4C OA CO JMP $CO0A
Co1C A9 30 LDA #$30
CO1E 9D 00 04 STA %$0400,X
CoZ1 CaA DEX

co22 10 01 BPL $C025
€024 40 RTS

C0Z5 BD 00 04 LDA #$0400,X
coz8 18 CLC

Co29 469 01 ADC #3$01
Coz2B 4C 12 CO JMP $CO12
COZE &0 RTS

538

Save it to tape or disk when you’ve finished, and then exit the disas-
sembler as usual. Type a CLR and a NEW to sort BASIC out (don't
worry, you won't lose the machine code program), and then enter
the short program headed ‘BASIC TESTING PROGRAM'.

BASIC TESTING PROGRAM

10 POKES3281,0: POKES3280,0

14 REM CLEAR SCREEN, TURN ON REVERSE MODE, GO INTO
YELLOW PRINT MODE

15 PRINT"[CLR,RVS,YEL,&65F1"

20 T=TI

30 5Y549152

40 PRINT:PRINT:PRINT"TIME TAKEN = " (TI-T)/60:" SE

CONDS"

S50 END

When you're satisfied with it, RUN it, and if you can watch the digits
changing you're a better man than I. The count this time takes a mere
27.7 seconds (approximately), as compared to about 7 % hours. Quite
an improvement. And in case you’re thinking that the program isn‘t
really counting to a million, it is, as we shall see in the next couple
of chapters.

Final programs

You may by now be wondering what is the point of typing in these
programs when you haven't a clue what's really happening. Well,
we've constantly referred to the next two chapters as the ones that
get the ball rolling, so to speak. The object of this one is to get you
used to entering listings, seeing how fast machine code is, and perhaps
whetting your appetite for more.

By now you should be au fait with entering machine code listings,
saving programs onto tape or disk, and generally getting an idea of
how powerful this language is. (As a by-line, if you want to load the
programs back from tape into the computer when there’s no disas-
sembler resident, you’ll have to LOAD "BORDER", 1,1 instead of the
usual LOAD “"BORDER". This tells the computer NOT to load the pro-
gram in at the start of BASIC, where it would normally go, but at the
place where it was saved from: in our case, starting at memory loca-
tion 49152 decimal, C000 hexadecimal).

Itis convenient, for the purposes of this book, to have these programs

59

typed in and working by the time we get to explaining precisely how
they work. If you have them on the screen in front of you while we
go through changing a few things, explaining how this command
works, how that one operates, and so on, it's a lot easier to grasp
when the programs . already up and running than it is when you're
still trying to type them in. You can see what's happening, having al-
ready overcome the horrors of typing them in.

Sprite data

The games listing, when it reaches its final stages, uses a number of
sprites, and the data for these in hexadecimal form is given next.

B#
PC SR AC XR YR SP
.387DB 33 00 CO 00 F&

.:0340 CO 18 03 CO 18 Co 3C
.20348 03 &0 7E 06 30 .. OC 1IF
. 10350 81 F8 OF &6 FO OF && FO
.20358 OF 00 FO 07 24 EO 01 99
» 30360 80 00 C3 00 00 FF 00 01
.203468 BD 80 03 00 CO 046 00 &0
. 20370 06 00 &0 0& 00 60 06 00
.:0378 60 06 00 &0 OF 00 FO 00

10380 00 18 00 00 18 00 00 18
30388 00 00 3C 00 00 3C 00 00
0320 7E 00 00 7E 00 00 FF 00
0398 00 FF 00 01 DB 80 03 99
03A0 CO 07 3C EO 07 &6 EO 07
03AB 66 EO 07 C3 EO OF E7 FO
03BO OF 7E FO OF 3C FO 1F 18
03B8 F8 3B 00 DC 73 00 CE 0O

»33E40 B8O 3L w1 80 22 01 80 41
.:3E48 01 80 FF 81 C1 E3 C3 41
.:3ES0 FF C2 61 DD C6 31 C? CC
.:3E58 1F C? F8 00 EB 80 00 EB
«3JE60 B0 00 FF B0 QO FF 80 OF
.13E48 C3 FO OF 81 FO 1IF 81 F8
.:3E70 39 €3 9C 3% £3 9C 73 81
.23E78 CE E7 00 E7 C6 00 &3 00
«.$3EB0 00 OF CO 00 1F EO 00 3B
.33E88 FO 00 33 F8 00 7F FB 0Q

60

Q0

3F
F3
C3
03
&0
00

61

As you can see, this is in four distinct blocks, one for our hero Fergus,
one for the missiles which he launches at the enemy, one large group
for the six different kinds of enemy, and one final one for poor Fergus
when he loses a life.

To type them in, if we use the first group as an example, get the as-
sembler out and type M 0340,0378. You'll see that the numbers dis-
played after the M correspond to the first line of numbers and the last
line, and the M incidentally stands for display Memory. The screen
will fill with numbers, probably a lot of zeros, and to enter your Fer-
gus data just move the cursor up to the first set of zeros after the num-
ber 0340 (this is a memory location expressed in hexadecimal, just as
the CO00 was earlier), and type in the next eight hexadecimal num-
bers. Then hit RETURN, and those numbers will be entered into the
computer’s memory.

Enter the entire 8 lines {8 by 8, or 64 bytes of data for a sprite, remem-
ber) and then save it onto tape or disk as per usual. Then enter and
save the rest of the sprite data, before moving on to the final program.

Moving Around

This is our first attempt at something lengthy, and you may be disap-
pointed to learn that all it does is set a sprite up and allow it to move
around the screen under keyboard control.

More complicated than BASIC, | agree, but you try getting a sprite
to move this fast in BASIC. Type it in as usual, but don’t worry about
the blocks that have got ?7? or BRK next to them, just move on to
the next lot. Those are gaps that will be filled in later.

In particular, there's a large gap from location COCD to COFF, and all
of that can be missed out. We're just interested there in the littie rou-
tine from location C100 to C10B, which is there to slow everything
down. Slow it down? In BASIC you’d be trying to speed it up, but
here, without this delay loop, you wouldn’t be able to see what's hap-
pening. Try it, and find out.

62

B#

PC SR AC XR YR 5P
-.38FEB 33 00 D3 00 F&

CQo00
co02
CO05
coo7
CO0A
CooC
COOF
coiz2
Co14
Co17
coiA
coiC
CO1F
co21
co24
Coz2é
coz8
coz2A
cozCc
CO2E
Co30
co32
Co34
COo3é6
co38
COo3B
CO3E
Co41
Co42
C043
Co44
€045
Co46
co47
co49
CO4B
CO4E
CO4F
cos5z2
COS55
Co56
CoSs7
Coas
Co5A
cosc
COSF
Co&2

A9
8D
A9
8D

00

21

00
Q0

07
Do

Do
Do

Do
DO

Do

00

co

co

co

Ci
DO

Co
DO

LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
STA
LDX
STX
LDY
LDA
cMP
BEQ@
cMP
BEQ
CMP
BEG
CHMP
BEQ
cHMP
BEQ
JMP
JSR
JMP
277
277
277
297
727
297
CPX
BNE
JIMP
DEX
JSR
STX
NOP
NOP
NOP
CFX
BEQ
JMP
CPX
BEQ

#$0D
$07F8
#+01
$¥DO15
#$32
$D000
$D001
#£00
¥DO17
$DO1D
#+$00
$D010
#£00
$00CS
#$0A
$C047
#$12
$C071
#$21
$COA0
#£24
$COB3
#301
$¥COo3B
$C021
$COoC7
$C021

#$00
$CO4E
$C021

$C100
¥D000

#+00

$COSF
$C021
$D0O10
$COSC

Co&64
Co&b
Co&B
CO&B
CO&E
Co71

Co73
CO75
co7g
co79
co7C
CO7F
cosl
co83
co85
coeB
coBA
cosCc
COo8F
Co91
Co94
Co97
co98
Co99
co%a
co9B
co9C
Co9D
CO%E
CO9F
COA0
CoAZ
CoA4
COoA7
COAB
COAB
COAE
CoB1
coB2
COB3
COBS
COB7
COBA
COBB
COBE
coct

CoC4
CoCS
Cocé
coc7

coce

(o]¢]

21

00
01

FF
03
21
00

21

1E
27

DO

co

co

ci
DO

DO

DO

DO
CoO

co

Ct
DO

co

C1

Co

DO

LDX
LDA
sSTA
STX
JMP
CPX
BNE
JMP
INX
JSR
STX
CPX
BNE
LDA
CHMP
BNE
LDA
STA
LDX
8TX
JMF
irarars
Farars
27272
277
Katers
Farars
77?7
2?7
2?77
CPY
BNE
JMP
DEY
JSR
STY
JMP
BRK
BRK
CPY
BNE
JMP
INY
JSR
STY
JMP
7?7
27?7
7?7?27
L.DA
STA

#$FF
#$00
$D010
$D000
$C021
#$FF
$C078
$C021

$C100
$D000
#EFF
$CO75
#3500
$D010
$C075
#501
$D010
#3501
$D000
$CO21

#+00
$COA7
$Co21

$C100
¥D001
$Co21

#$FF
$COBA
$CO21

*C100
$D001
$CO21

#E1E
D027

cocc
CoCcDh
COCE
COCF
cobo
CoD1
coD2
CoD3
cobD4
CoDS
CoD6
CoDn7
coDB
CoD9
CODA
CODB
coDnc
CobD
CODE
CODF
COEO
COEl
COE2
COE3
COoE4
COES
COE&
COE?7
COEB
COE?
COEA
COEB
COEC
COED
COEE
COEF
COFoO
COF1
COF2
COF3
COF4
COFS
COF&
COF7
COF8
COF?
CoFA
COFB
COFC
COFD
COFE

RTS
277
777
277
277
277
227
277
277
277
277
777
277
7772
277
777
277
277
777
277
277
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
777
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK

65

COFF 00 BRK
C100 BE 00 C2 STX $C200

C103 A2 FF LDX #$FF

C105 CA DEX

Ci06 DO FD BNE $C100
€108 AE 00 C2 LDX #$C200
Ci0B &0 RTS

€Ci10C BF Fafare

When you've finished, check it carefully and save it to tape or disk
with the command:

S "MOVING AROUND",01,€000,C10C
or

S "0:MOVING AROUND”,08,C000,C10C
depending on which you’re using.

Exit the disassembler and type SYS 49152 to get everything going.
Fergus is controlled by the ‘A’ and ‘D’ keys to move him left and right,
and ‘I’ and ‘M’ to move him up and down. Don't worry if you can’t
see him at first, as he starts off life off the screen. So far we're not
worried about where he moves, but later on we’ll confine him to the
visible areas of the screen.

Now that you're totally baffled and lost, let’s start unravelling a few
mysteries in chapters 4 and b.

66

4
Machine Code: First Instructions

Introduction

You'll have noticed by now, if you typed in and ran the program MOV-
ING AROUND at the end of the last chapter, that our hero Fergus
has a habit of sometimes racing to the left of the screen from way
over on the right. Don’t worry, this will be corrected in later chapters.
It's a result of there being 320 possible sprite locations on the horizon-
tal axis, and any memory location can only store a value up to 255.
Consequently you need two bytes to store the required horizontal po-
sition of any sprite, and this early version of the program neglects to
check that.

Values, bytes, 255, what is all this? Let's get back to basics (with a
small b) and start explaining things in greater detail.

First lessons

It's important, in these early days of learning how to program in
machine code, to get certain facts very, very clear indeed. A little time
spent now going over what to some will be fairly simple stuff, will save
a lot of time for all of us later on.

First of all, what is a byte? Put simply, a byte is the equivalent of one
character, such as the letter A, and when we speak of a computer
having X thousand bytes of useable memory, then that is just another
way of saying that that computer is capable of storing X thousand
characters in its memory. A byte is not the smallest amount of infor-
mation that a computer can concern itself with, however. Bytes are
split up (on the Commodore 64 anyway) into eight bits, with four bits
combining to form a nibble. Each bit has a value associated with it,
and we can talk in terms of the 2nd bit in the 4th byte of memory,
or whatever.

67

To put it pictorially:

Bit No -7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

If you add all those numbers up you'll see that they total 255, which
is why we said earlier that the largest value that can be stored in any
byte is 255: you just can’t get in any humber higher than that.

To alter the value stored in any particular byte, you're probably well
aware of the commands POKE and PEEK: on the Commodore 64 you
have to be.

If we, say, POKE 49152 with 169, what precisely are we doing? Look
at the number 169, and try to figure out what set of values in the above
combinations add up to 169, remembering of course that you can’t
have two bits set to equal 64: only one bit can be set to have that
value in it, and that is the seventh one {cunningly referred to as bit
6 just to confuse things).

The number 169 is in fact made up of bits 7 {128), 5 (32}, 3 (8) and
0 (1). So, the result of POKEing 49152 with 169 is to turn bits 7, 5,
3 and 0 on, and turn bits 6, 4, 2 and 1 off.

To turn bits 0, 3, 5 and 7 on without affecting the status of bits 1,
2, 4 and 6, which may already be on or off, we have to use the follow-
ing statement:

POKE 49152,PEEK(491562)0OR 169

Okay, so that's bits and bytes sorted out, and we can already cope
with hexadecimal and decimal, so let’s take a look at some of the more
commonly encountered commands in machine code.

Getting Started

To take the example of a simple BASIC program first of all, we'll add
two numbers together: the numbers 4 and 6. In BASIC, this might
be written as:

10 A=4
20 B=6
30 C=A+R
40 PRINTC

68

The machine code equivalent might go something like this:

CO00 A9 04 LDA #¥04

CO0Z A2 0& LDX #%06

CO04 BE 0O 04 STX %0400
CO07 6D 00 04 ADC %0400
CooA 8D 02 G4 STA %0402
CoOoD &0 RTS

What does all this mean? Line by line, we are:
Loading the accumulator with the hexadecimal number 4.
Loading the X register with the hexadecimal number 6.

Storing the X register at memory location 0400 (hexadecimal), or 1024
{decimal).

Adding to the accumulator {which contains the value 6) the contents
of memory location 0400 (which now contains 4, because we've just
put it there).

Storing the new value in the accumulator (4 4+ 6 = 10) at memory loca-
tion 0402 (hexadecimal) or 1026 (decimal}.

Returning from this subroutine.

Well, that makes a bit more sense, but probably not much. What is
the accumulator, this mysterious X register that has cropped up from
nowhere, why should storing something in a memory location be the
same as printing the result of adding 4 and 6?

The accumulator is the heart of the 6510, the processor which looks
after the Commodore 64, and it is the accumulator that does most
of the work in all machine code programs. In itself, it is nothing more
exciting than an 8 bit storage area, and as such it can store any num-
ber up to 255, as we've seen. But why put a four into it?

To revert back to a BASIC way of thinking for a while, we're all used
to assigning values to variables in BASIC. A=4, B=6and so on. In
machine code there is no such thing as a variable in this sense. What
we have to do is to use the accumulator, the X register and the Y
register to store and retrieve numbers. These are the only three things
that are capable of storing and retrieving numbers, and all three come
into extensive use in most machine code programs.

69

Thus, the result of putting a 4 into the accumulator can be thought
of as being reasonably equivalent to assigning the value of 4 to a vari-
able. Similarly, putting a 6 into the X register {another 8 bit storage
area) is similar to assigning the value of 6 to another variable. Finally,
if we'd wanted to, we could have assigned a value to the Y register
(our third and final 8 bit storage area), which would again have been
similar to giving a BASIC variable a value.

With only three ‘variables’ to play with, you might well imagine that
life can get pretty hairy at times, and you are so, so right. Fortunately,
since machine code programs operate at amazingly fast speeds, this
apparent limitation doesn’t reaily worry us, as long as we remember
where everything is stored.

Storing values in memory

To backtrack to the little machine code program given earlier, you'll
see that we stored the value in the X register at a certain memory lo-
cation. In machine code you put values into registers and store them
all over the place (remembering of course where you've put them),
retrieving them when the need arises. On the 64 memory location 0400
happens to be on the screen, and storing the content of the X register
at location 0400 is equivalent to POKEing a number (whatever hap-
pens to be in the X register} into location 0400 in hexadecimal, or 1024
in decimal. This, of course, is the start of screen memory, since the
screen is just another set of memory locations like everything else.

As we're dealing with the 64, life is never as easy as we’d like it to
be. Just as in BASIC POKE1024,6 doesn’t achieve very much, neither
does storing the X register at location 0400. This is because we also
need to put some colour there so we can see what's happening. In
BASIC, you might POKE 55296,0 to get a black character appearing
at the top of the screen (a black letter D if we've got a four there). -
In machine code, we'd have to:

CooDh AZ O1 LDX ##01
COOF B8E 00 DB STX #DB00O
co12 B8BE OZ D8 STX #D802
C015 &0 RTS

In other words, load the X register with a 1, and store it at locations
D800 and D802, the hexadecimal equivalents of colour memory loca-
tions 55296 and 55928. You'll note our RTS has been moved down
a bit to accomodate these new instructions. Without having a RTS

70

at the end of a routine, unlike BASIC which grinds to a halt when there
are no more statements to execute, machine code merrily trundles on
through memory until it finds something to do: and that something
may not be very pleasant for the machine. You won't damage the com-
puter, but you may well cause it to crash, losing the program that
you’ve so lovingly typed in.

So loading a register (or the accumulator) is the equivalent of defin-
ing a variable, and storing that register somewhere in memory is the
equivalent of POKEing a variable into memory.

Incidentally, to run that little program given earlier you can type the
command SYS 49152, which transfers program execution to location
49152, and only returns to BASIC Ready mode when it encounters
an RTS (or something that causes the machine to throw a wobbler.
A technical term, that one).

Some formal definitions

We'll give some formal definitions of the commands used so far:

STA

STore the contents of the Accumulator at the memory location
specified.

LDA

LoaD the Accumulator with the numeric value specified.

LDX

LoaD the X register with the numeric value specified.

STX

STore the contents of the X register at the memory location specified.

71

ADC

ADd to the accumulator with Carry the contents of the specified
memory location.

Don’t worry about the ‘with Carry’ part. We'll be hearing a lot more
about that later.

All the definitions given above are basic ones, as most of those com-
mands have variations on the way that they’ve been used so far. That
is, going back to our “foreign language’ analogy given earlier, we've
taught you one tense of a verb, but there are others that we haven’t
looked at yet. We'll take care of those variations as and when we get
to them.

More simple programs

To accustom you to entering simple machine code brograms, and help
you think in machine code rather than in BASIC, here are a couple
of simple programs.

One popuiar program places a heart (or diamond, or whatever) on the
screen. Not very exciting perhaps, but it is something. What you're
not usually told is why the program works. Why shouid | puta 65 into
the accumulator? Read on...

Co00 A9 41 LDA #%41

Co02 8D 00 04 STA 0400
Co0T A2 00 LDX #$00

CO07 8E 00 DB STX $D800
CO0A &0 RTS

Here we're putting the value 65 into the accumulator, Why? If you
look at the manual that accompanies the 64, and turn to page 133,
you’'ll see a set of screen display codes. The code for a heart is 65,
so if, in BASIC, you typed:

POKE 1024,65

A heart would appear in the top left hand corner of the screen (if you
could see it of course). That POKE command is the equivalent of the
first 5 bytes of that little machine code program above. Load the ac-
cumulator with the code for a heart, and store it at memory location
0400 hexadecimal, or 1024 decimal.

72

Now, what about the next part? Loading the X register with a 0 (we
might just as easily have loaded the accumulator with a 0 instead),
and storing it at location DBOO, is the equivalent of:

POKE 55296,0
which turns our little heart into a black heart,.

Finally, we return from the subroutine and end up in BASIC Ready
mode again.

An example like this doesn’t really show any great advantage over
BASIC, so we'll print out 5 rows of the things (200 hearts in all) by
introducing a few new machine code statements. But first, a possible
BASIC equivalent.

10 FORI=0TO199
20 FOKE1024+1,65
30 POKESS2946+1,0
40 NEXTI

This will put 200 little black hearts at the top of the screen. In machine
code, this might be written as:

COOQO AZ C8 LDX #+C8
CO02 A9 41 LDA #F41

COo04 9D FF OZ STA ($0G3FF) X
CO07 A% OO0 LDA #£00

COo09? 9D FF D7 STA (¥D7FF) ,X
CoOoC CA DEX

CoOD DO F3 BNE 02 CO
COOF &0 &0

There are a few new commands here. Before considering them in de-
tail, we'll explain what the program is doing in plain English.

First of all, put a value of C8 hexadecimal, or 200 decimal, into the
X register.

Put a value of 41 hexadecimal, or 65 decimal, into the accumulator.
Store it at memory location 03FF offset with the X register. In other
words (working in decimal for a while), the first time around the loop

the X register contains 200, so we're going to store the contents of
the accumulator at location 1023 offset with 200, or 1223.

73

Put a value of zero into the accumulator.
Store it at memory location D7FF offset with the X register.

Decrease the content of the X register by 1. That is, the first time
around decrease it to 199, then 198, and so on.

If the result of doing that isn’t equal to zero (i.e. the X register doesn’t
contain a zero), then branch back to location C002 and load the ac-
cumulator with a 41, or decimal 65 again and repeat as before.

We finally get to when the X register does contain a zero and pro-
gram execution comes to a halt. So, plenty of new commands, and
if you run this program with a SYS 49152, you’'ll be amazed at the
difference between the BASIC version and this machine code one.
You can see BASIC performing, but this just appears to happen in-
stantaneously.

One final point may be puzzling you. Why are numbers seemingly
reversed when entered into the disassembler? For example, if you look
at the line starting at memory location C004, why do we have FF 03
in one part, and 03FF in the mnemonic part? As you know, a number
greater than 255 cannot be stored in one single byte, and so when
we're talking about numbers as large as 03FF hexadecimal, or 1023
decimal, this number has to be spread over two bytes.

Later on we'll be talking about something called the Stack, a place
for storing useful information. The Stack, like seemingly everything
else in the computer world, stores numbers on a ‘last-in, first out’ ba-
sis. That is, the number it was last told to remember is the first num-
ber that it will retrieve. Like a stack of plates, the last one tc be put
on top of the pile is the first one to be taken off it. So the first number
the computer sees when it’s looking at two bytes storing a large num-
ber is the last one that was put in there: in this example, the 03. Then
it sees the next one, the FF, and remembers the number as 03FF.

New commands explained

What we’'ve seen in that last program are the commands BNE DEX
and STA offset with X. In order then:

74

BNE

Branch if the result of the previous instruction does not yield a value
of zero. In other words, is Not Equal to zero.

DEX

DEcrement the content of the X register by one.

STA offset

STore the content of the Accumulator at a specified memory loca-
tion, offset with the contents of the X (or Y) register.

We're already beginning to see some variations on the earlier com-
mand theme that we gave you (STA offset is a very different animal
to STA), and there’ll be plenty more to come.

For a little bit of light (light?) diversion, try comparing the following
listing with our original MOVING AROUND one. Type in the differ-
ences (there’s a number hidden away in there, including a new rou-
tine to fire the missile when the RETURN key is pressed), and run the
program with a SYS 49152 command.

Don’t forget to load your sprite data in first, and remember to save
this new version of the program before you run it. One mistake could
cost you a lot of time and trouble.

B#
PC SR AC XR YR SP
-37FCS 33 Q0 AD 0O F&

Co00 A% OD LDA ##0D
Co02 €D F8 07 STA #$07F8
CO0S A? 03 LDA #$03
€007 8D 1S DO STA $DO1IS
CO0A A% OE LDA #30E

CooC 80 F9 07 STA $07F9
COOF 20 00 C3 JSR $C300
Coi2 A% 00 LDA #$00
Co14 8D 17 DO STA D017
CoO17 8D 1D DO STA $DOID

COl1A A2 0O LDX #£00
CoiC 8E 10 DO 8TX #DO10
COiF A0 35 LDY #$35

75

coz21
co24
Co2é
coz8
cozA
co2C
CO2E
Co30
Co32
Co34
Co36
coz8
CO3B
CO3E
Coai
Coaz2
Co43
Coa4
Co4as
Co4b6
co47
Co49
CO4B
CO4E
CO4F
cos2
CO55
Co56
C057
cos8
COSA
CosC
COSF
Cob2
Cos&4
Cosb
cos8
CosB
CO&E
Co71
Co73
Co75
co78
Co79
co7C
CO7F
cos1
coas
co8s
coas
cogA

76

00

21

00
(o]e]

co

co

co

C1
DO

co
Do

co

Ci
Do

DO

LDA
CMP
BEQ
CHP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEGR
JMP
JSR
JMP
?7??
rarars
7?7
rarard
777?
777
CPX
BNE
JMP
DEX
JSR
STX
NOP
NOP
NOP
CPX
BER
JMP
CPX
BEQ
LDX
LDA
STA
STX
JMP
cPX
BNE
JMP
INX
JSR
5TX
CrX
BNE
LDA
CHP
BNE
LDA

#00CS
#$04
$C047
#$12
$CO071
#$21
$COA0
#$24
$COB3
#$01
$CO3B
$Co21
$CoC?
$Co021

#$00
#$CO4E
$Co21

£C100
$D000

#3500
$COSF
$CO21
$D010
$COSC
#$FF

#$00

$D010
$D000
$C021
#SFF

$C078
$COZ1

#$C100
#D000
#$FF
$C075
#%00
$DO10
$CO075
#+$03

coscC
COBF
£o91
Co94
co97
co98
Co99
Co9A
CO9B
co9C
Co%D
CO9E
C09F
COAOD
CoAZ
CoA4
COA7
CoAs
COAB
COAE
COB1
coBz2
coB3
CoBS
coB7
COBA
COBB
COBE
coct
coca
Cocs
CoCé
coc7
coco
cocc
COCF
cop2
CODS
coD7
Cob?e
CODA
COoDD
COEO
COEZ
COES&
COE7
CoE8
E0E?
COEA
COEB
COEC

10

00
21

EO
03
21

00
01
21

Do

Do
co

co

cl

co

Co

ci
DO
co

DO
D2
Do
DO

Ci
DO
co
D2

STA
LDX
STX
JMP
afard
i afars
Fafars
iFarars
farars
fafars
277
77?7
?77?
CPY
BNE
JMP
DEY
JSR
STY
JMP
BRK
BRK
CPY
BNE
JIMP
INY
JSR
STY
JMF
farars
27
arars
LDA
STA
STY
STX
STY
crPyY
BEQ
DEY
JSR
STY
JMP
LDY
RTS
BRK
BRK
BRK
BRK
BRK
EBRK

#D0O10
#$01

$D00O
$CO21

#$35
$COA7
$C021

$C100
$D001
$Co21

#FEO
2COBA
$CO021

$C100
#D001
$Co21

#2307

£D028
#D201
$D0O02
$DOO03
#210

$COE3

$C100
£D003
$CODS
$D201

77

COED
COEE
COEF
COFO
COF1
COF2
COF3
COF4
COFS
COF &
COF?7
COoF8
COF@
COFA
COFB
COFC
COFD
COFE
COFF
C100
Cl03
Ci105
Cl06
cio8
Cl0B
Cl0E
ci111

c300
c302
C305
307
£30A
c30C
C30F
c311
c314
C316
C319
€31cC
C31E
c321
323
C326
c327

78

00
FF

FD
00
00
o1

c2

c3
cz2
D4

D4

D4

D4

D4

DO
Do

02

Cé

BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
ifarars
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BREK
8TX
LDX
DEX
BNE
JSR
LDX
STY
RTS

LDA
sSTA
LDA
8TA
LbDA
8TA
LDA
STA
L.DA
STA
STA
LDA
STA
LDA
9TA
RTS
BRK

$C200
#$FF

$C105
$C300
$C200
#$D401

#E0F
$D418
#£22
$D4035
#£86
$D406
#+81
D404
#£00
%#D020
$DO21
#£93
0277
#£01
F¥0600

Let’s take a look, using the commands we already know, along with
a couple of new ones, at how some of this program manages to work
in the way that it does.

MOVING AROUND revisited

Look at the listing from memory locations C000 to CO1F first of all.
Taking these in turn, this is what is happening.

Load the accumulator with the hexadecimal number 0D, or decimal
number 13.

Store that number in memory location 2040. This is equivalent to POKE
2040, 13, and tells the computer that the data for the first sprite is stored
in the 13th block of memory.

Load the accumulator with a 3, and store that in location D015 hex-
adecimal, or 53269 decimal. In other words, POKE53269,3: turn on
the first two sprites.

Load the accumulator with a 14, and store it in memory location 2041
{decimal 07F9). That is, POKE 2041,14: tell the computer that the data
for the second sprite is stored in the 14th block of memory.

JSR $C300 means Jump to the SubRoutine starting at memory loca-
tion C300. Essentially it acts like a GOSUB in BASIC, but we'll come
back to this one later.

Load the accumulator with a zero, and then store it at locations D017
and DO1D hexadecimal, or 53271 and 53277 decimal. Equivalent to
POKE 53271,0:POKEB3277,0. This turns off the horizontal and verti-
cal expansion for all sprites, so that we don't get any strange displays
appearing on the screen.

Load the X register with a zero and store it in location D010 hex-
adecimal, or 53264 decimal. Equivalent to POKE 53264,0: switch off
the location that determines whether the horizontal location of the
sprites is beyond location 255 or not.

Finally, load the Y register with 35 hexadecimal, or 53 decimal. This
will determine the start location on the vertical for our friend Fergus.

So to set everything up isn’t too complicated. The routine that con-
trols most of the game is found in locations C021 through to C040,

79

so we'll go through that before leaving this program and going back
to some of the earlier material we showed you: the border program
and the million count program.

Main program routine

The very first line loads the accumulator with the content of memory
location C5 hexadecimal, or 197 decimal. This, if you like, is the equiva-
lent of PEEKing at location 197 to see which key has been pressed.

Then we CoMPare the value in the accumulator with the hexadecimal
number 0A: 10 in decimal. This is the value returned if the ‘A’ key has
been pressed, and if the two values are equal (that in the accumulator
and the value 10} then we branch to memory location C047.

The program then checks in turn for the ‘D’ key, the up and down
movements, and finally to see whether a missile has been fired or not.

If none of these events have taken place, go back to location C021
again to wait until something does happen. Needless 1o say, on later
versions of this program we won't be just sitting around waiting for
the player to press something: the aliens will start having some ideas
of their own.

You're probably by now in a reasonable enough position to take a look
through the rest of the listing and try to figure out what it's all doing.
So far there’s been nothing complicated, but to clear up on the three
new commands we've met in the last couple of pages:

JSR

Jump to the SubRoutine at the specified memory location.

CMP

CoMPare the contents of the accumulator with a specified number.
We can also compare them with the contents of a specified memory
location, amongst other things.

80

BEQ

Branch if the result of the previous instruction is EQual to zero: similar
in operation to the BNE instruction met earlier. That one was, if you
remember, branch if the result of the previous instruction does not
give a value of zero.

How do we decide how far to branch? Obviously that will depend on
where you want program execution to continue, but you shouid note
that with all these branching commands there is a limit to how far we
can go, and that limit is either 127 memory locations further on in the
program or 128 memory locations further back in the program.

Sticking with decimal numbers for a while, if we could have a com-
mand such as:

BEQ 30

program execution would jump forward 30 bytes if the result of an
operation was zero.

If we had something like:
BEQ 210

program execution would jump back (266-210) 46 bytes if the result
of an operation was zero.

We'll now go back to those earlier programs to examine how they
worked, starting with the border one, so get the assembler in there,
load the border program {which you did save, didn’t you?), and let’s
take a proper look through the listing.

Out on the border

As you can see, this relies quite heavily on the STA offset feature.
This apparent inconvenience of having to type out endless lists of STA
instructions doesn’t really matter, since machine code whizzes along
at a fair old rate of knots. The equivalent performance in BASIC would
take an eternity ... well, almost.

Starting with the very first line of the program, you can see that we

load the accumulator with a value of 66 hexadecimal, or 102 decimal.
This determines not only what character is going to form our border,

81

but also what colour that character will be displayed in, since we use
the same value for both things.

Then, load the X register with a 27 hexadecimal, or 39 decimal {one
less than the screen width), and the Y register with a zero. Looking
back on the program | can't for the life of me remember why | did
that, but I’'m sure there must have been a reason at the time! It cer-
tainly doesn’t affect this program.

Then we store the value in the accumulator at memory location 0400
(the start of the screen) offset with the value in X. Since this is 27
hexadecimal to start with, that’s where the value 66 goes: at 0427.
The equivalent of POKE 1063,102. We similarly put the value of 66
into the colour memory for that screen location.

The next two lines do the same for the bottom row of the screen, be-
fore decrementing the X register and seeing if we've reached a value
of zero yet. If we haven’t, then trot back to location C006 and go
through the whole performance again, remembering that this time
around the X register will have the value 26 hexadecimal in it, and so
we now alter screen location 0426 and colour memory location DB26.

This continues until the X register finally has a zero in it, when we
colour in the top left corner of the screen, and the leftmost character
on the bottom line of the screen. This has to be done since, when
the the contents of the X register reached zero, we never went round
the loop again to store the accumulator at 0400 offset with zero, i.e.

Now for the complicated part. The X register is loaded with a value
of FO hexadecimal, or 240 decimal. This is the equivalent of six lines
of the screen (40 columns per line), and allows us to put four charac-
ters down the left hand side of the screen and four down the right,
remembering to put some colour thére as well of course.

Then we temporarily store the value held in the accumulator at memory
location C100: just somewhere to store the value where it won’t come
to any harm. We then transfer the contents of the X register to the
accumulator, because although we can perform mathematical opera-
tions on the accumulator, we can’t on the X register, and we want
to do a bit of subtraction. The SEC command simply tells the com-
puter that there's a bit of subtraction coming up, and the next line
(SBC #$28) subtracts the hexadecimal value of 28, or the decimal value
of 40, from the value in the accumulator. The new value in the ac-
cumulator is now transferred back to the X register, and the old value

82

of the accumulator (102, from way back at the start of the program)
is picked up from where it was dropped off in memory location C100:
its temporary storage position.

The value in the X register is now compared with 0, and if the result
of this operation doesn’t give us a zero we branch back to memory
location C023 and start this whole performance again. Remember that
now the X register contains a value 40 less than it previously did, and
so our STA offset command affects one line further up the screen.

This continues until we’ve filled in all the edges of the screen, and the
program comes to a halt with the RTS command at location C062.

To go through the four new commands encountered in this program:

TXA

Transfer the contents of the X register to the contents of the Accumu-
lator, leaving the contents of the X register unaffected.

SEC

SEt the Carry flag. In other words, tell the computer that there’s some
mathematics coming up which involves subtraction. All the flags will
be covered in the next chapter, so don’t worry about them just yet.

SBC

SuBtract from the accumulator with Carry the specified number, or
we can also subtract from the accumulator the value stored in a speci-
fied memory location. Again, this mysterious word Carry will be ex-
plained in the next chapter.

TAX

Transfer the contents of the Accumulator to the X register, leaving
the contents of the accumulator unaffected.

Well, that’s one reasonably complicated program explained in great

detail, so we might as well get the other one out of the way now, and
go step by step through the Million Count machine code program.

83

Again, it'll be a great help if you can get this one up on the screen
and follow it through as we explain what's happening.

If | had a million

Again, we'll go through this one instruction at a time, so that you can
get a clear understanding of what is happening. To start, the first two
instructions are reasonably straightforward: load the X register with
the value of 5, and the accumulator with a value of 30 hexadecimal,
or 48 decimal. If you turn to the manual supplied with the 64, and find
page 133 again, you'll find that decimal 48 is the value associated with
the numeric figure 0.

Then we store our accumulator value (the figure 0) at memory loca-
tion 0400 offset with the value of the X register. Decrement the X
register, and check to see that it is either positive or zero. If it is, go
back to memory location C004 and store the accumulator at 0400 off-
set with the new value of X. This continues until X becomes negative
and we then have 6 zeroes up on the screen. The program has begun.

The X register is re-loaded with 5 again, and the accumulator in the
next line uses the LDA offset command. Analogous to the STA off-
set, only this time we're receiving a value, not placing one. CLC stands
for CLear the Carry flag, and tells the computer that there’s going to
be some addition going on in the very near future.

We then add 1 to the value stored in the accumulator, and compare
that with 3A hexadecimal. This is one way of checking to see if the
accumulator is displaying the code for the number 9 (hexadecimal 39)
or has gone over that limit. This is checked for in the next line, be-
cause if the accumulator does contain 3A program execution continues
at memory location C01C. If it doesn't, then we store this updated
value on the screen and JuMP back to memory location CO0A.

Now, if the accumulator contains a value greater than nine, we need
to switch this back to zero, and update and check the next digit on
the left. LDA #$30 at location CO1C puts the numeric code for zero
into the accumulator, and stores it on the screen. The value in the
X register is then decreased by one, and if the result of doing this is
negative {Branch on PLus checks for a number being either positive
or equal to zero: all will be revealed in the section on flags in the next
chapter) then we've reached a million and the program ends.

If, however, the X register still contains a positive number or zero we

84

branch to memory location C025 and carry on. This loads the accumu-
lator with the content of memory location 0400 offset with X, but
remember we have now decremented X and so are looking at the
character to the left of the one that we’ve just set to zero.

Another CLC command heraids a further bit of addition coming up,
and one is added to the content of the accumulator. Then program
execution jumps to location C012 to start the whole series of checks
off all over again.

As with the Border program, we’ll.give you some formal definitions
of the new instructions encountered in this program.

BPL

Branch if the result of an operation is either positive or zero. As long
as it isn’t negative, that's fine by us. It actually stands for Branch on
PLus: for once, a confusing mnemonic.

CLC

ClLear the Carry flag. In other words, prepare for some addition.

ADC

ADd with Carry the contents of the accumulator to the number speci-
fied. This can also be used to add the contents of the accumulator
to the contents of a specified memory location.

JMP

JuMP to a specified memory location. Equivalent to GOTO in BASIC
really, and it's as good an idea to try to avoid it in machine code as
itis in BASIC. This is because we will often want to change a couple
of bytes of a program, which will involve juggling a few things around.
If the location that we're jumping t0 happens to move, the machine
code program will not change where we’ve specified to jump to, and
program execution will undoubtedly end up in no-man’s land.

85

LDA offset

LoaD the Accumulator with the content of a specified memory loca-
tion, offset with the value of the X register, or Y register for that matter.

In the next chapter, we’'ll move on to various flags and processor ar-
chitecture, but for now here’s the latest update to our Fergus pro-
gram, in which we’ve added some better sound, and also managed
to confine the little blighter to the contents of the visible screen. The
annoying occasional jump when moving left has also been cured in
this one.

See if you can manage to figure out what’s happening. You should
be getting used to all this by now!

B
PC SR AC XR YR 8P
-39766 33 00 4E 00 Fé&

COo00 a9 0D LDA ##0D

Co02 8D F8 07 8TA $07F8
CO05 A9 O3 LDA #$03
COo07 8D 15 DO ST: :DO1S
COOA AR OE LD $0E
€ooC 8D F9 07 8TA $07F9
COOF 20 00 C3 JSR $C300
€012 A% 00 LDA #$00

COi4 8D 17 DO STA #D017
€017 8D 1D DO STA $DO1D

CoiA A% 00 LDA #£C0

€o1C 8b 10 Do STA #DO10O
CO1iF EA NOP

£020 EA NOP

CO21 AD C5 00 L.LDA #00CS
C024 C? OA CMP #$0A

C026 FO 1IF BEGQ #C047
o028 C? 12 CHMP #$12

€02A FO 45 BE@ $CO071
€oz2C C9 21 CMP #$21

CO2E FO 70 BE@ $COAO
CoZ0 C% 24 CHMP #&24

CO32 FO 7F BEQ $COB3
Co34 C? 3C CHMP #$3C

CO346 FO 03 BEQ $CO3B
co38 4C 21 CO JMP $CO021
CO3B 4C C7 Cco JMP $COC7

CO3E 4C 21 CoO JMP #CO021
86

Co4a1
co4z2
Co4a3z
Coasa
Co45
Co46
Cco47
co49
coac
CO4E
Co50
Co52
COS3
COSs6
Co59
CosC
COSE
CO0&0
Co6Z
CO&5
CosB
CO6A
Coéh
CO70
Co71
CO73
Co75
co78
co79
co7c
CO7F
cosil
cog4
coss
cosas
co8aA
€o8C
CO8F
co91
co94
Co97
Coe9
CO%9B
Co%C
CO9F
COAOD
COAZ
cCons
COA7
coAs
COAB

32
03
21

00
01

DO

Ci
DO
co
co
DO

DO
co

co

Ct
DO

DO

DO

DO
co

co

co

c1
DO

Kafars
Fafars
7?7
77?7
arars
???
LDA
CHMpP
BNE
CPX
BE®
DEX
JSR
8TX
JMP
CPX
BEG
JMP
LDA
STA
LDX
STX
JMP
BRK
cPX
BNE
JMP
INX
JSR
8TX
LDA
CcMP
BNE
CrPX
BNE
LDA
sSTA

LDX

STX
JMP
CPX
BNE
DEX
JMP
?7?
CPY
BNE
JMP
DEY
JSR
STY

#+00
$D0O10
$CO5C
##¥18
$CO05S9

$C100
$£D000
$C021
#£00

$CO063
$C052
#£00

¥D010
#$FF

$D0O00
$Co21

#EFF
$C078
$C021

$C100
$D0O00
#$00
$DO10
$C097
#$FF
$CO7S
#$03
$D010
#3501
$D000
$C021
#$40
$CO75S

$C021
#£32

$COoA7
¥C021

$C100
$D0OO01

87

COAE
CoB1
coB2
CoB3
COBS
coB7
COBA
COBB
COBE
coCcl1
coc4
COoCS
CoCcé
cocv
Coc?
CcocC
COCE
CoOCF
cobz2
CoDs
cops
CoDB
CoDD
CODF
COEO
COE3
COEs&
COE®?
COEC
COEE
CoF1
LOF4
COFS
COF&
COF7
COF8
COF 9
CoFa
COFB
COFC
COFD
COFE
COFF
Ci00
C1l03
C105
Cioé
cios
C109
Cl0A
C1i0B

00
FF

FD

co

cCo

Ci
DO
Co

DO

D4
Ccz2
DO
DO

01 D4

JMP
BRK
BRK
CPY
BNE
JMP
INY
JSR
sTY
JMP
i arars
arars
Earars
LDA
STA
LDA
NOP
STA
STY
STX
STY
Cpry
BEQ
DEY
JSR
STY
JMP
LLDY
LDA
STA
JMP
BRK
BRK
irarars
BRK
BRE
BRK
BRK
BRK
BRK
BRK
BRK
BREK
STX
LDX
DEX
BNE
NOP
NOP
NDOP
8TY

$Co21

#$ES
$COBA
$Co21

$C100
¥DO0O1
$CO021

#%07
$D028
#$21

*D404
$C202
$D002
¥D0O03
#£10

$COE9

$C100
*DOO3
$CODB
$¥C202
#+81

¥D404
$C021

¥C200
#$FF

$C105

$D401

C10E
ClOF
Cilio
Ciii
Ciig
C115
Cl116
Ci117
ciig
Ciio
C1iA
CiiB
ciic
CiiD
CliEe
CliF
C120
Cci121
ci122
C123
Ci24
C125
Cizé6
C127

C300
C302
C305
C307
C30a
C30C
C30F
C311
C314
C316
C319
€310
C31E
C321
c323
C326
c327

OF
18
22
oS
86
06
81

00
20
21
i8

32
o1

D4

D4

D4

D4

Do
DO

DO

DO

NOP
NOP
NOP
LDX
NOP
NOP
NOP
RTS
?77?
?7?°?
77
?7?7?
arars
27?7
???
ifarars
BRK
BRK
BRK
BRK
BRK
BRK
BRK
ERK

LDA
STA
LDA
sSTA
LDA
STA
LDA
STA
LDA
8STA
sTA
LDX
STX
LDY
STY
RTS
BRK

$C200

#$0F
D418
#$£22
#D40S
#$86
$¥D40s6
#$81
$D404
#£00
$DO20
#DO21
#£18
#DO0OO
$32
$DOO1

5
Machine Code: Flags and
Registers and Other Wonders

Introduction

We mentioned in the last chapter such things as STA offset, an alter-
native version of the STA command, instructions such as ADC, ADd
with Carry, setting and clearing the carry flag, and offering dark hints
about registers such as the X and Y register. Before we encounter
the horrors of double precision arithmetic and using built-in subrou-
tines in the 64's memory map in later chapters, it's about time to get
formal again and explain what all these things mean.

To start, we'll take a look at the way the 6510 microprocessor really
executes a program.

How the 6510 executes a program

Rather like a program written in BASIC, the 6510 operates quite sim-
ply by fetching an instruction from memory, acting on and executing
that instruction, and then going to fetch another one. But how does
it know which instruction is the next one? A special register is set aside
to control all this, and this register is known as the program counter.
Itis this register that informs the 6510 which instruction it has to exe-
cute next.

Fortunately for us, this program counter is automaticaily incremented
after every instruction, and as a programmer you don’t have to worry
about updating it yourself. This program counter register is actually
two bytes stuck together (rather than the one byte of the accumula-
tor, the X register, and the Y register), and as such it comprises 16
bits. This enables it to look at any location within the 64K of memory
that the Commodore 64 contains.

90

You may remember our earlier dissection of a byte, which looked like
this:

Bit number 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

Well, the program counter, being two bytes long, looks something
like this:

Bit no. 15 14 13 12 1 10 8 8 7 65 43 2
68 4

0
Value 32768 16384 8192 4096 2048 1024 512 256 128 64 32 1 1

1
2

Adding all those values up gives us a grand total of 655635, which is
the largest number that the program counter can accomodate. Since
64K is the equivalent of (64 times 1024) bytes, or 65536 bytes, the pro-
gram counter can readily access any byte within those 65536 (0 to 65535
being 65536 numbers).

As you’'ve seen from the listings given earlier, machine code instruc-
tions can consist of one, two or three bytes. The first one is always
the machine code equivalent of the operation code (known for brevi-
ty as the op-code), as a glance at the table of machine code instruc-
tions at the back of the book will reveal. This byte is directed off to
the instruction register, to find out what it means, and then routed
to something known as the instruction decode logic. This sends out
appropriate signals to all the other elements of the microprocessor,
warning them all that something is about to happen.

The second byte, and third if appropriate, are then pushed off into
the data bus buffer, and from there sent either tc the arithmetic logic
unit (known as the ALU) if they merely contain data, or to our old
friend the program counter if they contain the address of a memory
location.

Now aren’t you glad that all this sort of stuff is handied automatically,
and you don’t have to worry about it?

More registers

We've already had extensive experience of looking at the X and Y
registers, and the accumulator. Since the accumulator is the only
register on which arithmetical and logical operations can be performed,
it is the most powerful register within the 6510. It is also the only one
on which logical operations (such as AND and OR: they’re coming

91

up in chapter six) can be carried out. The program counter is another
register that we've discussed.

But there are other registers, and the first one that we'll come to is
known as the Processor Status Register.

Processor Status Register

This is, as usual, an 8 bit register, although we can in fact only get
useful information from seven of these bits. In diagrammatic form,
the register looks like this:

Bit

7 6 3 2
Flag N V I

4 10

B D zZ C

Flags are something that we encountered in chapter 4, but never ex-
plained properly. The status of these flags is tested by a number of
machine code instructions, and some of them we’ve already met: BNE,
BPL, SEC and so on. We'll go through each of these flags in turn,
starting with one that we've already met.

The Carry flag (C)
This is the one handled by byte zero of the status register.

It really comes into play when we want to deal with numbers that are
greater than 255. As we’ve already seen, 255 is the largest number
that can be stored in any one byte and if, as with the program coun-
ter, we want to handle numbers that are larger than that, we have
to use two bytes that are next to each other.

To link two bytes together there has to be something that joins the
first one to the second, and this is the purpose of the carry flag. Think
of it as a number carrying over from one byte to the next, if you like.
Rather like the way you did addition at primary school: if a number
is bigger than 10, say 18, then you put the 8 down and carry 1.

There are four important instructions for using and acting on the carry
flag, and these are:

BCC: Branch on Carry Clear.

This instructs the program to branch off somewhere else if the carry

92

flag is clear, i.e. itisn't set, and the value stored in it is currently zero.
To make sure that this doesn’t happen accidentally, but only when
we want it to, the next instruction clears the carry flag before we per-
form any mathematical calculations.

CLC: ClLear the Carry flag.

This sets the carry flag to zero, and thus ensures that nothing untoward
happens to our programs.

BCS: Branch on Carry Set.

The opposite of BCC. If the carry flag is not clear, i.e. it has been set
and the value currently stored in it is a one, then branch to whatever
part of the program we wish to go to. Again, there is an analogous
command to CLC to make sure that this doesn't happen accidentally,
although this is usually only used when we want to perform some sub-
traction.

SEC: SEt the Carry flag.
This sets the carry flag to one, i.e. it is no longer clear.

To illustrate this, here is a short program:

.. CODO 18 cLC

.. COD1 A% o1 LDA #£01
.. COOZ &9 01 ADC #%£01
., CO0S RO O3 BCS 4C00A

-- COO7 4C 03 CO JMF %CO03
.2 COOA BD 00 04 STA $0400
.4 COOD BD OO DB STA $DBOO
«» CO10 &0 RTS

This first of all clears the carry flag, then loads the accumulator with
the number one. The next instruction adds one to the value currently
in the accumulator and then checks to see if a carry has been set. That
is, has the number in the accumulator exceeded 255 and flipped around
to 0 again? If it has, we go off to CO0A and perform the instructions
there, but if it hasn’t we go back to C003 and add another one to the
accumulator.

The instructions STA $0400 and STA $D800 then store the content

of the accumulator {a zero now, since it's flipped over from 255 to
zero as the carry flag was set) in the top left hand corner of the screen.

93

The result is that an ‘@’ sign appears.

The three other flags in the status register that are affected by numer-
ical operations are the zero flag, the overflow flag, and the negative flag:

The Zero flag (Z)

This is the second bit of the status register, and it is set if the result
of a mathematical operation is zero. It is this flag that is being looked
at in the BNE and BEQ commands we covered earlier. If the result
of an operation is equal to zero, then the zero flag is set and a BEQ
command, seeing that the flag is set, would then send program exe-
cution off somewhere else.

The Overfiow flag (V)

This is the seventh bit of the status register, and is set when two posi-
tive or negative numbers are added together, and the result exceeds
either + $7F or -$80. Hexadecimal numbers, to avoid writing the word
out thousands of times, are usually prefixed with a dollar sign, as in
the above example. This convention we will use throughout the rest
of the book.

The Negative flag (N)

The 8th bit of the status register, this is set when two signed num-
bers, if added together, give a negative result. If they don't, it isn't set.

The three flags that we haven't looked at yet are the B, D and | flags,
or respectively the BRK command, Decimal mode, and IRQ disable
flags. Briefly, the first one indicates whether an interrupt request to
the 6510 was caused by a ‘break’ instruction (op-code 00) or by some
externally generated interrupt, the second one determines whether the
ALU will operate in binary mode or decimal mode, and the final one
shuts out all interrupts to the 6510, should you decide not to let any-
thing interrupt you for a while.

From flags and registers, we'll move on to another important concept,
which you must grasp before you can start to use machine code at
all seriously. This is concerned with what are termed modes of ad-
dressing. We said earlier that many of the commands that we've used
(LDA, STX and so on) have variations on a main theme, and these

94

variations are governed by which addressing mode we are currently
operating in.

Modes of addressing

In all, there are some thirteen different modes of addressing, and these
can be summarised as:

MODE OPERAND FORMAT
Immediate #aa
Absolute aaaa

Zero Page aa

Implied

Indirect absolute (aaaa)
Absolute indexed,X aaaa,X
Absolute indexed,Y aaaa,Y
Zero page in-

dexed, X aa, X

Zero page in-

dexed,Y aa,Y
Indexed indirect {aa,X)
indirect indexed (aa),Y
Relative aa or aaaa
Accumulator A

In the table, the letter ‘a’ represents a hexadecimal digit, so aaaa is
a four digit hexadecimal number, such as 4F2C. X and Y refer to the
X and Y registers.

We'll give a brief rundown on each of these modes over the next few
pages, but since the understanding of some of them (in particular in-
dexed indirect and indirect indexed) is really beyond the preliminary
stages that we’ve reached so far, we'll be coming back to the more
complicated ones later.

Immediate Addressing

This form of addressing allows you to specify a single byte constant
as the operand (i.e. the thing to be operated with). Thus any number
between 0 and 2565 can act as the operand, and it has to be prefixed
with a hash sign. Thus the instruction:

95

LDX #$5B

loads the hexadecimal number $5B (or decimal 92} into the X register.
Instructions using immediate addressing are always 2 bytes long, and
the second byte is always the operand.

Absolute Addressing

This allows us to address any one of the 656536 memory locations in
the 6510, since, as we've seen, two bytes put together allow us to
look at such large numbers. The table above shows us that absolute
addressing uses two consecutive bytes. Since the first byte in a
machine code instruction is always the op-code, it follows then that
an instruction using absolute addressing will always take up three bytes
of memory, with the second byte being the lower part of the operand
address and the third byte being the higher part. For instance:

AD 00 04 LDA %0400

will take the content of memory location $0400 and store it in the ac-
cumulator.

Zero Page Addressing

This is an alternative form of absolute addressing, in which the oper-
and now consists of a single byte. This means that we can only cover
the first 256 bytes of memory, and this is referred as page zero. Since
we're only using a single byte for the operand, it follows that zero page
addressing instructions will always consist of two bytes: the op-code
and the operand. For instance:

LDA $1B

will load the content of memory location $1B into the accumulator.

Apart from JSR and JMP, any command that can use absolute ad-
dressing can also use zero page addressing. What are the advantages
of using zero page? Well, since we're using two byte instructions in-
stead of three byte, we're taking up less memory, and this two byte
instruction takes one cycle less to process than the normal three byte.
Zero page Is also useful as a temporary storage area for data values,
since there is a reasonable amount of empty space in there.

96

However, be very careful when using zero page. Since it is faster to
do this, and also takes up less memory, the 6510 wants to use it as
much as you do, so watch out that your two interests don’t run into
conflict.

Implied Addressing

About half the instructions that the 6510 is capable of processing do
no more than clear registers, transfer data from one register to another,
increment or decrement registers, and so on. These commands need
no operand, since the 6510 receives enough information from the op-
code: the rest is implied, hence the name for this mode of addressing.

Some examples include DEX for decrementing the content of the X
register, TXA for transferring the content of the X register to the ac-
cumulator, and so on. All implied commands take up just one byte
of memory.

Indirect Absolute Addressing

There is only one instruction in the entire repertoire of the 65610 that
can use this mode of addressing, and that is the JMP instruction. Us-
ing this mode, the JMP command causes the program counter 1o be
loaded with a new address from which the 6510 is to fetch its next
instruction. When used in absolute mode, the JMP command simply
puts the destination address into the program counter, as in:

JMP $C021

This causes the memory location C021 to be stored in the program
counter, hence program execution will continue at that location.
However, when used in implied mode, something totally different hap-
pens. For instance, the command:

JMP ($01F0)
causes the program counter to be loaded with the low-order address
stored in location $01F0, and the high order address stored in location

$01F1. It's probably easier to see what's going on by way of an ilius-
tration, rather than talking about it:

97

Location Content

000 $6C
C001 $FO
C002 $01
01F0 $21
01F1 $CO

Thus what gets stored in the program counter is the content of memory
location $01F0 and $01F1. The program counter would now contain
the memory address $C021, and program execution would now con-
tinue at this point. Isn't all this a bit complicated, when you could prob-
ably use an ordinary JMP instead? Well, most of the time you would

use an ordinary JMP, but there are times when this sort of indirect
addressing is most useful.

For example, there are a lot of systems now available that allow several
keyboards to be connected up to one main terminal. That main termi-
nal then has to act according to which keyboard is currently being
used to access it. Using indirect addressing, we could then start act-
ing upon different parts of the program in the main terminal accord-
ing to which keyboard was currently in use, as the 6510 would change
the contents of some of its memory locations as different devices were
attached to it (or in this case, as different keyboards came into play).
Thus the indirect jump to those locations that change would cause
program execution to continue at the correct part of the program for
that keyboard.

Absolute Indexed Addressing

We've referred to this in the past as STA offset. To put it more for-
mally, the address of the operand is computed by taking the absolute
address implied in the instruction and adding the content of the X or
Y register to it, depending on which is being used. This sort of ad-
dressing makes for a three byte machine code instruction. For example:

LDA $C020,X

will load the accumulator with the content of memory location $C020
plus X. That is, if the X register contains a 5, then the accumulator

98

will be loaded with the content of memory location $C025. This sort
of addressing is useful in many ways, whether for accessing long lists
of data (we’ll have a look at this in the section on adding commands
to BASIC), providing some animation on the screen, and so on. it was
used effectively in the section on drawing the border, for example.

Zero Page Indexed Addressing

This is the two byte equivalent of absolute indexed addressing, and
since we only use one byte for the operand we are restricted to ac-
cessing the first 266 bytes of memory: zero page again. As with abso-
lute indexed, the operand is found by adding the content of the X or
Y register to the zero page address specified in the second byte of
the instruction. For example:

LDA $57,X

If the X register contains a 7, then the accumulator will be loaded with
the content of memory location $57 + $7, or $5E. As with other zero
page equivalents, this command takes up one less byte of memory
than its absolute equivalent, and it will usually run one cycle faster
per instruction as well.

However, a word of warning. Since we are only using one byte for
the operand, we are restricted to just those first 256 bytes. But what
about if the operand pius the X register exceeds 256? The answer is
that it just wraps around, so that the command:

LDA $FA X
would be okay as long as the X register didn’t contain anything great-
er than 5, but if it contained 6, then the effective address thus produced

($FA plus 69) would be one more than 255, so it would wrap around
to zero again, causing chaos in your programs.

Indexed Indirect Addressing

If you're a drinking man, now's the time to reach for the whisky, be-
cause this is going to get a mite hairy.

This addressing mode is a combination of two that we’ve already dis-

cussed: indexed addressing and indirect addressing. If you re-read
those sections now, you'll remember that indexed addressing required

99

us to add a value to the operand to get the effective address for our
data, and indirect addressing required us to go to the address of the
first of the two memory locations that contained the data, rather than
acting on the data itself.

By combining these two, we can use a two byte instruction to access
all 64K of memory in the 64. Swings and roundabouts of course, since
this command now takes 6 cycles to operate rather than the usual 3
or 4 of the ordinary zero-page indexed and absolute indexed.

This is how it works. The value in the X register is added to the zero
page operand specified in the instruction, to produce an indirect zero
page address. So far, fairly similar to our ordinary indexed addressing
mode. Then, and this is where the indirect part comes in, the effec-
tive memory address comes from the first byte of the indirect zero
page address (the low order byte) and the second byte of the indirect
zero page address (the high order byte). The content of this effective
address is then stored in the accumulator.

Let's take a look at an example:

LDA ($1B,X)

If the X register contains, say, $40, then the 6510 will compute an ad-
dress of $5B ($1B offset with $40). It then looks at location $56B to
get the low order address and $5C to get the high order address of
the effective memory address. If $5B contained $21 and $5C contained
$C0, then the effective memory address would be $C021. The con-
tent of $C021 would then be loaded into the accumulator.

It's best to play around with scraps of paper and little diagrams to figure
out this one!

Indirect Indexed Addressing

If you thought that one was bad...

This combines the same two addressing modes as Indexed Indirect,
but uses them in reverse order. For example:

LDA ($1B),Y

Say the Y register contained $40. The base address would be fetched
from location $1B (low order) and $1C (high order). So if $1B contained

100

$21, and $1C contained $CO0, then the base address would be $C021.
Our effective address is found by adding the content of the Y register
to that address, to give an effective address of $C061. The content
of that address is then stored in the accumulator.

Note that these last modes are the only real difference between the
X and the Y registers. You have to use the X register with indexed
indirect, and you have to use the Y register with indirect indexed.

We'll be coming back to both of these at a later date, since they aren‘t
the easiest of concepts to grasp at this stage in the game.
Relative Addressing

This is the mode used by all the branching instructions, some of which
we've already seen, such as BNE, BEQ and BPL. The address to trans-
fer program execution to {or, to put it another way, the value that is
to be stored in the program counter), depends on the operand after
the op-code.

To give an example:

BNE $05

will cause program execution to continue 5 bytes further on if the result
of the last operation was not equal to zero. The command:

BNE $F9
would cause program execution to branch backwards 6 bytes. As we
saw earlier on, we can only branch forward a maximum of 127 bytes,

and backwards a maximum of 128 bytes, since all of these branching
instructions have a single byte for their operand.

Accumulator Addressing

This is a collection of four instructions that affect the content of the
accumulator, and we’ll be looking at all of them later.

Right then, enough of theory, let's see how Fergus is getting on.

101

Scrolling along

Since we last looked at the listing, a number of important changes
and additions have been made to the program, including putting in
some left and right scrolling depending on which way Fergus is going
at the time. We've also, at last, brought the aliens into play and they
now majestically sweep down the screen and generally get in the way.

Your fire button is now the space bar, since this is easier to tap when
using the four movement keys than reaching over to find the RETURN
key and probably missing it.

B+
PC SR AC XR YR 8P
-34740 33 00 28 00 F&

CO00 A9 OD LDA ##£0D

€002 8D F8 07 STA #07F8
CO0S A2 03 LDA #x03
CO07 8D 15 DO STA #DO15
COOA A? OE LDA #%$0E
CooC 8D F9 Q7 STA $07F9
COOF 20 00 C3 JSR #C300
Cot2 A% 00 LDA ##£00
€014 8D 17 DO SThA D017
Cot7 8D 1D DO STA $DOID
CO1A A9 OO LDA ##00
coic 8b 10 DO STA $DO10
CO1F EA NOP

C020 EA NOP

C0Z1 4C 00 CS JMP $C500
Co24 AD CS 00 LDA £00CS

Co27 C9 OA CHMP #$0A
€029 FO 1C BER $C047
CO2B C? 12 CHMFP #£12
CO2D FO 42 BEQ $CO071
CO2F C? 2t CMP #£21
CO31 FO &D BERQ #CO0AO
CO33 C9 24 CHMP #£24
Co35 FOo 7C BERQ #COB3
Cco37 C9 3C CMFP #%3C
CO37 FO 09 BEG #C044
CO3B 20 00 C1 JSR #C100
CO3E 20 00 C1 JSR #C100
Co041 4C 21 CO JMP $C021

€044 4C C7 CO JMP $COC7

102

co47
co49
co4c
CO4E
Co50
C052
Co53
CoS56
Co59
CosC
COSE
CO&0
Cos63
CO65
Coss
CO&A
CO&D
Co70
Co71
Co73
CO75
coza
Co79
co7C
CO7F
cos1
cos4
cogs
coBs
coBA
cosc
Co8F
Co91
Co94
co97
Cco99
Cooe
co9C
CO9F
CoAo
COR2
COA4
COA7
coAB
COAB
CoOAE
COB1
coB2
COR3
COBS
CoB7

ES
03
21

bo

co

DO

DO
co

Co

c4
DO

Do

DO

DO
co

co

co

Ci
DO
Cco

Co

LDA
CMP
BNE
CPX
BE®
DEX
JMP
STX
JMP
CPX
BER
JMP
LDA
STA
LDX
STX
JMP
BRK
CPX
BNE
JMP
INX
JMP
8TX
LDA
CMP
BNE
CPX
BNE
LDA
sTA
LDX
8STX
JHMP
CPX
BNE
DEX
JMP
farars
CPY
BNE
JMP
DEY
JER
STY
JIMP
BRK
BRK
CPY
BNE
JMP

#+00
#DO10
$CO5C
#¥18
$CO53

$C416
$D0O0O0
$C021
#$00

$C063
$C052
#+£00

#DO10
#$FF

$DOQ0
$C021

#3FF
$C078
$C021

$C400
#¥D000
#$00
$DO10
$CO97
#£FF
$C073
#£07
¥D010
#$01
$D0O00
$C021
#$40
$CO75

$¥C021

#£32
$COA7
$C021

$C100
#D001
*C021

HFES
$COBA
$C021

103

Binary, as you know, is a system of representing numbers as a series
of Os or 1s, rather than using the digits 0 to 9 as we do. This is be-
cause computers can only understand two states {an electronic cir-
cuit can only be on or off, it can’t be anything in between), and the
binary notation foliows logically from that.

So, in binary, 27 becomes 00011011
128 becomes 10000000

Remembering the rules for AND and OR, 27 AND 128 now becomes
00000000 (at no point do we have two 1s together), and 27 OR 128
becomes 10011011 (if a 1 occurs in either number, the result is a 1).
In plain English then, 27 AND 128 equals 0, and 27 OR 128 equals 155.

One final example:

53 in binary equals 00000110101
1111 in binary equals 10001010111

21
1143

53 AND 1111 equals 00000010101
53 OR 1111 equals 10001110111

Other logical operators
These have been mentioned earlier, in statements like:
IF A>5

and so on.

Knowing how truth tables work, it now becomes a simple matter to
understand all these logical operators, and calculate the results that
they will give.

To sum up, the remaining operators are:

: equal to

: less than

: less than or equal to

. greater than

: greater than or equal to
: not equal to

AV V AAI
I

vV

121

We've already been through the routine from $C000 to $CO1E, as well
as the routine from $C021 to $C046, but it's wise to note that there
are a few changes from the listing that we last looked at. In the se-
cond block, room has had to be made to include a JMP $C500 com-
mand {which sets up the aliens and controls their movement), so
everything has been shoved down a little. This has meant changing
all the branch instructions, so watch out for them when it comes to
typing in the changes.

What we haven't looked at in any great detail is the routines for mov-
ing our hero around the screen, and for firing the missile at the on-
coming enemy. The missile doesn’t do anything yet, by the way, other
than travel serenely up the screen. That will have to wait till chapter 7.

Moving left

Let's take a look at the routine from $C047 to $C070: the one that
moves Fergus to the left. Don’t worry about the 00 BRK command
at location $C070: program execution never reaches it.

The first thing that this routine does is to load the accumulator with
a zero and compare it with memory location $D010. This location is
the most significant bit of the horizontal position of the sprite, and
determines whether the sprite is to the left of location 255 or the right.
If it's set to 1 we branch to location $CO5C to carry out some tests
over there, but if it's set to zero we carry on with location $CO4E.

This checks the content of the X register with $18, to see if he’s still
on the screen or not. If he is, we can decrease the content of the X
register by one in the next instruction, but if he's at the screen border
we won't decrease the X register at all, so that instruction is missed
out with a simple branch command.

Program execution then goes to the routine at location $C416, which
we'll come to in a moment, and then back to $C021 after storing the
content of the X register in location $D000: the X position of sprite
zero, our hero Fergus.

From $C05C to $C070 the most significant bit of the X position is set
to one, so all we're concerned about is whether or not we're at the
transition point to set it back to zero again. So this is what we check
for: does the X register contain a zero, because if it does we have to
set the most significant bit to zero, load the X register with 255 to move
Fergus over, store the X register in location $D000 and go back to the

105

As you can see, quite complex decision making can be achieved us-
ing these operators.

NOT is a peculiar one, and doesn’t seem to be used very much. Still,
just about every decision-making process you will require can be
achieved with AND and OR, as the following example should serve
to show.

10 IF A<10 DR B>3 AND A$F="Y" THEN 200

Here, the program will branch off to line 200 if A is less than 10 OR
B is greater than 5, but only if A$ is equal to "Y' as well. If all these
conditions are not met, the program just falis through to the next line.

What we're doing here is testing to see whether various statements
are true or false. Try the foliowing short example:

10 A=20
20 PRINT {(A>15)

When run, this program will print out the value -1, because the state-
ment A>15 is a true one: we've just defined A to be equal to 20.

So if something is true, the computer prints out a -1, and if it is false
it prints out a zero. For instance:

10 A=20
20 PRINT (A>23)

will result in O being printed, as the statement is patently not true.

All of this is based on what are called TRUTH TABLES, and the table
for AND works as follows:

Truth tables

A B C
0 0 0
0 -1 0
-1 0 0
-1 -1 -1

The table operates in the following way: if the first statement A is false

119

The Y position of the missile is then compared with $10, to see if it's
gone off the screen or not. If it has, then we branch to location $COEE
to do a bit of tidying up: retrieve the Y position of Fergus, change
the waveform for voice 1 back to a noise one, and go back to location
$C021 again.

If it hasn’t, then we decrease the Y register, store it in the memory
location that holds the Y co-ordinate of the missile sprite, and jump
to three subroutines. The first updates the aliens, the second is a de-
lay loop, and the third checks to see if anything has hit anything else.
We'll come to those later on.

Then the program loops back to $CODA to test for Y being equal to
$10 again.

The delay loop

This is the routine that slows everything down. Without this, you
wouldn’t be able to see what was happening. It occupies locations
$C100 to $C117, with a few gaps in between which we’ll fill up later.
The command EA NOP simply means do nothing for a couple of cy-
cles, which doesn’t slow the program down a great deal, but which
does give us space to add some routines later on.

First of all, the content of the X register is stored in a safe place before
loading it with $FF, or decimal 255. The next couple of instructions
"just decrease the content of the X register and compare it to zero.
A simple but effective delay loop.

When X is equal to zero, after a few NOPs (No OPeration) we store
the content of the Y register at location $D401, which is the location
that holds the high frequency for voice 1, pick up the original content
of the X register again, and finally return from the subroutine.

Start up routine

This is called once only at the start of the program, and sets all the
aprite positions up, as well as initialising the sound.

C300 A9 OF LDA #$0F
C302 8D 18 D4 STA %D418
C305 AT 22 LDA #£22

107

the screen. Altering this value alters how many lines will be scrolled).
Store the accumulator at location $57, the first spare byte in page zero.

The accumulator is then loaded with the value $04, and stored at lo-
cation $58, the second spare value. Loading the Y register with a zero
and loading the accumulator with the content of location $57 offset
with Y has the effect of putting a 04 in the accumulator the first time
around the loop, and this value is then stored in location $59. The pro-
gram then looks at every screen memory location in turn, and stores
whatever happens to be there in the location immediately to the left
of it. Remember the value $04 which we originally loaded into the ac-
cumulator at $CA06? $0400 happens to be the start of the screen
memory, and so what is happening here is that in the order low-byte
high-byte everything is successively moved one location to the left.

At location $CA23 $28 (or decimal 40) is added to the vaiue held in
the accumulator, which has the effect of stepping us down onto the
next screen line. At locations $CA2B to $CA2D we check to see if
all 24 lines on the screen have been covered. If they have, then return
from this routine, and if they haven’t, go back and move another line
along one character.

Conclusion

The game is slowly evolving into something, and you should by now
be quite at home looking at what are still relatively simple machine
code routines. In the early part of this chapter a lot of theory was co-
vered, and it's well worth reading through it a couple of times to try
to grasp what is going on.

The second part of this chapter took an extensive look through the
games listing. it isn"t finished yet, and in chapter 7 we’ll be taking a
look at the final version: at least, the final version that you'll be present-
ed with in this book. It's up to you to turn it into a fully fledged arcade
game with high score tables, opening credits, and so on. The rudi-
ments are here, but the final polish is up to you.

After the fun of working through a games listing though, it's back to
the blackboard once more, and a look at logical operators and the four
commands that we mentioned earlier in the section ‘Accumulator Ad-
dressing’.

117

The X and Y registers are then loaded with $A0 {or decimal 160}, and
these values are stored in the two locations that handle the X and Y
co-ordinate positions for sprite 0, thus indicating where our character
Fergus will appear at the start of the game. A zero is then put into
the accumulator, and stored at the six locations that control the verti-
cal position of the next six sprites (the enemy!). Finally, the accumu-
lator is loaded with one, and this value is stored in location $D027:
the machine code equivalent of typing in BASIC POKE 53287,1. This
indicates that the colour of our first sprite, Fergus, will be white.

This routine finishes with an RTS instruction, which sends program
execution back to wherever it came from. In this case, memory loca-
tion $C012.

Calling the scroll routine

This routine is called up whenever the character is moving to the left
or the right, in which case we also want to scroll the background right
or left to give the illusion that he's actually moving.

C400 BE 12 C4 STX $C412
C403 8C 13 C4 STY $C413
C406 20 00 CA JSR #CA0O
C409 AE 12 C4 LDX #C412
C40C AC 13 C4 LDY #C413

C40F 4C 7C CO JHMP $C07C
C412 7E ES FF ROR $FFES, X
Ca15 FF rarars

C416 BE 12 C4 STX $C412
C419 B8C 13 C4 3TY $C413
C41C 20 32 CA JSR $CA32
C41F AE 12 C4 LDX $C412

C422 AC 13 C4 LDY #$C413
C425 4C 56 CO JMP $CO054
c428 00 BRK

The routine itself doesn’t do very much. It just stores the current values
in the X and Y registers at a couple of safe memory locations that won’t
get altered by anything else, then jumps to the appropriate scroll

109

collided with. The AND #$02 is a check to see if the missile has col-
lided with something, and if it has then carry on at location $C694.
There is a slight error in the program at this point, since this should
really be a branch to location $C690: you can’t win them ali, and the
mistake is corrected later.

If nothing has collided with either the missile or Fergus, then jump
back to location $C646 and carry on from there.

At $C67D onwards, a check is carried out to see if it's a missile to hero
collision. If it is, then jump to $C68A and from there jump back to
$C646, but if it isn’t then we have to assume that Fergus has collided
with one of the enemy, so change his colour and exit from the pro-
gram with a BRK command.

Similarly, from $C690 (where program execution should have gone
to from location $C678) onwards we check for a missile to Fergus col-
lision again. Ifitis, then jump to $CB9E and from there jump to $C646
again. Otherwise, load the accumulator with $00 and store it at loca-
tion $D028 (which has the effect of changing the missile’s colour to
black) and exit from the program with a BRK command.

The scroll routines

Two of these, occupying locations $CAQ0 to $CA2E and $CA30 to
$CABE. The first one is used to scroll the background to the left, and
the second scrolls it to the right. Some interesting techniques are in-
volved in these two routines, although both of them are really quite
similar. We'll take the first one and go through that fairly exhaustive-
ly. By then you shouid be able to follow the second one: it uses much
the same logic.

CAOO A9 2B LDA #$28
CAQ2 AZ 18 LDX ##18
CAO4 85 57 STA $57
CAO6 A9 04 LDA #%£04
CAO8 85 S8 STA £58
CAOA AO 0O LDY #300
CAOC B1 57 LDA ($57).Y
CAQOE 85 59 STA %59
CAl10 C8 INY

CAll Bl 57 LDA ($57),Y
CAl13 88 DEY

CAl4 91 57 STA (£57),Y

115

To begin with, the accumulator is loaded with a value of $3F, or decimal
63. If all the sprites are active, this is the value that will be held in the
register to turn sprites on. if they’re not active, then something differ-
ent will be stored there and we’ll have to turn them all on.

The next couple of instructions store the X and Y registers in reasona-
bly safe locations, before doing the check to see how many sprites
are turned on {CMP $D015: a direct comparison between the value
stored in the accumulator, which is the value we've just put there,
and the value currently held in memory location $D015, the location
that turns various sprites off and on). If the required number are turned
on, then program execution branches off to location $C538 and con-
tinues from there.

Otherwise, we go through a lengthy set of instructions to turn all the
sprites on. This is done by going through a loop 5 times (LDY #$06
and stop when the value in the Y register reaches zero), telling the
computer that the data for the enemy sprites is held in the $FBth
memory location: equivalent to POKE 2042,241:POKE 2043,241 etc.
This is later altered in the final version of the program to step through
each enemy sprite in turn, to give the impression that there are a num-
ber of different enemies out there, just waiting to get you.

All the sprites are turned on, and then the accumulator is loaded with
a random value (LDA $00A2). This location is the one where the se-
conds part of the internal clock of the 64 is stored. Since this is being
updated all the time, the value held there will always be changing, and
therefore our sprites will not keep re-appearing at the same old loca-
tions at the top of the screen.

The program then stores whatever value happens to be in location
$00A2 in the register that looks after the horizontal co-ordinate posi-
tion of sprite 2, adds a number to it, stores that for sprite 3, and so
on. The accumulator is then loaded with $32 (or decimal 50), which
is stored in location $D005: the vertical co-ordinate position for sprite 2.

A check is made to see if we've covered all the sprites. If we haven't,
then loop back and do it all again, but if we havé then we recover
the values that were originally in the X and Y registers and jump off
to the subroutine at $C600 which updates the positions of all the ene-
my sprites, amongst other things.

Finally, we jump back to the routine which checks to see if any keys

have been pressed. Memory locations $C547 to $C556 can be ignored
for the time being, since they are only duplicates of earlier instructions:

1M1

Ca5&6 A% 00 LDA #%00
€658 8D 03 DO STA D003

C65B A0 10 LDY ##£10

C&6SD 60 RTS

C65E A% 04 LDA #$04

C660 CD 1E DO CMP $DO1E
Cé63 EA NOF

Chéh4 EA NOP

C&b6S EA NOF

Cobb6 EA NOP

Ceb7 30 03 BMI #$C&6C
C669 4C 46 Cb6 JMP $C646
C66C AD 1E DO LDA $DO1E
C66F 29 01 AND ##£01

C&71 DO OA BNE $C&7D
C673 AD 1E DO LDA $DO1E
C&76 29 02 AND #$02

C678 DO 1A BNE #C694
C67A 4C 46 Cb6 JMP $C646
C67D A% 03 LDA ##£03

C&7F CD 1E DO CMP $DO1E
c&682 FO 04 BER #$C&8A
C684 A% 04 LDA #£04

Cé86 8D 27 DO STA $DO27
Cé689 00 BRK

Cé6BA 4C 46 Co6 JMP $C646
C68D EA NOP

C&8E EA NOP

C&e8F EA . NOF

C690 A9 03 LDA #£03

C692 CD 1E DO CMP $DO1E
C&95 FO 07 BEQ #C69E
C697 EA NOP

C&98 A% 00 LLDA #%00

Ce9A4 8D 28 DO STA D028
C&9D 00 BRK

C&9E 4C 46 C6 JMP $C646
C6A1 FF earare

At the start of the routine, we store the current values held in the X
and Y registers in a couple of memory iocations that will not be al-
tered by anything else. These can later be retrieved from those memory
locations and program execution can continue withaut anything un-
toward happening.

Program execution then leaps off to the routine starting at memory

location $C640, which we’ll come to in a moment, before loading the
Y register with the content of memory location $D005: the current

113

C656 A9 00 LDA #$00

C6S8 8D 03 DO STA $DOO3
CoSB AO 10 LDY #%$10
Co6SD 60 RTS

Co6SE A9 04 LDA #$04
Cé&60 CD 1E DO CMP $DO1E
C663 EA NOP

Céh4 EA NOP

CobS EA NOF

Cobb EA NOP

Cee7 30 03 BMI $C6&C
Co6&9 4C 46 Cb IMP $C&46
Co66C AD 1E DO LDA $DOIE
Co6F 29 01 AND #$01
C671 DO OA BNE $C67D
C673 AD 1E DO LDA $DO1E
C676 29 02 AND #$02
C&678 DO 1A BNE $C694
Co67A AC 46 Cé JMP $C646
C67D A9 03 LDA #$03
C67F CD 1E DO CMP $DOLE
C&B82 FO 06 BER $C&8A
C&684 A9 04 LDA #$04
C686 8D 27 DO STA $D027
C689 00 BRK

C&8A 4C 46 Co JMP $Cb46
Ce8D EA NOP

C6BE EA NOP

Co68F EA . NOP

Co90 A9 03 LDA #$03
C692 CD iE DO CMP $DO1E
Co9S FO 07 BER $C6%E
C&97 EA NOP

C698 A% 00 LDA #$00
C&49A 8D 28 DO STA $D028
C69D 00 BRK

C69E 4C 46 Céb JMP $Cb646
Co6A1 FF 272

At the start of the routine, we store the current values held in the X
and Y registers in a couple of memory locations that will not be al-
tered by anything else. These can later be retrieved from those memory
locations and program execution can continue without anything un-
toward happening.

Program execution then leaps off to the routine starting at memory
location $C640, which we'll come to in 2 moment, before loading the
Y register with the content of memory location $D005: the current

113

To begin with, the accumulator is loaded with a value of $3F, or decimal
63. If all the sprites are active, this is the value that will be held in the
register to turn sprites on. If they’re not active, then something differ-
ent will be stored there and we'll have to turn them all on.

The next couple of instructions store the X and Y registers in reasona-
bly safe locations, before doing the check to see how many sprites
are turned on {CMP $D015: a direct comparison between the value
stored in the accumulator, which is the value we’ve just put there,
and the value currently held in memory location $D015, the location
that turns various sprites off and on). If the required number are turned
on, then program execution branches off to location $C538 and con-
tinues from there.

Otherwise, we go through a lengthy set of instructions to turn all the
sprites on. This is done by going through a loop 5 times (LDY # $06
and stop when the value in the Y register reaches zero), telling the
computer that the data for the enemy sprites is held in the $FBth
memory location: equivalent to POKE 2042,241:POKE 2043,241 etc.
This is later altered in the final version of the program to step through
each enemy sprite in turn, to give the impression that there are a num-
ber of different enemies out there, just waiting to get you.

All the sprites are turned on, and then the accumulator is loaded with
a random value (LDA $00A2). This location is the one where the se-
conds part of the internal clock of the 64 is stored. Since this is being
updated all the time, the value held there will always be changing, and
therefore our sprites will not keep re-appearing at the same old loca-
tions at the top of the screen.

The program then stores whatever value happens to be in location
$00AZ2 in the register that iooks after the horizontal co-ordinate posi-
tion of sprite 2, adds a number to it, stores that for sprite 3, and so
on. The accumulator is then loaded with $32 (or decimal 50), which
is stored in location $D005: the vertical co-ordinate position for sprite 2.

A check is made to see if we've covered all the sprites. If we haven't,
then loop back and do it all again, but if we havé then we recover
the values that were originally in the X and Y registers and jump off
to the subroutine at $C600 which updates the positions of all the ene-
my sprites, amongst other things.

Finally, we jump back to the routine which checks to see if any keys

have been pressed. Memory iocations $C547 to $C556 can be ignored
for the time being, since they are only duplicates of earlier instructions:

M

collided with. The AND #$02 is a check to see if the missile has col-
lided with something, and if it has then carry on at location $C694.
There is a slight error in the program at this point, since this should
really be a branch to location $C630: you can’t win them all, and the
mistake is corrected later,

If nothing has collided with either the missile or Fergus, then jump
back to location $C646 and carry on from there.

At $C67D onwards, a check is carried out to see if it's 4 missile to hero
collision. If it is, then jump to $C68A and from there jump back to
$C646, but if it isn’t then we have to assume that Fergus has collided
with one of the enemy, so change his colour and exit from the pro-
gram with a BRK command.

Similarly, from $C690 (where program execution should have gone
to from location $C678) onwards we check for a missile to Fergus col-
lision again. If itis, then jump to $C63E and from there jump to $C646
again. Otherwise, load the accumulator with $00 and store it at loca-
tion $D028 {which has the effect of changing the missile’s colour to
black) and exit from the program with a BRK command.

The scroll routines

Two of these, occupying locations $CA00 to $CA2E and $CA30 to
$CABE. The first one is used to scroll the background to the left, and
the second scrolls it to the right. Some interesting techniques are in-
volved in these two routines, although both of them are really quite
similar. We'll take the first one and go through that fairly exhaustive-
ly. By then you should be able to follow the second one: it uses much
the same logic.

CACO A9 28 LDA #$28
CAQ2 AZ 18 LDX ##18
CAO4 B85 57 STA $57
CAO6 A9 04 LDA #3$04
CAOB 85 S8 STA $58
CROA AU 0O LDY #$0Q0
CAOC B1 S7 LDA ($57).Y
CAQE 83 59 STA $59
CAl1O C8B INY

CAll B1 57 LDA ($37),Y
CAlZ 88 DEY

CAl4 91 357) STA ($37),Y

115

The X and Y registers are then loaded with $AQ (or decimal 160}, and
these values are stored in the two locations that handle the X and Y
co-ordinate positions for sprite 0, thus indicating where our character
Fergus will appear at the start of the game. A zero is then put into
the accumulator, and stored at the six locations that control the verti-
cal position of the next six sprites (the enemy!). Finally, the accumu-
lator is loaded with one, and this value is stored in location $D027:
the machine code equivalent of typing in BASIC POKE 53287,1. This
indicates that the colour of our first sprite, Fergus, will be white.

This routine finishes with an RTS instruction, which sends program
execution back to wherever it came from. In this case, memory loca-
tion $C012.

Calling the scroll routine
This routine is called up whenever the character is moving to the left

or the right, in which case we also want to scroll the background right
or left to give the illusion that he’s actually moving.

C400 BE 12 C4 STX #$C412
C403 8C 13 C4 STY $C413
C406 20 00 CA JSR $CAO00
C409 AE 12 C4 LDX #$C412
C40C AC 13 C4 LDY $C413
C40F 4C 7C CO JMP $CO7C
C412 7E ES F¥ ROR $FFES5,X
C415 FF ?27?

C41& BE 12 C4 STX $C412
C419 8C 13 C4 STY $C413
c41iCc 20 32 CA JSR $CA32
C41iF AE 12 CA4 LDX $C412
C422 AC 13 C4 LDY $C413
C425 4C S5é& CO JMP $C056
C428 00 ERK

The routine itself doesn’t do very much., It just stores the current values
in the X and Y registers at a couple of safe memory locations that won't
get altered by anything else, then jumps to the appropriate scroll

109

the screen. Altering this value alters how many lines will be scrolled).
Store the accumulator at location $57, the first spare byte in page zero.

The accumulator is then loaded with the value $04, and stored at lo-
cation $58, the second spare value. Loading the Y register with a zero
and loading the accumulator with the content of location $57 offset
with Y has the effect of putting a 04 in the accumulator the first time
around the loop, and this value is then stored in location $59. The pro-
gram then looks at every screen memory location in turn, and stores
whatever happens to be there in the location immediately to the left
of it. Remember the value $04 which we originally loaded into the ac-
cumulator at $CA06? $0400 happens to be the start of the screen
memory, and so what is happening here is that in the order low-byte
high-byte everything is successively moved one location to the left.

At location $CA23 $28 (or decimal 40) is added to the value held in
the accumulator, which has the effect of stepping us down onto the
next screen line. At locations $CA2B to $CA2D we check to see if
all 24 lines on the screen have been covered. If they have, then return
from this routine, and if they haven’t, go back and move another line
along one character.

Conclusion

The game is slowly evolving into something, and you should by now
be quite at home looking at what are still relatively simple machine
code routines. In the early part of this chapter a lot of theory was co-
vered, and it's well worth reading through it a couple of times to try
to grasp what is going on.

The second part of this chapter took an extensive look through the
games listing. It isn’t finished yet, and in chapter 7 we'll be taking a
look at the final version: at least, the final version that you’ll be present-
ed with in this book. It's up to you to turn it into a fully fledged arcade
game with high score tables, opening credits, and so on. The rudi-
ments are here, but the final polish is up to you.

After the fun of working through a games listing though, it's back to
the blackboard once more, and a look at logical operators and the four
commands that we mentioned earlier in the section ‘Accumulator Ad-
dressing’.

17

The Y position of the missile is then compared with $10, to see if it's
gone off the screen or not. If it has, then we branch to location $ COEE
to do a bit of tidying up: retrieve the Y position of Fergus, change
the waveform for voice 1 back to a noise one, and go back to location
$C021 again.

If it hasn’t, then we decrease the Y register, store it in the memory
location that holds the Y co-ordinate of the missile sprite, and jump
to three subroutines. The first updates the aliens, the second is a de-
lay loop, and the third checks to see if anything has hit anything else.
We'll come to those later on.

Then the program loops back to $CODA to test for Y being equal to
$10 again.

The delay loop

This is the routine that slows everything down. Without this, you
wouldn’t be able to see what was happening. it occupies locations
$C100 to $C117, with a few gaps in between which we’ll fill up later.
The command EA NOP simply means do nothing for a couple of cy-
cles, which doesn’t slow the program down a great deal, but which
does give us space to add some routines later on.

First of all, the content of the X register is stored in a safe place before
loading it with $FF, or decimal 255. The next couple of instructions
just decrease the content of the X register and compare it to zero.
A simple but effective delay loop.

When X is equal to zero, after a few NOPs (No OPeration) we store
the content of the Y register at location $D401, which is the location
that holds the high frequency for voice 1, pick up the original content
of the X register again, and finally return from the subroutine.

Start up routine

This is called once only at the start of the program, and sets all the
sprite positions up, as well as initialising the sound.

CI00 A9 OF LDA #FOF
C302 8D 18 D4 STA #D418
C305 A9 22 LDA #£22

107

As you can see, quite complex decision making can be achieved us-
ing these operators.

NOT is a peculiar one, and doesn’t seem to be used very much. Still,
just about every decision-making process you will require can be
achieved with AND and OR, as the following example should serve
to show.

10 IF A<10 OR B>S AND A$="Y" THEN 200

Here, the program will branch off to line 200 if A is less than 10 OR
B is greater than 5, but only if A$ is equal to "Y' as well. If all these
conditions are not met, the program just falls through to the next line.

What we’re doing here is testing to see whether various statements
are true or false. Try the following short example:

10 A=20
20 PRINT (A>x15)

When run, this program will print out the value -1, because the state-
ment A>15 is a true one: we've just defined A to be equal to 20.

So if something is true, the computer prints out a -1, and if it is false
it prints out a zero. For instance:

10 A=20
20 PRINT (A>Z3)

will result in 0 being printed, as the statement is patently not true.

All of this is based on what are called TRUTH TABLES, and the table
for AND works as follows:

Truth tables

A B C
0 0 0
0 -1 0
-1 0 o
N

The table operates in the following way: if the first statement A is false

19

We've already been through the routine from $C000 to $CO1E, as well
as the routine from $C021 to $C046, but it's wise to note that there
are a few changes from the listing that we last looked at. In the se-
cond block, room has had to be made to include a JMP $C500 com-
mand {which sets up the aliens and controls their movement), so
everything has been shoved down a little. This has meant changing
all the branch instructions, so watch out for them when it comes to
typing in the changes.

What we haven’t looked at in any great detail is the routines for mov-
ing our hero around the screen, and for firing the missile at the on-
coming enemy. The missile doesn’t do anything yet, by the way, other
than travel serenely up the screen. That will have to wait till chapter 7.

Moving left

Let's take a look at the routine from $C047 to $C070: the one that
moves Fergus to the left. Don’t worry about the 00 BRK command
at location $C070: program execution never reaches it.

The first thing that this routine does is to load the accumulator with
a zero and compare it with memory location $D010. This location is
the most significant bit of the horizontal position of the sprite, and
determines whether the sprite is to the left of location 255 or the right.
If it's set to 1T we branch to location $C05C to carry out some tests
over there, but if it's set to zero we carry on with location $CO4E.

This checks the content of the X register with $18, to see if he's still
on the screen or not. If he is, we can decrease the content of the X
register by one in the next instruction, but if he’s at the screen border
we won't decrease the X register at all, so that instruction is missed
out with a simple branch command.

Program execution then goes to the routine at location $C416, which
we’ll come to in a moment, and then back to $C021 after storing the
content of the X register in location $D000: the X position of sprite
zero, our hero Fergus.

From $CO05C to $C070 the most significant bit of the X position is set
to one, so all we're concerned about is whether or not we're at the
transition point to set it back to zero again. So this is what we check
for: does the X register contain a zero, because if it does we have to
set the most significant bit to zero, load the X register with 255 to move
Fergus over, store the X register in location $D000 and go back to the

105

Binary, as you know, is a system of representing numbers as a series
of Os or 1s, rather than using the digits 0 to 9 as we do. This is be-
cause computers can only understand two states {(an electronic cir-
cuit can only be on or off, it can’t be anything in between), and the
binary notation follows logically from that.

So, in binary, 27 becomes 00011011
128 becomes 10000000

Remembering the rules for AND and OR, 27 AND 128 now becomes
00000000 (at no point do we have two 1s together), and 27 OR 128
becomes 10011011 {if a 1 occurs in either number, the result is a 1).
In plain English then, 27 AND 128 equals 0, and 27 OR 128 equals 155.

One final example:

B3 in binary equals 00000110101
1111 in binary equals 10001010111

21
1143

53 AND 1111 equals 00000010101
53 OR 1111 equals 10001110111

Other logical operators

These have been mentioned earlier, in statements like:
IFA>5

and so on.

Knowing how truth tables work, it now becomes a simple matter to

understand all these logical operators, and calculate the results that
they will give.

To sum up, the remaining operators are:

: equal to

: less than

: less than or equal to

: greater than

: greater than or equal to
: not equal to

AVVAAI
]

Vol

121

coa7
Co49
Co4ac
Co4E
CO50
cos52
COS3
Co56
CoOS59
CosC
COSE
Co&0
COo63
COo&5
Co68
CosA
Co&D
Co70
Co71
Co73
COo75
co78
Co79
co7C
CO7F
co81
cos4
co8s
€088
co8A
cosc
Co8F
Co%1
Co74
Co27
Co99
cCooB
CovC
Co?F
COAO
CoA2
COA4
COA7
CoAB8
COAB
COAE
CoOB1
CoB2
COB3
COBS
COR7

21

32
03
21

00
01
21

ES
o3
21

Do

c4
DO
co
co
Do

DO
co

co

c4
Do

DO

DO

Do
Co

co

co
ci

DO
co

to

LDA
CMP
BNE
CPX
BE@
DEX
JMP
8TX
JMP
CPX
BER
JMP
LDA
STA
LDX
§TX
JMP
BRK
CPX
BNE
JMP
INX
JMP
8TX
LDaA
CHMP
BNE
CPX
BNE
LDA
STA
LDX
STX
JMP
CPX
BNE
DEX
JMP
277
CPY
BNE
JMP
DEY
JSR
STY
JIMP
BRK
BRK
CPY
BNE
JmMpP

#£00
$DO10
¥COSC
#+£18
¥CO053

$C416
$D000
$C021
#$00

$C063
$C0S2
#$00

$D010
#$FF

$D000
$C021

#$FF
$C078
$C021

$C400
$D000
#$00
$D010
$CO077
$SFF
$CO75
#$07
$D010
#$01
$D000
$C021
#£40
$CO75

$C021

#$£32
$CoA7
$C021

#C100
$D0O01
*£C021

#3$ES
$COBA
$C021

103

The V flag is loaded with the original contents of the sixth bit being
tested.

All these logical operators really come into their own when talking about
binary arithmetic and multiplication, but that must wait untii chapter 8.

Now for the four instructions that can shift each individual bit in the
accumulator, or in a memory location, to the left or the right.

Rotating and shifting

For all these four instructions, we have also got to consider the carry
flag, since it effectively acts as the ‘ninth bit’ for the operand, or the
number that we're working on. In either of the two shift operations,
the bit position at the opposite end of the byte from the one that gets
moved off is reset to zero. In the two rotate operations, the bit posi-
tion at the opposite end of the byte from the one that gets moved
off is given the value that was stored in the carry flag before the oper-
ation took place. The symbols used to represent these instructions
are as follows:

ASL : Accumulator Shift Left
LSR : Logical Shift Right
ROL : ROtate Left

ROR : ROtate Right

These operations can work either on a location in memory, or on the
accumulator. They can also be used in any of the four addressing
modes: absolute, zero page, zero page offset with X, and absolute
offset with X.

As well as affecting the carry flag, which we'll illustrate with a dia-
gram or two in a moment, these four instructions affect two of the
flags in the status register.

ASL, ROL and ROR cause the negative (N) flag to be set if bit 7 of
the shifted result is set to a 1, otherwise it is reset to a zero.

LSR always causes the negative flag to be reset, as it always puts a
zero into bit 7.

If the shifted result is zero, then the zero (Z) flag is set, otherwise it
is reset to 1.

123

All of this is probably best illustrated by a diagram. We'll look at the
decimal number 84 {binary 01010100}, and say that the carry flag has
been set to 1.

Carry Bit Position

Flag 7 6 5 4 3 2 10

1 0 1 0 1 0 1 0 O Before shift (decimal 84)
0 1T 0 1 0 1 0 0 0 After ASL {decimal 168)
0 0 01 0 1 0 1 0 After LSR (decimal 42)
0 1 0 1 0 1 0 0 1 After ROL (decimal 169)

0 1 0 1 0 1 0 1 0 After ROR (decimai 170)

A quick glance at the numbers in the decimal column after these oper-
ations will reveal a number of interesting things. Performing a shifted
left or right will either double or half the number under consideration,
which can be useful in many kinds of arithmetic, as well as in certain
kinds of sort routines. With a little bit of logical thought, you should
be able to see what kind of powerful uses we could put these instruc-
tions to, and we’ll see some of those uses in later chapters.

Before taking our last look at Fergus in chapter 7, we'll tie up a few
lose ends and cover some of the instructions and commands that
haven’t yet been dealt with. But first of all, vital to a true understand-

ing of machine code, we’ll start with a little something known as the
stack pointer.

The stack pointer
The stack is a 256 byte (I bet you knew that number was coming up)
block of memory, that fills memory locations 256 to 511, but it fills
them in a rather strange fashion.

First, what does it fill them with?

Well, one function of the stack is to hold all the addresses during
subroutine jumps, and this it does automatically.

Another purpose is to transfer data rapidly from register to register,

124

memory location to memory location, and whether it is storing data
or jump addresses, anything that goes in there is recorded from
memory location 511 downwards.

In other words, location 256 is the last one to be filled.

When pulling data back off the stack, it is retrieved on a ‘last-in, first-
out’ basis, usually abbreviated to LIFO. Thus, the last item of infor-
mation that went in there is the first one to come back out again.

What keeps track of where the next empty byte of stack space is?
Well, just as the machine code program itself has a program counter,
so the stack has a stack pointer, which stores where the next block
of information can go.

To illustrate this properly, let’s look at a concrete example.

The following (short) machine code program illustrates all the neces-
sary points:

C000 : LDA #s$01 : Load the Accumulator with 1.

C002 : JSR $F6ED : Jump to Internal Subroutine to check
stop key.

Co05 : TAX : Transfer Contents of Accumuiator into
X register.

Step by step, here’s what happens:

(1) Find address of next instruction, i.e. C002, and put this in the pro-
gram counter.

(2) Execute instruction, and get back address for next one from pro-
gram counter {i.e.C002)

(3) Fetch next instruction, i.e. JSR $F6ED
{4) Find address for next instruction (C005), and put this onto stack.

(5) Put next vacant position (509, as C005 occupies two bytes) into
stack pointer.

(6) Put F6ED into program counter, and jump to subroutine at $F6ED.

(7) Come back and look at stack pointer to find where last data stored
: stack pointer says 509, so last data stored in 510 and 511.

125

{8) Get that (i.e. C005) and put it into program counter.
(9) Go and execute instruction at C005.

A program may well have to find its way back through several subrou-
tines, as programs grow in complexity. Thankfully, the stack, stack
pointer and program counter take care of all this for you.

The contents of the stack can be aitered by just about everything, and
two of the commands which do this concern the Accumulator. These
are:

PHA : PusH contents of Accumulator onto stack, but don’t
change the value in the accumulator.
PLA : Pull top of stack into Accumulator.

The status register and stack pointer can also be altered, although with
care, and the commands to do this are:

PHP : PusH status register onto stack.
PLP : Pull status register from stack.
TSX : Transfer stack pointer to X register.
TXS : Transfer X register 1o stack pointer.

Addition and subtraction

Using the knowledge that we now have, it is a simple matter to add
or subtract two numbers together, provided that the result or the num-
bers are not greater than 265, or less than 0.

To add numbers together that are greater than this, the following ex-
ample program should help to make things clearer.

What we have to do is store each number as two bytes: the double
precision mentioned earlier.

For instance, the number 1926 in decimal is equivalent to $0786. To
use this number, we split it up into two parts, namely $07 and $86.
These are referred to as the Most Significant Byte (MSB) and Least
Significant Byte (LSB).

First of all, we need to add the two LSBs, and see if there is a carry.
Well, $86 plus $86 is equal to $16,12 or carry +0C.

126

16,12 = carry plus 0C

The two MSBs, $07, added together give 14, or $0E. With the carry
from the addition of the two LSBs this becomes $0F, and so the final
total is $0FOC, or decimal 3852, which is indeed correct.

Let’s put this into a program.

Example program

Our code could look something like this:

.., CO00 18 cic
., Coo1l pe CLD
., CO002 A% 86& LDA #3$8&
.. CO04 &9 84 ADC #+84
., CO0&6 8D 02 04 STA $0402
, CO09 A9 07 LDA #+07
.. COOB &9 07 ADC #307
, COOD 8D 00 04 STA $0400
.., CO10 &0 RTS

The RTS at the end of the program indicates ReTurn from Subrou-
tine. This is there so that, when we run the program with a SYS 49152
(since this is the decimal equivalent of C000), the start of the program,
we don’t end up back in the monitor again, but remain in Basic.

Line by line then:

Clear the carry flag.

Clear the decimal flag (4th bit of the status register, this
indicates whether or not arithmetic is to be performed
in decimal or binary: the 6510 is happier in decimal,
but it doesn’t really matter in a program such as
this. Why put it in? It's one way of introducing
a new command). '

Load the accumulator with $86.

Add with carry $86.

Store the result in memory location $0402.

Load the accumulator with $07.

Add with carry $07.

127

Store the result in memory location $0400.

The result of running this program is that an O appears in the corner
of the screen, with an L close by. O is screen character code 15, or
$0F, and L is character code 12, or $0C.

Thus our answer is $0F0C.

You may think that we haven’t added anything up at all, but just dis-
played things on the screen.

The answer is put on the screen so that it can be seen, and could just
as well be stored in any other two memory locations in the usual MSB
- LSB format, where it could have been used as part of a future caicu-
lation.

It all depends on how you look at it.

Making comparisons
The ability to make decisions in @ machine code program relies a great
deal on the ability to make comparisons between numbers, registers,
and memory locations.

There are a number of commands which allow us to do this (some
we've seen already, some we haven't), and these are:

CPX : ComPare the contents of a memory location with the contents
of the X register.

Syntax : CPX $0404

CPY : ComPare the contents of a memory location with the contents
of the Y register.

Syntax : CPY $0402

CMP ;: CoMPare the contents of a memory location with the contents
of the accumulator.

Syntax : CMP $0400

When encountering the compare command, for example CPX $0404,
the program reads the contents of memory location $0400, subtracts

128

that from the contents of the X register, and sets various flags de-
pending on the result.

This can be used in various ways, and the following program illus-
trates just one example:

Coob 4C 07 CO JMF %CO07
C010 8E QO 04 STX %0400
CO13 60 RTS

.. CO00 A9 53 LDA #353
., CO02 8D 04 04 STA %0404
.. CO0OS AZ 01 LDX #$01
., C007 ES INX
.o Coog EC 04 04 CPX #0404
.. COOR FO O3 EEQ $CO10

L]

’

T

This program loads a ‘heart’ symbol into the accumulator, then stores
it at memory location $0404 (the screen). The X register is then load-
ed with a 1, and incremented.

Next, we compare location $0404 with the contents of the X register,
and subtracting that (53) from the X register value (currently 29) does
not give us a value of zero.

Hence the Branch if EQual instruction is not obeyed, and the program
jumps back to increment X again.

Finally, when X equals 63, the BEQ is obeyed and the result, another
heart, is printed out onto the screen.

Simple animation
One of the major uses so far {or at least that’s the way the market
appears to be heading) for machine code programming on the 64 is

to produce some amazing games.

For the present, a couple of simple illustrations will serve to show the
power of machine code, and the speed with which animated displays
can be moved.

This first program simply prints a row of 255 hearts onto the screen:
about 6 ¥z lines worth.

You may have to change the background colour to be able to see them,

129

but the point to note is the sheer speed with which things happen.

., CO000 A9 S5 LDA #3$53
., CO02 A2 01 LDX #3501
., C004 ES INX

., COOS FO 0& BEQ $COOD

., CO007 9D 00 04 STA %040G,¥
., COO0A 40 04 CO JMP 3C0O04
., COOD &0 RTS

Quite simply, the heart character code is loaded into the accumula-
tor, and a 1 is loaded into the X register, which is then incremented.

A test is made for X being equal to zero, which it will be when it is
incremented up from being equal to 255: it flips back to 0 again.

However, until then it isn’t zero, and so the contents of the accumu-
lator are stored at location $0400, offset with X, and we jump back
to increase X again.

You may have been puzzled by the different natures of jumping and
branching commands: well, jumping usually uses direct addresses (you
tell it which location to go to), and branching uses relative ones, as
we've seen.

Some more animation

A well-known technique when moving things about on the screen is
to print something, and then fill the space behind it with a space charac-
ter, thus obliterating the previous image. Then, move the character
on one stage and obliterate the image in the place just moved from,
and so on.

The following program accomplishes this in machine code, but is so
fast that you won’t be able to see what's happening!

Later on we'll look at program timing, and having said very early on

that one of the chief advantages of machine code is its speed of oper-
ation, we'll aiso look at ways of slowing programs down!

130

C000 A9 53 LDA #$53
Co02 AZ 00 LDX #$00
cCoo4 A0 20 LDY #$20
CO06 8C 25 CO STY $COZ25
COo09 8D 26 CO STA $CO26
CooC 9D 00 04 STA $0400,X

L)
L]
1
L
v
]
.. COOF 98 TYA
.. CO10 9D FF 03 STA $03FF,X
., CO13 EB INX
., CoOia EA NOP
., CO015 EA NOP
., CO16 EA NOP
., CO17 EA NOP
., CO18 EA NOP
., CO19 EA NOP
., CO20 DO ED BNE $COOC
.. C022 &0 RTS

This program puts a heart into the accumulator, a zero into X, and
the code for a space into Y. Y is then stored in memory location $C025,
and the contents of the accumulator in $C026: both safely out of the
way.

The accumulator contents are then stored at location $0400, offset
with X, the contents of the Y register transferred to the accumulator
and then stored at $03FF (i.e. a space is stored one memory location
(or one screen ‘square’) behind the heart each time), and the X register
incremented.

When X tops 255 the BNE instruction fails as X is flipped back to zero,
and the proram exits. Until then, we loop back and print out more
hearts and spaces.

This technique is the basis for almost all the screen animation displays
that you see in the popular arcade games.

And the NOPs? They just teli the computer to do nothing for 2 cycles.
They’re there so that, after reading the next section on timing, you
can come back to this program and alter it so that you can actually
see what’'s going on!

Timing

The appendix lists all the mnemonics used in machine code for you,
and with each one you’ll see that we’ve included the cycle times. In

131

other words, you know how long each instruction will take to execute.

That is why the previous program is impossible to watch: it takes some
30 cycles, or micro-seconds, to print and then overwrite a heart shape
- that’s pretty fast, and much too fast for the eye to see.

So the use of NOPs, as mentioned in the last program, can slow us
down a little, but 2 micro-seconds isn’t exactly a long time. Thus we
have to build up various delay programs, and the simplest one must
surely be:

LDX #$01 - 2 cycles
INX - 2 cycles
BNE back to INX again. - 3 cycles

This just loads a 1 into the X register, checks to see if X is zero, which
it will be after flipping over from 255 to zero again, and if it isn't going
back and incrementing X again.

However, this takes up a huge 1277 cycles, which still isn’t very long.
Thus we have to extend the program a little, rather like this:

LDY #3801 -2 cycles
LDX #$01 - 2 cycles

INX - 2 cycles

BNE - 3 cycles (go back and increase X again until
it equals zero)

INY - 2 cycles

BNE - 3 cycles {go and increment Y again).

Thus we run through our original delay loop 255 times, which gives
us a realistic delay of slightly over a quarter of a second. A little better.

There are other methods of course, but if we're going to use the 6510
for precise timing of instruments, program control or whatever, it is
obviously better to use this timer than the jiffy clock. Also, every micro-
second counts, so use the table in the appendix: some operations take
longer under different circumstances.

Charget and the Interrupt

These are the names given to two of the most important functions
within the computer.

132

Charget

Charget, short for CHARacter GET, is a machine code program that
resides in page zero of the Commodore 64: in fact it sits in locations
115 through 138. Thus it is quite a short routine. However, it is also
a very useful one, as it provides the link from BASIC to the Interpreter.

Charget acts as follows:

When a BASIC program is running, each program line is copied from
the RAM area into which you typed it, into the BASIC input buffer.
There the charget routine scans through it {ignoring spaces, so you
could modify charget to remove the code that checks for spaces, which
will make Basic run a bit faster, but does mean that you can’t type
in spaces any more!), until it finds a byte that it knows. This is then
remembered in the accumulator, and program execution returns to
the interpreter, where the byte is dealt with.

It is by modifying this charget routine that new commands can be ad-
ded to Basic, and we'll be looking at this in more detail in chapter 11.

Using the Assembler, and disassembling the code from locations 115
to 138, allows you to do this, but be careful : charget is operating all
the time, so any changes will have to make sense to it.

The Interrupt

An Interrupt is precisely what it says it is: an interruption. Computers,
like humans, don't like being interrupted on occasions, and so a num-
ber of commands in the 6510 instruction set allow you to switch off,
and switch back on again, any interrupts.

These commands are:

SEl : SEt Interrupt disable. This stops all interruptions {i.e. stop keys,
external devices and the like, although it can’t cover everything).

CLI : CLear Interrupt flag. This resets everything.
RTI : ReTurn from Interrupt.
Now, just to complicate things a little further, the 6510 has two differ-

ent input pins. The NMI, or Non Maskabile Input pin cannot be blocked,
but the IRQ, or Interrupt ReQuest pin can: it is this one that is set or

133

cleared with SE! and CLI, which are themselves only operating on the
Interrupt flag, the third bit of the status register.

The interrupt procedure, from which RTl returns you, is only instigat-
ed in the case of an IRQ interrupt, whereupon the 64 makes a good
attempt at keeping everything like it was before the interrupt happened.

BRK: BReakK.

This starts up another interrupt sequence, and when used in machine
code programs that are running on a machine with a monitor (e.g.
a 64 with the assembler working), BRK will halt program operation
and drop you into the monitor, whereupon you will get the usual dis-
play of PC, IRQ, XR, YR and so on, with PC as usual displaying the
address of the current statement.

134

7
Machine Code: Goodbye to
Fergus

Introduction

Fergus has been with us for some time now, but since the remaining
chapters in this book are concerned with some of the more serious
things that can be done with machine code, it's time to bid him fare-
well with this final listing of the program.

As you can see from the length of the listing given, our program has
grown a bit from the days when it would do nothing more than just
move a sprite around the screen while under machine code control.
The rudiments of the original are still there, but now there all sorts
of new routines built into it.

Keeping track of the high score, determining when you've lost all three
of your lives, and so on, are all essential features for a proper arcade
game, and they’re all in here somewhere, as we shall shortly see. it
is by no means a finished game, but you should by now (and certainly
by the end of the book) be in a position to put the little finishing touches
to it yourself. As it stands, when all three lives have gone, the pro-
gram just loops back to the beginning again, after checking to see
whether the high score needs updating or not. You could, if you like,
drop back into BASIC again at that point and put in a request for play-
ing a new game.

Since the program doesn’t occupy that much memory (barely a cou-
ple of K) there isn't much to it. But at least it does show how one
would go about building up an all machine code game, incorporating
such features as scrolling screen displays, a variety of enemies, and
SO on.

Rather than give the lengthy descriptions we have done before, when
the code was sometimes analysed on a byte by byte basis, we'll simply

135

split the listing up into its different sections and tell you what each
of those sections does. You can probably sort out what's going on
for yourself by now.

As a bonus, there’s a BASIC (aarrgghh!) program at the end of this
chapter, which will check itself and then load a machine code disas-
sembler into memory, provided that you follow the instructions CARE-
FULLY!H But for now, back to Fergus, and the first part of the listing.

B*
PC SR AC XR YR SP
.3371A 33 00 02 OO0 Fé

Co00 A% OD LDA #$0D

Co02 8D F8 07 STA $07F8
€005 A9 03 LDA #$03
C007 8D 13 DO 8STA #DO15
COOA A9 OE LDA #$0E
CooC 8D F? 07 STA #$07F9
COOF 20 00 C3 JSR #$C300
Co12 A9 00 LDA #£00
Co14 8D 17 DO STA $DO17
C017 8D 1D DO STA $DO1D
CO1A A9 00 LDA #$00
Co1C 8D 10 DO STA %D0O10
COoiF EA NOF

C020 EA NOP

€021 4C 00 C5 JMP $C500
C024 AD C5 00 LDA $00CS
coz27 C? 0A CHMP #3$0A
€029 FO 1C BEQ $C047
Coze C7 12 CMF ##%12
CO2D FO 42 BEQ #CO71
COoZF C9 21 CMP #£21
CO31 FO &D BER $COA0
CO33 C9 24 CMP #$24
CO35 FO 7C BE@ #COB3
CO37 C? 3ZC CMP #$3C
Co39 FO Q9 BEQ #C044
CO3B 20 5 C& JBR $C&5E
CO3E 20 00 C1 JSR #C100
Co41 4C 21 CoO JMP $CO21
coa4 20 C7 CO JSR $£C0C7
Co47 A9 00 LDA ##%00
C049 CD 10 DO CMP #%D010
C04C DO OE BNE $CO0OSC
CO4E EO 18 CPX #%$18
CO50 FO 01 BE@ 3CO53
Co52 CA DEX

136

COS3
CO5s&6
COo59
COsSC
COSE
CO&0
CO4&3
CO&5
Co&8
COo&A
CO&D
CO70
COo71
Co73
CO75
Co78
Co79
Co7C
CO7F
cCo8i1
co84
co86
cogss
CO8A
cosc
cosF
Co91t
CO94
Co97
Co99
CO9B
CoeC
CO9F
COAO
COA2
COoAR4
COoA7
CoA8
COAR
COAE
CosBl
CoR2
CoB3
COBS
COB7
COoRA
COBR
COBE
coC1
£OCc4
COoCS

14
(e]¢]

00
03
52
00
10
FF
00
21

FF
03
21
[¢]3)
0Q
00
10
11
FF
ER
07
10
01
0o

-
&

40

r
-

> A

Lol BN

d

01
21

ES
03
21

00
01
21

ca
DO
co
Co

DO

DO

co

c4
DO

DO

Do

DO
co

co

co

€1
DO
Co

co

Ct
DO
Co

JIMP
STX
JIMP
CPX
BEQ@
JMP
LDA
sSTA
LDX
STX
JMP
BRK
CPX
BNE
JMP
INX
JIMP
STX
LDA
CMP
BNE
CPX
BNE
LDA
STA
LDX
STX
JMF
cPX
ENE
DEX
JMP
277
CPY
BNE
JIMP
DEY
JSR
STY
JMP
BRK
BRK
CRY
ENE
JMP
InY
JSR
STY
Jamp
277
277

$C416
$D0O0O0O
$C021
#$00

$C0&63
$CO52
#£00

$DO10
#$FF

$DO0O
$Co21

#EFF
£C078
$CO21

£C400
£¥D0OO0G
#£00
$¥DO10
$CO097
#$FF
$CO73
#$07
$DO10
#£01
$D0OQO
$C021
#%40
$C075

¥C021

#$32
$COA7
$C021

¥C100
$D0O0O1
$C021

#FED
$COERA
£#C021

$C100
$DQ0O1
FCO21

137

CoCs FF arars
CoC7 A9 3F LDA #$3F

COC% 8D 15 DO STA #D0O1S
COCC A9 21 LDA #%21
COCE 8D 04 D4 STA $D404
CoD1 B8C 04 C2 STY #C204
COD4 8E 02 DO STX #D002
CoD7 8C 03 Do STY D003
CobAa CO 10 CPY ##£10
CoODC FO 13 BER $COF1
CODE 88 DEY

CODF 8C 03 DO STY %#D003
COE2 20 00 C1 JSR #C100
COES 20 40 C6 JER #$C640
COEB 20 00 Cé& JSR #C600
COEB 20 00 Ct JSR #C100
COEE 4C DA CoO JMFP £CO0DA
COF1 AC 04 C2 LDY #$C204
COoF4 A% 81 LDA #$81
COF6 8D 04 D4 STA $£D404
COF? A? 3D LDA ##£3D
COFB 8D 15 DO STA $DO1S
COFE &G RTS

COFF FF ?7?

C100 8E 00 C2 STX #C200
C103 A2 FF LDX #$FF
C105 CA DEX

€106 DO FD BNE #C105
108 20 SE C6 JSR $C4LS5E
Ci10B 8C 01 D4 STY $D401
Cl10E 20 S5E Cé& JSR $Co5E
Ci11 AE OO C2 LDX #C200
Ci114 20 3E C& JSR #C&5E
€117 20 SE C& JSR $C&5E

CllA 20 SE Co JSR #C&5E
C11D 20 SE Cé6 JSR $C&5E
Ci20 20 SE Cé JER #C65E

Cl2Z% 20 SE Co JSR $C&SE
Cl26 20 SE Co JSR $C&LSE
€129 20 5E Cé& JSR $COSE
Ci2C &0 RTS
ci12D oo BRK

This is the routine that handles moving left, right, up and down, as
well as firing. The main difference now is in the delay loop from loca-
tions $C100 to $C12C, which goes off to check for a collision as often
as possible (the routine starting at $C65E).

138

C2FF
C300
C302
C305
C307
C30A
c30C
C30F
C311
C314
C316
C319
C31C
C31E
C321
C323
C326
c328
C32ZB
C32E
c331
C334
C337
C33A
C33C
C33F
C342
C344
C347
C349
C34C
C34E
C351
C354
C357
C35A
C35D
C3&0
C363
C366
CZ&9
C3&C
C3&F
c372
C374
C377
C37A
C37D
C380
c383
C384

D4

D4

D4

D4

DO
DO

DO

DO

DO

DO
DO

DO

DO
DO

DO

c7

BRK
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
LDX
STX
LDY
sTY
L.DA
STA
STA
STA
STA
STA
STA
(DA
STA
STA
LDA
STA
LDA
sSTA
LDA
STA
sSTA
STA
STA
STA
STA
sSTA
STA
STA
STA
STA
STA
LDA
STA
STA
STA
sSTA
sTA
STA
LDA

#EOF

$D418
HE22

$¥D405
#$86

$¥D406
#4$81

$¥D404
#£$00

$D020
$D021
#$A0

D000
#¥FA0

$D001
#$00

£¥DO0O3
$¥D0O0S
¥D00O7
D009
$¥DOOB
$DOOD
#¥01

D027
*DQO2
#5007

$D0O28
$F00

$C700
#E£30

#C800
$C801
$CBO02
¥C803
$C804
*¥CBOS
$£0400
$0401
$0402
£0403
$0404
$04095
#%01

$DBOO
$DB0O1
D802
£D8O3
D804
$DBOS
#EF9

139

£388 8D FF CC STA $CCFF

C38B EA NOP

C38C A9 30 LDA #$30

C3I8E 8D 08 C8 STA $C808
€391 8D 09 C8 STA $C809
€394 8D OA CB STA $CBOA
€397 8D OB C8 STA $CBOR
C3%A 8D OC C8B STA $C8OC
€3%b 8Db 0D C8 STA #C80D
C3A0 8D 27 04 STA %0427
C3AZ 8D 26 04 STA $0424
C3AL BD 25 04 STA $0425
C3AZ 8D 24 Q4 STA %0424
C3AC 8D 23 04 STA #0423
C3AF 8D 22 04 STA #0422
C3B2 A7 01 LLDA ##£01

€C3B4 8D 22 DB STA $D822
C3B7 8D 23 D8 STA D823
C3BA 8D 24 D8 STA #D824

C3BD 8D 25 D8 STA ¢D8B2S
C3CO 8D 26 D8 STA $#D826

C3C3 8D 27 D8 STA $DB27
C3Cs6 8D 14 D8 STA #D814
C3C? A9 33 LLDA ##33
C3CB 8D 14 04 STA #0414
C3CE 8D FF CB STA *CBFF
€3D1 &0 RTS

€3D2 FF arers

Considerably lengthened since last time, there aren’t really that many
changes to this. It sets up the sound and some sprite positions as be-
fore, but the bulk of the code is now concerned with storing a zero
in the memory locations that we’ll use to keep the current score ($C400
to $C405) and the high score {$C808 to $C80D), as well as storing on
the screen a collection of zeroes next to the display that says high score
and score. These scores are then given a colour by storing a 1in colour
memory at the appropriate points.

The sprite pointer to let the computer know which enemy sprite is to
be displayed is stored at location $CCFF and the number of lives left
is stored at location $CBFF before returning from this subroutine.
Remember, when dealing with zeroes or whatever being stored in
locations, we have to use the CHR$ codes (which happens to be a
30 for the number 0).

140

C3FF 00 BRK

C400 BE 12 C4 STX #C412
C403 8C 13 C4 STY $C413
C406 20 00 CA JSR $CAO00
C409 AE 12 C4 LDX $C412
C40C AC 13 C4 LDY #C413
C40F 4C 7C CO JMP #CO7C
C412 AD ET FF LDA $FFES
C415 FF Farars
Ca146 BE 12 C4 STX $C412
C419 8C 13 C4 STY $C413
C41C 20 30 CA JSR $CAZ0
C4iF AE 12 C4 LDX $C412
€422 AC 13 C4 LDY #C4173
C425 4C 56 CO JMP $C056
C428 00 BRK
c4a29 8Q Farars
C42Aa 00 BRK
C42B 00 BRK
C42C 00 BRK
C42D OG BREK
C42E 0O BREK

A small piece of code that we've seen before. This looks after the X
and Y registers while scrolling the screen around.

CS500 A7 3D LDA #$3D

CS502 BE 00 C2 STX #C200
€505 8C 02 C2 STY #C202
€508 CD 15 DO CMP $DO1S

C50B FO ZE BEQ $C33B
CS0D A0 06 LDY #£06
CS0F A9 FB LDA #3$FB
CS11 AD FF CC LDA #CCFF
C314 99 F9 07 STA %07F9,Y
€517 A2 3D LDA #$3D
€519 8D 15 DO STA #DO15
CS1C AD A2 00 LLDA #$00AZ2
CS1F 8D 04 DO STA #D004
C522 &9 30 ADC ##+30
CS24 8D 06 DO STA #D00S
CS27 &9 90 ADC #4920
€529 8D 08 DO STA $DO08
C52C &9 DO ADC ##DO
CS2E 8D 0A DO STA $DOGA
C531 A9 32 LDA ##£32

CS33 8D 05 Do STA #$D0OO0OS

141

C5346 88 DEY

CS37 CQ 00 CPY #%£00
C539 DO D4 BNE #CSOF
CS3B AE 00 C2 LDX $C200
CS3E AC 02 C2 LDY $C202
€541 20 00 Cé JSR #C&600
C544 4C 00 C9 JMP $C?00
C547 4C 24 CoO JMP $C024
CS4A FF Fafars

Another old friend, for updating the enemy sprites if necessary.

CSFF 00 BRK

C600 8E 00 C2 STX $C200
€603 8C 02 C2 STY #$C202
Ce06 20 40 Cb JSR #C&40
C&09 AC 05 DO LDY $D0OO0OS
Cé0C C8 INY

C&60D CO EB CPY #$E8

C&60F DO 10 BNE #C621
Cé11 A9 03 LDA ##£03

Cé13 8D 15 DO STA #£D0O1S
Cé1l6 AE 00 C2 LDX %C200
Cé19 AC 02 C2 LDY $C202
Cé1C 20 SE Cb JSR $C&5E
C&1F 60 RTS

C620 QQ BRK

Cé621 8C 05 DO STY #D00S
Céz24 8C 07 DO STY #DQO7
C&27 8C 09 DO STY #D00%
Cé2A BC OB DO STY $DOOB
C&2D 20 00 C1 JSR #C100
C630 20 00 C1 JSR $C100
C633 20 00 C1 JSR #C100
C636 20 00 C1 JSR $C100
€639 AE 00 C2 LDX $C200
C63C AC 02 CZ2 LDY $C202
Co3F 60 RTS

C&e40 AC 04 C2 LDY #C204
Cé43 20 S5E Ch JBR $C&5E
Cé44 AD CS 00 LDA #00CS
Cé49 EA NOP

Cé4a C9 OA CHMP #$0A

Cé4C FO 08 BEL 2C&54
C&4E C2 12 CMF #$12

C&50 FO 04 BEfl #C&56
Cé52 AC 03 DO LDY $DO0O3
€455 4O RTS

Céhé A9 00 LDA ##£00

142

C&658
C&65B
C65D
C65SE
C660
Ce63
C665
Cob6
Ce67
€668
Co69
CebA
C66B
C&6C
C66F
C&71
C&673
C676
c&678
Cé67a
C47B
C&7C
C67D
C&7F
ceB2
Cé&84
Cé686
ce89
cé8C
C68F
C&90
Ce92
Co695
C697
Cé69A
Cé9D
C6A0
C6R3
Co6AL
Céa7
CoAB
C6A9
CéhA
C&6AD
C&AE
C6AF
CéB1
C6B3
C6B6
C6Be
Cé6BB

03
10

04
1E
01

QQ

39
oC
ole}
05
01
05

DO

DO

DG

DO

DO

DO
cc
co
DO

c2
()

Cb
Cc2

c8

(=
04

D8

STA
LDy
RTS
LDA
CMP
BMI
RTS
NOF
NOP
NOP
NOP
NOP
NOP
LDA
AND
BNE
LDA
AND
BNE
RTS
NOP
NOP
LLDA
CMP
BEQ
LDA
STA
JMP
JMP
NOP
LDA
CHMP
BER
STX
JSR
JSR
JMP
LDX
RTS
NOP
NOP
NOP
LDX
INX
NOP

BPL
8TX
STX
LDA
sTA

$D003
#£10

#£04
$DO1E
$Cob66

$¥DO1E
#£01
$C67D
$¥DOIE
#$02
$C6I0

#$03

$DO1E
$¥Ca68C
#£04

$D0O27
$CCO0
$CO24

#£03

$DOLE
$C468C
$C208
$CHAA
$CDOO
$CD14
¥C208

$C800

#$39
$C6BF
$CB800
$0405
#3+01
$DBOS

143

C6BE
C&BF
C6C1
C6C4
C&C7
cecs
C&Cc?
C&CB
C6CD
C&DO
C&h3
C6DS
CsDB
C6D9
Cé6DE
C6DE
CéE1L
C6EZ
C6E3
C6ES
C6E7
C6EA
C&ED
C6EF
C&F2
C&4F3
C6FS
CoF8
C&FB
C&FC
C&FD
C6FF
C701
C704
C707
C709
c7oC
C70D
C70F
c712
C71S
C716
C717
C719
C71B
C71E
C721
€723
C726
c727
C729

144

30
00
01

39
ocC
o1
04
01

30
01
02

39
ocC
02
03
01
03

30

03

39

04
01
01
o1

30
o4

ca
c8

cs
04

D8

ca
cse

c8
o4

D8

cse
cs

ca
04

D8

ca

ce

cs
o4

D8

ce

RTS
LDX
8TX
L.DX
INX
NOF
CPX
BPL
8STX
8TX
L.DA
STA
RTS
LDX
STX
L.DX
INX
NOP
CPX
BPL
8TX
8STX
LDA
STA
RTS
LDX
STX
LDX
INX
NOP
CPX
BPL
STX
8STX
{.DA
STA
RTS
L.DX
8STX
L.DX
INX
NOP
CPX
BPL
8TX
8STX
LDA
STA
RTS
DX
STX

#$£30
$CBO0
$C801

#$£39
$C6D?
$£C801
$£0404
#$01
$D804

#$30
$CBO1
£C802

#$£39
£Co6F3
£C8O2
0403
#£01
$D803

#E30
£CB802
£CB0O3

#$£39
$C701
¥CB03
$£0400
#$01
£DB02

#4£30
*CB03
$C804

#$39
$C727
%C804
$0401
#£01
#D801

#£30
$C804

C72C AE 05 C8 LDX $CB80S

C72F ES8 INX

C730 EA NOP

C731 EO 39 CPX #%39
C733 10 OC BPL #$C741
C735 BE 0S5 C8 STX #$CB805
C738 BE 00 04 STX #0400
C73B A9 O1 LDA #£01
C73D 8D 00 D8 STA #DB0O0
C740 &0 RTS

C741 A9 30 LDA ##£30
C743 8D 05 C8 STA £C805

C744 8D 04 CB STA #CB04
C749 8D 03 C8 STA $CB03
C74C 8D 02 C8 STA $C8B02
C74F 8D 01 CB STA $CB01
C752 8D 00 CB STA $CBOO

C753 60 RTS
C75&6 FF Farars
C757 FF 77
C758 FF ?7?

A much extended routine, which updates the sprite positions, checks
for collisions, and from $C6AF onwards updates the score and high
score displays if necessary.

Bx
PC SR AC XR YR SP
.326F4 33 00 DC 00 Fé&

C?00 AD 00 CB8B LDA £CBO00

C?03 8D 05 04 STA $0403
C?046 AD 01 CB LDA #C801
C?09 8D 04 04 STA $0404
C?0C AD 02 C8 LDA #C802
C?0F 8D 03 04 STA $0403
C?12 AD 03 C8B LDA #C803
C715 8D 02 04 STA $0402
C?18 AD 04 CB LDA #C804
C?1B 6D 01 04 STA #0401
C?1E AD 05 C8 LDA $C803
C?21 8D 00 04 STA %0400
C924 4C 47 C5 JMP $CS547
C72Z7 00 BRK

C928 00 BRK

A tiny little routine which is constantly called to update your score
on the screen.

145

CAOO
Cao2
CAO4
CAQS
CAho8
CAOA
CAOC
CAQE
CA10
CAll
CAL3
CAl4
CAl1s
CAa17
CAlB8
CA1A
CA1C
CAlE
CA20
CAZZ
CA23
CAZS
CAz7
CA29
CAZB
CAzC
CAZE
CAZF
CA30
CA32
CAZ4
CA3&
CA38
CA3A
CA3C
CA3E
CA40
CAa41
CA43
CA44
CA4s
CA47
CA48
CA4A
CA4C
CA4E
CASO
CAS2
CAS3
CASS

146

LDA
LDX
STA
LDA
8TA
LDY
LDA
STA
INY
LDA
DEY
STA
INY
TYA
CHMP
EBNE
LDA
STA
LDA
cLc
ADC
STA
BCC
INC
DEX
BNE
RTS
BRK
LDA
LDX
sTA
LDA
STA
LDY
LDA
STA
DEY
LDA
INY
STA
DEY
TYA
CHMP
BNE
LDA
STA
LDA
CcLC
ADC
8TA

#3528
#4418
57
#3048
£58
#£00
($57) ,Y
$59

($57) ,Y

(ES7) Y

#£27
$CAl10
$59
(£57),Y
£57

#£28
£57
$CAZE
*58

$CA0A

#£28
#$18
£57
#+04
$58
#$27
(£57) ,Y
$59

(£57),Y

(£57),Y

#£00
$CA40
£59
(£37),Y
$57

#428
$57

CAS7
CAS?
CASB
CASC
CASE
CASF

Our old friend the scrolling routine.

CCoo
cco3
Ccos
ccos
CCOB
ccoc
CCoF
cciz
CC14
CClé
ccis
CCiB
CCiD
CC20
cc22
cc2s
cc27
Cc2A
cczc
CC2D
CC30
CC33
CC36
Cc38
CC3B
cc3c
CC3E
ccal
CC44
ccas
ccaz
ccaa
cc4p
ccac
CCaD
CC4F
CCS50
ccs2
CCSa

oz
58

DC

00

FF
FB
08

07

DO

DO

DO

Do
DO
cz2

DO

DO
cc

Cé6

c2

BCC
INC
DEX
ENE

RTS
277

STX
STY
L.DA
8TA
DEY
JSR
STY
CPY
BNE
LDA
STA
LDA
STA
LDA
STA
LDY
STY
LDX
NOP
STX
STA
8TX
LDA
STA
NOP
LDA
STA
JSR
LDX
NOP
JMP
?7?
97
ifaracs
LDX
INX
CPrX
ENE
LDX

$CASB
$£58

$CA3A

$C21A
$C21B
#¥DF

$07F8

$CC4D
$DO0O1
#$FF
$CCOB
#$0D
$07F8
#+01
$D027
#$00
$DO1LE
#+ES
$D001
#¥A0

$£D0O00
$D010
$C208
#$3D

$D0O15

#$00
$£D0O0S
$CCSB
#$A0

$C68C

#$00

#EFF
$CC4F
$C208

147

CCS7 20 00 Ci JSR $C100

CCSA 60 RTS
CCSB AE FF CRE LDX #CBFF
CCSE CA DEX
CCSF EO 30 CPX ##30
CCé61 DO 0S5 BNE #$CCé&8

CC&3 4C 00 CE JMP $CEQO

A new routine, which is used to fetch in the new sprite when our hero
gets hit, and whizz him to the top of the screen. The latter part of
the routine is checking to see how many lives you have left. If all your
lives have gone, jump to the routine at $CEQO.

CD00O AE FF CC LDX #CCFF
CDO3 ES8 INX

CD0O4 EO FF CPX #s$FF

CDO& FO 04 BER $CDOC
Cho8 8E FF CC STX $CCFF
CDOB &0 RTS

CDOC A2 F9 LDX #$F9

CDOE BE FF CC STX $CCFF
CD11 4C AQ C6 JMP $C6A0
CDi4 38 SEC

CD15 A9 3F LDA #$3F

CDi7 ED 1iE DO SBC #DOIE
CD1A 8D 15 DO STA $DO1S5

CDiD 4C A3 Cé JMP $CLA3
CD20 00 BRK
CD21 00 BRK

This just flips in the next set of enemy sprites when necessary.

CEQO AD 05 C8 LDA #$C8035

CEO3I CD OD C8 CMP *C80D
CEOL FO 04 BE® $CEOC
CEO8 10 S3 BPL $CESD
CeEOA DO 3C BNE #CE48

CEOC AD 04 C8 LDA $C804
CEOF CD oOC C8 CMP #C80C

CE12 FO 04 BER #CE18
CEl14 10 47 BPL $CESD
CEl16 DO 30 BENE $CE48
CE18 AD 03 C8 LDA %C803

148

CE1B
CELE
CE20
Ce22
CEZ24
CE27
CE2A
CE2C
CE2E
CE30
CE33
CE36
CE38
CE3A
CE3C
CE3F
CE42
CE44
CE46
CE48s
CE4A
CE4D
CESO
CES3
CESA
CES?
CESC
CESD
CE&O
CE&63
CEbS
CE&LY
CE&C
CE&6F
CE72
CE75
CE78
CE7B
CE7E
CEB1
CEB4
ces?z
CE8A
CESD
CE90
CE?3
CE95
CE?8
CE9B
CE9E
CEA1L

cse

c8
cs

c8
cs

cs
cs

CHMP
BER
BPL
BNE
LDA
CHMP
BER
BPL
BNE
LDA
CMP
BER
BPL
BNE
LDA
CHMP
BEQ@
BPL
BNE
LDA
STA
8STA
STA
STA
STh
JMP
RTS
LDA
STA
STA
LDA
SThH
STA
LDA
STA
STA
LDA
STA
STA
LDA
STA
STA
LDA
STA
8STA
LDA
STA
STA
8TA
STA
8STA

$C80B
$CE24
$CESD
$CE48
$C802
$C80A
$CE30
$CESD
$CEA8
$C801
$C809
$CE3C
$CESD
$CE48
$C800
$CB808
#$CEAB
$CESD
#$CE48
#$30

%0400
$0401
$0402
$0403
$0404
$CE?3

#CB800
$C808
$0427
$C801
$C809
$0426
$C802
$C80A
$0425
$C803
$CBOB
$0424
$C804
$C8oC
$0423
$CB0S
#$CB80D
$0422
#$30

$£B800
$C801
$CB802
$C803
$£C804

149

CEA4 8D OS5 CB STA #CBOS
CEA7 8D 05 04 STA #0405
CEAA 4C &6 CC JMP #CCb6
CEAD 00 BRK

A check to see if there’s a new high score, and update all the scores
if there is.

And now, the promised BASIC listing.
Entering and using Extramon

(1) Switch your Commodore 64 off and on again.

(2) Type in the program ‘Monmaker’. Please note that, due to the way
the program was formatted before printing, lines 500,502,504 and 1450
have wrapped around on the printout. For instance, line 500 has a series
of data statements ... 7068,7420,7431,6285 ... Enter these lines on your
machine as just very long individual lines.

(3) To check that the data has been entered correctly, ‘Monmaker’
includes a checksum program. Alter line 1425 to read:

1425 READA: B=B+A:NEXTJ

Then RUN the program.

The program steps through all the blocks of data, and if it finds any
errors it will identify the group of lines in which the error occurs. You'll

have to check lines 1400- yourself.

{4) SAVE the program when entered correctly, remembering to change
line 1425.

(5) Switch the 64 off and on again.

{6) Enter the commands: POKE 8192,0:POKE44,32:NEW
<RETURN >

(7) LOAD and RUN ‘Monmaker’. It takes some time to run, so be
patient.

1650

(8) Enter the commands: POKE44,08:POKE45,235:POKE46,17:CLR
<RETURN>

(9) Type SYS 2168. You are now ‘into” Extramon, and can save the
program using its own SAVE command (see later).

Extramon command set summary

These will be given in the form COMMAND, followed by an example
syntax.

*Simple assembler. .A C000 LDA #$12

.A C002 STA $8000,X

.A C005 RTS
The user starts assembling at $C000, and after entering the first line
the assembler prompts for the next one.

*Disassembler .D C00C
Clear the screen and print a page of disassembled output, starting at
$C000.

*Printing Disassembler P C000,C200
Send disassembled code to the printer. Engage the printer beforehand
with OPEN4,4:CMD4 and enter the monitor with SYS 2168.

*Fill memory .F C000 C100 FF
Fill the block of memory from $C000 to $C100 with the byte $FF.

*Go run .G C000
Go to address $C000 and execute the code found there.

*Hunt memory .H C000 C100 ‘READ
Hunt through memory from $C000 to $C100 for the ASCII string READ,
and print out the location(s) where it was found.

*Load .L "FRED",08
Load the program FRED from device 8 (or device 1, or device ...)

*Memory display .M CO000 C100
Display the bytes of memory from $C000 to $C100. These can then
be altered by typing over them and hitting RETURN.

*Register display .R
Display the state of the registers when the monitor was first entered.

151

*Save .S "FRED",01,C000,C100
Save the block of memory from $C000 to $C100 onto device 01, and
call it FRED.

*Transfer memory .T C00Q C100 C500
Transfer memory in the range $C000 to $C100 and start storing it at
$C500.

*Exit to Basic X
Return to Basic ready mode.

MONMAKER — BASIC LDADER FOR DISASSEMBLER

500 DATAL39S,b669,5692,7248,7628,6783,7068,7420,74
31,6285,8644,7437,8180

502 DATALT18,5441,63466,8341,6710,6920,6460,6755,71
09,6851 ,6799,7710,6215

504 DATA7172,7043,6911,6860,7882,7656,7607,7687,58
es,3983,4118,5337,6028,7231
1001 DATA169,11,141,32,208,141
1002 DATA33,208,165,45,133,34
1003 DATA145,46,133,35,165,55
1004 DATA133,36,165,56,133,37
1005 DATA160,0,165,34,208,2
1006 DATA198,35,198,34,177,34
1007 DATAZ208,60,165,34,208,2
1008 DATA198,35,198,34,177,34
1009 DATA240,33,133,38,145,34
1010 DATAZ08,2,198,35,198,34
1011 DATA177,34,24,101,36,170
1012 DATA165,38,101,37,72,165
1013 DATASS,208,2,198,56,198
1014 DATASS,104,145,55,138,72
1015 DATA145,55,208,2,198,56
101&¢ DATA198,55,104,145,55,24
1017 DATA144,182,201,79,208,237
1018 DATA165,55,133,51,1465,56
1019 DATA133,52,108,55,0,79
1020 DATA79,79,79,173,230,255
1021 DATAO,141,22,3,173,231
1022 DATAZ55,0,141,23,3,169
1023 DATA128,32,144,255,0,0
1024 DATAZ16,104,141,62,2,104
1025 DATA141,61,2,104,141,40
1026 DATAZ,104,141,59,2,104
1027 DATA170,104,148,56,138,233
1028 DATAZ,141,58,2,152,233
1029 DATA0,0,141,57,2,186

1030 DATA142,63,2,32,87,253
1031 DATAO,162,66,169,42,32
1032 DATAB7,250,0,169,82,208

162

1033
1034
1035
1034
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
10546
1057
1058
1059
10460
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

DATAS2,230,193,208,6,230
DATA194,208,2,230,38,96
DATA32,207,255,201,13,208
DATAZ48,104,104,149,144,32
DATA210,255,169,0,0,133
DATA38,162,13,169,46,32
DATAB7,250.0,169,5,32
DATA210,255,32,62,248,0
DATA201,46,240,249,201,32
DATAZ240,245,1462,14,221,183
DATAZ55,0,208,12,138,10
DATA170,189,199,255,0,72
DATA189,198,255,0,72.94
DATAZ202,16,236,76,237,250
DATAO,165,193,141,58,2
DATA165,194,141,57,2,96
DATA149,8,133,29,1460,0
DATAO,32,84,253,0,177
DATA193,32,72,250,0,32
DATAS1,248,0,198,29,208
DATA241,96,32.136,250,0
DATA144,11,162,0,0,129
DATA193,193,193,240,3.76
DATA237,250,0,32,51,248
DATAO,198,29,96,169,5%
DATA133,193,16%,2,133,194
DATA169,5,96,152,72,32
DATAB7,253,0,104,162,46
DATA74,87,250,0,149,144
DATA32,210,255,162,0,0
DATA189,234,255,0,32,210
DATAZSS,232,224,22,208,245
DATA160,59,32,194,248,0
DATA173,57,2,32,72,250
DATA0,173,58,2,32,72
DATAZ250,0,32,183,248,0
DATA32,141,248,0,240,92
DATA32,62,248,0,32,121
DATAZ250,0,144,51,32,105
DATA250,0,32,62,248,0
DATA32,121,250,0,144,40
DATA32,105,250,0,14%,144
DATA32,210,255,32,225,255
DATA240,40,14656,38,208,56
DATA165,195,197,193,165,196
DATA229.194,144,45,140,58
DATA32,194,248,0,32,465
DATAZ250,0,32,139,248,0
DATA240,224,76,237,250,0
DATAZZ2,121,250,0,144,3
DATA32,128,248,0,32,183

163

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

154

paTA248,0,208,7,32,121
DATAZ250,0,144,235,16%,8
DATA133,29,32,62,248,0
DATA32,161,248,0,208,248
DATA76,71,248,0,32,207
DATAZ55,201,13,240,12,201
DATA32,208,209,32, 121,250
DATAO,144,3,32,128,248
DATAO,169,144,32,210,255
DATA174,63,2,154,120,173
DATAS7,2,72,173,58,2
DATA72,173,59,2,72,173
DATAL0,2,174,61,2,172
DATALZ,2,64,169,144,32
DATA210,255,174,63,2,154
DATA108,2,160,160,1,132
DATA186,132,185,136,132,183
DATA132,144,132,147,169,64
DATA133,187,169,2,133,188
DATA32,207,255,201,32,240
DATAZ249,201,13,240,56,201
DATA34,208,20,32,207,255
DATAZ01,34,240,16,201,13
DATA240,41,145,187,230,183
DATA200,192,16,208,236,76
DATAZ37,250,0,32,207,255
DATAZ01,13,240,22,201,44
DATA208,220,32,136,250,0
DATA41,15,240,233,201,3
DATA240,229,133,184,32,207
DATAZ255,201,13,96,108,48
DATA3,108,50,3,32,150
DATAZ49,0,208,212,169,144
DATA32,210,255,169,0,0
DATA32,239,249,0,1585,144
DATA41,16,208.196,76,71
DATAZ248,0,32,150,249,0
DATAZ201,44,208,186,32,121
DATAZS0,0,32,105,250,0
DATA32,207,255,201,44,208
DATA173,32,121,250,0,165
DATA193,133,174,165,194,133
DATA175,32,105,250,0,32
DATA207,255,201,13,208,152
DATA169,144,32,210,255,32
DATA242,249,0,74,71 ,248
DATAO, 165,194,32,72,250
DATAO,165,193,72,74,74
DATA74,74,32,96,250,0
DATA170,104,41,15,32,96
DATA250,0,72,138,32,210

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1145
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

DATA255,104,76.210,255.9
DATA48,201,58,144,2,105
DATAL,96,162,2,181,192
DATA72,181,194,149,192,104
DATA149,194,202,208,243,96
DATA32,136,250,0,144,2
DATA133,194,32,136.250,0
DATA144,2,133,193,96,169
DATA0,0,133,42,32,62
DATA248,0,201,32,208,9
DATA32,62,248.0,201,32
DATAZ208,14,24,96,32,175
DATA250,0,10,10,10,10
DATA133,42,32,62,248.0
DATA32,175,250.0,5,.42
DATAS6,96,201,58,144,2
DATA105,8,41,15,96,162
DATAZ,44,162,0,0,180
DATA193,208,.8, 180,194,208
DATAZ,230,38,214,194,214
DATA193,96,32,62,248,0
DATAZ201,32,240,249,96,169
DATA0,0,141,0,0,1
DATA32,204,250,0,32, 143
DATA250,0,32,124,250,0
DATA144,9,96,32,462,248
DATAO0,32,121,250,0,176
DATAZ222,174,63,2,154,169
DATA144,32,210.255, 169,63
DATA32,210,255,76,71,248
DATAO0.32,84,253,0,202
DATAZ208,250,96,230, 195,208
DATAZ2,230,196,96,162.2
DATA181,192,72,181,39,149
DATA192,104,149,39,202,208
DATA243,56,145,195, 164,194
DATAS6,233,2,176.14,136
DATA144,11,165,40,164,41
DATA76,51,251,0,165,195
DATA164,196,56,229,193, 133
DATA30,152,229,194,1468.5
DATA30,96,32,212,250,0
DATA32,105,250,0,32, 229
DATA250,0,32,12,251,0
DATA32,229,250,0,32,47
DATAZ?S1 ,0,32,105,250,0
DATA144.21,1446,38.208.100
DATA32,40,251,0,144,95
DATA161,193,129,195,32,.5
DATAZ51,0,32,51,248,0
DATAZ08,235,32,40,251,0

1186 DATAZ4,165,30,101,195,133
1187 DATA195,152,101,196,133,194
1188 DATA3Z2,12,251,0,144,38
1189 DATA208,61,161,193,129,195
1190 DATA32,40,251,0,176,52
1191 DATA3Z,184,250,0,32,187
1192 DATA250,0,76,125,251,0
1193 DATAZZ2,212,250,0,32,105
1194 DATA250,0,32,229,250,0
1195 DATAZ2,105,250,0,32,462
1196 DATA248,0,32,136,250,0
1197 DATA144,20,133,29,166,38
1198 DATA208,17,32,47,251,0
1199 DATA144,12,165,29,129,193
1200 DATA32,51,248,0,208,238
1201 DATA76,237,250,0,76,71
1202 DATA248,0,32,212,250,0
1203 DATA32,105,250,0,32.229
1204 DATAZS0,0,32,105,250,0
1205 DATA3Z,62,248.0,162.0
1206 DATAO,32,62,248,0,201
1207 DATAZ9,208.20.32,62,248
1208 DATA0,157,16,2,232,32
1209 DATAZ207.255,201,13.240.34
1210 DATA224,32,208,241,240,28
1211 DATA142.0,0,1,32,143

1212 DATA250,0,144,198.157,16
1213 DATAZ.232.32.207.255.201
1214 DATA13,240,9,32,136,250
1215 DATAQ,144,182.224.32.208
1216 DATA236,134,28,169,144 .32
1217 DATA210,255,32.87.253.0
1218 DATA162,0,0,160,0.0

1219 DATA177,193,221,16,2.208
1220 DATA1Z,200,232,228,28,208
1221 DATAZ243.32,65.250.0.32
1222 pDATAS4,253,0,32,51,248
1223 DATAO.166.38.208.141,32
1224 DATA47,251,0.176,221.76
1225 DATA71,248.0.32,212,250
1226 DATAO,133,32.165,194.133
1227 DATA3Z,162.0.0,134,40
1228 DATA169,147,32,210,255.169
1229 DATA144.32.210,255.169.22
1230 DATA133,29,32.106,252,0
1231 DATAZT2,202 _ 252_.0,1FT3T .12
1232 DATA132,194,198,29,208.242
1233 DATA169.145,32.210.255.76
1234 DATA71,248,0,160,44,32
1235 DATA194.248.0.32.84,253
1236 DATAO,32,65,250,0.32

156

1237
1238
1239
1240
1241
1242
1243
1244
1245
12446
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
12464
1265
1266
1267
1268
1249
1270
1271
1272
1273
1274
1273
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

DATAB4,253,0,162,0,0
DATA161,193,32,217,252.0
DATA72,32.31,253,0.104
DATA32,53,253,0,162,6
DATA224,3,208,18,164,31
DATAZ240,14,1465,42,201,232
DATA177,193,176,28,32,194
DATA252,0,136,208,242.6
DATA42,144,14,189,42,255
DATAO,32,165,253,0,189
DATA48,255,0,240,3,32
DATA165,253,0,202,208,213
DATA94,32,205,252,0,170
DATA232,208,1,200,152,32
DATA194,252.,0.138, 134,28
DATA3Z,72,250,0,1466,28
DATA%6,1465,31,56,164,194
DATA170,16,1,136,101,193
DATA144,1,200,96,148,74
DATA144,11,74,176,23,201
DATA34,240,19,41,7,9
DATA128,74,170,189,217,254
DATAO,176,4,74,74,74
DATA74,41,15,208,4, 160
DATA128,169,0,0,170,189
DATA29,255,0,133,42,41
DATA3,133,31,152,41,143
DATA170,152,160,3,224,138
DATA240,11,74,144,8.74
DATA74,9,32,136,208,250
DATAZ200,136,208,242,96.177
DATA193,32,194,252,0,162
DATA1,32,254,250.0,196
DATA3Z1,200,144,241,162,3
DATA192,4,144,242,96,168
DATA185,55,255,0, 133,40
DATA185,119,255,0,133,41
DATA169,0,0,160,5,6
DATA41,38,40,42,136,208
DATA248,105,63,32,210,255
DATA202,208,236,149,32,44
DATA169,13,76,210,255,32
DATA212,250,0,32,105,250
DATAO,32,229,250,0,32
DATA10S,250,0,162,0,0
DATA134,40,149,144 ,32,210
DATA255,32,.87.253,0,32
DATA114,252,0,32,202,252
DATAO,133,193,132,194,32
DATA225,255,240,5,32,47
DATA251,0,176,233,76,71

157

1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308
13209
1310
1311

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337

1338

188

DATA248,0,32,212,250,0
DATA169,3.133,29,32.62
DATA248,0,32,161,248,0
DATA208,248.,165,32,133,193
DATA165,33,133,194,76,70
DATA252.0,197,40,240.3
DATA3Z2,210,255,96,32,212
DATAZ250.0,32,105,250.0
DATA142,17,2,162,3,32
DATAZ204,250,0,72,202.208
DATA249,162,3,104,56,233
DATAL3.160,5,74.110,17
DATAZ,110,16,2,136,208
DATA244,202,208,237,162,2
DATA32,207,255,201,13,240
DATAZ0,201,32.240,245,32
DATAZ08,254,0,174,15,32
DATA156,250,0,164,193.132
DATA194,133,193,169,48,157
DATA16,2,232,157,14.2
DATAZ3Z,208,219,134,40,162
DATAO,0,134,38,240,4
DATAZ30,38,240,117,162,0
DATAD,134,29,165,38,32
DATAZ17,252,0,166,42,134
DATA41.170,188.55.255,0
DATA1B9,119,255,0,32,185
DATAZ54,0.208,227.162,6
DATAZ24,3,208,25,164 .31
DATAZ40,21,165.42,201 ,232
DATA149,48,176,33,32,191
DATAZ54,0,208,204,32,193
DATA254,0,208,199.134,208
DATAZ235.6,42,144,11.188
DATA4B,255,0.189,42,255
DATAO,32,185,254,0,208
DATA1B81,202,208,209,240,10
DATAZ2,184,254 0,208,171
DATA3Z2,184,254,0,208,166
DATA165,40,197.29,208.140
DATA32,105,250,0, 164,31
DATA240.40,165,41,201,157
DATAZ(8,26,32,28,251.0
DATA144,10,152,208,4, 145
DATA30,16,10,76,237,250
DATAD,200,208,250, 165, 30
DATA1&,246,164,31,208,3
DATA185,194,0,0,145,193
DATA136,208,248, 165,38, 145
DATA193,32,202,252,0,133
DATA193,132,194,169,144,32

1339 DATAZ10,255,160,65,32,194
1340 DATAZ248,0,32,84,253,0

1341 DATA3Z,65,250,0,32,84

1342 DATAZS3,0,169,5,32,210
1343 DATAZS55,76,176,253,0,168
1344 DATA32,191,254,0,208,17
1345 DATA152,240,14,134,28,146
1346 DATAZ9,221,16,2,8,232

1347 DATA134,29,164,28,40,96
1348 DATAZ01,48,144,3,201,71
1349 DATAD6,56,96,64,2,69

1350 DATA3,208,8,64,7,48

1351 DATA34,69,51,208,8,44

1352 DATAT,64,2,69,51,208

1353 DATAB,64,9,64,2,69

1354 DATA179,208.8,64,9,0

1355 DATAO,34,68,51,208,140
1356 DATAGLB,0,0,17,34,68

1357 DATAS1,208,140,48,154,16
1358 DATA34,68,51,208,8,544

1359 DATAY,16,34,68,51,208

1360 DATAB,464,9,98,19,120

1361 DATA1469,0,0,33,129,130
1362 DATA0,0,0,0,89,77

1363 DATA145,1446.134,74,133,157
1364 DATA44,41,44,35,40,36

1365 DATAS9,0,0.88,36,36

1366 DATA0,0,28,138,28,35

1367 DATA93,139,27,161,157,138
1368 DATAZ9,35,157,139,29,161
1369 DATA0,0,41,25,174,105

1370 DATA1648,25,35,36,83,27
1371 DATA3S5.36,83,25,161.0

1372 DATAO,26,91,91,165,105
1373 DATA3ZL,36,174,174,168,173
1374 DATA41,0,0,124,0,0

1375 DATA21,156,109,156,165,105
1376 DATA41,83,132,19,52,17
1377 DATA165,105,35,160.216,98
1378 DATA%0,72,38,98,148,136
1379 DATAB4,68,200,84,104,68
1380 DATA232,148,0,0,180,8

1381 DATA132,116,180,40,110,116
1382 DATAZ44,204,74,114,242,144
1383 DATA138,0,0,170,162,162
1384 DATA116.116.116.114.68.104
1385 DATA178,50,178,0,0,34

1386 DATAD,0,26,26,38,38

1387 DATA114,114,1346,200,1946,202
1388 DATA38,72,48,68,162,200
1389 DATASS,59,82,77,71,88

1390 DATA76,83,84,70,72,68

1391 DATABO,44,45,66,249,0

1392 DATAS3,249,0,204,248,0

1393 DATA247,248,0,B86,249,0

1394 DATA137,249,0,244,249,0

1395 DATA12,250,0,62,251,0

1396 DATA146,251,0,192,251,0

1397 DATASL,252,0,%1,253,0

1398 DATA138,253,0,172,253,0

1399 DATA70,24B,0,255,247,0

1400 DATA237,247,0,13,32,32

1401 DATA32,80,47,32,32,83

1402 DATAB2,32,45,67,32,88

1403 DATAB2,32,89,82,32,83

1404 DATABO,52,55,44,49,54

1405 DATAS7,44,54,52,0,16

1406 DATA18,78,4.131,49,51

1407 DATAS1,44,49,56,55,44

1408 DATA49,54,57,44,50,44

1409 DATA49,51,51,44,49,56

1410 DIMC(40):FORI=1TDA0:READC (1) :NEXT: I=0
1420 1=1+1:FORJ=0TO5

1422 IF I=404THENPOKE4586,80: END

1425 READA: B=B+A: POKE2162+I%6+J ,A: NEXTJ
1430 IFI1/10=INT(I/10) THEN1450

1440 GOTO1420

1450 IFB<>C(INT(I/10))THENPRINT"ERROR IN LINES ":9
91+13"~"31000+1:" B=";B

1460 B=0:G0T01440

READY.

160

8
Machine Code: Mathematical
Operations

Multiplication

We saw in chapter 6 how to handle addition and subtraction in machine
code, and you could be forgiven for thinking that, just like the com-
mands SBC and ADC for those mathematical operations, there would
be a couple of commands to handie muitiplication and division.

Unfortunately there aren’t, and so multiplication has to be handled
as a series of additions. To multiply, say, 4 by 5, you have to perform
the calculation 4+ 4 + 4+ 4+ 4, In other words, add 4 to 0 five times,
which can easily be achieved by a simple looping procedure.

For example:

CO0O0 A0 05 LDY #$03

Co0o2 A2 00 LDA ##%00

Co04 69 04 ADC #+04

Coo6 88 DEY

COO07 DO FB BNE $C004
CoO09 8D 00 04 STA %0400
CoO0OC A9 00 LDA #$00

COOE 8D 00 D8 STA #DBOO
Co11 &0 RTS

Step by step then:
Load the Y register with 5.
Load the accumulator with 0.

Add 4 to the contents of the accumulator.

161

Decrement the Y register.

If the result of decrementing the Y register is not equal to zero then
branch back and add another 4 to the accumulator.

Store the accumulator at memory location $0400 (the top left hand
corner of the screen).

Load the accumulator with 0.

Store it at the colour memory location that handles the top left hand
corner of the screen.

Return from this subroutine.

Now this is all very well if we don’t wish to add up numbers greater
than 255. If we do, however, the accumulator will keep flipping back
to zero and a carry will be registered each time our sum exceeds 255,
and thus 256 will be lost from our answer each time that happens.
One way to check for this is, if a carry is set, add one to the memory
location that will be handling the high order value of the number, which
can be done using the INC command. The INC command adds one
to the contents of a specified memory location. If the answer is going
to exceed 256 times 256, or 65536, then yet another memory location
will be needed to check for another carry. For now, we'll stick to smaller
numbers.

This small program multtiplies 25 by 24, and displays the resuit on the
screen. Of course, since the screen codes used for displaying charac-
ters are never the same as the character to be represented (that is,
the number 16 doesn't have a screen code of 16), instead of numbers
being printed up we get letters appearing instead. Oh well.

CO00 AZ 00 LDX #£00
C002 8E 25 CO STX $C023
CO05 A2 19 LDX #$19
CO07 AT 00 LDA #$00
Co0? 18 CLC

CooA &7 18 ADC #%+18
cCooc 0 03 BCC $CO11
COOE EE 25 CO INC $CO025
COo11 DO FéA& BNE $C009

Co13 8D 02 04 STA #0402
COl4 AD 25 €O LDA #CO025
COo19 8D 00 04 STA #0400
Co1C A9 00 LDA #$00

162

CO1E 8D 02 D8 STA #DB02
€021 8D 00 D8 STA $DBO2
€024 460 RTS

As usual, we'll go through this one instruction at a time.
Load the X register with a zero.

Store it in location $C025, which is where we'll handle the high order
value of the result of multiplying 25 by 24.

Load the X register with $19, or decimal 25, which is the number of
times we’ll perform this addition.

Load the accumulator with zero to get it ready for receiving the low
order value.

Clear the carry flag before addition.
Add 24 to the value held in the accumulator.

If a carry isn't set, then we Branch on Carry Clear forward three lo-
cations.

Otherwise, increment the high order value at $C025.
Decrease the value in the X register by one.

If the result of that isn't equal to zero, then branch back and add
another 24 to the accumulator.

Finally, store the result on the screen by placing the value in the ac-
cumulator at location $0402, picking up the high order value from
$C025, and placing that at $0400. Put some colour into the locations,
and retreat from this routine.

in the above example, it doesn’t really matter whether we multiply the
numbers in the order 25 by 24, or 24 by 25, since we'll still be making
roughly the same number of passes around our main routine. However,
if you wanted to multiply 5 by 1000 it would obviously be a lot quicker
to do it one way than another. You'd probably have to write a short
routine to make sure that the quickest route was taken, although the
time required to perform that routine might well outweigh the advan-
tages of running it in the first place.

163

Division

Just as multiplication has to be treated as a series of additions, so di-
vision has to be treated as a series of subtractions. In the multiplica-
tion program above, we had to clear the carry flag before adding the
numbers up. With subtraction, we have to set the carry flag before
subtracting them. In the following example, we'll divide 86 by 4.

CO00 AOD OO0 LDY #%00
Co02 A2 04 LDX ##04
C0o04 AE 40 CO STX £C040
COO7 a7 Sa LDA #5564
Co0% 38 SEC

COo0A E7 Q4 SBC #$04
cooc cs INY

COOD CD 40 CO CMP $CQ040
CO010 BO F7 BCS #$C009

COo12 8C 00 04 STY $0400

CO15S 8D 02 04 STA $0402

Co18 A? 00 LDA #+00

CO1A 8D 00 04 STA $0400

CO1D 8D 02 04 STA $0402

CO20 &0 RTS

One line at a time:

Load the Y register with a zero.

Load the X register with 4, since this is what we want to divide by.

Store the X register at location $C040, so we can keep an eye on it.

Load the accumulator with $56, or decimal 86, since this is what we
want to divide.

Set the carry flag before subtraction.
Subtract 4 from the value held in the accumulator.
Increment Y, since this is holding the quotient.

Compare the accumulator with the value previously stored at $C040.

164

If the carry flag is still set then branch back and take four away again.

It isn’t set, so we can store the quotient on the screen, and the re-
mainder is the value held in the accumulator. We finally colour our
result on the screen in black so that you can see it, and then exit from
the program.

There is a further way of carrying out mathematical operations, which
involves something known as Binary Coded Decimal arithmetic, or
BCD for short, which is switched on or off with the commands:

SED : SEt Decimal mode of operation.
CLD : CLear the Decimal flag.

You may recall the decimal flag {D) from our earlier discussion on the
status register. When this flag is set, the 6502 is all ready to handle
BCD. You must clear the flag after you've finished, otherwise dire con-
sequences will occur.

BCD is a strange animal. The main difference between this and ordi-
nary arithmetic, is that a carry occurs after each half-byte (or four bits)
exceeds 9. What possible use is this, you may wonder. Well, for one
thing this notation acts as a link between binary {which the machine
likes to work in) and decimal (which we like to work in}). For instance,
if the answer to an addition sum was decimal 23, in ordinary binary
this would have been stored as:

00010111

In other words, 23. However, in BCD this is looked at not as one byte,
but as two nibbles, like this:

0001 0111
Which represents 1 times 10 from the left hand nibble, plus 7 from
the right hand nibble, which of course equals 17.

Binary multiplication
We’ve already seen that there are a number of commands available
to us for manipulating the bits within a byte: ROL, ASL and so on.

Hence it would seem to make sense to use these commands in some
kind of sensible fashion. One of their most powerful uses comes into

165

effect when we consider the topic of binary multiplication. Up until
now, we’ve been handling our arithmetical calculations in the kind of
way that we've been used to doing ever since leaving school. However,
the 6510 doesn’t particularly like this manner of dealing with numbers,
and so the techniques involved for handling multiplication and divi-
sion in a conventional way can, at times, get very complicated.

The 6510 prefers to work in binary, and using the aforementioned shift-
ing and rotating instructions, arithmetical operations become much
more straightforward.

Let us consider the way we would normally multiply two numbers
together, say 123 and 89.

123

89
1107 - known as partial product 1.
0984 - known as partial product 2.

10947

You can see that, as we multiply by each humber, we move along
one row of digits. More correctly, we are increasing the power of ten
by 1 each one each time we produce a new partial product. Binary
arithmetic follows much the same rules, and using the same numbers
our sum now becomes, in binary:

01111011 - 123
01011001 - 89

01111011
00000000
[elelelelulelole}
01111011
1111011
00000000
01111011
00000000

010101011000011 - 10947

The only difference here is that each time we move the partial product
to the left, we're increasing by a power of two, not a power of ten
as in ordinary decimal arithmetic.

166

However, there are two fundamental differences in the way that the
computer performs this operation and the way that we've just done it.

(1) It keeps a running total as it goes along, which is updated after
each partial product has been calculated, whereas we wait until the
end and then add the whole lot up.

(2) When we multiply, each digit is examined from right to left, and
each line is moved along one power of ten or two depending on what
system we're working in. On the 6510 it's far easier to rotate the cur-
rent partial product one row to the left (as we would) or to the right.
This latter option is known as high order to low order multiplication.

Such sums as the one we covered above come under the heading
of 16 bit multiplication, since the answer is a number way in excess
of 255. For the time being we’ll just look at 8 bit multiplication (since
it's easier to understand!) and multiply together the two numbers 11
and 8.

COoQ0 AZ 08 LDX #%08
Co02 AD OB LDY #$0R
COoG4 BE 40 CO STX $#C040
Co07 B8C 41 CO S5TY $C041

CooA AQ 08 LDY #+08
COoC A7 QOO LDA #3000
coab 18 CLC
COOE 4E 41 CO LSR #C041
CO11 Q0 04 BCC $C018
Co14 18 cLc

CO15 6D 40 CO ADC $CO40
€018 OE 40 CO ASL *CO040

CO1B 88 DEY
Co1C DO FO BNE $COOE
CO1E 8D OO0 04 STA %0400
C021 A9 00 LDA #$00
CO23 8D 00 DB STA #DBOO
Co26 &0 RTS

In our usual way, we'll examine this listing one line at a time.
In the first line, we load the X register with an 8.

Then, ioad the Y register with $0B, or decimal 11. These are the two
numbers that we’ll be multiplying.

167

Store the X register at a ‘safe’ location, $C040.
Ditto for the Y register, at location $C041.

Load the Y register with an 8. Since we're dealing with 8 bit numbers
only, we're going to pass through this loop 8 times. Unfortunately,
16 bit numbers cannot be handled purely by loading this register with
a 16, as we shall see.

Load the accumulator with a zero.

Clear the carry flag.

Shift the content of location $C041 logically one place to the right (re-
read the section on the shift and rotate commands if you've forgotten
the result of doing this).

If no carry has been set, then branch forward four bytes.

Clear the carry flag again.

Add to the accumulator, with carry, the content of memory location
$C040.

Shift every bit in the accumulator one bit to the left.
Decrease the Y register.
If we haven’t done all 8 passes, then switch back to location $COOE.

We have finished, so store the result on the screen and give it some
colour so that we can actually see it.

Unfortunately this routine will not work on two numbers that, when
multiplied together, give an answer that is greater than 255. The rea-
son for this lies in the way that the ASL command works. Each time
we progress through the main program loop, every bit is shifted one
bit to the right, and by the eighth time around the bit that originally
started off at the right hand edge of the byte will have ‘fallen off’ the
left hand edge.

This loss of leftmost bits is obviously quite important, since it would
result in errors creeping into the calculations. However, the bit isn't
actually lost, it is caught up in a carry. So as long as we can keep
track of any carry that might be generated, it becomes possible to

168

multiply together any combination of numbers up to and including 255.
We're still only working on 8 bits, remember: 16 bit numbers come later.

So, by using our old friend the ROL command, we should be able
to multiply two 8 bit numbers together regardless of their size, and

the following program demonstrates this in action.

B*

FC SR AC XR YR SFP
. $9F79 33 00 61 Q0 Fb6

COQO
coo2
C00S
€007
cooA
CooC
COOF
Co12
CoO1S
Coi7
CoO1A
CoicC
COiF
Co20
Co23
Co26
coz29
cCo2C
CO2F
Co32
CO35
Co3s6
co38
CO3B
COZE
Co41l
coaa
Co46
co4%
coac
co4D

AR
8D
AR

FO
QQ
F1
04
00
02
0&6
07
08
00
13
06

Q4
06
Q7
o2
07
04
02

DF
06
01
o7
¢]0]
00
01
00

C1

LDA
8STA
LDA
8TA
LDA
STA
STA
STA
LDY
LSR
BCC
LDA
cLC
ADC
STA
LDA
ADC
STA
ASL
ROL
DEY
BNE
LDA
STA
LDA
STA
DA
8TA
8TA
RTS
7?7

#EFO
*C100
#EF1
$C104
#$00
$C102
#C106
£C107
#$08
$C100
$CO2ZF
*C1046

$C104
$C106
$C107
$C102
$C107
¥C104
*C102

$C017
$¥C106
$0401
$C107
$0400
#£00

$D801
£DBOO

169

The numbers are stored at locations $C001 and $C006, if you want
to multiply numbers other than $F0 and $F1, or in decimal terms 240
and 241.

To multiply two larger numbers together, the next program multiplies
1000 by 250, to get the obvious result of 250000. Those numbers, in
low-high order format, are stored in locations $C009 and $COOE, $C013
and $C018 respectively.

See if you can figure out what's happening. The key to the routine

lies in locations $CO3D to $C048. The result is stored as a 32-bit num-
ber, in locations $C105 to $C108 respectively.

CO0O0 A9 OO LDA #%00

Co02 8D 06 Cit STA $C106
Co05 8D 07 Ci STA $C107
€008 A7 EB LDA ##$E8

Co0A 8D 00 Ci STA $C100
COOD A9 03 LDA ##£03

COOF 8D 01 Ci STA #$Ci01
Co12 A9 FA LDA #%FA

Co14 8D 02 Ci STA $C102
Co17 A% 00 LDA #$00

Co19 8D 03 Ci STA $C103
CoiCc A9 00 LDA #$00

CO1E EAR NOP

CO1F EA NOP

C020 EA NOP

co21 EA NOP

Co22 A2 10 LDX ##10

C024 4E 01 C1 LSR $C101
Co27 6E 00 Cit ROR $C100
Co2A 90 10 BCC $CoO3C
Co2C AD 046 C1 LDA $C104
CO2F 18 CLC

Co30 40 02 Ci ARC #C102
C033 8D 04 Ci STA $C106
C03& AD ©O7 C1 LDA #Ci107
€039 6D 03 Ci ADC #$C103
Co3C &A ROR

Co3D 8D 07 C1 STA $C107
C040 6E 06 C1 ROR #C106

170

C043
Co46
€049
Co4A
Co4C

05 Ci1
04 Ci

D8

ROR
ROR
DEX
BNE
RTS

$C105
$C104

$CO24

171

9
Machine Code: Indirect
Addressing

Introduction

We’'re coming to the end of our first foray into machine code, and
now it’s time to tidy up a few loose ends, including a quick look at
using built-in subroutines, adding commands to BASIC, and one last
discussion on indirect addressing, as promised.’

| can do little better at this point than to quote the authoritative voice
of Dave Parkinson, of Ariadne Software, in a letter he once sent to
me regarding this subject. I'd spoken briefly about indirect addressing
in an earlier book, and Dave was quick to point out that one or two
things weren’t quite right. And | quote:

"Like the rest of humanity, you are confused about indirect addressing!

'Life is made complicated by the fact that all the indirect modes {ex-
cept JMP indirect) are indexed using the X or Y registers, so let’s sup-
pose for the time being that they weren’t. If so, immediate, absolute
and indirect addressing would form a hierarchy as follows:

‘LDA #FRED : means load the accumulator with the byte FRED im-
mediately following the op-code.

'LDA FRED : means look in memory location FRED, and load the ac-
cumulator with the byte that you find there.

‘LDA (FRED) : means look in memory locations FRED and FRED + 1,
interpret the bytes that you find there as an address, look in the loca-
tion with that address, and load the accumulator with the byte that
you find there. In other words, FRED is interpreted as a POINTER to
the byte that you want.

172

'Unfortunately, for reasons known only to Chuck Peddle (and he's
probably forgotten), life is more complicated than this, as the 6502
{father of the 6510 used in the 64) was designed without a simple LDA
(FRED), but with two (different) indexed indirect addressing modes,
LDA (FRED),Y and LDA (FRED,X).

"The first of these is known as INDIRECT INDEXED addressing, and
it is vital to know how to use it. If you don’t, then you end up with
code at least four times longer than it needs to be, plus you make an
idiot of yourself by writing letters to the computer press saying that
the 6502 is an inferior chip to the Z80 (e.g. the authors of the Hobbit).

"The effect of LDA (FRED),Y is to look in the zero-page addresses
FRED and FRED + 1 and interpret the bytes that you find there as an
address. You then add Y onto this address, look at the address which
results, and load the accumulator with the byte that you find there.

'An example is a subroutine to print a string terminated by a carriage
return. This routine is called by loading A and Y with the high and
low bytes of the address of the start of the string, then calling the print
routine. For example:

LDA # <STRING
LDY # >STRING
JSR PRINT

{more code).

{Here we're using descriptors, as encountered in some assemblers,
rather than our more familiar #$CO000, etc. Just interpret the words
as addresses, e.g. JSR PRINT means jump to the PRINT subroutine
in the 64's internals).

"The print subroutine would then be as follows:

PRINT STA POINTER ; set up pointer to string in
page zero

STY POINTER +1
LDY #0 : start with first byte.

PRIN10 LDA (POINTER),Y ; get a byte
JSR CHROUT ; Kernal character out routine

173

INY ; prepare for next byte

CMP #$0D : reached the end
BNE PRIN10 ; if not, keep going
RTS : the end

‘The other indirect addressing mode, INDEXED INDIRECT address-
ing using the X register, LDA (FRED,X) is hardly ever used in
6502-based computers. The effect of it is to add X onto FRED, look
in FRED + X and FRED + X + 1, interpret these bytes as an address,
and load the accumulator with the byte to be found at this address.
The mode is useful in 6502-based control applications, when you might
have a whole load of 1/0 chips, and a table of their addresses in page
zero. The only time you might use it on the 64 is with X equal to zero;
LDA (FRED),Y and LDA {(FRED, X) are equivalent if X and Y are both
zero.

‘Confusing, isn't it?’
It certainly is, but | hope Dave’s comments will shed some light on

the subject. All writs and lawsuits will be forwarded to him as soon
as they arrive at the publishers!

174

10
Machine Code: Built-in
Subroutines

Introduction

We are now going a little bit beyond the scope of this present introduc-
tory tome (it is after all an introduction, not a machine code Bible),
but a few general words of advice might be in order here.

Linking to BASIC

There are two ways of accessing and using machine code from BASIC,
rather than simple PEEKs and POKEs, which allow us to look at and
alter the contents of various memory locations.

The first that we'll look at is USR. As you may know, this sends a
variable (A =USR(B)) B to the floating point accumulator.

Control then jumps to the machine code routine whose address is
found from locations 784 and 785. Thus by altering those two loca-
tions before the USR call, we can pass variables to and from machine
code subroutines, and hence mix BASIC and machine code within
the same program.

The following short example should serve to demonstrate this:

10 PRINT "[CLR1"

20 POKE 784,0 : REM LSB

30 POKE 785,192 : REM MSE (=$CO)
40 B=123

50 A=USR(B)

60 PRINT "L[CD1A ="3A

Provided that we have earlier put an RTS into memory location $C000

175

(this can be achieved by using the statement POKE 49152,96), con-
trol will go to that memory location, encounter the RTS and come
back, and our BASIC program will then print out the content of the
floating point accumulator.

SYStem calling

As you will see from the memory maps at the end of this section, the
Commodore 64 is equipped with a wealth of internal machine code
subroutines that can be accommodated within your own programs.
However, our usual conflict arises in that the 64 wants to use them
as much as you do. Consequently, using these routines for the inex-
perienced programmer can be a daunting prospect, and we're not go-
ing to go into any great detail in this book.

However, a few words of advice:

(1) It may seem obvious, but do study the memory maps to see where
these routines start.

(2) Use an assembler before attempting to use any of them. Disas-
semble the listing for the various routines, and see where they start
and end, and where they go to while in operation. Some of them will
have additional subroutines built into them, which cause program con-
trol to skip about all over the place.

(3) Find out where these routines pick up their data from and where
they subsequently store the resuit.

(4) Bear in mind that they will be using the accumulator as much as
you want to, and programs will need careful thought if they are to
work correctly.

With the disassembler option in most assemblers, and the complete
memory maps to guide you around, using built-in routines is not as
difficult as it might first appear.

Musical interlude

Before we start dissecting some of the workings of the 64 in the next
chapter, a musical interlude. We've already taken a look at graphics,
and sprites in particular, so it’s about time that the other great feature
of the 64 got a look in as well.

176

The programs that follow are to a large extent based on the theories
outlined in chapter 11, and the method used there to start adding com-
mands to BASIC. See if you can follow the methods used now, rather
than waiting for the explanation then.

A couple of BASIC driver programs will be given first. No real differ-
ence between them, except that they produce slightly different sounds
when used with the various programs. Either can be used with any
of the musical data to follow.

The music, when played, will continue to carry on whatever else the
64 is doing, provided that the ‘whatever else’ doesn’t involve loading
or saving to and from disk, or using some other external device. This
is demonstrated (simply, | must admit) in the first driver program, which
just prints the value stored in the 64’s internal clock in the top left hand
corner of the screen.

This is just one way of producing those irritating background tunes
so common in arcade games for the 64!

MUSIC DRIVER 1

10 S=54272: POKES+3,124

15 POKES+5,121:POKES+4,33

20 POKES+24,15:POKE4?216,10: POKE49218,0

25 PDKE49219,45: POKE251,178: POKE252,192

30 POKEZD3,178: POKEZD4, 172:5Y547152: POKES+8,0
40 PRINT"[CLR1I":FORI=1TO10000:PRINT"L[HOMEI"sTI
435 NEXTI

READY.

MUSIC DRIVER 2

10 S=54272: POKES+3,255: PDKES+S, 142: POKES+46, 150
15 POKES+5,142:POKES+6, 150

20 POKES+24,15:POKE49216,10:POKE49218,0

23 POKE4921%9,65:POKE251,178: POKE252, 192

30 POKEZ253,178:POKER2S4,192:5YS49152: POKES+8,0

READY.

177

Bx
PC SR AC XR YR SP
.37FCS 33 00 AD 00 Fé

CO00 EA NOP

Co01 EA NOP
Co02 EA NOP
Co03 78 SEI
Co04 A9 S0 LDA
Co0e 8D 14 0T STA
Co09 A9 CO LDA
CoOB 8D 15 03 STA
COOE 58 CLI
COOF EA NOP
Co10 EA NaP
CO11 &0 RTS
coiz 78 SEI
COo13 A9 51 LDA
CO15 8D 14 03 STA
col8 A9 EA L.DA
COiA 8D 15 03 5TA
Co1D S8 CLI
COlE EA NOP
COlF &0 RTS
Co20 EA NOF
C021 DE DE DE DEC
C0Z24 DE DE DE DEC
C027 DE DE DE DEC
C0ZA DE DE DE DEC
CO2D DE DE DE DEC

CO30 DE DE DE DEC
CO033 DE DE DE DEC
CO346 DE DE DE DEC

COo39 DE DE DE DEC
CO3C DE DE DE DEC
CO3F DE 0D o8 DEC
Co42 00 BRK
C043 41 00 EOR
Co45 00 BRK
CO46 0O BRK
Co47 00 BRK
co48 00 BRK
Co49 00 BRK
Co4a 0O BRK
CO4EB 00 BRK
co4acC 00 BRi
€04D 00O BRK
CO4E 00 BRK
CO4F 00 BRK
CO0S0 EA NOP
CO51 EA NOP

178

#+50
$0314
#$CO
$0315

#$351
$0314
#$EA
$0315

$DEDE , X
$DEDE , X
$DEDE , X
$DEDE , X
$DEDE , X
$DEDE ., X
#$DEDE , X
$DEDE , X
$DEDE, X
$DEDE , X
$080D, X

($00,X)

Cos52
COS3
CoSé
cosse
CoOSB
Cosc
COSF
Cob1
Co62
Cob3
Cos4a
Co&7
CobA
CO&B
CO&D
CO&F
Co71
co72
Co74
Co76
co78
Co7A
CO7B
co7C
Co7D
CO7E
coso
co8s
co8s
coe7z
cog?
cosA
coscC
CogeF
Cco92
Co93
Co95
co%8
Co99
Co9C
CO9D
CO9E
CoAl
CoAZ2
COA3
Con4g
COA&L
COAB
COoAA
COAC
COAF

42

31

41
F7

31

FD
FB
FE
FC
64

co

ER

co

Co
co

Y

D4
co

D4

D4

EA

co

NOP
LDA
BEQ@
JMP
NOP
DEC
BNE

NOP
NOP
LDA
STA
NOP
INC
BNE
INC
NOP
LDY
LDA
CMP
BEQ
NOP
NOP
NOP
NOP
LDY
STA
INC
BNE
INC
NOP
LDA
8TA
LDA
PHA
LDA
STA
PLA
STA
NOP
NOP
JMP
NOP
NOP
NOP
LRA
STA
L.DA
8STA
JHMP
BRK

$C042
$COSC
$EA31

$Co41
$COo5S8

*C040
$C041

$FB
$CO71
$FC

#$00
($FB) ,Y
#$FF
$COA2

#$00
$D401
$FB
$£Co8%
$FC

($FB) .Y
$D400
$C043

#%00
#D404

D404

FEA3L

FR
$FB
$FE
$FC
$C064

179

COBO
COB1
coBz
COBR3
coB4
COBS
COBé&
COB7
coB9
COBB
coec
COBD
COBF
coC1
CoCc2
COoC3
COCS
CoCs
coc7
coce
COCA
COCB
cocc
COCD
COCE
COCF
CoDo
€oD1
CoD2
CoD3
CODS
CODé6
CoD?7
cobs
CcoDe
CODB
COoDD
CODE
CODF
COEO
COE1
COE3
COES
COE6
COE7
COE®?
COEA
COEB
COEC
COED
COEE

180

15
21

15

21

15

21

23

21
25

21

21

NOP
Farars
???
???
rarars
???
Farars
ORA
AND
BRK
BRK
ORA
AND
BRK
BRK
ORA
BRK
BRK
AND
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
AND
?7?7?
Farars
ROL.
ROL
AND
AND
BRK
BRK
ROL
ROL
AND
AND
BRK
BRK
AND
BREK
BRK
BRK
BRK
BRK
BRK

$15,X
($21 . X)

$15,X%
($21,X)

$15,X

($21.%)

$25

($£21.%)
$£25

($21.%X)
*25

($21,X)

COEF
COFO
COF1
COF2
COF3
COF4
COFS
COFé&
COF7
COF8
COF%

BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
77?7

The hub of the music program lies from locations $C000 to $C0B2,
with the actual ‘tune’ that is played following on behind. The music
being played goes back to the first note again when an FF is encoun-
tered, as at location $COF9 in the first program. The notes are then
stored in-between, with the notes coming in the traditional high-low
format. The values to use for any particular note can be found on pp.
152-4 of the manual supplied with your 64. You will, however, have

to convert the values given there into hexadecimal ones.

To insert a gap between notes being played, just insert a few 00 (BRKs)

to suit. The more BRKs, the longer the delay between notes.

B#®

PC SR AC XR YR 8P
-36F9F 33 00 87 00 Fé

0S5
04

0é&
05

05
06

777
777
ORA
ABL
aars
77
PHP
PHP
7277
alare
ASL
ORA
777
777
ORA

ASL.
Earars

¥05
%06

$06
%05

%05
06

181

CoCA
CoCB
CoCC
COoCD
COCE
COCF
coDnl
CoD3
CoDS
CoDé
coDs
CoD%
CODA
CoDB
CoDD
CODF
COEO
CoOEl
COEZ2
CoE3
COE4
COE&
COEB
COEA
COEB
COEC
COED
COEF
COFO
CoOF1
COF3
COF4
COFé
COF7
CoFeB
COFA
COFB
COFD
COFF
Cci100
Clol
C103
Cio4
C105
Cl1086
C107
ciog
Ci109
Cl0A
CloRB
cioC

182

06
09

07

06
04

06

05

06

OA
08
Q7
oA

06

07

77?7
PHP
PHP
277
277
ASL
ORA
ORA
PHP
ORA
7?77
7?77
777
ASL
ASL
777
777
777
777
272
ORA
ASL
ORA
777
ifarard
farard
ORA
7277
PHP
ORA
ASL
ORA
272
277
ASL
PHFP
ORA
ORA
777
777
ASL
PHP
277
PHP
??7?
T
ASL
ASL
277
7277
ASL

#0646
#05
#+07

#E07

$06
%04

£06
$07
#+05

06

#$0A
#$08
$07

#E0A

$06

%07

CioD
CiOF
Ci10
Cii2
Cil13
Ciig
Ci15
Ciié
Cii7
Ciis

AND SOME BOOGIE

B#

ORA
272
ASL
2?77
227
277
277
2?77
2277
272

#$08

*06

PC SR AC XR YR SP
«39F79 33 00 61 00 Fé&

COB3
CoB4
CoBé
COB?
COBY%
COBA
CoBC
COBD
COBE
coco
coCi
coc3
Coc4a
CoCé
CoC7
coce
cocCa
cocc
CoCD
COCE
CoDo
COD1
COD3
coDs
COoDé
CoDB
CoD9
CODB
conc
CoDD

04
49
&7
06

05
&A

07

06
&7
05
&A

07

06

&7
B?

o8

9F

gF

?7?
EOR
?°7?
ASL
?27?°?
AND
?7?
?77?
AND
ROR
ORA
???
EOR
???
ASL
?7?
AND
?°?
7?7
AND
ROR
ORA
ORA
iedrdrd
EOR
atale
ORA
ASL
???
ORA

#£05
F£6A

£07,X

$06,X
$67
#$05
$£6A

£07,X

$056,X

*67
$B9

+08

HEFF

#S$F

183

CODF 08 PHF

COEO %93 ?7?

COE1 07 ?7?

COE2 45 04 EOR #04
COE4 49 05 EDOR #$05
COE& &7 Farars

COE7 0& &A ASL $6A
COE? 07 rarars

COEA 35 07 AND $07,X
COEC A3 i arars

COED 07 Farars

COEE 35 06 AND $0&,X
COFO &A ROR

COF1 0% &7 ORA #6467
COF3 06 &A ASL $6A
COFS 08 FPHP

COF6 17 Farars

COF7 09 9F ORA #39F
CoFe? 0B FHF

COFA 17 Farars

COFB 05 B9 ORA #B9
COFD 07 Farars

COFE 35 08 AND #08,X%
C100 93 ifarars

Cci01 07 irarard

€102 35 FF AND #FF,X

I’'m sure you’ll be able to produce your own musical experiments be-
fore too long.

And now, as promised, a map of the internal machine code subrou-
tines as used by the ROM in the Commodore 64. With the assembler
that you've become familiar with using from the listing MONMAKER,
take these listings to pieces and see how they work. They're a lesson
in themselves.

184

Commodore 64 - ROM Memory Map

A000;
A00C;
A052;
A080;
AQ9E;
A19E;
A328;
A365;
A38A;
A3BS;
A3JFB,;
A408;
A435;
A437,
A469;
A474;
A480;
A49C;
AS533;
AS560;
AS579;
A613;
Ab642;
AB5E;
A68E;
A69C;
AT42;
ATED,;
A81D;
AB2C;
AB2F;
A831;
ABS7,;
A871;
AB83;
ABAOQ;
A8D2;
AS8FS;
A906;
A928;
A93B;
A94B;
AS6B;

ROM control vectors
Keyword action vectors
Function vectors
Operator vectors
Keywords

Error messages

Error message vectors
Misc messages

Scan stack for FOR/GOSUB
Move memory

Check stack depth
Check memory space
‘out of memory’

Error routine

BREAK entry

‘ready.’

Ready for Basic
Handle new line
Re—chain lines
Receive input line
Crunch tokens

Find Basic line
Perform [NEW]
Perform [CLR]

Back up text pointer
Perform [LLIST]
Perform [FOR]
Execute statement
Perform [RESTORE}
Break

Perform [STOP]
Perform [END]
Perform {CONT)
Perform [RUN]
Perform [GOSUB}
Perform [GOTO]
Perform {[RETURN]
Perform [DATA]

Scan for next statement
Perform {IF]

Perform [REM]
Perform [ON]

Get fixed point number
Perform [LET]
Perform {PRINT#*]
Perform [CMD)]
Perform [PRINT]
Print string from (y.a)
Print format character
Bad input routine
Perform {GET]
Perform [INPUT#]
Perform [INPUT)
Prompt & input

Perform [READ]

Input error messages

B63D;

B6A3;
B6DB;
B6EC;
B700;
B72C;
B737;
B761;
B77C;
B782:
B78B;
B79B;
B7AD;
B7EB;
B7F7;
B80D;
B824;
B82D;

Perform [NEXT]
Type match check
Evaluate expression
Constant - pi
Evaluate within brackets

y

comma..
Syntax error
Check range
Search for variable
Setup FN reference
Perform [OR}
Perform [AND]
Compare
Perform [DIM]
Locate variable
Check alphabetic
Create variable
Array pointer subrtine
Value 32768
Float-fixed
Set up array
‘bad subscript’
‘illegal quantity’
Compute array size
Perform [FRE]
Fix-float
Perform (POS]
Check direct
Perform [DEF]
Check fn syntax
Perform [FN]
Perform [STR$)
Calculate string vector
Set up string
Make room for string
Garbage collection
Check salvageability
Collect string
Concatenate
Build string to memory
Discard unwanted string
Clean descriptor stack
Perform [CHRS$)
Perform [LEFT$]
Perform [RIGHT$]
Perform [MID$)
Pull string parameters
Perform [LEN]
Exit string—-mode
Perform {ASC)
Input byte paramter
Perform [VAL]
Parameters for POKE/WAIT
Float-fixed
Perform [PEEK]
Perform [POKE]
Perform [WAIT]

185

B849;
B850;
B853;
B86A;
B947;
B97E;
B983;
BIEA;
BA2B;
BAS59;
BASC;
BABT,
BAD4;
BAE2;
BAF9;
BAFE;
BB12;
BBA2;
BBC7,
BBFC;
BCOC;
BCIB;
BC2B;
BC39;
BC58;
BC5B;
BC9B;
BCCC;
BCF3;
BD7E;
BDC2;
BDCD;
BDDD;
BF16;
BF3A;
BF71;
BF7B;
BFB4;
BFED;
E043,;
E059;
E097:
EOf9;
E12A;
E156;
E165;
E168;
E1BE;
EIC7;
Ei1D4;
E206;
E20E;
E219;
E264;
E26B;
E2B¢4;
E30E;
E37B;

186

Add 0.5
Subtract-from
Perform {subtract]
Perform [{add]
Complement FAC*1
‘overflow’

‘Multiply by zero byte
Perform (LOG]
Perform {multiply]
Multiply-a-bit
Memory to FAC#*2
Adjust FAC*1/#2
Underflow/overflow
Multiply by 10

+ 10 in floating pt
Divide by 10
Perform [divide)
Memory to FAC*1
FAC#1 to memory
FAC*2 to FAC#1
FAC#*1 to FAC*2
Round FAC*]

Get sign

Perform {SGN]
Perform [ABS]}
Compare FAC*1 to mem
Float-fixed

Perform {int]

String to FAC

Get ascii digit

Print ‘IN..’

Print line number
Float to ascii
Decimal constants
Tl constants
Perform {SQR]
Perform [power]
Perform [negative)
Perform [EXP}
Series eval 1

Series eval 2
Perform [RND]

7? breakpoints ??
Perform {SYS)
Perform {SAVE]
Perform [VERIFY]
Perform [LOAD]
Perform [OPEN]
Perform [CLOSE}
Parameters for LOAD/SAVE
Check default parameters
Check for comma
Parameters for open/close
Perform [COS}
Perform {SIN]
Perform {TAN]
Perform [ATN])
Warm restart

E394;
E3A2;
E3BF;
E447;
£453;
E45F;
E500;
E505;
ES0A;
E518;
ES44;
E566;
ES6C;
ES5AQ;
E5B4;
E632;
E684;
E691;
E6BE;
E6ED;
E701;
E716;
E87C;
E891,
E8AL;
E8B3;
E8CB;
E8DA;
E8EA,
E965;
E9CS8;
E9EO,
ESFO;
ESFF;
EA13;
EA24;
EA31;
EAB87;
EB79;
EBS8I;
EBC2;
ECO03;
EC44;
EC4F,
EC78;
ECB9;
ECE7;
ECFO;
EDO09;
EDOC:
ED40;
EDB2;
EDBY;
EDBE;
EDCT7;
EDCC;
EDDD;
EDEF;

Initialize

CHRGET for zero page
Initialize Basic

Vectors for $300
Initialize vectors
Power-up message
Get 170 address

Get screen size
Put/get row/column
Initializel/O

Clear screen

Home cursor

Sel screen pointers

Set 1/0 defaults

Input from keyboard
Input from screen
Quote test

Setup screen print
Advance cursor
Retreat cursor

Back into previous line
Output to screen

Go to next line
Perform <return>
Check line decrement
Check line increment
Set color code

Color code table

Scroll screen

Open space on screen
Move a screen line
Synchronize color transfer
Set start-of-line

Clear screen line

Print to screen
Synchronize color pointer
Interrupt - clock etc
Read keyboard
Keyboard select vectors
Keyboard | - unshifted
Kevboard 2 - shifted
Keyboard 3 - ‘comm’
Graphics/text contrl
Set graphics/text mode
Keyboard 4

Video chip setup
Shift/run equivalent
Screen In address low
Send ‘talk’

Send ‘listen’

Send to serial bus
Serial timeout

Send listen SA

Clear ATN

Send talk SA

Wait for clock
Send serial deferred
Send ‘untalk’

EDFE;
EE13;
EES5;
EESE;
EE97;
EEAQ;
EEA9;
EEB3;
EEBB;
EF06;
EF2E,
EF31;
EF3B;
EF4A;
EF59;
EF7E,
EFC5;
EFCA;
EFCD;
EFDO;
EFE1;
FOOD;
FO17;
F04D;
FO086;
FOA4;
FOBD;
F12B;
F13E;
F14E;
F157;
F199;
FI1CA;
F1DD;
F20E;
F250;
F291;
F30F;
F31F;
F32F;
F333;
F34A;
F3D5;
F409;
F49E,
F5AF;
F5C1;
F5D2;
F5DD;
F68F;
F69D,
F6BC;
F6DD;
F6E4;
F6ED;
FEFB;
F72D;
F76A;

Send ‘unlisten’
Receive from serial bus
Serial clock on
Serial clock off
Serial output ‘1’
Serial output ‘0’
Get serial in & clock
Delay 1 ms
RS-232 send
Send new RS-232 byte
No-DSR error
No-CTS error
Disable timer
Compute bit count
RS232 receive
Setup to receive
Receive parity error
Receive overflow
Receive break
Framing error
Submit to RS232
No-DSR error
Send to RS232 buffer
Input from RS232
Get from R5232
Check serial bus idle
Messages
Print if direct
Get..

.from RS232
Input
Get.. tape/serial/rs232
Output..

..to tape
Set input device
Set output device
Close file
Find file
Set file values
Abort all files
Restore default 1/0
Do file open
Send SA
Open RS232
Load program
‘searching’
Print filename
loading/verifying’
Save program
Print ‘saving’
Bump dock
Log PIA key reading
Get time
Set time
Check stop key
Output error messages
Find any tape headr
Write tape header

“7D0;
FiD7;
F7EA;
F80D:;
F817,
F&2E;
F838;
F841;
F864;
F875;
F8DO,
F8E2;
F92C;
FA60;
FBSE,
FB97:
FBAS;
FBCS;
FBCD;
FC57,
FC93;
FCBS;
FCCA,
FCDt;
FCDB;
FCE2;
FD02;
FD10;
FD15;
FD1A;
FD30;
FD50,
FD9B;
FDA3;

FDDD;

FDF9;
FE0O;
FEO7;
FE18;
FE1C;
FE21;
FE295;
FE27;
FE2D;
FE34;
FE43;
FE66;
FEBS;
FEBC;
FEC2;
FEDG,
FFO7;
FF43;
FF48;
FF81;
FFFA,

Get buffer address
Set buffer start/end pointers
Find specific header
Bump tape pointer
"press play..

Check tape status
‘press record..’
Initiate tape read
Initiate tape write
Common tape code
Check tape stop

Set read timing
Read tape bits

Store tape chars
Reset pointer

New character setup
Send transition to tape
Write data to tape
IRQ entry point
Write tape leader
Restore normal {RQ
Set IRQ vector

Kill tape motor
Check r/w pointer
Bump r/w pointer
Power reset entry
Check 8-rom
8-rom mask

Kernal reset

Kernal move
Vectors

Initialize system constnts
IRQ vectors
Initialize 170
Enable timer

Save filename data
Save file details

Get status

Flag status

Set status

Set timeout
Read/set top of memory
Read top of memory
Set top of memory
Read/set bottom of memory
NMI entry

Warm start

Reset IRQ & exit
Interrupt exit
RS-232 timing table
NM!I R3-232 in

NMI RS-232 out
Fake IRQ

IRQ entry

Jumbo jump table
Hardware vectors

187

11
Machine Code: Adding
Commands to BASIC

Introduction

The deficiencies inherent in Commodore Basic are well known. But
it’s interesting to trace these deficiencies back through time to the very
early Commodore machines.

The first Commodore PET, as well as coming complete with its own
cassette deck and monitor, and having a paltry 8K of RAM (and also
costing some £625 when it first appeared back in 1979!), had what
Commodore themselves termed Basic 1.

As a Basic language it was fine at the time, but there were a number
of things missing from it. For example, there was no way of access-
ing the machine code monitor, as it didn’t have one built in.

A utility to overcome this soon came on the market, but this took up
precious space from the meagre amount of RAM that you had, and
so Commodore followers had to wait a couple of years before Basic
2 appeared.

Basic 2

When it did appear it caused instant confusion among the Commeo-
dore ranks, since some people were calling it Basic 2, and others
referred to it as Basic 3. Seemingly the so-called ‘Basic 2’ never ap-
peared, and although this particular version of the language was al-

ways called Basic 2, theoretically it should have been referred to as
Basic 3.

Still, whatever number you gave it it was a great improvement over

its predecessor, and did have access to a machine code monitor.
Moreover, the ROM installed was now capable of looking after disk

188

drives, something that the earlier machines could not do.

Time went by, Basic 4 appeared, and for a long time it was rumoured
that there was to be a fifth version of the language as well, with all
the features that existing ones had lacked, of which more in a moment.

However, at the time of writing Basic 5 is in the realms of fantasy,
and is not likely to appear now.
64 Basic

This brings us to the Commodore 64, sidestepping the Vic along the
way.

The version of Basic that they’ve installed in the machine is that which
we referred to earlier as Basic 2/3, although Commodore have appar-
ently now decided that it should be called Basic 2, and indeed this
is what the machine greets you with when you turn it on.

However, not only have Commodore taken a retrograde step and
installed an old version of their popular Basic language, but they've
also managed to take out a great deal of what was already in there.

So we see no machine code monitor - and hence the need for pro-
grams such as Extramon and the like.

What we are left with instead is an extremely flexible memory manage-
ment system, but a very poor Basic with which to manage it.

The memory architecture looks something like this:

189

Commodore-64 Architecture Map

SFFFF {65535) ey oo
8K Hi RAM
(bit 1 of $0001)
KERNAL ROM © = RAM
1 = KERNAL ROM
SE000 (87348)]
CHARACTER SET CIA1.CIA2 (5. Bus, PUF) K RAM
{bit 2 of $0001) $DCO0 ¢ - .
Colour Ram Nibbles maps {0 $D000 when
O o $D8o0 e bits 0& 1 of $0001 = 0
1 = 170 ROM/RAM VIC 11, 8ID
$D000 (63248 ———————
4K RAM
$C000 (49152)
BASIC 8K LO RAM
{bit 0 of $0001)
INTERPRETER 0= RAM
ROM 1 = BASIC ROM
$A000 (40960) ————— -1 el
EXROM
BK ROM Cartridge
maps here
sg000 ! b
(32768)
BASIC
User RAM
1 t
. $4000 {38912 Bytes)
(16384)
HI-RES Screen
maps here
$2000
VIC i Chip sees (8192)
this 16K block
on puwer-up
£0800 (2048) ————— .
Screen (1K) [HI-RES Colour Table ‘1
50400 1LY —PPR
Workspace (1K)
------ l:)"""""""/‘]"""‘
£0000 rocessor Reg ($0/1)

To look after all this requires a lot of work, and to understand it all
properly requires even more!

Still, what you buy is what you get, so let’s see precisely what we
have got.

190

Basic advantages

The version of Basic in the Commodore 64 is a pretty standard version
of what is usually referred to as Microsoft Basic.

This is based on the original Beginners All-purpose Symbolic Instruction
Code, from which the language takes its name. This language was
devised a number of years ago, and the cracks are now beginning to
show, but for a beginner it is still possibly the easiest of languages
to leamn.

Apart from the interface to machine code, which is not good, the
commands you have at your disposal are not too difficult to understand
and get to grips with, and owing to the great similarity between Basic
words and English words, most beginners can soon start writing
programs in Basic.

And disadvantages

However, most beginners also soon come to realise that the version
of Basic as supplied by Commodore is sadly lacking in a humber of
departments.

The concepts of structured programming, the computer flavour of the
month, are impossible to simulate on the 64, and there is a distinct
lack of such commands as PRINT AT, PRINT USING, and so on.

In particuiar, when it comes to using graphics and sound, the number
of commands is strictly limited to two : PEEK and POKE. No other
commands exist to cope with the vast number of PEEKs and POKEs
needed to set up a high resolution screen and draw things on it, or
to play a few musical notes, or do just about anything with either
graphics or sound.

If you want to make music, or display various images on the screen,
it has all got to be done the long way, by using a laborious series of
POKEs.

Given that this version of Basic is so appalling in these particular
departments, it is no wonder that people go to great lengths to try
to improve it.

191

There are now many packages on the market that, in a variety of
different ways, have set out to try to improve on the language that
we are originally offered.

Whether they succeed in their chosen aims is, of course, a completely
different matter, but what they all have in common is that they are
adding commands to the existing version of Basic, and through those
commands are seeking to make life easier for the person using the
machine.

The rest of this chapter will be devoted to showing you one way in
which commands could be added, as well as giving you a humber of
routines to try out for yourself.

But first, the concepts involved.

Adding commands: the concepts

There are many different ways in which you can add commands to
Commodore’s existing command set. Commands can be added either
as words or symbols, or indeed we could also use the function keys:
re-define them to be able to accept existing Basic keywords, and then
put our new words (or symbols) in their place.

We’'ll be looking at the two simplest options in this chapter, namely
defining various symbols to act as commands, rather than adding new
words, and re-defining the function keys to accept these symbols.

These are certainly easier than trying to add new command words to
Basic, as this involves altering a lot more things than we are going
to do, and for the first time user can seem to be incredibly complicated.
So complicated in fact that you probably wouldn’t even want to try it!

Still, what we are going to do is fairly straightforward, and shouldn’t
present any major difficulties.

Getting a character

Anything that you type onto the screen is interpreted and executed
by the Commodore 64 as soon as you press the return key. Once this
key has been pressed there are a number of routines built into the 64
which will act upon everything that you typed in, and depending on
precisely what you typed a number of things will happen.

192

You can generate a syntax error, and a subroutine exists within the
Basic ROM to print out a suitable message and return to await your
next input. Since it is in ROM (it starts at location $AF08) we can’t
alter it, but there’s nothing to stop us copying this ROM into RAM
and altering it there, so that SYNTAX ERROR becomes something
a lot more meaningful. Or a Jot more rude, if you're feeling in that kind
of mood!

You could have entered a line of a program, in which case you won't
get any error messages (or for that matter any other messages) coming
back at all, but a great many pointers inside the machine will have
been altered to cope with the new line.

You might have entered a direct command, and in this case the
machine will just execute whatever it was that you typed in.

Character get routine

How does the machine know what to do? In other words, how does
it interpret what you’ve typed in? Understanding this is the key to
generating our own commands, because if we can intercept the Basic
routine that looks after all the commands and alter it, we are then well
on the way to adding our own commands into the machine.

The machine knows what to do because of the ROM that’s built into
it, but there must be a routine somewhere in the machine that looks
at what you've typed in and thinks “ahah!’, and then does (or attempts
to do) whatever you've told it.

There is indeed such a routine, which lives in locations $0073 to $008A
(or decimal locations 115 to 138), and this is usually referred to as the
CHARGET routine, or character get.

This is the routine that gets a character that you've typed in and acts
upon that character.

The routine looks, in its original form, like this:

193

CHARACTER GET ROUTINE BEFORE

R
FC SR AC XR YR SF
.:BFER 33 GO0 D3 00 F&

0072 E6 7A INC #7A
0075 DO Q2 BNE #0079
0077 E& 7B INC #7E
o079 AD 31 02 LDA #0023
Q07C €9 ZEhA CMP #+ZA
OO7E BO 0OA BCS #008BA
00BO C? 20 CMP #£20
0082 FO EF BEQ #0073
o084 38 SEC

0085 E9 30 SBC #3$30
0087 8 SEC

088 E? DO SBC #$DO
008A &0 RTS

194

What we are going to do is alter that routine so that it no longer behaves
in quite the same way.

As it stands at the moment, it interprets everything in the following
way:

Locations $73-$77 : update the pointer in memory
locations $7A and $7B.

Locations $79-$7B : this is the pointer.

Locations $7C-$7F : if it's a colon or greater,
then end.

Locations $80-$83 : if it's a space, then loop
back to start again.

Locations $84-$8A : set flags for character type,
and return from subroutine.

Comments

This routine is the key to adding commands to Basic, since by altering
it we can make it jump to some code of our own which will check
for a special character, and if that character has been entered then
do something! If we find that a special character has not been typed,
then it's back to the routine again and carry on as normal.

We'll see later on how we can actually load a program into the
computer which, when executed, alters the routine to behave in the
way we want.

Instead, a couple of JSRs (jumps to subroutines) will be incorporated
in it, and when we've finished with it it will look like this:

195

AND AFTER!

B»
PC SR AC XR YR 8P
.37FCS 33 00 AD 00 F&

0073 E& 7A INC $74A
0075 DO 02 BNE #0079
0077 E& 7B INC #7B
0079 AD 1E 02 LDA #021E
007C C? ZA CHMFP #+3A
0OQ7E FO 0OA BEQ £0084
0080 C? 20 CHMP #3220
0082 FO EF BEQ %0073
0084 20 00 C2 JSR #0200
0087 20 00 C1 JSR #C100
008A 60 RTS

196

It would be wise, at this point, to make an effort to get Extramon typed
up and loaded into the computer, since this will make life a lot easier
from now on. Without it we can still proceed with a lot of POKEs,
but in order to see precisely what is happening, Extramon is a great
help.

Altering the CHARGET routine

When everything is running normally, on pressing the Return key the
system will come out of ROM into this routine to fetch the next
character of Basic text, then trundle back into ROM again to ponder
on its next move,

What will happen now is that the system will come out of ROM, to
our changed subroutine, and when it hits the first JSR command it
will jump to the routine sitting at location $C200 onwards. This will
determine whether or not we're going to be interpreting a special
command, and if we are jump somewhere else to process it.

If we're not, then the system goes back to the altered CHARGET
routine, and finds that it now has to make yet another jump, this time
to location $C100. This is simply a direct copy of what used to exist
in the portion of CHARGET that we have changed, so that execution
can continue as normal in the event of a special character not being
found.

After that, it returns into ROM again to work out what will happen next.

The program to alter the CHARGET routine sits at locations $C10B
onwards, and together with the direct replacement for the altered parts,
which starts at location $C100, it all looks like this :

B*
FC SR AC Xk YR SF
.:BFER 3 00 DI 00 F&

Cl1o0 C? ZA CMFE #£3240
Ciaz RGo Q& BCS #C10A
Ciog 0 SEC

C105 E9 30 SBC #£30
Ci07 =8 SEC

C108 E9 DO SEC #£DO
C10a 60 RTS

C1GR AT 20 LDA #£20
C1oD 85 B4 STA %84

197

C10F 85 87 STa %87

Cll1 A9 OO LDA #+00
Ci11= 85 85 STA #8050
C11i5 85 88 STA *88
€117 A9 C2 LDA #¥CZ
C119 85 86 STA #8646
Cilk A9 Ci1 LDA ##C1
Ciih 85 89 STA 8%
C11F A9 FO LDA #%FO
Ci21 85 7E STA $£7E
C123 A% 04 LOA #£04
€125 85 7A STA #7A
C127 85 7R STA #7BR

The next routine that we need is the one to separate the extra code
and the processing of that code from ordinary Basic. In this routine
we check the current character being processed against a table stored
at locations $C300 onwards, and if we find what we're looking for,
branch to the appropriate subroutine by reading the most significant
byte and least significant byte of the subroutine address from a table
which is stored immediately after the character data.

B*
FC SR AC XR YR SP
.3371A 33 00 Q2 00 Fé&

C200 08 PHP

Cz201 8& 04 STX %04
C203 A2 04 LDX ##%04
C205 DD 00 C3 CMP $C300,X
C208 FO 07 BEQ %C211
C20A CA DEX

C20B 10 F8 BPL #$C205
C20D A6 04 LDX #04
C20F 28 PLP

C210 &0 RTS

C21i1 BD 06 C3 LDA $C3I04&6,X
C214 8D 1E C2 STA $C21E
€217 BD 08 C3 LDA $C308,X
C21A 8D 1F C2 STA #C21F
C21D 20 00 CO JSR £CO00
C220 20 74 A4 JSR #A474

198

To explain what’s happening, the program first of all saves the current
status register onto the stack, and the current value held in the X
register into location $0004 in the event of not finding a special
character.

If that is the case, then everything is read back into the appropriate
registers and it's off to the CHARGET routine again.

Finding special characters

However, if a special character is found then we branch out to location
$C211 where we get the least significant byte and the most significant
byte from our table. These are then stored at the appropriate registers,
and then the program branches off to the subroutine to carry out the
command.

The characters, and their LSBs and MSBs look like this :

B
PC SR AC XR YR SP
-326F4 33 00 DC 00 Fb

C300 5F 7

C301 21 21 AND (£21,X)
C303 21 21 AND (£21,X)
C305 00 BRK

C306 00 BRK

C307 Co Co CPY #$CO

This may not look very sensible as a disassembly, but it's the data that
we’'re after, not the annotations.

The only thing we need now is a routine to execute, and in this case
we've used an OLD routine. This can be used without the rest of this
code by just typing in SYS49152, and it will then recover any program
lost after a NEW command had been issued.

On the other hand, there’s something infinitely more satisfying about

seeing your own code being executed at the press of a key, rather
than typing in boring old SYS commands all the time.

199

B®

PC SR AC XR YR SP
.36F9F 33 00 87 00 F&

CO00
Co02
Cco04
CO0s&
cCoo8
COO0A
cooB
COoOD
COOF
Co10o
Coit
Co12
Coia
Colé6
co18
CO1A
coic
CO1D
CO1F
Co20
co22
Co024
Co2s6
co28
COZ2A
Coz2C
CozZD
COZ2F
CD3I1
COZ=3
CO3S
COZ7
Coze
COZB

Now that we've got everything together, it only remains to run the
program by going to the various parts of it, and then, just by pressing
the left arrow key and Return, we can instantly recover any program
that may have been lost due to an accidental NEW,

To add yet more commands, you'll need to store more data for
characters, and more data for LSBs and MSBs at locations $C3000
and onwards (or anywhere else for that matter, as long as the program

200

AS
A4
85
84
AQ
c8
B1
DG
c8
78
18
&5
A0
71
AS
69
c8
1
88

2B
2C
22
22
03

22
FE

e
<

00
2B

23

00

2B

(453

2
<

a2

-
]

22
Fa

-

o]
=

a2
2
“

23

co
2E

L.DA
LDY
STA
STY
LDY
INY
LDA
BNE
INY
TYA
CLC
ADC
LDbY
STA
LDA
ADC
INY
STA
DEY
LBX
INC
BME
INC
LDA
BNE
DEX
BNE
LDA
ADC
STA
LDA
ADC
STA
RTS

+2B
$£2C
22
23
#3073

($22),Y
$CO0A

$22
#400
(¥2B),Y
23

#+00
(¥2R}) ,Y

#£03
$22
$co2a
$23
($22),Y
$CO20

¥CO22
22
#£02
2D
F23
#$00
$2E

is pointed to the correct location!). The data for the characters is just
the ASCII code for that character.

If, however, your forte is typing words rather than symbols, the
following program shows how you might use the word BAK to get
back a program, rather than typing in the left-arrow key.

B
PC SR AC XR YR SF
.38D55 31 72 9F 00 Fé

€200 08 PHPF
C201 86 04 STX $04
C203 A2 00 LDX #2000
C205 DD 00 C3 CMP $C300,X
C208 FO 26 BEQR #C230
c20A CA DEX
C20B 10 F8 BPL #C205
C20D A6 04 LDX %04
C20F 28 PLP
C210 460 RTS
C211 BD 06 C3 LDA #C306,X
C214 8D 1E C2 STA 3C21E
C217 BD 08 C3 LDA *C308,X
C21A 8D 1F C2 STA *C21F
C21D 20 CO FF JSR $FFCO
€220 E6 C? INC $C9?
C222 Do 02 BNE #$C226
C224 g6 CA INC $ChA
C226 28 FLF
C227 A2 00 LDX #3$00
C229 a1l C9? LDA (¥CP,X)
C22B A6 04 L.DX %04
C22D 60 RTS
C22E 00 BRE
C22F 00 BRK
C230 E&6 7A INC $7A
C232 DO 02 BNE $C236
234 E4 7B INC $7B
C236 A2 00 LDX #$00
C238 A1 7A LDA (£7A,X)
C23A 38 SEC
C23B E7? 41 SBC ##%41
C23D FO 03 BEL §L247
C23F 4C 5A C2 JMP $#C25A
C242 E6 7A INC #7A
€244 DO 02 BNE $C248
C24&4& E& 7B INC *7B
£248 A2 0O LDX #$00
C24A A1l 7A LDA ($£7A,X)

201

c24C 38 SEC

C24D E9 4B SBC #$4B
C24F FO 03 BEQ $C254
C251 4C 08 AF JMP $AFO8
€254 20 00 CO JSR $C000
€257 20 74 A4 JSR $A474

Early experiments

You could start your experiments with adding commands by trying
to interface the graphics routines given earlier to act at the press of
a key. Where commands will need parameters added to them, you
could have another table of addresses to interpret things like 1, 12,
13 and so on where, having found that an ‘!’ symbol has been entered,
you then check to see what the next number is and go to the correct
subroutine.

Where you’ll need other parameters to be separated by commas, it
is most practical to go to the internal ROM routines and let them do
the checking, as was done with the graphics routine for setting up
a high resolution screen in a suitabie colour.

Function keys

We said earlier that we'd be giving you a program to use the function
keys, and here it is. As it stands, it allows you to define the function
keys to be any of the existing Basic keywords, although of course if
you add your own commands you can also define a key to be one
or more of those as well.

When you run the program by typing in SYS 49152, the prompt F1?
will appear, at which point you enter whatever you want function key
1 to be (e.g. PRINT). If you want to make it equivalent to typing in
PRINT and then hitting the Return key, enter PRINT followed by the
left arrow key, which has been used in this program to stand for the
Return key.

202

Appendix
Some Useful Information

Introduction

Some old, and some new material here, starting with:

203

M/C instruction set

The following notation applies to this summary:

Accumulator

Index registers

Memory

Processor status register
Stack Pointer

Change

No change

Add

Logical anp

Subtract

Logical Exclusive-or
Transfer to

Logical (inclusive) or
Program counter
Program counter high
Program counter low
8-bit immediate data value (2 hexadecimal digits)

bl

e

T

¥l >+ oz

H YUY
2000
o m

aa 8-bit zero page address (2 hexadecimal digits)
aaaa 16-bit absolute address (4 hexadecimal digits)
? Transfer from stack (Pull)
\ Transfer onto stack (Push)

204

ADC

Operation: A+ M+ C—> A, C

Add to Accumulator with Carry

NZCIDYV
N
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate ADC #dd 69 2 2
Zero Page ADC aa 65 2 3
Zero Page, X ADC aa, X 75 2 4
Absolute ADC aaaa 6D 3 4
Absolute, X ADC aaaa, X 7D 3 4*
Absolute, Y ADC aaaa,Y 79 3 4*
(Indirect, X) ADC (aa, X) 61 2 6
(Indirect), Y ADC (aa),Y 7 2 5*
*Add 1 if page boundary is crossed.
AND Memory with Accumulator
Logical AnD to the accumulator
Operation: AAM—> A
NZC1IDYV
VAV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate AND #dd 29 2 2
Zero Page AND aa 25 2 3
Zero Page, X AND aa,X 35 2 4
Absolute AND aaaa 2D 3 4
Absolute, X AND aaaa, X 3D 3 4%
Absolute, Y AND aaaa,Y 39 3 4*
(Indirect, X) AND (aa,X) 21 2 6
(Indirect), Y AND (aa)Y 31 2 5%

*Add 1 if page boundary is crossed.

205

ASL

Operation: C « [7]6]5]4[3]2]1]0] <0

Accumulator Shift Left

NZCIDV
SIS ===
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Accumulator ASL A OA 1 2
Zero Page ASL aa 06 2 5
Zero Page, X ASL aa, X 16 2 6
Absolute ASL aaaa OE 3 6
Absolyte, X ASL aaaa, X 1E 3 7
Branch on Carry Clear
Operation: Branchon C = 0
NZCIDV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BCC aa 90 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AtM 65 will accept an absolute address as the operand {instruction format BCC aaea), and
convert it to a relative address.

BCS

Branch on Carry Set

Operation: Branchon C = 1

NZCIDV
Addressing Assembly Language orp Neo. No.
Mode Form CODE Bytes Cycles
Relative BCS aa BO 2 2*

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to next page.
Note: AIM 65 will accept an absoliute address as the operand (instruction format BCS asaa), and

convert it to a relative address.

206

BEQ

Branch on Result Equal to Zero
Operation: BranchonZ =1

NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BEQ as FO 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to next page. .

Note: AIM 65 will accept an absolute address as the operand (instruction format BEQ aaaa), and
convert it to a relative address.

BIT

Test Bits in Memory with Accumulator

Operation: A M,M;—> N,M;-> V
Bit 6 and 7 are transferred to the Status Register. If the
result of A M is zero then Z == 1, otherwise Z = 0

NZCIDV
M,/ — — —M,
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page BIT aa 24 2 3
i Absolute BIT aaaa 2C 3 4
BMI
Branch on Result Minus
Operation; Branchon N =1
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BMI aa 30 2 2*

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BM! aaaa), and
convert it to a relative address.

207

Branch on Result Not Equal to Zero
Operation: BranchonZ = 0

NZCI1DV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BNE aa DO 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BNE aaaa), and
convert it to a relative address.

BPL

Branch on Result Plus
Operation: Branchon N =0

NZCIDV
" Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BPL aa 10 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BPL aaaa), and
convert it to a relative address.

BRK

Force Break

Operation: Forced Interrupt PC + 21 P!
BNZCIDYV

l1———-1-—--—
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied BRK 00 1 7

208

BVC
Branch on Overflow Clear

Operation: Branchon V=10
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BVC aa 50 2 2

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.)
Note: AIM 65 wili accept an absolute address as the operand (instruction format BVC aaaa), and

convert it to a relative address.

BVS

Branch on Overflow Set

Operation: BranchonV =1
NZCIDV
Addressing Assembly language op No. No.
Mode Form CODE Bytes Cycles
Relative BVS aa 70 2 2"

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.
Note: AIM 65 will accept an absolute address as the operand (instruction format BVS aaaa), and

convert it to a relative address.

CLC
Clear Carry Flag

Operation: 0> C
NZCIDV
e 0 — — —
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Implied CLC 18 1 2

209

CLD

Operation: 0> D

Clear Decimal Mode

NZCIDV
_— . — 0 _
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2
CLI
Clear Interrupt Disable Bit
Operation: 0> I
NZCIDV
N ———0 -~
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied Ctt 58 1 2
CLvV
Clear Overflow Flag
Operation: 0 > V
NZCIDV
~~~~~ 0
Addressing Assembly Language op No. No.
Made Form CODE Bytes Cycles
Implied CLv B8 1 2

210



cmp

Compare Memory and Accumulator

Operation: A — M

NZC1IDbV
JAS ===
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #dd c9 2 2
Zero Page Cmp aa c5 2 3
Zero Page, X CMmP aa, X D5 2 4
Absolute CmP aaaa cD 3 4
Absolute, X CMP aaaa, X bD 3 4*
Absolute, Y cmp aaaa,Y D9 3 4%
(indirect, X) cme (aa,X) 1 2 6
(Indirect), Y CMmP (aa),Y D1 2 5*
*Add 1 if page boundary is crossed.
Compare Memory and Index X
Operation: X — M
NZCIDV
JAAS ==
Addressing Assembly Language orp No. No.
Mode Form CODE Bytes Cycles
Immediate CpPX #dd EQ 2 2
Zero Page CPX aa E4 2 3
Absolute CPX aaaa EC 3 4
CPY
Compare Memory and Index Y
Operation: Y — M
NZCIDV
SV ==
Addreaaing Assembly Lenguage OP No. No.
Mode form CODE Bytes Cycles
Immediate CPY #dd co 2 2
Zero Page CcpyY aa C4 2 3
Absolute CPY aaaa cC 3 4

21



DEC

Decrement Memory by One
Operation: M —1-> M

NZCIDV
VA
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC a9 Cé 2 5
Zero Page, X DEC a3a X b6 2 6
Absolute DEC asaa CE 3 6
Absolute, X DEC aaaa, X DE 3 7
DEX
Decrement Index X by One
Operation: X —1-> X
NZCIDV
S ——
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied DEX CA 1 2
DEY
Decrement Index Y by One
Operation: Y —1->Y
NZCIDV
S
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied DEY 88 1 2

212




EOR

Exclusive-OR Memory with Accumulator

Operation: AVM-> A

NZCIDV
S ——
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Immediate EOR #dd 49 2 2
Zero Page EOR aa 45 2 3
Zero Page, X EOR aa, X 55 2 4
Absolute EOR aaaa 4D 3 4
Absolute, X EOR asaa, X 5D 3 4%
Absolute, Y EOR aaaa,Y 59 3 4*
(Indirect, X) EOR (aa,X) 41 2 6
(indirect), Y EOR (aa),Y 51 2 5%
*Add | if page boundary is crossed.
Increment Memory by One
Operation: M+ 1-> M
NZCIDV
VAR
Addressing Assembly Language [0 No. No.
Mode Form CODE Bytes Cycles
Zero Page INC aa E6 2 5
Zero Page, X INC aa, X Fé& 2 6
Absolute INC aaaa EE 3 é
Absolute, X INC aaaa,X FE 3 7
Increment Index X by One
Operation: X +1-» X
NZCIDV
S ===
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2
213



INY

Increment Index Y by One

Operation: Y+ 1> Y

NZCIDV
VS
Addressing Assembly Language oP No. No.
Mode Form Code Bytes Cycles
Implied INY cs 1 2
JMP
Jump
Operation: (PC 4 1) » PCL
(PC +2) > PCH
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JMP aaaa 4C 3 3
Indirect Jmp (aaaa) &C 3 5
JSR
Jump to Subroutine
Operation: PC + 2, (PC+ 1) -» PCL
(PC + 2)-> PCH
NZCIDV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Absolute JSR aaaa 20 3 6

214



LDA

Load Accumulator with Memory
Operation: M > A

NZCIDV
S —— =
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate LDA #dd A9 2 2
Zero Page LDA aa A5 2 3
Zero Page, X LDA aa, X B5 2 4
Absolute LDA aaaa AD 3 4
Absolute, X LDA aaaa X BD 3 4*
Absolute, Y LDA aaaa,Y B9 3 4*
(Indirect, X} LDA (aa, X) Al 2 6
(Indirect), Y LDA (aa),Y B1 2 5*
*Add 1| if page boundary is crossed.
Load Index X with Memory
Operation: M - X
NZCIDV
VAV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
tmmediate DX #dd A2 2 2
Zero Page LDX aa Ab 2 3
Zero Page, Y LDX aa,Y B6 R 4
Absolute LDX aaaa AE 3 4
Absolute, Y LDX aaaa,Y BE 3 4*

*Add 1 when page boundary is crossed.

215



LDY

Load Index Y with Memory
Operation: M> Y ‘

NZCIDV
VAV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate LDY #dd A0 2 2
Zero Page LDY aa A4 2 3
Zero Page, X LDY aea, X B4 2 4
Absolute LDY aana AC 3 4
Absolute, X LDY aaaa, X BC 3 4*
*Add 1 when page boundary is crossed.
Local Shift Right
Operation: 0> [ 7T6‘ 5I 413[ 2111 Ol - C
NZCIDV
0/ /———
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Accumulator LSR A 4A 1 2
Zero Page LSR aa 46 2 5
Zero Page, X LSR aa, X 56 2 6
Absolute LSR 23aa 4E 3 6
Absolute, X LSR aaaa, X 5E 3 7
NOP
No Operation
Operation: No Operation (2 cycles)
NZCIDV
Addressing Assembly Language orp No. No.
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2

216




ORA

OR Memory with Accumulator
Operation: AVM > A

NZCI1DV
VAV
Addressing Assembly Language op No. No.
Mode Form CODE Bytas Cycles
Immediate ORA #dd 09 2 2
Zero Page ORA aa [05) 2 3
Zero Page, X ORA aa,X 15 2 4
Absolute ORA aaas oD 3 4
Absolute, X ORA aaaa, X iD 3 4%
Absolute, Y ORA aaaa,Y 19 3 4*
(Indirect, X) ORA (aa,X) 01 2 ]
(Indirect), Y ORA (aa),Y 11 2 5%
*Add 1 on page crossing.
PHA
Push Accumulator on Stack
Operation: A}
NZCIDV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3
PHP
Push Processor Status on Stack
Operation: P
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHP 08 1 3

217



PLA

Operation: A%

Pull Accumulator from Stack

NZCIDV
VAR
Addressing Assembly Language orP No. No.
Mode Form CODE Bytes Cycles
implied PLA 68 1 4
PLP
Pull Processor Status from Stack
Operation: Pt
NZCIDV
From Stack
Addressing Assembly Language OoP No. No.
Mode Form’ CODE Bytes Cycles
{mplied PLP 28 1 4
ROL
Rotate Left
Mor A l
Operation: E7l6]5|4|3|2[1|o|<—
NZCIDV
SIS ——=
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL aa 26 2 5
Zero Page, X ROL aa, X 36 2 6
Absolute ROL aaaa 2E 3 6
Absolute, X ROL aaaa, X 3E 3 7

218



ROR

Rotate Right
L M or A
Operation: [€] - (7165432 1]0
NZCIDV
JAS ===
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR aa 66 2 5
Zero Page, X ROR aa, X 76 2 6
Absolute ROR aaaa 6E 3 [
Absolute, X ROR aaaa, X 7E 3 7
RTI
Return from Interrupt
Operation: P{PCt
NZCIDV
From Stack
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied RTI 40 i 6
RTS
Return from Subroutine
Operation: PCt, PC - 1> PC
NZCIDYV
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
Implied RTS 60 1 6

219



SBC

Subtract from Accumulator with Carry
Operation: A — M —€-A

Note: C = Borrow

NZCIDV
SIS ==
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate SBC #dd £9 2 2
Zero Page SBC aa E5 2 3
Zero Page, X SBC aa, X F5 2 4
Absolute SBC 3aaa ED 3 4
Absolute, X SBC aaaa, X FD 3 4%
Absolute, Y SBC aaaa,Y Fo 3 4*
(Indirect, X) SBC (aa,X) El 2 6
(Indirect), Y S8C (aa),Y Fl 2 5%
*Add 1 when page boundary is crossed.
Set Carry Flag
Operation: 1> C
NZCIDV
]l - -
Addressing Assembly Language opP No. No.
Mode ’ Form CODE Bytes Cycles
implied SEC 38 1 2
Set Decimal Mode
Operation: 1-» D
NZCIDV
_———-1
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cyecles
Implied SED F8 1 2

220



SEI

Operation: 1> 1

Set Interrupt Disable Status

NZCIDV
N [
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SE! 78 1 2
STA
Store Accumulator in Memory
Operation: A-> M
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA aa 85 2 3
Zero Page, X STA aa, X 95 2 4
Absolute STA aaaa 8D 3 4
Absolute, X STA aaaa X 9D 3 5
Absolute, Y STA aaaa,Y 99 3 5
(Indirect, X) STA {aa,X) 81 2 [
(Indirect), Y STA (aa),Y 21 2 ]
STX
Store Index X in Memory
Operation: X—-> M
NZCIDV
Addressing Assembly Language or No No.
Mode Form CODE Bytes Cycles
Zero Page STX aa 86 2 3
Zero Page, Y STX aa,Y 96 2 4
Absolute STX aaaa 8E 3 4

221



STY

Operation: Y-> M

Store Index Y in Memory

NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page 5TY aa 84 2 3
Zero Page, X STY aa,X 94 2 4
Absolute STY aada 8C 3 4
TAX
Transfer Accumulator to Index X
Operation: A—»> X
NZCIDV
JJ——
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
tmplied TAX AA 1 2
TAY
Transfer Accumulator to Index Y
Operation: A= Y
NZCIDYV
P
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 1 2




TSX

Transfer Stack Pointer to Index X
Operation: S—» X

NZCIDV
VAV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied T8X BA 1 2
TXA
Transfer Index X to Accumulator
Operation: X—> A
NZCIDV
VAV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A 1 2
TXS
Transfer Index X to Stack Pointer
Operation: X - S
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied XS 9A 1 2
TYA
Transfer Index Y to Accumulator
Operation: Y—> A
NZCIDV
VR
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
Implied TYA 98 1 2

223



M/C mnemonics

6502 INSTRUCTION REPERTOIRE

MNEMONIC FUNCTION
ADC Add memory to accumulator with carry.
AND AND memory with acuumulator.
ASL Shift left 1 bit.
BCC Branch on carry clear.
BCS Branch on carry set.
BEQ Branch on 0.
BIT Test bits in memory with accumulator.
BMI Branch on result negative.
BNE Branch on result <> O.
BPL Branch on result positive.
BREK Force break.
BVC Branch on overfiow clear.
BVS Branch on overflow set.
CLE Clear carry flag.
CLD Clear decimal mode.
CcLY Clear interrupt disable.
cLvV Clear overflow flag.
CHMP Compare memory with accumulator.
CPrX Compare memory with X register.
CPY Compare memory with Y register.
DEC Decrement memory.
DEX Decrement X register.
DEY decrement Y register.
EOR Exclusive OR memory with accumulator.
INC Increment memory.
INX Increment X register.
INY Increment ¥ register.
JMP Jump to specified location.
JSR Jump to subroutine.
LDA Load accumulator.
LDX Load X register.
LDY Load Y register.
LSR Shift right 1 bit.
NOP Mo operation.
ORA OR memory with accumulator.
PHA Push accumulator onto stack.
FHF Push processor status onto stack.
FLA Pull accumulator from stack.
FLF FPull processor status from stack.

224



RO
ROR
RTI
RTS

SBC
SEC

SED
SE1
5TA
5TX
STY

TAX
TAY
T5X
TXA
TXS
TYA

Rotate left 1 bit.
Rotate right 1 bit.
Return from interrupt.
Return from subroutine.

Subtract memory with borrow from accumulator.
Set carry flag.

Set decimal mode.
Set interrupt disable.
Store accumulator.
Store X register.
Store Y register.

Transfer accumulator to X register.
Transfer accumulator to Y register.
Transfer stack pointer to X register.
Transfer X register to accumulator.
Transfer X register to stack pointer.
Transfer Y register to accumulator.

225



6510 Flag Guide

N-Negative Flag

Instruction to condition  Instruction to test

ADC DEY LSR TAX BMI
AND EOR ORA TAY BPL
ASL INC PLA TSX

CMP INX PLP TXA

CPX INY ROL TYA

CPY LDA ROR

DEC LDX RTI

DEX LDY SBC

V-Overflow Flag

Instruction to condition  Instruction to test

ADC CLV RTI BvC
BIT PLP SBC BVS
B-BREAK Flag

Instruction to condition  Instruction to test

BRK PLP RTI

D-Decimal Flag

Instruction to condition Instruction to test

CLD PLP RTI SED

I-Interrupt Flag

226



Instruction to condition

Instruction to test

BRK CLI PLP RTI

SEI

Z-Zero Flag

Instruction to condition

Instruction to test

ADC
AND
ASL
BIT

CMP
CcpYy
CPX
TYA

C-Carry Flag

DEC
DEX
DEY
EOR
INC
INX
INY

LDA
LDX
LDY
LSR
ORA
PLA
PLP

ROL
ROR
RTI

SBC
TAX
TAY
TXA

Instruction to condition

BEQ
BNE

Instruction to test

ADC
ASL
CLC
CMP

CPX
CPY
LSR
PLP

ROL
ROR
RTI
S8l

SEC
BCS

BCC

227



Hex/Dec convertor

Decimal % Hexadecimal Conversions

HEXADECIMAL COLUMNS

) =1 4 ) 2z 1
HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC
o (o} (o] [+] 0 [¥] O [+] [+] O o
1 1,048,576 1 65,576 1 1 256 1 16 1 1
2 2,097,152 2 131,072 2 2 S12 2 32 2 2
T 32,145,728 3 196,408 z = 768 = 48 > 3
4 4,124,304 4 262,144 4 4 1,024 4 64 4 4
S 5,242,880 S 327,680 S S 1,280 =1 80 S 5
& 6,291,456 & 393,216 & 6 1,536 &5 2 b b
7 743400352 7 458,752 7 7 1,792 7 11z 7 7
8 8,388,608 8 524,298 8 8 2,048 8 128 g g
9 9,437,184 ? 589,824 ? 9 2,304 ? 144 e 9
A 10,485,760 A 655,360 A A 2,560 A 160 A 10
B 11,534,334 E T20,897 B B 2,816 B 176 B 11
cC 12,582,912 C 786,432 [ C - c . 122 4 12
D 13,631,488 D 851,968 D o D 208 D 3
E 14,680,064 E 917,304 E E : E 224 E 14
F 15,728,640 F 983%,040G F F %,840 F 240 F 15
MNates.

To convert from hexadecimal to decimal, first find the corresponding
column position for each hexadécimal digit. Make a note of the
decimal equivalents, then add the noted values together to obtain the
converted decimal value.

To convert from decimal to hexadecimal, find the largest decimal
value in the table that will fit into the number to be converted.
Next make a note of the hex equivalent and column position. Calculate
the decimal remainder, and repeat the process on this and any
subsequent remainders.

228



Index

Absolute addressing, 96

Absolute indexed addressing,
98

Accumulator addressing, 101

ADC command, 69, 71,85

Addition, 126ff.

Addressing modes, 95ff.

AND, 118ff.

Animation, 129, 130, 131

Arithmetic logic counter, 91

Arrays, 14

ASL command, 123

Assemblers, 51ff.

BASIC game start, 47-9

BCS command, 93

BEQ command, 81

Bit values, 67

BNE command, 75

Border routine, 51, 52, 81, 82

BPL command, 85

BRK command, 133

Byte definition, 67

Carry flag, 92, 93

Charget routine, 132, 133, 228ff.

CLC command, 85, 93

CLI command, 133

CMP command, 80, 128
CPX command, 128

CPY command, 128

Data, 15

Database, 21ff.

Data conservation, 14ff.
Decimal counting, 53
DEX command, 75
Division, 164ff.

Error channel reading, 24, 25
Extramon listing, 1650ff.
Fergus sprite data, 60-1
File manipulation, 30ff.
Files, 15

Flag guide, z~ " °f.

Flags, 90ff.

Hexadecimal counting, 53
High res drawing, 16, 17, 18
High order, low order, 74

Immediate addressing, 95, 96

Implied addressing, 97

Indexed indirect addressing, 99,
100

Indirect absolute addressing,
97,98

Indirect indexed addressing,
100, 101

Input routines, 24, 25

Instruction set, 205ff.

Interrupts, 132ff.

JMP command, 85

JSR command, 79, 80

LDA command, 54, 69, 71

LDA offset, 86

LDX command, 69, 70, 71

Listing conventions, 19

Loading files, 26, 27

Logical operators, 118ff.

LSR command, 123

Machine code addition, 126ff.

Machine code division, 164ff.

Machine code multiplication,
161ff.

Machine code subtraction,
126ff,

Memory conservation, 12,13, 14

Memory maps, 185ff.

Menu programming, 22

Million count program, 57-9, 84,
85

Monmaker listing, 152ff.

Multiplication, 161ff.

Musical interrupts, 177-84

Musical routines, 176ff.

Negative flag, 94

NOT, 118ff.

OR, 118ff.

Overflow flag, 94

Processor status register, 92

Program counter, 90ff.

Relative addressing, 101

REM statements, 10, 11

ROL command, 123

ROR command, 123

229



RTIcommand, 133

RTS command, 69, 70

Saving files, 28, 29

Saving m/c programs, 55, 56,
66

SBC command, 83

Scrolling routines, 109, 115-17

Searching techniques, 40-3

SEC command, 83, 93

SEl command, 133

Sorting techniques, 44-6

Sprite manipulation, 62-6,
110-15

STA command, 69

230

STA offset, 73,75

Stack, 74, 124ff.

STX command, 69, 70, 71

Subroutines in machine code,
175ff,

Subtraction, 126ff.

TAX command, 83

Timing, 131, 132

Truth tables, 119, 120, 122

TXA command, 83

USR command, 175

Zeroflag, 94

Zero page addressing, 96, 99







Duckworth Home Computing

ADVANCED BASIC & MACHINE CODE

FOR THE 64

by Peter Gerrard

For the more serious user of the Commodora G4, this
book teaches yvou all about programming in machine
code. It includes sections on building a database, doubla
pracision arithmetic, flags and registaers, logic oparators,
indirect addressing. built-in subroutines, adding
commands to Basic and animation. The all-important link
o Basic is not forgotten: the opaning chaplers show you
how 1o improve your Basic programmuing techmniques,
offering Mmany program axamples.

Peter Gerrard, former editor of Cornmodorne Cormputing
Inferrrafionsi, 15 the author of bwo top-selling adventure
games for the Commodore 64 and a regular contributor
to Personal Compouter News, Which AMicro 2 and Soffbware
Aewview and Cormmurmrodone Horrrsons.

ITSBN O-71k5L-1L785-0

o "FBO715"61 7854

ISEM O 7156 1TSS O

Duckworth
The Old Piano Factiory
43 Gloucester Crescent, Lomdon MNWO N UK ODONLY £6.95 NET



	Advanced basic and machine code for the c64 01
	Advanced basic and machine code for the c64 02
	Advanced basic and machine code for the c64 03
	Advanced basic and machine code for the c64 04
	Advanced basic and machine code for the c64 05
	Advanced basic and machine code for the c64 06
	Advanced basic and machine code for the c64 07
	Advanced basic and machine code for the c64 08
	Advanced basic and machine code for the c64 09
	Advanced basic and machine code for the c64 10
	Advanced basic and machine code for the c64 11
	Binder1.pdf
	15dku4z
	2aabl7d




