yCilB
s NEWS

S/ S Volume 3 Issue 9

WORDFORM

| Review of the latest
| word processing package

P

= SORTING
§% TECHNIQUES

Dot o 0§ S g% [he definitive article

s/ DISK USE FOR
A~ BEGINNERS

F HHHTHTH AT
I ||| A Part 6 of our special course

=TT

% BASIC COMPILERS

Start of a series of articles on
“how to write a compiler”

PLOTTING
MULTIPLE
2. FUNCTIONS

. How it’s done

c: commocore

COMPUITER

Contents

Editorial — Welcome to the Magazine........cccovviciiirieririeiiinininiine e sneaanes

The Administrator — Not the last program on the PET

Pet Cake — You’ve heard of eating the apple........oooovriiiiiin i ercrrerereenaaanaa .3
VIC QB —= M OTE N WS, . tiiieeiiiieeirnrateesererseererurennessesesssstetsesuumioseessterrastissasssnaaisesestssiosiimieiesstsssesssssooss erereeres o3

vl

Review — Wordform from Landsoft............. e tetteeeeterai babrteteeaaaaa—nateeeaesaaeteresteis s b abnraeseaeaaaanrraaanas
Review — More pOWET t0 YOUT €lDOW......couriiiiiriiiiiiiiiiicice it teeeeeeeeereeriesressnreraiats 10
Sorting Techniques — The definitive article..........oiiieiriiii s 12
Basic Programming — Input SUDTOULINES.....c.veeieriiiiieiiiitiiiiiii et

— Driving the User Port in Basic

— Multidimensional Arrays.......cc........

— Plotting Multiple Functions.......ccccoevvviirverirecciiinnnnnn. ST OSOPPPPPPPPPPPRR
Peripheral Spot — Early explorations with the 8010 modem from a number of PET experts
Machine Code Programming — Pet string flip.........ccooviieiiinniniinnne

- Restricted Access...........

Disk Use for Beginners — Moving onto more complex concepts

Communications Special

Editorial — Introduction on this SECtion.......cccovviriiiieiiriiiisiniiasieneininnns VPR e eetttretrrrereeeeesaertnriaraesesesortirennns 1
Main Feature — Algorithms for Intelligent Terminal OPeration..........ccooeecerninniinniinii 216

1d tricks for new Pets. ..
NeXt Month g‘!AND-D is a FOUR XILOBYTE Rom for the 4000/8000 Basic 4 Pets

with all the "Toolkit® commands RENUMBER (improved), AUTO, DUMP,
DELETE, FIND (improved), HELP, TRACE {(improved & includes STEP),
and OFF - plus PRINT USING - plus four extra disk commands
INITIALIZE, MERGE, EXECUTE, and SEND - plus extra u=diting

commands SCROLL, MOVE, OUT, BEEP, and KILL - plus SET
user-definable soft kay, 190 characters - plus program scroll up
and down - plus 8032 control charactars on kay. Ask for Model
£0-80N for the 8032 or CO-40N for the 4016/4032. £50.00 plus vat

New tricks for old Pets.

DISK-0-PRO is a FOUR KILOBYTE Rom that upgrades 200073000 Pets,

Y 3 ’ But lat k 11 1d soft - including Toolkit. A
In next month’s issue we'll have all our well ko LT LI N RN
. . s s comman ’ » . ’
known favourites, including a couple of articles aégégiéksupv.lmpeun. os:vs. DLOAD, 'CATALOG, RENAME. ScRATCH and
: : : : 0 - tre dgisk ds INITIALIZE, MERGE, EXECUTE
from Jim Butterfield, Disk Drive for beginners, and SEND - p?u:’-::r:asdi:inzor:::\u:ds SCROLL, MOVE, OUT, BEEP
. nd KILL - plus SET user definabl ft-key, 80 charact -
What the Papers Say, and so on. Newcomers in- Ei"i program 5""5;;;"":’%2‘,’;‘:";":‘E' :.:’:,:cm.,.d":f,:":gm
7 M : s upgraded n v ds. Ask for
clude a beglnners glude to using the User Port, a a1 EoP S ER for new Pats 2001-3032, and 2001-6 with retrofit
number Of hints for 8032 users pel‘ipheral Spot Roms § TK160P Toolkit. £50.00 plus Vat, other models available.
>
. . . PRONTO-PET hard/soft t switch for the 3000/4000 Pets.
reverts to disk drives again, and of course the o't t:inknyiitﬁz-:rﬁzaz yizi Pat 3&"::0“ softuacs. :m:at
3 M : ou [e] -] ronto-Fe Ll a o -] 20 aars L]
usual Basic and Machine Code sections, as well TR ot Sob, without that nasty off/on pouer surge. £9.39 o Vat
as the news and reviews we always feature. . . '
The special pullout section is back to educa- and no tr icks mlSSEd .

. : . . KRAM Keyed Random A Method. Kid Pet it 1BML VS
tion again, and includes a couple of articles from disk h.:é'f1“'30?'"303373332?5033 Pete LIt 3040/4040/8050 disxs
. . . t data FAST, by NAME - t k t
Nick Green, Commodore’s Special Projects e Torns fo uorry sbout. Ovar 2,500 uaars worldwide have Joined
Manager one on a Visit to a Comprehensive the °"Klub"l Now you can too, at the 1981 price, £75.00 plus Vat.

3>

. 5 . SPACEMAKER A1l R duct tible with wach ather,
school, and the other on topic lists. Of special in- Dot ane18 you want, say. Wordpro with Kram. of Disk-o-pro with
N . Visicale, then SPACEMAKER will allow both Roma to sddreuss one
terest 1s a report from the Comal Users Group n Rom socket, with just the flip of a switch, for £22.50 plus vat.
the States . everything you ever Wanted to knOW We are sole UK distributors for all these fine products. If your
. CBM dealer is out of stock, they are available by mail from us,

about Comal, but were afrald to ask! by chequa/Access/Barolaycard (UK post paid) or send for detaile.

Calco Software

Lakeside House Kingaton A¢ll Surrey KT27QT Tel 01-548~7258

Editorial

Autumn is with us once again, but that doesn’t stop the newsletter
rolling on -we’re almost back to the publication schedule that ap-
peared around this time last year! By the end of the year, we’ll be
back on target once again when volume 3 issue 11 comes out. 1982 will
definitely see the first ever 12 issue volume of the newsletter.
Another item you’ll be seeing shortly is ‘“The Best of Commodore
Club News Volume 3°°, covering all the best articles, programs etc.
that have been printed in Club News over the year 1981. Now some of
you may argue “‘Best of ... Volume 3°° ? When did ‘‘Best of ... Volume
2°* appear, you may well ask. Well, the original “‘Best of ... > was a
compilation of the first two years, and it has now been decided to pro-
duce such a book every year ; hence volume three. I was beginning to

loose myself there!

What’s in store

Anyway, what have we got in store
for you this time ? As ever, our base
of articles that appear every month.
Jim Butterfield, this time talking
about the 12" 4032s, and some dif-
ferences you can expect to find bet-
ween them and the earlier 9" models.
Savour this article, because we might
not have one next time around.
Canada is having a postal strike at the
moment, and as Jim lives in Canada
...] But knowing him I’m sure he’ll do
his best to come through to us.

Disk Use for beginners continues to
wend its merry way inside the Com-
modore disk drives. If you’ve been
following this series from the beginn-
ing (all those lessons ago) you should
by now have a very good idea of how
to make the most of your disk drive.
Certainly these articles, coupled with
the many other items and programs
on disk drives, should have helped
even the complete tyro to get going. I
hope so anyway.

What the Papers Say is again full of
weird and wonderful stories about
PETs and their many uses, culled
from a variety of magazines, not all of
them computer based either. We get
everywhere!

The usual Basic and machine code
sections, the Basic covering such
items as an all-purpose INPUT
subroutine, multi-dimensional arrays,
driving the user port in Basic, and a
few more besides. For machine code
addicts we have a way of making your
programs more secure, flipping str-
ings, the start of a series of articles on
how to write you own compiler and
more.

Peripheral Spot

This time the section concerns
itself with the 8010 modem, and
features a number of contributors
who have each made a name for
themselves in the PET world. Jim
Butterfield needs no introduction,
and we highlight a program he
developed to get you on the air. Paul
Higginbottom, Commodore legend in
his own lifetime, gives us some of his
early discoveries with the 8010, in
order to save you the head scratching
that he went through. Communica-
tions is here to stay!
went through. Communications is
here to stay!

What other wonders have we got ?
The reviews section, this time mainly
featuring the major new word pro-
cessor to appear, namely Wordform.

At £75.00 it can’t be in the same
league as the ‘big two’ you might say.
Read on.....

Sorting techniques get taken apart
in an excellent article from Italy. Well
laid out, well documented, clear
listings and flow charts - a model ex-
ample for all to follow. I know we’ve
featured sorts extensively before, but
as it is probably the most commonly
encountered problem in the world of
micros I feel it deserves all the
coverage we can give it. Especially
when the article is as good as this (I
can say things like that because I
didn’t write it!).

Power, an amazing new chip from
Professional Software, is also review-
ed in this months issue. At only
£49.50 this represents very good
value for money, as Barry Miles tell
us in his review.

Communications

The special - section, alternating
with the bi-monthly educational
features, concentrates once more on
communications, proving just how
important this particular side of PET
activity is becomming. Another ex-
cellent article by Dr. Phillip Barker of
the Teeside Polytechnic (who wrote
the article two issues ago on Using a
Microcomputer as an Interactive Ter-

The editor doing some work for a change!

2

minal), concentrating this time on
Algorithms for Intelligent Terminal
Operation. 1 suspect we’ll be hearing
more from Dr. Barker in the near
future, as obviously his knowledge of
communications is very good.

So that, along with all the other
various goodies, is what you can ex-
pect to find this time around.

The Future

But let’s, for a while, look to the
future.

As I write this I’'m happily
ensconced in Commodore’s brand
new premises at 675 Ajax Avenue on
the Slough Trading Estate. The view
out of the window may not exactly be
‘herds of wildebeeste sweeping ma-
jestically across the plains, the
Sydney Opera House away on the
horizon’ as someone just about said
once, but the exterior is unimportant,
It’s what goes on inside that counts.

The building’s designed to cope
with our expected expansion for the
next five years. Looking earlier at the
vast amount of warehouse space we
now have at our disposal (big enough
to hold 43,518 elephants - well, little
ones anyway) I can well agree with
that. The future, at the moment, is
looking good for Commodore. And
that means good for you.

Introducing products like the VIC
at one end of the scale and the micro
mainframe at the other, means that
we now can cover a complete range of
users, from the hobbyist to the big
time businessman, from the school
teacher to the mainframe man. What
next?

Well that is rather difficult to
predict. Five years ago no-one would
have been able to describe the micro
mainframe, for instance. Ten years
ago even the (now) humble calculator
was almost unheard of. It is said at
the moment that a new micro is ap-
pearing on the scene every month. So
to say what is going to appear in five
or ten years time is something of an
impossibility. And I’'m not going to
try! Just keep on subscribing and find
out!

Perhaps you would like to write in
with your ideas of what the scene will
be like in the year 1991. The most
original and amusing article will be
published with all due fanfare and
publicity in a future newsletter.

The address for that, and any other
contributions (and keep ‘em coming
-it’s your magazine) is the new one :-

The Editor

Commodore Business Machines
675 Ajax Avenue

Trading Estate

Slough

Berks.

Subscriptions

To subscribe to the magazine,
simply send a cheque for £10.00 (or
£15.00 for overseas membership to
cover increased postage), made
payable to C.B.M. (U.K.) Ltd,, to the
above address. That will give you a
year’s supply (12 issues) of the
magazine. Keep yourself informed!

PET Cake

Describing our low-cost versatile
PET computer normally requires
terms such as ROM, BASIC inter-
preter, green phosphor screen, RAM,
parallel port, cassette ports, etc.

But have you seen a PET computer
that contains “ingredients’ such as:
eight pounds of white frosting, fudge
filling, eight white cake mixes, candy
bars, and dyed, uncooked alphabet
macaroni.

The PET cake was created by
Sarah Jo Gilpin-Bishop and her hus-
band Frank Bishop to mark the third
anniversary of their computer group.

The PET cake was creted by Sarah
Jo Gilpin-Bishop and her husband
Frank Bishop to mark the third an-
niversary of their computer group.
By the way, it should be noted that
consumption of the PET cake was
total.

We’ve always said PET Computers
are easy to use. This just proves
they’re a piece of cake!

Any other PET recipes I’ll happily
publish!

Not the last program on the
PET but certainly in advance
of anything else

Stage One Computers do not claim

that THE ADMINISTRATOR is
the last program you will ever require
on your PET microcomputer, BUt'
they do however claim that THE AD-
MINISTRATOR is the first pro-
gram on the PET and other
microcomputers that actually allows
the user to set up his own system in-
corporating records with vairable
amounts of information contained
there-on. Such applications as: Sales
Accounts, Purchase Accounts,
Nominal Accounts, Cost Ledgers,
Stock Ledgers. All types of recording
applications which require variable
numbers of entries or postings or visit
records may be set up using this
system to the customer’s own format.

NEIL HEWITT, the Senior Part-
ner of Stage One Computers of
Bournemouth, Dorset, states:
“There is no such thing as the
ultimate program - there is always
room for improvement - the ultimate
is a dream - one worth striving for,
but never achievablee THE AD-
MINISTRATOR is the closest thing
to the “ultimate” available on the
Commodore PET. Systems like this
have so far always restricted the user
in the amount of information that he
can store with one record. THE AD-
MINISTRATOR overcomes this
problem, and covers everything other
systems handle”.

There are over 2000 users of the
now familiar PETAID range of pro-
grams and:

“THE ADMINISTRATOR will
really be the Winner” - says Neil
Hewitt.

VICaid

Over a chat with well known Rud-
dles entrepeneur Chris Palmer, of the
VIC centre (tel. 01 992 9904 for fur-
ther info) I got the lowdown on .a
number of developments that were
happening there. For instance, the
game of games appears to be with us.
Called Monster Maze, you are in con-
trol of a man walking through a maze,
accompanied with the sound of his
footsteps. You have to avoid the VIC
monsters as they appear, with more
and more of them arriving as you suc-
ceed in advancing further and further
through the maze. Accompanied by
the fabulous sound, graphics and col-
our which the VIC has on board,
Chris tells me it will be a real winner.
Go down there for a demo if you want
to see it, and other astounding games

and programs generally. Their ad-
dress is :-

The VIC Centre

154 Victoria Road

Acton

London W3

As VICs become more and more a
way of life, I’ll be going down there
for an indepth report on what’s going
on. Watch this space!

Compsoft Launches New DMS

The New DMS for Commodore
machines has broken the limitations
of current record keeping systems
with several features never previously
seen on Pets.

But don’t worry, users of the ex-
isting system can trade in the old ver-
sion for fifty pounds and reap the
benefits that new users have as stan-
dard. Particular benefits include
speed of operation, in that the New
DMS is written almost entirely in
machine code, and the ability to
create and store records of up to a
thousand characters in length. The
new record size, four times the limit
imposed by the previous system, can
also hold long chunks of descriptive
text (up to 255 characters in a field,)
and is particularly suitable for person-
nel records, library records, student
records etc, where full details are
required.

Other major benefits include a
report generator that can produce let-
ters or reports along any lines, with
totals and sub-totals as required.

B G S IR R R R I O

A

S

A N l

PW

{

Report formats are storable, and may
be recalled and modifed at any time.
Any number of special screen
displays can be produced and recalled
for use or modification in very much
the same way.

Compsoft stress that the New DMS
is not a modification of the old one,
but is a complete rewrite. Many of
the features and facilities are based on
those available in the CP/M version,
such as genuine date programs, on
screen editing etc. The links to Word-
craft, Wordpro and Visicalc still come
as standard, but the best news is that
the price remains unchanged at
around 250 pounds, inclusive of links
and new manual. Particular care has

FrE tr Vi
IETRRE

been taken to increase DMS’s ease of
use, and speed up the learning time.
An interactive method of communica-
tion is used throughout, with or
screen commands in every day con-
versational English.

The New DMS (Data Management
System) is available for Commodore
4000 and 8000 machines, with the
standard DMS available for the 3000
systems. Owners of machines under
the CP/M operating system can also
buy the DMS suite of programs writ-
ten specially for them.

Compsoft Ltd, Great Tangley
Manor Farm, Wonersh, Guildford,
Surrey GU5 OPT Tel Guildford
(0493) 505918

Computer Assisted Learning

.As you may already know, the
Schools Council Project, Computers
in the Curriculum has been under
way for around eight years, building
on the earlier work of the Chelsea
Scienice Simulation Project. Over the
last year, the Project has also received
funding from the Microelectronics in
Education Programme (M.E.P.)
under Richard Fotherfill, and is likely
to be funded for a further three years
from this source.

In the early seventies, computer
programs written to provide C.A.L.
(Computer Assisted Learning) oppor-
tunities at school level in subjects
other than Maths and Computer
Studies were accessed from the school
by means of the school - central main-
frame computer telephone link which
some forward-looking Local Educa-
tion Authorities established in their
areas. A decision on a suitable com-
puter ‘language’ was also taken then
in advance of the rapid changes of the
last few years. As it happens, the cur-
rent wave of microcomputers in use
in . education, small businesses and
even in the home environment nearly

all talk this language. The language is .

called BASIC (Beginners All-purpose
Symbeolic Instruction Code) and was
developed in America back in the six-
ties at Dartmouth College, New
Hampshire. It was intended then as a
programming language for beginners,
but has been enhanced by many com-
puter software -suppliers (program
producers) and even by hardware
manufacturers (machine producers)
such that it now often bears little
resemblance to its original specifica-

tions. There is much debate currently
about the suitability of the language
for all the widespread tasks which it is
being asked to perform. However,
without becoming involved in the
arguments about BASIC, the facts are
that it is virtually the ONLY
language normally supplied on these
current machines by the manufac-
turers, and software producers must
lie with the problems this causes.

With the appearance of the
microcomputer over the last three
years or so, the Project has been faced
with a number of problems with
regard to providing access to its CAL
materials for the wuser of the
microcomputer. The most severe of
these was the fact that different
machines generally ‘speak’ different
dialects of the BASIC language, often
necessitating minor, or even major,
changes in the CAL program to
enable it to run on any machine other
than the one it was designed upon.
Display formats (now on Video rather
than paper roll) also differ on dif-
ferent machines and the devices used
for sending data to and receiving out-
put from machines are already pro-
liferating and are likely to do so even
more ‘in the near future. Examples
here include touch sensitive
keyboards and speech recognition
devices as opposed to the normal
QWERTY keyboard for input, and
printers, graph plotter and speech
synthesizer units, as opposed to the
video dispay, for output.

All of these devices require special
software (programming) which will
involve minor or major changes to the
original program.

The Project has therefore found
itself in a position that with relatively
limited resources, a system was re-
quired whereby a CAL program hav-
ing been developed and coded
ONCE, would be guaranteed to pro-

duce identical output on any
microcomputer system that was
available, using any peripheral

device that is either available now or
likely to be so within the near future.

The Library of Routines has
therefore been developed with this
aim in mind. The Project accepts that
some of the routines are not perfect,
but at least it is a working piece of
software with a specific aim in mind,
that being to reduce the time and ef-
fort necessary to bring good CAL
material to as wide an audience as
possible in the school environment.

All future software developed by
the Project will be based upon the
Library, but in addition it has been
decided to make the package available
to any developer working in the CAL
or any field who has a requirement
for producing machine independent
software.

With experience, the software will
be improved and provide further
facilities (routines). Continued soft-
ware backup will be provided to all
purchasers of the Library.

As far as the user is concerned, the
Library consists of a set of
subroutines provided either on a
floppy-disk or cassette which can then
be loaded into the host machine. The
actual disk or cassette is still a
machine dependent feature of the
utility since they usually cannot be
made machine independent by soft-
ware means. The Library itself is
also machine dependant since the
routines are defined functionally and
certain routines will contain machine
- specific BASIC and machine code.
It is only these routines that have to
be changed to make the Library
operate in a new machine, or handle a
new device. These ‘versions’ of the
Library are available from the Pro-
ject, and currently we can supply full
versions available for the Commodore
PET and Sorcerer machines. In the
near future we expect to be able to
provide a full version for the Sharp
MZ80K and Tandy TRS 80
machines.

With the Library loaded, all that re-
mains for the developer is to write his
‘driver’ program in a standard dialect
of BASIC (ANSI minimal), using the
appropriate subroutine calls to the

Library, and that developer will be
writing a program which will produce
equivalent output on any other
machine on which the Library has
been implemented. It must be ap-
preciated however that account must
still be taken of possible differences in
appearance of output on different
‘width’ screens, and the fact that high
resolution graphics can’t be provided
on machines without such support
hardware!

This program can then either be
saved to disk or cassette together with
the Library, or transferred alone by
wire connection to another machine
where it can be linked (merged) with
that machine’s version of the Library.
The combined Library and ‘driver’
program can then be executed by the
new machine.

I applogise if this description is rather
long-winded, but the problem is an
extemely important and rather
technical one, and I feel that the only
way to describe what we are now able
to do, is to provide you with this
layman’s summary.

What the Papers
Say

Another diverse list of applica-
tions this month, with quite a
number concentrating on the
area of PETs in education. I’m
grateful, as ever, to the people
who supply these press clippings
: P’m sure that it isn’t the most
exciting job in the world to per-
form, but thank you. The things
we do for readers!

Keeping the educational ones to the
end, we commence with PETs mak-
ing cups of tea. The Sunday Times
had a feature on the interface recently
developed by I.C.1., and the making
of the cup of tea was done to
demonstrate the versatility of the
device. You get asked by the PET
(which is where we fit in) how many
lumps of sugar you want, how much
milk and finally how hot the water
should be. Pretty indifferent tea, ac-
cording to the Times, but where the
system scores is in the home, where
you could have the system controlling
ventilation, switching heaters on and
off, and even watering the house
plants. Obviously it’s going to be of
most use in the laboratory, and in-

deed this is where most of its sales
have been so far. For further details
contact Ray Broadbridge (the devisor
and assembler of the gadget) of I.C.L.
on 0642 553601 extension 3752.

Stepper Motors

Onto Stepper Motors and the
BKSTS Journal, who run a feature
on the Digital Stepper motor drives,
as distributed by The Interlock Shop.
These provide a control unit offering
absolute synchronisation working
with multi-image film projectors, film
cameras, dubbing and film studio
equipment, special effects and zoom
lens drives. These are controlled by a
PET, needless to say, and further
details are available from the
Interlock Shop, 6la High Street,
Hampton Hill, Middlesex TW12
INH.

The Financial Times (only the
best!) covered the recent Wall Street
Afternoon Recovery, when a number
of shares climbed after a very sharp
slide. Commodore was up 2 1/8 to
$32 3/8. Not very timely I know, but
we do try and cover everything.

Moving onto the 8096, Computer
Weekly carried two articles on it. The
first one, by Claire Gooding, had
Commodore’s Marketing Manager
Keith Hall commenting “The 8096 is
going to sell because of the software
available for it, and because of the
tremendous amount of money
available to wuse that software.
Becasue Britain is so rich in software
we want to be able to offer it for sale
here, quickly.” Hence making the
decision to make them in this coun-
try. At present something like 80% of
manufacture takes place in Germany,
and 20% in the U.S.A. Although it
will only be a small operation at first,
it is anticipated to grow in size rapid-
ly.

This decision to make 8096s in this
country, and the reasons behind that
decision, are also the starting items in
the other article, although it goes into
more detail on one particular piece of
software, namely Silicon Office. Mike
McDonald of Bristol Software Fac-
tory, the people behind Silicon Of-
fice, said ““British software really IS
the best in the world”. Being Cana-
dian, he should be capable of unbias-
ed judgement. A quick run down of
Silicon Office is given as well,
describing it as having all the
elements of an integrated package -
data base management system, word
processor, communications and many

6

other features included - but much
more, as Mike McDonald points out.
“It is programmable. It is not a code
generator, but it does a great deal of
the work for you, at the higher level
of designing the system”. Com-
munications is also emphasised,
stressing that Silicon Offices can be
linked up wherever the telephones
can reach.

The Business Systems & Equip-
ment magazines has a brief mention
for a Stoke-On-Trent housing associa-
tion which has recently acquired a
PET. This is being used for rent ac-
couting, purchase ledger and analysis
of the two. According to their direc-
tor, work that used to take two days a
week can now be done on the com-
puter in less than half a day. Should
be a lesson for all of us in that.

Business Games

Keeping with business for a mo-
ment, a magazine called Training Of-
ficer has a report on a company called
Belvoir Business Games, who pro-
duce a variety of somewhat unusual
business games. Selling package
holidays in Spain, operating prime
sites around a market square in a pro-
vincial town and running different
types of catering establishments on
them, a fully interactive business
game for up to 16 teams or com-
petitors in which 4 different types of
chocolate bars are produced, and a
number of others. For further infor-
mation ring 0949 (that’s Melton
Mowbray) 61318, and ask for Mr.
Atkins.

Campaign, an appropriate name for
a magazine featuring a story on our
latest advertising campaign, costing
half a million pounds. Ronnie Barker
is featured in a series of seven ads
aimed at businessmen and middle
management executives. Print Pro-
motions Publicity are the people
behind this for us, and their creative
director Paul Carberry said “We
wanted to produce a ‘friendly’ cam-
paign that seemed right for the target
market”. Commodore claim 45% of
the microcomputer market in the
U.K. : this campaign intends to make
that higher.

A couple of articles on the recent
Personal Computer World Show,
which featured a Commodore
presence. The Times merely men-
tioned Commodore, and had a picture
of a number of VICs in action, but
the magazine Marketing carried a
much more Commodore oriented

report. Keith Hall, Commodore’s
Marketing Manager, was heard to say
“We agreed to come because we were
promised a separate area for business
systems, and ... because of the launch
of our consumer micro, the VIC 20.
We are finding that visitors are asking
the enthusiast questions on the VIC
20 stall, while up here we’re doing a
brisk trade with serious
businessmen”.

Education

And so onto education. Educational
Computing, surprisingly enough,
kick us off with a mention for the for-
thcoming first ever conference
devoted to educational users of the
PET, coming up at the end of the
November. It discusses the topics to
be covered (see the handout last mon-
th), and ends by saying ‘“‘perhaps the
conference will at last indicate the
real penetration of micros”.

Computing carries an item on a re-
cent report from the Local
Authorities Management Serivces
and Computer Committee (Lamsac),
which states that the PET accounts
for almost two-thirds of micros used
by councils: over 200 machines are
already used by local authority
departments. A spokesman for Lam-
sac said of microcomputing that
“traditionally some local authority

departments have been considered
poor relations, not recognised as high
priority to make use of hard-pressed
central computing facilities. So some
users have been buying micros as
business machines and done their
processing locally”.

An unknown magazine (so
apologies straight away if you
recognise the story) contributes a
report about a lucky school that
found itself being given a PET by a
Northfield firm called Kalamazoo
Business Systems. The school in
question is the Lickey First and Mid-
dle School, and their headmaster, Mr.
David Slater, was quoted as saying
‘“this is an extremely valuable asset to
the school, because computers are
very much the thing of the future”.
The PET was won by Kalamazoo in a
naitonal ‘Superstars’ competition
held in Holland, and sponsored by
Commodore. The reason for giving
the PET was that the captain of the
team, Mr. Richard Jephcott, has two
children at the school, and so now
they can all benefit from the use of a
microcomputer.

Computer Weekly had a letter from
Don Walton, headmaster at
Houghton Country Primary School
in Huntingdon, which raised a
number of interesting points. Faced
with a.couple of problems, kids who

are determined to ferret out the inner
workings of the PET (no subjective
assessment), and needing to introduce
this assessment in BASIC programm-
ing, COMAL seemed to be the
answer. But two further problems
emerge. One is the cost of buying a
new ROM board in order to be able
to use COMAL, and the other is the
DoI’s 50% funding of the BBC/Acorn
/Proton machine for any secondary
school which has not already obtained
a microcomputer. He concludes thus:
“The choice is clear : either the
school funds its own hardware 100%
and therefore has the structured
COMAL, or it gets help from the Dol
for a new microcomputer which does
not”.

Finally for this month we turn to
New Scientist. They have a featrure
on Lowbrook Primary School in
Maidenhead, Berkshire, who’ve ac-
quired for themselves a PET. Among
its many uses will be as a computer-
rised data base for selecting books
from the school library : it gives you a
run down on all the books in a par-
ticular subject field. As well as this, it
(and two other PETs) are also runn-
ing many educational programs in a
bid to get children acquainted with
the mighty micro as soon as possible.

That’s all for this month : see you
next time around!

Basic Compilers

Continued from page 32

8) File handling.
9) Other extensions and
operating procedures.
Some of these stages may be short
enough to be merged with others,
while some, e.g. 2), may need more
than one stage to treat in sufficient
detail.

A simpler proposal for a BASIC
compiler appeared in the PETs Cor-
ner section of the 5th edition of the
Liverpool Software Gazette, and this
proposal has been developed from
that original. It was proposed that a
number of people with access to the
needed equipment attempt a group
implementation of the compiler.
Anyone interested in this scheme is
invited to contact the author.

John Stout

6 College Ave,
Formby,
Liverpool.
L37 3]]

Do you want to advertise
Second-Hand equipment?

..

Equipment........ccccoeviviiiiinneennnnnen.
Price(s)..cceeereerenerieinnricimnecnriencinnens

..

--

..

..

..

..

Please fill out the form above if you wish to advertise second hand
equipment for sale in Commodore Club News. Entry costs just £1.00
(cheque or postal order), and return it to :

Peter Gerrard

Commodore Business Machines
675 Ajax Avenue

Slough, Berks.

C.B.M. (U.K.) Ltd do not accept any responsibility for the products
advertised hereunder and prospective purchasers should satisfy
themselves in respect of any representation made.

7

Review

Peter Gerrard

(f_)rie'nokf ‘they,m"aior applications for any PET system must be word pro-
cessing. I’m sure there are many systems that are dedicated solely to
this application, and probably using one or the other of Wordpro or

Wordcraft.

Since these programs have for some time been the only two major
word processmg packages on the market, the last two issues of the
magazine have featured fairly extensive reveiws of both of those pro-

ducts.

.. However, some companies may have had doubts about buying
either of them owing to the cost. To offset that a new product has ap-
peared, going under the name of Wordform, and costing just seventy

five pounds.

Wordform from
Landsoft

Versions exist for every Com-
modore machine (I think! Check with
your local dealer), and the one under
review was being used on an 80 col-
umn PET.

Fracton of the cost

How can a package at a fraction of
the cost possibly offer the same
facilities as its two ‘‘big brothers” ?
The answer that it doesn’t! It
doesn’t attempt to copy everything
that those packages can achieve, but
sets about providing the majority of
features that you would ever need
from a dedicated work processor.
What you don’t get I’ll come to later,
buit let’s first of all examine what you
do get.

The manual looked unnervingly
simple - just 18 pages of it. This
meant one of two things. Either it was
a product that required very little ex-
planation and was easy to use, or it
had very few features. The logical
procedure to follow on getting a new
product is to go through every feature
on offer, to get an overview of the
package and what’s available, and
then begin to integrate the parts into
a whole.

On loading and running the pro-
gram, and being amazed that it only
occupies 6K of RAM, the initial
display shows the word WORD-
FORM, tells you you’re in primary
mode, and a right arrow sits and waits
for you to tell it something. Now is
the time where a manual can quite

often make or break a program. The
program might be the best machine
code program ever written, but if the
manual doesn’t tell you what to do it’s
wasted.

Congratulations

Congratulations to Landsoft on the
manual. It is simple, precise and to
the point, and every function is clear-
ly explained. There’s also a nice sum-
mary index at the back which ex-
plains what everything does. Saves
fumbling through the manual trying
to find the right part.

The first thing to do is tell it what
printer you’re using. Typing in T,
followed by P (for PET) or A (for Any
other) does the job. The next thing to
do is specify length of page, number
of lines to be printed on, on what line
the page number will be printed on
and on what number the page
number must start. You can dispense
with the last two if you require it e.g.
for letters etc.

In Primary mode there are com-
mands for loading files, saving them,
scratching them, clearing text areas,
printing, exiting the program, and
entering the actual text/editing mode
of the package, known as Scan/Edit
mode. To do this you specify the
maximum number of characters that
will be required in a line of text, and
away you go! .

Unlike Wordpro, for instance,
Wordfrom rapidly establishes itself as
a “What you see is what you get”
word processor. You type inside a
screen window, defined by the max-
imum number of characters you
typed in earlier, and by a border at
top and bottom. They’ve tried to
make the program act as much like a
typewriter as possible, in as much

8

that the bottom of the window
displays a “ruler” lined at every tenth
character, and as you type the
“paper”’, or screen window in reality
of course, moves left and the
“thimble”, or position of the cursor,
stays where it is.

Comfort to typists

This will be a comfort to typists to
whom you’re trying to introduce
word processing. It’s a familiar sight,
rather than the perhaps daunting (at
first sight) appearance of other word
processors. What they perhaps won’t
like so much, and here we come to my
first criticism of Wordform, is the
speed at which the program reacts to
the keys being depressed. Whilst not
affecting typists like me so much (two
fingers on a good day!), the excep-
tionally fast touch typist will find
him/herself getting ahead of what is
appearing on the screen, with the
result that occasionally garbage will
appear. Off putting to the newcomer
to the world of word processing, but I
would guess that in the vast majority
of cases this wouldn’t make any dif-
ference to people.

This now brings me to a criticism
of word processing packages, general-
ly, but alas one from which there is
no escape. It highlights both the
strength, and a weakness, of all
microcomputers. Not being dedicated
word processors the various keys have
to have different functions assigned to
them. No problem for the secretary
who will only ever use the system for
that one purpose, but perhaps
disconcerting for the computer user
who has many different applications.
Still, no particular complaint about
Wordform but about all of them in
general. Mind you, at the end of the
day you’ve still got a microcomputer
on your desk!

A feature of Wordform is the way
the words appear on the screen. They
do not wrap around, and if you’ve
got, say, three spaces to the right
hand border, and the word you’re
about to type contains five characters,
as you begin to type the fourth the
whole word jumps down to the start
of the next line.

Major consideration

As a major consideration before
purchasing any word processor ought
to be the editing facilities that are on
offer, it is time to examine those.

Movement about the screen within
the text area ocurs in one of two ways.
Either in keyboard mode or out of it,
the normal cursor keys will move you
around the screen to wherever you
want to be. Outside of keyboard mode
however you can use the numeric pad
to zip you about horizontally and ver-
tically. One complaint though, and
that is that I wish they had used the
logical process of pressing 2 to go
down, 4 to go left etc. Still, you soon
get used to it.

For correction of simple spelling
mistakes it is a case of going back to
the incorrect word and just typing
over with the correct letters. To
delete text, you use the delete key in
the normal way, and to insert text you
don’t use the insert key in the normal
way! Pressing the off/rvs key puts you
into insert mode, and then you can
just type in as normal. Words will
seemingly disappear off the right
hand edge of the window, only to
reappear again on the next line down.
Pressing off/rvs again takes you out of
insert mode and into ordinary typing
mode. Awkward at first, but as with
all functions of this type it soon
becomes second nature.

Moving text

Deleting lines and inserting lines
are both there, along with deleting
blocks of text, copying a block of text
from one area to another, and moving
a block of text from one area to
another (this latter removes the
original text, the former retains both
it and copied block). All of these func-
tions are very easy to perform, and
performing them rapidly becomes
very quick and easy. I would imagine
that any typist would soon become
familiar with these actions, as well as
the area covered in the previous
paragraph.

Right justification is also offered,
but in a somewhat strange manner.

As with every ‘action’ in Wordform
(or indeed any other word processing
package) you have to press the right
keys in the right order to get the right
thing to happen. One thing I am
forever forgetting to do, and this is
not a criticism but is something you’ll
encounter if you buy the package, is
to press ‘K’ before commencing to

type. This puts you into keyboard
mode, and thus what you type ap-
pears on the screen. Nothing
disastrous has ever happened, as only
a couple of letters go by before notic-
ing that nothing is in fact coming up
on the screen. However, stopping
one’s self from doing this is only a
question of time, not a function of the
program.

Perform right justification

To perform right justification on
your text, if it is desired, you press
the ‘CLR’ key to clear you from
keyboard mode, followed by ‘R’. As is
the case with all commands, the ma-
jor mode you are in is shown at the
top centre of the screen, with the ‘sub
mode’ (e.g. keyboard, right justifica-
tion etc.) at the left hand side of the
screen next to a little right hand poin-
ting arrow.

Having pressed ‘R’ the cursor (or
rather a little up arrow which always
remains on the base line and tells
where you are) jumps to the right
hand side of the screen. If for some
reason justification is required to a
position short of the right hand
border, move the cursor back to the
desired position before doing
anything else, although I can foresee
very few places where this would be
needed.

One final point to consider before
proceeding further is the TAB func-
tion of Wordform. Tabs are set, ap-
propriately enough, by the TAB key
when the cursor has reached the
desired position. Unfortunately you
can only have one tab at a time, which
at times can be mildly irritating. Hit-
ting the RETURN key at any time
then takes you to the set position. I
found the most sensible thing was
always to have the tab at the left hand
boundary of the window.

Tabs having been set, we’re ready
to go! Right justification takes place
between the tab position and the posi-
tion of the cursor, so if the tab is on
the left hand boundary and the cursor
is on the right hand boundary then
justification will take place over the
whole line.
defines the line you want to start
justification from, and then moving
the cursor down to the line you want
to stop at, and hitting RETURN
again defines the bottom limit. It all
then happens before your very eyes.

9

Hitting RETURN

Quick and easy

That may have made the whole pro-
cedure sound terribly complicated - it
isn’t, and as with so many other
things soon becomes very quick and
easy to perform. No, my main com-
plaint is this ; it justifies the last line
of a paragraph as well! In other
words, if you’ve got just two words in
that last line, you’ll have one at one
end of the line and the other at the
other end. However, there is an
escape route.

That method of escape is as follows,
and is a procedure I would
thoroughly recommend if you’re go-
ing to perform right justification.
Simply justify your documents
paragraph by paragraph as you write
them, omitting the last iine each time.
The action only takes a few seconds
to perform, and guarantees a neat
looking print-out each time.

Left justification is also offered i.e.
the reverse of right justification, in
case you decide that perhaps after all
it would look better as it was.

Form letter capability

The form letter capability of Word-
form is not as great as that of the
other two, but nonethless the func-
tion exists, and is relatively easy to
perform. Where it fails is the lack of
an ability to have masses of names
and addresses lying in the extra text
area (or storage buffer, as Wordform
calls it), the standard letter in the
main test area, and for them all to be
printed out one after another. But
again this can be got around by typ-
ing in one name and address (say),
printing out the one letter, and then
typing in the next name and address,
and so on. After all, they’ve all got to
be typed in at some point or another.

String finding, and altering and
replacing strings, can certainly be
done on a local basis, but you lack the
ability to find and change on a global
basis (i.e. pulling in one file, altering
everything, putting that file back and
getting the next one, and so on),
although you can certainly print on a
global basis. What it does have
however is the ability to selectively
alter strings. For instance you want
to change all occurences of “‘cat™ to
“dog”, but don’t want to change
“catalogue’ to “‘dogalogue” when the
program finds “‘catalogue’ you have
an option of changing it or carrying
on to the next occurrence of ““cat”.
Very useful.

Another valuable feature is the
ability to transcribe text areas from
the main text area, and vice versa. As
a Wordpro user normally, many
times I’ve wanted to take part of the
main document and push it into extra
text, call up another document and re-
insert that part of the first document
into the second one. You can do it,
true, but it does tend to get terribly
complicated. Here it is refreshingly
simple.

On the other hand, with Wordpro it
is very simple to change the settings
of the margins, or in other words the
width of a pargraph. With Wordform
it is not so easy, although again it can
be done. For the benefit of those of
you who already own the package
there is a mistake in the manual when
it is describing decreasing the
paragraph length (page 12). There
should be a step 5 1/2 - come out of
Insert sub-mode. I’ve checked this a
number of times and my method

works each time, although the way
described in the manual does not. My
only complaint about the documenta-
tion.

Final comments

My final comments would be that
1) it is a shame that you cannot look at
a disk directory without having to ex-
ist the program and re-running it,
thus losing whatever text you had at
the time - always save it first! 2) is the
fact that you can’t do a ‘save with
replace’ of a text file, although that is
possibly a good idea in view of the
hiatus that surrounds that particular
command. Instead you must scratch
the original file and then save your
amended version. As I say though,
this could well be a wise move, and is
probably the reason why the program
operates in this way.

To sum up
To sum up, Wordform does not of-

fer the vast range of functions that
Wordcraft or Wordpro do, but never-
theless probably performs about 90%
of them (or at least the ones that get
used 99% of the time). It also offers
one or two extra features itself, such
as the swapping of text from one area
to another, which really is very
useful, and the selective altering and
changing for instance.

It will certainly fulfill the word pro-
cessing needs of the majority of peo-
ple, and once you’ve mastered the
variety of key strokes needed to do
everything is perhaps easier to
operate than the current “big two”. A
very good program, simply presented
and packaged, and with none of the
worries of yet another ROM to go in-
side your PET, or a family of dongles
living at the back of the machine. At
seventy five pounds it represents ex-
tremely good value for money, and is
a good place to start in the word pro-
cessing arena.

Review : Power

Barry Miles

This is a4K chip, available for 2000,
3000, 4000 & 8000 series machines. It
goes in the 9000 slot.

The author, Brad Templeton is
world-famous because of the techni-
que for merging programs from
cassette which he invented and refin-
ed, and which Jim Butterfield
publicised in many journals. Jim’s
fame as a Pet Guru is too well known
to require comment, and the fact that
he wrote the manual is a major advan-
tage. There may be some unkind
criticism of some of the humour in
the manual, but only the Users
Guides for Disco-O-Pro and
Command-O have anything like the
same tutorial content, and the high-
quality three-ringed binder in which
the product comes in a different
league from those normally associated
with products in this price range.
Templeton’s technical appendices are
unique, in that they show the advanc-
ed programmer exactly how to
modify Power and add features. Fur-
thermore, useful routines within
Power are identified, and their loca-
tions given.

A major advantage which Power
possesses over a number of the chips
available is that it performs in almost
precisely the same way on 8032,
4032, and 3032 machines.

AUTO provides automatic line
numbering, and used on its own
works from the current last line used
in a program, which is very helpful
for convenient addition of code at the
end of a program.

FIND AND CHANGE: you can
specify the range of lines in which
this is to take place and the program
differentiates between Keywords and
other strings. The unique feature is
the use of metacharacters. A fullstop
matches any character on the same
line and the closed square bracket
matches the end of a BASIC line. The
importance of this is that it makes it
possible to look for two significant
points regardless of what occurs bet-
ween them: e.g. IF * THEN , and
FOR *NEXT will find these in-
structions if they occur on the same
line.

The ability to continue to
SEARCH for a particular string,
without having to define it again,
merely by hitting @ is very conve-
nient.

INSTANT KEY WORDS: When
these are switched on, any shifted
character produces keywords in full.
This is attractive for poor typists, and
offers two advantages over the more
familiar abbreviations supplied
within the operating system: You can

10

see the words in full, and you do not
exceed the normal line length, which
can be useful but also slows up
editing. The self adhesive transparent
key-cap labels provided are unique,
and as users of Wordpro will know,
very helpful. Considerable care has
been taken to make the keys selected
as near to mnemonics as possible.

Particularly convenient are the
single key access to SCRATCH
DSAVE COPY DLOAD
CATALOGUE. Unfortunately these
commands are available only on the
4000 series version. (Incidentally the
numbering of the products is
somewhat strange: 3040, 4040, and
8040!)

SCROLL: This is arguably the

single most important facility on the
chip. It works in almost exactly the
same way as the same utility in Com-
mand O. You may scroll the program
up and down the screen in exactly the
same way as you can when using a
word processor.
RENUMBER: this is by four
parameters, enabling subroutines to
be made to start at significant line
numbers.

MLM jumps into the Monitor
without a break and without modify-
ing the Stack Pointer. This is helpful,
and also enables you to print Monitor

output to the printer, because you are
not cancelling the CMD status as you
do with SYS4, OR SYS1024.

INSTANT PHRASES. POWER
offers up to 26 phrase printed on the
screen when you press a shifted key.
Although for each one used, you loose
an Instant Keyword of course.

INSTANT SUBROUTINES: up
to 26 shifted characters will invoke
that many separate programs to coex-
ist peacefully, and use common
variables.

Commands like GET and INPUT
can be included in Instant
Subroutines whereas in direct mode
they cannot. It is not necessary to hit
the Return key after the shifted
character.

The manual shows useful Disk-
status-checking and Catalogue-
getting routines, and of course
numerous magazines contain useful
material. Nevertheless, this section of
the manual could also be expanded to
considerable advantage.

The ability to switch the Instant
Keywords, Subroutines, and Phrases
off is welcome also.

The unique, and very clever feature
of this is that special REMs are used,
at the start of the program, so that a
BASIC program will continue to run
even if Power is not in place, and yet
the phrases are available if required.

Both Instant Phrases and Instant
Subroutines represent tremendous
advances in capability, and I found
the manual a little frustrating,
because many more examples would
be lapped-up by the enthusiastic user.
It would be ideal if Jim and Brad
could be persuaded to produce some
form of Advanced Users Supplement,
or to update to the manual, dealing
with this and the similar question of
the more specialised aspects of using
the XEC command to allow the disk
unit, or some other peripheral to take
over the machine in substitution for
the keyboard. It is tantalising to see
simple examples. Why not some ex-
tremely clever ones too?

The debugging potential of the
Power chip is enhanced by virtue of
the fact that Power features can be
embodied in instant phrases. This has
enabled the major design criterion
which Brad Templeton had in mind,
namely that programs should be
transportable and should not be
Power-dependent, to be im-
plemented, whilst allowing the pro-
grammer full use of this attractive
feature.

A major advantage which is
available on the 80 column machine
only is the command SEL I which
gives the ability for an Instant Phrase
to be accepted in response to IN-
PUT command. This is really great
for debugging, because it implies,
provided you hit the right key, that
the data you input is identical every
time.

WHY: this shows where an error
occurs. However, if your line has
multiple commands on it, WHY will
show exactly where the program stop-
ped.

DUM: dump the variables in the
order in which they were used.

Unfortunately Power does not
dump arrays, due to space con-
straints. It is true that an instant
subroutine could be used to dump
specific arrays anyway, but there is a
competing German chip which
dumps arrays!

TRACE: This is unique in the
range of options provided. You can
see a listing of the line, and each
variable as it is calculated. The Trace
can be at the top of the screen or con-
tinously down the screen (allowing
review of what happened earlier).
The stepping options are greater than
usual: TAB or = gives a Step, the
Space bar gives a continuous Trace
and the full-stop runs the program
without tracing.

There is a useful display of the
result of IF THEN, in that the
Boolean value is shown as the
variable. This is most helpful in trac-
ing the pathways taken through the
program,

Unusually, the manual gives full in-
formation on how to trace to printer,
although allocating a file number in
excess of 127 does not create a line
feed if the Ascii printer you are using
requires one.

The versatility of the Trace com-
mand is enhanced by having special
SYS command with parameters
enabling you to switch in and out
specific types of Traces. This is par-
ticularly good in avoiding waste of
paper when loops are running, and
also makes it easy to by-pass sections
of the program which have already
been sucessfully debugged. Complex
programs can be debugged in stages
using a GOSUB to a subroutine for
the SYS command switching the
Trace on and off.

The manual shows how to avoid
the problems of tracing GET com-
mands. FIX will occasionally be very

11

useful for resetting certain essential
pointers which may have been clob-
bered by loading machine code pro-
grams into an unusual part of
memory. The manual gives a very
full explanation of how this command
will prevent loss of variables or of the
BASIC program.

XEC (execute) this is very powerful
and totally unique. Because it is an
extension of the technique pioneered
by Brad Templeton for merging pro-
grams on cassette, there is a danger
that it will be seen as merely a rather
complicated merging method. This is
totally wrong. The sequential file
created is read by the computer and
treated in every way as if the strings
were being typed in at the machine.
This implies that they will be acted
upon as Direct commands, and their
capability is limited only by the fact
that the special commands in
POWER cannot be included. The
manual gives a very tantalizing hint
of writing programs which write pro-
grams. I would love to see an extend-
ed tutorial on this technique added.

CONCLUSION

Power offers so many facilities, that
the user, whether beginner or expert,
can grow in capability by using it.

It is worth emphasing the fact that
this is no mere run-time improvement
to extend BASIC, nor a mixture of
such and programmer’s aids, but
rather a very carefully thought-out set
of aids to the serious user of BASIC,
designed by a truly expert program-
mer, to cram as much power as possi-
ble into a 4K chip, with as much care
taken in choosing what to leave out,
as what to include.

The fact that it has been rigorously
field-tested, and is a mature product
is also relevant.

More power to your elbow

Sorting Techniques

Fulvio Rizzitano

When switching from BASIC to
MACHINE-LANGUAGE you
might think your time troubles are
over. But it isn’t so. Not alwasys.
Especially when the routine in ques-
tion is a sort.

I used a M.L. ordinary sort and us-
ed to live in happy contentment till
the day I had to cope with 5000
elements. Ten minutes are both tiny
and a huge amount of time: it all
depends on the standpoint.

Usual sorts are time consuming
because the time needed increases
twice as fast as the number of
elements..... as you can note on the
graph and function figure 1.

To cut down the overall time it is
useless to shrink and squeeze only E.
A linear trend routine is needed. The

By the way, did you ever try to dry-
run it? A tough job isn’t it? Well, type
in the SHELL-DEMO and it will
have no secrets any more.

Back to machine-language, what
makes the conversion long and quib-
bling is to tackle the subscripts or
pointers (a SHELL-SORT uses up to
five pointers) which have to be
multiplied by the length of the ele-
ment and added to the offset each
time they are to be used.

But if they are tailored to be ab-
solute addresses in the indirect index-
ed mode and with a small amount of
other modifications (that can be easily
seen on the block-diagrams as they
are stressed with a darker
background) the routine comes out

SHELL-METZNER for instance smoothly and loops at vertigo-speed
whose function is on average: t = En (3000 elements in almost 11
log 2 n. seconds).
t A
2"
30"+
7” b
5:;9 -|‘z>oo .Zéoo 4<;oo n
ELEMENTS TIME
2
500 7 seconds £&en + En
t = ———————
1000 30 seconds 2
t: time
2000 2 minutes n: number of elements
£: amount of time to execute
4Q00 8 minutes one single routine loop

1M

To understand the coding,
remember a floating point number is
represented with 5 bytes; the first one
being the exponent. If the number is
negative then its 2nd byte is greater
than 127 - i.e. bit 7 of this second byte
is set (bit7=1) -

My old routine sorted only the ar-
ray dimensioned in BASIC before the
others, while this new one accepts
any array: the VARIABLE-SEARCH
SYSTEM-SUBROUTINE is called.
- C128 (49451) on BASIC 4.0 - CF6D
(53101) on BASIC 2.0 -

If you wish to use it in your pro-
grams, just insert the variable name
in the BASIC text immediately after
the SYS address. You’ll get the
variable address at locations 68 and
69 on page 0. You may also call the
SEARCH-SUB many times on your
M.L. Routines. In this case put the
names separated by a space after the
SYS address of your own routine.
Suppose your M.L.R. starts at 32512
and calls the SEARCH-SUB 4 times
to get the addresses of A$, B$, U$
and Y$ then the correct syntax to call
it from BASIC is:

SYS32512 A$ B$ U$ Y% : REM
SPLENDID !

When loading integer variables
remember the hi-value comes before
the lo-value.

To call this sort routine just type:
SYS32256 N% A(O) where N% (but
it can be any other integer variable)
contains the actual number of
elements to be sorted *** not the
dimension given to A () *** and
A(O) (here too, you may use any other
floating-point array name) is the lst
element from which our sort begins.

As you can see, you can also sort
only one part of your array. Ex.:
1000 N%=10:SYS32256 N% A(30) :
REM SORTS 10 ELEMENTS
STARTING FROM THE 30TH.

When loading it remember to lower
the TOP OF MEMORY by 512
bytes: the very first BASIC program
line should read something like:

10 POKE52,255:POKES53,125
ALPHA-SORT is coming soon.

Fulvio Rizzitano from Ita-
ly describes a Shell-
Metzner sort in Machine
Code Language

NOTE

Two different sorting routines are given. The first one for positive numbers only is shorter and runs a bit(!) faster.
The second one works with negative elements too.

MODIFIED SHELL.—MJ SORT TO FIT CEM MoL .

| Mo = N |

BE=1ST ELEMENT ADDR

l M = ™ »~» =2 |

EXCHaANGE
S (T D A (KD

|
l 0 = a — rmf

" a N a

(TP) $HLS) $UTW (L5) HYLINTNA SINIMA S L 9T

2aNsS09
PG Y $HLS) $A T (L2) HYLINIES SANIHA 34 9T TE
wa (2 M) $HLS) $ATW0 o (LT AYLINT S SININA L RTE

wn (&

A¢HVQ¢HZHE&HPZHELH¢Mmeﬁmmioiucmawom

W (PSP INTMA S INIHA YT 9 TEFH0S OOF T

OOTNIHLIK T AT OZET

(£ SYLNIMA S INIMA DT R TEFAOL EPANS0H OTET

wu (ZT) 40 .kZHIu.PZ~¢m.ﬁ QITIA04 Q0LT

(ST $YLNIMA® TINIMAEET RIS AQd #93NG09 0T

Ia I W (ET) 890 W INTHA S INIMAITT “QITIAOL OIET

u W (OT) Y LINIMA S INIMA S P TZA0L 3 T+I=T OOTT
OOLMIAHLT=< 4] OIT1

(TT)SYLINIMAININAF TT "9 TZTH0L 1 9ANS0H OTTT

W CTE) Y o INIMA S ENIHA ST 912340
(OT)$YINIHA T INIHA 20T " P TTIHDS $ 98NS09

Cu ip W (0T S LNTNA S INIMA 0T 9 TEIH0

" W (OT)AYLINIHA S INIMA 39 "9 TTFAOL S Y- L=
(H) B LINIMA L INIMA 26 "R TT N0

NZANS08
wu (6) Y W INTHA S ANINA 26 SR TTIA0S

S= (P CDHY=(MIYE(L)U=8
QOTINAHL C4) Y=2 (L) 9T
(8Y$YLINT A AININA 8 9 TTIH0A
O00TANSOO

wo (B) Y. W INT M P ANIMA 28 ¥ 91230
(L) SYLNIMA ININA 22 R 15204 1 93NS og

I\ e .,.zﬁevac_
" w (DT AYLLINT Y.
(D) Y ININA Fsz&"mncﬁu
wl 31 e (58 890 W INTMA T INIMG S * 9T 230
" w (O [M. 1918 A3 T=1
(Y SYINIMA S INIMAS G * TS 4 PANS09
al 1 v () B9 u LNTMA S AINING S SR TS H0S

-N="1
DOOTNIHLO=WAT

w CETYAYLANIMA S LR THAST TR 1T

AN pAn :.::Aﬂvﬂc::_2~£¢ rzhl;uu.oﬂtu¢3;=4 ZW=%

" N=%W T ANIMASINTHA T P2 TZ3404 2 29NS00 66

3

e taT 06 L9 taL fel s fOT tO O AR FoP PR FRZ F 0L T 09 T 0L 0B T s YiYd
PLXANTAT (DY $NLS) SATWINIMA 2 (D) YIWEY

(T T D) $MLS) $ATWF 000) S LHOIM) P, (TEY UL E () $ULNT M
INIHAI LT A30Z0LT=M044

W @ 0L08 bTa=(F1)$Y

W S ONAHL T T AT DT %Y

o THI=1 STe=(E1) %Y

TTu=(T11)%Y
OT .= (0T) %4
Gus (&) BY
Bu=(8) 84
L= (L)%Y

w L NAHL T)

w A=
WADNYHIXF WAM P2 T1HNS09
w STNIHL () 9= () VAL
wo A=A

" I=0 Q.=(9)%Y 8L
" =1 Su=(R)$Y 9L
wo ARN=TT O = (P) EY L

n ONANAHLO=YWAT .= (L) % J4
w o G/%W=TIW Sa= (D) %Y 0L

GE=(1IY .S (10 Y 0Z N OI AW N=Zl TowlMIMA 89
LNT A2 AUMMY SATHY TMYA S 3 NI wlMIMA 99
A: V$Q,A .

LS LX3N. _ZH(T‘_
ONISSIM

"

TIM AT ANY

o HAHL 440 H300THL

ANTM 30 "AYMMY 3HL H40 53N79A LN mm_f_DJ AHLw _7:& 4 va
WAUTASTA 1IM LHD 3HL LHOIM 3HL NOWLNMIMd 35

W CASH SATMYIHYA 314WIS JHL A0 SANTYALLMIMA 05

:FZMKIDU IHL APTIHSTIA M M- IW 3HLGINIMA 81

W TAASHINAY 3T TTTIMGANIMA 9P

GOFINARITAWI ONIZT NI AHL 3WIL ANY 18, INI

“OISYE NI NILLTMM SY WoHO0Md AHL LN

wAHL AYIASTIA TIIM LMD AHL “LA37T 3HL NOWLINTM

CTADMMY SENZWEATE OZoANITMG 8%

WY OAMOS 0L 4318 AF 4318 Ad3008d THIM LT W INIMa S

VTAALNEWATAWT ST 1MOS MINZLAW-TT1E3HS Yo LNMIMA 75

GDNAHM SNRADYH LYHM MOHS T1T1IM WHO0 e STHL 0 LNT XA :

ANTHAIINIMASWY W d d..- 7T 71 3 H 8 s LN Mod

AXAN 00001 T="H04

4 3MgM L HA0g INIHIY AL UPZQZDQ IIl:FZHE&

d " =" 2 d e d d -l-::/:Lub
"] o 4 d o of A o ol
|

-
ANTMAELINTHA 20 g

B oomed ol d me bl o e ol ..__:,:f L1
d "Wl ol e ' A
wodo masesel wum ' waems ¥ s P
HARN nEma -m ENm an L] L]
INIMA S LNTMA ¢ (S ANISEANMA
AINIMA 2,7 7 ° M ° § WX 0 4N 30U 8 Tt
..:bzammnmﬁ mcw& AAH0A . o OF
NHALAM O "85 STPRGTLIVMEIO 8 «u*D¢ 7

Cﬂchab T

14

1 < X r=)

onv

My

JONUHIX 3

oN
| ™ - I = I |
> | _S3A
]
| w — ¢ = o |
(> CCH>
[ONYHD XD
S3A
BN >
[T -~ O = A |
| !——
[I = &]
> |
[=71
7w — N = 7

o
a31dH0S 38 0L AvHYY Ov
60T BOT UUNIWITI AUVNMY 1ST H0 ¥AAV(E3d
LOT 9071 W 40 HLION3 Wnldv el
SOT +OT 1IRITT ¥3ddN = 1
£0T 2071 "HYSW0D ANZ 40 ¥aaviE A
bb& Bb6 “HUAWOD L1ST JO HAaYE ¢
L6 96 XIAANI ONISSIVAAY “MHINI = I
L0Z 902 X3AANI T3ATYH 2 W
10 00 SINIWITI JO HIGWIIN : N

§S3¥aav NOILdIYIS3A "avIdvA

DISYd NI A0S HANZ L3KW-—"113HS

IUNONYT INTHOYW WED LI4 01 14H0S HINZLIW-TTI3HS AIIAIAOW

15

7F00 32512
7F03 32515
7F03 32517
7F07 32519
7F09—32521
7FOC—32524
7FOE 32526
7F10 32528
7F12 32530
7F14 32532
7F15 32533
7F17 325335
7F19 32537
7F1B 32539
7F1E 32542
7F20 32044
7F22 32546
7F24 32548
7F26 32550
7F28 32352
7F2A 32554
7F2C 32556
7F2E 32558
7F30 32560
FF32 32562

7F34——32564
7F36 32566
7F38—32568
7F3A 32370
7F3C 32572
7F3E 32574
7F40 32576
7F42 32578
7FA3—32579

7F45 32581
7F47 32583
7F49 32580
7F4AB 32587
7F4D 32089
7F4F 32591
7FS1 32593
7FS3 32595
7F34 32596
7F56 32598
7F38 32600
7FSA 32602
7FSC 32604
7FSE 32606
7F60 32608
7F61 32609
7F63 32611
7F65 32613
7F66 32614
7F&8 32616
7Fb6A 32618
7F6C 32620
7F&D 32621
7F6F 32623
7F71 32625
7F73 32627
7F7S 32629
7F76 32630
7F77 324631
7E79 32633
JF7B 32635
7F7C 328636

BASIC 4.0 SORT FOR POSITIVE ELEMENTS BASIC 2.0
JSR 2B Ci1 49451 < ; Search N% addr, 6D CPs on: 2.0
LDA.FO o8 (8) 3 Is it an integer? M = N
CMP.IMM 80 (128)

BEQ 03 » 37524 3 If it is then OK

JIMP 00 BR 48896 < ; else SYNTAX ERROR Q3. CRs om 2.0
LDY. IMM 00 (O

LDA. IND+Y 44 (68) ; Load hi value of N%

STA.FPO o1 (; and stere it,

STA.PO CF (207)

INY

LDA. IND+Y 44 (&8) ; Load le value of N%

STA.PO 00 (0O) ; and store it,

STA.PO CE (206)

JSR 2B.Cia 249451 < ; Search A(Q) , | « absre
LDA.PO 07 (7 BE = S.0.A.
CMP.IMM FF (255 3 Is it a string?

BEG ES s> 32521 3 If it is then SYNTAX ERROR
LDA.FO 45 (&9 : '
CMP.PO 2D (45) s Is it an array?

BCC DF > 32521 ; If not then. SYNTAX ERROR
sSTA.PO &D (109) ; else store its address

BNE 06 > 32564 ’
LDA.PO 2C (44)

CMP.PO 44 (&8)

BCS DS > 32521 |

LDA. PO 44 (&8)

STA.PO aC (108) 1
LSR.PO CF (207) 7
ROR.PO CE (2086) X B
BNE 05 > 32579 73 ves
LDA.PO CF (207))

BNE ot > 32579
RTS o
LDA.PO CF (207) 1
STA.PO &B (107)

LDA.PO CE {20&) MM = M%5
STA.PO 6A (108)

ASL.PO s4A (108) |
ROL.PO 6B (107)

ASL . PO 6A (106) '
ROL.PO 6B (107)

ciLc

ADC.PO A {106) l
STA.PO &40 (106)

LDA.PO CF (207 l
ADC.PO 4B (107)

STA.PO 4B (107) '
LDA.PO 00 (O]

SEC = Ne=
SBC.PO CE (20&) L = N-M
STA.PO 68 (104) '

TAX

LDA. PO o1 (1) I

SBC. PO CF (207)

STA.PO 69 (105)

TAY

ASL.PO a8 (104)

ROL.PO 69 (105) L = L¥5
ASL.PO &8 (104)

ROL.PO 69 (105)

TXA

cLC

ADC. PO &8 (104)

STA.FO 68 (104)

TYA

ADC.FO 69 (105)

1A

Communications Editorial

Judging by the reaction to the communications feature in issue 7
of the newsletter, this is an area of growing awareness in the
PET world. Many of you expressed great interest in the article,
and were wondering if (or more usually when) we’d be seeing
another. '

Well, Dr. Barker (of “Using a microcomputer as an interac-
tive terminal’’ fame - the main communications article in issue
7) has done it again . This time an article entitled ‘““Alogorithms
for Intelligent Terminal Operation’®’, in which he describes
alogorithms to enable the transmission of files between a
microcomputer and a mainframe. He gives illustrative im-
plementations of these algorithms, and also describes some ap-
plications of file transfer operations. Written in his usual clear
style, complete with sample listings, flowcharts, diagrams etc.
the article is extremely easy to follow for both beginner and the
expert, and should provide many ideas of the way in which the

usefulness of a PET could be expanded.

Privileged Information

I haven’t as yet in the two com-
munications specials reproduced
anything from other overseas publica-
tions, although I have in the main
body of the newsletter. This is due to
the excellence of the articles from
Dr. Barker, and the fact that I haven’t
come across anything from overseas
to beat them. However, to move away
from communications for a while, I’d
like to say a few words about this ““lif-
ting” of information from other
publications. .

I'm in the privileged position of
receiving information and magazines
from many different Commodore
magazines and periodicals from all
over the world. All of them contain
items of interest, and it is tempting to
reproduce far more than I do, but to
do so would make this particular
newsletter something like the size of
War and Peace - in large print to boot.
On the other hand, if I reproduce all

the technical bits (of great interest
agreed) the newsletter would be so
dry and de-humanised that to read it
would be a chore and a bore. Conse-
quently you will find the occasional
humourous piece in here as well.

Now some people complain about
this. Fine, but to recompense some
people also praise material like that,
on the grounds that it does break up
all the ‘heavy’ material. I long ago
learnt that you can’t please all of the
people all of the time!

Feedback

Some of you may already subscribe
to these overseas publications, and as
I said earlier for that I apologise.
Perhaps even with people like that I’'d
be bringing something to your atten-
tion that you might previously have
overlooked. If any of you have strong
feelings about that please write and
let me know - feedback is very
valuable.

The Commodore Modem.

But back to communications. As
well as the Dr. Barker article we have
a number of contributions in the
main body of the newsletter also con-
cerned with this field. In particular
three items on the Commodore 8010
Modem, by well known people in the
PET field, which should save a lot of
headaches for those of you starting up
in that area.

I think you’ll see by reading these
articles just what sort of thing can be
done. As with the newsletter
editorial, it might be an interesting
idea to take a brief glance at a possible
future.

The Future

And what of the future ? Talking
about micros in general, and com-
munications in particular, Interface,
the American equivalent of the
newsletter, published an interview
with Jack Nilles, Director of Inter-
disciplinary Programs at the Univer-
sity of Southern California. Jack had
this to say.

“We did a study on a topic I call
‘Telecommuting’, which is the
substitution of telecommunication
and computers for the commute to
work, working at home or near homes
using computer technology. Com-
puters at their present stage of evolu-
tion are still pretty dumb beasts.
They do well-defined things very
quickly. That’s mainly what they’re
about. As long as they are told what
you want to have done, step-by-step,
and often in agonizing detail, they
will do it faithfully. They do dull,
routine jobs very fast. Primarily that
has been their use in business,
science, whatever. Imagine the 19th
century job of a clerk in a large store,
sitting at a desk all day performing a
specific function.

“Now a machine can go through all
that information and ZIP!. you have
it all together. That’s the kind of
thing they’re good for. In scientific
applications, they do tedious calcula-
tions that you would never be able to
do by hand. And with a calculator
you’d wear your fingers out. Combin-
ed with telecommunications
technology, computers can do these
routine jobs independent of their
location.”

Algorithms for Intelligent Terminal Operation

Introduuction

The use of microcomputers in industry, business, education and
the home is increasing at a significant rate. In order to satisfy the
wide range of consumer demands, many different kinds of end-user
orientated systems are now becoming commercially available. Prices
vary considerably both with the hardware/software facilities that are
provided and with the type of market at which individual products
are aimed. In terms of cost benefit, the attractiveness of a microcom-
puter system increases substantially if it can also be used as an in-

telligent terminal device (Ber81.)

Fundamental to this mode of opera-
tion are facilities that provide the
microcomputer with the capability of
being attached to some other larger
computer configuration - called a host
system. To achieve this type of inter-
connection suitable modems and in-
terfaces are necessary (Bar8la).
Through these, the micromputer will
be capable of communicating with
" a) a remote or local main-

frame/minicomputer,

b) a local network of other in-
telligent terminals, or,

c) a generalised geographically
distributed computer network.

In addition, the microcomputer itself
may also be capable of acting as a host
to other units that are able to inter-
connect with it in an appropriate
manner.

Once attached to a host system
there are many ways in which an in-
telligent terminal can contribute to
and utilise the available resources.
Three of the more important of these
are

a) the initiation of computational
processes within the host
system,

b) the support of certain pro-
cesses delegated in it by the
host and,

c) participation in file transfer ac-
tivity.

As a consquence of these three basic
operations many new types of man-
machine interaction become possible.
For example, by means of an in-
telligent terminal, a network user is
able to construct a program locally,
transmit it to a remote processor and
then initiate its compilation. Alter-
natively, such a user may occupy a
source program from a remote node
to a local terminal, edit it in various
ways and then send it to a second
remote node for compilation. Subse-

quently, the final program may then
be brought back to the local terminal
and cross-loaded into a robot-like
device in order to control an
automated assembly line.

In a similar way, an intelligent
microcomputer based controller
might be delegated the responsibility
of monitoring and performing local
control of some manufacturing pro-
cess. At particular items in its
operating sequence this controller
might ‘attach’ itself to an appropriate
host system, transmit data to it and,
in exchange receive coded control
strategies thereby enabling the
manufacturing process to be
dynamically modified.

As well as the computational pro-
cesses involved, each of the above ex-
amples depends critically upon the
flow of information between two or
more computers. Usually, informa-
tion transfer between an intelligent
device and a host system takes place
via .suitable structured message str-
ings or involves some form of file
transfer. In this paper we consider
some of the applications and pro-
blems of using a microcomputer as an
intelligent terminal device capable of
participating in file transfer opera-
tions with a host computer system.

File transfer - general
considerations

Over the last few years there has
been growing interest in the develop-
ment of distributed computer
systems. Usually, these consist of a
series of processing nodes intercon-
nected by suitable communication
links. Nodes in the network com-
munity are able to communicate
with each other by means of a variety
of message passing techniques. A
message is essentially a contiguous se-
quence of symbols. When transmitted

2

between one entity and another
messages usually invoke some form of
action or response on the part of their
recipient. For example, if a terminal
user sends the message

| LIST JACK |

to a remote computer (the recipient),
then, provided the object JACK (a
file) exists, its contents would be
listed - unless there was any form of

‘access control in operation.

LIST JACK

is an example of a message string.
The effect of a message will depend
upon its information content and the
nature of the rules of interpretation
built into its recipient. Messages
usually have only a transient ex-
istence and are fairly short in length.

In addition to message transfer
most distributed systems permit files
of data/information to be transmitted
between nodes. Like a message a file
may be regarded as a contiguous se-
quence of characters. However, a file
is a much more complex entity than a
message. Unlike the latter it is usually
more highly structured, has a greater
physical volume, contains far more
information and has a much longer
lifetime. In order to cater for this lat-
ter characteristic a variety of storage
media exist. These enable files of in-
formation to be retained within a
computer system for an indefinite
period of time. The relationship bet-
ween some of the different types of
storage media and the file transfer
processes in which they are likely to
beocome involved is depicted in
figure 1.

When transferring information ac-
cording to the strategy suggested in
this diagram a number of important
factors need to be considered. Some
of these are briefely outlined below.

Direction of Transfer

File transfer between an intelligent
terminal device and a host system will
usually need to be bidirectional. This
means that each of the com-
municating nodes must be able to
send or fetch files over the com-
munication link. For the simplest
type of application it is unlikely that
the link will need to support

FIGURE | FILE TRANSFER PROCESS -MEDIA CONSIDERATIONS
Send
ShySCTREOM < COMMUNICATION LINK J‘> s;*g:;‘M
Fetch (mainframe)
A
Cassette Tape
m Primary Memaory
Jack
MARY e %

Primary Memory Flexible Disk

Rigid Disk

™
u

Punched Cards
e
Print File
D ——
Magnetic Tape
——

v

Punched Peoper Tape

simultaneous transfer in both direc-
tions. However, many situations do
arise in which this is a necessary re-
quirement.

Media Considerations

A variety of different storage
devices will usually be available - both
at the intelligent terminal and within
the host system. Mechanisms must
therefore exist to enable the complete
mobility of files across the various
support media - for storage purposes
if not for processing. A typical
transfer operation might involve
movement of a tape cassette file from
the micro to the host system for
storage on an archive tape. Similarly,
another useful operation might be
that of copying a disk/drum resident
file from the host to the intelligent
terminal. Here it might be stored
either within primary memory or as a
floppy disk file. In principle, when
file transfer takes place all possible
combinations of source and destina-
tion devices need to be supported.

Transfer Time

This consideration is important in
situations where (a) the communica-
tions link is being costed on a line
utilisation basis (for example, a dial-
up line), and (b) where file transfer is
being used to service some form of
real-time man-machine dialogue. The

Start of file

amount of time that it takes to
transfer a file will depend upon many
factors such as a line speed, file size,
error rate, processor power and
peripheral speed.

Error Control

When messages and files are
transferred between network nodes it
is important that they do not become
perturbed by the transmission chan-
nels that are used.

Perturbations usually introduce
noise into the information which
means that the file/message received
at the destination node differs from
that dispatched by the source. Ade-
quate software/hardware protection

must thus be built into the file
transmission system in order to en-

sure that all errors are detected and, if
possible automatically corrected
without the need for excessive re-
transmission of information,

Logical File Structure

As was mentioned earlier, it is ex-
tremely likely that when two or more
procesing nodes are involved in file
transfer each will support different
types of physical file structure (media
considerations). In addition, each
computer system may necessitate the
use of a different logical file organisa-
tion.

The simplest type of logical file
structure is one in which the file is
regarded as being a continuous collec-
tion of characters similar to that
shown in figure a.

In this type of situation, any higher
level structure is super-imposed upon
the file by the various software items
that process it. An alternative ar-
rangement in which some form of
record structure is imposed on the file
is illustrated in figure b.

End of file

F} slefrlolr|el |z{T] |elniplE]D

< File of Characters —p
Figure a
Start of File —w—————pp Record 1
Record 2
Record 3 File of Records
Record 4
End of File ——8f Record 5

Figure b

Each of the above represent simple
approaches to logical file organisa-
tion. Many other, more complex, ar-
rangements could be formulated
(Wie77).

However, for the following discu-
sion, the models presented above will

- be sufficient.

Algorithm Design

In designing algorithms for file
transfer operations it is imperative to
consider the effects of all the above
factors. Furthermore, because of the
intrinsic difference between each of
the -processing nodes and between
their storage peripherals the
algorithms may need to incorporate
suitable conversation rules. The com-
plexity of these algorithms may need
to incorporate suitable conversation
rules. The complexity of these will
depend upon the nature of both the
intelligent terminal and the host
system. Fortunately, in many situa-
tions the development of virtual
memory computers and machine in-
dependent filing systems greatly
minimises the amount of effort that
needs to be devoted to file conversion
problems. However, it is important to
bear in mind that as far as file pro-
cessing activity is concerned some
special rules may still need to be
observed (Jud73).

File transfer - a case study

In the remaining sections of this
paper we consider the process of file
transfer in a system in which a main-
frame computer, acting as a host, ser-
vices the file activity associated with
an intelligent terminal device. For the
purposes of illustration a 32K Com-
modore PET is used as the intelligent
terminal. This communicates with a
remote IBM 370/168 over the public
switched network. A detailed descrip-
tion of the hardware configuration
has been given elsewhere (Bar81).

In general, BASIC is used as the
high level language for the implemen-
tation of alogorithms in the
microcomputer. However, in situa-
tions where speed improvement is
necessary, machine code could just as
easily be used. Before discussing the
details of the algorithms a brief
description of the file structures used
on the mainframe and the microcom-
puter is a necessary pre-requisite.

File Structure on the
Mainframe

Files that are resident on the main-
frame may be regarded as collections

of records each of which consists of a
contiguous sequence of 8-bytés. In-
dividual files may contain either fixed
or variable length records. These may
be of any non-zero length up to a
maximum of 32,767 bytes. Particular
records within a file may be uniquely
identified by means of their associated
record number (R) whose value lies in
the range -99999.999 through
99999.999.

File Structure on the
Microcomputer

The mainframe file structure may
be easily ‘modelled’ on the microcom-
puter by means of a BASIC character
string array. Essentially, each main-
frame record is represented by one or
more elements of the array. Storage
for a file can thus be allocated by a
statement of the form

[10 DIM L$(100) |

which reserves memory storgae for a
file containing 100 records. There is a
limitation on the length of these
records since they cannot exceed 255
bytes. Records longer than this would
need to be modelled by a two dimen-
sional character array. Thus, a record
of L bytes could be segmented into
CEIL(L/255) sub-records of max-
imum length 255. These could then
be stored is such a way that one of the
subscripts of an array reference would
identify a particular record while the
other subscript would identify the re-
quired segment within that record.
For example, 1.$(2,4) would reference
the second 255 byte segment of the
fourth record in the file.

Notice that the CEIL function in-
troduced above is defined in such a
way that the value of CEIL(A) is
equal to A if A is integer, otherwise, it
is equal to the smallest integer that is
larger than A.

Depending upon the memory size
of the microcomputer there would be
a limit placed on the number of
records that could be accommodated.
Based upon the way in which
character string arrays are stored in
the PET (Don80), it can be shown
that, for a one-dimensional array of K
elements the memory space required
would be

K

M = 7+(K+1)%3 + > LENLSD)
I=1

Assuming that all records would be

255 bytes long, the memory space
available on a 32K PET would limit

4

the value of K to about 120.
However, for many applications the
record lengths are not likely to exceed
80 characters. Where this is the case
the number of records that could be
handled increases to about 370. Files
having a greater capacity than this
would need to be off-loaded to disk or
tape storage.

In the discussion that follows we
consider file transfer from mainframe
to micro and from micro to main-
frame. In all cases, transfer to or from
the mainframe takes place via a one-
dimensional character string array
created by a BASIC program running
on the PET.

File transfer from Mainframe
to Micro
When transferring data from a file
system to a target microcomputer
these are two general cases to con-
sider. These differ according to
whether the information that is
transferred to the micro is,
a) retained in its primary
memory area, Or,
b) transfered to its secondary
storage system.
The first of thes situations arises in
cases where the mainframe computer
is used either,
al) to achieve memory images
from the micro, or,
a2) to develop programs for
subsequent execution in the
intelligent terminal device.
Examples of the second situation, (b),
arise when files on the mainframe
(which exceed the micro’s primary
storage capacity) are to be transferred
to the intelligent terminal for local
processing. Each of these will be
described in turn.

Algorithm for File Transfer to
Primary Storage

When a file is to be transferred to
the micro, the software that it con-
tains must perform three basic opera-
tions. First, it must send an ap-
propriate message to the mainframe
in order to initiate file transfer. Then,
as records are received, it must
validate them and request re-
transmission - if they are found to
contain any errors. Finally, each
error-free record must be stored in an
appropriate position within the
memory space. The various steps that
are involved are depicted in the
algorithm shown in figure 2A

An implementation of the
algorithm is presented in figure 2B.

FIGURE 2 FILE TRANSFER FROM MAINFRAME TO MICROCOMPUTER MEMORY

{A) Algorithm Formulation

{B} Algorithm imp

tation

1. Get file name from user.

2. Does the file exist?
YES

3.415 access permitted?
YES Ll

451 41

§. Get Ith record from mainframe.

6. Any transmission errors?
YES

7. Is there room to store it?

NO
YES

o 8.4%tore record.
9. 14-141
10. 1s file transfer complete?

YES Ho

1. Exit,

o » Issue error message and exit. 40

Issue error message and exit.

111) l—) Request retransmission of record.
Goto step §

Issue error message and exit.

Goto step 5.

] DIM L$({100)
0 REM -

§0 GOTO 30

140 RETURN

230 RETURN

320 PRINT A$;
330 RETURN
00 REM *

536 PRINT I$;
540 GOTO 530
545 K=K+l :

2 GOSuB 100 :

S
20 GOSUB 100 : REM SET UP MODEM
30 GOSUB 200 : REM GEY KEYBOARD CHARACTER
GOSUB 300 : REM GET MAINFRAME CHARCTER

100 REM *** CONFIGURE ENTERFACE ***
110 OPEN 1,4 : REM OUTPUT CHANNEL
120 OPEN 2,6 : REM INPUT CUANNEL
130 PRINTA,CHR${255); "FXXGA"

T
200 REM *** GET KEYBOARD CHARACTER ***
210 GET A$: IF Ag= * THEN : RETURN
220 PRINTRL, AS;

300 REM **+ GET MAINFRAME CHARACTER ***
310 GET2,A$: IF ST=2 THEN : RETURN

FILE TRANGFER 10 PET ***
505 INPUT™[Re+++FILE NAME";X$

515 Y$="$COPY "+X§
520 FOR 1=1 T0 100 :
525 PRINT#,YE :
530 GET#2,1$: IF ST=2 OR I$= " THEN 530
§35 IF ASC(I$)=-62 THEN 545

PRINT “RECORD",K
F S¥=2 OR I =*" THEN $50

566 IF ASC(I$)<>13 THEN L$(K)=L$(K)+1$: GOTO 550

560 GET#2,1$: I =2 OR [$= "* THEN 560

564 IF ASC(I$)=10 THEN 560

565 [F ASC{I$)=62 THEN 545

570 PRINT “TRANSFER COMPLETE™ : RETURN

550 GETI2,1$: |
F ST=2

GOSUB 500 :__STOP
EMOT TNAL

L$(1)="" : NEXT I
k-0

RUN 10 command causes PET to function as a duab terminal

RUN

cosmand causes PET to perform file transfer

In order to simplify the discussion
certain basic assumptions have been
made. It has been assumed that the
file to be copied exists and that the
terminal user has access to it. Because
of memory space limitations there are
certain restrictions placed upon the
size of the file that is to be copied - the
file must not contain more than 100
records whose length must not exceed
255 bytes. Finally, for simplicity, it
has been assumed that records will be
transferred without any perturbation
by the communication link.

In the listing presented in figure
2B, lines 10 through 330 are responsi-
ble for operating the microcomputer
as a terminal device (Bar8la). The
subroutine defined in lines 500
through 570 is responsible for the file
transfer. The name of the file to be
transferred is input at statement 505
and the copy process is initiated by
the command message sent to the
mainframe via the print statement in
line 525. Each record transmitted to
the microcomputer is preceeded by a
start of record character (ASCII value
62) and terminated by a carriage
return/line feed combination (ASCII
values of 13 and 10, respecitvely).

When using the file transfer routine
shown in figure 2B it is the user’s
responsibility to ensure that the
assumptions listed above are not
violated. If this is not possible, ap-

propriate modifications to the pro-
gram would need to be made.

Algorithm for File Transfer to
Secondary Storage

The simplest strategy for transferr-
ing a file to secondary storage in-
volves a block by block transfer
mechanism. Such a scheme is em-
bodied in the algorithm depicted in
figure 3A. The transfer loop involves
two basic steps. First, a block of
records is transmitted to the local
storage device. This process is
repeated until the whole file has been
passed across to the peripheral being
used for its storage. A minimal im-
plementation of the algorithm is
presented in figure 3B.

The wunderlying principle upon
which the subroutine depends is the
same as that which was employed in
the implementation of the previous
file transfer process (figure 2B).
However, instead of sending a single
copy message to the mainframe (to in-
itiate the transfer of the whole file), a
sequence of messages of the form

[COPY filename(S,F) |

is used. Each of these, with the possi-
ble exception of the last, copies across
a segment of the file containing M
records (M=FS+1). In this expres-
sion, S and F represent, respectively,
the start and finish record numbers

I3

within a segment. The values of S and
F will depend upon the block size, M,
and assume that records in the
original file are numbered sequential-
ly starting from unity. The series of
values of S and F are thus,

Si=1,M+1,2M+1,3M+1,
Fi = M, 2M, 3M, 4M,

The code shown in figure 3B per-
forms no error checking - either of
transmitted data or of user input from
the teminal. These are refinements
that could be added in a more detailed
implementation. Notice also that the
subroutine depends upon the provi-
sion of appropriate peripheral sup-
port routines to handle the secondary
storage device(s) to which a file is be-
ing transferred. The first of these
(line 455 - GOSUB 1000) is responsi-
ble for opening the local file on the
external device. The second (line 585
- GOSUB 1100) is delegated the task
of writing the data blocks onto the
chosen peripheral while the third
(line 630 - GOSUB 1200) performs all
the housekeeping activities associated
with closing the local file when
transfer is complete.

The subroutine is figure 3B has
been used to transfer mainframe files
across to both tape cassette (Don80)
and a flexible disk (CBM80). In the
latter case a standard Commodore
Model 3040 twin floppy disk unit was
used. Details of the peripheral sup-

FIGURE 3 FILE TRANSFER TO MICROCOMPUTER SECONDARY STORAGE

(A) Algorithm _Formulation (8) Algorithm Implementation
1. Get mainframe file name from user. 1 OIM L${100) : REM BUFFER STORAGE
2 GOSuB 100 : REM CONFIGURE INTERFACE
2. Get local file name from user. 3 GOSUB 400 : REM PERFORM FILE TRANSFER
&4 STOP
3. Get block size from user. 10 REM : PET AS A REMOTE TERMINAL
20 GOSUB 100 : REM SET UP MODEM
4. 1« °
Get Ith block from mainframe. :
- 400 REM FILE TRANSFER TO PET WITH
6. Write Ith block to secondary storage on microcomputer, 410 REM OUTPUT TO SECONDARY STORAGE
7. 1 & I8 420 INPUT"@4+4iFILE TO BE TRANSFERRED*; X§
430 [INPUT"444LOCAL FILE NAME“; Z
8. 1s file transfer complete? 440 INPUT®)+ 4BLOCKSIZE" ;M
450 1F M>100 THEN PRINT*+BLOCKSIZE 70O BIG* : GOTO 440
YES, | NO » 455 GOSUB 1000 : REM OPEN FILE ON SECONDARY STDRAGE DEYICE
Goto step 5. 460 St=1 : F%=M : N=0
465 K=0
8 S S
= $
9. Close Yocal file. 475 F4=M1D$(STR${F%), 5
480 Y$="$COPY * +X$+ " LI TR A
10. Exit, 490 PRINTH,Y$
500 GE"Z.N s IF ST=2 OR [$="* THEN 500
510 IF ASC(l$)=62 THER 530
520 PRINT I$; : GOTO &
530 N=N+1 : K=K+1 : PRINT "RECORD“
540 GET2, l ; IF S T=2 OR I$=" THEN
550 1F Ascus)ms THEN Ls(x)-u(x)m : " coro 540
560 GET#2,I$; If ST=2 OR I$="" THE
§70 If ASC(I$)=10 THEN 560
580 [IF ASC(I$)-62 THEN 530
§85 GOSUB 1100 : REM WRITE BLOCK TO SECONDARY STORE
590 1IF K<M THEN 620
600 SY=S%+M : FX=F%+M
610 GOTO 465
620 PRINT "TRANSFER COMPLETE*
630 GOSUB 1200 : REM CLOSE LOCAL FILE
640 RETURN
0
1010 Support routines for secondary storage devices
etc.
FIGURE 4 FILE TRANSFER FROM MICRO TO MAINFRAME 600 ReN FILE TRANSFER TO HAINFRAME
5 N=
610 DIM R$(10)
615 INPUT M+ +4FILE NAME®; X$
620 FOR I =1 T0 10 : R§(I)="" : NEXT I
A - Algorithm Formulation 2§g ,Y,,"m%ﬁlfﬂs: ,'()__(f
- : 635 GET#2,I$: IF ST=2 OR 1$="" THEN 635
B -Algorithm implementation 640 REM PRINT I$;
645 IF I$= "8 AND K=N THEN 660
650 IF Ascus)on IH[N R$(K)=R$(K)+1$: GOTO 635
655 K=K+1 : GOTO 6
660 IF mm(m(n l) 2, Sl ="# FIL" THEN 750
665 PRINT “FlLE uxw |READV EXISTS"
A 670 PRINT "+DO YOU WANT T
1. Get file name from user. 676 PRINT" OVERHRHE ITS CONTENTS?"
680 PRINT" 2. CREATE A NEW FILE?"
2. Does the file exist? 685 PRINT" 3. EXTEND THE FILE?"
290 PglNT“nENTER 'I: 2 gék 3“
Iuo 95 GET I¢ : IF I$="" THEN 6
YES Create it and goto step 6. 700 IF I$="1" OR I§="2" OR Is_ua. THEN 710
705 GOTO 695)
710 IF I$="1" THEN 725
3. T1s the file to be over-written? 715 IF I$=*3" THEN 755
/ 720 N=3 ; I{AOTO 615
IVES 725 PRINT# .-smm “+X$+* OK" ' K=0
N » Enpty 1t and goto step 6. 730 GETA2,I$: IF ST=2 OR Ig= ** THEN 730
735 PRINT I$; : IF Ig="#" AND K=2 THEN 755
4. %1s the file to be extended? ;:g Exﬁc(!’ksn THEN R§(K)=R8(K}+1$: GOTO 730
IYES 750 PRINT*FILE “4X$+"MAS BEEN CREATED*
r » Goto step 6. 755 REM NOW YRANSFER THE L$ ARRAY TO THE MAINFRAME
760 PRINT#Y, “%ECHO=OFF® ; Z$=*(LAST+1)"
765 GET#2,1$: IF ST=2 OI} 1$="" THEN 765
5. &Assume a new file is required and goto step 1. ;;g Eg%g%ég' ¢ IF Is="#" THEN 780
6. 1 a1 780 PRINT#Y “sCOPY *SOURCE® TO “#X$+7§ ; K=1
. 785 GET#2,1$: IF ST-Z.OR I$="" THEN 785
. “
7. Send Ith record to mainframe. ;gg ggigrng' ¢ IF 1$=">" THER 800
8, Wait for answerback prompt from mainframe. ggg sa{z{:!&t%&. . KeKtd
810 IF L§(K)="" THEN 820
9. T4 11 815 Goro j8s
. 820 Y$="$ENDFILE"
10. A} records sent? 825 GET#2,1¢ ; IF ST=2 OR Ig="* THEN 825
NO 830 PRINT I§; : IF 1$=">" THEN 840
YE Goto step 7. ’ 835 GOTO 825
840 PRINTAY, Y$
845 GET#2,1$: IF ST=2 OR I$="" THEN 845
ggg Pklm {S_'.' ECIIlF “,,“E"" THEN 845
PRINT#1,*%ECHO=
1. Close mainframe file. 860 GET#2,I§ : IF ST=2 OR Ig="* THEN 860
12, Exit 865 PRINT I$; : IF I§O"#" THEN 860
- Xt 870 PRINT*TRANSFER COMPLETE" : RETURN

port routines for these devices are
given elsewhere (Bar81b)

File transfer from Micro to
Mainframe

The preceding section contained a
detailed description of file transfer
from a mainframe to a microcom-
puter system. In principle, the
transfer of files from an intelligent
terminal might be expected to require
similar software - data flow, however,
being in the opposite direction. Un-
fortunately, because the system is not
totally symmetrical, the principle of
reversibility cannot be fully
- employed. In view of this, the new
algorithms and programs that are
developed will need to contain
mechanisms that are capable of ac-
commodating any major differences
in transmission protocol arising as a
result of data flow reversal.

As before, when file transfer takes
place, two basic situations must be
taken into account:

a) transfer of a section of the
memory space of the
microsystem to the main-
frame, and,

b) transmission of one of the
micro’s local storage files to
the remote computer.

An outline algorithm for file transfer
to a remote machine is presented in
figure 4A. As this diagram il-
lustrates, the program that im-
plements the algorithm will be assign-
ed the task of creating a file in the
filestore of the host computer - if one
does not already exist (steps 1
through 5). Successful file creation is
followed by a loop that transmits the
file data on a record by record basis.

Inspection of the BASIC listing in
figure 4B will indicate that the file
creation and validation activity ac-
counts for the larger part of the pro-
gram code (lines 605 through 750).
The data to be transferred to the
mainframe is held in the memory ar-
ray L$. Once the mainframe file has
been created (or its existence con-
firmed), data is transferred to it from
L$ one element at a time. Each ele-
ment of L$ corresponds to a record to
be stored in the remote file. Records
are transmitted over the communica-
tion link only when the host com-
puter requests their transmission. It
does this by issuing an appropriate
prompt character (ASCII value 62)
-as is implied by the code contained in
lines 790 and 830 of the listing. Once
all the non-null elements of L$ have

been transferred to the remote com-
puter the local program transmits an
end-of-file message which causes the
file to be closed.

Inherent in the implementation of
the algorithm is the assumption that
the transfer loop will be terminated
by a null element within L$. If this
condition is not met the program is
likely to abort with an index error
once the upper bound of L$ is exceed-
ed. Should this situation arise the ter-
minal user would then need to close
the remote file ‘manually’. This
limitation could easily be overcome
by including some extra statements at
line 806:

806 IF K=N-1 THEN
PRINT“ARRAY BOUND WARN-
ING” : GOTO 820

where N represents the upper bound
of L$. The calling routine would now
have to set the value of N prior to in-
voking the file transfer subroutine.

Because the data link operates in
full-duplex mode (Bar81a), as data is
received by the mainframe, it would
normally be echoed back to the ter-
minal. To prevent this happening
during file transfer the data echoing
process needs to be disabled. This is

achieved by the code embodied in
statements 760 through 775. The
argument of the print statement in
line 760 is a special message that in-
structs the remote mainframe not to
echo back the data characters that
it receives. As soon as file transmis-
sion is complete the echo back feature
must be reinstated in order to enable
the normal terminal mode of opera-
tion of the microcomputer. The code
contained in lines 855 through 865 of
the listing is responsible for this.

Notice that in addition to file crea-
tion and over-writing the implemen-
tation of the algorithm allows for a
file in the mainframe to be extended.
This is realised through statement
780 as a result of the value of Z$ be-
ing previously set to ‘“(LAST+2)”.
This ensures that the host operating
system always appends the contents
of the L$ array to the end of the
remote file - commencing at the
(LAST+1)th record. As a result of
using this approach it now becomes
an easy matter to

a) overcome any limitations im-

‘posed by the size of L$, and,
b) transfer secondary storage
files of any size.

FIGURE 5 ALGORITHM FOR MEMORY TRANSFER TO MAINFRAME

2. Is this valid?

4. 1s this valid?
YES NO

Y] [0 4] ~ (=)}
. . .

. 142
10. Goto step 14.

13. l4—1I+1
14, Is another pass required?

NO l YES

1. Obtain address of starting location (S).

YE lN_O___’ Issue error message and exit.

3.7 Obtain address of end location (F).

Issue error message and exit.

5. Compute number of records to be transferred:
N = CEIL((F-S)/R)

Compute number of passes required.
Transfer first memory block to L$ array.

Invoke file transfer routine at its primary entry point.

11. Transfer [th block of memory to the L$ array.

12. Invoke file transfer routine at its secondary entry point.

15. Exit.

» Goto step 11.

Either of these goals may be achieved
by simply applying the transfer
subroutine repeatedly (via a secon-
dary entry point such as GOSUB 755
if need be) or by adding modifications
to enable the code between lines 780
and 840 to be re-executed within a
loop that could be terminated by an
‘out of data’ condition arising on the
local microcomputer.

An illustration of this approach is
contained in the skeleton algorithm
for primary memory space transfer
presented in figure 5. This is based
upon multiple invocations of the file
transfer routine contained in figure 4.
In step 5, the value of R specifies the
size of the records that are to be
transmitted. This value will depend
upon the record structure used and
the way in which the information
they contain is organised. Invocation
of the file transfer routine at the
primary entry point is necessary to
perform the file creation/checking
procedures and then transfer the
memory block into the file. Subse-
quent invocations of the routine
would reference its secondary entry
point - thereby avoiding the initial file
creation steps. An analogous
algorithm could be formulated for the
transfer of files from the secondary
storage space of the microcomputer.

Applications of file transfer

Once it is possible to connect one or
more microcomputers to either a
distributed computer network or a
local/remote mainframe system a
variety of new applications of the
combined technologies become possi-
ble. In the context of file transfer, the
greatest impact of these new applica-
tions will be felt in the areas of pro-
gram development, distributed pro-
cessing and data base management.
The ability to easily move files of data
from one location to another will in-
troduce many new approaches to pro-
gramming and the way in which data
may be collected, archived and
shared. Numerous possibilities exist.
A few illustrative examples are
discussed in the remaining part of
this paper.

1. Cross-loading Machine
Code Programs

There are several ways of develop-
ing machine code programs for use on
a microcomputer system. The most
important of these are,

1) manually keying binary, octal
or hexadecimal values directly

into the computer’s memory
(CBM79),

2) via an assembly language
development system resident
on the microcomputer
(Bar81), and,

3) using a cross-assembler runn-
ing on another machine
(Bar81a).

Fach of these approaches have their
merits and are fairly straightforward
techniques to use. Details of all of the
above methods have been given
elsewhere. Unfortunately, method 3
is more difficult to implement than
the other two since it requires a
means of loading the object code, pro-
duced on the host machine, across to
the target micro. However, using the
file transfer routine outlined earlier, it
is a fairly simple matter to cross-load
programs to a micro provided that the
latter is able to function as an in-
telligent terminal device. A strategy
for transferring object code is
depicted in figure c.

Once the file has been transferred
to the micro (step 1) each record is
checked for transmission errors. This
is achieved by performing a
checksum consumption and compar-
ing the result with value embedded in
the record (steps 3 and 4). If the
values do not agree the mainframe is

Figure c.

asked to retransmit the record that is
in error. Up to N retransmission at-
tempts (N is user defined) will be

‘made. After this, if the checksum

values still fail to agree, the program
terminates with an appropriate error
message. When all the records have
been checked for correctness, the
machine code program is transferred
from its containing memory array in-
to its execution area (step 7) as defin-
ed by the addresses contained in the
object code.

In order to implement the cross-
loading algorithm outlined above,
two further support routines are thus
necessary. One to perform the
checksum calculations and one to per-
form the loading operation. Each of
these will operate on a common data
structure which is set up by the file
transfer routine. The structure of a
typical object program file is shown
in figure 6. Essentially, each record
consists of a sequence of hexadecimal
symbols. When the file is transferred
to the micro, each of these will be
stored as an element of a character str-
ing array called LS$.

Suppose the checksum computa-
tion is to be performed on record I
(that is, array element L$(I) is to be
used) and that an indication of the
outcome is to be stored in the global

the target micro.
2. l4—1

4, Is the checksum result OK?
NO

the actual execution area.
8. Exit.

1. Activate file transfer routine in order to place the

output from the cross-assembler into a memory array on

3. Perform checksum computation on record L

NO

Request retransmission of record I and

goto step 3.
5. l@—1+1
6. All records checked?
YES I NO
Goto step 3.
7.& 1nvoke routire to load program from the memory array into

Have N attempts been made?

YES
Issue error message
and exit.

FIGURE 6 FORMAT OF AN OBJUECT FILE

Load Address Two Byte Checksum

Number of Consecutive Program Sytes
Program bytes /\
Mainframe File

Record 1: ; 182000A000896€ 208594C8B96£20859520CCFF 20E4FFFO08A201 200C0A
Record 2: +182018C9FF 20D2FFA20220C6F F 2CE4FFBDED2CAS96CI02FODFADGDOEIE
Record 3: +18203020F0DACI40F 02430034C6120C9589010C960F01080034C51084F
Record 4: +18204820C98090004C6120081869808D60204C61200838E9208D600A26
Record 5: + 1620602020CCFFADS02020D2F F 4C002000702020CCFF4C89C30A58
Record 6: ;0000050005
End of File
1
1
e -1
1
I
! CROSS-LOAD PROCESS
]
t
H
L$(100) &
j¢—S5—»]

BASIC Character String Array

(Pseudo-file on microcomputer system)

variable CSM (O=checksum OK,
1=checksum error). If there are R

bytes in the record and the two byte
checksum value embedded in it is
CSV, then the following simple Checksum 4—0;
algorithm may be used to check the For J€4— 1 to R2;
cc:lorrectness of the records, as in figure Checksum @—— Checksum + hex-value of Jth byte;
'Suppose now that the contents of End;
the T records of the object file (that If Checksum = CSV
is, the elements of L$) are to be load-
ed into their destination addresses in then CSM 4— 0;
memory. An algorithm to perform else CSM €— 1;
this operation is illustrated in figure .
e Exit;
Implementations of both the Figure d,

checksum and loader algorithms are
illustrated in the listings contained in

figure 7. Notice that within each of
these routines, before any numeric — For | @—1 to T;
processing can be undertaken values
must be appropriately transformed
from character to numeric form. This M @— load address for byte 1 of record I
is easily achieved using the following If invalid(M)
sequence of instructions,
A% = ASC(AS$) - 48
IF A% > 9 THEN A% = For J&—1 to N
A% -7 Load Jth program byte
where A$ is a hexadecimal character
value and A% is its corresponding

N @—— number of program bytes in record I;

then issue error messagé and exit;

,

into memory address M+J-1;

(base 10) numeric value.1 End;
Used in conjection with the file ~— End;
transfer routine, the code listed in Exits
?

figure 7 enables machine code pro-

grams to be easily cross-loaded to the
microcomputer. Although the file Figuree.

FIGURE 7 ROUTINES TO SUPPORT PROGRAM CROSS-LOADING

600 REM *** CHECKSUM COMPUTATION ROUTINE \‘
605 S1%=0 : S2%=0 : S$3%=0 : S4%=0
610 Sa8

615 F=LEN(L$(R))-4

620 FOR J=S TO F STEP 2

625 A$=MIDS$(L$(R),J,1)

630 D2%=ASC(A$)-48

635 1IF D2%>9 THEN D2%=D2%-7

64C A$=MIDS$(L$(R),J+1,1)

645 D1%=ASC(A$)-48

650 IF D1%>9 THEN D1%=D1%-7

655 S1%=S1%+01% : C%=0

660 IF S1%>15 THEN S1%251%-16 : C3%=1
665 S2%=52%+D2%+C% : C%=0

670 IF S2%>15 THEN S2%=52%-16 : C%=1
675 S3%=53%+C% : C%=0

680 IF $3%>15 THEN S3%=53%-16 : C%=1
685 S4%sS4%+CY : C%=0

690 IF S4%>15 THEN S4%=54%-16

695 NEXT J

700 FORI =170 4

705 A$=MIDS(L$(R),F+I,1)

710 V%(1)=ASC(A$)-48

715 IF VZ(1)>9 THEN V¥(I)sV%(I)-7

720 NEXT I

725 IF V%(4)<>S1% THEN C1%=1 : RETURN
730 IF V%(3)<>S2% THEN C1%=1 : RETURN
735 IF V%(2)<>S3% THEN C1%=1 : RETURN
780 IF V%(1)<>S4% THEN Cl1%=1 : RETURN
745 C1%=0 : RETURN

800 REM *** LOADER ROUTINE \\EE_
802 S=8 : I=0

804 I=I+1 : REM GET NUMBER OF BYTES
806 A$=MIDS$(L$(I),S,1)

808 B$aMIDS(LS(I),S+1,1)

810 A%=ASC(A$)-48 : B%=ASC(3$)-48
812 IF A%9 THEN A%=A%-7

814 IF BZ>9 THEN BY=B%-7

816 N=16*A%+8%

818 IF N=0 THEN 866

820 FOR K= 1 T0 4

822 As=MIDS(L$(1),S+1+K,1)

823 V%(K)=ASC(AS)-48

824 IF VA(K)>9 THEN V%(K)=V%(K)-7

826 NEXT K

828 M=0 : REM COMPUTE LOAD ADDRESS
830 FOR K=1 TO 4

832 MeM+VZ(K)*(164(4-K))

834 NEXT K : REM DO MEMORY CHECK

836 L%=256*PEEK(47)+PEEK(46)

838 U%=256*PEEK(49)+PEEK(48)

840 IF MC(L%+1) THEN 868

842 IF M>(U%-N) THEN 868

844 C%=S+6

846 FOR J=0 TO N-1

848 A$=MIDS(L$(I),C3,1)

850 B$=MIDS(L$(I),CH+1,1)

852 AL=ASC{A$)-43 : 33=ASC{3$)-43

854 IF A%>9 THEN A%=AS-7

856 IF B%>9 THEN BZ=B%-7

858 W%=16*A%+3%

860 POKE Md,W%

862 (C3=Cu+2

864 NEXT J

865 GOTO 804

866 PRINT "LOAD TERMINATED OK" : RETURN
868 PRINT "LOAD ERROR - MEMORY CONFLICT" : RETURN

10

transfer module is quite general, each

of the other two subroutines reflect -

the structure -of the object code
records. They are thus ‘strongly
bound’ to the particular cross-
_assembler being used. However, pro-
vided the overall algorithm is im-
plemented using a modular approach,
‘it is a simple matter to recode ap-
propriate checksum and loader

modules to suit other cross-
assemblers. = -7 -
Some results of timing

measurements for the various steps
involved in the cross-loading process

(using a 300 baud disk-up link) are

shown in figure f (right).

A small file (20 records) would thus

take about 3 minutes to cross-load.
This is an estimate of the minimum
time since it is based upon the
assumption that there are no re-
transmission overheads associated
with the transfer process. Thus, for
smally programs (about 500 bytes) the
transfer times are not too long.
However, for larger programs (say,
10K) much longer load times would
be experienced. For this size of pro-
gram a high speed communications
link would really be needed. In addi-
tion, the software in the intelligent
terminal would need to be directly ex-
executable machine code rather than
interpreted BASIC.

2. Cross-loading of BASIC
Programs

Transportability of computer pro-
grams has always been a problem that
has never been solved in a really
elegant way. As a general rule it is
widely accepted that programs writ-
ten in machine orientated languages
cannot easily be transported from one
computer to another of a different
type. In contrast, programs written in
high level languages (such as
COBOL, FORTRAN, BASIC) are
usually much easier to transport bet-
ween machines. However, difficulties
can still arise as a consequence of dif-
ferent languages dialects, differences
in machine architecture and the soft-
ware environments in which a pro-
gram is likely to be used.

One of the areas where considerable
difficulty is likely to be encountered
is that in which a mainframe (acting
as a back-end data base machine) pro-
vides a storage facility for various
microcomputer systems. Such an ar-

Figure f.

Transfer time =
 Checksum ,vaiivdation =
Loading timé - =

- Total =

3 seconds
3 seconds per record
2 seconds

8 seconds

Figure g.

MAINFRAME DATA BASE

l . ———[BASIC Programs |« l

| TRs-80]

| SUPER-BRAIN |

| Zx81] [PET}

[apPLE |

Figure h.

2. | @1

within memory.
6. l@4—1+1

YES

8. Exit.

1. Transfer source file from mainframe to local micro.
3. Load Ith BASIC source statement into buffer mermory.

4. Convert source statement into internal (tokenised) format.
5. Move tokenised statement into its execution location

7. All source statements processed?

N
Goto step 3.

rangement is illustrated in figure g.

There are many ways of storing
BASIC programs in a back-end data
base system. Usually, however, they
are all variants of one or other of two
general methods. Either the programs
are stored

a) as memory space images or,

b) in source text format.

Method a) permits easy and rapid
sharing of programs between
machines of the same type and
enables the use of very simple loading
software in the intelligent terminal.
Indeed, using this technique, BASIC
programs may be treated just like
machine code programs. However,
there is no portability across
machines of different types.

Method b) is more useful from the
point of view of sharing software in-
high level language format - thereby
enabling distribution of development

11

effort. Because programs are stored in
source code format they can be more
easily updated, modified and shared
between intelligent terminals of dif-
ferent types. However, when pro-
grams are transmitted to local
machines there is a need to provide
loading software that is much more
sophisticated than that required for
method a). The complexity of loaders
for this type of application arises as a
consequence of the need to convert
programs from source code format in-
to their internal machine code
representation.

Each of the above methods has its
uses and particular areas of applica-
tion. Detailed descriptions of both
techniques are given elsewhere
(Bar81). Because it introduces some
new concepts, an outline of the
algorithm for method b) is presented
in figure h.

This algorithm has been im-
plemented on a Commodore PET
system linked to a remote mainframe.
Step 1 is essentially the same as that
described in the earlier part of this
paper (FROM MAINFRAME TO
MICRO - file transfer to secondary
storage). Steps 2 through 8 were cod-
ed in assembler and located at the
high end of memory (locations $7FFF
for a 32K PET). The program is
quite simple and uses appropriate
branches to the PET’s BASIC ROM
interpreter in order to perform steps
4 and 5. A listing of the assembler
program is given in Bar8lc.

In order to assess the time required
to perform a load operation we wrote
some BASIC code to generate a test
program containing 1000 statements.
The average length of each statement
was about 25 characters and its load
size was 19 Kbytes. Loading of the
source code version of this program
from tape took about 16 minutes.
Once in memory the test program
was SAVEd to tape and then re-
LOADed using the appropriate PET
commands. Under these conditions
loading took only 5 minutes. Loading
of source code programs is thus about
three times slower than that of the
corresponding binary versions. Disk
storage media would obviously enable
much faster loading operations. We
have not directly measured the times
involved but would anticipate im-
provements of up to a factor of 30-40
in load time.

3. Distributed Processing

A distributed processing system is
one in which the resources necessary
to achieve a particular functional ob-
jective are dispersed over a number of
discrete geographical locations
(Lor80, Sch81). In order to optimize
the use of the available resources the
locations at which they reside are
usually interconnected by means of
some form of communication net-
work. This enables both messages
and files to be freely transmitted bet-
ween appropriate parts of the overall
system.

There are many examples of
systems based upon this type of ar-
chitecture. One of the simplest in-
volves the use of a mainframe com-
puter to which are attached a variety
of intelligent terminal devices. Nor-
mally, these terminals will be located
at many different physical sites and

FIGURE 8

A DISTRIBUTED PROCESSING SYSTEM

REMOTE MAINFRAME

No. 1

REMOTE MAINFRAME
Neo. 2

/N

AND

INTELLIGENT NODE

BUS CONTROLLER
(master)

LOCAL SYSTEM BUS

<

N

WORKSTATION WORKSTATION WORKSTATION
No.i No. 2 -] No. N
(siave node) (slave nodel (siave nodel

each will have its own data storage
and information processing capabili-
ty. In addition to the mainframe links
there are likely to be many different
interconnections between the in-
dividual terminal devices. The basic
building blocks thus enable a wide
variety of systems to be constructed.
These may have either a fixed or
dynamically re-configurable architec-
ture. An example of one fairly com-
mon structure is illustrated in figure
8.

In this system, two remote main-
frame systems provide support
facilities (data storage and processing
capacity) for an intelligent device
that, in turn, services a series of in-
dividual workstations. These are
autonomous units which have the
capacity of communicating with the

1

intelligent device via a shared bus.
This enables workstations to com-
municate one with another and also
allows individual units to indirectly
send and receive information from
the remote mainframe computers. An
arrangement similar to this is often
used in situations where shared access
to stored information is desired.

As an illustration of the application
of such a system, consider the
‘distributed processing’ approach to
conducting some form of computer
based learning or testing exercise on a
group basis. An algorithm that
describes one possible approach to
the way in which this may be con-
ducted is shown in figure g.

In this example, a variety of file
transfer processes are involved: from
the mainframe to the micro (steps 1

intelligent node.

remote site.

central site(s).

9. etc.

1. Transmit aptitude/IQ test from central site to remote

2. Distribute test to slave nodes (workstations) at the

3. Perform tests using workstations at remote site.
Gather results of individual tests at remote site.

5. Transmit results data from remote intelligent node to.

Process results using a mainframe statistical package.
7. Archive results in a global data base.

8. Transmit processed results back to remote node as the
load data for a local data base.

and 8), from the micro to the main-
frame (step 5) and between micro
system (steps 2 and 4). Processing
takes place both at the remote station
(step 3) and at one of the central sites
(step 6). Finally, data is archived on
the mainframe (step 7) and a subset of
it is stored at the intelligent node
(step 8).

Based upon the simple analysis that
has been outlined above it is easy to
see that distributed processing ap-
plications are critically dependent
upon the ease with which
file/message transfer can take place
between the various components

References
Ber81

from which the system is constructed.
As the cost of there components
decreases there is likely to be a
substantial increase in the use opf
distributed processing architectures
for a wide variety of applications in-
volving the use of intelligent ter-
minals.

Conclusion

The economic merits of using a
stand alone microcomputer system as
an intelligent terminal device are
potentially quite substantial. A varie-
ty of applications for such terminals
now exist. Many of these involve

some form of data transmission -
either in the form of control messages
or file transfer.

Of the many different possibilities
that exist, two of the more useful
types of application depend upon the
fact that

a) using the software available
on a remote node of a com-
puter network can greatly
enhance the type of work that
can be undertaken, and,

b) the ability to transfer files
to/from a local node can
greatly facilitate the im-
plementation of distributed
processing techniques.

In this paper three applications of in-
telligent terminals have been briefly
outlined: many others obviously exist.

A variety of hardware and software
packages are available to enable this
mode of microcomputing to be under-
taken. The number of these is likely
to increase as more ‘intelligent’ is
built into the interface that the in-
telligent terminal presents to the ‘out-
side world’ - auto diallers, error
checking devices, encryption
facilities, message/file compaction
units, and so on. In the future it is
likely that the most difficult problem
to overcome will be that of choosing
the terminal device that is most ap-
propriate to any particular applica-
tion.

Bernstein, G.B. and Kashar, A.S., Intelligent Terminals: Functions, Specificaitions and Ap-

plications, QED Information Sciences, ISBN: 0-89435-021-8-320, 1981

Bar81 Barker, P.G., A Comparison of Sort Times Using a Microcomputer, Interactive Systems Group
Working Paper, February 1981.

Wie81 Wiederhold, G., Database Design, McGraw-Hill, ISBN: 0-07-070130-X, 1977.

Jud73 Judd, D.R., Use of Files, MacDonald/American Elsevier Computer Monographs, ISBN:
0-444-19568-8, 1973

CBM79 Commodore Business Machiens, Inc., CBM 2001-19, -32, 3016, 3032 Pesonal Computer User’s
Handbook, Publication No. 320856-3, June 1979.

Bar81la Barker, P.G., Using a Microcomputer as an Interactive Terminal, Interactive Systems Group
Working Paper, April 1981.

Don80 Donahue, C.S. and Enger, J.K., PET/CBM Personal Computer Guide, Osborne/McGraw-Hill,
ISBN: 0-931988-30-6, 1980.

CBMS80 Commodore Business Machines, Inc., User’s Manual for CBM Dual Drive Floppies (Models:
2040, 3040, 4040, 8050), Part No. 320899, October 1980.

Bar81b Barker, P.G., Support Routines for File Transfer to Microcomputer Secondary Storage
Devices, Interactive System Group Working Paper, June 1981.

Bar81c Barker, P.G., Use of the Public Switched Network for Program Transfer to Micros, Interac-
tive Systems Group Working Paper, July 1981.

Lor80 Lorin, H., Aspects of Distributed Computer Systems, John Wiley & Sons, ISBN: 0-471-08114-0,
1980.

Sch81 Schneider, H.]., Distributed Versus Central Systems? - Distributed Data Base Systems a

Necessity for Distributed Organisations?, Paper Presented at the NATO Advanced Study In-
stitute on Data Base Management and Applications, Estoril, Portugal, June 1-14, 1981.

T4

7F7E 32638 STA.PO &9 (109)

7FB0 32640 LDA.FO &C (108)

7F82 32642 STA.FPO 60 (96) I = BE
7FB4 32644 oL

7FB5 32645 ADC. PO 68 (104)]
7F87 32647 STA.PO 68 (104) L = L+BE
7F89 32649 LDA.PO &D (109)

7FBB 32651 STA.PO 61 (97) |
7F8D 324653 ADC. PO &9 (105)

7FBF 32655 STA.PO 69 (105)

TF91—32657 LDA.FPO &0 (96) L
7F93 32659 STA.FPO &2 (98) J=1I -,
7E95 32661 LDA. PO 61 (97)

7F97 32663 STA.PO 63 (99) B
TFP9——32665 LDA.FO &2 (98)]
7F9B 32667 cLC — [k = Je
7F9C 32668 ADC. PO 6A (106)

7F9E 32670 STA.PO 66 (102) !
7FA0 32672 LDA.PO &3 (99)

7FAZ2 32674 ADC. PO &B (107)

7FA4 32676 STA.PO 67 (103) |
JFAL 32678 LDY.IMM 00 ()

7FAB==32480 LDA. IND+Y && (102)

7FAA 32682 CMP. IND+Y &2 { 98)

7FAC 32684 BCC 09 > 32695 ofnwt

7FAE 32686 BNE 31 > 32737 Comparison

7FRO 32688 INY ;

7FB1 32689 CPY.IMM 04 (&)

7FB3 32691 BMI F3 > 32680

7FBS 32693 EPL 2a > 32737

7FB7~—32695 LDY.IMM 04 (&)

7FB9 32697 LDA. IND+Y &6 (102)

7FRR 32699 TAX EXCHANGE
7FBC 32700 LDA. IND+Y 62 (98) (J) A(K)
7FBE 32702 STA. IND+Y &6 (102) l
7FCO 32704 TXA

7FC1 32705 STA.IND+Y &2 (98) |
7FCI 32707 DEY

7EC4 32708 BPL F3 > 32697 |
7FC& 32710 LDA. PO &2 (98)]
7FCE8 32712 SEC

7FC9 32713 SBC.PO 6A (106) J = J=MM
7FCEB 32715 STA.PO 62 (98) I
7FCD 32717 LDA.FO 63 { 99) »
7ECF 32719 SBC.PO 6B (107)

7FD1 32721 STA.PO &3 (99)

7FD3 32723 BCC oC > 32737

7FDS 32725 CMP.PO &D (109)

7FD7 32727 BCC 08 > 32737

7FD9 32729 BNE BE > 32665

7FDB 32731 LDA.PO &2 { 98)

7FDD 32733 CMP.PO 6C (108)

7FDF 32735 BCS B8 > 32665

7FE1—32737 LDA.PO &0 (95)

7JFE3 32739 cLc

7FE4 32740 ADC.IMM 05 (S) I =I+5 | e
7FE& 32742 STA.FPO &0 { 98) T
7FEB 32744 LDA. PO 61 (97)

7FEA 32746 ADC.IMM 00 (©) I
7FEC 32748 STA.PO a1 ¢ 97)

7FEE 32750 CMP.PO 69 (109)

7FFO0 32752 BCC 9F > 32657

7FF2 32754 BNE 06 > 32762 yes I>L no
7FF4 32756 LDA.PO &0 (95)

7FF6 32758 CMP. PO &8 (104)

7FF8 32740 BCC 97 > 32657

TFFA=——=32762 JMP 38 7F 32568 < 3 Care when relocating

17

7EQ0 32256
7E03 32259
7E03 32261
7EO7 32263
TEOwm32265
7EQCwm32268
7EOE 32270
7E10 32272
7E12 32274
7E14 32276
7E1S 32277
7E17 32279
7E19 32281
7E1B 32283
7ELE 32286
7E2Z20 32288
7E22 32290
7E24 32292
7E26 32294
7E28 32296
7E2A 32298
7E2C 32300
7EZ2E 32302
7E30 32304
7E3Z 32304
7E34em32308
7E36 32310
TE3IBww3I2312

7E3A 32314
7E3C 32316
7E3E 32318
7E40 32320
7E42 32322

7EAZem3I2323
7EAS 32325
7E47 32327
7E49 32329
7E4R 32331
7E4D 32333
7EAF 32335
7ESt 32337
7ES3 32339
7E54 32340
7ES6 32342
7E58 32344
7ES5A 32346
7ESC 32348
7ESE 32350
7EA0 32352
7EAH1 32353
7E63 32355
JELS 32357
7E6L 32308
7E68 32360
JELA 32362
7E6C 32364
7E&D 32365
7E6F 32367
7E71 32369
7E73 32371
7E7S 32373
7E76 32374
7E77 32375
7E79 32377
7E7BR 32379
7E7C 32380
7E7E 32382
7EBO0 32384
7EBZ 32386
7E84 32388
7E85 32389
7E87 32391
7EB9 32393
7EBR 32395

7E8D 32397

BASIC 4.4 'S O R T] BASIC 2.8
 for positive and negative numbers 5

ISR SVt 45451 < ; Searcn N% addr, - 6D CR on 2,

LDA.PO o8 « 8) ; Is it an integer?EZ::ED

CMP.IMM 80 (128)

BEQ 03 > 32268 3 If it is then OK

IMP 48896 <; elsev SYNTAX ERROR $3 €M on 2.9

LDY.IMM 00 (Q)

LDA. IND+Y 44 (&8) ; Load hi-value of N%

STA.PO 01 ¢ 1) 3 and stere it

STA.PO CF (207)

INY

LDA. IND+Y 44 (68) ; Load lo=value of N%

STA.PO 00 { O ; and store it

STA.PO CE (206)

JSR Z2B.CE 39451 < ; Search A(P) ST |50 sbeve

LDA. PO 07 (7 ADDRESS

CMP.IMM FF (255) ; Is it a string? -

BEQ ES 5 32245 3 Yes, then SYNTAX ERROR

LDA.PO 45 (&9)

CMP.FPO 2D (49) s Is it an array?

BCC DF 5 32245 3 Ne, then SYNTAX ERROR

STA. PO 6D (109) $ Yes, then store its address

BNE 06 > 32308

LDA.PO 2C (44) l

CMP. PO 44 (&8)

BCS DS > 32265

LDA.PO 44 (&8) l

STA.PO 6C (108) X

LSR. PO CF (207) TPV

ROR. PO CE (206)

BNE 05 > 32323 A ves

LDA. PO CF (207) @ -

BNE o1 > 32323

RTS ho

LDA.PO CF (207)

STA.PO 6B (107)

LDA.PO CE (206)

STA.PO 6A (106)

ASL.PO 68 (106)

ROL. PO &R (107)

ASL.PO &h (106)

ROL. PO 6R (107)

cLC

ADC. PO 6A (106)

5TA.PO 6A (106)

LDA.PO CF (207)

ADC. PO 6B (107)

STA.PO 6B (107)

LDA. PO 00 (O)

SEC

SBC. PO CE (20&)

STA.PO 68 (104)

TAX

LDA. PO 01 (1) '

SBC. PO CF (207)

STA.PO 69 (105)

TAY |

ASL.PO &8 (104)]

ROL.PO 69 (105) _

ASL.FO 68 (104) L =L*

ROL.PO 69 (105) !

TXA

cLC

ADC. PO 68 (104) l

STA.PO 68 (104)

TYA |

ADC. PO 69 (105)

STA.PO 69 (105) 1

LDA. PO &6C (108)]

STA.PO 60 (96) I = BE

cLe

ADC.PO 68 (104) !

STA.PO &8 (104) L = L+DE

LDA. PO 6D (109) :

STA.PO 61 (97) |

ADC. PO 69 (105) X

1Q

7EBF 32399 5TA. PO &9 (105) |
96) }

7E9 jemw32401 LDA.PO 60 ¢
7E93 32403 STA.PO 62 (98) _ -
7E95 32405 LDA.PQ &1 ¢ 97) J =1
7E97 32407 STA.FPO 63 (99

7E9Fem32409 LDA.PO 62 (98)

7E9B 32411 CLC

7E9C 32412 ADC.PO 6A (108) K = J+MM
7E9E 32414 STA.PO 66 (102)

7EAO0 32416 LDA.FO &3 (99)

7EAZ 32418 ADC. PO 6B (107)

7EA4 32420 STA.FPO 67 (103)

7EAL 32422 LDY.IMM ©C1 (1) : Check A(X) 2nd byte

7EA8 32424 LDA. IND+Y 66 (102) *

7EAA 32426 ROL.A ; Is it negative: ‘\\\\‘

7EAB 32427 BCS 15 > 32450 ; Yes, Branch to 32450 yes
7EAD 32429 LDA. IND+Y &2 (98) ; Check A(J) 2nd byte

7JEAF 32431 ROL.A s Is it negative?

7EBO 32432 BCS 4F > 32513 ; Yes, Branch te 32513

7EER2 32434 DEY 3 ¥ = ¢ - [ROSITIVE CNTRL} -
7EB3emm32435 LDA. IND+Y 646 (102) ; Load A(K |

7EBS 32437 CMP. IND+Y &2 (98) ; CMP with A(J)

7EB7 32439 BECC 1E > 32471 3 LF A\K;<A£J; then EXCHANGE
7EB? 32441 BNE 464 > 32513 ;3 IF A(K)>A(J) branech to 32513
7EBB 32443 INY

7EBC 32444 CPY.IMM 04 (4) ; All 5 bytes compqred?l

7EBE 32444 BMI F3 > 32435 ; NO then loop back.

7ECO 32448 BPL 3F > 32513 3 YES +then branch te 32513
7ECZem32450 LDA. IND+Y 62 (98) ; Check A(J) 2nd byte

7EC4 32452 ROL.A $ Is it negative?

7ECS 32453 BCC 10 > 32471 3 NO then EXCHANGE

7EC7 32455 DEY ; ¥ = ¢ - NEGATIVE CNTRL} -
7ECBemw324564 LDA. IND+Y &2 (98)

7ECA 32458 CMP. IND+Y &6 (102) '

7ECC 32460 BCC 09 > 32471 3 If A(J;<A§Kg then EXCHANGE
7ECE 32462 BNE 31 > 32513 3 If A(J?>A(K) branch te 32513
7EDO 32464 INY

7ED1 32465 CPY.IMM 04 (&) ; A1l 5 bytes compared?

7ED3 32467 BMI F3 > 32456 3 NO then loop back

7EDS 32469 BPL 2A > 32513 3 YES then branch te 32513
7ED7mm32471 LDY.IMM 04 (&)]

7EDT? 32473 LDA. IND+Y &6 (102)

7EDB 32475 TAX EXCHANGE
7EDC 32476 LDA. IND+Y &2 (98) A(J) TA(K)
7EDE 32478 STA. IND+Y 66 (102)

7EEOQ 32480 XA l
7EE1 32481 STA. IND+Y 62 (98)

7EE3 32483 DEY |
7EE4 32484 BPL F3 > 32473

7EE6 32486 LDA. PO &2 (98)

7EES 32488 SEC |
7EE9 32489 SBC. PO &A (108) '
7EER 32491 STA.PO &2 (98)

7EED 32493 LDA.FO 63 { 9, J = J=MM
7EEF 32495 SBC. PO 6B (107) '
7EF1 32497 STA.POQ a3 (9

7EF3 32499 ECC aoc > 32513 |
7EF5 32501 CMP.FPO 6D (109)

7EF7 32503 BCC o8 > 32513

7EF? 32505 BNE 9E > 32409 no

7EFB 32507 LDA.PO 62 (95

7EFD 32509 CMP.PO aC (108) yes

7EFF 32511 BCS 98 > 32409

7FQlem32513 LDA.FO 60 (94) i
7F03 32515 cLC \
7F04 32516 ADC.IMM 05 (=)

7F06 32518 STA.PO 60 { 96) I = I+5 |-
7F08 32520 LDA.FO 61 (97)

7F0A 32522 ADC.IMM 00 () '
7FOC 32524 STA.PO 61 (97) I
7FOE 32526 CMP.FPO 69 (105)

7F10 32528 BCC OB > 32541

7F12 32530 BNE 06 > 32538 ves ne
7F14 32532 LDA. PO 60 (9&) ; I2L
7JF16 32534 CMP. PO 68 (104)

7F18 32536 RCC 03 > 32541

7F 1A==32538 IMP 38 7E 32312 < ; Care when relocating
7F 1Deee 32541 JMP ?1 7E 32401 < » Care when relocating

10

Basic Programming

Input subroutine

Bradford Metropolitan Coun-
cil owns 85 Pets at present (July
1981) most of which are situated
in schools, though 9 departments
within the Authority have their
own Pets, some with printers and
discs.

One problem we have found
with all users when inputting in-
formation from the keyboard is
that they have a district tendency
.to watch the keys rather than the
screen. This leads to problems
when using the INPUT statement
as very often the return key is
pressed before information has
been entered. The user then con-
tinues typing data followed by
return and so can remove a large
portion of the program.

Our input subroutine was
originally written just to over-
come null entries, but was
gradually extended to enable the
user to enter only the correct
type of input and also to restrict
the number of characters input at
any time. In other words, the in-
put subroutine performs a great
deal of validation on data entered
from the keyboard.

Input types

The subroutine gets a character at a
time from the keyboard and builds up
an input string.

The subroutine is designed to ac-
cept certain input types - these can
easily be changed for programs re-
quiring different types. The standard
subroutine used by Bradford as a star-
ting point for most programs contains
four different input types. These are
indicated by the variable IT where

IT =1 is digits only

IT = 2 is digits and point

IT =3 isYorNonly

IT = 4 is any keyboard character

except quotes
The only cursor control allowed is
‘delete’: other cursor movements are
rejected.

A shifted return is treated in exactly
the same manner as return. We have
found this to be necessary when the
machine is used in lower case, when
users may require names and ad-
dresses completely in upper case, s0O
they use the ‘shiftlock’ key
throughout.

The flashing cursor is replaced by a
non-flashing underline as a prompt.

A maximum number of acceptable
characters is specified before calling
the subroutine. Any or all of these can
be deleted back to a null string, but
no further.

Variables set

Before entering the input
subroutine two variables must be set,
IT to specify the type of input and N
to specify the maximum length of in-
put.

Example 1

730 ...
720 PRINT “ENTER NAME”;
730 IT = 4: N = 20 : GOSUB 120

...

The input type is set to 4, i.e. any
keyboard character and the maximum
length is set to 20 characters.

4 Variables used

The following variables are used
within the input subroutine.

L - current length of input
string
E$ - single character obtained

from keyboard

AS - ASCII code for
character from keyboard
WS$ - current input string

5 Explanation of coding

120 Sets current length of str-
ing zero
Sets current string to null

Print underline as prompt

130 Gets one character from
keyboard

140 Tests for return or shifted
return

150 Tests for delete or shifted
delete

160-170 Tests for invalid keys

-€.g. cursor movements

mn

200-270 Branches and tests for
various input types

Tests for maximum
length of string

Prints character from
keyboard

Prints next prompt
Increases input string and
length by one

tests for null string before
deleting character

Deletes one character
Prints new prompt
Decreases input string
and length by one

Test for null string when
‘return’ input

Clears prompt and
returns to main program

400

410

450

460

470

480

The input string is returned to the
main program WS$. This can easily
be converted to a numeric value if re-
quired using the VAL function.

With the line numbers given here,
ample space is left between lines 270
and 400 for additional input types if
required.

The subroutine runs very much
faster if placed at the beginning of the
program, as it contains a number of
‘GOTO’ statements, each of which is
searched for from the start of BASIC.

Whilst further validation is
necessary in some cases, this input
subroutine is very useful not only in
selecting required types of input, thus
avoiding confusing messages of
“REDO FROM START?”, but also
in restricting the input length, an im-
portant feature if using disc files or
formatted printing.

Since the subroutine is in Basic it is
fairly slow, though not excessively so.
In order to speed up the procedure, it
is presently being rewritten in
machine code.

Anita Cornwell

Computer Division

Bradford Metropolitan Council
Britannia House

Hall Ings

Bradford

West Yorkshire BD1 1HX

L HIFLYT

1iad

136
14@
15@
1&a
17a
2aa
21
220

GOaTO12@

246

258

GaTOL2a
268 GOQTO1 3
276

4aa

4%a

470

420
Saa

FRINT"

READY .

IF {ASATANDASCSR ORAS=48GOTO408 2

IFAS=VRORAS=23GOT04A0 1

IFAS>21IANDASCZSSE0T 0440 ¢
IFL=MHGOTO] 2@

418 FRINTCHR$ (RS " " » sL=L+1 sUSE=LIGS+EF :GUTOL 3@
IFL=0GATOL 2a

460 FRINTCHRE(Z@) " _ " » sL=l ~1 sWSE=LEF THUSS LEHIHUSE) - 1) 3GOTOL 26
IFL=0GaTOL X6

" IRETURN
REM MAIN PROGRAM

SUMERRFRCLST T HE

108 FORESS4SE, 14 tFRINT " :GOTOS0A

REM IMFUT SURROUTIME

1203 L=@:hS$=""sFRINT" _II"»
GETE$:IFE$=""060T0lza

AS=ASCIES) s IFAS=1 30RAS=141GOT47 A
IFAS=2R0RAS=148GOTO45a

IFASCLROR RS 1 BANDARCRE Y ORCRS=24 D OR CAST 1 27ANDASC 14 1D GAaTOLE6
IFAS 141 ANDAS L EIGOTOL 2@
ONITGOTOZ1G, 236,250,278
IFASGTANDASCORGOTO4G0 ¢

REM

OIGITS

REM DIGITS

REM ¥ QR H

REM ANHYTHIHG

LY
AHC POIHT

QML

EXCEFT QUOTEX

Driving the User
Port in BASIC

The PET employs the IEEE-488 bus
for general purpose interfacing of ex-
ternal devices, however, for ‘“‘quick
and dirty” interfacing problems, it
may be simpler and cheaper to use the
8-bit parallel I/O port. This port is
capable of handling many common
peripherals including an ASCII
keyboard, a printer or a paper tape
reader, but ony one device can be con-
nected to the port at a time without
some external switching logic.

The 8-bit port is actually part of an
MOS Technology MCS 6522 Ver-
satile Interface Adapter (VIA). Most
of the VIA’s features apparently are
used for the PET itself, leaving only
an 8-bit port and two handshake lines,
which are really quite simple to use.
This discussion will limit itself to in-
put through the 8-bit port, but essen-
tial information for output through
the port is included.

On the 8-bit port edge connector:
pins A and N are grounded, pin B is
CAl, the input handshake line, pin
M is CB2, the output handshake line,
and pins C through L are the 8 data
lines, with C being the high order
(leftmost) and L the low order bit.
When the PET is turned on, the 8
data bits are programmed to act as in-
puts and CAl is programmed to
recognize a negative transition (from
1 to 0). If the handshake or data

strobe line on your peripheral device
produces a positive transition, you
can reprogram CAl with the BASIC
statement:

POKE 59468,PEEK(59468) OR 1
which changes the CAl control bit in
the VIA’s Peripheral Control
Register (address 59468) from O to 1.

When a transition occurs on CAl,
meaning that data is ready to be read
from the data lines, the next to low
order bit in the VIA’s Interrupt Flag
Register (the CA1 flag bit) will be set.
You can test for this with the BASIC
statement:

WAIT 59469,2

which takes the contents of the Inter-
rupt Flag Register, AND: it with 2 or
binary 00000010, and tests the result,
repeating the test until the result is
non-zero. (Note that execution of the
WAIT statement cannot be inter-
rupted with the RUN/STOP key, so
you should have a way of manually
creating a transition on CAl when
you are testing the interface).

After execution of the WAIT state-
ment the data present at the 8-bit port
is ready to be read with the BASIC
statement:

D=PEEK(59457)

which reads the VIA’s Port A and
stores the data in the BASIC vuriable
D as an unsigned integer between 0
and 255. A side effect of the PEEK is
to reset the CAl flag bit in the Inter-
rupt Flag Register, thereby setting
things up for execution of the next
WAIT statement.

Thus, to read a whole line of ASCII

~1

characters ending with a carriage
return (binary 00001101 = 13) into a
string variable, you could use the
following program segment:

10 A$=((’)

20 FORI=1T072

30 WAIT 59469,2

40 D=PEEK(59457) AND 127

50 IF D=13 THENS8O

60 A$=A$+CHR$(D)

70 NEXT I

80 PRINT A$

Here statement 20 simply limits the
number of characters read to 72;
statement 40 masks the data read to 7
bits to eliminate any parity bit; and
statement. 60 uses string concatena-
tion to convert the data into a single
string. Although the PET’s internal
character code is essentially ASCII,
some character code translation will
be needed in most practical applica-
tions. This can easily be done with an
array in BASIC.

To use the 8 bit port for output,
you must first program the data lines
to act as outputs with the BASIC
statement: POKE 59459,255
which sets all bits of the VIA’s Data
Direction Register A to 1s. Hand-
shaking is considerably less conve-
nient, since only the CB2 line is
brought to the edge connector. You
can force CB2 to a logic 1 with the
BASIC statement:

POKE 59468,PEEK(59468) OR 224
and reset it to 0 with: POKE 59468,
PEEK(49468) AND 31 OR 192
Reproduced by kind permission of
Ron Geere.

Multidimensional
Arrays

From page 51 of our CBM Users
Manual we all know that the COM-
MODORE allows three-dimensional
arrays. But I did not realize, until I
received a tape from my brother in
South Africa who has been playing
with his new computer, that it allows
more than THREE dimensions in an
array. So I tried a four and a five-
dimensional array in my 32K CBM
and it worked. Don’t put too many
elements into the array or you will
run out of memory. After all, a five-
dimensional array with 5 elements
per dimension, contains 6t6 = 46656
elements (don’t forget the zero posi-

tion elements!).

Even the excellent “Pet/CBM Per-
sonal Computer Guide”, only hints at
more than three-dimensional arrays
on pages 70 and 126.

Here is a short program that fills a
five-dimensional array with four
elements with consecutive numbers. I
did not use the 0 position here, or it
would in reality have been a five-
dimensional array with 5 elements.

Line 10 dimensions the integer ar-
ray A%. Line 15 to 70 fill the array
positions with consecutive numbers.

Line 80 and 90 ask you to nominate
an array position and lines 95 to 105
print the number contained in the
nominated position.

From the print-out it is clear that
position A%(1,1,1,1,1,) contains: 1
and the last position A%(4,4,4,4,4)
contains 1024, which is 4t5.

Apart from people interested in
higher mathematics, multiple dimen-
sion arrays might be useful for small
businesses. For instance, the first 3
dimensions of e.g. a 5-dimensional 4
element array could be used as code
numbers for 125 customers (also us-
ing the 0 elements). That would leave
another 5 x 5 = 25 array positions to
store 25 items of information about
the customer. If e.g. all the postcode
numbers are stored in position e.g.
a%(4,4,3,0,0) and e.g. a%(4,2,1,0,0),
it would seem quicker to sort and
print e.g. all the postcodes by prin-
ting all array positions whose 4th and
5th dimensions are 0.

I wonder what the actual limit of
dimensions allowed in the COM-
MODORE is; has anybody tried it?
Has anybody used multi-dimensional
arrays to store business data?

REM
DIMA%(4,4,4 .4

7=1
FORI=1TO4
FORJ=1TO4
FORK=1TO4
FORL=1TO4
FORM=1TOk
A%(I

z=z+1

OPEN1,

105 CLOSEl
110 GOTO80
READY.

POSITION A%
POSITION AZ
POSITION AZ
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION

e e e e e e e e e o
B P BN 00 L0 0 L) b bt bt et ot o et
LT v L I O ¥ R VOV R VN v)

>
N
BB P 0 O 0 1t et bt ot et o et

J,K,L,M)=2

NEXT: NEXT: NEXT:NEXT:NEXT
PRINT"WHAT POSITION?"
INPUT"ENTER 1,J,K,L,M";1,J,K,L,M

DIMENSIONAL ARRAY PROGRAM
PRINT "{cls] FILLING 5 DIMENSIONAL ARRAY"

9
100 PRINT#I "POSITION AZ(™;I;",";J;",";K;",";L;","sM;")=";A%(1,J,K,L,M)

(o2 e =al VAR S OUN KT

OO LI = N e et ot e
O VY

SO WWLI NN =
LI A T RV R N R e

=W
T S N g e N N, NI N, L S, N N,
Www mownwnw

Plotting Multiple
Functions

1. INTRODUCTION
The following program is a way to
print a number of graphs on the
same set of axes, using the Com-
modore 3022 printer. This method
is quicker than some I've seen
which uses carriage returns to

make multiple passes along the
same print line.

The basic idea is to hold, in the
computer, an image of the print
line. This is created using a one
dimensional array with one ele-
ment of each position along the
print line.

To start off with, the array con-
tains 79 spaces. As each function is
evaluated it’s graphic plotting sym-
bol is placed in the appropriate ele-
ment. After the last function is

29

evaluated the array is output, ele-
ment by element, as one line on the
printer. This enables us to plot say
twelve. After each line has been
printed the array is again filled
with 79 spaces.

2. EXPLANATION OF PRO-

GRAM LISTING

Block 10 contains 4 “REM”
statements identifying the pro-
gram.

Block 100 alters the wvertical
print spacing so that each line

18 REM COMEIMED GRAFHS

oG REM MEIL TWEATS. CEM TRAIHING
33 REM 28.7.81

2% REM"

REM ZET UF

DIM FLECTED

OFEM 1. 4

OFEH4. 4. & PRINT#4. CHE$C 125 CLOSES
FEM "

80 REM | -IHL WH
FOR = = 8.4
FEM "

FEM CLEAR "FRIMT EBUFFER-
FOR T =8 TO 72

FLECID = " " ¢ HEXT I
FLECZZ2="4" REM DRAM X RIS

Pk ot pt fed pd

LG e 5
LER IR W I N R o

-
e
el
it

FOR GIVEH &

LUEE
&G To -8,48 STEF -8.ES

Lt

e
e (%

U0 B a8 a0t 00
freke pats P e e

LG O T fa ol

338 REM DRAW ¥ AXIS

332 IF AESCM03E. 6881 THEH 256
FOR I=8 TO v&
336 FLECID="4" HEX
' :'_.' !"Er'lll

258 REM H?PERBULH

D22 Y o= IHTOLSH+12s

224 GOZUER 1888 @ PLFIY+IS
235 RERM”

FEM FHERE
Y=IMT <18
GUSUE 1E3
REM"

.__|
L]

N*ll

OLA
SE Joly Vet B
B PLEY+ID = "4

L a0)

Cry Ty g 1y
Lo e L3050

28 FEM STRERIGHT LIME

ITE Y = INT C0-189%H+120°35

274 GOSUE 1866 @ PLEM+3I5) = "8
rs REM OV

129 REM OUTPUT 1 LIME. COMEIMED GRAFH
FOR K = @ TO 78

FRIMT#1, PLECKD;

HEXT K

202 PEINTH#1
2520 HERT o
235 REM"

FEM FEIMT EEY
OFEM 4.4.8: PREINT#4, CHR$(Z4» @ CLOZE -
FRIMTH#LI. 'Y 1% + 12....%
FRIMTH#LI. "% BEaTe - ...+
FRIMTH#L. 'Y SE 3 + 1d....@
FRINT#1

FRIMT#1., "THE % AIZ IS HORIZOMTAL"
FEM "

i

skt g A A
ADCURIK JI00 I 0N R

—
L]

s S L &

Ly T 0 e) ft e O
[Xx]

" Ry
e

FEM CLOSE DiOWH
CLOSE 1 ¢ EHD
37 REM O

£nenin
LN v]
LY RN

168G REM COMPRESS LIMIT

23

1 SFUD
JEMEEGRLY. B
RIFY 3 GR1". 2

touches the previous one. In this
way, we can print the vertical X
axis as one continual line, instead
of a series of separate characters.
We also open up a normal print
channel to the printer. Finally we
set up an array of 79 elements: one
for each position along the print
line.

Block 300 sets up the range of
values that “X” will have: in the
this case +0.4 to -0.4. It also sets
up the number of different co-
ordinates that are to be used. This
can be altered by changing the
“STEP”.

Block 312 is used to load the
“PRINT BUFFER” with 79
spaces. In the 39th element is put
the character for the “X” axis.

Block 330 is there to print the
Y’ axis. This only happens if the
value of “X”is equal to zero, but
due to the nine digit accuracy of
the PET an exact value of zero

used to check if X is nearly zero.
Blocks 350, 360 and 370, set up

the co-ordinates for three example

function usng the following

equations:-

a. Y=1/X+12

b. Y=100X*2-4

c. Y=(-100x+12)/3

: FOR A HYPERBOLA

: FOR A PARABOLA

: FOR A STRAIGHT LINE

Block 380 is used to print out
whatever is in the print image ar-
ray, in this case four different
characters which represent one
symbol of each function and one
part of the ““X”’ axis. Should two or
more functions plot into the same
space only the last will be printed.

Block 400 prints out the
“KEY”, relating graph plotting
symbols to their functions.

Block 500 closes down the pro-
gram properly.

is designed to check that all the
values used are within the limits
allowed by the printer.

. SMOOTHER CURVES

This program wused full print
positons for each point plotted and
the curves are not smooth. It is
possible to get smoother curves by
using the 3022 programable
character to print one matrix dot
per point. A two dimensional array
is required, 7 deep and 480 wide.
First one fills the array in the man-
ner described above for 7 con-
secutive values of X. In this case
just a one for a point and a zero for
no point is required. The print
routine then takes ‘chunks’ of the
array 6 wide and 7 deep and prints
each as a programmable character.

Why not give it a try and let me
know how you get on.

Neil Tweats.
Commodore Training

Moo+ 12, .. ¥
=R DU
+1Z....9

oHoH

HE Y RIS IS HORIZOMTAL

may never be reached. So ABS is Block 1000 is a subroutine which Department.
| + + #
¥y I+ 4
& . % + $4¢
+@+ &
{ ‘. ';* k] :] #:
:+'»‘ v T T {;:|,|lﬂr'rz!' 112;.‘21;:'»}’:;:?::::1
+ T]
+ T ¥ #
+ 37 % 8
+ N +i E]
g + ¥ Y
+ +# -

24

Peripheral Spot

This month we turn our attention to
the Commodore 8010 modem. The
area of communications is growing in
importance all the time, and so it is
vital to publish as much information
as possible on this subject as the
number of communications users
continues to increase. One of the ar-
ticles, from Paul Higginbottom of
Commodore, concerns early work
that he carried out on the 8010 and
the discoveries he made during that
work.

The other program is from Jim
Butterfield, and is designed to get you
on the air using an 8010. Type in the
Basic program first, and then the
machine code part (enter the monitor
with SYS4 as usual, and just type it
all in), and then save it all in the nor-
mal way. As with all programs involv-
ing machine code I strongly recom-
mend saving first, as it is notoriously
easy to crash these sort of programs
by one incorrectly entered character.
Once you’re happy, away you go!

CBM NOTES - JIM BUTTERFIELD

100
119
120
130
149
159
160
176
180
199
200
219
220
230
240
250
268
279
280
290
300
31e
320
339
340
358
360
370 IFI=1THENCLOSE7

380 IFF=8THENPRINT#8,"***":CLOSES8
398 CLOSES

READY.

PRINT "([CLR} MODEM 1/0

POKE59468,14

Z$=LEFTS$ (28,1) : IF2$="N"GOT024#0
IFZ$<>"P"ANDZ$<>"S"GOT0160

INPUT "INPUT FILE NAME";I$
I=1:POKE179,7:0PEN7,8,7,1$+","+2$
IFT$<>""GOT0240
INPUT"FILE FORMAT:

Z$=LEFTS$(2$,1) : IFZ$="N"GOT031¢
IFZ$<>"S"ANDZ$<>"P"GOT0240
F=8:INPUT"DISK FILE NAME";NS$
OPEN8,8,8,"8:"+NS+","+2$+",W"

IFI=8GOTO348

PRINT"FROM TAPE."
PRINT "[CD]PRESS INST TO QUIT."

JIM BUTTERFIELD[CD]"
PORJ=178T0182:POKEJ, @ :NEXTJ: POKE181,1:T$="PRG, "
INPUT"LINE FORMAT: ASCII OR PET A[3CL]";2$:IFASC(2$)=86GOT01l60

N{[3CL]";:INPUTZS

OPEN5,5:PRINT"[CD] YOU'RE ON THE AIR![CD]"
POKE208,F:POKE203,0: POKE184 ,F9:5Y52048

PRINT "[CD] PRESS CURSOR-UP TO ENGAGE DISK LOG;"
PRINT " PRESS CURSOR~DOWN TO DISENGAGE"

N{3CL}";:INPUTZS

PRINT" [CD) PRESS CURSOR-LEFT TO START TRANSMITTING®

a5

POKE178,1:T$="":INPUT"LINE FEEDS N{3CL]";2$:IFASC(Z$)=78GOT0O160
F9=ASC(RIGHTS(2%,1))-48: IFF9<BORF9I>9THENFI=1
PRINT"SEND FROM DISK FILE (";T$;"SEQ,NO)

ASCII OR PET P[3CL}"™;Z$:IFASC(2S)<>65THENPOKE182,1
IFF9=8THENINPUT"LINE-AT-A-TIME Y[3CL]";Z$:IFASC(2$)=89THENPOKE181,d
PRINT"OUTPUT TO DISK (";T$;"SEQ,NO)

6910
6918
0920
8928
0930
9938
0940
0948
8950
0958
6960
0968
8970
8978
0989
2988
6990
0998
09A0
98ES
08F0
88F8
6908

0968 A8

The manual that is supplied with
the 8010 modem is fairly good, but I
found I still had to read between the
lines to really get it right.

My objective was to be able to have
two PET's connected by modem, that
could freely talk with each other. I in-
tended to implement this by having a
program in each PET which sends
characters typed in to the modem,
and echoes them to the screen while
displaying any received characters in
reverse to distinguish them, from the
operators text.

The first program that I wrote was
based on what I had read in the
manual, that is if ST (the status
variable) is zero, a character is pen-
ding and so I wrote a program like
this:-

100

110

OPEN 5,5

GET#5,A$:IF ST<>0
THEN
PRINT*(RVS)”’A$“(OF-
FRVS)”;

GETAS$:IF A$<>*“”THEN
PRINT#5,A$;:PRINT A$:

130 GOTO 110,0:

This program was totally unaccep-
table, because it dropped 50% of all
transmitted characters. However I
had read about the SRQ method of
using the modem. SRQ is the main
reason why the PET IEEE is not a
real IEEE-488 bus. It is a real line on
the bus in the PET, but is not used.
SRQ stands for service request, and
all it does is to allow a peripheral to

120

tell a controller that it requires servic-
ing. So the second program:-
100 OPEN 5,5,
110 IF PEEK(59427)AND128
THEN GET#5,A$
:POKE
59426,0:PRINT“(RVS)-
»A$“(OFFRVS)”;

120 GETAS:IF A$<*” THEN
PRINT#5,A$;:PRINT AS$;

130 GOTO 110

This worked a treat. Line 110
(which is the important one), says “IF

the modem needs servicing then
service it : tell it, it has been ser-
viced : display character from
modem ”.

Once I had discovered how easy it
was to communicate via the 8010, I
decided to add a little style. And so
the third program evolved from my
fingertips 20 minutes later. This pro-
gram uses the window facility of the
8032, and so it will not work on 40
column machines I’m afraid. The top
window displays characters typed
locally and the bottom window shows
remote activity. I plan to add
peripheral transmit and receive file
capability, whereby any devite can be
toggled on or off. This will be
published in a future magazine.

8032

1000
1010
1020
1030
1040
1050
1060
1070
1080
2000
2010
2020
2030
2040
2050
3000
3010
3020
3030
3040
3050
3060

PRINT"[CLR]"

X1=0:Y1=0:X2=0:Y2=0

GETAS:IF AS="" THEN 2000

X1=PEEK(CP) : Y1=PEEK(CL)

PRINT#5,AS$; :GOTO 2000

OPEN 5,5:PRINT"[HM HM CLR}"

Dual Window Modem Communicator

FOR I=0 TO 79:POKE 33728+I,64:NEXT
CDS$="{DM DN DN DM DM DN DN DN DN DN DN DN}*

SI=59427:MS=128:10=59426:2E=0
TL=224:ML=13:CP=198:CL=216:BL=225:HF=232
LL=80:51=32768:52=33808:US=127 :BP=11

POKE S1,160:POKE S2,160:ESS=CHRS$(27)

IF MOT PEEK(SI) AND MS THEN 3000

GET#5,A$:POKE 10Q,ZE:PRINT"[HM HM]";:POKE HF,ZE:POKE TL,HL
P=S2+X2+Y2*LL:POKE P,PEEK(P)ANDUS

PRINT" {HM] "LEFT$(CD$,Y2) SPC(X2) : POKE HF,ZE:PRINTASESS;
¥X2=PEEK{CP) : Y2=PEEK (CL) -ML

P=S24X2+Y2*LL:POKE P,PEEK(P)CRMS

PRINT" {HM HM}";:POKE BL,EBP:PCKE 1F,Z2E
P=S1+X1+4Y1*LL:POKE P,PEEK(P)ANDUS
PRINT" [HM] "LEFTS(CDS,Y1) SPC(X1) : POKE HF,ZE:PRINTASESS;

P=S1+X1+Y1*LL:POKE P,PEEK(P)ORKS

Machine Code Programming

STRING FLIP
OLD ROM PET'S
036C BTMSTR *
($0030 WiTH 3.
036C HIMEM *
($0034 WITH 3.
036C POINTR *
033A ORG
033A AD 00 LoY
033C A5 82 LDA
033E 85 0% STA
0340 A5 83 LDA
0342 85 02 STA
0344 AS 02 DONE LDA
0346 C5 87 CcmP
0348 30 07 BMi
034A A5 O1 LDA
034C C5 86 cwe
034 DO O1 BNE
0350 60 RTS
0351 B1 O1 NOTDON LDA
0353 AA TAX
0354 29 7F AND
0356 C9 41 cMP
0358 90709 8CC
035A C9 5B cMP
035C BO 05 BCS
035€ 8A TXA
035F 49 80 EOR
0361 91 01 STA
0363 E6 01 UPPNTR INC
0365 DO DD BNE
0367 £6 02 INC
0369 DO D9 BNE
0368 00 BRK

WITH CBM PRINTERS

$0082
0 ROM'S)
$0086
0 ROM'S)
$0001

BOTTOM OF STRING SPACE
TOP OF RAM MEMORY
INDIRECT POINTER

$033A SECOND CASSETTE BUFFER
#$00

BTMSTR
POINTR
BTMSTR
POINTR

CLEAR {NDEX

COPY BOTTOM OF
STRINGS ADDRESS
+01 [INTO POINTER
+01 LOCATION.

POINTR
HIMEM
NOTDON
POINTR
HIMEM
NOTDON

+01 CHECK WHETHER
+01 THE POINTER HAS
REACHED THE

TOP OF RAM

MEMORY YET.

IF SO,

RETURN TO BASIC.

(POINTR),Y LOOK AT THE
NEXT STRING CHARACTER.

#$7F IGNORE ITS CASE FOR NOW.
#$41 1S IT A LETTER?

UPPNTR

#$58 IF NOT,

UPPNTR DON'T CHANGE IT.
REMEMBER THE CASE.

#$80 FLIP CASE, & PUT BYTE

(POINTR),Y BACK IN STRING AREA.

POINTR UP THE POINTER

DONE & LOOP BACK.
POINTR +01
DONE

CAN'T GET HERE!

PET String Flip

This routine solves the problem of
upper and lower case inversion when
using the CBM 3022 printer. The
method is to invert the characters in
the string area of RAM.

PET owners with a Commodore
CBM 3022 printer may have a pro-
blem. The printers do a fine job with
lowercase and uppercase printing.
However, what appears on the screen
as uppercase comes out on the printer
in lowercase, and vice versa. This is
due to the non-standard ASCII codes
used by the PET.

STRING FLIP offers a solution
with this short program, just 50 bytes
long. It is entirely relocatable. It in-
verts the bit of each byte that in-
dicates uppercase or lowercase. It
does this throughout the part of
memory known to hold string data.
However, it only changes those

values within the range of the
alphabet. This allows, the user to in-
vert most data before sending it to the
printer. After printing, the routine
may be called again to flip the data
back to the normal screen form.

I use STRING FLIP this way: load
STRING FLIP, alone or without a
program as data; define a variable,
flip, to remember we’ve flipped, then
before each printer routine, have a
line such as

300 IF FLIP<>I THENSYS(826):
FLIP=1: REM INVERT CASE

Then on return to screen mode, have
a similar line:

100 IF FLIP<>OTHENSYS(826
FLIP=0: REM NORMAL CASE

This routine should correct most of
your printouts. If you find a string
that still prints incorrectly, most like-
ly it is defined within the BASIC pro-
gram, rather than in the string area.
You can correct this by redefining it,
as in this example:

200a$ =“‘Sorry,
a$+ [132]

Try Again’:a$=

Enjoy STRING FLIP in all your
word-processing and data-handling
programs.

Restricted Access

The program below can be used to
improve the security of any m/c pro-
gram that doesn’t make use of the 2nd
cassette buffer. Most m/c programs
are entered by a ‘BASIC’ one line
statement e.g. 10 SYS1029 and by
altering this to SYS826 and (having
loaded in the new program) changing
locations 03F5 & 03F6 with the low
and high byte values to return to the
original program (at decimal 1029 in
our example) the password program
is patched in. To ‘SAVE’ both pro-
grams one should jump into monitor
(SYS1024) and .S “TEST”,01,33A,
XXXX where ‘XXXX’ is the top of
the original program in hex. The pro-
gram, then, has the following feature;

a) A 5-character password (‘IN-
PUG’) in the listing.

b) All characters are checked after
being input giving over 34 Billion
combinations!

¢) There are only 3 attempts
allowed at entry before the screen is
cleared and the PET ‘hang up’.

d) An ‘escape’ key is provided for
the above event (an ‘*’) to recover
control after an unauthorised access
-the password must be re-entered in
full though.

e) Characters input are not
echoed to the screen. To alter the
password, change locations
$03D4-$03D8 to the relevant hex-
encoded ASCII values.

Similarly, the ‘escape’ character can
be changed by altering the value of
$03A8; and the no. of tries at entry
permissable by modifying location
$039C. The following listing is for
NEW ROM PETs.

033A A9 00 8D CE
0342 F7 03 EA 20
034A EA EA EA EA
0352 A0 03 A9 D9
035A E4 FF FO FB
0362 F7 03 9D CF
036A DO ED A2 FF
0372 DD D4 03 DO
037A DO F2 20 Ck
0382 EA EA EA 20
0384 C9 A0 03 A9
0392 20 AE 03 EE
039A 03 C9 03 DO
03A2 20 E4 FF FO
034A F7 4C 3A 03
03B2 CB 03 C9 00
03BA 03 AD CC 03
03C2 EA 60 20 46
03CA 60 00 00 00
03D2 47 2E 49 50
03DA 41 53 53 57
03E2 00 49 4C 4C
03EA 20 45 LE 54
03F2 3F 03 4C 89

8D
EA
EA
20
AE
o4
03
o4
03
E2
CA
CE
03
DO
AD
cc
EC
E2
55
50
3F
4c
4c
00

FF
EA
EA
CA
03
C9
CF
c9
Fy
20
1C
AD
Ch
2A
03
EE
DO
46
50
2E
4y
41

00
00

03
Cl
EA
20
EE
03
E8
0B
03
E2
E3
CE
52
FB
EE
DO
9
E2
01
55
yf
45
52
C3

A9
03
EA
1C
F7
8a
BD
8A
4C
C9
20
03
20
c9
CB
F6
00
20
49
47
52
b7
59
o4

PTALECT. An all-round computer service.

PETALECT COMPUTERS of Woking, Surrey have the experience and
expert capability in all aspects of today’s micro-computer and word
processor systems to provide users, first time or otherwise, with the
Service and After Sales support they need.

COMPUTER REPAIRS AND SERVICE

If you're located within 50 miles of Surrey, PETALECT can
offer FAST, RELIABLE Servicing with their own team of
highly qualified engineers.
24 hour maintenance contracts available, Our service contracts
start at around only 10% of your hardware cost per annum

for on-site, or if you bring it to us at qur own service dept.,

it costs only £25 plus parts. Representing real value for money,

MICRO COMPUTER SUPPLIES

PETALECT can supply the great majority of essential microcomputer-related
products promptly and at really competitive prices. Such items as: —

TAPES®PAPER@FLOPPY DISKS®PROGRAMMES FOR BUSINESSOSCIENTIFIC OR
RECREATIONAL APPLICATIONS®@MANUALS®COMPUTER TABLES@®DUST COVERS
RIBBONS@TOOL KITS®PRINTERS@ELECTRONIC INTERFACES WHICH ARE
PETALECT'S SPECIALITY.
If you want to find out more about what we can and would like to do
for you, why not give us a ring on Woking 69032/21776.

We're worth getting in touch with.

SHOWROOM
32, Chertsey Road, Woking, Surrey

SERVICE DEPT.
33/35 Portugal Road, Woking, Surrey

Disk Use for Beginn_efs,

| Damd %. Pocock.

Hello aghin, welcome to part.X (I

can’t keep count!). This month we:

turn our attention to DIRECT AC-
CESS (come back, it’s not that bad). I

make no apologies for the fact that 1.

have drawn most of my information
from an article by Mike Gross-
Niklaus in a much earlier newsletter.
I feel that this is justified by the fact
that it is one of the best articles'on the
subject, and that also I was involved
with the original production of the ar-

ticle for the Training Department
(which I am very glad to see is back in-

operation).
I will give details of Direct Access
using the “Block” commands this

month. Next month RELative files

for 4040 and 8050 users only (I've got
to do it sometime). In issue eleven (I
could go on for a very long time) I
will provide you with some ' in-
teresting things to play around w1th
and think about.

As with last time I will explain’ the
various sections of a Direct ‘Access
system, and at the end of this article
you will find a program listing (which
I hope is easier to understand than

Random 1.0 from your disk manual!). .

NOTE 1:1In lastﬂmonth’ newsl‘et“
ter the article “Dossing around with "~
Basic”, section 7, contained a report "
on Block Allocate on the 8050. As we .

are covering Block Allocate this
month I had to test a fault mentioned
in it (I'hadn’t heard of this one). Dur-
ing my own tests I could not generate
the reported problem. This does not
mean however that there is no. pro-
blem. More information about this

when the author (David Middleten) -

returns from America (possible this
month).

REMEMBER, always SAVE the

program before running it. .

What is Direct A?“ccess

So, what is Dxrect Access? Direct
Access (D-A) is a method of accessing
the data stored on disk in such a way
that you go DIRECTLY to Wh¢¥° the

 BLOCK -
.called a Sector. .

data is stored.. With sequential you
have to search through the file until
the information is found.

If, for example, you had a list of
stock items on a sequentlal file, and.
you wanted to look at item 565 you

would have to read through 564 sets-

of data before you came to the infor-
mation you required; If you then
wanted to look at item 564 you would

have to go back to the start. If

however. you were using a D-A file
you could move directly to item 565
and then directly to item 564.

Don’t .get: me ~wrong, sequential
files are very useful for items’ which
will always be accessed in the same
order. For example, Personnel infor-
mation for payroll processing, general

mailing - lists - (like . the “list of
subscribers to this.. newsletter).

etcetera.

How to use 1t

- Okay; s0 now you- know what D A
is for, how do you go.about using it ?

There are several ways of managing:

a'D-A system, but the method I in-
tend to show lets the Disk Operating

on is stored and where you can put

“more information. All you have to-
»~keep-track of is an index of what in-"
“formation is where on the disk. The
" DOS will tell you this. We will only

be putting one record per block.
First of all, a few things used within

this artlcle, and .other. places, which

w111 help..

DOS - Disk Operatmg System, the

ROM w1th1n the dlsk umt

FIELD - A smgle 1tem of 1nforma-
tion, .e.g. a name - Or telephone
number. :

RECORD - A group of related fields,

etc.

System k k of wh forma-
ystem keep, track of where. informa <=, support “Block” commands which

e.g. name, address, telephone, age.

B,UFFER"L'vAn : éreé of ‘memor"yb
within' the -disk ‘unit, not on the
diskette. :

BAM - Block Availbility Map, which
shows the DOS which sections of a
diskette are in use. E

CHANNEL : A route between the
PET and disk unit’s RAM, which-
does - not . refer to any partlcular
diskette. - ° :

NF -.Is the file number.

CH Is the channel nurnber

DR Is the drive number (0 or 1)

The D-A file

Commodore 3040 disk units do not
have direct access capability, unlike
4040s and 8050s which have relative
files (a similar concept). All Com-
modore disk units (3040,4040,8050)

nable .you to write data to any
pe fied section of the disk.’

“To"create or use a D-A file you
must - have the command channel

" open; s0-you must use OPEN 15,8,15

‘'somewhere near the start of the pro-
gram.

You will also need to open a chan-
nel to the disk unit. Channels are

" specified by the secondary address
rand can range from 0 to 15. However,

0 and 1 are already in use for Load

] _“ “and Save, 15 is the command channel
" "and 14 does not exist on DOS 2.X. 1

personally tend to use channels 2 and

- 3'for D-A work, and so to open a
.channel Tuse OPEN 2,8,2, ‘4"’. Note
*that the file number and the channel
- number (Secondary Address) need

not be the same, although they are

_here. For example, OPEN5,8,2, ‘4’
. would also be valid. You can also
- have two files open to the same chan-

_ nel, although I do not advise this.

28

A’section on the disk, also

' f’,The ‘% in place of a file'name tells
.the DOS that-you wish to allocate a

buffer for use with this file..

NOTE 2 : With D-A both the file
number and the channel (secondary
address) numbers are used for dif-
ferent things. I find it much easier
(there are less numbers to remember!)
if both the file and channel numbers
are the same. I will tell you which is
used where, but respectfully suggest
that you adopt the easier method of
keeping the numbers the same.

I will assume that the string array
F$() contains the fields for the record
(see program). Because of the way the
relative file system works I tend to
comipile a single string before sending
it to the file, this makes for more stan-
dardised coding. So :-

FORA =0TOF:S$ = S$ + F§(F)
+ CR$: NEXT

wher S$ is null to start, and the com-
plete record at the end.

F is the number of fields (numbered 0
upwards).

CRS$ =
character.

CHR$(13), a RETURN

Then, to send S$ to the file :-
PRINT#NF,S$; (remember we have
put the necessary carrige returns
within S$) : in this case NF=2,

At this stage the data is not written
onto the diskette but only into the

buffer within the disk unit, and in ac-
tual fact this is not the first thing to
do : it is only first here because you’ve
seen it before.

Before we can put the information
onto the diskette we must first find
some empty space on it, and to do this
we use a short routine which attempts
to allocate space on the disk.

11010 DR=1:T=1:8=0

11020 PRINT#15,“B-A”;DR;T;S

11030 GOSUB 10000

11040 IF EN = 0 THEN
RETURN

11050 T =ET:S = ES:
GOTO 11020

(11010) sets pointers to track (T) 1
and sector (S) 0.

(11020) attempts to allocate this block
on drive number dr.

(11030) wuses our standard error
checking routine ; we will also check
for disk full etc.

(11040) if the error is 0 (ok) we have
found a useable block; it has now

been allocated and we can go back to
the main program.
(11050) the error was not 0, the error
track and error sector now contain the
first vacant track and sector. The
routine then goes back to 11020 to
allocate this block.

Now that we (or the program at

least) know where there is some free.

space, if any, we can go about writing
to it. Firstly, set the buffer position to
position 1 (this may not always be 1 :
it depends on how you’re using the
system). Then write the record into
the buffer (PRINT#) and finally
write the buffer onto the disk. And so,
to write a record to the disk :-

2120 GOSUM 11000 : REM
FIND A FREE BLOCK
PRINT#15,B-P’;CH;1 :
REM SET BUFFER
POINTER TO POSI-
TION 1

PRINT#NF,SS$; : REM
WRITE DATA TO BUF-
FER
PRINT#15,“U2”;CH;
DR;T;S : REM WRITE
BUFFER TO
DISKETTE
(NF=file number (2)

CH =channel number(2))

The data is now on the disk.
However, on 3040 and 4040 drives
the BAM is only updated when a disk
file is closed. Unless you are writing a
lot of information in quick succession
it is a good idea to close the file after
each write operation. If you are in an
interactive system where data is com-

ing from the keyboard, the delay for
OPEN and CLOSE is not important
(it 1s still faster than you are).

What data has gone where ? We
need to keep track of what informa-
tion has been put into which block on
the disk. To do this we need some
form of index : in this example the in-
dex will be an array in memory,
which is written to the disk as a se-
quential file. If the index array is a
two dimensional string array I$(,),
then add :-

2170 I$(X,0) = F$(0) : 1$(0) : I$(X,1)
= STR¥(T) : I$(X,2) = STR$(S)
Where X is the number of the record,
and assuming that F$(0) is to be the
key for that record.

And so, for record X, I$(X,0),
I$(X,1), I$(X,2) will contain :-

Key, Track, Sector,

This index must be written to disk
in some form or other, if it isn’t your
index will be lost when you close the

2130

2140

2150

and

29

system down. It is possible, but not
easy, to recreate an index from the
data on a file, provided that the key is
stored as part of the record. I will not
be showing you how to do this (not
this month anyway).

Now that we have added the key,
track and sector to the index we must
increment the index pointer (X) so
that the next key does not overwrite
this one. So :-

2180 X=X+1

Reading the data back from the disk
is just as straightforward. To read
back a record you must first search
the index, and find out the track and
sector of the required record. Assum-
ing track and sector are now in the
variables T and S respectively :-

3120 PRINT#15,“U1”;CH;
DR;T;S

3130 PRINT#15,“B-P”;CH;1

3140 FORA =0TOF:IN-

PUTHNF,F$(A) : NEXT
(3120) this command reads track T
and sector S from drive DR into the
buffer associated with channel CH
(3130) this moves the buffer pointer
for channel CH to position 1, which
is the first character of the first field.
(3140) this reads the information
from file number NF (or rather its
associated buffer CH) into BASIC
variables F$(). It will read F+1
fields, the same number as were sent
to the disk.

Note that the same limitations app-
ly when reading D-A as with sequen-
tial, namely no null fields, and no
fields may be more than 80 characters
long. There is an added limitation
that a record may not exceed 255
bytes (1 block = 256 bytes, position 0
is used by the DOS with some of the
block commands). It is possible to ac-
cess all 256 bytes, and this will be
covered in a later article.

In this article I have “U1” to read a
block and “U2” to write a block.
These command are alternatives to
“B-R” (Block Read) and “B-W”’
(Block Write). “B-R” and “B-W”
operate in a slightly different manner
to “Ul” and “U2” in that they use
position 0 (zero) of a Block to tell the
DOS how many characters are in the
block. (More about that in issue
eleven).

NOTE : that “B-W” does not work
on 4040’s and so you must use the
“U2” alternative instead.

And so with that, good bye for now,
and overleaf is the program.

-

SCCRDIICRDILCRDICCRDILCRIICRD
HDER
FEN tRe F FIELD 3
FEM CPEM uummnm: CHAMHEL TO D3k
EfFMFLE"
3 JLCl
PRIRT*ICRIJICRI]S,
PFI”T"'LP”J[LPJ;J.
FRINT"(CRDILCRDIE, AMEWD R
PRINTLCRDILCRDIT. @UIT"
UTGIUUH
1280 REM CLOSE DOMM SYSTEM
121% CLUSELS:EHD
MﬁTruN HHD COMFILE STRIWG FOF LISk
IF::Z8THEN
PFINT"[HMg];HM‘J[LL' ARIL A D-f RECORD"
TO F:FRINT“L JFIELD". A
GNTENT‘ v iFECAN
CH=Z OPEM HF, ‘,LH,"Q“ FEM urEH D-ﬁ LHHNH:L
REH FIND SPARCE OM LIk
Hi 1
2150 PRINT#1S "U'" CH.DRLT, &
S1gl CL NF R B
217e 1s GrsFEi@: 13K, 1=3TRECTy 18K, 22=3TREL S
1+1 RETURN
FEM INDE: FULL
FRIMT"CROIICRIMIRWSIIMDEY 18 FULL"
FORR=0TOZ006 HERT : RETURN
I-f EXAMFLE FROG
L RE R FROM IHLEH
OF & TC F
IHFUTH#HF . F$CARD
HEET &
FEM L LAY OLD RECORL AMD UFDATE
FR A=3 ' F
PEIMT"[H F RDILCRDICCREICCRDI™ . LEFTH{LE. 24
FRINT"{H (CRIECRDIICRDILCRDICCRDI M . LEFT$<DF. & FILCRRS
" A ALTER" .F¥IA

5
FOR A=0 T F LE+FE(RCRE HERT &

=EM NFITE REC
INTH#LS,
1*#NF
HTH#15. “UE" CH.DR.T. S
SE HF

I3F., Oa=Fe(@:

RETURH

o8 REM }ET HOT FOUHT
g FR CHMEJLCROICCREID
FUR UTU GEE NEXT : RETURN

FEM CHECH ERFOF CHANNEL

IHFUT#1S.EM. EMS,ET, EZ - IFEN=0THENRETURN
IF EN=£S THEM 102
IF EN=TZ
IF EH=e2

ORD TO DIk
~P":CH: L

CRUJICRDILCRDICRWEIKEY NOT IM IMDEX"

163600

FEM ERROF €5 NG ELOCE
JFET-GTHEHRETURN
BRINT*[HMZIIHMELCLE1LC
INT*[CRDICCRDIT WILL
FREINT"ICEDITO DRIVE &
GREUE 12000 GOSUB4060 - CLOSELS

Se I3 FULLY
HOEM" CLOSE HF

JD—H I

JI:U

END

FREM FILE
FRINT"LR
1 CLOSE NF

~[IDES NHT E IS8T
E

o
]
i
m
s

Uil

WED REY T G0

DJF fﬂ

FFXﬂ*"[FDJ
3 L.

2N

.
[
1
m
T
3
i
ul
o
3
P
i)

< FROM INDEX

CH. g
PRINT" [CRDIFIELL" A FHLAs
RETURN
REN KEY MOT FOUMD

FRIMT IHMEICCRDIICRDICCROILCRDILIRDILR
FORA=GTOZO00 HEXT - RETURN

7 HOT IM INLEX"

4900 RER WRITE IHDEX TO DISH
4018 [FE=0THEN4 18I
4020 ZILCLSITHMZIIHMSINAME OF IHDEX TO WRITE ¥ IM$ IN$=LEFT

$E38 RDILCRDIWRITING INDER TO
4049 CH. "o e IHE+s" L, WY
Gl ‘”Ila) IFEN‘,OTHEN4
& PPINT#NF: CR
=
HEHTE, A CLOZE NF e & RETURN

PEN NO IHIE:
CHME 3 THMS
FOPH‘UTULGGU HE!

U INDEX IH #EEMORY"

REM RERD IMDEX FROM T

I?PUT"CHNQJKHMVJ[LL_J[L DICCRDINAME OF
ME. 1

FRINTY [HMSICHMSILCLS I LCRDILCRDIREAD IHG

DR=&: MF =5 CH=S OFEN MF. &, 0H. "B "+ Inge".

GOSUE 18808 . IFEN THEHRETLRH

HELITHHF .

IHDES
IHDE: FROM LISKY
=4

TG FEAD “. IN$ Iri$=LEFT®

REM LIZT IMDEX TO

FEINT"[HM”[HM‘][.

F T PINTlixﬁ B IR 10 ISR 20 CHERT
IR

AMEHD REZORD
GET KEY AND

H=0THEH4 108
FRINT*THMSICHMZITCLS IAMEND A FE
ELL &

& IMPUT"[CRDICCRD
TRSC FORA=GTON-1 IFEY§=18CR. 8. THEHR=R

SERRCH

PET/CBM
COMAL

“The excitement in Europe (over COMAL)
seems to be growing by the hour and we look
forward to America being able to share in the
good fortune of having an easy-to-use, struc-
tured, planning language at last.”

The power of PASCAL and the ease of BASIC
can now be yours with Commodore COMAL, a
new programming language from DENMARK. It
is being distributed in the USA by the COMAL
USERS GROUP. To find out more about COMAL
and how you can get a free disk copy of Com-
modore COMAL, send a large self-addressed
stamped (35 cents) envelope to:

COMAL USERS GROUP
5501 GROVELAND TER., MADISON, W! 53716.
QOutside USA please add $2.00 for airmal and handling.
*PET & CBM are trademarks of Commodore Business Machines.

Basic Compilers

John Stout

This article is the first of a proposed
series which describes how to build a
BASIC compiler for the PET. The
compiler is to be compatible with the
PET’s resident BASIC interpreter so
that, as with the DTL BASIC com-
piler currently available, the inter-
preter can be used to develop a pro-
gram and the compiler then used to
produce a machine code version of
the program for speed. Unlike the
DTL compiler the final form of the
program will be true machine code,
rather than a code (B-code?) which is
interpreted by a machine code inter-
preter. This may mean that the com-
piled program is larger than with the
interpreted approach but it should be
faster.

The first version of the compiler
will attempt no optimisation of the
code produced, although this could
possibly be added later, and will use a
number of ‘tricks’ to help speed up its
development. Firstly it will take as its
input a SAVEd version of the pro-
gram, in the same way as the DTL
compiler does. This means that the
compiler’s scannes, which scans the
input for keywords, variable names,
operators and constants, need not be
as complicated as it might otherwise
be, and hence will operate faster.
These improvements come about
because the BASIC interpreter will
already have converted keywords
such as THEN, PRINT into their
BASIC tokens, 167 for THEN, 153
for PRINT. The second trick will in-
volve the compiler not producing
machine code directly but rather an
assembly language program file
which will be used as input to the
PET Assembler and Loader to pro-
duce the final executable program.
This has the advantages that the com-
piler need only make one pass
through the SAVEd BASIC program
(i.e. only read it once), the code can be
assembled easily anywhere in
memory (or even in separate sections
of memory) and the assembly
language file can be examined by
anyone with sufficient knowledge in
order to optimise the code. There are
of course two more stages to go
~ through in order to produce the work-
ing program, but since the compila-

tion should not be needed very often
for any one program this need not be
a serious problem.

A number of commands will not be
implemented in the first version of
the compiler: LIST, LOAD,
VERIFY, CONT, CLR, NEW,
RUN and STOP. Most of these make
no sence for a compiled program,
although LOAD (to permit chaining)
and CLR might be candidates for
later inclusion.

Further details

The compiler is to be written in
BASIC so that one of its first tasks
will be to compile itself. It would be
nice to write it in Pascal or COMAL,
but BASIC seems likely to reach a
wider audience than Pascal and
COMAL might run into problems of
both space and implementation, e.g.
can COMAL read a program file?

The output assembly language file
will contain at its start code to make
the program start at location 1025
(just as for a BASIC program), then
generate a BASIC line of the form:

10 SYS (1039)
then at locations 1039 onward would
be code to initialise stacks, reset the
output and input devices, set
variables to zero and so on, then jump
to the start of the actual BASIC com-
piled program, e.g.:

JSR INIT

JMP START
(run time library and code for INIT

follow here)

Since we are using the assembler to
sort out addresses we can use labels
without knowing (or indeed caring)
where the final code is to go. After the
JMP START instruction will come
all the code for the routines that the
compiled program will need, e.g. to
handle strings, evaluate expressions,
index arrays and so on. Since all the
code generated so far will not change
from compilation to compilation we
can leave it in a separate assembly
language file called BASICLIB and
include it in the assembled version by
using the assembler directive:
.LIB BASICLIB

The compiler will clear its internal
arrays used for symbols, line numbers
and so on, then open the file which is

AN

to be compiled. As it reads each line
number it will generate one or more
labels, the first of which will have the
form:

Lhhhh
wher hhhh is the 4 digit hexadecimal
representation of the line number,
e.g. for line 10 the label generated
would be:

LOOOA
Thus a GOTO 10 instruction later on
in the program (or even before the
line is defined) can be assembled
directly to:

JMP LOOOA
Also at the start of each line will be
output a call to a subroutine LIN-
NUM, which is followed by the two
bytes of the line number, e.g. again
for line 10:

LOOOA JSR LINNUM

.BYTE 18, 8

LINNUM?’s a job is to set a two byte
variable to the line number of the cur-
rent line being executed. As with the
TCL Pascal compiler the BASIC
compiler will allow the user to switch
this feature off in order to save both
time and space.

If the line before the one being cur-
rently compiled contained an IF state-
ment then a label of the form:

Ihhhh
will be generated, where hhhh is the 4
digit hexadecimal representation of a
counter which is incremented by 1 at
the end of each line. Thus each IF
statement has a unique label that it
can jump to if the condition in it is
false. Thus combining the 2 types of
labels so far the BASIC statement in
the first line of program:

IF X 0 THEN 100

would result in the following
assembly language code being
generated:

(code to generate the result of
X 0 in floating point ac-
cumulator 1)

LDA FP1EXP

BNE +$03

JMP +I10000

JMP LOO64

; 0 if false, otherwise non-zero.
;GOTO 100

Note that in this case some optimisa-
tion could be performed since
wecould change the BNE to BEQ and
remove the jump to 10000.

In addition to creating the labels
Lhhhh the compiler will keep a
record of line numbers generated and
referenced so that undefined line
numbers can be reported at the end of
compilation rather than at the
assembly stage.

As it reads in each line of BASIC
the compiler will list it to the
assembly language output file preced-
ed by a semi-colon so that it will be
seen as a comment by the assembler.
Thus the machine code generated by
the complier/assembler combination
can be easily matched with the source
BASIC line, possibly for hand op-
timisation.

Variables will be referred to by
their name (restricted to two
characters in the ouput although any
length will be allowed on input) suf-
fixed by I, R or S depending on
whether they represent an Integer,
Real or String quantity. Space will be
generated for the variables at the end
of the assembly language file, e.g.
with variables A%, BR%, B, CD, F$,

Al .BYTE 0,0

BRI .BYTEO0,0

BR .BYTE 0,0,0,0,0
CDR .BYTE 0,0,0,0,0
FS .BYTE 0,0,0
SMS .BYTE 0,0,0

Strings and their handling can be
implemented in a number of ways,
but the proposed compiler will pro-
bably use the following scheme (or
one very like it).

1) String variables will consist
of 3 bytes, a length byte and
an address pointing to the
start of the string. A length
byte of 0 means the string has
not been defined.

2) A string of length n will oc-
cupy n+2 bytes, the first two
bytes being a link to the next
string of length n, or zero if
there are no more strings of
that length.

3) Since the strings will occupy
memory space in the range
$0400-$7FFF the most
significant bit of the ad-
dress/link can be used for
other information, and will
be set to 1 if the space is not
pointed to by a variable.

4) Two 256 byte tables will be

maintained, labelled STRL
and STRH where the n’th
entry in the two tables
defines the address (low/high)
of the first string space of size
n (and will be zero if none ex-
ist).

5) If a string has been created
(and needs to be stored) of
length L then the compiled
program need only search the
list of spaces of length L for
one with its address/link
header bit 15 set to 1. This
string space can then be filled
with the generated string, its
used/unused bit set to zero,
and the address of the string
variables set to point to the
space (also its length set to L).

6) If a defined space cannot be
found which is big enough
then the bottom of string
space pointer can be
decremented by L+2 bytes
and the space so generated
linked into the list of strings
with length L (with its
used/unused bit set to 1). Pro-
cess 5 can then be executed
again.

7) If step 6 generates an out of
memory error then the next
available space of length L +
1 can be searched for and us-
ed, or failing that the next
available space of length L. +
2 and so on. This means that
some one or more bytes will
be wasted but the program
will continue to run. The
space allocated (say of length
L +E) will be linked on to the
list of spaces of length L.

Although this scheme requires
more storage than the one used in the
PET it has the benefit of being simple
to program and reasonably fast to ex-
ecute.

Arrays will be implemented by us-
ing an array header which will be of
length 4+2*N, where N is the
number of dimensions in the array. In
the 4 bytes the first will be a flag byte,
with its most significant bit set to 1
if the array has been defined and the
rest of the byte set to 1, 2 or 3 depen-
ding on whether the array is of in-
tegers, strings or reals. The next byte
will contain the number of dimen-
sions and the two after that a pointer
to the first array element. The 2*N
bytes in the rest of the header will
hold the maximum value of the N

37

dimensions in integer form. By labell-
ing these N integer ‘variables’ in the
following form:

AR00 .BYTE 0,0

ARO1 .BYTE 0,0
for an array A(M,N), where the name
for the J’th dimension maximum is
generated by taking the array name
(restricted to two characters), follow-
ing it by I R or S (for Integer, Real or
String arrays) and then adding the
two digit hexadecimal representation
of the dimension number, the dimen-
sions of the array can be set up
dynamically by generating code to
evaluate the expression for a dimen-
sion, convert it to integer, then store
it at address AR0O, ARO1 etc.

The key routine for referencing ar-
rays, to be called INDEX, will be
followed by the address of the array
header and will expect on the ‘evalua-
tion stack’ (used for evaluating ex-'
pressions) the N values of the
subscripts for this particular array
reference. It will then place on the
‘address stack’ (possibly the same as
the evaluation stack) the computed
address, removing the N subscript
values as it does so. This can then be
used either to assign the result of an
expression to an array element or to
retrieve the value of an array element
for use in an expression evaluation.

Summary

The design of a proposed compiler
has been sketched in sufficient detail
to demonstrate that it is practical to
attempt the project. The compiler
will require a 32K PET and disk (and
assembler) and will be presented in
stages, a possible outline being:

1) Run time library (routines
needed by the compiled pro-
gram, program initialisation,
error routine etc).

2) String handling (concatena-
tion, LEFT$, LEN etc)

3) Array handling (DIM
statements, INDEX routine

etc).
4) Variable allocation (both sim-
ple and arrays)
5) Program flow statements

(FOR...NEXT, IF.. THEN,

GOTO, GOSUB,
ON...GOTO etc).
6) Expression evaluation

(possibly the key routines of
the compiler, DATA evalua-
tion etc).
7)The compiler’s main routines.
Continued on page 7.

