#(@)top:

HHtHHHHHHHH
HHH
it HiHHHHH
HitHHH
HitHHE HHE HEHE H#H# it HiHIH HHHH R R R HitHHHHT
HitHHHE H#H# H#H# HitH#H H#H# #HH# HH# HHH #HH# HHHH HH #HH# #HH#
HitHHH HHHHHHHHH H#Hit Hi #Ht HiHHHE HH HH HH# H#HH# HHt
HitHHHHE HH# H#HH# HiHHHHHH #HH# #HH# HH# HHH #HH# HH HHAH #HH# #HH#
HHHHE HEHE HEE HEEHE HEHE it W B B B B HitHHHHH
HitHHHE H#HH#
HitHHHH HiHHHH Issue #11
HHHHHHHHHH Version 1.0
HiHHHHHH December 1995

#(@)contents: Table of Contents

Features

6. Speed up RAMLiInk transfers with the Double-DMA Technique
(Reference: dbldma) bK Doug Cotton and Mark Fellows
RAMLINnk Designer Mark Fellows and Technical Editor Doug Cotton of

CMD describe a way of using a Commodore REU to increase transfer
rates of the CMD RAMLink to one-half the speed of the REU transfer
rate.
8. The Graphics Toolbox by Stephen Judd
(Reference: toolbox)
To add another tool to our toolbox, Stephen details a new algorithm
for drawing ellipses. Some improvements to the circle routine in
a previous column that will enable it to draw perfect circles of any
radius is discussed, as well as details on using logarithms to
perform division.
10. Design and Implementation of an Advanced Text Editor by Craig Bruce
(Reference: zedace)
Peer into the internal organization and implementation of an
advanced text editor/word processor for the ACE environment.
Relevant data structure, global variables, display maintenance,
gext_;séoshing", and algorithms for many editing commands are
etailed.

Columns
4_ Hi Tech Trickery by George Taylor
(Reference: trick)
Don"t let anyone ever tell you the SID chip is only capable of 4 bit
sample playback. George Taylor explains using the digi dithering
technique to increase the SID"s resolution.
12. Hacking Graphics by Rick Mosdell
(Reference: gfx)
Dig into this overview on how to set up the VIC-I1 to display Doodle
and KOALA format pictures. The two formats are detailed, and similar
formats are referenced.

Departments

1. The (cough,cough) Hacking Editor
(Reference: editor)

2. Input/Output
(Reference: i0)

3. Newsfront
(Reference: news)

5. Hacking the Mags
(Reference: mags)

7. UseNuggets
(Reference: usenet)

9. Hack Surfing
(Reference: surf)

11. Commodore Trivia
(Reference: trivia)

13. ? DS, DS$: rem The Error Channel
(Reference: error)

14_. The Next Hack
(Reference: next)

#(@)legal: Commodore Hacking Legal Notice

Commodore and the respective Commodore product names are trademarks or

registered trademarks of ESCOM GmbH. Commodore hacking is in no way)
affiliated with ESCOM GmbH, owners of said trademarks. Commodore Hacking is
published 4 times yearly by:

Brain Innovations Inc.
602 N. Lemen
Fenton M1 48430

The magazine is published on on-line networks free of charge, and a nominal
fee 1s charged for alternate mediums of transmission.

Permission is granted to re-distribute this "net-magazine™ or "e-zine"™ in its
entirety for non-profit use. A charge of no more than US$5.00 may be

charged by redistribution parties to cover printed duplication and no more
than US$10.00 for other types of duplication to cover duplication and media
costs for this publication. IT this publications is included in a for-profit
compilation, thlsfpublication must be alternately available separately or as
part of a non-profit compilation.

This publication, in regards to its specific ordering and compilations of
various elements, is copyright(c) 1995 by Brain Innovations, Incorporated,
unless otherwise _noted. Each work in this Eublication retains any and all
copyrights pertaining to the_ individual work"s contents. For i
redistribution rights to individual works, please contact the author of said
work or Brain Innovations, Inc.

Brain Innovations, Inc. assumes no responsibility for errors or omissions in
editorial, article, or program listing content.

#(@)info: Commodore Hacking Information

Commodore Hacking is published via the Internet 4 times yearly, and is
Bresented in both 1S0-8859-1 and HTML versions. This and previous issues can
e found at the Commodore Hacking Home Page
ghttp://WWW.msen.com/~brain/chacking/ , as well as via FTP
ftp://ccnga.uwaterloo.ca/pub/cbm/hacking.mag/)

In addition, the Commodore Hacking mail server can be used to_retrieve each
issue. To request a copy of an issue, please send the following electronic
mail message:

To: brain@mail_msen.com
Subject: MAILSERV
Body of Message:

help

catalog

send c=hackingll.txt
quit

To subscribe to the Commodore Hacking and receive new issues as
they are published, add the following command to you MAILSERV message
prior to the quit command:

subscribe c=hacking Firstname Lastname msglen

(msglen is largest size of file in kilobytes you can receive in an email
message. When in doubt, choose 64)

example:
subscribe c=hacking Jim Brain 100

Although no fee is charged for this magazine, donations are gladly accepted
from corporate and individual concerns. All monies will be used to defray
any administrative costs, subscribe to publications for review, and
compensate the individual authors contributing to this issue.

Any persons wishing to author articles for inclusion in Commodore Hacking are
encouraged to view the submission guidelines on the WWW
(http://www.msen.com/~brain/pub/c-hacking-submit.txt) or via the MAILSERV
server (send c-hacking-submit.txt).

#(@)rch: Reading C=Hacking

Starting with Issue 11 of Commodore Hacking, the new QuickFind indexing
system 1s utilized to aid readers of the text version in navigating the

magazine. At the top of each article or other important place in the
magazine, a word prefixed with a special string is present. (See the

title of this article for an example. Throughout the magazine, if an
article i1s mentioned, it will be followed by a reference string. For
example, if we mentioned this article, we would add (Reference: rch) after
the name. By using your favorite editor"s search function and searching
for the string after the word "Reference:", prefixed by the magic prefix
string, will _move you directly to the article of choice. _To merely skip to
the next article in the magazine, search only for the magic prefix string.

Some handy indexing strings possibly not referenced anywhere are:

top top of issue
bottom bottom of issue
contents table of contents
legal legal notice

For those with access to a UNIX system, the command "what' can be
run on the issue, which will result in all the article titles being
printed.

A slightly different magic prefix_string "#(A)" Is used to delimit
sub-topics or main heading in articles. The text after the magic string
differs depending on article content. For the Input/Output column
(Reference: i0), the text after the magic prefix will either be "c" for
comment, or "'r" for response. In features and columns, a number after
the prefix indicates the ordinal of that heading or sub-topic in the
article. IT a specific sub-topic is referenced elsewhere in the article,
a sub-topic reference will be indicated. A reference to "#(A)r" would
be written as ""(SubRef: r)".

As time goes on, the role of this indexing system will be_ expanded and
changed to ease navigation of the text version, but minimize the clutter
added by these extra items.

#(@)editor: The Hacking Editor
by Jim Brain (brain@mail._msen.com)

Two new Faces appear in this month"s Commodore Hacking. One is its new editor,
while the other is its new look. I hope neither causes anyone to worry_about
the content of the magazine. It"s all still here. C=Hacking will continue

to provide leading edge technical information about the Commodore computers

we all know and love. The magazine will continue to cater to the Commodore
computer programmer, whether i1t be in the areas of sound, graphics, algorithms,
disk media access, or communications.

However, the role of the magazine continues to expand. It has been shown that
many people other than CBM programmers read the magazine, and programmers have
requested other information besides technical content be included in the
magazine. To this end, Issue 11 contains many new features, including:

o "Hacking the Mags"™ (Reference: mags), which will summarize the other
Commodore magazines in the market place. Not everyone can read or
subscribe to all the quality CBM publications out there, so this column
will alert readers to specific issues that may be of interest.

o "Newsfront" (Reference: news), which will bring the Commodore programmer
and user up to date on developments in the Commodore community. The
Commodore world doesn"t stand still, and ever¥ programmer should be aware
of the newest technologies affecting the CBM line.

o "The Error Channel" (Reference: error), which will formalize the process
of fixing errors in earlier issues. Hopefully, this will be unnecessary
in most issues, but it will be here just in case.

o "Input/Output”™ (Reference: i0), which will allow C=Hacking readers space
for comments and concerns. Many readers have sent me suggestions and
comments, some C=Hacking can implement, and some C=Hacking cannot.

This spot will detail which is which and why.

o Article separators. As you can see above, each article or column in the
magazine is delimited by the special key, followed by a short name_
of the article. See "Reading C=Hacking™ (Reference: rch) in this issue.

o Smaller size. The last issue was over 400kB in size, which generated
many complaints. There is no need to create such a long issue, when
more issues can be published. This issue should comfortably fit on
two sides of a 1541 disk, a 1571 disk, or a 1581 disk.

o0 Stable publication dates. Circumstances (college, job hunt), made it
hard for the previous editor to maintain a schedule, so no blame is laid,
but the magazine does need some stability. Although possibly unrealistic,
I am striving to publish C=Hacking quarterly, with the following schedule:

Publication Date Submission Deadline
March, 1996 February 10, 1996
June, 1996 May 10, 1996
September, 1996 Auguest 10, 1996
December 1996 November 10, 1996

IT article submissions keep up, a switch to bi-monthly publication might
be warranted, but I won"t get too far ahead.

o Fully HTML-ized version of the magazine. Issue 11 contains many
improvements designed to make the publication of an World Wide Web
readable version of the magazine easier. Look for the HTML version of
this and older issue at URL: http://www.msen.com/~brain/chacking/.

Many people have compared Commodore Hacking to the defunct _Transactor_
magazine, which is encouraging. The new format will hopefully add to the
appeal of Commodore Hacking.

Although many of you know me or of me through previous Commodore work, this
is my Tirst editorship, so please comment on the changes 1 have made and what
your opinions on each are. As the magazine is for you, the reader, It is
always important to keep the reader happy.

Sadly, some things, like the WW browser for C=Hacking, did not get done,
but there is always next time.

Enjoy YOUR magazine,

Jim Brain (brain@mail.msen.com)
editor

#(@)io: Input/Ouput

Obviously, Commodore Hacking depends on the comments and article submissions
from the Commodore community to flourish. Everyone sees the articles, but
let"s not forget those comments. They are very helpful, and every attempt
is made to address concerns in them. Address any comments, concerns, or
suggestions to:

Commodore Hacking

602 N. Lemen

Fenton, MI 48430
brain@mail.msen.com (Internet)

#(A)c: Need Samples of Samples
From: "Clifford \'"Paska\" Anderson' <andersoc@saturn.uaamath.alaska.edu>

Dear C=Hacking,

Hey. Just writing to mention something 1°d like to see in C=Hacking, if
you can find someone to write about it. | am interested in knowing more
about how samples work on the 64, how to play, etc.

St vales, valeo

#(A)r:

Your wish is granted. Check out this issue®s Hi Tech Trickery
(Ref?rence: trick) by George Taylor for some insight into playing
samples.

#(A)c: You Index, I Index, We all Index
From: coyote@wakko.gil._net

Dear C=Hacking,

I would like to offer an idea for the Chacking mag. Every now and then
I1"1l come across a reference to an article in this or that Chacking Issue.
I run Zed and load that issue in (Thanks Mr Bruce) and start hunting for
the start of the article.

This process would be made a lot easier if Chacking used a method of
indexing | have seen used in several publications.

It involves the search function of most text editors. A 2/3/4 ? letter
code (with a delimiter char_to_prevent unintentional matches) that the
reader uses to find the beginning of the article.

(Outline of suggestion deleted)

I would like to add a personal thanks for all your efforts on behalf of
the C= community.

Al Anger

13841 SW 139 Ct.
Miami FI. 33186
(305) 233-4689

#(A)r:

Fgre up that search function in your favorite editor. Issue 11 now
contains the QuickFind indexing system that should fit your needs. See
"Reading C=Hacking” (Reference: rch) for information on how to utilize the
indexing system. We would like to add that C=Hacking appreciates your
personal thanks.

#(A)c: Are We Talking the Same Language?
From: Jack Vander White <ceejack@crl.com>

Dear C=Hacking,
Noticed something that may be a potential problem and thought 1 would
let you know.

Way back when hacking mag started I didn®"t have Internet access. the first
couple of issues were sent to me by fellows who had downloaded them and in
downloading had set their terms to translate them to PETSCII. This of
course changed the coding in the uuencoding parts of the magazine and made
them decode improperly.

Since then 1 have mK own_access and_have re-downloaded them and posted
them on my BBS in the original straight ASCII so that those who download
theg_can uudecode the relevant parts and then translate the text for
reading.

Since different Terminal Programs are using different Translation tables
I can see all kinds of problems in this for the average user.

Any comment????
Jack VW

#CA)r:
Tge)HTML version of Commodore Hacking utilizes the 1S0-8859-1 text
encoding standard, while the text version utilizes its 7-bit subset,
commonly called ASCII. Normally, the encoding standard poses little
problem, as text uses but a nominal set of characters which can be
translated between PETSCII and ASCII. However, as you point out, the
uucode format uses more characters, which may or may not be
translated correctly. To circumvent this problem, which only occurs
in the text version, the files embedded in a Commodore Hacking issue
ihould be uudecoded prior to converting the file to anoy alternate
ormat.

#(@)news: Newsfront

* Although not new news, Some still may not know that Creative Micro Designs,
Inc., 1s currently designing the Super64CPU accelerator. This external
3" tall by 6" wide by 2" deep cartridge will allow Commodore computers
to execute Programs at either 10MHz or 20MHz (actually, 9 and 18 MHz,
realistically). The unit uses the Western Design Center"s 65C816S CPU,
which is object code compatible with the 6502/6510/8502. The CPU, used
in the Super Nintendo Entertainment System as well as other products, can
be switched between 6502 emulation mode and "native"™ mode, which allows
the following:

access to 16 MB of RAM without bank switching.
64kB stack.

64kB _zero page (now called '"direct access').
16 bit registers.

Support for virtual memory systems.

O0O0OO0O0

The unit is scheduled for production in February, 1996, and will cost
~US$149.00 for the 10MHz unit and US$199.00 for the 20MHz unit.

* The following information was relayed to the USENET newsgroup comp.sys.cbm
by Jack Vanderhite, editor and publisher of COMMODORE CEE disk magazine:

Rather than reply to all_the messaﬂes asking about DIEHARD I will tell
all what has been happening over the last few days.

Brian Crosthwaite, Publisher of Diehard, contacted CMD, Loadstar, and
Commodore CEE this week with the following form letter faxed to each of
us:

Diehard, the Flyer for commodore 8bitters is planning to cease
publication and we are looking to transfer our subscription fulfillment.
Our number of outstanding subscribers is approximately 8,400 and 1

would be willing to throw in the balance of the list, totaling
approximately 12,000.

Please call me at (xXxx)xxx-xxxx 1Ff you are interested in acquiring these
readers and names.

Sincerely,

Brian L. Crosthwaite
Publisher

Each of us did contact Brian for further details. They are bleak. The
total number of paper issues due to subscribers is approximately 64,000.
This does not count the approximately 1,200 spinner subscribers which
would make approximately 10,000 disks due.

The cost of publishing alone would amount to approximately $100,000 for
printing, layout, disks, ,mail cost, etc. Not taking into account the
cost of articles, etc.

when asked about money Brian"s only comment was "There is none. It"s
gone."

a further complication is that Tom Netsel told me last week that General
Media says that Brian has assumed the obligation to deliver the balance
of the Gazette subscriptions. | questioned Brian about this. Brian says
that general media faxed him the terms of transference of the
obligation and that he faxed back an acceptance of the terms. While 1
have not seen the actual faxes involved it does sound like offer and
acceptance of a binding contract from here.

Obviously, all of us have rejected this offer. I have been told that
there is an issue of Diehard at the printers, probably printed.
However, the printing bill alone is over $8,000 plus the cost

of mailing. Since there is no money it sits there.

IT anyone were willing to assume the total obligations they would have
to assume a liability of well over $100,000 over the next year before
aB¥_retgrns from renewals would even make a dent in this huge

obli

gation.
ilease Note: 1 am putting this out as a public message. This is ALL 1
now.
Please do _not come back at me asking questions. 1 have nothing more 1 can
add to this.
Jack VW

So, If you have outstanding issues of dieHard due you, as the editor
does, the fears have been confirmed. However, for those who purchased
the dieHard "'Spinner™ disk, read on for the encouraging news.

* The LOADSTAR disk magazine has been recently purchased from Softdisk
Publishing by LOADSTAR ﬁrinciples Fender Tucker and Julie Mangham. Now
owned by J and F Publishing, a corporation founded by Mr. Tucker and Mrs.
Mangham, provide the magazine with even more Fflexibilit Tucker
states that now LOADSTAR is "more solvent then ever before”. Existing
subscribers will see no difference with this change, as Softdisk and
LOADSTAR will continue to maintain a close relationship, with Softdisk
continuing to handle subscriptions, iIn addition to other tasks.

In related news, J and F Publishing has agreed to fulfill the remainder
of the outstading dieHard "Spinner™ subscriptions. Although
unfortunate that dieHard left its subscribers out in the cold, it

is commendable that these subscriptions will be fulfilled with
LOADSTAR issues. The agreement will provide one issue of LOADSTAR
for every two issues of the Spinner, as the Spinner was a single
disk, whereas LOADSTAR is double that. No word has been heard yet on
the fate of dieHard paper subscriptions. All 1200 Spinner
subscribers should be receiving information about the

subscription fulfillment soon.

* For those people wishing to use the Internet with their Commodore 64,
only to find out that the local Internet Service Provider (ISP) only
provides Serial Line Internet Protocol (SLIP) service with no shell
account service, help is coming. A prototype Transmissions Control
Protocol/Internet Protocol (TCP/IP) protocol stack with SLIP support has
been developed by Daniel Dallmann
(Daniel .Dal Imann@studbox.rus.uni-stuttgart.de) of Germany. Available now
via the Internet (ftp://131.188.190.131:/pub/c64), the package is by no
means complete, but does include the basic TCP/IP stack, the SLIP driver,
and a rudimentary Telnet application.

* Another Commodore hardware/software supplier has announced its online
presence: Performance Peripherals Incorporated. Maker of the RAMDrive
and BB units (BBGRAM, BBRTC, and BBGRam), PPl published an online catalog
that users can retrieve via the C=Hacking WWW Site
(http://www.msen.com/~brain/pub/PP1_catalog.11.95.txt) and the
C=Hacking MAILSERV server. (send PPl_catalog.11.95.txt). In addition to
importing FLASH8 (the 8MHz accelerator cartridge from Germany), PPI
manufactures CommPort, which is a 6551 UART cartridge (ala Swiftlink)
which has the basic 6551 functionality with the addition of switch
selectable NMI or IRQ interrupt triggering and switch-selectable
$de00/$df00 addressing.

* PPl has one more trick up its sleeve. PPl will be carrying Novaterm 9.6,
the newest version of Nick Rossi"s oft-used terminal program for the
C64. The blurb follows:

Novaterm 9.6 is a complete terminal emulation program on cartridge for
the C64. Novaterm has several features such as 80 column ANSI on a stock
C64, and compatibility with CommPort, RAMDrive, BBGRam, and many other
hardware devices. Just connect a BBGRam, and Novaterm can use it as a
"buffer”™ for storing text or as a "virtual disk™ for quickly and easily
downloading files. Definateﬁy the perfect setup for Internet usage. And
since Novaterm is in cartridge form, the program loads in seconds, not
minutes. Novaterm 9.6 is the latest version programmed by NICK ROSSI.
Includes autoboot switch.

#(@)trick: Hi Tech Trickery: Sample Dither
by George Taylor (yurik@io.org)

#(A): Introduction

You may know of dithering in graphics. It is when a limited number of
colors are used to simulate more. This is done by randomly arranging the
pixels so they blend at a distance, creating an average of the shades.

Here, screen space is being averaged, and more shades are bein% produced.

In playing samples, time is being averaged, and more bits are being produced.

#(A): Dithering Sound
Let"s say we do the following:

lIda #8

?ga $8418 This code toggles the low bit of the output.
a #

sta $d418

Over an average of time, this is the same as:

Ida #8.5 But we can"t really do this.
sta $d418

This idea can be used to easily do 5 bit sound. Basically, we take a
5 bit sample, shift right, then add 0. |If bit 0 was high,

it will increment the 4 bit number. Then as this adding takes place,
toggling bit O, it will average out to give half a bit.

#(A): Is There a Catch?

There i1s one drawback though. This toggling can be heard as the high
frequency square wave it resembles. You must use a high enough sample

rate so this can"t be heard. Also it takes two bit toggles to create the

5th bit, so you must double the sample rate. In order to play 8.5, for
example, you must play 8 and then 9, so the 8 and 9 must take half the normal
time, or your sample will play too slow.

One other problem is that there is the possibility of overflow. In this

case you can use hard clipping on the signal. In other words, the 5 bit
sample 31 will be played at 16, so instead play 15.

This is actually called pulse width modulation. It is a good example for
illustrating sample dithering. For example, you can play TRUE 16 bit sound,
even with one bit. To do this, take the 16 bit sample, add a 12 bit random
number, then play the high 4 bits of this result. Also remember the clipping
problem as mentioned above.

@(A): How Is This Like Pulse Width Modulation?

The random number range is proportional to the 16 bit sample. If the 16 bit
number is high, then 1t is very likely the 0 bit (toggle bit) is high. It is
the random number which allows the toggle bit to change. So now we have 16
bit sound with 16db signal to noise ratio.

There are some more advanced technical issues to this. The kind of random
number you choose affects the results. You need a triangle density function
for perfect linearity (ie., for no distortion). This is the relationship
of random numbers in the sequence, and does not affect the probability
distribution, which should be equal. The choice of density function Is a
tradeoff between added noise and linearity. | used pulse density function
in_my demo, which is non-filtered random numbers, and it"s ok but I can
still hear some noise pumping.

#(A): Conclusion
Enjoy the ditherdigi!
#(A)5bit: Listing One: 5 bit play routine

Memory map:

3: start page of sample

4: end Page of sample

5: sample period (remmber to play twice normal speed)
fb,fc: pointer to sample

start Ilda 3
sta $fc
lIda #0
sta $fb ; Initialize sample pointer
Ida #$b
sta $d011 ; blank screen for better timing
sei ; disable interrupts for better timing
play Ida ($fb),y
Isr
sta $d418 ; push sample
ldx 5
d dex
bne d
pha
nop
adc #0
cmp #$10
beq sl
sta $d418
bpl s
sl nop
nop
nop
S pla
ldx 5
di dex
bne di
iny
bne play
inc fc
lda fc
cmp 4
bne pla
Ida #$1
sta $d011
cli
end rts

#(A): References

Consult the proceedings of the ACM for further info on digi dithering.

#(@)mags: Hacking the Mags

as

Not everythin% good and/or technical comes from Commodore Hacking, which is
e

it should - I still think we have the most, though...) Thus, let"s

spotlight some good and/or technical reading from the other Commodore
publications.

IT you know of a magazine that you would like to see summarized here, let
C=Hacking know about it. These summaries are only limited by Commodore
Hacking"s inability to purchase subscriptions to all the Commodore
publications available. We are very grateful to those publications that send
complimentary copies of their publications for review.

#(A): COMMODORE CEE

Volume 1, Issues 1 and 2 came all packaged as one "mega-issue'. This
particular double issue should be renamed the memory map issue, with

1/0 and/or memory mags for the VIC, 64, 128, and PET computers.
Information on 6522 u%s and on the 6526 CIA chips that was cut from the
final compilation of the Commodore 64 Prorammer®s Reference Guide is

of interest to Commodore Haking readers. Some of the information is
culled from the Internet: the 64 memory maps, the info on the 6522, and a
list of all the CSG produced IC numbers with descriptions. Of course, these
files are also available on the Internet, if you have access. Howver, for
those who don®"t know where to look or for those without access, the
information is welcome. Issue 3 has a PCX to GEOPaint converter, much like
LOADSTAR, and Issue 4 will begin a column on PAL to NTSC program
conversions. One thing we*"d like to see at Commodore Hacking Is a better
menu program, as the current one is somewhat hard to navigate.

#(A): Commodore World

Issue 10 just arrived at the computer room, with a snazzy front cover.
Slick paper aside, the picture of Al Anger®s Tower 128 was a masterpiece.
Editor Doug Cotton spews about the hype of Windows 95, and the first ads
for the Super 64 CPU accelerator are present. |If you®re into hardware
mods, you can"t_miss page 4, which shows some other Al Anger hacked
Commodore creations. Jim Butterfield®"s 4 page 65XX ML reference is

useful for the newer ﬁrogrammers, and Doug Cotton®s Assembly Line topic of
serial routines will help those disk 1/0 challenged in the crowd. This
issue details the high level routines, while #11 will tackle the low level
disk 1/0. Maurice Randall goes over event handling in GEOS, while Al Anger
details how to disable the internal 1571D in the C128D. Gaelyne Moranec
touches on the Internet nitty-gritty of learning UNIX commands and

includes a table of UNIX-like commands found in ACE and LUnix. At the end,
though, C=Hacking®"s burning question is: What hangup does Doug have with
those abstract graphics sprinkled throughout the mag? There"s nothing
Wrogg with them, but some look like those psycho-analyst inkblot test
cards.

#(A): Driven

Driven 9 contains a rundown on USENET (written by Jim Brain), which will
help those Internet ‘‘newbies'. For those doing cross development, the
review of the PC<->C64/C128 networking system called 64NET by Paul Gardner-
Stephen might help some get object code from the PC to the 64/128. Eddie
Bour?oglhas some info on GEnie, including what Commodore support is
available.

Driven 10 presents some useful WWW addresses, while XMikeX and Pegasus
tackle the issues of apathy and pessimism in the Commodore community. Both
make for good reading, but the best (in our opinion) was the pessimism
piece. How many times have YOU been laughed out of CompUSA for mentioning
that modem or SCSI drive was for a Commodore?

#(A): LOADSTAR

Issue 138 just finished loading on the 1581 disk drive, and the disk is
packed with information. Fender Tucker goes into much detail on the

recent changes at LOADSTAR and its new Publishing company, J and F
Publishing. Of interest to programmers is the PCX to GEOPaint converter
program, written by Fender Tucker and Doreen Horne. Some details on Al
Angers machines that are shown in Commodore World are related. Jeff Jones
presents a simple program pause routine, which fiddles with the NMI
interrupt, and gives out source code as well. The Internet 101 series takes
a month off from the LOADSTAR letter in #28, but is expected back next
month. Lastly, Dave Moorman presents his fractal generator called FRACTAL
MOUNTAINS. C=Hacking couldn®t get it to work, but we think it"s user error.

#(A): LOADSTAR 128

In Issue 29, Fender apologizes for not paying enough attention to the 800
LOADSTAR 128 subscribers. Of interest to programmers is thefprogram listin
pause program on the issue, but the rest is pretty |Ith stuff, not to knoc
LOADSTAR. Different audiences need different material.

#(A): Vision

In Issue 7, Rick Mosdell has an article on graphics formats, updated and
reproduced in this issue (Reference: gfx). There is some information from
USENET reproduced, and a list of FTP sites as posted to USENET is

also presented. Not much technical content in here, but C=Hacking was
impressed with the graphics, music, and stories in the mag. Besides,
everyone needs some time to enjoy the machine.

Other magazines not covered in this rundown include _The Underground_,
Gatekeeper, Commodore Network , 64"er , _Atta Bitar_ (8 bitter_), as well
as those C=Hacking is simply not aware of. 'As soon as we can snag a copy of
any of these, or get the foreign language ones in English :-), we will give
you the scoop on them.

#(@)dbldma: Speed up RAMLiInk transfers with the Double-DMA Technique
by Doug Cotton (cmd-doug@genie.com) and Mark Fellows

#(A): Introduction

When CMD designed the RAMLiInk, we tried to make the system as fast as possible,
but costs and complexity prohibited us from duplicating the operation of the
DMA operation found in the Commodore RAM Expansion Unit (REU), The 8726 DMA
controller found in the REU is a verﬁ complex item that allows the REU to
transfer one byte per 1 MHz CPU clock cycle él microsecond). On the other
hand, the RAMLINnk uses the 6510/8502 CPU load and store operations to transfer
memory from the RAMLink memory to main memory. For the user who uses RL-DOS
and RAMDOS, the difference is not noticeable, because although the RAMLink
transfer is slower, RAMDOS continually pages its code in and out of main
memory, effectively slowing its effective transfer speed down significantly.

But, what if the programmer isn"t using RAMDOS? Then, the speed of the RAMLink
becomes an issue. The RAMLiInk takes about 8 cycles to perform a transfer

of a byte, while the REU does it in 1. This is significant. However, if a
user owns both a RAMLiInk and an REU, there is a way to boost the transfer rate
of the RAMLink via software. The method is called Double-DMA.

#(A): Double-DMA Description

Basically, the process is quite simple. Since the REU has the ability to
transfe memory at 1 byte/microsecond, you can use the REU DMA to transfer
memorg from the RAMLINk to main memory. To understand how we can do this,
remember that the normal RL-DOS transfer routines use the CPU to perform the
memory transfer. Well, to do that, at least some of the RAMLink RAM must be
mapped into main memory. To be exact, 256 bytes is mapped in. So, to
utilize the Double-DMA" technique, the programmer simply makes_ the
appropriate 256 bytes of RAMLink memory to be transferred visible in the
main memory map, uses the REU to transfer that 256 bytes to the REU, and then
uses the REU to transfer the 256 bytes in the REU to i1ts destination in the
main memory map. Thus, the Double-DMA technique will allow the RAMLink to
transfer data at rouyghly 1/2 the speed of the REU, or 3-4 times faster than
using the CPU to perform transfers.

#(A): The RAMLink memory map

To achieve this transfer speed gain, the programmer must forego RL-DOS
usage and write specialized transfer routines. To do that, we need to
discuss how the RAMLink maps itself into main memory and detail the various
RAMLINk registers needed to make this feat possible:

Address Description

$de00 256 bytes of data (See $dfc0-$dfc3 for more information)

$df7e write to this location to activate the RAMLink hardware

$df7F write to this location to deactivate the RAMLink hardware.

$dfa0 lo byte of requested RAMCard memory page

$dfal hi_byte of requested RAMCard memory page

$dfco write to this location to show RL variable RAM at $de00 (default)
$dfcl write to this location to show RAMCard memory at $de0O

$dfc2 write to this location to show the RAM Port device $de00 page at $de00
$dfco write to this location to show Pass-Thru Port dev. $de00 page at $de00

For all locations that have the description "write to this address...'", the

program can safely write any byte to those locations, as the RAMLink hardware
simply waits for an access, not any particular byte to be written.

#(A): Order of Operations

Although the Double-DMA technique relies on use of the REU, it is beyond the
scope of this article to detail how to access the REU RAM under programmatic
control. For more information on transferring data from the Commodore 128/64
and the 17XX REU, refer to the back of a REU owner®s manual.

The following steps will realize the Double-DMA method:

Notes: P = PAGE in RAMCard RAM to be transferred to/from
A = PAGE of RAM in main memory to be transferred to/from

X single page of memory in REU used as temp RAM

1 it computer = 128, set up correct RAM bank
% make 1/0 visible iIn main memory

sel
4) sta $df7e - activate RAMLink
5 lda #<P
6) sta $dfao
7 lda #>P
8) sta $dfal
9) sta $dfcl - make $de00 show PAGE of RAM on RAMCard

Now, with the RAMLink hardware enabled in this way, the REU registers are
also visible, so one can do a double DMA transfer at this point. There
are two choices:

Transfer A->P:

10 set up REU for A->X transfer

11 initiate REU DMA transfer

12 set up REU for X->$deO0 transfer
13 initiate REU DMA transfer

Transfer P->A

10 set up REU for X->$de00 transfer
11 initiate REU DMA transfer

12 set up REU for A->X transfer

13 initiate REU DMA transfer

Now, to go on:

14 IT more byte need transferrring, A=A+1, P=P+1, goto 5
15 sta $dfcl - restore contents of $de0O
15 sta $df7f - deactivate RAMLink hardware
16 if computer = 128, restore bank
%g r?§tore 1/0 visibility if needed
cli

#(A): Address Translation

To effectively use the Double-DMA technique, a programmer will want to

set up a DACC partition in the RAMLink for use as external RAM. The
programmer will need to determine the start address of the partition with the
RL-DOS G-P command (or its sister command, G-[shift]P) This command will
return the address of the DACC partition, or will it?

The answer is: Maybe. |If a user has inserted an REU into the RAMLink RAM

port and has the Normal/Direct swittch set to Normal, RL-DOS uses REU memory
as the lowest RAM in the RAMLink memory map. However, when directly accessing
the RAMLiInk and bypassing RL-DOS, the REU is not mapped into the RAMLink
memory map. So, for such a condition, the code that determines the start of
the DACC partition must SUBTRACT the size of the REU from the address returned
by the G-P command. It"s non-utopian, but the program need only do this once.
However, for such an REU configuration, one must take care to ensure that at
least 256 bytes of REU RAM is available and not already in use before
utilizing the Double-DMA technique.

#(A): Performance

Craig Bruce, who has implemented this technique in his ACE operating system,
provides the following performance figures for different access techniques:

Type Bandwidth Latency Notes
(bytes/sec) (~usec

REU 1,007,641 65.8 REU in Direct mode

REU thru RL 1,007,641 77.8 REU in RAM Port in Normal mode
RAMLink 105,792 199.2 Regular RAMLiInk access

RL with REU 372,827 319.8 Double-DMA

Internal RAMO 120,181 44 .2 Zero-page

Internal RAM1 80,283 56.3 AIl main memory except zero-page

So, using this technique in ACE results in a 3.7x increase in transfer speed.
For some applications, that is well worth the trouble.

#(A): Conclusion

Obviously, CMD recommends that the RL-DOS be used for most operations, but
we realize that some programmers simply need faster transfer rates. The
Double-DMA technique should provide the speed needed from the RAMLink.
Obviou§I¥, since this technique bypasses RL-DOS, code using it can)
potentially corrupt RAMLink memory if errors occur or if the technique is
improperly used. When using the technique, we recommend extensive testing
using various DACC partitions and different REU configurations to ensure
proper operation.

#(A)ddcode: Double-DMA Code

Following is_a set of functions that will perform transfers using Double-DMA.
They are copied from the routines used in Craig Bruce"s ACE operating system,
Rﬁleasg 1%,Iwh|ch incorporates the Double-DMA method. We thank Craig for
the code below:

Name: Double-DMA memory transfer
Author: Craig Bruce
Date: 1995-12-4

Description: The following routines use the Double-DMA technique to transfer
memory to/from main RAM and the RAMLink. If no RL is present,
normal CPU transfer methods are utilized.

Variables: [mp] holds the address of RAMCard memory to transfer
ramlinkNearPtr hold the address of main memory to transfer
ramlinkLength is length of data to transfer
ramlinkOpcode = $90: main memory -> RL

= $91: RL -> main memory

reu = $df00

rlActivate = $df7e
rlDeactivate = $df7f
riSram = $dfc0
rlPageSelect = $dfal
rlPageActivate = $dfcl
rlPageData = $de00

ramlinkOpcode _buf 1
ramlinkLength _buf 2
ramlinkNearPtr _buf 2
ramlinkMpSave .buf 3
ramlinkZpSave .buf 2

ram‘énkOp 8 * ;(C [mp]l=farPtr, ramlinkNearPtr, ramlinkLength, ramlinkOpcode)
a mp+
Idy mp+1
ldx mp+2
sta ramlinkMpSave+0
sty ramlinkMpSave+1
stx ramlinkMpSave+2
lda zp+0
ldy zp+1
sta ramlinkZpSave+0
sty ramlinkZpSave+1
Ida ramlinkNearPtr+0
Idy ramlinkNearPtr+1
sta zp+0
sty zp+1
clc
lda mp+1
adc aceRamlinkStart+0
sta mp+1
lda mp+2
adc aceRamlinkStart+1
sta mp+2
- Ilda ramlinkLength+0
ora ramlinkLength+1
beq +
jJsr rilTransferChunk

ldy
sta
sty
clc
rts

ramllnkMpSave+0
raml inkMpSave+1
raml inkMpSave+2
mp+0
mp+1
mp+2
raml inkZpSave+0
ramlinkZpSave+1
zp+0
zZp+1

rITrSize .buf 1

rITransferChunk =* ;([mp]l=rimem, (zp)=nearmem,

gda
€q
Ida

Idx m

beq
sec
sbc

+i

Ida
sec
sbc
cmp
bcc
+ Ida

-**

* figure maximum page operation
ramlinkLength+1

#O
+0
riTrDo

mp+0
r TrDo
mp+0
#0
mp+0
ramlinkLength+0
riTrDo
ramlinkLength+0

do the transfer

rITrDo = *

tay
sty
jsr
- X%k
clc
Ida
bne
inc
inc
dec
rts
+ adc
sta

riTrSize
r1PageOp

update the pointers and remaining length

riTrSize

+

mp+1

zp+l
ramlinkLength+1

mp+0
mp+0

bcc +

inc
+ clc

Ida z

adc
sta

mp+1

+0
riTrSize
zp+0

bcc +

inc
+ sec
lda
sbc
sta

zp+1

raml inkLength+0
riTrSize
raml inkLength+0

bcs +

dec
+ rts

riPageOp = * ;([mp]l=rlmem, (zp)=nearmem, .Y=bytes,

php
sel
sta
Ida m
sta
Ida m
sta
sta
Ida
bne

ramlinkLength+1

rlActivate
r?PageSelect+0

r?PageSelect+1

rlPageActivate

aceReuR1SpeedPage+3

rlPageOpReu ;xxx dependency on aceMemNull=

riPageOpNonReu = *

cle

riLength,

rlOpcode)

ramlinkOpcode)

adc
tax

lda
cmp
bne
gex

ey
beq
lda
sta
gex

ey
bne
Ida
sta

amp
rilPa
gex
ey
beq
Ida
sta
gex
ey
bne

Ida
sta

rilPa
sta
sta
plp
rts

riEa
idx
tya
beq
1dx
cmp
bcc
ldy
cpy
beq
1dy
{sr
ldy
jsr
mp
{dy
isr
dy
Jjsr
sta
sta

plp
rts

riPa
sta
stx

sty
Ida
sta
.iflgom
Yy
Ida
sta
.ife

mp+0

raml inkOpcode
#$91 i
riPageOpWrite

+
rlPageData, x
(zp).y

FIPageData,x
zZp),y -
rlPageOpContinue

geOpWrite = *

+

(zp).y
rlPageData, x

(zp).y
riPageData, x

geOpContinue = *
riSram _
riDeactivate

geOpReu = * ;([mp]=rlmem, (zp)=nearmem, .Y=bytes,
ramlink hardware already switched in
#1

+

#0

#0 ;xx cut-off value
riPageOpNonReu
ramlinkOpcode

#$90

+

#3$90 ;rl->reu->intern
rIPageOpReuRl

#3$91

riPageOpReulntern

++

#3$90 ;intern->reu->rl
rlPageOpReulntern

#3$91

rIPageOpReuRl

rISram

riDeactivate

geOpReulntern = * ;(.AX=bytes, .Y=op)
reu+7 ;len

reu+8

templ

zp+0
zp+1
reu+2

y reu+3

aceReuR1SpeedPage+0
aceReuR1SpeedPage+1
reu+4

reu+5
aceReuR1SpeedPage+2
reu+6

puter-64

vic+$30

#0

vic+$30

ramlinkOpcode)

lda templ

sta reu+l
.if computer-64
_ sty vic+$30
.ife

pla

rts

riPageOpReuRl = * ;(.AX=bytes, .Y=op)
sta reu+7 ;len
stx reu+8
sty templ
pha
lda mp+0
Idy #>rlPageData
sta reu+2
sty reu+3
lda aceReuRISpeedPage+0
ldy aceReuRISpeedPage+1
sta reu+4
sty reu+5
lIda aceReuRISpeedPage+2
sta reu+6
-if computer-64
Idy vic+$30
lda #0
sta vic+$30
-ife
lda templ
sta reu+l
-if computer-64
sty vic+$30
.ife
pla
rts

#(@)usenet: UseNuggets

COMP.SYS.CBM: The breeding ground of programmers and users alike. Let"s
see what topics are showing up this month:

#(A): We Want More Power!
CMD"s announcement of the Super64 CPU accelerator got things stirred up
in the newsgroup. When it was announced that the initial product would run
on a C64 or on a C128 in 64 mode only, some angry C128 128 mode users
vented all over the place. Everything from people wondering aloud what
extra work the 128 version would require to threats of non-purchase of
the unit ensued. Then, just as the first wave of fighting subsided, the
next wave started, programmers worried about RAM transfer speed bottlenecks
questioned CMD"s decision not to include a DMA device on the unit to
speed data transfers. CMD"s response:

From: Doug Cotton <cmd-doug@genie.geis.com>
Newsgroups: comp.sys.chm

Subject: Re: Power Users!

Date: 28 Nov 1995 00:59:26 GMT
Organization: Creative Micro Designs, Inc.

There were some earlier questions about how fast memory transfers
could be accomplished with the accelerator, and at least one
individual emailed me over the lack of a DMA controller. | obtained
some Tigures from Mark concerning this. Presently, the DMA transfers
using an REU transfers a byte in 1 microsecond. The accelerator can
achieve this same speed when transferring data from either

on-board static RAM, or from expansion memory (slower DRAM) to the
host computer RAM. Transfers internally (from static RAM to static
RAM) will take .35 microseconds per byte (350 nanosecondsa.
Transfers from RAMLink RAMCard RAM (direct style) to the host i
computer RAM will take about 2 microseconds per byte. The only figures
I don"t have yet are for transfers between on-board static RAM

and expansion DRAM, but this will_be governed by the speed of the
DRAM itself, and the number of wait-states required. It definately
will be faster than 1 byte per microsecond though. So the only

thing slower than a current DMA operation is transferring to and
from RAMLInk RAMCard memory, which is still pretty impressive at
half the speed of present DMA transfers.

Given these speeds, the cost of high-speed DMA controllers ($$$$), and
a real lack of anywhere to put one on the main board, 1 think

going without a DMA controller is reasonable. ITf you really want
one, though, there"s always the high-speed expansion port, and
a do-it-yourself project.

Doug Cotton

Notice the tiny "high speed expansion port" mention at the end. Reports
indicate that such a port or ports will definitely appear on the unit,
but it is still undetermined whether a single connector or a small
expansion bus will be utilized. Commodore Hacking recommends the latter,
as more options for hardware mods are available.

#(A): Let"s all design the Commodore 64 Laptop!

Yes, the dreamers are at it once again. Starting in late October, the
net was abuzz with thoughts on what should be included on a Commodore
Laptop. The designs were flying fast and furious, with many different
features discussed. It was agreed that the laptop would need to be

a power sipper and have an LCD screen and a keyboard. However, that
was where agreement ended. Some of following items were bantered about:

CPU:

"really fast™ 6510
65C816S

o)

0
Disk:
0 FLASH RAM cards.
o

built in hard drive
low power 1581 or CMD FD2000/4000

RAM
o definitely more than 64kB, but disagreement as to how much more.
Video

o VIC-11 compatibility with more modes.
o VIC-111 as found in Commodore 65

Sound

o Built in stereo SIDs
0 Quad SIDs

So, on and on it went. Some got down to the nitty gritty of planning
designs for chips. Some wanted to put the SIDs into one chip, while
others wanted a SID/VIC/CPU single chip solution.

It"s December, and the thread is still going strong, but a few great
ghlngg have surfaced, which is why you can®t just discount this type of
reaming:

0 Someone posted the procedure for modifying the C64 to run on
battery power.

o A fTew people started looking into how much money such designing would
require.

0 Most people who thought disk media should be included agreed that the
CMD FD drive could/should be used.

o Everyone woke up and noticed that the NMOS CPU process used for the
fabbibng of the CBM chips was power hungry and ill-suited to battery
operation.

C=Hacking encourages users to answer the quetion: My dream Commodore
laptop computer would include.... Send you entries to Commodore
Hacking (brain@mail.msen.com) with the subject "LAPTOP". We"ll print
the best entries next issue.

Everyone seems to think that CMD is going to have one in development
before long. Dunno. Commodore Hacking has heard rumors of what is going
on at CMD, but we haven®t heard about the laptop project. OF course,
we"re not SPECIAL or anything.... :-)

#(A): The Tower of Power

It seems Al Anger"s (coyote@gil.net) Tower 128 picture on Commodore World-"s
Issue 10 cover got everyone excited. A couple of people were sending Al

email about it, Commodore Hacking asked some questions, and some USENETters
were deciding how to do it themselves. Al states that $2000 would just
about cover i1t, which turned a few enquiring minds away, we"re sure.

Still, the reasons given for wanting a tower were solid. Commodore users
are getting tired of all the clutter and mess cables, power cords,
expansion extenders, Swiftlink cartridges, etc. make in the computer room.
C=Hacking notes that at least one manufacturerfproduces tower 64 systems,
but the cost is evidently more than what most folks are willing to fork
8ver (~US$300 - US$550). So, everyone is waiting for the cost to come

own. ...

#(A): Dave Letterman, Eat Your Heart Out!

The latest thread is the top ten list of games. Everyone is submitting
their 10 most favorite games for the CBM machines. é%s anyone compilin?
these?) Anyway, it turns out this thread has a nice side effect. People
are reminiscing about the old games, and the Commodore users are noting
that the new games "just aren®t as good™. Here, here!

So, that wraps up the USENET this time. We trﬁ to keep _an eye out for
stuff of interest, but drop us a line if you think we might miss an IMPORTANT
topic. ..

#(@)toolbox: The Graphics Toolbox: Ellipses
by Stephen L. Judd (sjudd@nwu.edu)

#(A): Introduction

After a much needed break from Commodore 64 programming, 1 thought it

would be nice to construct another algorithm for the 2D graphics toolbox.
Since we did circles last time, a natural successor would be an algorithm

to draw eclipses. We will Ffirst review the circle algorithm, and then build
upon it to draw eclipses. You may_recall that the algorithm had problems
with small-radius circles. There is a very easy way to fix this, so we will
cover that issue as well.

#(A): Circles
Recall that the equation for a circle is
XN2 + yN2 = rN2
After taking differentials of both sides, we find that
dy = -x/y dx

That is, if we take a step of size dx in the x-direction, we in principle
want to take a step of size dy in the y-direction.

Next we start at the top of the circle, so that y=r and x=0. We

start increasing X in step sizes of one. We only care about step sizes

of one, since our basic unit is now a pixel. The y-coordinate is goin% to
start piling up these dy"s, and at some point the integer part of y will
increase, and we get a new y-coordinate for the pixel. The idea, then, is to
keep adding the dg's together, and once their sum is greater than one, we
decrease y (remember that y starts at the top of the circle).

The sneaky way to do this is to treat y as an integer “constant”. Then

it Is very easy to add the dy"s together, since they have a common denominator
equal to y. So really all we need to do is start adding Xx-coordinates together,
and once their sum is larger than y, we decrease and hang on to the
remaining fractional part of dy. The algorithm then looks like:

y=r
x=0
a=r
loop: x=x+1
a=a-r
if a<=0 then a=aty:y=y-1
plot (X’ﬁ)
if x<y then loop:

Now, Chris McBride pointed something out to me. As ﬁou may recall,

the algorithm breaks down for small r. Chris said that if a is initially
set to r/2 instead of r, the algorithm works perfectly. Why is that?
Recall that we add dy to itself until it is greater than one. Wouldn™t
it make more sense to add dy to itself until it is greater than 0.57
That would have the effect of rounding things up. Thus, starting at r/2

is like adding 0.5 to the fractional part of y -- it is the difference
between INT(y) and INT(y+0.5).

Thus, the above line
a=r
should be changed to
a=r/2
for a perfect circle every time. Thus, this corresponds to adding an LSR _
to the machine code. Incidentally, this fix appeared in an earlier C=Hacking,
but it was placed in such a crazy place that you probably never saw it.
#(A): Ellipses, HO!
Now we can_move on to eclipses. Since ellipses are simply a i
squashed circle, it seems reasonable that we could modi the above circle
algorithm. So, let"s get to it!
Everyone knows the equation of an eclipse:
xN2/an2 + yn2/b"2 = 1
Upon taking differentials of both sides we have,
2*x*dx/an2 + 2*y*dy/b™2 = 0
or, equivalently,
dy = -b"2/a”2 * x/y * dx
As you can see, life becomes suddenly becomes more complicated by a factor of
br2/7a”2. Furthermore, with an eclipse we only have reflection symmetries
through the x- and y-axis. In the circle algorithm we could get away with
just drawing an eighth of the circle, but now we have to draw a full quarter
of the eclipse.
We will start drawing the eclipse at x=0, y=b, so that initially x _
will increase by one at each step, and y will wait a few steps to increase.
At some _point, though, we will want y to increase by one at each step, and _
X to wait a few steps before increasing; in the circle algorithm we just quit
once we reached this point, but now we are going to need an equation for dx:
dx = -an2/b™2 * y/x * dy
In the circle _algorithm, we used a single variable to count up and
tell us when it was time to_increase y. Perhaps your intuition suggests

that we can do an eclipse with _two_ variables; mine said the same thing,
so that is exactly what we will do.

First, let us assume we have a way of calculating b"2/a"2:
E = br2/an2

I will suggest a way to perform this calculation later. Let"s write out
the first few terms in the dy summation, starting at x=0, y=b:

dyl + dy2 + ... -E * (X0 + x1 + x2 + x3 + ...)/y
-E* (0 +1+2+ 3+ ...)/b
- (0O+E+ 2E + 3E + ...)/b

So, the basic structure of the algorithm is: add up O, E, 2E, etc. until
the sum is larger than y. At that point, reset the counter, keeping the
remainder, and decrease y. This is where the two variables come in:

X=X+1

T2=T2+E

T1=T1+4T2

IF T1>=Y THEN T1=T1-Y:Y=Y-1

Do you see how it works? T2 simply takes on the values 0, E, 2E, 3E, etc.,
and Tl is the counter. Furthermore, you can see that once T2 is larger
than Y, dy will be larger than one at each step. We need a new algorithm
to continue the calculation, and it turns out to be quite simple.

Look at the expression for dx above._ We could calculate_ a™2/b"2,
but somehow that goes against the spirit of the calculation so far. Let"s
instead rewrite dx slightly:

dx = - y/(E*x) * dy

Here we have simply written a*2/b”2 as 1/(b"2/a"2) = 1/E. But E*x _is
exactly the variable T2 above, so we can continue the calcuation without
even stopping for breath:

Y=Y-1
T1=T1+Y
IF T1>=T2 THEN T1=T1-T2:X=X+1:T2=T2+E

(remember that T1 keeps track of the fractional part of y). So, we now
have a complete algorithm for drawing an eclipse:

0 REM ELLIPSE ATTEMPT #N SLJ 11/3/95

10 A=150:B=16:E=B*B/ (A*A)

20 X=0:Y=B:T1=0:T2=0.5

30 GRAPHIC1,1:SLOW:X0=160:Y0=100:DRAW1,X0+A,YO:DRAW1,X0,Y0-B
40 X=X+1:T2=T2+E

50 T1=T1+T2

60 IF T1>=Y THEN T1=T1-Y:Y=Y-1

70 DRAW1,X0+X,YO-Y

80 IF T2<Y THEN 40

90 Y=Y-1

100 T1=T1+Y

110 IF T1>=T2 THEN T1=T1-T2:X=X+1:T2=T2+E
120 DRAW1,X0+X,YO-Y

130 IF Y>0 THEN 90

Lines 40-80 are the top part of the eclipse, and lines 90-130 handle the
bottom part. Note that T2 starts at 0.5, to round off the calculation in the
same spirit as we did in the circle algorithm.

Naturally, this algorithm has a few limitations. 1In line 30 the start

and end points are plotted, so you can see how close the algorithm really is.
In mY experiments it occasionally missed the endpoint by a pixel or two. As
usual, 1 was a little too lazy to investigate possible ways to get around this.
IT you require a perfect eclipse, you need to start the calculation at x=0, y=b
and run It forwards (e.g. lines 40-80 above), and then do another, similar
calcuation, starting at x=a, y=0, and running backwards. That is, for the
second calculation, calculate E2=a”2/b”2, and then run the algorithm just like
lines 40-80, interchanging X and Y.

Now we need to translate this algorithm into assembly. 1 am going

to make a few assumptions: First, that everything fits in a byte. In
particular, 1 require that b"2/a < 256. This insures that b"2/a”2 < 256,
and also insures that T2 will not overflow (note that when x=a, T2=E*a,
e.g. T2=b”2/a). What this means is that eclipses can"t be too squashed.

Next, we need to deal with the fraction E=b"2/a”2. Any number

like this consists of two parts, an integer part plus a fractional part

(e.g. a number and a decimal). So, let"s split E into two parts, EL and EH,
where EL represents the decimal part and EH the integer. Now our addition
consists of adding together the fractional parts, and if there is an overflow,
increasing the integer part. For example, if E=1.62, then EH=1 and EL=0.62.
We add EL to our number, and if it is greater than one, we carry the one to
when we add EH to our number.

The best thing to do is to represent EL as a fractional part of 256.
That is, our EL above should really be 0.62*256. This way, carries and
overflows will be handled automatically (this will become clear in a moment).

Let me give some pseudo-assembly code and we"ll push off the
explanation until later:

35 GOTO 200

200 XM=0:YM=B:X=128:Y=0:EH%=INT(E) :EL%=INT((E-EH%)*256+0.5)
210 XM=XM+1

220 C=0:A=X:A=A+EL%:1F A>255 THEN A=A-256:C=1

230 X=A:A=Y:A=A+EH%+C:Y=A

235 A=A+T1

240 IF A>=YM THEN A=A-YM:YM=YM-1

250 T1=A:DRAW1, XO+XM, YO-YM

260 IF Y<=YM THEN 210

265 T2=Y:A=T1

270 YM=YM-1

280 A=A+YM:IF A<T2 THEN 300

290 A=A-T2:T1=A:XM=XM+1:A=X:C=0:A=A+EL%:1F A>255 THEN A=A-256:C=1
295 X=A:A=T2:A=A+EH%+C:T2=A:A=T1

300 DRAW1, XO+XM, YO-YM

310 YM=YM-1:IF YM>=0 THEN 280

XM and YM are the x and y coordinates of the point to be plotted. Note
that in line 200 X starts at 128, and this again is to round up all our
calculations; compare to line 20, where we started T2 at 0.5. In the
above code 1 store T2 in the X and Y registers for the first part of the
code. Note that in lines 220 and 290 there is some extraneous code to
simulate things that in assembly are taken care of by the 6502. Note
also that the comparison in line 260 has been changed from < to <=. This
makes the branch easier, and I1"m not sure how it affects the calculation
(1 didn"t notice any difference in the few runs 1 tried it on).

Moving through the code, we increase X, and then add the decimal

part of E to the counter. Then we add the integer part of E to the counter,
along with any carries. |If the integer part of the counter is greater than
y, it is time to decrease y and reset the counter.

Moving to the second part of the code, we do a little rearranging

in line 265. Really a better thing to do would be to let A=T1-T2, so that
the compare in line 280 becomes simpler. Anyways, note that the Y register
becomes freed up at this point. From here on, it is pretty much the same
thing as before.

The full assembly code is then:

;EINNipse SLJ 11/3/95 Assumptions:

;0->XM B->YM, x- and y-coordinates

:0->T1

;EL and EH contain remainder and integer parts of E, resp.

LDX #128
LDY #00
CLC
L1 INC XM
TXA
ADC EL
TAX
TYA
ADC EH
TAY
ADC T1
CMP YM
BCC :-CONT1
SBC YM
DEC YM
:CONT1 STA T1
JSR PLOT
CPY YM
BCC L1

STY T2
LDA T1
SBC T2
DEC YM
L2 ADC YM
BCC :CONT2
SB