
Skyles Electric ~rks

BLITZ I 128

A BASIC Compiler

for

Commodore 128

from

Skyles Electric Works

Instruction Manual

by

Bob Skyles

Table of Contents

Subject

1. INTRODUCTION •

Restrictions •

Special Instructions •

2. OPERATION

3.

4.

5.

6.

Compiling
Single Drive •
Dual Drive ••
2 Disk Drives

DETAILS

Compilation

Compiling Single Drive •
Sub Option 1 •

Compiling Dual Drive •

Compiling 2 Drives
Sub Option I · Sub Option 2 · Sub Option 3
Sub Option 4 · Sub Option 5 · ·

ERROR CORRECTION · · · · ·
Foreword . . . · · · · ·
Example . . . · · · · ·

·
·
·

DIFFERENCES BLITZI 128-BASIC.

MACHINE LANGUAGE · · · · · ·
ii

·

· ·
· ·
·

. .
· ·

1

4

5

7

7
8
8

• 12

.17

.17

• • 19
• 19

• 20

· 20

· · 20

· 20
22

· 23

· · 24

· · 25

· 25

· 26

27

· · 31

(blank)

iii

BLITZ I 128 INTRODUCTION

Congratulations on the purchase of your BLITZ I
128 Compiler. It is an easy to use, versatile
BASIC compiler, designed to speed up the
operation of all your BASIC programs.

BLITZ I 128 is fully compatible with the
Commodore 128 computer, BASIC 7.0. BLITZ I 128
has the following features:

High speed P-Code.

Small P-Code execution and run- time
routines (11K Bytes).

Extensions to standard BASIC 7.0 can be
used in programs compiled with BLITZI 128.

Program overlays are possible, and
variables can be passed between chained
programs.

Compiled programs can be more easily
protected.

compiled programs are handled in the same
manner as BASIC programs. They may be
RENAMED, LOADed, AUTO LOADed, SAVEd and
protected as if they were BASIC programs.

Page 1

INTRODUCTION BLITZ! 128

High Speed P-Code

BLITZ! 128 translates BASIC program files into
a special P-Code. This P-Code is executed much
faster than the original program. Moreover,
very large BASIC programs become smaller and
need less memory and disk capacity, after you
BLITZ! 128 them.

Faster program execution is a result of the
following improvements over the standard
Commodore BASIC interpreter:

Standard BASIC searches through memory for
the location of variables and arrays, and
for the destination lines referenced by
GOTO, GOSUB, IF-THEN, and other statements.
BLITZ! 128 stores these locations, so no
searches are necessary.

Numerical constants are converted to
floating point, or integer constants, as
required, during compilation, saving run
time conversion.

Syntax checking, is done during compilation,
not during run time.

Integer expressions are calculated using
true integer arithmetic. The standard BASIC
interpreter would convert them to floating
point, do the arithmetic, then convert them
back to integer.

Expressions are evaluated using Reverse
Polish Notation (RPN>, thus avoiding
unnecessary intermediate data storage.

Page 2

BLITZ! 128 INTRODUCTION

Small P-Code and Run-time. Routines

Generally the P-Code produced by BLITZI 128
will be approximately 65% of the size of the
original program. This will vary depending on
the type of BASIC commands used, the number of
statements per line, and the amount of "remark"
statements in the original BASIC program. The
BLITZ I 128 compiler appends to the program
about 11k bytes of interpretation and run time
routines. Programs that are originally 35
Kbytes (140 blocks of disk storage) or larger
will usually be smaller after compilation.

EXTENSIONS

BLITZ I 128 allows you to use extensions to
standard BASIC in your programs. These
commands must be preceded by a double colon
(::) so they are not compiled, but passed on to
the built-in BASIC 7.0 interpreter during run­
time.

Overlay

BLITZ! 128 is the first compiler which can
translate chained programs and even pass
variables between them. Unlike standard BASIC,
it allows the calling program to be longer or
shorter than the called program. Also, the run­
time routines are only added to the starting
program, saving disk space.

DONGLE PROTECTION

BLITZ 128 only runs with a "dongle" plugged
into the user port. You may make backups of
your BLITZ I 128 program disk. The user port is
located at the left rear of the 128.

Page 3

INTRODUCTION BLITZ I 128

Restrictions

BLITZ I 128 compiles all commands of BASIC 7.0.

Restrictions apply only to the commands TRAP,

RESUME, COLLISION, GRAPHIC CLR, and CONT.

TRAP: TRAP may be used alone (TRAP
turnoff) or with a line number
(without Variable). All active

TRAP commands will be turned off by

program end commands (END or STOP),

or following a program load with

LOAD or DLOAD command.

RESUME RESUME is restricted to the line

number option only.

COLLISION: With COLLISION only a line number
(without Variable) is allowed. A

program end command (END or STOP).

Following a load of a program with

a LOAD or DLOAD command all active

COLLISIONS are cancelled.

GRAPHIC CLR This command will clear the 9 Kbyte
HI-RES graphic screen except if it

refers to GRAPHIC 0 command. If a

GRAPHIC command is discovered
during the compiling process, the
program is automatically relocated
to start at hexadecimal address
4000 (see also special instruction

REM ** NG).

CONT:

STOP key:

The CONT command may not be used
with programs that have been
compiled with BLITZ! 128. A SYS
command is not available to
substitute for the CONT command.

The STOP key is always disabled
when a program is BLITZ I 128ed.

The RESET key is available for
stopping a program at any time.

Page 4

BLITZ I 128 INTRODUCTION

Special Instructions

BLITZ I 128 contain 5 special instructions that
may be included in the BASIC source code
program. Four begin with a REM ** statement.
This allows the BASIC program to run without
interference of the special instructions.

1. REM ** NG = NO GRAPHIC-ARRAY
If a GRAPHIC command is discovered during
the compiling process BLITZ I 128 reserves 9
Kbytes for the HI-RES screen. However
GRAPHIC 5 (80 column text) the 9 Kbyte area
is not needed. With the use of this special
instruction, the 9 Kbyte area is not
reserved. However it is only necessary to
use this special command when extremely long
programs (greater than 220 blocks) are
compiled. The instruction is need only once
in the first program when a multiple program
compiling option is chosen (sub options 2,
3, and 4).

2. REM ** RI = RESTORE INPUT BUFFER
BLITZ I 128 has its own input buffer. In
BASIC 7.0 the input buffer is located at
hexadecimal 0200 to 0240. BLITZ I 128
decides when it is important to switch it
with the run-time ~outine. The input buffer
should not under any circumstances be
changed. You should expect that EXTENSION
or SYS routines might use this space. If
you are not familiar with the design of an
EXTENSION or SYS command, use this
instruction following them. Do not conclude
the EXTENSION or SYS commands with the input
buffer changed.

Page 5

INTRODUCTION BLITZ I 128

Special Instructions

3. REM ** FI = FLOATING PT. to INTEGER Yare
With this instruction floating point
variables are changed to integer variables.
Please note that the changed variables are
not passed to EXTENSION commands. This
instruction is very useful for FOR-NEXT
loops, With integer variables a substantial
speed up occurs.
SYNTAX: REM ** fi a,b,c etc.

4. REM ** NE = No EXTENSION Listing
This instruction cancels the listing of the
EXTENSION commands on the first pass of the
compiling process.

5. •• = EXTENSION
When BLITZ I 128 comes across an EXTENSION
command it does not recognize (Compiler
message ?SYNTAX ERROR) it will skip them if
they are proceeded by two colons (::). The
entire expression between the "::" and the
next ":" is skipped by BLITZI 128 and passed
to the BASIC interpreter during program
execution. If your program has intentional
delay loops that you do not wish changed use
the double colon to cause BLITZ I 128 to
leave them uncompiled. Note that if a BASIC
command is treated as an extension all
related commands must also be treated as
extensions. For example; FOR - NEXT or OPEN
- PRINT, INPUT, - CLOSE.

Page 6

BLITZ I 128 OPERATION

Compiling

Compiling programs with Blitzl 128 is a very
simple procedure. With your computer turned
OFF plug the BLITZ I 128 dongle into the user
port located at the left rear corner. Place
the BLITZ I 128 program diskette into your 1541
or 1571 disk drive. Turn on your disk drive
and your C-128. The BLITZ I 128 program is
automatically loaded and run.

The first question presented on the screen is

e = english

d = deutsch

It is suggested that the "E" key be selected.

After striking "E" the main menu is presented.
They are six menu options- presented.

1 = SINGLE DRIVE no COLLISION
command

2 = DUAL DRIVE and
RESUME with

3 = 2 SINGLE DRIVES - line number only

4 = SINGLE DRIVE RESUME
and

5 = DUAL DRIVE COLLISION
with full syntax

6 = 2 SINGLE DRIVES -

Menu items I, 2, and 3 compile programs without
COLLISION commands, and RESUME commands with a
line number only. If you select menu options
I, 2, or 3 the compiling occurs 15% faster and
the P code (compiled program) is 20% shorter
than the same program compiled with menu
options 4, 5, or6.

Page 7

OPERATION BLITZI 128

Compiling option 1 and 4, SINGLE DRIVE

This is the most common selection. A BASIC
program in drive 0 of device 8 is compiled
and recorded back onto the diskette with the
prefix of "c/" followed by the original
program name. An additional cross reference
file prefixed by "z/" is also recorded on
the diskette.

To proceed with this option type "1" or "4".
The screen prompt then asks:

programname:?

Place the compiling data disk with a copy of
the source program into your disk drive. Their
should be unused space of 2 times the size of
the source program available on the diskette.
Now type the name of the source program and
strike "RETURN". Note the maximum length of
the source program name is 14 characters. Now
relax and watch BLITZ I 128 compile your
program. A discussion of the compiling program
is discussed on the following pages under the
heading "COMPILING". If you have not reviewed
these notes please do it now.

Compiling option 2 and 5, DUAL DRIVE

This selection places the compiled program
or programs onto the diskette in drive 1.
There are five different selections
presented on the sub-menu when this option
is selected.

To proceed with this option type "2" or "5" and
the following menu screen will appear.

Page 8

BLITZ I 128

Compiling option 2 and 5, DUAL DRIVE

Compile •••

1. single program to drive 1
(with runtime routines)

OPERATION

2. = all programs on drive 0 to empty
disk in drive 1 with
runtime routines

3. all programs on drive 0 to empty
disk in drive 1, only first
module will contain the
runtime routines

4. = all programs on drive 0 to
emty disk in drive 1 with
OVERLAY feature

5. = single program to drive 1
without runtime routines

please selectl

If you select option 1 the screen prompt then
asks:

programname:?

Place the compiling source data disk with a
copy of the source program into disk drive O.
Place the compiling destination data disk into
drive 1. Their should be unused space of 2
times the size of the source program available
on the destination diskette. Now type the name
of the source program and strike "RETURN".
Note the maximum length of the source program
name is 14 characters. Now relax and watch
BLITZ I 128 compile your program. A discussion
of the compiling program is presented on the
following pages under the heading "DETAILS".

Page 9

OPERATION BLITZ I 128

Compiling option 2 and 5, DUAL DRIVE

If you select option 2 the screen prompt then
asks:

pleas insert source disk in drive 0

hit Y when ready
?

Place the compiling source data disk with a
copy of the source program into disk drive O.
the maximum length of the source program names
is 14 characters. Place the compiling
destination data disk into drive 1. This
should be a formatted blank disk.

Now strike the "Y" key and the screen will
respond with:

insert empty disk into drive 1

do you want to format this disk yes/no

Now type "n" for no. Now relax and watch
BLITZ I 128 compile your program. A discussion
of the compiling program is presented on the
following pages under the heading "DETAILS".
If you have not reviewed these notes please do
it now.

If you select option 3 the screen prompts are
identical to option 2. Proceed exactly as
option 2. Everything will be the same except
the P-code program module will only be attach
to the first program. This will reduce the
total amount disk space. The loading time of
the programs will be correspondingly reduced.
Note that variables will not be passed between
the programs. If you wish to pass variables
between related programs please select option 4
(with OVERLAY).

Page 10

BLITZ I 128 OPERATION

Compiling option 2 and 5, DUAL DRIVE

If you select option 4 the screen prompts are
the same as option 2. Note that variables will
be passed between the programs. BLITZ I 128
will make an extra pass to read the variables.
Proceed exactly as option 2 •. Everything will
be the same as option 3. The P-code module is
attached to the first program only. This will
reduce the total amount of disk space. The
loading time of the programs will be
correspondingly reduced.

If you select option 5 the screen prompt then
asks:

programname:?

Place the compiling source data disk, with a
copy of the source program, into disk drive O.
Place the compiling destination data disk into
drive 1. Their should be unused space of 2
times the size of the source program available
on the destination diskette. Now type the name
of the source program and strike "RETURN".
Note the maximum length of the source program
name is 14 characters.

Option 5 allows corrections and modifications
to a program within a set of programs
previously compiled with options 3.

Page 11

OPERATION BLITZ I 128

Compiling option 3 and 6, 2 DISK DRIVES

This selection places the compiled program
in the device number specified by the user.
There are five different selections
presented on the sub-menu when this option
is selected. The sub-menu selections are
identical with the previously discussed
options available with a dual disk drive.

To proceed with this option type "3" or "6" and
the following menu screen will appear.

device no. source program 18

device no. object program :9

If you type return twice the following screen
appears:

Compile •••

1. single program to device 9
(with runtime routines)

2. = all programs on device 8 to empty
disk in device 9 with
runtime routines

3. = all programs on device 8 to empty
disk in device 9. only first
module will contain the
runtime routines

4. = all programs on device 8 to
emty disk in device 9 with
OVERLAY feature

5. = single program to device 9
without runtime routines

please se1ectl
Page 12

•

BLITZ I 128 OPERATION

Compiling option 3 and 6, 2 DISK DRIVES

If you select option 1 the screen prompt then
asks:

programname:?

Place the compiling source data disk with a
copy of the source program into disk device 8.
Place the compiling destination data disk into
device 9. Their should be unused space of 2
times the size of the source program available
on the destination diskette. Now type the name
of the source program and strike "RETURN".
Note the maximum length of the source program
name is 14 characters. Now relax and watch
BLITZ I 128 compile your program. A discussion
of the compiling program is presented on the
following pages under the heading "DETAILS".
If you have not reviewed these notes please do
it now.

If you select option 2 the screen prompt then
asks:

pleas insert source disk in device 8

hit Y when ready
?

Place the compiling source data disk with a
copy of the source program into disk device 8.
the maximum length of the source program name
is 14 characters. Place the compiling
destination data disk into device 9. This
should be a formatted blank disk.

Page 13

OPERATION BLITZ! 128

Compiling option 3 and 6, 2 DISK DRIVES

Now strike the "Y" key and the screen will
respond with:

insert empty disk into device 9

do you want to format this disk yes/no

Now type "n" for no. Now relax and watch
BLITZ! 128 compile your program.

If you select option 3 the screen prompts are
identical to option 2. Proceed exactly as
option 2. Everything will be the same except
the P-code program module will only be attach
to the first program. This will reduce the
total amount of disk space. The loading time
of the programs will be correspondingly
reduced. Note that variables will not be
passed between the programs. If you wish to
pass variables between related programs please
select option 4 (with OVERLAY).

If you select option 4 the screen prompt are
the same as option 2. Proceed exactly as
option 3. Everything will be the same except,
that variables will be passed between the
programs. BLITZ! 128 will make an extra pass
to read the variables. The P-code program
module will only be attach to the first
program. This will reduce the total amount of
disk space. The loading time of the programs
will be correspondingly reduced.

Page 14

,

BLITZ I 128 OPERATION

Compiling option 3 and 6, 2 DISK DRIVES

If you select option 5 the screen prompt then
asks:

programname:?

Place the compiling source data disk with a
copy of the source program into disk device 8.
Place the compiling destination data disk into
device 9. Their should be unused space of 2
times the size of the source program available
on the destination diskette. Now type the name
of the source program and strike "RETURN".
Note the maximum length of the source program
name is 14 characters.

Option 5 allows corrections and modifications
to a program within a set of programs
previously compiled with options 3.

Page 15

OPERATION BLITZI 128

blank

Page 16

BLITZI 128 DETAILS

Compilation, First Pass

The program is translated into P-Code. BLITZI

128 also checks for errors.

SYNTAX and TYPE MISMATCH errors. The line

numbers of the erroneous lines are displayed as

they are found. The compiler will complete

compilation, but any lines in error must be

corrected since they are not translated.

A BAD SUBSCRIPT ERROR will be reported if you

change the number of dimensions in an array

(i.e. x$(4,2) and later x$(S». Since it is

legal to clear (CLR) the array and redimension

it later in the program, this message should be

considered a warning only.

OVERFLOW ERROR is displayed whenever a number

greater than 1 e38 is found in the program. In

this case, a wrong number would be placed in

the memory location for that variable.

EXTENSIONS are not considered errors, but are

shown as an '?EXTENSION' message together with

the corresponding line number.

In pass 1 the line numbers pointed to by GOSUB,

GOTO, and THEN statements are stored. In

addition the variable and array names are

evaluated and stored. This is in contrast to

the standard BASIC 7.0 interpreter that

repeatedly evaluates each variable as it

appears during the execution of the program.

At the end of pass I, all multi-dimensional

arrays are checked. If any of these are not

declared by a DIM statement, the message:

BAD SUBSCRIPT ERROR OF <array name> is printed.

A I-dimensional array with no corresponding DIM

statement defaults to 11 elements as they would

in standard BASIC 7.0.

Page 17

DETAILS BLITZ I 128

Compilation, Second Pass

At this point, BLITZ I 128 replaces all variable
and line references with their exact locations
in memory. If at this time a previously
referenced line is still unknown, the error
UNDEFINED STATEMENT IN <line number> is
displayed.

The compiled program is now built up from the
following parts.

Run-time routines.
Data statements as found in the whole
program.
P-Code (your actual program).
Table of variables.

BLITZ I 128 Compiling Options

BLITZ I 128 handles 3 different system
configurations; a C-128 and a single disk
drive, a C-128 and a dual disk drive, and a C-
128 and two individual disk drives. For each
computer disk configuration there are two main
compiling methods. One, without COLLISION
commands and RESUME with line number only,
compiles faster and has 20% smaller P-code.
The second, with COLLISION and RESUME, handles
all BASIC 7.0 commands except as noted on page
4 of this manual (Restrictions).

A single drive system has only one compiling
sub option. A dual drive system and a 2 drive
system have 5 sub options. The sub options are
identical for systems that consist of a dual
disk drive and 2 disk drives. Drive 0, of a
dual drive system, is replaced by the device
number of the source drive, in a 2 drive
system. Drive I, of a dual drive system, is
replaced by the device number of the
destination drive of a 2 drive system.

Page 18

BLITZ I 128 DETAILS

Compiling Option 1 and 4, ~ingle Drive

Sub Option 1

Compiles one program from the diskette located
in your single drive onto the same diskette.
It is recommended that the source program be
placed on new formatted blank diskette. If not
there should be at least twice as many blocks
free as the length of the source program. The
compiler prefixes the file name with 'c/' to
mark the compiled program. Another file, with
the prefix 'z/', contains the cross reference
to the line numbers in the original program.
(see ERROR CORRECTION)

During compilation BLITZ I 128 uses two other
files (prefix 'pi' and 'd/') which hold the
pure P-Code and DATA. These files will be
scratched before the end of pass 2.

Example: Drive 0 test (source file, in
standard BASIC 7.0)

results in: Drive 0 c/test (compiled
program, running version)

z/test (cross reference)

p/test (pure P-code,
scratched during pass 2)

d/test (data, scratched
during pass 2)

The c/test program should now be run and­
tested. If problems occur please see the
following section of this manual labeled ERROR
CORRECTION. Eventually the cross reference
(z/test) may be scratched.

Page 19

DETAILS BLITZ I 128

Compiling Option 2 and 5, Dual Drive

Since the sub options under compiling options 2
and 5 are identical to the sub options
available under compiling options 3 and 6 the
details will not be covered separately. All
sub options will be discussed under compiling
option 3 and 6. We will use device number 8 as
the source disk and device number 9 as the
destination disk. If you have a dual disk
drive, substitute drive 0 for device 8 and
drive 1 for device 9.

Compiling Option 3 and 6, 2 Single Drives

In the following detailed description disk
drive device number 8 is the source disk drive"
and disk drive device number 9 is the
destination drive. When you run BLITZ I 128 you
may specify other device numbers for the source
and destination drive.

Sub Option I

Compiles one program, from the diskette located
in device number 8, onto the diskette located
in device number 9. It is recommended that the
destination diskette in device number 9 be a
new formatted blank diskette. If not there
should be at least twice as many blocks free as
the length of the source program. The compiler
prefixes the file name with 'cl' to mark the
compiled program. Another file with the prefix
'zl' contains the cross reference to the line
numbers in the original program. (see ERROR
CORRECTION)

During compilation BLITZ I 128 uses two other
files (prefix 'pi' and 'd/') which hold the
pure P-code and data. These files will be
scratched before the end of pass 2.

Page 20

BLITZ! 128 DETAILS

Compiling Option 3 and 6, 2 Single Drives

Sub Option 1

Example:

Source in: Device 8 test (source file, in
standard BASIC 7.0)

Results in: Device 9 c/test (compiled
program, running version)

z/test (cross reference)

p/test (pure P-code,
scratched during pass 2)

d/test (data, scratched
during pass 2)

The c/test program should now be run and tested.
If problems occur please see the following
section of this manual labeled ERROR CORRECTION.
Eventually the cross reference (z/test) may be
scratched.

Sub Option 2

BLITZ! 128 compiles all files from the source
diskette (device 8) onto the destination
diskette (device 9). The run-time routines are
added to all programs compiled. No cross
reference files are created when using this
option. If an error occurs during run-time, the
program should be compiled using option 1 to
produce the cross reference.

Page 21

DETAILS BLITZ I 128

Compiling Option 3 and 6, 2 Single Drives

Sub Option 2

Example

Source in:

Results in:

Sub Option 3

Device 8 program a
program b
program c

Device 9 program a
program b
program c

Compiles all programs from the source diskette
(device 8) to the destination diskette (device
9). Run-time routines are added to the first
program only. No variable passing between the
modules is possible. No cross reference files
are created. If an error occurs during run­
time, the program should be compiled using
option 1 to produce the cross reference.

This option has the following advantages:

•
•
•

Shorter loading time for chained programs.
Less disk storage needed.
Only the first program can be loaded and
run. This can be used as a form of program
protection.

Page 22

BLITZ I 128 DETAILS

Compiling Option 3 and 6, 2 Single Drives

Sub Option 4

Compiles all programs, from the source diskette,
onto the destination diskette. Full variable
passing between chained programs is possible.
No cross reference files are created. If an
error occurs during run-time, the program should
be compiled using option 1 to produce the cross
reference.

In this option BLITZ I 128 collects all variables
and arrays during an additional pass. The
starting program, if shorter than the others, is
lengthened to the size of the longest program.
The starting program is stored with the table of
variables of all programs as well as the run­
time routines and the P-Code.

You should notice the following restrictions:

BLITZI 128 capacity applies to total variables,
etc.
Max. Length of BASIC source line: 255 bytes
Number of BASIC source lines: •• 5000 maximum
Number of jumps in source program 6000 maximum

(includes GOTO, GOSUB, and NEXT)
Number of variables: •••• 1000 maximum
Number of arrays ••••••
Number of REM **FI variables

255 maximum
200 maximum

All arrays should be declared (with DIM
statements) at least in the program that
references them first. If this is not done,
BLITZ I 128 will tell you it has found a BAD
SUBSCRIPT ERROR.

No reloading of the starting program is possible
or all variables will be lost. If it is required
to restart the first program during run-time,
save that program twice on the source disk with
different names and call the second one of these
during run-time.

Page 23

DETAILS BLITZ I 128

Compiling Option 3 and 6, 2 Single Drives

Sub 0Etion 4

Example:

source disk start
program a
program b
program c
start2

In this example, it is necessary to be able to

call all programs beginning with 'program' from

the program named 'start'. It is also

necessary to call the start program from one of

the called programs.

destination disk start
program a
program b
program c
start2

'start' must be loaded and run first, it can

then call program a, program b, or program c.

Also, program a, program b, or program c can

call start2. Start2 is the original program

without the run-time routines, or table of

variables added.

Sub 0Etion 5

Identical to sub option 1 except no P-code is

attached to the compiled program. This is a

very handy option to use in conjunction with

option 3.

Page 24

BLITZ I 128 ERROR CORRECTION

Foreward

BLITZ I 128 will not make you a better

programmer. BASIC was developed to introduce

people to computer programming. It was
intentionally made as an "interpretive" program

with maximum of error massages to assist program

correction. Correcting errors in a compiled

program is much more difficult than an

interpretive program. The error must be located

in the source code, the source must be

corrected, and then the program must be

recompiled.

BLITZ I 128 will not make a better program from a

poorly written public domain or commercial

program. Additionally, all compiled programs

require explicit array dimension statements and

a different method of attaching machine language

sub routines to the original BASIC program.

BLITZI 128 is not recommended for converting

"protected" programs to "unprotected" programs.

A well written "pro~ected" program will at best

become a faster "protected" program.

BLITZ I 128, during compilation, checks for the

following errors:

SYNTAX ERROR
TYPE MISMATCH ERROR
UNDEFINED STATEMENT ERROR

All other errors are logic errors (bugs) which

occur during run-time. Since the BLITZ I 128

discards all line numbers, the run-time routines

show any error together with the contents of its

own program counter. The cross reference file

(Z/test) created by compiling with option 1 may

be used to find the corresponding line number

within the original BASIC program. Please see

the following example on the next page.

Page 25

ERROR CORRECTION BLITZ I 128

Foreward

Example:

You have just run the program 'c/test' and the
computer has replied with 'ILLEGAL QUANTITY
ERROR IN 9912', You should type:

LOAD "z/test",8 <RETURN>

After the file loads, type:

LIST -9912 <RETURN>

It will list to counter number 9912. The last
line printed is:

9909=520

You now know that line 520 in the source
program caused the error. Make the
appropriate changes and compile the program
again. This may seem complicated, but keep in
mind that, compilation should be the last step
in program development. Since the standard
BASIC program and the compiled program produce
the same results, you should use the built in
BASIC interpreter to write and correct the
program.

In the above example you may use the standard
OPEN and C~ID commands to print out a hard copy
of the complete cross reference file.

Page 26

BLITZ! 128 DIFFERENCES: BLITZ! 128 - BASIC

Capacity

Max. Length of BASIC source line: 255 bytes
Number of BASIC source lines: •• 5000 maximum
Number of jumps in source program 6000 maximum

(includes GOTO, GOSUB, and NEXT)
Number of variables: •••••• 1000 maximum
Number of arrays •••••• 255 maximum
Number of REM **FI variables 200 maximum

Stop Key:

BLITZ! 128 disables the stop key. The Reset
switch, located next to the power switch, on the
right side of the Commodore 128, is available to
stop the programing

Continue

The use of CONT after a program break is not
allowed.

Integer Arithmetic

BLITZ! 128 uses true integer arithmetic whenever
requested. This provides improvements in
execution time, but doesn't change the results of
these calculations.

Extensions

BLITZ! 128 allows you to use extensions to
standard BASIC 7.0. These commands must be
preceded by a double colon (::) so they are not
compiled, but passed on to the C-128's built-in
BASIC 7.0 interpreter, during run-time. If you
want to suppress the '?EXTENSION' message while
compiling, there is a special remark statement
which will do this: REM ** NE •

Page 27

DIFFERENCES: BLITZ 1 128 - BASIC BLITZ 1 128

Functions

Try this example, type:

PRINT PEEK(145) <RET>

PRINT PEEK(145/3*3) <RET>

A=145/3*3 <RET>
PRINT PEEK(A) <RET>

This prints the
contents of
location 145.

This prints the
contents of
location 1441

This prints the
contents of
location 145.

This problem is generated by the BASIC 7.0
interpreter using different rounding
procedures in assigning variables and during
parameter evaluation. These sorts of errors
occur in conjunction with the BASIC functions
PEEK(X), INT(X), and with statements POKE,
WAIT, SYS, and with array index calculations.
BLITZ 1 128 does all rounding using the same
procedure, so in the example above all lines
would print the contents of location 145.

Arrays

Arrays with more than ~ne dimension must be
defined explicitly (in BASIC they would
default to 11 elements in each dimension).
Arrays with only one dimension will default to
11 elements if they are not defined
explicitly, just as in standard BASIC. Since
problems could arise with the use of implicit
'DIM' statements, repeated 'DIM' and 'CLR'
statements, it is recommended that all arrays
be defined explicitly. BLITZ I 128 builds a
special array with the normally illegal name
'z*%'. This array contains a 5 byte header,
and a ser1es of 2 byte pointers to each array
found in the original BASIC program.

Page 28

BLITZ! 128 DIFFERENCES: BLITZ! 128 - BASIC

FOR-NEXT

It is possible with programs compiled with
BLITZ! 128 to write FOR-NEXT loops using integer
variables, to speed up your programs even
further. Since this is an illegal programming
practice in standard BASIC, such programs would
cause a SYNTAX ERROR when testing. To alleviate
this problem it is recommended you use the REM
** FI instruction

Example:

source program statement

FOR 1=1 TO 100:I7.=I:A(I7.)=0:NEXT

insert REM ** FI I
(this will run in BASIC)

Overhead

Programs compiled with BLITZ I 128 use less
overhead on variables than the stRndard BASIC
interpreter:

COMMAND BASIC BLITZ! 128

GOSUB 5 bytes 3 bytes
COLLISION 5 byte 3 bytes
FOR 18 bytes 16 bytes
FOR with integer illegal 9 bytes

This enables you to construct programs with
more complicated nesting structures. However
they may cause an 'OUT OF MEMORY ERROR' when
executed with standard BASIC.

Page 29

DIFFERENCES: BLITZ I 128 - BASIC BLITZ I 128

blank

:.

! i 1 '

Page 30

BLITZ I 128 MACHINE LANGUAGE

Using Machine Language With BLITZ I 128

With BLITZ! 128 compiled programs it is not
possible to predict the location of the end of
the program. Therefore it is not possible to
attach machine language programs to the end of
the BASIC program.

With BASIC 7.0 it is best to use the BLOAD or
BOOT commands for loading machine language
programs.

BLITZ! 128 takes over, after a SYS command, the
parameters for the a, x, y, and s registers (if
available). The machine language program
should restore the BASIC text pointer at
locations 61/62 decimal.

Machine language programs may be loaded from
programs compiled with BLITZ! 128, but the
usual loading procedures must be changed. In
Commodore BASIC, to load a machine language
program, usually a flag is set in the BASIC
program that indicates when the machine
language program has been loaded:

10 IF F=O THEN F=I:BLOAD "MLP",Bl,P3584

This sets the variable to 1 and loads "MLP"
only once (i.e. on the first pass through that
line). This will not work with a BLITZ! 128-
compiled program. Instead a method I have
found easier to use is to check the first byte
of the machine language program to see if it
has been loaded, i.e.:

loading a machine language program that
starts at 3584 decimal (bank 1) whose
first byte is 4c hexadecimal (76 decimal):

10 BANKl:IF PEEK(3584)<>76 THEN BLOAD
"MLP",Bl,P3584

Page 31

