

JIFFYDOS

version 6.01

This document is a dump of JiffyDOS version 6.01. The parts concerning
JiffyDOS have been commented by Magnus Nyman (magnus.q.nyman@telia.se),
also known as Harlekin/FairLight. All new JiffyDOS routines are specifyed
in the text. The comments to other parts of this document are partially
rewritten from 'The Bible', Commodore Reference Manual. Some text has been
added, to increment the knowledge of the original Commodore routines. Some
errors have been corrected, and old routines has been removed. Also
included are my own thoughts of what can be improved.

If you find any errors, feel free to contact me on the address above.

//Magnus

Document revision B. 1996-10-03

New Zeropage addresses in the JiffyDOS system.

$26 ; allflag/rsize 2

$27 ; comsav 2

$9b ; AKTFLG, flags if jiffyDOS funktionkeys is
 ; aktivated. If 0, funktionkeys are enabled.

$9f ; CJLA, JiffyDOS default filenumber.

$A3 ; ldflg/qflag, Used in all disk access and LOAD
 routines.

$a6 ; TFLAG, temp store of JiffyDOS command number.

$b0/$b1 ; KEYPTR, vector to table of JiffyDOS funktion keys.

$B0 ; sprsav, Saved, then restored by LOAD routine (no
 other usage).
$B1 ; rassav 1
$B2 ; regsav 1

$be ; DRVBYT, JiffyDOS default device number.

DISK ACCESS
The 64’er access the serial devices through the CIA at $DD00. The ”bits”
have the following connection! The JiffyDOS performs it’s own timing and
handshaking, allowing us to use both the data AND the clock lead to
transfer data. This has two advantages. 1) We send/receive two bits at a
time. 2) Because of the heavy timing that is done before the bits are sent,
we don’t need any timing for the next bytes, and we can send 4*2 bits (ie.
the entire byte) without any more timing!

adr $DD00 56576
bit 7 Serial Bus Data Input
 6 Serial Bus Clock Pulse Input
 5 Serial Bus Data Output
 4 Serial Bus Clock Pulse Output
 3 Serial Bus ATN Signal Output

Bits used

; E000

 sta a56
 jsr ebc0f
 lda a61
 cmp #$88
 bcc ie00e
ie00b jsr ebad4
ie00e jsr ebccc
 lda a07
 clc
 adc #$81
 beq ie00b
 sec
 sbc #$01
 pha
 ldx #$05
ie01e lda f69,x
 ldy f61,x
 sta f61,x
 sty f69,x
 dex
 bpl ie01e
 lda a56
 sta a70
 jsr eb853
 jsr ebfb4
 lda #$c4
 ldy #$bf
 jsr ie059
 lda #$00
 sta a6f
 pla
 jsr ebab9
 rts
ie043 sta a71
 sty a72
 jsr ebbca
 lda #$57
 jsr eba28
 jsr ie05d
 lda #$57
 ldy #$00
 jmp eba28
ie059 sta a71
 sty a72
ie05d jsr ebbc7
 lda (p71),y
 sta a67
 ldy a71
 iny
 tya
 bne ie06c
 inc a72
ie06c sta a71
 ldy a72
ie070 jsr eba28
 lda a71
 ldy a72
 clc
 adc #$05
 bcc ie07d
 iny

ie07d sta a71
 sty a72
 jsr eb867
 lda #$5c
 ldy #$00
 dec a67
 bne ie070
 rts
 tya
 and f44,x
 ror $
 brk
 pla
 plp
 lda (p46),y
 brk
 jsr ebc2b
 bmi ie0d3
 bne ie0be
 jsr efff3
 stx a22
 sty a23
 ldy #$04
 lda (p22),y
 sta a62
 iny
 lda (p22),y
 sta a64
 ldy #$08
 lda (p22),y
 sta a63
 iny
 lda (p22),y
 sta a65
 jmp ie0e3
ie0be lda #$8b
 ldy #$00
 jsr ebba2
 lda #$8d
 ldy #$e0
 jsr eba28
 lda #$92
 ldy #$e0
 jsr eb867
ie0d3 ldx a65
 lda a62
 sta a65
 stx a62
 ldx a63
 lda a64
 sta a63
 stx a64
ie0e3 lda #$00
 sta a66
 lda a61
 sta a70
 lda #$80
 sta a61
 jsr eb8d7
 ldx #$8b
 ldy #$00
ie0f6 jmp ebbd4

E0F9 BIOERR: HANDLE I/O ERROR IN BASIC

This routine is called whenever BASIC wishes to call one of the KERNAL I/O
routines. It is also used to handle I/O errors in BASIC.

.e0f9 cmp #$f0 ; test error
 bne $e104
 sty $38 ; MEMSIZ, highest address in BASIC
 stx $37
 jmp $a663 ; do CLR without aborting I/O
.e104 tax ; put error flag i (X)
 bne $e109 ; if error code $00, then set error code $1e
 ldx #$1e
.e109 jmp $a437 ; do error

E10C BCHOUT: OUTPUT CHARACTER
This routine uses the KERNAL rutine CHROUT to output the character in (A)
to an available output channel. A test is made for a possible I/O error.

.e10c jsr $ffd2 ; output character in (A)
 bcs $e0f9 ; if carry set, handle I/O error
 rts ; else return

E112 BCHIN: INPUT CHARACTER
This routine uses the KERNAL routine CHRIN to input a character to (A) from
an available input channel. A test is made for a possible I/O error.

.e112 jsr $ffcf ; input character from CHRIN
 bcs $e0f9 ; if carry set, handle I/O error
 rts ; else return

E118 BCKOUT:SET UP FOR OUTPUT
This routine uses the KERNAL routine CHKOUT to open an output channel, and
tests for possible I/O error. On entry (X) must hold the the logical file
number as used in OPEN.

.e118 jsr $e4ad ; open output channel via CHKOUT
 bcs $e0f9 ; if carry set, handle I/O error
 rts ; else return

E11E BCKIN: SET UP FOR INPUT
This routine uses the KERNAL routine CHKIN to open an input channel. A test
as made for possible I/O error.

.e11e jsr $ffc6 ; open input channel via CHKIN
 bcs $e0f9 ; if carry set, handle I/O error
 rts ; else return

E124 BGETIN: GET ONT CHARACTER
This routine uses the KERNAL routine GETIN to get a character from the
keyboard buffer into (A). A test is made for possible I/O error.

.e124 jsr $ffe4 ; GETIN, get character from keyboard buffer
 bcs $e0f9 ; if carry set, handle I/O error
 rts ; else return

E12A SYS: PERFORM SYS
This routine enables machine language routines to be executed from BASIC.
The routine evaluates the address and confirms that it is a numeric number.
The return address is set up, and the user routine is executed.

.e12a jsr $ad8a ; evaluate text & confirm numeric
 jsr $b7f7 ; convert fac#1 to integer in LINNUM
 lda #$e1 ; set return address on stack to $ea46
 pha
 lda #$46

 pha
 lda $030f ; SPREG, user flag register
 pha
 lda $030c ; SAREG, user (A) register
 ldx $030d ; SXREG, user (X) register
 ldy $030e ; SYREG, user (Y) register
 plp
 jmp ($14) ; execute user routine, exit with rts
.e146 php
 sta $030c ; store in SAREG, user (A) register
 stx $030d ; store in SXREG, user (X) register
 sty $030e ; store in SYREG, user (Y) register
 pla
 sta $030f ; store in SPREG, user flag register
 rts ; back

E156 SAVET: PERFORM SAVE
This routine is sets parameters for save, and calls the save routine. The
start and end addresses are obtained from TXTTAB and VARTAB. Finally, a
test is made if any errors ocured.

 jsr $e1d4 ; get SAVE paramerters from text
 ldx $2d ; VARTAB, start of variables
 ldy $2e
 lda #$2b ; <TXTTAB, start of BASIC text
 jsr $ffd8 ; execute SAVE
 bcs $e0f9 ; if carry is set, handle I/O errors
 rts

E165 VERFYT: PERFORM LOAD/SAVE
This routine is essentially the same for both LOAD and VERIFY. The entry
point determins which is performed, by setting VERCK accordingly. The
LOAD/VERIFY parameters, filename, device etc. are obtained from text before
the KERNAL routine LOAD is called. A test is made for I/O errors. At this
point, the two functios are distiguished. VERIFY reads the the status word
and prints the message OK or ?VERIFY error depending on the result of the
test. LOAD reads the I/O status word for a possible ?LOAD error, then
updates the pointers to text and variables, exiting via CLR.

.e165 lda #$01 ; flag verify
 bit $00a9 ; mask, will execute lda #$01 if address $e168
 sta $0a ; store in VRECK, LOAD/VERIFY flag
 jsr $e1d4 ; get LOAD/VERIFY parameters from text
 lda $0a ; get VRECK
 ldx $2b ; TXTTAB, start of BASIC
 ldy $2c
 jsr $ffd5 ; execute LOAD, KERNAL routine
 bcs $e1d1 ; if carry set, handle error
 lda $0a ; test VRECK for LOAD or VERIFY
 beq $e195 ; do LOAD
 ldx #$1c ; set error $1c, VERIFY error
 jsr $ffb7 ; do READST, get status I/O word
 and #$10 ; %00010000, test for mismatch
 bne $e19e ; data mismatch, do error
 lda $7a ; <TXTPTR
 cmp #$02
 beq $e194
 lda #$64 ; set address to text OK
 ldy #$a3 ; at $a364
 jmp $ab1e ; output string in (A/Y)
.e194 rts
.e195 jsr $ffb7 ; do READST, get status I/O for LOAD
 and #$bf ; %10111111, test all but EOI
 beq $e1a1 ; nope, no errors
 ldx #$1d ; set error $1d, LOAD error

.e19e jmp $a437 ; do error

.e1a1 lda $7b ; >TXTPTR
 cmp #$02
 bne $e1b5
 stx $2d ; set VARTAB, start of variables
 sty $2e
 lda #$76 ; set address to text READY
 ldy #$a3 ; at $a376
 jsr $ab1e ; output string in (A/Y)
 jmp $a52a ; do CLR and restart BASIC
.e1b5 jsr $a68e ; reset TXTPTR
 jsr $a533 ; rechain BASIC lines
 jmp $a677 ; do RESTORE and reset OLDTXT

E1BE OPENT: PERFORM OPEN
This routine extracts paramerters from text and performs the OPEN routine
in KERNAL. A test is made for I/O errors.

.e1be jsr $e219 ; get parameters from text
 jsr $ffc0 ; execute OPEN
 bcs $e1d1 ; if carry set, handle error
 rts

E1C7 CLOSET: PERFORM CLOSE
The parameters for CLOSE are obtained from text, and the logical filenumber
placed in (A), The KERNAL routine CLOSE is performed, and a test is made
for I/O errors.

.e1c7 jsr $e219 ; get parameters from text
 lda $49 ; logical file number
 jsr $ffc3 ; perform CLOSE
 bcc $e194 ; if carry set, handle error, else return
.e1d1 jmp $e0f9 ; jump to error routine

E1D4 SLPARA: GET PARAMETERS FOR LOAD/SAVE
This routine gets the filename, devicenumber and secondary address for
LOAD/VERIFY and SAVE operations. The KERNAL routines SETNAM and SETLFS are
used to do this. Default parameters are set up, and a new JiffyDOS routine
is called at $e1dd. It jumps to $f73a where the original SETLFS is
performed, but also makes a test to find the first serial device number,
and pokes it into FA. Then tests are made if any of the parameters were
given. If so, these are set up as wanted.

.e1d4 lda #$00 ; clear length of filename
 jsr $ffbd ; SETNAM
 ldx #$01 ; default FA, device number is #01
 ldy #$00 ; default SA, secondary address is #00
.e1dd jsr $f73a ; SETLFS, and device number in new JiffyDOS routine
 jsr $e206 ; test if "end of line", if so end here
 jsr $e257 ; set up given filename and perform SETNAM
 jsr $e206 ; test if "end of line", if so end here
 jsr $e200 ; check for comma, and input one byte, FA, to (X)
 ldy #$00
 stx $49
 jsr $ffba ; perform new SETLFS with device number
 jsr $e206 ; test if "end of line", if so end here
 jsr $e200 ; check for comma, and input one byte, SA, to (X)
 txa ; transfer (X) to (Y)
 tay
 ldx $49 ; get FA
 jmp $ffba ; perform SETLFS with both device number and
secondary address. Then exit

E200 COMBYT: GET NEXT ONE-BYTE PARAMETER

This routine checks if the next character of text is a comma, and then
inputs the parameter following into (X).

.e200 jsr $e20e ; check for comma
 jmp $b79e ; input one byte parameter to (X)

E206 DEFLT: CHECK DEFAULT PARAMETERS
This routine tests CHRGOT to see if a optional parameter was included in
the text. If it was, a normal exit is performed via RTS. If not, the return
address on the stack is discarded, and the routine exits both this and the
calling routine.

.e206 jsr $79 ; get CHRGOT
 bne $e20d ; if last character is a character, do normal exit
 pla ; else, remove return address
 pla ; to exit this AND the calling routine.
.e20d rts ; exit

E20E CMMERR: CHECK FOR COMMA
This routine confirms that the next character in the text is a comma. It
also test that the comma is not immediately followed by a terminator. If
so, exit and do SYNTAX error.

.e20e jsr $aefd ; confirm comma
.e211 jsr $79 ; get CHRGOT
 bne $e20d ; else than null
 jmp $af08 ; execute SYNTAX error

E219 OCPARA: GET PARAMETERS FOR OPEN/CLOSE
This routine gets the logical file number, device number, secondary address
and filename for OPEN/CLOSE. Initially the default filename is set to null,
and the device number to #1. The logical filenumber is compulsory, and is
obtained from text and placed in <FORPNT. The other parameters are optinal
and are obtained if present. The device number is stored in >FORPNT. The
parameters are set via the KERNAL routines SETNAM and SETLFS.

.e219 lda #$00 ; default filename is null
 jsr $ffbd ; SETNAM
 jsr $e211 ; confirm TXTPNT is no terminator, if so - error
 jsr $b79e ; input one byte character to (X)
 stx $49 ; store logical filenumber in <FORPNT
 txa ; set default parameters to
 ldx #$01 ; device = #1
 ldy #$00 ; secondary address = #0
 jsr $ffba ; SETLFS
 jsr $e206 ; test if "end of line", if so end here
 jsr $e200 ; check for comma, and input FA, device number
 stx $4a ; store in >FORPNT
 ldy #$00 ; secondary address = #0
 lda $49 ; logical file number from temp store
 cpx #$03 ; test if serial devce
 bcc $e23f ; nope
 dey ; if serial, set secondary address to $ff
.e23f jsr $ffba ; SETLFS
 jsr $e206 ; test if "end of line", if so end here
 jsr $e200 ; check for comma, and input SA, secondary address
 txa
 tay ; SA to (Y)
 ldx $4a ; FA
 lda $49 ; LA
 jsr $ffba ; SETLFS
 jsr $e206 ; test if "end of line", if so end here
 jsr $e20e ; check for comma only
.e257 jsr $ad9e ; evaluate expression in text

 jsr $b6a3 ; do string housekeeping
 ldx $22 ; pointers to given filename
 ldy $23
 jmp $ffbd ; SETNAM and exit

E264 COS: PERFORM COS
This routine manipulates the input COS to be calcuated with SIN. COS(X) =
SIN(X+pi/2), where X is in radians. We use it as Fac#1=SIN(fac#1+pi/2), ie
pi/2 is added to fac#1 and the following SIN is performed.

 lda #$e0 ; set address to pi/2
 ldy #$e2 ; at $e2e0
 jsr $b867 ; add fltp at (A/Y) to fac#1

E26B SIN: PERFORM SIN

ie26b jsr ebc0c
 lda #$e5
 ldy #$e2
 ldx a6e
 jsr ebb07
 jsr ebc0c
 jsr ebccc
 lda #$00
 sta a6f
 jsr eb853
 lda #$ea
 ldy #$e2
 jsr eb850
 lda a66
 pha
 bpl ie29d
 jsr eb849
 lda a66
 bmi ie2a0
 lda a12
 eor #$ff
 sta a12
ie29d jsr ebfb4
ie2a0 lda #$ea
 ldy #$e2
 jsr eb867
 pla
 bpl ie2ad
 jsr ebfb4
ie2ad lda #$ef
 ldy #$e2
 jmp ie043

E2B4 TAN: PERFORM TAN

.e2b4 jsr ebbca
 lda #$00
 sta a12
 jsr ie26b
 ldx #$4e
 ldy #$00
 jsr ie0f6
 lda #$57
 ldy #$00
 jsr ebba2
 lda #$00
 sta a66
 lda a12

 jsr ie2dc
 lda #$4e
 ldy #$00
 jmp ebb0f
ie2dc pha
 jmp ie29d

E2E0 PI2: TABLE OF TRIGONOMITRY CONSTANTS
The following constants are held in 5 byte flpt for trigonomitry
evaluation.

.e2e0 81 49 0f da a2 ; 1.570796327 (pi/2)
.e2e5 83 49 0f da a2 ; 6.28318531 (pi*2)
.e2ea 7f 00 00 00 00 ; 0.25
.e2ef 05 ; 5 (one byte counter for SIN series)
.e2f0 84 e6 1a 2d 1b ; -14.3813907 (SIN constant 1)
.e2f5 86 28 07 fb f8 ; 42.0077971 (SIN constant 2)
.e2fa 87 99 68 89 01 ; -76.7041703 (SIN constant 3)
.e2ff 87 23 35 df e1 ; 81.6052237 (SIN constant 4)
.e304 86 a5 5d e7 28 ; -41.3417021 (SIN constant 5)
.e309 83 49 0f ds a2 ; 6.28318531 (SIN constant 6, pi*2)

E30E ATN: PERFORM ATN

.e30e lda $66
 pha
 bpl ie316
 jsr ebfb4
ie316 lda a61
 pha
 cmp #$81
 bcc ie324
 lda #$bc
 ldy #$b9
 jsr ebb0f
ie324 lda #$3e
 ldy #$e3
 jsr ie043
 pla
 cmp #$81
 bcc ie337
 lda #$e0
 ldy #$e2
 jsr eb850
ie337 pla
 bpl ie33d
 jmp ebfb4
ie33d rts

E33E ATNCON: TABLE OF ATN CONSTANTS
The table holds a 1 byte counter and the folloeing 5 byte flpt constants.

.e33e 0b ; 13 (one byte counter for ATN series)
.e33f 76 b3 83 bd d3 ; -0.000684793912 (ATN constant 1)
.e344 79 1e f4 a6 f5 ; 0.00485094216 (ATN constant 2)
.e349 7b 83 fc b0 10 ; -0.161117018 (ATN constant 3)
.e34e 7c 0c 1f 67 ca ; 0.034209638 (ATN constant 5)
.e353 7c de 53 cb c1 ; -0.0542791328 (ATN constant 6)
.e358 7d 14 64 70 4c ; 0.0724571965 (ATN constant 7)
.e35d 7d b7 ea 51 7a ; -0.0898023954 (ATN constant 8)
.e362 7d 63 30 88 7e ; 0.110932413 (ATN constant 9)
.e367 7e 92 44 99 3a ; -0.14283908 (ATN constant 10)
.e36c 7e 4c cc 91 c7 ; 0.19999912 (ATN constant 11)
.e371 7f aa aa aa 13 ; -0.333333316 (ATN constant 12)

.e376 81 00 00 00 00 ; 1 (ATN constant 13)

E37B BASSFT: BASIC WARM START
This is the BASIC warm start routine that is vectored at the very start of
the BASIC ROM. The routine is called by the 6510 BRK instruction, or
STOP/RESTORE being pressed. It outputs the READY prompt via the IERROR
vector at $0300. The original IERROR vector points to $e38b, but JiffyDOS
uses the error routine as an input to check new commands. If the error
code, in (X) is larger than $80, then only the READY text will be
displayed.

.e37b jsr $ffcc ; CLRCHN, close all I/O channels
 lda #$00
 sta $13 ; input prompt flag
 jsr $a67a ; do CLR
 cli ; enable IRQ
.e386 ldx #$80 ; error code #$80
 jmp ($0300) ; perform error, JiffyDOS at $f763
.e38b txa ; error number
 bmi $e391 ; larger than $80
 jmp $a43a ; nope, print error
.e391 jmp $a474 ; print READY

E394 INIT: BASIC COLD START
This is the BASIC cold start routine that is vectored at the very start of
the BASIC ROM. BASIC vectors and variables are set up, and power-up message
is output, and BASIC is restarted.

.e394 jsr $e4b7 ; Init JiffyDOS commands & funktionkeys
 jsr $e3bf ; Initialize BASIC
 jsr $e422 ; output power-up message
 ldx #$fb ; reset stack
 txs
 bne $e386 ; output READY, and restart BASIC

E3A2 INITAT: CHRGET FOR ZEROPAGE
This is the CHRGET routine which is transferred to RAM starting at $0073 on
power-up or reset.

.e3a2 inc $7a ; .0073 inc $7a ; increment <TXTPTR
 bne $e3a8 ; bne $0079 ; skip high byte
 inc $7b ; inc $7b ; increment >TXTPTR
.e3a8 lda $ea60 ; .0079 lda $ea60 ; CHRGOT entry, read TXTPTR
 cmp #$3a ; cmp #$3a ; colon (terminator), sets
(Z)
 bcs $e3b9 ; bcs $008a
 cmp #$20 ; cmp #$20 ; space, get next character
 beq $e3a2 ; bne $0073
 sec ; sec
 sbc #$30 ; sbc #$30 ; zero
 sec ; sec
 sbc #$d0 ; sbc #$d0
.e3b9 rts ; .008a rts

E3BA RNDSED: RANDOM SEED FOR ZEROPAGE
This is the initial value of the seed for the random number function. It is
copied into RAM from $008b-$008f. Its fltp value is 0.811635157.

.e3ba 80 4f c7 52 58

E3BF INITCZ: INITIALISE BASIC RAM
This routine sets the USR jump instruction to point to ?ILLIGAL QUANTITY
error, sets ADRAY1 and ADRAY2, copies CHRGET and RNDSED to zeropage, sets

up the start and end locations for BASIC text and sets the first text byte
to zero.

.e3bf lda #$4c ; opcode for JMP
 sta $54 ; store in JMPER
 sta $0310 ; USRPOK, set USR JMP instruction
 lda #$48
 ldy #$b2 ; vector to $b248, ?ILLIGAL QUANTITY
 sta $0311
 sty $0312 ; store in USRADD
 lda #$91
 ldy #$b3 ; vector to $b391
 sta $05
 sty $06 ; store in ADRAY2
 lda #$aa
 ldy #$b1 ; vector to $b1aa
 sta $03
 sty $04 ; store in ADRAY1
 ldx #$1c ; copy the CHRGET routine and RNDSED to RAM
.e3e2 lda $e3a2,x ; source address
 sta $73,x ; destination address
 dex ; next byte
 bpl $e3e2 ; till ready
 lda #$03
 sta $53 ; store #3 in FOUR6, garbage collection
 lda #$00
 sta $68 ; init BITS, fac#1 overflow
 sta $13 ; init input prompt flag
 sta $18 ; init LASTPT
 ldx #$01
 stx $01fd
 stx $01fc
 ldx #$19
 stx $16 ; TEMPPT, pointer to descriptor stack
 sec ; set carry to indicate read mode
 jsr $ff9c ; read MEMBOT
 stx $2b ; set TXTTAB, bottom of RAM
 sty $2c
 sec ; set carry to indicate read mode
 jsr $ff99 ; read MEMTOP
 stx $37 ; set MEMSIZ, top of RAM
 sty $38
 stx $33 ; set FRETOP = MEMTOP
 sty $34
 ldy #$00
 tya
 sta ($2b),y ; store zero at start of BASIC
 inc $2b ; increment TXTTAB to next memory position
 bne $e421 ; skip msb
 inc $2c
.e421 rts ; return

E422 INITMS: OUTPUT POWER-UP MESSAGE
This routine outputs the startup message. It then calcuates the number of
BASIC bytes free by subatracting the TXTTAB from MEMSIZ, and outputs this
number. The routine exits via NEW.

.e422 lda $2b ; read TXTTAB, start of BASIC
 ldy $2c
 jsr $a408 ; check for memory overlap
 lda #$73 ; $e473, startup message
 ldy #$e4
 jsr $ab1e ; output (A/Y)
 lda $37 ; MEMSIZ, highest address in BASIC
 sec ; prepare for substract

 sbc $2b ; substract TXTTAB
 tax ; move to (X)
 lda $38 ; and highbyte
 sbc $2c
 jsr $bdcd ; output number in (A/X)
 lda #$60 ; $e460
 ldy #$e4 ; pointer to 'BASIC BYTES FREE'
 jsr $ab1e ; output (A/Y)
 jmp $a644 ; perform NEW

E447 JIFFYDOS VECTORS
This table contains jump vectors that are transfered to $0300-$030b. Some
vectors are standard Commodore, but some are modifyed for JiffyDOS.

.e447 63 f7 ; IERROR VEC, print basic error message ($f763)
 ; Original IERROR VEC points to $e38b
.e449 83 4a ; IMAIN VECTOR, basic warm start ($a483)
.e44b 64 ea ; ICRNCH VECTOR, tokenise basic text ($ea64)
 ; Original ICRNCH VECTOR points to $a57c
.e44d a1 a7 ; IQPLOP VECTOR, list basic text ($a7a1)
.e44f e4 a7 ; IGONE VEXTOR, basic character dispatch ($a7ea)
.e451 86 ea ; IEVAL VECTOR, evaluate basic token ($ae86)

E453 INIT JIFFYDOS COMMANDS
This routine transfers the vectors $0300-$030b to set up the JiffyDOS
commands.

.e453 ldx #$0b ; 6 vectors to be copied
.e455 lda $e447,x
 sta $0300,x
 dex ; next byte
 bpl $e455 ; ready
 rts ; return

E45F WORDS: POWER UP MESSAGE
This is the power up message displayed on the screen when the 'Commie' is
switched on or reset. The strings are seperated by a zero byte.

 jiffydos v6.01 (c)1989 cmd

 c-64 basic v2 xxxxx basic bytes free

.e45f 00 20 42 41 53 49 43 20 ; basic
.e467 42 59 54 45 53 20 46 52 ; bytes fr
.e46f 45 45 0d 00 93 0d 20 20 ; ee
.e477 20 20 20 20 20 4a 49 46 ; jif
.e47f 46 59 44 4f 53 20 56 36 ; fydos v6
.e487 2e 30 31 20 28 43 29 31 ; .01 (c)1
.e48f 39 38 39 20 43 4d 44 20 ; 989 cmd
.e497 20 0d 0d 20 43 2d 36 34 ; c-64
.e49f 20 42 41 53 49 43 20 56 ; basic v
.e4a7 32 20 20 20 00 81 ; 2

E4AD PATCH FOR BASIC CHKOUT CALL
This is a short patch added for the KERNAL ROM to preserv (A) when there
was no error returned from BASIC calling the CHKOUT routine. This corrects
a bug in the early versions of PRINT# and CMD.

.e4ad pha ; temp store (A)
 jsr $ffc9 ; CHKOUT

 tax
 pla ; retrieve (A)
 bcc $e4b6
 txa
.e4b6 rts

E4B7 INIT JIFFYDOS COMMANDS AND FUNKTIONKEYS
This routine initialises the JiffyDOS commands by jumping to $e453 where
the $0300-vectors are set up. Then it sets up the vectors at $b0 to point
to the funktionkey table at $f672. The entry at $e4c2 disables the
funktionkeys after a @f command.

.e4b7 jsr $e453 ; init JiffyDOS command vectors
 lda #$72 ; Set up JiffyDOS function key vector
 sta $b0 ; to $f672
 lda #$f6
 sta $b1
.e4c2 inx ; (X)=0
 stx $9b ; AKTFLT, aktivate/deaktivate funktion keys
 rts

.e4c6 lda #$6f ; #$6f=command channel
 jsr $f0e4 ; prepare for input
 jsr $ffcf ; input byte from command channel
 cmp #$35 ; equal to #$35 (#)
 rts

 tax ; free byte
 tax ; free byte

E4D3 RS232 PATCH
This patch has been added to the RS232 input routine in KERNAL v.3. It
initialises the RS232 parity byte, RIPRTY, on reception of a start bit.

.e4d3 sta $a9 ; RINONE, check for start bit
 lda #$01
 sta $ab ; RIPRTY, RS232 input parity
 rts

E4DA RESET CHARACTER COLOUR
This routine is a patch in KERNAL version 3 to fix a bug with the colour
code. The routine is called by 'clear a screen line', and sets the
character colour to COLOR.

.e4da lda $0286 ; get COLOR
 sta ($f3),y ; and store in current screen position
 rts

E4E0 PAUSE AFTER FINDING TAPE FILE?????????????
This routine would continue tape loading without pressing C= when a file
was found. This could probably be removed, since JiffyDOS not uses tape
junk.

.e4e0 adc #$02
.e4e2 ldy $91
 iny
 bne $e4eb
 cmp $a1
 bne $e4e2
.e4eb rts

E4EC RS232 TIMING TABLE - PAL
Timingtable for RS232 NMI for use with PAL machines. This table contains
the prescaler values for setting up the RS232 baudrates. The table containe

10 entries which corresponds to one of the fixed RS232 rates, starting with
lowest (50 baud) and finishing with the highest (2400 baud). Since the
clock frequency is different between NTSC and PAL systems, there is another
table for NTSC machines at $fec2.

.e4ec 19 29 ; 50 baud
.e4ee 44 19 ; 75 baud
.e4f0 1a 11 ; 110 baud
.e4f2 e8 0d ; 134.5 baud
.e4f4 70 0c ; 150 baud
.e4f6 06 06 ; 300 baud
.e4f8 d1 02 ; 600 baud
.e4fa 37 01 ; 1200 baud
.e4fc ae 00 ; (1800) 2400 baud
.e4fe 69 00 ; 2400 baud

E500 IOBASE: GET I/O ADDRESS
The KERNAL routine IOBASE ($fff3) jumps to this routine. It returns the
base address $dc00 in (X/Y)

.e500 ldx #$00 ; set (X/Y) to $dc00
 ldy #$dc
 rts

E505 SCREEN: GET SCREEN SIZE
The KERNAL routine SCREEN ($ffed) jumps to this routine. It returns the
screen size; columns in (X) and rows in (Y).

.e505 ldx #$28 ; 40 columns
 ldy #$19 ; 25 rows
 rts

E50A PLOT: PUT/GET ROW AND COLUMN
The KERNAL routine PLOT ($fff0) jumps to this routine. The option taken
depends on the state of carry on entry. If it is set, the column is placed
in (Y) and the row placed in (X). If carry is clear, the cursor position is
read from (X/Y) and the screen pointers are set.

.e50a bcs $e513 ; if carry set, jump
 stx $d6 ; store TBLX, current row
 sty $d3 ; store PNTR, current column
 jsr $e56c ; set screen pointers
.e513 ldx $d6 ; read TBLX
 ldy $d3 ; read PNTR
 rts

E518 CINT1: INITIALISE I/O
This routine is part of the KERNAL CINT init routine. I/O default values
are set, <shift+cbm> keys are disabled, and cursor is switched off. The
vector to the keyboard table is set up, and the length of the
keyboardbuffer is set to 10 characters. The cursor color is set to
lightblue, and the key-repeat parameters are set up.

.e518 jsr $e5a0 ; set I/O defaults
 lda #$00
 sta $0291 ; disable <SHIFT + CBM> by writing zero into MODE
 sta $cf ; the cursor blink flag, set BLNON on
 lda #$48
 sta $028f
 lda #$eb ; set the KEYLOG vector to point at $eb48
 sta $0290
 lda #$0a ; set max number of character is keyboard buffer to
10
 sta $0289 ; XMAX

 sta $028c ; How many 1/60 of a second to wait before key is
 repeated. Used togeather with $028b
 lda #$0e ; set character colour to light blue
 sta $0286 ; COLOR
 lda #$04 ; How many $028c before a new entry is
 sta $028b ; put in the keyboard buffer, KOUNT
 lda #$0c
 sta $cd ; store in BLCNT, cursor toggle timer
 sta $cc ; store in BLNSW, cursor enable

E544 CLEAR SCREEN
This routine sets up the screen line link table ($d9 - $f2), LDTB1, which
is used to point out the address to the screen. The later part of the
routine performs the screen clear, line by line, starting at the bottom
line. It continues to the next routine which is used to home the cursor.

.e544 lda $0288 ; get HIBASE, top of screen memory
 ora #$80 ; fool around
 tay
 lda #$00
 tax
.e54d sty $d9,x ; store in screen line link table, LDTB1
 clc
 adc #$28 ; add #40 to next line
 bcc $e555
 iny ; inc page number
.e555 inx ; next
 cpx #$1a ; till all 26?? is done
 bne $e54d
 lda #$ff
 sta $d9,x ; last pointer is $ff
 ldx #$18 ; start clear screen with line $18 (bottom line)
.e560 jsr $e9ff ; erase line (X)
 dex ; next
 bpl $e560 ; till screen is empty

E566 HOME CURSOR
This routine puts the cursor in the top left corner by writing its column
and line to zero.

.e566 ldy #$00
 sty $d3 ; write to PNTR, cursor column
 sty $d6 ; write to TBLX, line number

E56C SET SCREEN POINTRES
This routine positions the cursor on the screen and sets up the screen
pointers. On entry, TBLX must hold the line number, and PNTR the column
number of the cursor position. A major bug has been removed from the
original commodore KERNAL. It sometimes caused the computer to crash, when
deleting characters from the bottom line.

.e56c ldx $d6 ; read TBLX
 lda $d3 ; read PNTR
.e570 ldy $d9,x ; read value from screen line link table, LDTB1
 bmi $e57c ; heavy calcuations??? jump when ready
 clc
 adc #$28
 sta $d3 ; PNTR
 dex
 bpl $e570
.e57c jsr $e9f0 ; set start of line (X)
 lda #$27
 inx
.e582 ldy $d9,x ; LDTB1

 bmi $e58c
 clc
 adc #$28
 inx
 bpl $e582
.e58c sta $d5 ; store in LMNX, physical screen line length
 jmp $ea24 ; sync color pointer
.e591 cpx $c9 ; read LXSP, chech cursor at start of input
 beq $e598
 jmp $e6ed ; retreat cursor
.e598 rts

 nop ; A free byte!!! (own serial number haha)

E59A SET I/O DEFAULTS
The default output device is set to 3 (screen), and the default input
device is set to 0 (keyboard). The VIC chip registers are set from the
video chip setup table. The cursor is then set to the home position.

.e59a jsr $e5a0 ; set I/O defaults
 jmp $e566 ; home cursor and exit routine
.e5a0 lda #$03
 sta $9a ; DFLTO, default output device - screen
 lda #$00
 sta $99 ; DFLTN, default input device - keyboard
 ldx #$2f
.e5aa lda $ecb8,x ; VIC chip setup table
 sta $cfff,x ; VIC chip I/O registers
 dex ; next
 bne $e5aa ; till ready
 rts

E5B4 LP2: GET CHARACTER FROM KEYBOARD BUFFER
It is assumed that there is at leaset one character in the keyboard buffer.
This character is obtained and the rest of the queue is moved up one by one
to overwrite it. On exit, the character is in (A).

.e5b4 ldy $0277 ; read KEYD, first character in keyboard buffer
queue
 ldx #$00
.e5b9 lda $0278,x ; overwrite with next in queue
 sta $0277,x
 inx
 cpx $c6 ; compare with NDX, number of characters in queue
 bne $e5b9 ; till all characters are moved
 dec $c6 ; decrement NDX
 tya ; transfer read character to (A)
 cli ; enable interrupt
 clc
 rts

E5CA INPUT FROM KEYBOARD
This routine uses the previous routine to get characters from the keyboard
buffer. Each character is output to the screen, unless it is <shift/RUN>.
If so, the contents of the keyboard buffer is replaced with LOAD <CR> RUN
<CR>. The routine ends when a carriage routine is encountered. The JSR at
$e5e7 is o patch in JiffyDOS to test if the F-keys or other valid JiffyDOS
keys are pressed. If not, this routine continues as normal.

.e5ca jsr $e716 ; output to screen
.e5cd lda $c6 ; read NDX, number of characters in keyboard queue
 sta $cc ; BLNSW, cursor blink enable
 sta $0292 ; AUTODN, auto scroll down flag
 beq $e5cd ; loop till key is pressed

 sei ; disable interrupt
 lda $cf ; BLNON, last cursor blink (on/off)
 beq $e5e7
 lda $ce ; GDBLN, character under cursor
 ldx $0287 ; GDCOL, background color under cursor
 ldy #$00
 sty $cf ; clear BLNON
 jsr $ea13 ; print to screen
.e5e7 jsr $f9e5 ; Get character from keyboard buffer. JiffyDOS fixx
 cmp #$83 ; test if <shift/RUN> is pressed
 bne $e5fe ; nope
 ldx #$09 ; transfer 'LOAD <CR> RUN <CR>' to keyboard buffer
 sei
 stx $c6 ; store #9 in NDX, characters in buffer
.e5f3 lda $ece6,x ; 'LOAD <CR> RUN <CR>' message in ROM
 sta $0276,x ; store in keyboard buffer
 dex
 bne $e5f3 ; all nine characters
 beq $e5cd ; allways jump
.e5fe cmp #$0d ; carriage return pressed?
 bne $e5ca ; nope, go to start
 ldy $d5 ; get LNMX, screen line length
 sty $d0 ; CRSV, flag input/get from keyboard
.e606 lda ($d1),y ; PNT, screen address
 cmp #$20 ; space?
 bne $e60f ; nope
 dey
 bne $e606 ; next
.e60f iny
 sty $c8 ; store in INDX, end of logical line for input
 ldy #$00
 sty $0292 ; AUTODN
 sty $d3 ; PNTR, cursor column
 sty $d4 ; QTSW, reset quoute mode
 lda $c9 ; LXSP, corsor X/Y position
 bmi $e63a
 ldx $d6 ; TBLX, cursor line number
 jsr $e591 ; retreat cursor
 cpx $c9 ; LXSP
 bne $e63a
 lda $ca
 sta $d3 ; PNTR
 cmp $c8 ; INDX
 bcc $e63a
 bcs $e65d

E632 INPUT FROM SCREEN OR KEYBOARD
This routine is used by INPUT to input data from devices not on the serial
bus, ie. from screen or keyboard. On entry (X) and (Y) registers are
preserved. A test is made to determine which device the input is to be
from. If it is the screen, then quotes and <RVS> are tested for and the
character is echoed on the screen. Keyboard inputs make use of the previous
routine.

.e632 tya ; preserve (X) and (Y) registers
 pha
 txa
 pha
 lda $d0 ; CRSW, INPUT/GET from keyboard or screen
 beq $e5cd ; input from keyboard
.e63a ldy $d3 ; PNTR, cursor column
 lda ($d1),y ; read from current screen address
 sta $d7 ; temp store
 and #$3f
 asl $d7

 bit $d7
 bpl $e64a
 ora #$80
.e64a bcc $e650
 ldx $d4 ; QTSW, editor in quotes mode
 bne $e654 ; yepp
.e650 bvs $e654
 ora #$40
.e654 inc $d3 ; PNTR
 jsr $e684 ; do quotes test
 cpy $c8 ; INDX, end of logical line for input
 bne $e674
.e65d lda #$00
 sta $d0 ; CRSW
 lda #$0d
 ldx $99 ; DFLTN, default input device
 cpx #$03 ; screen
 beq $e66f ; yes
 ldx $9a ; DFLTO, default output device
 cpx #$03 ; screen
 beq $e672 ; yes
.e66f jsr $e716 ; output to screen
.e672 lda #$0d
.e674 sta $d7
 pla
 tax ; restore (X) and (Y) registers
 pla
 tay
 lda $d7
 cmp #$de
 bne $e682
 lda #$ff
.e682 clc
 rts

E684 QUOTES TSET
On entry, (A) holds the character to be tested. If (A) holds ASCII quotes,
then the quotes flag is toggled.

.e684 cmp #$22 ; ASCII quotes (")
 bne $e690 ; nope, return
 lda $d4 ; QTSW, quotes mode flag
 eor #$01 ; toggle on/off
 sta $d4 ; store
 lda #$22 ; restore (A) to #$22
.e690 rts

E691 SET UP SCREEN PRINT
The RVS flag is tested to see if reversed characters are to be printed. If
insert mode is on, the insert counter is decremented by one. When in insert
mode, all characters will be displayd, ie. DEL RVS etc. The character
colour is placed in (X) and the character is printed to the scrren and the
cursor advanced.

.e691 ora #$40
.e693 ldx $c7 ; test RVS, flag for reversed characters
 beq $e699 ; nope
.e697 ora #$80 ; set bit 7 to reverse character
.e699 ldx $d8 ; test INSRT, flag for insert mode
 beq $e69f ; nope
 dec $d8 ; decrement number of characters left to insert
.e69f ldx $0286 ; get COLOR, current character colour code
 jsr $ea13 ; print to screen
 jsr $e6b6 ; advance cursor
.e6a8 pla

 tay
 lda $d8 ; INSRT
 beq $e6b0
 lsr $d4
.e6b0 pla
 tax
 pla
 clc
 cli
 rts

E6B6 ADVANCE CURSOR
The cursor is advanced one position on the screen. If this puts it beyond
the 40th column, then it is placed at the beginning of the next line. If
the length of that line is less than 80, then this new line is linked to
the previous one. A space is opened if data already exists on the new line.
If the cursor has reached the bottom of the screen, then the screen is
scrolled down.

.e6b6 jsr $e8b3 ; check line increment
 inc $d3 ; increment PNTR, cursor column on current line
 lda $d5 ; LNMX, physical screen line length
 cmp $d3 ; compare to PNTR
 bcs $e700 ; not beyond end of line, exit
 cmp #$4f ; $4f = 79
 beq $e6f7 ; put cursor on new logical line
 lda $0292 ; AUTODN, auto scroll down flag
 beq $e6cd ; auto scroll is on
 jmp $e967 ; open a space on the screen
.e6cd ldx $d6 ; read TBLX, current line number
 cpx #$19 ; $19 = 25
 bcc $e6da ; less than 25
 jsr $e8ea ; scroll down
 dec $d6 ; place cursor on line 24
 ldx $d6
.e6da asl $d9,x ; clear bit7 in LDTB1 to indicate that it is line 2
 lsr $d9,x ; in the logical line
 inx ; next line
 lda $d9,x ; set bit7 in LDTB1 to indicate that it is line 1
 ora #$80 ; in the logical line
 sta $d9,x
 dex
 lda $d5 ; add $28 (40) to LNMX to allow 80 characters
 clc ; on the logical line
 adc #$28
 sta $d5

E6ED RETREAT CURSOR
The screen line link table is searched, and then the start of line is set.
The rest of the routine sets the cursor onto the next line for the previous
routine.

.e6ed lda $d9,x ; LDTB1, screen line link table
 bmi $e6f4 ; test bit7
 dex ; next line
 bne $e6ed ; till all are done
.e6f4 jmp $e9f0 ; set start of line
.e6f7 dec $d6 ; decrement TBLX, cursor line
 jsr $e87c ; goto next line
 lda #$00
 sta $d3 ; set PNTR, the cursor column, to zero
.e700 rts

E701 BACK ON TO PREVIOUS LINE

This routine is called when using and <cursor LEFT>. The line number
is tested, and if the cursor is already on the top line, then no further
action is taken. The screen pointers are set up and the cursor placed at
the end of the previous line.

.e701 ldx $d6 ; test TBLX, physical line number
 bne $e70b ; if not on top line, branch
 stx $d3 ; set PNTR to zero as well
 pla
 pla
 bne $e6a8 ; allways jump
.e70b dex ; decrement TBLX
 stx $d6 ; and store
 jsr $e56c ; set screen pointers
 ldy $d5 ; get LNMX
 sty $d3 ; and store in PNTR
 rts

E716 OUTPUT TO SCREEN
This routine is part of the main KERNAL CHROUT routine. It prints CBM ASCII
characters to the screen and takes care of all the screen editing
characters. The cursor is automatically updated and scrolling occurs if
necessary. On entry, (A) must hold the character to be output. On entry all
registers are stored on the stack. For convinience, the routine is slpit
into sections showing the processing of both shifted and unshifted
character.

.e716 pha ; store (A), (X) and (Y) on stack
 sta $d7 ; temp store
 txa
 pha
 tya
 pha
 lda #$00
 sta $d0 ; store in CRSW
 ldy $d3 ; PNTR, cursor positions on line
 lda $d7 ; retrieve from temp store
 bpl $e72a ; do unshifted characters
 jmp $e7d4 ; do shifted characters

UNSHIFTED CHARACTERS. Ordinary unshifted ASCII characters and PET graphics
are output directly to the screen. The following control codes are trapped
and precessed: <RETURN>, , <CRSR RIGHT>, <CRSR DOWN>. If either insert
mode is on or quotes are open (except for) then the control
characters are not processed, but output as reversed ASCII literals.

.e72a cmp #$0d ; <RETURN>?
 bne $e731 ; nope
 jmp $e891 ; execute return
.e731 cmp #$20 ; <SPACE>?
 bcc $e745
 cmp #$60 ; #$60, first PET graphic character?
 bcc $e73d
 and #$df ; %11011111
 bne $e73f
.e73d and #$3f ; %00111111
.e73f jsr $e684 ; do quotes test
 jmp $e693 ; setup screen print
.e745 ldx $d8 ; INSRT, insert mode flag
 beq $e74c ; mode not set
 jmp $e697 ; output reversed charcter
.e74c cmp #$14 ; ?
 bne $e77e ; nope
 tya ; (Y) holds cursor column
 bne $e759 ; not start of line

 jsr $e701 ; back on previous line
 jmp $e773
.e759 jsr $e8a1 ; check line decrement
 dey ; decrement cursor column
 sty $d3 ; and store in PNTR
 jsr $ea24 ; syncronise colour pointer
.e762 iny ; copy character at cursor position (Y+1) to (Y)
 lda ($d1),y ; read character
 dey
 sta ($d1),y ; and store it one position back
 iny
 lda ($f3),y ; read character colour
 dey
 sta ($f3),y ; and store it one position back
 iny ; more characters to move
 cpy $d5 ; compare with LNMX, length of physical screen line
 bne $e762 ; if not equal, move more characters
.e773 lda #$20
 sta ($d1),y ; store <SPACE> at end of line
 lda $0286 ; COLOR, current character colour
 sta ($f3),y ; store colour at end of line
 bpl $e7cb ; allways jump
.e77e ldx $d4 ; QTSW, editor in quotes mode
 beq $e785 ; no
 jmp $e697 ; output reversed character
.e785 cmp #$12 ; <RVS>?
 bne $e78b ; no
 sta $c7 ; RVS, reversed character output flag
.e78b cmp #$13 ; <HOME>?
 bne $e792 ; no
 jsr $e566 ; home cursor
.e792 cmp #$1d ; <CRSR RIGHT>?
 bne $e7ad ; nope
 iny ; increment (Y), internal counter for column
 jsr $e8b3 ; check line increment
 sty $d3 ; store (Y) in PNTR
 dey ; decrement (Y)
 cpy $d5 ; and compare to LNMX
 bcc $e7aa ; not exceeded line length
 dec $d6 ; TBLX, current physical line number
 jsr $e87c ; goto next line
 ldy #$00
.e7a8 sty $d3 ; set PNTR to zero, cursor to the left
.e7aa jmp $e6a8 ; finish screen print
.e7ad cmp #$11 ; <CRSR DOWN>?
 bne $e7ce ; no
 clc ; prepare for add
 tya ; (Y) holds cursor column
 adc #$28 ; add 40 to next line
 tay ; to (Y)
 inc $d6 ; increment TBLX, physical line number
 cmp $d5 ; compare to LNMX
 bcc $e7a8 ; finish screen print
 beq $e7a8 ; finish screen print
 dec $d6 ; restore TBLX
.e7c0 sbc #$28
 bcc $e7c8
 sta $d3 ; store PNTR
 bne $e7c0
.e7c8 jsr $e87c ; go to next line
.e7cb jmp $e6a8 ; finish screen print
.e7ce jsr $e8cb ; set colour code
 jmp $ec44 ; do graphics/text control

SHIFTED CHARACTERS. These are dealt with in the following order: Shifted
ordinart ASCII and PET graphics characters, <shift RETURN>, <INST>, <CRSR
UP>, <RVS OFF>, <CRSR LEFT>, <CLR>. If either insert mode is on, or quotes
are open, then the control character is not processed but reversed ASCII
literal is printed.

.e7d4 and #$7f ; clear bit7
 cmp #$7f ; compare to #$7f
 bne $e7dc ; not equal
 lda #$5e ; if #$7f, load #$5e
.e7dc cmp #$20 ; ASCII <SPACE>?
 bcc $e7e3
 jmp $e691 ; set up screen print
.e7e3 cmp #$0d ; <RETURN>?
 bne $e7ea ; nope
 jmp $e891 ; do return
.e7ea ldx $d4 ; read QTSW
 bne $e82d ; if quotes mode, jump
 cmp #$14 ; <INST>?
 bne $e829 ; nope
 ldy $d5 ; LNMX
 lda ($d1),y ; get screen character
 cmp #$20 ; space?
 bne $e7fe ; nope
 cpy $d3 ; PNTR equal to LNMX
 bne $e805 ; nope
.e7fe cpy #$4f ; #$4f=79, last character
 beq $e826 ; end of logical line, can not insert
 jsr $e965 ; open space on line
.e805 ldy $d5 ; LNMX
 jsr $ea24 ; syncronise colour pointer
.e80a dey ; prepare for move
 lda ($d1),y ; read character at pos (Y)
 iny
 sta ($d1),y ; and move one step to the right
 dey
 lda ($f3),y ; read character colour
 iny
 sta ($f3),y ; move one step to the right
 dey ; decrement counter
 cpy $d3 ; compare with PNTR
 bne $e80a ; till all characters right of cursor are moved
 lda #$20 ; <SPACE>, ASCII #$20
 sta ($d1),y ; store at new character position
 lda $0286 ; COLOR, current character colour
 sta ($f3),y ; store at new colour position
 inc $d8 ; INSRT FLAG
.e826 jmp $e6a8 ; finish screen print
.e829 ldx $d8 ; INSRT FLAG
 beq $e832 ; insert mode is off
.e82d ora #$40
 jmp $e697 ; set up screen print
.e832 cmp #$11 ; <CRSR UP>?
 bne $e84c ; nope
 ldx $d6 ; read TBLX
 beq $e871 ; at topline, do nothing
 dec $d6 ; else decrement TBLX
 lda $d3 ; PNTR
 sec ; prepare for substract
 sbc #$28 ; back 40 columns for double line
 bcc $e847 ; skip
 sta $d3 ; store PNTR
 bpl $e871 ; finish screen print
.e847 jsr $e56c ; set screen pointer
 bne $e871 ; finish screen print

.e84c cmp #$12 ; <RVS OFF>?
 bne $e854 ; nope
 lda #$00
 sta $c7 ; RVS, disable reverse print
.e854 cmp #$1d ; <CRSR LEFT>?
 bne $e86a ; nope
 tya ; (Y) holds cursor column
 beq $e864 ; at first position
 jsr $e8a1 ; check line decrement
 dey ; one position left
 sty $d3 ; store in PNTR
 jmp $e6a8 ; finish screen print
.e864 jsr $e701 ; back to previous line
 jmp $e6a8 ; finish screen print
.e86a cmp #$13 ; <CLR>?
 bne $e874 ; nope
 jsr $e544 ; clear screen
.e871 jmp $e6a8 ; finish screen print
.e874 ora #$80
 jsr $e8cb ; set colour code
 jmp $ec4f ; set graphics/text mode

E87C GO TO NEXT LINE
The cursor is placed at the start of the next logical screen line. This
involves moving down two lines for a linked line. If this places the cursor
below the bottom of the screen, then the screen is scrolled.

.e87c lsr $c9 ; LXSP, cursor X-Y position
 ldx $d6 ; TBLX, current line number
.e880 inx ; next line
 cpx #$19 ; 26th line
 bne $e888 ; nope, scroll is not needed
 jsr $e8ea ; scroll down
.e888 lda $d9,x ; test LTDB1, screen line link table if first of two
 bpl $e880 ; yes, jump down another line
 stx $d6 ; store in TBLX
 jmp $e56c ; set screen pointers

E891 OUTPUT <CARRIAGE RETURN>
All editor modes are swithed off and the cursor placed at the start of the
next line.

.e891 ldx #$00
 stx $d8 ; INSRT, disable insert mode
 stx $c7 ; RVS, disable reversed mode
 stx $d4 ; QTSW, disable quotes mode
 stx $d3 ; PNTR, put cursor at first column
 jsr $e87c ; go to next line
 jmp $e6a8 ; finish screen print

E8A1 CHECK LINE DECREMENT
When the cursor is at the beginning of a screen line, if it is moved
backwards, this routine places the cursor at the end of the line above. It
tests both column 0 and column 40.

.e8a1 ldx #$02
 lda #$00
.e8a5 cmp $d3 ; test if PNTR is at the first column
 beq $e8b0 ; yepp
 clc ; add $28 (40)
 adc #$28 ; to test if cursor is at line two in the logical
line
 dex
 bne $e8a5 ; test two lines

 rts
.e8b0 dec $d6 ; decrement line number
 rts

E8B3 CHECK LINE INCREMENT
When the cursor is at the end of the screen, if it is moved forward, this
routine places the cursor at the start of the line below.

.e8b3 ldx #$02
 lda #$27 ; start by testing position $27 (39)
.e8b7 cmp $d3 ; compare with PNTR
 beq $e8c2 ; brach if equal, and move cursor down
 clc ; else, add $28 to test next physical line
 adc #$28
 dex ; two lines to test
 bne $e8b7
 rts ; return here without moving cursor down
.e8c2 ldx $d6 ; get TBLX
 cpx #$19 ; and test if at the 25th line
 beq $e8ca ; yepp, return without moving down
 inc $d6 ; increment TBLX
.e8ca rts

E8CB SET COLOUR CODE
This routine is called by the output to screen routine. The Commodore ASCII
code in (A) is compared with the ASCII colout code table. If a match is
found, then the table offset (and hence the colour value) is stored in
COLOR.

.e8cb ldx #$0f ; 16 values to be tested
.e8cd cmp $e8da,x ; compare with colour code table
 beq $e8d6 ; found, jump
 dex ; next colour in table
 bpl $e8cd ; till all 16 are tested
 rts ; if not found, return
.e8d6 stx $0286 ; if found, store code in COLOR
 rts

E8DA COLOUR CODE TABLE
This is a table containing 16 Commodore ASCII codes representing the 16
available colours. Thus red is represented as $1c in the table, and would
be obtained by PRINT CHR$(28), or poke 646,2.

.e8da 90 ; color0, black
.e8db 05 ; color1, white
.e8dc 1c ; color2, red
.e8dd 9f ; color3, cyan
.e8de 9c ; color4, purple
.e8df 1e ; color5, green
.e8e0 1f ; color6, blue
.e8e1 9e ; color7, yellow
.e8e2 81 ; color8, orange
.e8e3 95 ; color9, brown
.e8e4 96 ; colorA, pink
.e8e5 97 ; colorB, grey1
.e8e6 98 ; colorC, grey2
.e8e7 99 ; colorD, light green
.e8e8 9a ; colorE, light blue
.e8e9 9b ; colorF, grey3

E8EA SCROLL SCREEN
This routine scrolls the screen down by one line. If the top two lines are
linked togeather, then the scroll down is repeated. The screen line link
pointers are updated, each screen line is cleared and the line below is

moved up. The keyboard is directly read from CIA#1, and the routine tests
if <CTRL> is pressed. A JiffyDOS feature is the <CTRL S> option, which
freezes the scroll till another key is pressed.

.e8ea lda $ac ; temp store SAL on stack
 pha
 lda $ad
 pha
 lda $ae ; temp store EAL on stack
 pha
 lda $af
 pha
.e8f6 ldx #$ff
 dec $d6 ; decrement TBLX
 dec $c9 ; decrement LXSP
 dec $02a5 ; temp store for line index
.e8ff inx
 jsr $e9f0 ; set start of line (X)
 cpx #$18
 bcs $e913
 lda $ecf1,x ; read low-byte screen addresses
 sta $ac
 lda $da,x
 jsr $e9c8 ; move a screen line
 bmi $e8ff
.e913 jsr $e9ff ; clear a screen line
 ldx #$00
.e918 lda $d9,x ; calcuate new screen line link table
 and #$7f ; clear bit7
 ldy $da,x
 bpl $e922
 ora #$80 ; set bit7
.e922 sta $d9,x ; store new value in table
 inx ; next line
 cpx #$18 ; till all 25 are done
 bne $e918
 lda $f1 ; bottom line link
 ora #$80 ; unlink it
 sta $f1 ; and store back
 lda $d9 ; test top line link
 bpl $e8f6 ; line is linked, scroll again
 inc $d6 ; increment TBLX
 inc $02a5
.e938 jsr $eb42 ; lda #$7f, sta $dc00, rts
 lda $dc01 ; read keyboard decode column
 cmp #$fb ; <CTRL> pressed
 bne $e956 ; nope, exit
 ldx $c6 ; NDX, number of characters in keyboard buffer
 beq $e938 ; freeze scroll as long as <CTRL> is pressed
 lda $0276,x ; read character from keyboard buffer
 sbc #$13 ; substract $13, "S"
 bne $e956 ; nope, did not press "S"
 sta $c6 ; clear NDX
.e94f cli ; allow interrupts
 cmp $c6 ; any new character in buffer
 beq $e94f ; nope, still freeze
 sta $c6 ; clear NDX
.e956 ldx $d6 ; read TBLX
.e958 pla ; retrieve EAL
 sta $af
 pla
 sta $ae
 pla ; retrieve SAL
 sta $ad
 pla

 sta $ac
 rts ; exit

E965 OPEN A SPACE ON THE SCREEN
This routine opens a space on the screen for use with <INST>. If needed,
the screen is then scrolled down, otherwise the screen line is moved and
cleared. Finally the screen line link table is adjusted and updated.

.e965 ldx $d6 ; TBLX, current cursor line number
.e967 inx ; test next
 lda $d9,x ; LDTB1, screen line link table
 bpl $e967
 stx $02a5 ; temp line for index
 cpx #$18 ; bottom of screen
 beq $e981 ; yes
 bcc $e981 ; above bottom line
 jsr $e8ea ; scroll screen down
 ldx $02a5 ; temp line for index
 dex
 dec $d6 ; TBLX
 jmp $e6da ; adjust link table and end
.e981 lda $ac ; push SAL, scrolling pointer
 pha
 lda $ad
 pha
 lda $ae ; push EAL, end of program
 pha
 lda $af
 pha
 ldx #$19
.e98f dex
 jsr $e9f0 ; set start of line
 cpx $02a5 ; temp line for index
 bcc $e9a6
 beq $e9a6
 lda $ecef,x ; screen line address table
 sta $ac ; SAL
 lda $d8,x ; LDTB1
 jsr $e9c8 ; move screen line
 bmi $e98f
.e9a6 jsr $e9ff ; clear screen line
 ldx #$17 ; fix screen line link table
.e9ab cpx $02a5 ; temp line for index
 bcc $e9bf
 lda $da,x ; LDTB1+1
 and #$7f
 ldy $d9,x ; LDTB1
 bpl $e9ba
 ora #$80
.e9ba sta $da,x
 dex ; next line
 bne $e9ab ; till line zero
.e9bf ldx $02a5 ; temp line for index
 jsr $e6da ; adjust link table
 jmp $e958 ; pull SAL and EAL

E9C8 MOVE A SCREEN LINE
This routine synchronises colour transfer, and then moves the screen line
pointed to down, character by character. The colour codes for each
character are also moved in the same way.

.e9c8 and #$03
 ora $0288 ; HIBASE, top of screen page
 sta $ad ; store >SAL, screen scroll pointer
 jsr $e9e0 ; synchronise colour transfer

 ldy #$27 ; offset for character on screen line
.e9d4 lda ($ac),y ; move screen character
 sta ($d1),y
 lda ($ae),y ; move character colour
 sta ($f3),y
 dey ; next character
 bpl $e9d4 ; till all 40 are done
 rts

E9E0 SYNCHRONISE COLOUR TRANSFER
This routine setd up a temporary pointer in EAL to the colour RAM address
that corresponts to the temporary screen address held in EAL.

.e9e0 jsr $ea24 ; synchronise colour pointer
 lda $ac ; SAL, pointer for screen scroll
 sta $ae ; EAL
 lda $ad
 and #$03
 ora #$d8 ; setup colour ram to $d800
 sta $af
 rts

E9F0 SET START OF LINE
On entry, (X) holds the line number. The low byte of the address is set
from the ROM table, and the highbyte derived from the screen link and
HIBASE.

.e9f0 lda $ecf0,x ; table of screen line to bytes
 sta $d1 ; <PNT, current screen line address
 lda $d9,x ; LDTB1, screen line link table
 and #$03
 ora $0288 ; HIBASE, page of top screen
 sta $d2 ; >PNT
 rts

E9FF CLEAR SCREEN LINE
The start of line is set and the screen line is cleared by filloing it with
ASCII spaces. The corresponding line of colour RAM is also cleared to the
value held in COLOR.

.e9ff ldy #$27
 jsr $e9f0 ; set start of line
 jsr $ea24 ; synchronise colour pointer
.ea07 jsr $e4da ; reset character colour, to COLOR
 lda #$20 ; ASCII space
 sta ($d1),y ; store character on screen
 dey ; next
 bpl $ea07 ; till hole line is done
 rts

 nop ; free byte

EA13 PRINT TO SCREEN
The colour pointer is synchronised, and the character in (A) directly
stored in the screen RAM. The character colour in (X) is stored at the
equivalent point in the colour RAM.

.ea13 tay ; put print character in (Y)
 lda #$02
 sta $cd ; store in BLNCT, timer to toggle cursor
 jsr $ea24 ; synchronise colour pointer
 tya ; print character back to (A)
.ea1c ldy $d3 ; PNTR, cursor column on line
 sta ($d1),y ; store character on screen

 txa
 sta ($f3),y ; stor character colour
 rts

EA24 SYNCHRONISE COLOUR POINTER
The pointer to the colour RAM is set up according to the current screen
line address. This is done by reading the current screen line address and
modefying it to colour RAM pointers and write it to USER at $f3/$f4

.ea24 lda $d1 ; copy screen line low byte
 sta $f3 ; to colour RAM low byte
 lda $d2 ; read'n modify the hi byte
 and #$03
 ora #$d8
 sta $f4 ; to suite the colour RAM
 rts

EA31 MAIN IRQ ENTRY POINT
This routine services the normal IRQ that jumps through the hardware vector
to $ff48, and then continues to the CINV vector at $0314. First it checks
if the <STOP> key was pressed and updates the realtime clock. Next, the
cursor is updated (if it is enabled, BLNSW). The blink counter, BLNCT, is
decremented. When this reaches zero, the cursor is toggled (blink on/off).
Finally it scans the keyboard. The processor registers are then restored on
exit.
Area from $ea64 to $ea7b has been changed in the JiffyDOS system. Some
routintes to handle the casetterecorder has been removed.

.ea31 jsr $ffea ; update realtime clock, routine UDTIM
 lda $cc ; read BLNSW to see if cursor is enabled
 bne $ea61 ; nope
 dec $cd ; read BLNCT
 bne $ea61 ; if zero, toggle cursor - else jump
 lda #$14 ; blink speed
 sta $cd ; restore BLCNT
 ldy $d3 ; get PNTR, cursor column
 lsr $cf ; BLNON, flag last cursor blink on/off
 ldx $0287 ; get background colour under cursor, GDCOL
 lda ($d1),y ; get screen character
 bcs $ea5c ; ?
 inc $cf ; increment BLNON
 sta $ce ; temporary store character under cursor
 jsr $ea24 ; synchronise colour pointer
 lda ($f3),y ; get colour under character
 sta $0287 ; store in GDCOL
 ldx $0286 ; get current COLOR
 lda $ce ; retrieve character under cursor
.ea5c eor #$80 ; toggle cursor by inverting character
 jsr $ea1c ; print to screen by using part of 'print to screen'
.ea61 jmp $ea7b ; skip

EA64 JIFFYDOS CRNCH
The ICRNCH VECTOR points to this routine after the JiffyDOS init.

.ea64 pla ; get last stack entry
 pha ; put back
 cmp #$98 ; equal to #$98
 beq $ea6d ; yepp, do JiffyDOS CRNCH
.ea6a jmp $a57c ; jump to original CRNCH
.ea6d jsr $f72c ; test if key in buffer is a JiffyDOS command
 bne $ea6a ; no command
 ldx $7a ; position i keybordbuffer
 ldy #$04 ; setup values for old routine
 tya

 jmp $a5e3 ; back into old CRNCH

byte .xxx ; free byte?? serialnumber!!

EA7B QUICK IRQ ENTRY POINT
If you dont want the screenupdate, of if you take care of it yourself, you
can use this quick exit, specially $ea81.

.ea7b jsr $ea87 ; scan keyboard
 lda $dc0d ; clear CIA#1 I.C.R to enable next IRQ
.ea81 pla ; restore (Y), (X), (A)
 tay
 pla
 tax
 pla
 rti ; back to normal

EA87 SCNKEY: SCAN KEYBOARD
The KERNAL routine SCNKEY ($ff9f) jumps to this routine. First, the shift-
flag, SHFLAG, is cleared, and the keyboard tested for nokey. The keyboard
is set up as a 8 * 8 matrix, and is read one row at a time. $ff indicates
that no key has been pressed, and a zerobit, that one key has been pressed.

.ea87 lda #$00
 sta $028d ; clear SHFLAG
 ldy #$40
 sty $cb
 sta $dc00 ; store in keyboard write register
 ldx $dc01 ; keyboard read register
 cpx #$ff ; no key pressed
 beq $eafb ; skip
 tay
 lda #$81 ; point KEYTAB vector to $eb81
 sta $f5
 lda #$eb
 sta $f6
 lda #$fe ; bit0 = 0
 sta $dc00 ; will test first row in matrix
.eaa8 ldx #$08 ; scan 8 rows in matrix
 pha ; temp store
.eaab lda $dc01 ; read
 cmp $dc01 ; wait for value to settle (key bouncing)
 bne $eaab
.eab3 lsr a ; test bit0
 bcs $eacc ; no key pressed
 pha
.eab7 lda ($f5),y ; get key from KEYTAB
 cmp #$05 ; value less than 5
 bcs $eac9 ; nope
 cmp #$03 ; value = 3
 beq $eac9 ; nope
 ora $028d
 sta $028d ; store in SHFLAG
 bpl $eacb
.eac9 sty $cb ; store keynumber we pressed in SFDX
.eacb pla
.eacc iny ; key counter
 cpy #$41 ; all 64 keys (8*8)
 bcs $eadc ; jump if ready
 dex ; next key in row
 bne $eab3 ; row ready
 sec ; prepare for rol
 pla
 rol a ; next row
 sta $dc00 ; store bit

 bne $eaa8 ; always jump
.eadc pla ; clean up

EADD PROCESS KEY IMAGE
This routine decodes the pressed key, and calcuates its ASCII value, by use
of the four tables. If the pressed key is the same key as in the former
interrupt, then the key-repeat-section is entered. The routine tests the
RPTFLG if the key shall repeat. The new key is stored in the keyboard
buffer, and all pointers are uppdated.

.eadd jmp ($028f) ; jump through KEYLOG vector, points to $eae0
.eae0 ldy $cb ; SFDX, number of the key we pressed
 lda ($f5),y ; get ASCII value from decode table
 tax ; temp store
 cpy $c5 ; same key as former interrupt
 beq $eaf0 ; yepp
 ldy #$10 ; restore the repeat delay counter
 sty $028c ; DELAY
 bne $eb26 ; always jump
.eaf0 and #$7f
 bit $028a ; RPTFLG, test repeat mode
 bmi $eb0d ; repeat all keys
 bvs $eb42 ; repeat none - exit routine
 cmp #$7f
.eafb beq $eb26
 cmp #$14 ; key pressed
 beq $eb0d ; yepp...
 cmp #$20 ; <space> key pressed
 beq $eb0d ; yepp...
 cmp #$1d ; <CRSR LEFT/RIGHT>
 beq $eb0d ; yepp..
 cmp #$11 ; <CRSRS DOWN/UP>
 bne $eb42 ; yepp..
.eb0d ldy $028c ; DELAY
 beq $eb17 ; skip
 dec $028c ; decrement DELAY
 bne $eb42 ; end
.eb17 dec $028b ; decremant KOUNT, repeat speed counter
 bne $eb42 ; end
 ldy #$04
 sty $028b ; init KOUNT
 ldy $c6 ; read NDX, number of keys in keyboard queue
 dey
 bpl $eb42 ; end
.eb26 ldy $cb ; read SFDX
 sty $c5 ; store in LSTX
 ldy $028d ; read SHFLAG
 sty $028e ; store in LSTSHF, last keyboard shift pattern
 cpx #$ff ; no valid key pressed
 beq $eb42 ; end
 txa
 ldx $c6 ; NDX, number of keys in buffer
 cpx $0289 ; compare to XMAX, max numbers oc characters in
buffer
 bcs $eb42 ; buffer is full, end
 sta $0277,x ; store new character in keyboard buffer
 inx ; increment counter
 stx $c6 ; and store in NDX
.eb42 lda #$7f
 sta $dc00 ; keyboard write register
 rts ; exit

.eb48 lda $028d ; SHFLAG
 cmp #$03 ; <SHIFT> and <CBM> at the same time
 bne $eb64 ; nope

 cmp $028e ; same as LSTSHF
 beq $eb42 ; if so, end
 lda $0291 ; read MODE, shift key enable flag
 bmi $eb76 ; end
 lda $d018 ; VIC memory control register
 eor #$02 ; toggle character set, upper/lower case
 sta $d018 ; and store
 jmp $eb76 ; process key image
.eb64 asl a
 cmp #$08 ; test <CTRL>
 bcc $eb6b ; nope
 lda #$06 ; set offset for ctrl
.eb6b tax ; to (X)
 lda $eb79,x ; read keyboard select vectors, low byte
 sta $f5 ; store in KEYTAB, decode table vector
 lda $eb7a,x ; read keyboard select vectors, high byte
 sta $f6 ; KEYTAB+1
.eb76 jmp $eae0 ; process key image

EB79 KEYBOARD SELECT VECTORS
This is a table of vectors pointing to the start of the four keyboard
decode tables.

.eb79 81 eb ; vector to unshifted keyboard, $eb81
.eb7b c2 eb ; vector to shifted keyboard, $ebc2
.eb7d 03 ec ; vector to cbm keyboard, $ec03
.eb7f 78 ec ; vector to ctrl keyboard, $ec78

EB81 KEYBOARD 1 - UNSHIFTED
This is the first of four keybboard decode tables. The ASCII code for the
key pressed is at the intersection of the row (written to $dc00) and the
column (read from $dc01). The matrix values are shown below. Note that left
and right shift keys are seperated.

.eb81 14 0d 1d 88 85 86 87 11
.eb89 33 57 41 34 5a 53 45 01
.eb91 35 52 44 36 43 46 54 58
.eb99 37 59 47 38 42 48 55 56
.eba1 39 49 4a 30 4d 4b 4f 4e
.eba9 2b 50 4c 2d 2e 3a 40 2c
.ebb1 5c 2a 3b 13 01 3d 5e 2f
.ebb9 31 5f 04 32 20 02 51 03
.ebc1 ff ; free byte

DEL RETURN CRSR RI F7 F1 F3 F5 CRSR DO
3 w a 4 z s e LE SHIFT
5 r d 6 c f t x
6 y g 8 b h u v
9 i j 0 m k o n
+ p l - . : @ ,
£ * ; HOME RI SHIFT = ^| /
1 <- CTRL 2 SPACE CBM q STOP

EBC2 KEYBOARD 2 - SHIFTED
This is the second of four keyboard decode tables. The ASCII code for the
key pressed is at the intersection of the row (written to $dc00) and the
column (read from $dc01). The matrix values are shown below.

.ebc2 94 8d 9d 8c 89 8a 8b 91
.ebca 23 d7 c1 24 da d3 c5 01
.ebd2 25 d2 c4 26 c3 c6 d4 d8
.ebda 27 d9 c7 28 c2 c8 d5 d6

.ebe2 29 c9 ca 30 cd cb cf ce

.ebea db d0 cc dd 3e 5b ba 3c

.ebf2 a9 c0 5d 93 01 3d de 3f

.ebfa 21 5f 04 22 a0 02 d1 83

.ec02 ff ; free byte

INST RRETURN CRSR LE F8 F2 F4 F6 CRSR UP
W A $ Z S E LE SHIFT
% R D & C F T X
' Y G (B H U V
) I J 0 M K O N

cbm gr P L cbm gr > [cbm gr <
cbm gr cbm gr [CLR RI SHIFT = pi ?

! <- CTRL " SPACE CBM Q RUN

EC03 KEYBOARD 3 - COMMODORE
This is the third of four keyboard decode tables. The ASCII code for the
key pressed is at the intersection of the ro (written to $dc00) and hte
column (read from $dc01). The matrix values are shown below.

.ec03 94 8d 9d 8c 89 8a 8b 91
.ec0b 96 b3 b0 97 ad ae b1 01
.ec13 98 b2 ac 99 bc bb a3 bd
.ec1b 9a b7 a5 9b bf b4 b8 be
.ec23 29 a2 b5 30 a7 a1 b9 aa
.ec2b a6 af b6 dc 3e 5b a4 3c
.ec33 a8 df 5d 93 01 3d de 3f
.ec3b 81 5f 04 95 a0 02 ab 83
.ec43 ff ; free byte

INST RETURN CRSR LE F8 F2 F4 F6 CRSR UP
pink cbm gr cbm gr grey 1 cbm gr cbm gr cbm gr LE SHIFT
grey 2 cbm gr cbm gr li green cbm gr cbm gr cbm gr cbm gr
li blue cbm gr cbm gr grey 3 cbm gr cbm gr cbm gr cbm gr

) cbm gr cbm gr 0 cbm gr cbm gr cbm gr cbm gr
cbm gr cbm gr cbm gr cbm gr > [cbm gr <
cbm gr cbm gr] CLR RI SHIFT = pi ?
orange <- CTRL brown SPACE CBM cbm gr RUN

EC44 GRAPHICS / TEXT CONTROL
This routine is used to toggle between text and graphics character set, and
to enable/disable the <shift-CBM> keys. The routine is called by the main
'output to screen' routine, and (A) holds a CBM ASCII code on entry.

.ec44 cmp #$0e ; <switch to lower case>
 bne $ec4f ; nope
 lda $d018 ; VIC memory control register
 ora #$02 ; set bit1
 bne $ec58 ; allways branch
.ec4f cmp #$8e ; <switch to upper case>
 bne $ec5e ; nope
 lda $d018 ; VIC memory control register
 and #$fd ; clear bit1
.ec58 sta $d018 ; and store
.ec5b jmp $e6a8 ; finish screen print
.ec5e cmp #$08 ; <disable <shift-CBM>>
 bne $ec69 ; nope
 lda #$80
 ora $0291 ; disable MODE
 bmi $ec72 ; allways jump
.ec69 cmp #$09 ; <enable <shift-CBM>>

 bne $ec5b ; nope, exit
 lda #$7f
 and $0291 ; enable MODE
.ec72 sta $0291 ; store MODE, enable/disable shift keys
 jmp $e6a8 ; finish screen print

EC78 KEYBOARD 4 - CONTROL
This is the last keyboard decode table. The ASCII code for the key pressed
is at the intersection of the row (written to $dc00) and the column (read
from $dc01). The matrix values are shown below.
A few special funktion are found in this table ie.
<ctrl H> - disables the upper/lower case switch
<ctrl I> - enables the upper/lower case switch
<ctrl S> - homes the cursor
<ctrl T> - delets character
Note that the italic keys only represent a ASCII code, and not a CBM
character.

Future implementations: Change some of the $ff values which represents 'no
key' to a valid ASCII code. ESC ($1b) and why not use the F-keys for
something useful.

.ec78 ff ff ff ff ff ff ff ff
.ec80 1c 17 01 9f 1a 13 05 ff
.ec88 9c 12 04 1e 03 06 14 18
.ec90 1f 19 07 9e 02 08 15 16
.ec98 12 09 0a 92 0d 0b 0f 0e
.eca0 ff 10 0c ff ff 1b 00 ff
.eca8 1c ff 1d ff ff 1f 1e ff
.ecb0 90 06 ff 05 ff ff 11 ff
.ecb8 ff ; free byte

red W A cyan Z HOME white

purple RVS ON D green STOP F DEL X
blue Y G yellow CBM DISABLE U V
RVS ON ENABLE J RVS OFF RETURN K O LOWER

 P L] @
red CRSR RI blue green
 <- white CRSR DO

ECB9 VIDEO CHIP SET UP TABLE
This is a table of the initial values for the VIC chip registers at start
up.

.ecb9 00 00 ; $d000/1, sprite0 - x,y cordinate
.ecbb 00 00 ; $d002/3, sprite1 - x,y cordinate
.ecbd 00 00 ; $d004/5, sprite2 - x,y cordinate
.ecbf 00 00 ; $d006/7, sprite3 - x,y cordinate
.ecc1 00 00 ; $d008/9, sprite4 - x,y cordinate
.ecc3 00 00 ; $d00a/b, sprite5 - x,y cordinate
.ecc5 00 00 ; $d00c/d, sprite6 - x,y cordinate
.ecc7 00 00 ; $d00e/f, sprite7 - x,y cordinate
.ecc9 00 ; $d010, sprite MSB
.ecca 9b ; $d011, VIC control register
.eccb 37 ; $d012,
.eccc 00 00 ; $d013/4, light pen x/y position
.ecce 00 ; $d015, sprite enable
.eccf 08 ; $d016, VIC control register 2
.ecd0 00 ; $d017, sprite y-expansion
.ecd1 14 ; $d018, VIC memory control register
.ecd2 0f ; $d019, VIC irq flag register
.ecd3 00 ; $d01a, VIC irq mask register

.ecd4 00 ; $d01b, sprite/background priority

.ecd5 00 ; $d01c, sprite multicolour mode

.ecd6 00 ; $d01d, sprite x-expansion

.ecd7 00 ; $d01e, sprite/sprite collision

.ecd8 00 ; $d01f, sprite/background collision

.ecd9 0e ; $d020, border colour (light blue)

.ecda 06 ; $d021, background colour 0 (blue)

.ecdb 01 ; $d022, background colour 1

.ecdc 02 ; $d023, background colour 2

.ecdd 03 ; $d024, background colour 3

.ecde 04 ; $d025, sprite multicolour register 0

.ecdf 00 ; $d026, sprite multicolour register 1

.ece0 01 ; $d027, sprite0 colour

.ece1 02 ; $d028, sprite1 colour

.ece2 03 ; $d029, sprite2 colour

.ece3 04 ; $d02a, sprite3 colour

.ece4 05 ; $d02b, sprite4 colour

.ece5 06 ; $d02c, sprite5 colour

.ece6 07 ; $d02d, sprite6 colour

ECE7 SHIFT-RUN EQUIVALENT
This is the message LOAD <CR> RUN <CR>, which is placed in the keyboard
buffer when <shift-RUN> is pressed.

.ece7 4c 4f 41 44 0d ; LOAD <CR>
.ecec 52 55 4e 0d ; RUN <CR>

ECF0 LOW BYTE SCREEN LINE ADDRESSES
This is a table of the low bytes of screen line addresses. The high byte of
the addresses is obtained by derivation from the page on which the screen
starts. There was an additional table of high byte addresses on the fixed
screen PETs.

.ecf0 00 28 50 78 a0
.ecf5 c8 f0 18 40 68
.ecfa 90 b8 e0 08 30
.ecff 58 80 a8 d0 f8
.ed04 20 48 70 98 c0

ED09 TALK: SEND 'TALK' / 'LISTEN'
The KERNAL routine TALK ($ffb4) and LISTEN ($ffb1) are vectored here. The
routine sends the command 'TALK' or 'LISTEN' on the serial bus. On entry
(A) must hold the device number to which the command will be sent. The two
entry points differ only in that to TALK, (A) is ORed with #$40, and to
LISTEN, (A) is ORed with #$20. The UNTALK (#$3f) and UNLISTEN (#$5f) are
also sent via this routine, but their values are set on entry. If there is
a character waiting to go out on the bus, then this is output. Handshaking
is performed, and ATN (attension) is set low so that the byte is
interpreted as a command. The routine drops through to the next one to
output the byte on the serial bus. Note that on conclusion, ATN must be set
high.

.ed09 ora #$40 ; set TALK flag
 .byte $2c ; bit $2009, mask ORA command
 ora #$20 ; set LISTEN flag
 jsr $f0a4 ; check serial bus idle
.ed11 pha
 bit $94 ; C3PO, character in serial buffer
 bpl $ed20 ; nope
 sec ; prepare for ROR
 ror $a3 ; temp data area
 jsr $fbfe ; JiffyDOS, send data to serial bus
 lsr $94 ; 3CPO
 lsr $a3

.ed20 pla
 sta $95 ; BSOUR, buffered character for bus
 sei
 jsr $f0ed ; JiffyDOS, set data 1, and clear serial bit count
 cmp #$3f ; UNTALK?
 bne $ed2e ; nope
 jsr $ee85 ; set CLK 1
.ed2e lda $dd00 ; serial bus I/O port
 ora #$08 ; clear ATN, prepare for command
 sta $dd00 ; store
.ed36 sei ; disable interrupts
 jsr $ee8e ; set CLK 1
 jsr $ee97 ; set data 1
 jsr $eeb3 ; delay 1 ms

ED40 SEND DATA ON SERIAL BUS
The byte of data to be output on the serial bus must have been previously
stored in the serial buffer, BSOUR. An initial test is made for bus
activity, and if none is detected then ST is set to #$80, ie. ?DEVICE NOT
PRESENT. The byte is output by rotating it right and sending the state of
the carry flag. This is done eight times until the whole byte was sent. The
CIA timer is set to 65 ms and the bus is checked for 'data accepted'. If
timeout occurs before this happens then ST is set to #$03, ie. write
timeout. The routine is modified with a jump to $f8ea where a test is done
to see if this device is a JiffyDOS device. The result is stored in $a3.

 sei ; disable interrupts
 jsr $ee97 ; set data 1
 jsr $eea9 ; get serial in and clock
 bcs $edad ; no activity, device not present.
 jsr $ee85 ; set CLK 1
 bit $a3 ; temp data area
 bpl $ed5a
.ed50 jsr $eea9 ; get serial in and clock
 bcc $ed50 ; wait for indata = 0
.ed55 jsr $eea9 ; get serial in and clock
.ed58 bcs $ed55 ; wait for indata = 1
.ed5a jsr $eea9 ; get serial in and clock
 bcc $ed5a ; wait for indata = 0
 jsr $ee8e ; set CLK 0

 txa ; transfer (X) to (A)
 pha ; store (A) on stack
 ldx #$08 ; output 8 bits
.ed66 pha
 pla
 bit $dd00 ; serial bus I/O port
 bmi $ed72 ; no timeout
 pla ; retrieve (A)
 tax ; and restore (X)
 jmp $edb0 ; exit with flag write timeout
.ed72 jsr $ee97 ; serial output 1
 ror $95 ; BSOUR, buffered character for bus
 bcs $ed7c ; prepare to output 1
 jsr $eea0 ; else, serial output 0
.ed7c jsr $ee85 ; set CLK 1
 lda $dd00 ; serial bus I/O port
 and #$df ; set data 1
 ora #$10 ; set CLK 0
 php
 pha
 jsr $f8ea ; test if device on serial bus is a JiffyDOS device
 pla
 plp
 dex ; decrement bit counter

 bne $ed66 ; next bit till all 8 are done
 pla
 tax
 lda #$04
 sta $dc07 ; CIA timer B, high byte
 lda #$19
 sta $dc0f ; set 1 shot, load and start CIA timer B
 lda $dc0d ; CIA ICR
.ed9f lda $dc0d
 and #$02 ; timeout
 bne $edb0 ; yep, flag write timeout
 jsr $eea9 ; get serial in and clock
 bcs $ed9f
 cli ; enable interrupts
 rts

EDAD FLAG ERRORS
(A) is loaded with one of the two error flags, depending on the entry
point. #$80 signifies the device was not present, and #$03 signifies a
write timeout. The value is then set into the I/O status word, ST. The
routine exits by clearing ATN and giving the final handshake.

.edad lda #$80 ; flag ?DEVICE NOT PRESENT
 .byte $2c ; mask LDA #$03
.edb0 lda #$03 ; flag write timeout
.edb2 jsr $fe1c ; set I/O status word
 cli
 clc
 bcc $ee03 ; allways jump, do final handshake

EDB9 SECOND: SEND LISTEN SA
The KERNAL routine SECOND ($ff93) is vectored here. On entry, (A) holds the
secondary address. This is placed in the serial buffer and sent to the
serial bus "under attension". Finally the routine drops through to the next
routine to set ATN false.

.edb9 sta $95 ; store (A) in BSOUT, buffer for the serial bus
 jsr $ed36 ; handshake and send byte.

EDBE CLEAR ATN
The ATN, attension, line on the serial bus is set to 1, ie. ATN is now
false and data sent on the serial bus will not be interpreted as a command.

.edbe lda $dd00 ; serial bus I/O port
 and #$f7 ; clear bit4, ie. ATN 1
 sta $dd00 ; store to port
 rts

EDC7 TKSA: SEND TALK SA
The KERNAL routine TKSA ($ff96) is vectored here. On entry, (A) holds the
secondary address. This is placed in the serial buffer and sent out to the
serial bus "under attension". The routine drops through to the next routine
to wait for CLK and clear ATN.

 sta $95 ; BSOUR, the serial bus buffer
 jsr $ed36 ; handshake and send byte to the bus

EDCC WAIT FOR CLOCK
This routine sets data = 0, ATN = 1 and CLK = 1. It then waits to recieve
CLK = 0 from the serial bus.

 sei ; disable interrupts
 jsr $eea0 ; set data 0
 jsr $edbe ; set ATN 1

 jsr $ee85 ; set CLK 1
.edd6 bit $dd00 ; read serial bus I/O port
 bvs $edd6 ; test bit6, and wait for CLK = 0
 cli ; enable interrupt
 rts

EDDD CIOUT: SEND SERIAL DEFERRED
The KERNAL routine CIOUT ($ffa8) jumps to this routine. If there is a
character awaiting output in the buffer, then it is sent on the bus to the
new JiffyDOS send routine. The output flag, C3PO is set (ie. bit 7 = 1) and
the contents of (A) is placed in the serial buffer.

.eddd bit $94 ; C3PO flag, character in serial buffer
 bmi $ede6 ; yes
 sec ; prepare for ROR
 ror $94 ; set C3PO
 bne $edeb ; always jump
.ede6 pha ; temp store
 jsr $fbfe ; JiffyDOS send data to serial bus
 pla
.edeb sta $95 ; store character in BSOUR
 clc ; clear carry to indicate no errors
 rts

EDEF UNTLK: SEND 'UNTALK'/'UNLISTEN'
The KERNAL routine UNTALK ($ffab)and UNLISTEN ($ffae) are vectored here.
ATN is set to 0, and CLK is set to 0. (A) is loaded with #$5f for 'UNTALK'
and #$3f for 'UNLISTEN'. The command is sent to the serial bus via the
'send TALK/LISTEN' routine. Finally ATN is set to 1, and after s short
delay, CLK and data are both set to 1.

.edef sei ; disable interrupts
 lda $dd00 ; serial bus I/O
 ora #$08 ; set bit4
 sta $dd00 ; and store, set ATN 0
 jsr $ee8e ; set CLK 0
 lda #$5f ; flag UNTALK
 .byte $2c ; mask LDA #$3f with BIT $3fa9
 lda #$3f ; flag UNLISTEN
 jsr $ed11 ; send command to serial bus
.ee03 jsr $edbe ; clear ATN
.ee06 txa
 ldx #$0a ; init delay
.ee09 dex ; decrement counter
 bne $ee09 ; till ready
 tax
 jsr $ee85 ; set CLK 1
 jmp $ee97 ; set data 1

EE13 ACPTR: RECIEVE FROM SERIAL BUS
The KERNAL routine ACPTR ($ffa5) points to this routine in the original
Commodore KERNAL. JiffyDOS uses a routine at $fbaa, which is the new ACPTR
pointer. This routine is used when a device is not JiffyDOS equiped. A
timing loop is enteredusing the CIA timer, and if a byte is not received in
65 ms, ST is set to #$02, ie. a read timeout. A test is made for EOI and if
this occurs, ST is set to #$40, indicating end of file. The byte is then
received from the serial bus and built up bit by bit in the temporary stora
at #$a4. This is transfered to (A) on exit, unless EOI has occured.

.ee13 jmp $fbaa ; Jump to JiffyDOS ACPTR, return if no JiffyDOS
device
 sta $a5 ; CNTDN, counter
 jsr $ee85 ; set CLK 1
.ee1b jsr $eea9 ; get serial in and clock

 bpl $ee1b ; wait for CLK = 1
.ee20 lda #$01
 sta $dc07 ; setup CIA#1 timer B, high byte
 lda #$19
 sta $dc0f ; set 1 shot, load and start CIA timer B
 jsr $ee97 ; set data 1
 lda $dc0d
.ee30 lda $dc0d ; read CIA#1 ICR
 and #$02 ; test if timer B reaches zero
 bne $ee3e ; timeout
 jsr $eea9 ; get serial in and clock
 bmi $ee30 ; CLK 1
 bpl $ee56 ; CLK 0
.ee3e lda $a5 ; CNTDN
 beq $ee47
 lda #$02 ; flag read timeout
 jmp $edb2 ; set I/O status word
.ee47 jsr $eea0 ; set data 1
 jsr $ee85 ; set CLK 1
 lda #$40 ; flag EOI
 jsr $fe1c ; set I/O status word
 inc $a5 ; increment CNTDN, counter
 bne $ee20 ; again
.ee56 lda #$08 ; set up CNTDN to receive 8 bits
 sta $a5
.ee5a lda $dd00 ; serial bus I/O port
 cmp $dd00 ; compare
 bne $ee5a ; wait for serial bus to settle
 asl
 bpl $ee5a ; wait for data in =1
 ror $a4 ; roll in received bit in temp data area
.ee67 lda $dd00 ; serial bus I/O port
 cmp $dd00 ; compare
 bne $ee67 ; wait for bus to settle
 asl
 bmi $ee67 ; wait for data in =0
 dec $a5 ; one bit received
 bne $ee5a ; repeat for all 8 bits
 jsr $eea0 ; set data 1
 bit $90 ; STATUS, I/O status word
 bvc $ee80 ; not EOI
 jsr $ee06 ; handshake and exit without byte
.ee80 lda $a4 ; read received byte
 cli ; enable interrupts
 clc ; clear carry, no errors
 rts

EE85 SERIAL CLOCK ON
This routine sets the clock outline on the serial bus to 1. This means
writing a 0 to the port. This value is reversed by hardware on the bus.

.ee85 lda $dd00 ; serial port I/O register
 and #$ef ; clear bit4, ie. CLK out =1
 sta $dd00 ; store
 rts

EE8E SERIAL CLOCK OFF
This routine sets the clock outline on the serial bus to 0. This means
writing a 1 to the port. This value is reversed by hardware on the bus.

.ee8e lda $dd00 ; serial port I/O register
 ora #$10 ; set bit4, ie. CLK out =0
 sta $dd00 ; store
 rts

EE97 SERIAL OUTPUT 1
This routine sets the data out line on the serial bus to 1. This means
writing a 0 to the port. This value is reversed by hardware on the bus.

.ee97 lda $dd00 ; serial bus I/O register
 and #$df ; clear bit5
 sta $dd00 ; store
 rts

EEA0 SERIAL OUTPUT 0
This routine sets the data out line on the serial bus to 0. This means
writing a 1 to the port. This value is reversed by hardware on the bus.

.eea0 lda $dd00 ; serial bus I/O resister
 ora #$20 ; set bit 5
 sta $dd00 ; store
 rts

EEA9 GET SERIAL DATA AND CLOCK IN
The serial port I/O register is stabilised and read. The data is shifteed
into carry and CLK into bit 7. This way, both the data and clock can bee
determined by flags in the processor status register. Note that the values
read are true, and do not nead to be reversed in the same way as the
outuput line do.

.eea9 lda $dd00 ; serial port I/O register
 cmp $dd00 ; compare
 bne $eea9 ; wait for bus to settle
 asl ; shift data into carry, and CLK into bit 7
 rts

EEB3 DELAY 1 MS
This routine is a software delay loop where (X) is used as counter, and are
decremented for a period of 1 millisecond. The original (X) is stored on
entry and (A) is messed up.

.eeb3 txa ; move (X) to (A)
 ldx #$b8 ; start value
.eeb6 dex ; decrement
 bne $eeb6 ; untill zero
 tax ; (A) to (X)
 rts

EEBB RS232 SEND
This routine is concerned with sending a byte on the RS232 port. The data
is actually written to the port under NMI interrupt control. The CTS line
generates an NMI when the port is ready for data. If all the bits in the
byte have been sent, then a new RS232 byte is set up. Otherwise, this
routine calculates parity and number of stop bits set up in the OPEN
command. These bits are added to the end of the byte being sent.

.eebb lda $b4 ; BITTS, RS232 out bit count
 beq $ef06 ; send new RS232 byte
 bmi $ef00
 lsr $b6 ; RODATA, RS232 out byte buffer
 ldx #$00
 bcc $eec8
 dex
.eec8 txa
 eor $bd ; ROPRTY, RS232 out parity
 sta $bd
 dec $b4 ; BITTS
 beq $eed7
.eed1 txa

 and #$04
 sta $b5 ; NXTBIT, next RS232 bit to send
 rts
.eed7 lda #$20
 bit $0294 ; M51CDR, 6551 command register immage
 beq $eef2 ; no patity
 bmi $eefc ; mark/space transmit
 bvs $eef6 ; even parity
 lda $bd ; ROPRTY, out parity
 bne $eee7
.eee6 dex
.eee7 dec $b4 ; BITTS, out bit count
 lda $0293 ; M51CTR, 6551 control register image
 bpl $eed1 ; one stop bit only
 dec $b4 ; BITTS
 bne $eed1
.eef2 inc $b4 ; BITTS
 bne $eee6
.eef6 lda $bd ; ROPRTY
 beq $eee7
 bne $eee6
.eefc bvs $eee7
 bvc $eee6
.ef00 inc $b4 ; BITTS
 ldx #$ff
 bne $eed1

EF06 SEND NEW RS232 BYTE
This routine sets up the system variables ready to send a new byte to the
RS232 port. A test is made for 3-line or X-line modus. In X-line mode, DSR
and CTS are checked.

.ef06 lda $0294 ; M51CDR, 6551 command register
 lsr a ; test handshake mode
 bcc $ef13 ; 3-line mode (no handshake)
 bit $dd01 ; RS232 port
 bpl $ef2e ; no DSR, error
 bvc $ef31 ; no CTS, error
.ef13 lda #$00
 sta $bd ; ROPRTY, RS232 out parity
 sta $b5 ; NXTBIT, next bit to send
 ldx $0298 ; BITNUM, number of bits left to send
 stx $b4 ; BITTS, RS232 out bit count
 ldy $029d ; RODBS, start page of out buffer
 cpy $029e ; RODBE, index to end if out buffer
 beq $ef39 ; disable timer
 lda ($f9),y ; RS232 out buffer
 sta $b6 ; RODATA, RS232 out byte buffer
 inc $029d ; RODBS
 rts

EF2E NO DSR / CTS ERROR
(A) is loaded with the error flag - $40 for no DSR, and $10 for no CTS.
This is then ORed with 6551 status image and stored in RSSTAT.

.ef2e lda #$40 ; entrypoint for 'NO DSR'
 .byte $2c ; mask next LDA-command
.ef31 lda #$10 ; entrypoint for 'NO CTS'
 ora $0297 ; RSSTAT, 6551 status register image
 sta $0297

EF39 DISABLE TIMER
This routine set the interrupt mask on CIA#2 timer B. It also clears the
NMI flag.

.ef39 lda #$01
.ef3b sta $dd0d ; CIA#2 interrupt control register
 eor $02a1 ; ENABL, RS232 enables
 ora #$80
 sta $02a1 ; ENABL
 sta $dd0d ; CIA#2 interrupt control register
 rts

EF4A COMPUTE BIT COUNT
This routine computes the number of bits in the word to be sent. The word
length information is held in biits 5 & 6 of M51CTR. Bit 7 of this register
indicates the number of stop bits. On exit, the number of bits is held in
(X).

.ef4a ldx #$09
 lda #$20
 bit $0293 ; M51CTR, 6551 control register image
 beq $ef54
 dex
.ef54 bvc $ef58
 dex
 dex
.ef58 rts

EF59 RS232 RECEIVE
This routine builds up the input byte from the RS232 port in RIDATA. Each
bit is input from the port under NMI interrupt control. The bit is placed
in INBIT before being passed to this routine, where it is shifted into the
carry flag and then rotated into RIDATA. The bit count is decremented and
parity updated.

.ef59 ldx $a9 ; RINONE, check for start bit?
 bne $ef90
 dec $a8 ; BITC1, RS232 in bit count
 beq $ef97 ; process received byte
 bmi $ef70
 lda $a7 ; INBIT, RS232 in bits
 eor $ab ; RIPRTY, RS232 in parity
 sta $ab
 lsr $a7 ; INBIT, put input bit into carry
 ror $aa ; RIDATA,
.ef6d rts
.ef6e dec $a8 ; BITC1
.ef70 lda $a7 ; INBIT
 beq $efdb
 lda $0293 ; M51CTR, 6551 control register image
 asl a
 lda #$01
 adc $a8 ; BITC1
 bne $ef6d ; end

EF7E SET UP TO RECEIVE
This routine sets up the I.C.R. to wait for the receiver edge, and flags
this into ENABL. It then flags the check for a start bit.

.ef7e lda #$90
 sta $dd0d ; CIA#2 I.C.R.
 ora $02a1 ; ENABL, RS232 enables
 sta $02a1
 sta $a9 ; RINONE, check for start bit
 lda #$02
 jmp $ef3b ; disable timer and exit

EF90 PROCESS RS232 BYTE
The byte recieved from the RS232 port is checked against parity. This
involvs checking the input parity options selected, and then verifying the
parity bit calculated against that input. If the test is passed, then the
byte is stored in the in-buffer. Otherwise an error is flagged into RSSTAT.
A patch in KERNAL version 3, has been added to the input routine at $ef94
to initialise the RS232 parity byte, RIPRTY, on reception of a start bit.

.ef90 lda $a7 ; INBIT, RS232 in bits
 bne $ef7e ; set up to receive
 jmp $e4d3 ; patch, init parity byte
.ef97 ldy $029b ; RIDBE, index to the end of in buffer
 iny
 cpy $029c ; RIDBS, start page of in buffer
 beq $efca ; receive overflow error
 sty $029b ; RIDBE
 dey
 lda $aa ; RIDATA, RS232 in byte buffer
 ldx $0298 ; BITNUM, number of bits left to send
.efa9 cpx #$09 ; full word to come?
 beq $efb1 ; yes
 lsr a
 inx
 bne $efa9
.efb1 sta ($f7),y ; RIBUF, RS232 in buffer
 lda #$20
 bit $0294 ; M51CDR, 6551 command register image
 beq $ef6e ; parity disabled
 bmi $ef6d ; parity check disabled, TRS
 lda $a7 ; INBIT, parity check
 eor $ab ; RIPRTY, RS232 in parity
 beq $efc5 ; receive parity error
 bvs $ef6d
 .byte $2c ; mask
.efc5 bvc $ef6d
 lda #$01 ; receive parity error
 .byte $2c ; mask
.efca lda #$04 ; receive overflow
 .byte $2c ; mask
.efcd lda #$80 ; framing break
 .byte $2c ; mask
.efd0 lda #$02 ; framing error
 ora $0297 ; RSSTAT, 6551 status register image
 sta $0297
 jmp $ef7e ; set up to receive
.efdb lda $aa ; RIDATA
 bne $efd0 ; framing error
 beq $efcd ; receive break

EFE1 SUBMIT TO RS232
This routine is called when data is required from the RS232 port. Its
funktion is to perform the handshaking on the poort needed to receive the
data. If 3 line mode is used, then no handshaking is implemented and the
routine exits.

.efe1 sta $9a ; DFLTO, default output device
 lda $0294 ; M51CDR, 6551 command register image
 lsr a
 bcc $f012 ; 3 line mode, no handshaking, exit
 lda #$02
 bit $dd01 ; RS232 I/O port
 bpl $f00d ; no DRS, error
 bne $f012
.eff2 lda $02a1 ; ENABL, RS232 enables
 and #$02

 bne $eff2
.eff9 bit $dd01 ; RS232 I/O port
 bvs $eff9 ; wait for no CTS
 lda $dd01
 ora #$02
 sta $dd01 ; set RTS
.f006 bit $dd01
 bvs $f012 ; CTS set
 bmi $f006 ; wait for no DSR

F00D NO DSR ERROR
This routine sets the 6551 status register image to #40 when a no DSR error
has occurred.

.f00d lda #$40
 sta $0297 ; RSSTAT, 6551 status register image
.f012 clc
 rts

F014 SEND TO RS232 BUFFER
Note: The entry point to the routine is at
if014 jsr if028
if017 ldy a029e
 iny
 cpy a029d
 beq if014
 sty a029e
 dey
 lda a9e
 sta (pf9),y
if028 lda a02a1
 lsr a
 bcs if04c
 lda #$10
 sta add0e
 lda a0299
 sta add04
 lda a029a
 sta add05
 lda #$81
 jsr eef3b
 jsr eef06
 lda #$11
 sta add0e
if04c rts

F04D INPUT FROM RS232

if04d sta a99
 lda a0294
 lsr a
 bcc if07d
 and #$08
 beq if07d
 lda #$02
 bit add01
 bpl if00d
 beq if084
if062 lda a02a1
 lsr a
 bcs if062
 lda add01
 and #$fd
 sta add01

if070 lda add01
 and #$04
 beq if070
if077 lda #$90
 clc
 jmp eef3b
if07d lda a02a1
 and #$12
 beq if077
if084 clc
 rts

F086 GET FROM RS232

if086 lda a0297
 ldy a029c
 cpy a029b
 beq if09c
 and #$f7
 sta a0297
 lda (pf7),y
 inc a029c
 rts
if09c ora #$08
 sta a0297
 lda #$00
 rts

F0A4 SERIAL BUS IDLE
This routine checks the RS232 bus for data transmission/reception. The
routine waits for any activity on the bus to end before setting I.C.R. The
routine is called by serial bus routines, since these devices use IRQ
generated timing, and conflicts may occur if they are all used at once.

.f0a4 pha ; store (A)
 lda $02a1 ; ENABL, RS232 enables
 beq $f0bb ; bus not in use
.f0aa lda $02a1 ; ENABL
 and #$03 ; test RS232
 bne $f0aa ; yes, wait for port to clear
 lda #$10
 sta $dd0d ; set up CIA#2 I.C.R
 lda #$00 ; clear
 sta $02a1 ; ENABL
.f0bb pla ; retrieve (A)
 rts

F0BD TABLE OF KERNAL I/O MESSAGES 1
This is a table of messages used by the KERNAL in conjunction with its I/O
routines. Bit 7 is set in the last character in each message as a
terminator.
The table is split into two parts in the JiffyDOS kernal, since the tape
messages have been removed, and being substituted by new routines.

.f0bd 0d 49 2f 4f 20 45 52 52 4f 52 20 a3 ; i/o error #
.f0c9 0d 53 45 41 52 43 48 49 4e 47 a0 ; searching
.f0d4 46 4f 52 a0 ; for

F0D8 JIFFYDOS CLEAR SPRITES
This routine is called by JiffyDOS before executing timecritical routines
that might be messed up by sprites on the screen. A loop is performed
afterwards that lets sprites currently being displayd on the screen, to be
finished.

.f0d8 lda #$00
 sta $d015 ; clear sprites
.f0dd adc #$01 ; perform loop
 bne $f0dd ; 256 times
 rts

F0E2 JIFFYDOS SET CHKIN
This routine is a new JiffyDOS routine which clears all I/O and sets up the
current JiffyDOS filenumber as default inputdevice by calling CHKIN.

.f0e2 lda $9f ; JiffyDOS Logical Filenumber
.f0e4 pha ; store (A)
 jsr $ffcc ; CLRCHN
 pla ; retrieve (A)
 tax ; (A) to (X)
 jmp $ffc6 ; CHKIN, open channel for input

F0ED JIFFYDOS SERIAL OUTPUT 1
This is a patch to the original Commodore KERNAL, that clears the flag that
indicates a JiffyDOS device, ($a3), before setting the serial output to 1.

.f0ed lda #$00 ; clear JiffyDOS device flag
 sta $a3
 jmp $ee97 ; serial output 1

F0F4 JIFFYDOS SEND DRIVE COMMAND
This routine uses the values in (X) and (Y) to send a command to the drive.
(X) contains a offset to the command, and (Y) contains the length of the
command.

.f0f4 txa ; temp store (X)
 pha
 jsr $f7a2 ; open command channel for output
 pla
 tax ; retrieve (X)
.f0fb lda $f398,x ; read command from table
 jsr $ffd2 ; output character to drive
 inx ; next character
 dey ; decrement counter
 bne $f0fb ; till ready
 rts

F106 TABLE OF KERNAL I/O MESSAGES 2
This is the second part of the KERNAL I/O message table. Part 1 is to be
found at address $f0bd.

.f106 0d 4c 4f 41 44 49 4e c7 ; loading
.f10e 0d 53 41 56 49 4e 47 a0 ; saving
.f116 0d 56 45 52 49 46 59 49 4e c7 ; verifying
.f120 0d 46 4f 55 4e 44 a0 ; found
.f127 0d 4f 4b 9d ; ok

F12B PRINT MESSAGE IF DIRECT
This is a routine to output a message from the I/O messages table at $f0bd.
On entry, (Y) holds the offset to control which message is printed. The
routine tests if we are in program mode or direct mode. If in program mode,
the routine exits. Else, the routine prints character after caracter untill
it reaches a character with bit7 set.

.f12b bit $9d ; MSGFLG, test if direct or program mode
 bpl $f13c ; program mode, don't print message
.f12f lda $f0bd,y ; get output character from table
 php ; store processor registers
 and #$7f ; clear bit7

 jsr $ffd2 ; output character using CHROUT
 iny ; increment pointer to next character
 plp ; retrieve message
 bpl $f12f ; untill bit7 was set
.f13c clc ; clear carry to indicate no error
 rts

F13E GETIN: GET a BYTE
The KERNAL routine GETIN ($ffe4) is vectored to this routine. It load a
character into fac#1 from the external device indicated by DFLTN. Thus, if
device = 0, GET is from the keyboard buffer. If device = 2, GET is from the
RS232 port. If niether of these devices then GET is further handled by the
next routine, INPUT.

.f13e lda $99 ; DFLTN, default input device.
 bne $f14a ; not keyboard
 lda $c6 ; NDX, number of keys in keyboard queue
 beq $f155 ; buffer empty, exit
 sei ; disable interrupts
 jmp $e5b4 ; get character from keyboard buffer, and exit
.f14a cmp #$02 ; RS232
 bne $f166 ; nope, try next device
.f14e sty $97 ; temp store
 jsr $f086 ; get character from RS232
 ldy $97 ; retrieve (Y)
.f155 clc
 rts

F157 CHRIN: INPUT A BYTE
The KERNAL routine CHRIN ($ffcf) is vectored to this routine. It is similar
in function to the GET routine above, and also provides a continuation to
that routine. If the input device is 0 or 3, ie. keyboard or screen, then
input takes place from the screen. INPUT/GET from other devices are
performed by calls to the next routine. Two bytes are input from the device
so that end of file can be set if necessary (ie. ST = #40)

.f157 lda $99 ; DFLTN, default input
 bne $f1a9 ; not keyboard, next device
 lda $d3 ; PNTR, cursor column on screen
 sta $ca ; >LXSP, cursor position at start
 lda $d6 ; TBLX, cursor line number
 sta $c9 ; <LXSP
 jmp $e632 ; input from screen or keyboard
.f166 cmp #$03 ; screen
 bne $f173 ; nope, next device
 sta $d0 ; CRSW, flag INPUT/GET from keyboard
 lda $d5 ; LNMX, physical screen line length
 sta $c8 ; INDX, end of logical line for input
 jmp $e632 ; input from screen of keyboard
.f173 bcs $f1ad
 cmp #$02 ; RS232
 beq $f1b8 ; yes, get data from RS232 port
.f179 jsr $fbaa ; JiffyDOS ACPTR, get byte from serial bus
 pha ; temp store on stack
 bit $a3 ; test bit6, if serial device is a JiffyDOS device
 bvc $f19c ; no JiffyDOS device
 cpx #$00
 bne $f187
 lda $c4 ; ??????
.f187 cmp #$04
 bcc $f19c
 ldy #$00 ; clear offset
 lda ($bb),y ; FNADR, pointer to current filename
 cmp #$24 ; first character is $, ie. directory
 beq $f19c ; yes, exit

 inc $b9 ; increment SA
 jsr $f38b ; execute TALK, and TKSA
 dec $b9 ; decrement SA
 asl $a3
.f19c pla
 rts

.f19e lda #$10 ; set bit4
 jmp $fe1c ; write to STATUS

F1A3 VECTOR TABLE
The following table contains three vectors that is copied to $0300 when the
@X command is executed.

.f1a3 eb e3 ; IERROR vector
.f1a5 83 a4 ; IMAIN vector
.f1a7 7c a5 ; ICRNCH vector

 lda
 sed a90
if1ad =*+01
 lda f90a5,y

F1AD GET FROM SERIAL/RS232
These routines, actually two different, is entered from the previous
routine. The serial sectionchecks the state of ST. If zero, then the data
is recieved from the bus, otherwise carriage return (#0d) is returned in
(A). In the second section, the recieved byte is read from the RS232 port.

.f1ad lda $90 ; STATUS, I/O status word
 beq $f1b5 ; status OK
.f1b1 lda #$0d ; else return <CR> and exit
.f1b3 clc
.f1b4 rts
.f1b5 jmp $fbaa ; JiffyDOS ACPTR, get byte from serial bus
.f1b8 jsr $f14e ; receive from RS232
 bcs $f1b4 ; end with carry set
 cmp #$00
 bne $f1b3 ; end with carry clear
 lda $0297 ; RSSTAT, 6551 status register
 and #$6 ; mask
 bne $f1b1 ; return with <CR>
 beq $f1b8 ; get from RS232

F1CA CHROUT: OUTPUT ONE CHARACTER
The KERNAL routine CHROUT ($ffd2) is vectored to this routine. On entry,
(A) must hold the character to be output. The default output device number
is examined, and output directed to relevant device. The screen, serial bus
and RS232 all use previously described routines for their output.
Some old taperoutines have been removed in the middle of this routine, and
been changed to a JiffyDOS routine.

.f1ca pha ; temp store on stack
 lda $9a ; DFLTO, default output device
 cmp #$03 ; screen?
 bne $f1d5 ; nope, test next device
 pla ; retrieve (A)
 jmp $e716 ; output to screen
.f1d5 bcc $f1db ; device <3
 pla ; retrieve (A)
 jmp $eddd ; send serial deferred
.f1db lsr a

 pla
 sta $9e ; PTR1, some tape junk left in the code
 txa
 pha
 tya
 pha
 bcc $f208 ; RS232
 jmp $f3f1 ; output device not present

.f1e8 jsr $f8bf
 jsr $e4c6
 cmp #$30
 rts

F1F1 JIFFYDOS DEFAULT DEVICE
The following routine sets the default device number. It uses the GTBYTC
procedure to read the specifyed device number.

.f1f1 jsr $b79b ; GTBYTC, read device number from keyboardbuffer
 stx $ba ; store in FA, current device number
 jsr $f75c ; test if device FA is present.
 stx $be ; If OK, store
 rts

F1FC CHROUT: PART 2
This is the second part of the CHROUT routine. It contains the last parts
of the RS232 output routine.

.f1fc clc
 pla
 tay
 pla
 tax
 lda $9e ; PTR1
 bcc $f207
 lda #$00
.f207 rts
.f208 jsr $f017 ; send to RS232
 jmp $f1fc ; end output

F20E CHKIN: SET INPUT DEVICE
The KERNAL routine CHKIN ($ffc6) is vectored to this routine. On entry, (X)
must hold the logical file number. A test is made to see if the file is
open, or ?FILE NOT OPEN. If the file is not an input file then ?NOT INPUT
FILE. If the device is on the serial bus then it is commanded to TALK and
secondary address is sent. ST is then checked, and if non-zero, ?DEVICE NOT
PRESENT. Finally, the device number is stored in DLFTN.

.f20e jsr $f30f ; find file number
 beq $f216 ; ok, skip next command
 jmp $f701 ; I/O error #3, file not open
.f216 jsr $f31f ; set file variables
 lda $ba ; FA, current device number
 beq $f233 ; keyboard
 cmp #$03 ; screen
 beq $f233 ; yes
 bcs $f237 ; larger than 3, serial bus device
 cmp #$02 ; RS232
 bne $f22a ; nope
 jmp $f04d ; input from RS232
.f22a ldx $b9 ; SA, current secondart address
 cpx #$60
 beq $f233
 jmp $f70a ; I/O error #6, not output file

.f233 sta $99 ; DFLTN, default input device
 clc
 rts
.f237 tax
 jsr $ed09 ; send TALK to serial device
 lda $b9 ; SA
 bpl $f245 ; send SA
 jsr $edcc ; wait for clock
 jmp $f248
.f245 jsr $edc7 ; send talk secondary address
.f248 txa
 bit $90 ; STATUS, I/O status word
 bpl $f233 ; store DFLTN, and exit
 jmp $f707 ; I/O error #5, device not present

F250 CHKOUT: SET OUTPUT DEVICE
The KERNAL routine CHKOUT ($ffc9) is vectored to this routinr. On entry (X)
must hold the logical filenumber. A test is made to see if the file is
open, or ?FILE NOT OPEN error. If the device is 0, ie. the keyboard, or the
file is not an output file, then ?FILE OUTPUT FILE error is generated. If
the device is on the serial bus, then it commanded to LISTEN and the
secondary address is sent. ST is then checked and if non-zero, then ?DEVICE
NOT PRESENT error. Finally, the device number is stored in DFLTO.

.f350 jsr $f30f ; fine file number (X)
 beq $f258 ; OK
 jmp $f701 ; I/O error #3, file not open
.f258 jsr $f31f ; set file values
 lda $ba ; FA, current device number
 bne $f262 ; not keyboard
.f25f jmp $f70d ; I/O error #7, not output file
.f262 cmp #$03 ; screen?
 beq $f275 ; yes
 bcs $f279 ; serial bus device
 cmp #$02 ; RS232
 bne $f26f ; nope
 jmp $efe1 ; submit to RS232
.f26f ldx $b9 ; SA, current secondary address
 cpx #$60
 beq $f25f ; not output file error
.f275 sta $9a ; DFLTO, default output device
 clc ; clear carry to incicate no errors
 rts
.f279 tax ; file (X) to (A)
 jsr $ed0c ; send LISTEN to serial device
 lda $b9 ; SA
 bpl $f286 ; send SA
 jsr $edbe ; clear ATN
 bne $f289
.f286 jsr $edb9 ; send listen secondary address
.f289 txa
 bit $90 ; STATUS, I/O status word
 bpl $f275 ; OK, set output device
 jmp $f707 ; I/O error #5, device not present

F291 CLOSE: CLOSE FILE, PART 1
The KERNAL routine CLOSE ($ff3c) is vectored here. The file parameters are
fetched, and if not found, the routine exits without any action. It checks
the device number associated with the file. If it is RS232, then the RS232
port is reset. If it is a serial device, the device is UNTALKed, or
UNLISTENed. Finally the number of open logical files are decremented, and
the table of active file numbers are updated. On entry (A) holds the file
number to close. Old tape routines ($f2cc-$f2e1) has been removed for new
JiffyDOS routines.

.f291 jsr $f314 ; find logical file, (X) holds location i table
 beq $f298 ; OK
 clc ; file not found
 rts ; and exit
.f298 jsr $f31f ; get file values from table, position (X)
 txa
 pha ; temp store
 lda $ba ; FA, currend device number
 beq $f2f1 ; keyboard?, update file table
 cmp #$03 ; screen
 beq $f2f1 ; yepp, update file table
 bcs $f2ee ; Serial bus
 cmp #$02 ; RS232
 bne $f2c8 ; nope, serial
 pla ; retriev (A)
 jsr $f2f2 ; remove entry (A) from file table
 jsr $f483 ; init RS232 port by using part of RS232OPEN
 jsr $fe27 ; MEMTOP, read top of memory (X/Y)
 lda $f8 ; >RIBUF, RS232 input buffer
 beq $f2ba
 iny
.f2ba lda $fa ; >ROBUF, RS232 output buffer
 beq $f2bf
 iny
.f2bf lda #$0 ; Clear RS232 input/output buffers
 sta $f8
 sta $fa
 jmp $f47d ; Set new ROBOF values and set new MEMTOP
.f2c8 pla ; retriev (A)
 jmp $f713

.f2cc jsr $ffcc ; CLRCHN, close all channels
.f2cf lda #$6f
 jsr $f314 ; FIND FILE, test if file number #$6f is open.
 bne $f30e ; file not open, return
 jmp $f2f3 ; close file #$6f

F2D9 JIFFYDOS TEST DEVICE
The following routine tests if a device is present. On entry (X) holds the
device to be tested. Open to the device is performed, and afterwards the
statusword can be read for result.

.f2d9 stx $ba ; store (X) in FA
.f2db tya
 pha
 jsr $f8b2 ; open 15,x,15
 jsr $f7a2 ; set command channel (15) as output
 php
 jsr $f2cc ; close command channel
 plp
 pla
 tay
 ldx $ba
 rts

 sed $

F2e CLOSE: CLOSE FILE, PART 2

.f2ee jsr $f642 ; UNTALK/UNLISTEN serial device
.f2f1 pla
.f2f2 tax
.f2f3 dec $98 ; decrement LDTND, number of open files

 cpx $98 ; compare LDTND to (X)
 beq $f30d ; equal, closed file = last file in table
 ldy $98 ; else, move last entry to position of closed entry
 lda $0259,y ; LAT, active filenumbers
 sta $0259,x
 lda $0263,y ; FAT, active device numbers
 sta $0263,x
 lda $026d,y ; SAT, active secondary addresses
 sta $026d,x
.f30d clc
.f30e rts ; return

F30F FIND FILE
This routine finds a logical file from it's file number. On entry, (X) must
hold the logical file number to be found. LAT, the table of file numbers is
searched, and if found (X) contains the offset to the position of the file
in the table, and the Z flag is set. If not found, Z=0.

.f30f lda #$00
 sta $90 ; clear STATUS
 txa ; file number to search for
.f314 ldx $98 ; LDTND, number of open files
.f316 dex
 bmi $f32e ; end of table, return
 cmp $0259,x ; compare file number with LAT, table of open files
 bne $f316 ; not equal, try next
 rts ; back with Z flag set

F31F SEET FILE VALUES
This routine sets the current logical file number, device number and
secondary address from the file parameter tables. On entry (X) must hold
the offset to the position of the file in the table.

.f31f lda $0259,x ; LAT, table of active logical files
 sta $b8 ; store in LA
 lda $0263,x ; FAT, table of active device numbers
 sta $ba ; store in FA
 lda $026d,x ; SAT, table of active secondary addresses
 sta $b9 ; store in SAT
.f32e rts ; return

F32F CLALL: ABORT ALL FILES
The KERNAL routine CLALL ($ffe7) is vectored here. The number of open files
are set to zero, and the next routine is performed.

.f32f lda #$00
 sta $98 ; clear LDTND, no open files

F333 CLRCHN: RESTORE TO DEFAULT I/O
The KERNAL routine CLRCHN ($ffcc) is vectored here. The default output
device is UNLISTENed, if it is on the serial bus, and the default output is
set to the screen. The default input device is UNTALKed, if it is on the
serial bus, and the default input device is set to keyboard.

.f333 ldx #$03 ; check if device > 3 (serial bus is 4,5...)
 cpx $9a ; test DFLTO, default output device
 bcs $f33c ; nope, no serial device
 jsr $edfe ; send UNLISTEN to serial bus
.f33c cpx $99 ; test DFLTI, default input device
 bcs $f343 ; nope, no serial device
 jsr $edef ; send UNTALK to serial bus
.f343 stx $9a ; store screen as DFLTO
 lda #$00
 sta $99 ; store keyboard as DFLTI

 rts

F34A OPEN: OPEN FILE
The KERNAL routine OPEN ($ffc0) is vectored here. The file paramerters must
be set before entry. The routine reads the LAT, to see if file already
exists, which will result in I/O error #2, ?FILE OPEN. A test is made to
see if more than 10 files are open. If so, I/O error #1, ?TOO MANY FiLES,
will occur. The file parameters are set, and put in their respective
tables. The device number is checked, and each kind of device jumps to
their own routine. Keyboard and screen will exit here with no further
actions. RS232 is opened via a seperate routine. SA, secondary address, and
filename will be sent on the serial bus. Some tape routines are removed,
and replaced with JiffyDOS code.

.f34a ldx $b8 ; LA, current logical number
 bne $f351
 jmp $f70a ; I/O error #6, not input file
.f351 jsr $f30f ; find file (X)
 bne $f359
 jmp $f6fe ; I/O error #2, file exists
.f359 ldx $98 ; LDTND, number of open files
 cpx #$0a ; more than ten
 bcc $f362 ; nope
 jmp $f6fb ; I/O error #1, too many files
.f362 inc $98 ; increment LDTND
 lda $b8 ; LA
 sta $0259,x ; store in LAT, table of active file numbers
 lda $b9 ; SA
 ora #$60 ; fixx
 sta $b9 ; store in SA
 sta $026d,x ; store in SAT, table of active secondary addresses
 lda $ba ; FA
 sta $0263,x ; store in FAT, table of active device numbers
 beq $f3d3 ; keyboard, end
 cmp #$03 ; screen
 beq $f3d3 ; yep, end
 bcc $f384 ; less than 3, not serial bus
 jsr $f3d5 ; send SA
 bcc $f3d3 ; end
.f384 cmp #$01 ; TAPE
 beq $f3f3 ; I/O error #5, device not present
 jmp $f409 ; open RS232 file

F38B JIFFYDOS TALK & TKSA
This is a routine used by JiffyDOS to untalk device (A), then TALK and TKSA
is executed to current device with current secondary address.

.f38b jsr $ffab ; UNTALK
 lda $ba ; FA, current device number
 jsr $ffb4 ; TALK
 lda $b9 ; SA, current secondary address
 jmp $ff96 ; TKSA, send SA after TALK

F398 JIFFYDOS DIRECT DRIVE COMMANDS
The following text/code is used to transfer, and is transfered to a
selected drive. The first section is a $22 byte long block used by the
lock/unlock a file. The second section is code to execute a drive program
at $0600. The third section sets a byte in the drive memory to control the
interleave. The fourth section sets a byte in the drive memory to control
the 1541 head rattle.

.f398 4d 2d 57 00 06 1c ; M-W 00 06 1c, ie. write $1c bytes to $0600
 lda $0261 ; the following code is transfered to the drive
 sta $07 ; at $0600

 lda #$12
 sta $06
 ldx #$00
 stx $f9
 jsr $d586
 ldy $0267
 lda ($30),y
 eor #$40
 sta ($30),y
 jmp $d58a
.f3b0 4d 2d 45 00 06 ; M-E 00 06, ie. a memory execute at $0600
.f3b6 4d 2d 57 6a 00 01 ; M-W 6a 00 01, ie. memory write one byte at
$006a
.f3bc 4d 2d 57 69 00 01 ; M-W 69 00 01, ie. memory write one byte at
$0069

 ora (p50,x)
 ror a01
 sed $
 rol $
 sta aa6

if3d3 clc
 rts

F3D5 SEND SA
This routine exits if there is no secondary address or filename specifyed.
The I/O status word, ST, is reset, and the serial device is commanded to
LISTEN. A check is made for a possible ?DEVICE NOT PRESENT error. Finally,
the filename is sent to the device.

.f3d5 lda $b9 ; SA, current secondary address
 bmi $f3d3 ; exit
 ldy $b7 ; FNLEN, length of filename
 beq $f3d3 ; exit
 lda #$00
 sta $90 ; clear STATUS, I/O status word
 lda $ba ; FA, current device number
 jsr $ed0c ; send LISTEN to serial bus
 lda $b9 ; SA
 ora #$f0
 jsr $edb9 ; send LISTEN SA
 lda $90 ; STATUS
 bpl $f3f6 ; ok
.f3f1 pla ; remove two stack entries for RTS command
 pla
.f3f3 jmp $f707 ; I/O error #5, device not present
.f3f6 lda $b7 ; FNLEN
 beq $f406 ; unlisten and exit
 ldy #$00 ; clear offset
.f3fc lda ($bb),y ; FNADR, pointer to filename
 jsr $eddd ; send byte on serial bus
 iny ; next character
 cpy $b7 ; until entire filename is sent
 bne $f3fc ; again
.f406 jmp $f654 ; unlisten and exit

F409 OPEN RS232

.f409 jsr $f483
 sty a0297
.f40f cpy ab7
 beq if41d
 lda (pbb),y
 sta f0293,y

 iny
 cpy #$04
 bne if40f
if41d jsr eef4a
 stx a0298
 lda a0293
 and #$0f
 beq if446
 asl a
 tax
 lda a02a6
 bne if43a
 ldy ffec1,x
 lda ffec0,x
 jmp if440
if43a ldy fe4eb,x
 lda fe4ea,x
if440 sty a0296
 sta a0295
if446 lda a0295
 asl a
 jsr eff2e
 lda a0294
 lsr a
 bcc if45c
 lda add01
 asl a
 bcs if45c
 jsr if00d
if45c lda a029b
 sta a029c
 lda a029e
 sta a029d
 jsr efe27
 lda af8
 bne if474
 dey
 sty af8
 stx af7
if474 lda afa
 bne if47d
 dey
 sty afa
 stx af9
if47d sec
 lda #$f0
 jmp efe2d
if483 lda #$7f
 sta add0d
 lda #$06
 sta add03
 sta add01
 lda #$04
 ora add00
 sta add00
 ldy #$00
 sty a02a1
 rts

F49E LOAD: LOAD RAM
The kernal routine LOAD ($ffd5) is vectoed here. If a relocated load is
desired, then the start address is set in MEMUSS. The load/verify flag is
set, and the I/O status word is reset. A test is done on the device number,
less than 3 results in illigal device number.

.f49e stx $c3 ; MEMUSS, relocated load address
 sty $c4
 jmp ($0330) ; ILOAD vector. Points to $f4a5
.f4a5 sta $93 ; VRECK, load/verify flag
 lda #$00
 sta $90 ; clear STATUS, I/O status
 lda $ba ; get FA, current device
 bne $f4b2 ; keyboard
.f4af jmp $f713 ; I/O error #9, illigal device
.f4b2 cmp #$03 ; screen?
 beq $f4af ; yes, illigal device

F4B8 LOAD FROM SERIAL BUS
A filename is assumed by the routine, and if not present, a jump is made to
a new JiffyDSO routine that sets filename to ':*'. The message 'SEARCHING'
is printed and the filename is sent with the TALK command and secondary
address to the serial bus. If EOI occurs at this point, then ?FILE NOT
FOUND is displayed. The message 'LOADING' or 'VERIFYING' is output and a
loop is entered, which recieves a byte from the serial bus, checks the
<STOP> key and either stores the received byte, or compares it to the
memory, depending on the state of VERCK. Finally the bus is UNTALKed.

.f4b8 bcc $f4af ; device < 3, eg tape or RS232, illigal device
 ldy $b7 ; FNLEN, length of filename
 bne $f4bf ; if length not is zero
 jmp $f659 ; fixx filename, JiffyDOS patch
.f4bf ldx $b9 ; SA, current secondary address
 jsr $f5af ; print "SEARCHING"
 lda #$60
 sta $b9 ; set SA to $60
 jsr $f3d5 ; send SA and filename
 lda $ba ; FA, current devicenumber
 jsr $ed09 ; send TALK to serial bus
 lda $b9 ; SA
 jsr $edc7 ; send TALK SA
 jsr $ee13 ; receive from serial bus
 sta $ae ; load address, <EAL
 lda $90 ; check STATUS
 lsr a
 lsr a
 bcs $f530 ; EOI set, file not found
 jsr $f179 ; recieve from serial bus
 sta $af ; load address, >EAL
 txa ; retrieve SA and test relocated load
 bne $f4f0 ;
 lda $c3 ; use MEMUSS as load address
 sta $ae ; store in <EAL
 lda $c4
 sta $af ; store in >EAL
.f4f0 jmp $fac4 ; jump to JiffyDOS patch
.f4f3 jsr $ffe1 ; scan <STOP>
 bne $f4fb ; not stopped
 jmp $f633
.f4fb jsr $fbaa ; JiffyDOS ACPTR, recrive from serial bus
 lda $90 ; read ST
 and #$fd ; mask %11111101
 cmp $90
 sta $90
 bne $f4f3 ; EOI set
 ldy #$00
 ldx $a3
 lda $a4 ;
 cpy $93 ; VERIFY eller LOAD
 beq $f51a ; jump to LOAD
 cmp ($ae),y ; compare with memory

 beq $f51c ; veryfied byte OK
 jsr $f19e ;
 .byte $2c ; mask next write command
.f51a sta ($ae),y ; store in memory
.f51c stx $a3
 inc $ae ; increment <EAL, next address
 bne $f524 ; skip MSB
 inc $af ; increment >EAL
.f524 bit $90 ; test STATUS
 bvc $f4f3 ; get next byte
 jsr $edef ; send UNTALK to serial bus
 jsr $f642
 bcc $f5a9 ; end routine
.f530 jmp $f704 ; I/O error #4, file not found

F533 JIFFYDOS @ COMMAND
The following routine executes the @ command. First it tests if additional
parameters are entered.

.f533 lda $b7 ; FNLEN, length of current filename
 beq $f546 ; no filename
 lda ($bb),y ; test filename for
 cmp #$24 ; $, directory
 beq $f56c ;
 jmp $fc9a ; else goto

F540 JIFFYDOS LIST ASCII FROM DISK
This routine lists an ascii file from disk. It reads one block of text from
the disk (254 bytes) into the filename area. The text is then output using
the 'print filename' routine.

.f540 tya ; (Y) contains the command number
 pha ; store on stack
 jsr $f8bf ; open file with current parameters
 pla ; retrieve
.f546 sta $a6 ; store
.f548 jsr $f911 ; input charaters to buffer (filename area)
 bne $f568 ; exit if errors occured
 lda $a6 ; get command number, should be $0f
 php
 beq $f557
 jsr $e4c6 ; input byte from command channel
 beq $f567 ; if byte =# then exit
.f557 jsr $f79a
 jsr $f5c1 ; print filename, ie. the input buffer
 bit $91 ; STKEY FLAG, test if <STOP> is pressed
 bpl $f567 ; exit
 plp
 bne $f548
 bvc $f548
 .byte $24 ; mask one byte, ie. PLP command
.f567 plp
.f568 rts

F569 JIFFYDOS BASIC DISC LIST
The following routine reads the specifyed basic-file from disk and displays
it to the screen. The entrypoint at $f56c is used for showing the
directory. First, the routine opens the file specifyed. IERROR vector is
changed to $f739, so a RTS command will be performed when a error occurs.
Then the start address is read, and thrown away. A loop is performed that
reads one block of bytes from the disk and is output through the basic LIST
routine. On exit, the IERROR vector is restored.

.f569 ldx #$6c ; get byte for SA, list basic program

 .byte $2c ; mask next 2 bytes
.f56c ldx #$60 ; get byte for SA, list directory
 jsr $f8c1 ; open file with current parameters
 lda #$39 ; setup JiffyDOS IERROR vector to point to
 sta $0300 ; $f739, a RTS-command
 ldy #$fc ; set up (Y) pointer to 252
 jsr $fca6 ; read two garbage bytes (program start address)
.f57b ldy #$00 ; set up (Y) pointer to 0
.f57d jsr $fca6 ; read 254 bytes, store in input buffer
 bvs $f5a3 ; EOI, exit
 cpy #$02 ; if (Y) = 2
 beq $f5a3 ; exit
 cpy #$06
 bcc $f57d
 ldx $bb ; read FNADR pointer, vector to input buffer
 stx $5f ; store in temp vector
 ldx $bc
 stx $60
 ldy #$01
 sta ($5f),y
 jsr $a6c3 ; use part of LIST routine to output text
 jsr $f79a
 jsr $a6d4
 bit $91 ; STKEY FLAG, stop key
 bmi $f57b ; not pressed, continue
.f5a3 lda #$63 ; restore JiffyDOS IERROR vector to $f763
 sta $0300 ; IERROR VEC
 rts

F5A9 LOAD END
This is the last part of the loader routine which sets the (X/Y) register
with the endaddress of the loaded program, clears carry and exit.

.f5a9 clc
 ldx $ae
 ldy $af
 rts

F5AF PRINT "SEARCHING"
If MSGFLG indicates program mode then the message is not printed, otherwise
the message "SEARCHING" is printed from the KERNAL I/O message table. If
the length of filename > 0 then the message "FOR" is printed, and the
routine drops through to print the filename.

.f5af lda $9d ; MSGFLG, direct or program mode?
 bpl $f5d1 ; program mode, don´t print, exit
 ldy #$0c
 jsr $f12f ; print "SEARCHING"
 lda $b7 ; FNLEN, length of current filename
 beq $f5d1 ; no name, exit
 ldy #$17
 jsr $f12f ; print "FOR"

F5C1 PRINT FILENAME
Filename is pointed to by FNADR, and length in FNLEN. The KERNAL routine
CHROUT is used to print filename.

.f5c1 ldy $b7 ; FNLEN, length of current filename
 beq $f5d1 ; exit
 ldy #$00
.f5c7 lda ($bb),y ; get character in filename
 jsr $ffd2 ; output
 iny ; next character
 cpy $b7 ; ready?

 bne $f5c7
.f5d1 rts ; back

F5D2 PRINT "LOADING/VERIFYING"
The load/verify flag is checked, and if the message to be output is flagged
according to the result. This message is printed from the KERNAL I/O
messages table.

.f5d2 ldy #$49 ; offset to verify message
 lda $93 ; VERCK, load/verify flag
 beq $f5da ; verify
 ldy #$59 ; offset to load message
.f5da jmp $f12b ; output message flagged by (Y)

F5DD SAVE: SAVE RAM
The KERNAL routine SAVE ($ffd8) jumps to this routine. On entry, (X/Y) must
hold the end address+1 of the area of memory to be saved. (A) holds the
pointer to the start address of the block, held in zeropage. The current
device number is checked to ensure that it is niether keyboard (0) or
screen (3). Both of these result in ?ILLIGAL DEVICE NUMBER.

.f5dd stx $ae ; EAL , end address of block +1
 sty $af
 tax ; move start pointer to (X)
 lda $00,x
 sta $c1 ; STAL, start address of block
 lda $01,x
 sta $c2
 jmp ($0332) ; vector ISAVE, points to $f5ed
.f5ed lda $ba ; FA, current device number
 bne $f5f4 ; ok
.f5f1 jmp $f713 ; I/O error #9, illigal device number
.f5f4 cmp #$03 ; screen?
 beq $f5f1 ; yep, output error
 bcc $f5f1 ; less than 3, ie. tape, output error

F5FA SAVE TO SERIAL BUS
A filename is assumed by the routine, or ?MISSING FILENAME error is called.
The serial device is commanded to LISTEN, and the filename is sent along
with the secondary address. The message 'SAVING' is printed, and a loop
sends a byte to the serial bus and checks <STOP> key until the whole
specifyed block of memory has been saved. Note that the first two bytes
sent are the start address of the block. Finally the serial bus is
UNLISTENed.

.f5fa lda #$61
 sta $b9 ; set SA, secondary address, to #1
 ldy $b7 ; FNLEN, length of current filename
 bne $f605 ; ok
.f602 jmp $f710 ; I/O error #8, missing filename
.f605 jsr $f3d5 ; send SA & filename
 jsr $f68f ; print 'SAVING' and filename
 lda $ba ; FA, current device number
 jsr $ed0c ; send LISTEN
 lda $b9 ; SA
 jsr $edb9 ; send LISTEN SA
 ldy #$00
 jsr $fb8e ; reset pointer
 lda $ac ; SAL, holds start address
 jsr $eddd ; send low byte of start address
 lda $ad
 jsr $eddd ; send high byte of start address
.f624 jsr $fcd1 ; check read/write pointer
 bcs $f63f

 lda ($ac),y ; get character from memory
 jsr $eddd ; send byte to serial device
 jsr $ffe1 ; test <STOP> key
 bne $f63a ; not pressed
.f633 jsr $f642 ; exit and unlisten
 lda #$00 ; flag break
 sec
 rts
.f63a jsr $fcdb ; bump r/w pointer
 bne $f624 ; save next byte
.f63f jsr $edfe ; send UNLISTEN
.f642 bit $b9 ; SA
 bmi $f657
 lda $ba ; FA
 jsr $ed0c ; send LISTEN
 lda $b9
 and #$ef
 ora #$e0
 jsr $edb9 ; send UNLISTEN SA
.f654 jsr $edfe ; send UNLISTEN
.f657 clc
 rts

F659 JIFFYDOS DEFAULT FILENAME
The following routine is executed when a missing filename is detected in
the original loader routine. If so, the filename is set to ':*', wildcard
filename. On exit, a jump is made to the original loader with new filename
parameters set.

.f659 lda $c6 ; NDX, number of characters in keyboard buffer
 beq $f602 ; if zero, output missing filename error
 lda #$02 ; store $02
 sta $b9 ; in SA, default secondary address
 ldx #$74 ; set up filename pointer to $f674
 ldy #$f6 ; ie. ':*'
 jsr $ffbd ; SETNAM
 jmp $f4bf ; back to loader routine

 ldx #$33 ; offset
 ldy #$04 ; length
 jmp $f932 ; drive command

F672 JIFFYDOS FUNKTION KEYS
The following table contains the strings copyed to the keyboard buffer when
the funktionkeys are pressed. This table is pointed to by the FNKVEC at
$b0/$b1. The strings are seperated by a zero-byte.

.f672 40 24 3a 2a 0d 00 ; F1 = '@$:*'
.f678 2f 00 ; F3 = '/'
.f67a 5e 00 ; F5 = arrow up
.f67c 25 00 ; F7 = '%'
.f67e 40 44 00 ; F2 = '@d'
.f681 40 54 00 ; F4 = '@t'
.f684 5f 00 ; F6 = arrow left
.f686 40 20 20 22 53 3a 00 ; F8 = '@ "S:'

 clc
if68e rts

F68F PRINT 'SAVING'
MSGFLG is checked, and if direct mode is on, then the message 'SAVING' is
flagged and printed from the KERNAL I/O message table.

.f68f lda $9d ; MSGFLG
 bpl $f68e ; not in direct mode, exit
 ldy #$51 ; offset to message in table
 jsr $f12f ; output 'SAVING'
 jmp $f5c1 ; output filename

F69B UDTIM: BUMP CLOCK
The KERNAL routine UDTIM ($ffea) jumps to this routine. The three byte
jiffy clock in RAM is incremented. If it has reached $4f1a01, then it is
reset to zero. this number represents 5184001 jiffies (each jiffy is 1/60
sec) or 24 hours. finally, the next routine is used to log the CIA key
reading.

.f69b ldx #$00
 inc $a2 ; low byte of jiffy clock
 bne $f6a7
 inc $a1 ; mid byte of jiffy clock
 bne $f6a7
 inc $a0 ; high byte of jiffy clock
.f6a7 sec
 lda $a2 ; substract $4f1a01
 sbc #$01
 lda $a1
 sbc #$1a
 lda $a0
 sbc #$4f
 bcc $f6bc ; and test carry if 24 hours
 stx $a0 ; yepp, reset jiffy clock
 stx $a1
 stx $a2

F6BC LOG CIA KEY READING
This routine tests the keyboard for either <STOP> or <RVS> pressed. If so,
the keypress is stored in STKEY.

.f6bc lda $dc01 ; keyboard read register
 cmp $dc01
 bne $f6bc ; wait for value to settle
 tax
 bmi $f6da
 ldx #$bd
 stx $dc00 ; keyboard write register
.f6cc ldx $dc01 ; keyboard read register
 cpx $dc01
 bne $f6cc ; wiat for value to settle
 sta $dc00
 inx
 bne $f6dc
.f6da sta $91 ; STKEY, flag STOP/RVS
.f6dc rts

F6DD RDTIM: GET TIME
The KERNAL routine RDTIM ($ffde) jumps to this routine. The three byte
jiffy clock is read into (A/X/Y) in the format high/mid/low. The routine
exits, setting the time to its existing value in the next routine. The
clock resolution is 1/60 second. SEI is included since part of the IRQ
routine is to update the clock.

.f6dd sei ; disable interrupt
 lda $a2 ; read TIME
 ldx $a1
 ldy $a0

F6E4 SETTIM: SET TIME
The KERNAL routine SETTIM ($ffdb) jumps to this routine. On entry, (A/X/Y)
must hold the value to be stored in the clock. The forman is high/mid/low,
and clock resolution is 1/60 second. SEI is included since part of the IRQ
routine is to update the clock.

.f6e4 sei ; disable interrupt
 sta $a2 ; wrine TIME
 stx $a1
 sty $a0
 cli ; enable interrupts
 rts

F6ED STOP: CHECK <STOP> KEY
The KERNAL routine STOP ($ffe1) is vectored here. If STKEY =#7f, then
<STOP> was pressed and logged whilest the jiffy clock was being updated, so
all I/O channels are closed and the keyboard buffer reset.

.f6ed lda $91 ; STKEY
 cmp #$7f ; <STOP> ?
 bne $f6fa ; nope
 php
 jsr $ffcc ; CLRCHN, close all I/O channels
 sta $c6 ; NDX, number of characters in keyboard buffer
 plp
.f6fa rts

F6FB OUTPUT KERNAL ERROR MESSAGES
The error message to be output is flagged into (A) depending on the entry
point. I/O channels are closed, and then if KERNAL messages are enabled,
"I/O ERROR #" is printed along with the error number.

.f6fb lda #$01 ; error #1, too many files
 .byte $2c
.f6fe lda #$02 ; error #2, file open
 .byte $2c
.f701 lda #$03 ; error #3, file not open
 .byte $2c
.f704 lda #$04 ; error #4, file not found
 .byte $2c
.f707 lda #$05 ; error #5, device not found
 .byte $2c
.f70a lda #$06 ; error #6, not input file
 .byte $2c
.f70d lda #$07 ; error #7, not output file
 .byte $2c
.f710 lda #$08 ; error #8, missing filename
 .byte $2c
.f713 lda #$09 ; error #9, illigal device number
 pha
 jsr $ffcc ; CLRCHN, close all I/O channels
 ldy #$00
 bit $9d ; test MSGFLAG, KERNAL messages enabled
 bvc $f729 ; no
 jsr $f12f ; print "I/O ERROR #"
 pla
 pha
 ora #$30 ; convert (A) to ASCII number
 jsr $ffd2 ; use CHROUT to print number in (A)
.f729 pla
 sec
 rts

F72C TEST JIFFY COMMAND
This routine test the character in the current key in the buffer if it is a
JiffyDOS command character. Output from this routine is (Y) which contains
the value of the selected command. (Y)=$ff if no command was found.

.f72c ldy #$0c ; number of characters to test
 jsr $79 ; CHARGOT, read current character in buffer again
.f731 cmp $f7dd,y ; equal to byte in JiffyDOS command tab
 beq $f739 ; yepp, return
 dey ; test next
 bpl $f731 ; till (Y)=$ff
.f739 rts ; back

F73A JIFFYDOS SLPARA
This routine is executed from the original SLPARA. It executes SETLFS to
set logical file parameters, as normal. But it also continues through the
next routine to find a present device number.

.f73a jsr $ffba ; SETLFS

.F73D JIFFYDOS TEST SERIAL DEVICE
This routine tests a serial disk device number to see if it is present. The
routine uses $be as a internal counter for device number. A test is
performed to make sure that the device number is within its limits, $08-
$1f. If a device is not present, the routine continues searching for a
present device. The second time we reset the counter to $08 (after reaching
$1f) without finding a device, the routine exits with error #5, device not
present.

.f73d clc ; clear carry
 php ; store carry
 ldx $be ; internal counter for devicenumber
 cpx #$08 ; device $8
 bcc $f749 ; less than $8
.f745 cpx #$1f ; serial device must be less than $1f (31)
 bcc $f750 ; less than $1f
.f749 plp ; if carry set, this is second time
 bcs $f761 ; do error
 sec ; set carry to indicate first reset
 php ; store carry
 ldx #$08 ; start at $08 again
.f750 stx $be ; store
 jsr $f2d9 ; test devicenummer (X)
 bcc $f75a ; OK, device (X) is next present device
 inx ; next devicenumber
 bne $f745 ; test next
.f75a pla ; clean ut stack
.f75b rts ; exit

.f75c jsr $f2db ; test devicenumber in FA
 bcc $f75b ; ok
.f761 ldx #$05 ; ERROR, device not present

F763 IERROR: JIFFYDOS ERROR ROUTINE
The ERROR vector IERROR ($0300) points to this routine. On entry (X) holds
the error number. A test is done to see if this is a SYNTAX error ($0b). If
not, it jumps to the original IERROR at $e38b, where errors are taken care
of as usual. Else, the routine continues by checking if the error was
caused by a JiffyDOS command.

.f763 cpx #$0b ; SYNTAX ERROR
 beq $f76a ; yes, jump to command test
.f767 jmp $e38b ; nope, normal error handler

F76A COMMAND: TEST FOR EXTRA JIFFYDOS COMMANDS
The following routine tests if a JiffyDOS command has been entered. A
subroutine is called to test this, and it leavs the JiffyDOS command number
in (Y), if any found. It tests for a present serial device,

.f76a jsr $f72c ; test JiffyDOS command. On exit, (Y)=command number
 bne $f767 ; no JiffyDOS command
 sty $27 ; temp store
 tax
 bmi $f776
 pla
 pla
.f776 jsr $f73d ; test serial device, if any present
 jsr $f838 ; command after '@'? Setname and open specifyed file
 lda $27 ; retrieve temp, command number.
 ldy #$00
 asl a ; times 2
 tax ; to (X)
 lda $f7f5,x ; get low commandvector
 sta $55 ; store
 lda $f7f6,x ; get high commandvector
 sta $56 ; store
.f78c jsr $54 ; execute JiffyDOS command
 jsr $a8f8 ; ignore next statement, sort of REM
 jsr $f2cc ; close all channels, and file 15 if open
 lda $9f ; JiffyDOS default filenumber
 jsr $ffc3 ; CLOSE
.f79a jsr $ffcc ; CLRCHN, close all I/O channels
 ldx $13 ; CHANNL
 beq $f75b ; screen and keyboard are current I/O device, exit
 .byte $2c ; else mask next LDX-command, and perform CHKOUT

.f7a2 ldx #$6f ; command channel
 jmp $ffc9 ; CHKOUT, open channel for output.

F7A7 JIFFYDOS ML-LOAD
This is the entrypoint for £ and %, which loads machine language

.f7a7 tya
 iny
 .byte $2c ; bit $xxxx, trick to skip 2 commands

F7AA JIFFYDOS VERIFY
This is the entrypoint for ´,which veryfies a file

.f7aa tya

F7AB JIFFYDOS BASIC-LOAD
This is the entrypoint for / and 'arrow up' which loads a basic program.
The LOAD/VERIFY is performed. Depending on what command is executed,
various end routines are performed.

.f7ab iny
 sty $b9 ; SA, current secondary address
 ldx $2b ; TXTTAB, start of basic
 ldy $2c
 jsr $ffd5 ; LOAD
 bcc $f7c0 ; load OK
 jmp $e0f9 ; handle I/O error
.f7ba jmp $e195 ; load OK?
.f7bd jmp $e17e ; verify OK?
.f7c0 lda $27 ; test command number
 cmp #$0b ; verify command (´)
 beq $f7bd ; output verify OK

 bcs $f78c ; command number larger than $0b
 cmp #$08 ; load ml (%)
 beq $f75b ; if so exit
 bcc $f7ba ; if command number less than 8, test if OK and exit
 stx $2d ; VARTAB, set start af Basic variables
 sty $2e
 pla ; remove RTS return address
 pla
 jsr $aad7 ; output CR/LF
 jsr $a533 ; rechain basic lines
 jmp $a871 ; perform RUN

F7DD JIFFYDOS COMMAND TAB
The tab contains the additional JiffyDOS commands. The $0c first commands
can be entered at the prompt, and are tested at $f72c. The remaing commands
must be entered after the @-character. The DOS 5.1 Wedge Commands are not
checked here.

.f7dd 40 ; @
.f7de 5f ; <-
.f7df 2a ; *
.f7e0 ac ; dot in lower right corner. (Same as *. Possible
 ; future expansion)
.f7e1 22 ; "
.f7e2 12 ; . (Same as ". Possible future expansion)
.f7e3 2f ; /
.f7e4 ad ; right angle in top right corner. (Same as /.
 Possible future expansion)
.f7e5 25 ; %
.f7e6 5e ; arrow up
.f7e7 ae ; right angle in lower left corner. (Same as 'arrow
 up'. Possible future expansion)
.f7e8 27 ; ´
.f7e9 5c ; £

The following command characters must be entered after the @-character.

.f7ea 44 ; D
.f7eb 4c ; L
.f7ec 54 ; T
.f7ed 23 ; #
.f7ee 42 ; B
.f7ef 46 ; F
.f7f0 4f ; O
.f7f1 50 ; P
.f7f2 51 ; Q
.f7f3 58 ; X
.f7f4 47 ; G

F7F5 JIFFYDOS COMMAND VECTORS
The following table contains the JiffyDOS command vectors. The vectors are
in the same order as the command characters above.

.f7f5 33 f5 ; execute @ at $f533
.f7f7 59 e1 ; execute <- at $e159
.f7f9 39 fa ; execute * at $fa39
.f7fb 39 fa ; execute XX at $fa39
.f7fd 2b f7 ; execute " at $f72b
.f7ff 2b f7 ; execute . at $f72b
.f801 ab f7 ; execute / at $f7ab
.f803 ab f7 ; execute XX at $f7ab
.f805 a7 f7 ; execute % at $f7a7
.f807 ab f7 ; execute 'arrow up' at $f7ab
.f809 ab f7 ; execute XX at $f7ab
.f80b aa f7 ; execute ´ at $f7aa

.f80d a7 f7 ; execute £ at $f7a7

The following commands are extra JiffyDOS commands and to come after the @-
character

.f80f 69 f5 ; execute D at $f569
.f811 d4 f8 ; execute L at $f8d4
.f813 40 f5 ; execute T at $f540
.f815 f1 f1 ; execute # at $f1f1
.f817 2c f9 ; execute B at $f92c
.f819 c2 e4 ; execute F at $e4c2
.f81b 25 f8 ; execute O at $f825
.f81d 97 fa ; execute P at $fa97
.f81f bc fc ; execute Q at $fc2c
.f821 a0 fc ; execute X at $fca0
.f823 24 f9 ; execute G at $f924

F825 JIFFYDOS OLD
The following routine performs a basic old after a new or reset. The
routine performs a rechain to set up correct pointers etc.

.f825 iny
 tya
 sta ($2b),y ; store XX in $08XX to reinit basic
 jsr $a533 ; LINKPRG, rechain basic lines
 txa
 adc #$02
 tax
 lda $23
 adc #$00 ; (X) and (Y) contains start of variables
 tay
 jmp $e1a7 ; set start of variables, and restart basic.

F838 JIFFYDOS COMMAND PART 2
This routine is called from the JiffyDOS COMMAND routine and make a test
for additional command characters after the '@' character. Only the command
number $0d-$17 is tested. If text after '@' is not a JiffyDOS command (ie.
a normal DOS command', or JiffyDOS command number less than $10, a filename
is expected. Tests are made for colon and quotes, the filname is evaluated,
and parts of the OPEN/CLOSE routine is used to SETNAM. A test is made for
additional device number after a comma. A free line on the screen is found,
and some string-house keeping is done. Finally, the routine continues
through to the next routine to open the command channel.

.f838 tya
 bne $f853
 sta $b7
.f83d jsr $73 ; CHRGET, get character from buffer
 beq $f887 ; terminator found, exit
 ldy #$17 ; set pointer for start of command
 jsr $f731 ; test if character is JiffyDOS command
 bne $f858 ; nope, no command
 cpy #$0d ; only test value $17 to $0d
 bcc $f858 ; if less than $0d, exit
 sty $27 ; temp store
 cpy #$10 ; read command value
 bcs $f887 ; if value larger than $10, filename is not expected
.f853 lda #$01
 jsr $a8fc ; add TXTPTR by one
.f858 ldy #$ff ; init pointer
.f85a iny
 lda ($7a),y ; read character from keyboard buffer
 beq $f867 ; terminator found
 cmp #$22 ; quotes?

 beq $f872 ; yes
 cmp #$3a ; colon?
 bne $f85a ; nope, next character
.f867 bit $9d ; test MSGFLG, if direct mode
 bpl $f875
 clc
 jsr $aebd
 jmp $f878
.f872 jsr $a8fb ; add value in (Y) to TXTPTR
.f875 jsr $ad9e ; evaluate expression in text
.f878 jsr $e25a ; use part of OPEN/CLOSE to SETNAM
 jsr $79 ; CHRGET
 cmp #$2c ; test for comma ','
 bne $f887 ; nope
 jsr $b79b ; use GTBYTC to read character after comma
.f885 stx $ba ; store in FA, device number
.f887 ldy #$00
 bit $9d ; test MSGFLG, if direct mode
 bpl $f89a
.f88d lda ($d1),y ; current screen line address, read from screen
 cmp #$20 ; space
 beq $f89a ; yepp
 lda #$0d ; carriage return
 jsr $e716 ; output to screen
 bne $f88d
.f89a jsr $f75c ; test if device FA is present
 lda #$ff
 jsr $b475
 lda $b7 ; FNLEN
 ldx $bb ; FNADR, pointer to current filename
 ldy $bc
 jsr $b4c7
 jsr $b6a3 ; do string housekeeping
 stx $bb ; store in FNADR, pointer to current filename
 sty $bc

F8B2 OPEN COMMAND CHANNEL
The following routine open the command channel. A test is done to see if it
is allready open. If so, the command channel is closed before opened.

.f8b2 jsr $f2cf ; close command channel if open
 lda $b7 ; read FNLEN, length of current filename, temp store
 ldx #$00 ; store 0
 stx $b7 ; in FNLEN
 ldx #$6f
 bne $f8c3 ; allways jump
 ldx #$6e
 lda $b7
.f8c3 stx $b9 ; store in SA, current secondary address
 stx $9f ; store in JiffyDOS default filenamber
.f8c7 pha
 stx $b8 ; store in LA, current logical file number
 jsr $ffcc ; CLRCHN, close all I/O channels
 jsr $ffc0 ; OPEN
 pla
 sta $b7 ; restore FNLEN, length of current filename
.f8d3 rts ; return

F8D4 JIFFYDOS LOCK/UNLOCK FILE
This routine locks/unlocks specifyed file. The file is opened, and tests
are made to check that everything is OK. If so a bunch of code are
transfered to the drive, and executed. The code to be transfered is found
at $f398, after the memory-write command.

.f8d4 jsr $f1e8 ; open file and test if all is OK

 bne $f8d3 ; not ok
 ldx #$00 ; setup drivecommand at $f398+0.
 ldy #$22 ; length of string
 jsr $f8e4 ; execute
 ldy #$05 ; setup drivecommand at $f398+$22, length 5 bytes
 ldx #$22
.f8e4 jsr $f0f4 ; execute direct drivecommand
 jmp $ffcc ; CLRCHN, close all I/O channels

F8EA JIFFYDOS PATCH, SERIAL SEND
This is a patch to the original Commodore KERNAL to send data on the serial
bus.

.f8ea sta $dd00 ; store in serial bus I/O port
 and #$08 ; test ATN, attension
 beq $f910 ; ATN = 1
 lda $95 ; BSOUR
 ror a
 ror a
 cpx #$02 ; bit counter =2
 bne $f910 ; if not, exit
 ldx #$1e
.f8fb bit $dd00
 bpl $f905
 dex
 bne $f8fb
 beq $f90e
.f905 bit $dd00
 bpl $f905
 ora #$40
 sta $a3
.f90e ldx #$02
.f910 rts

F911 JIFFYDOS DISPLAY ASCII FILE
The following routine is called by the LIST ASCII from disk. It clears the
command channel and calls a routine that reads maximum 254 character from
the file. This is repeated until the entire file is displayed.

.f911 ldy #$00
 jsr $f0e2 ; CLRCHN and perform CHKIN on (A)
.f916 jsr $fca9 ; read text into buffer
 bvs $f91d ; finish
 bcc $f916 ; next
.f91d sty $b7 ; FNLEN, length of current filename
 lda $90 ; STATUS
 and #$82
 rts

F924 JIFFYDOS INTERLEAVE
The following routine sets the interleave gapsize by writing the selected
value to drive memory at possition $0069.

.f924 jsr $b79b ; GEBYTC, getbyte from keyboard buffer
 txa ; transfer gapsize to (A)
 ldx #$2d ; setup drive command at $f398+2d, M-W 69 00 01
 bne $f930 ; jump always

F92C JIFFYDOS BUMP DISABLE
The following routine disables the 1541 head rattle. This is done by
writing the value $85 to drivememory at position $006a.

.f92c lda #$85
 ldx #$27 ; setup drive command at $f398+$27, M-W 6a 00 01

.f930 ldy #$06
 pha
 jsr $f0f4 ; execute drive command
 pla
 jmp $ffd2 ; write byte in (A) to drive, and return

F93A JIFFYDOS MARK FILE FOR COPY
This routine toggles the copy flag for one file, of for all selected files
depending on the entry point. If entry at $f93a, the copy flags for all
files will be toggled, and if entry at $f93d only one will be affected.

.f93a ldx #$00 ; toggle flag for all files
 .byte $2c ; mask LDX-command
.f93d ldx #$06 ; toggle flag for current file
 jsr $a68e ; STXPT, reset TXTPTR to start of BASIC
 ldy #$05
 lda ($7a),y ; test 5:th character
 cmp #$12 ; <RVS ON>?
 bne $f9b0 ; if not, directory not loadad, exit
 pla
 txa ; store (X), the toggle flag, on stack
 pha
 ldy #$23 ; set offset to $23
.f94f ldx #$22 ; search for a quote marks (")
 jsr $a917 ; use part of DATAN, to search for character
 dey
 jsr $a8fb ; add offset in (Y) to TXTPTR
 pla ; read flag, set at start
 pha
 beq $f96c ; 'toggle all files' are set
 sta $d3
 ldy #$01
.f960 iny
 jsr $f16a ; use part of 'input from screen'
 cmp ($7a),y
 bne $f977
 sbc #$22
 bne $f960
.f96c tay
 lda ($7a),y ; get character
 eor #$0a ; toggle between $20 (space) and $2a (*)
 sta ($7a),y ; store character
 ldy #$04
 sta ($d1),y
.f977 jsr $a8f8 ; DATA, perform data, skip line like REM
 ldy #$05
 sec
 lda ($7a),y
 sbc #$42
 bne $f94f ; next line
 ldy #$02
 sta ($7a),y
 pla ; set flag, read from stack
 beq $f98d ; if zero, all files were marked/unmarked, do LIST
 lda #$8d
 rts
.f98d jmp $a6a4 ; perform LIST

F990 JIFFYDOS TOGGLE DRIVE COMMANDS
This routine is continued from JiffyDOS get character. It tests if the keys
<CTRL D> are pressed. If so, it increments the internal device counter and
tests if it is present. The routine will return the new device number in
(X), which will be printed, and the routine exits. If <CTRL D> were not

pressed, it continues to test <CTRL A> and <CTRL W>. If not, the routine
continues to the funktion key test.

.f990 bit $9d ; test MSGFLG
 bpl $f9b0 ; exit
 tsx
 ldy $0107,x
 cpy #$e1
 bne $f9b0 ; exit
 cmp #$04 ; test code #$04, <CTRL D>, toggle drive
 bne $f9b2 ; if not, jump to next test
 inc $be ; increment JiffyDOS device counter
 jsr $f73d ; test device number in $be, output (X)
 lda #$00
 jsr $bdcd ; print numeric value in (A/X)
 jsr $aad7 ; output CR/LF
 jsr $f79a ;
.f9b0 pla ; retrieve (A)
 rts ; and exit
.f9b2 cmp #$01 ; test code #$01, <CTRL A>, toggle all files for
copy
 beq $f93a ; toggle all files copy
 cmp #$17 ; test code #$01, <CTRL W>, toggle one file for copy
 beq $f93d ; toggle single file copy

F9BA JIFFY DOS FUNKTION KEYS
This routine test if a shifted, or unshifted funktion key were pressed. If
so, it sends a string containing the command to the keyboard buffer. The
vector in $b0 points to the command sting table. The strings are in
numerical order, and seperated by a null byte. To find the right string,
the routine counts through them all till it reaches the X:th string.

.f9ba ldy $9b ; must be zero. Some internal JiffyDOS flag
 bne $f9b0 ; exit
 cmp #$8d ; test keys F1 to F8
 bcs $f9b0 ; larger than F8, exit
 cmp #$85
 bcc $f9b0 ; less than F1, exit
 pla
 sbc #$85 ; substract #$85
 tax ; transfer key number to (X)
 beq $f9d5 ; if F1, do right away
.f9cc iny ; increment pointer
 lda ($b0),y ; read and skip string in function key table
 bne $f9cc ; repeat till last byte in string
 dex ; next string
 bne $f9cc ; till (X) strings are skipped
.f9d4 iny
.f9d5 lda ($b0),y ; read command from corresponding key
 beq $f9e2 ; if final character, exit
 cmp #$0d ; <return>
 beq $f9e4 ;
 jsr $e716 ; output to screen
 bne $f9d4 ; next character
.f9e2 sta $d4
.f9e4 rts

F9E5 JIFFYDOS GET CHARACTER
This routine is a new JiffyDOS routine to handle extended functions. It is
called from $e5ec, and starts with the original jump. The routine test the
F-keys, and if a valid combination of <CTRL xx> is pressed. If quote mode
or insert mode is activated, then this routine will exit.

.f9e5 jsr $e5b4 ; get character from keyboard buffer
 pha ; temp store

 ldx $d4 ; test QTSV, if quote mode is activated
 bne $fa37 ; if not zero, quote mode is on - exit
 ldx $d8 ; test INSRT, inseret mode
 bne $fa37 ; if not zero, insert mode is on - exit
 cmp #$10 ; test code #$10, <CTRL P>, screen dump
 bne $f990 ; if not pressed, jump and test other keys

F9F5 JIFFYDOS SCREEN DUMP
This routine performs a screen dump when the keys <CTRL P> are pressed. It
reads $d018 to determine if upper or lower character set is used, and sends
the proper SA after LISTEN. The routine stores the cursor positions on the
stack, and retrieves them, and replaces the cursor on exit. To print a
character to the serial bus, the routine uses part of the KERNAL CIOUT
routine.

.f9f5 lda #$04 ; printer device #4
 jsr $ffb1 ; send LISTEN to device #4
 lda $d018 ; test upper/lower character set
 and #$02
 beq $fa03
 lda #$07 ; set SA=#$67
.fa03 ora #$60 ; set SA=#$60
 jsr $ff93 ; send SA after LISTEN
 lda $d3 ; PNTR, cursor column
 pha ; temp store
 lda $d6 ; TBLX, cursor line
 pha ; temp store
.fa0e ldy #$00 ; column counter
 sty $d4 ; clear quotes mode, by writing zero into QTSW
 jsr $e50c ; PLOT, put row and column
 inc $d5 ; increment LNMX, maximum screen line length
.fa17 jsr $f16a ; input from screen
 jsr $eddd ; CIOUT, send data to serial bus (printer)
 cmp #$0d ; carridge return
 bne $fa17 ; next character
 inx ; increment (X), line number
 cpx #$19 ; till all 25 are done
 bcs $fa2d ; exit
 asl $d5
 bpl $fa0e ; next line
 inx
 bne $fa0e ; next line
.fa2d jsr $ffae ; UNLISTEN
 pla ; retrieve (X) and (Y)
 tax
 pla
 tay
 jsr $e50c ; PLOT, put cursor on same position as on entry
.fa37 pla ; return to original 'get character' routine with
key
.fa38 rts ; code in (A)

FA39 JIFFYDOS COPY COMMAND
The following routine is executed to copy files.

.fa39 sty $26 ; (Y) =0, temp store
 jsr $f1e8 ; open command channel and read status
 bne $fa38 ; not OK, exit
 jsr $79 ; CHARGET
 cmp #$52 ; R
 bne $fa5a
.fa47 dec $26
 lda $26
 jsr $f66b
 jsr $e4c6 ; input byte from command channel, and compare to 5

 beq $fa47 ; yepp
 lda #$00
 jsr $f66b
 lda #$4c ; L
.fa5a pha
 ldx $bf
 cpx $ba ; compare to FA, current device number
 beq $fa37 ; exit
 jsr $f885
 ldx #$37 ; setup drive command at $f398+$37
 ldy #$02 ; 2 bytes long
 jsr $f0f4 ; send S:
 jsr $f5c1 ; print filename
 lda #$2c ; ,
 sta ($bb),y ; store in filename buffer
 iny
 pla ; retrieve command
 sta ($bb),y ; store in filename buffer
 iny
 lda #$2c
 sta ($bb),y ; ,
 iny
 lda $26
 pha
 bne $fa83
 lda #$57
.fa83 sta ($bb),y ; W
 iny
 sty $b7 ; update FNLEN, legnth of current filename
 ldy #$0c
.fa8a jsr $fab2 ; set SA to (Y) and more
 jsr $f73d ; test for present device
 jsr $f8b2 ; open command channel
 pla
 jsr $f541 ; use list ASCII from disk to perform copy

FA97 TOGGLE PRINTER
The following routine toggles the printer output funktion. It reads the
CHANNL to determine if printmode is to be turned on or off.

.fa97 lda $13 ; CHANNL, contains 00 if current output is screen
 beq $faa7 ; toggle printer on
 cmp #$7f ; CHANNL, contains 7f if current output is printer
 bne $fa38 ; jump to RTS
 jsr $abb7 ; CLRCHN, clear all channels, and set CHANNL=0
 lda #$7f
 jmp $ffc3 ; close file $7f

.faa7 ldx #$04 ; devicenumber #4 = printer
 jsr $73 ; CHRGET??
 jsr $e229 ; use part of OPEN routine to open dev#4
 jsr $f75c ; test device number in FA
.fab2 sty $b9 ; SA, current secondary address
 ldx #$7f
 stx $13 ; CHANNL, current I/O channel
 lda $b7 ; FNLEN, length of current filename
 jmp $f8c7 ; perform CLRCHN and OPEN file (X)

 tax
 bne $fa8a
 lda $b5
 beq $face

FAC4 PATCH TO ORIGINAL ”LOAD” ROUTINE

This routine is a patch to the original load routine and tests is the
current device is a JiffyDOS device. If not, the routine jumps back to the
original loader at $f4f3. The routine disables the sprites and calculates
the timing parameters to $b1. Some handshaking is done

.fac4 jsr $f5d2 ; print ”LOADING/VERIFYING”
 tsx ; test if some return pointer on the stack is $f7
 lda $0102,x
 cmp #$f7
 bne $fad7 ; if not, don’t store the $ae/$af parameters
 lda $ae
 sta $55
 lda $af
 sta $56
.fad7 bit $a3 ; ldflg, are we talking to a JiffyDOS device?
 bmi $fade ; yes
 jmp $f4f3 ; nope, return to the original loadroutine.
.fade sei ; no interrupts
 ldy #$03
.fae1 lda $af,y ; save $b0,$b1,$b2 on the stack
 pha
 dey
 bne $fae1
 lda $d015 ; any sprites enabled?
 sta $b0 ; store
 jsr $f0d8 ; clear all sprites not to mess up the timing!
.faf0 jsr $f6bc ; <STOP> key pressed?
 bpl $fb27 ; yes - exit
 lda $d011 ; read finscroll
 and #$07 ; mask bits
 clc
 adc #$2f ; add $2f - start of the visible screen
 sta $b1 ; store
 lda $dd00 ; read and store the lower three bits in $dd00
 and #$07 ; they contain PA2 and gfxbank pointers
 sta $b2
 sta $dd00 ; clear
 ora #$20 ; %00100000
 tax
.fb0c bit $dd00 ; bit test
 bvc $fb0c ; loop if input clk=0
 bpl $fb3e ; goto LOADER if input data=0
 ldx #$64
.fb15 bit $dd00 ; bit test
 bvc $fb20 ; EOI if input clk=0
 dex
 bne $fb15 ; repeat $64 times
 lda #$42 ; status code $42, EOI & READ TIMEOUT
 .byte $2c
.fb20 lda #$40 ; status code $40, EOI
 jsr $fe1c ; set STATUS
 clc ; clear carry
 .byte $24 ; mask
.fb27 sec ; set carry
 lda $b0 ; enable sprites
 sta $d015
 pla ; restore zero page addresses
 sta $b0
 pla
 sta $b1
 pla
 sta $b2
 bcs $fb3b ; if carry set, exit the normal way
 jmp $f528 ;
.fb3b jmp $f633 ; exit and unlisten

FB3E THE JIFFYDOS XFER ROUTINE FOR LOAD

.fb3e bit $dd00 ; drive timing
 bpl $fb3e ; loop if input data=0
 sec
.fb44 lda $d012 ; raster timing
 sbc $b1
 bcc $fb4f
 and #$07
 beq $fb44
.fb4f lda $b2 ; lower three bits of $dd00
 stx $dd00 ; store %00100xxx in $dd00
 bit $dd00 ; bit test
 bvc $faf0 ; branch is input clk=0
 nop ; timing
 sta $dd00 ; store %00000xxx in $dd00
 ora $dd00 ; read two first bits
 lsr a ; move right two times
 lsr a
 nop ; timing
 ora $dd00 ; read next two bits
 lsr a ; move right two times
 lsr a
 eor $b2 ; ”trixx” to handle the lower three bits of $dd00
 eor $dd00
 lsr a ; move right two times
 lsr a
 eor $b2 ; ”trixx” to handle the lower three bits of $dd00
 eor $dd00
 cpy $93 ; load/verify flag
 bne $fb83 ; branch if verify
 sta ($ae),y ; store loaded byte in memory
.fb7a inc $ae ; next low-byte
 bne $fb44 ; fetch next byte
 inc $af ; next high byte
 jmp $fb44 ; fetch next byte
.fb83 cmp ($ae),y ; verify byte
 beq $fb7a ; equal
 sec
 lda #$10 ; verify error
 sta $90 ; store in STATUS
 bne $fb7a ; continue

 lda $c2
 sta $ad
 lda $c1
 sta $ac
 rts

FB97 JIFFYDOS DISABLE SPRITES BEFORE ACPTR
This routine disables all the sprites on the screen, and continues the
loading procedure. Afterwards the sprites are enabled again.

.fb97 pha ; store the $d015 value on the stack
 jsr $f0d8 ; disable all the sprites
 jsr $fbb4 ; continue the loader below
 pla ; restore
 sta $d015 ; and enable sprites again
 lda $a4 ;
 rts

FBA5 JIFFYDOS ACPTR

This is the JiffyDOS ACPTR routine which fetches a byte from the serial
bus. Entry point is $fbaa where a test is done by checking $a3 to see if
the current device is a JiffyDOS device. Visible sprites are disabled, and
raster-timing is done so that no serial access is done when there is a ”bad
rasterline”

.fba5 lda #$00 ; jump back to the normal load routine
 jmp $ee16
.fbaa sei
 bit $a3 ; test $a3 to see if the device is a JiffyDOS drive
 bvc $fba5 ; nope, back to normal load routine
 lda $d015 ; sprites on screen that can mess up the critical
 ; timing
 bne $fb97 ; yes, clear sprites before loading
.fbb4 lda $dd00 ; serial bus
 cmp #$40 ; test bit 6
 bcc $fbb4 ; loop
 and #$07 ; mask lower three bits
 pha ; store
.fbbe lda $d012 ; current raster line
 sbc $d011 ; substract fine scroll register
 and #$07 ; mask upper bits
 cmp #$07
 bcs $fbbe ; wait a little longer
 pla ; restore
 sta $dd00 ; write output clk=0 and output data=0
 sta $a4
 ora #$20 ; set bit 5=1
 pha ; store on stack
 nop ; timing
 nop
 ora $dd00 ; first two bits
 lsr a ; rotate right
 lsr a
 nop ; timing
 ora $dd00 ; next bits
 lsr a ; rotate right
 lsr a
 eor $a4 ; take care of the lower three bits in $dd00
 eor $dd00 ; next bits
 lsr a ; rotate right
 lsr a
 eor $a4 ; take care of the lower three bits in $dd00
 eor $dd00 ; next bits
 sta $a4
 pla ; restore from stack
 bit $dd00 ; bit test
 sta $dd00 ; store
 bvc $fc22
 bpl $fc1d
 lda #$42
 jmp $edb2

FBFE PATCH SEND DATA ON SERIAL LINE
The following routine is used to send a byte to a device on ther serial
bus. The routine checks if the device is a JiffyDOS device by reading $a3.
If not a JiffyDOS device, the routine jumps back to the original load
routine at $ed40.

.fbfe sei ; disable interrupts
 bit $a3 ; ldflg
 bvc $fc14 ; test some more
.fc03 lda $d015 ; any sprites enabled
 beq $fc27 ; nope, continue the send byte routine
 pha ; store number of sprites on the stack

 jsr $f0d8 ; disable all sprites
 jsr $fc27 ; send-byte routine
 pla ; read stack
 sta $d015 ; enable sprites
 rts ; return
.fc14 lda $a3 ; ldflg
 cmp #$a0
 bcs $fc03 ; go and test sprites
 jmp $ed40 ; original send data on serial bus

.fc1d lda #$40 ; %01000000 (EOI)
 jsr $fe1c ; set I/O status
.fc22 lda $a4
.fc24 cli
 clc
 rts

FC27 JIFFYDOS PATCH SEND DATA ON SERIAL LINE

The bits in BSOUR are sent in the following order %22114334.

.fc27 txa ; store (X) on the stack
 pha
 lda $95 ; BSOUR, the byte to send
 and #$f0 ; upper four bits
 pha ; on stack
 lda $95 ; BSOUR, the byte to send
 and #$0f ; lower four bits
 tax ; to (X)
.fc33 lda $dd00 ; serial bus
 bpl $fc33 ; loop as long as data input=0
 and #$07 ; %00000111, mask lower three bits, PA2 and gfx bank
 sta $95 ; store
 sec
.fc3d lda $d012 ; time the send routine with the raster
 sbc $d011 ; badlines are not allowed durin xfer
 and #$07
 cmp #$06
 bcs $fc3d ; wait
 lda $95 ; 00000xxx
 sta $dd00 ; clear serial bus to ”clock” the drive
 pla ; upper four bits to send
 ora $95 ; set PA2 and gfx bank
 sta $dd00 ; send to drive over serial bus
 lsr a ; next two bits
 lsr a
 and #$f0 ; clear low nybble
 ora $95 ; and set PA2 and gfx bank
 sta $dd00 ; send to drive over serial bus
 lda $fc8a,x ; use (X) as offset for lownybble-table
 ora $95 ; set PA2 and gfx bank
 sta $dd00 ; send to drive over serial bus
 lsr a ; next two bits
 lsr a
 and #$f0 ; clear low nybbls
 ora $95 ; set PA2 and gfx bank
 sta $dd00 ; send to drive over serial bus
 and #$0f
 bit $a3
 bmi $fc76
 ora #$10
.fc76 sta $dd00
 pla ; restore (X)
 tax

 lda $95 ; PA2 and gfk bank
 ora #$10 ; set send clk=1
 sta $dd00 ; store
 bit $dd00 ; read serial bus
 bpl $fc24 ; branch if input data=0
 jmp $edb0 ; back

FCA8 JIFFYDOS SENDTABLE
A table of bit combinations for the lower nybble of the byte to send to a
JiffyDOS device.

.fc8a .byte %00000000 ; $00
 .byte %10000000 ; $80
 .byte %00100000 ; $20
 .byte %10100000 ; $a0
 .byte %01000000 ; $40
 .byte %11000000 ; $c0
 .byte %01100000 ; $60
 .byte %11100000 ; $e0
 .byte %00010000 ; $10
 .byte %10010000 ; $90
 .byte %00110000 ; $30
 .byte %10110000 ; $b0
 .byte %01010000 ; $50
 .byte %11010000 ; $d0
 .byte %01110000 ; $70
 .byte %11110000 ; $f0

 beq $fcbb
 ldx #$f7
 jmp $f5c1

FCA0 JIFFYDOS X COMMAND
The following routine sets the destination devicenumber when using the
JiffyDOS copyroutine.

.fca0 jsr $b79b ; GTBYTC, get destination device
 stx $bf ; store in $bf
 rts ; back

FCA6 READ INTO BUFFER
The following routine is used by the LIST ASCII and LIST BASIC directly
from disk. It reads a number of bytes into the filename buffer area.

.fca6 jsr $f0e2 ; CLRCHN, and perform CHKIN on (A)
.fca9 jsr $ffcf ; CHRIN
 sta ($bb),y ; FNADR POINTER, store in buffer for current
filename
 iny ; next character
 bit $90 ; test STATUS
 bvs $fcbb ; exit
 cpy #$fe ; max length
 bcs $fcbb ; yepp
 cmp #$01 ; larger than 1
 bcs $fca9 ; yepp, repeat
.fcbb rts

FCBC DISABLE JIFFYDOS COMMANDS
The following routine is called by the @X command and restores the IERROR,
IMAIN and ICRNCH vector.

.fcbc ldx #$05
.fcbe lda $f1a3,x ; table with original vectors

 sta $0300,x ; store in vector table
 dex
.fcc5 bpl $fcbe
 stx $9b ; (X)=255, JiffyDOS not activated.
 rts

 lda aa5
 ora (p29,x)
 sbc f0185,x
 sec
 lda aac
 sbc aae
 lda aad
 sbc aaf
 rts
 inc aac
 bne ifce1
 inc aad
ifce1 rts

FCE2 POWER RESET ENTRY POINT
The system hardware reset vector ($FFFC) points here. This is the first
routine executed when the computer is switched on. The routine firstly sets
the stackpointer to #ff, disables interrupts and clears the decimal flag.
It jumps to a routine at $fd02 which checks for autostart-cartridges. If
so, an indirectjump is performed to the cartridge coldstart vector at
$8000. I/O chips are initiated, and system constants are set up. Finaly the
IRQ is enabled, and an indirect jump is performed to $a000, the basic cold
start vector.

Future implementaions? - A patch to disable the $8000 autostart if a
special key is pressed.

.fce2 ldx #$ff
 sei
 txs ; Set stackpointer to #ff
 cld
.fce7 jsr $fd02 ; Check ROM at $8000
 bne $fcef
 jmp ($8000) ; Jump to autostartvector
.fcef stx $d016
 jsr $fda3 ; Init I/O
 jsr $fd50 ; Init system constants
 jsr $fd15 ; KERNAL reset
 jsr $ff5b ; Setup PAL/NTSC
 cli
 jmp ($a000) ; Basic coldstart

FD02 CHECK FOR 8-ROM
Checks for the ROM autostartparametrar at $8004-$8008. It compares data
with $fd10, and if equal, set Z=1.

.fd02 ldx #$05 ; 5 bytes to check
.fd04 lda $fd0f,x ; Identifyer at $fd10
 cmp $8003,x ; Compare with $8004
 bne $fd0f ; NOT equal!
 dex
 bne $fd04 ; until Z=1
.fd0f rts

FD10 8-ROM IDENTIFYER
The following 5 bytes contains the 8-ROM identifyer, reading "CBM80" with
CBM ASCII. It is used with autostartcartridges. See $fd02.

.fd10 c3 c2 cd 38 30 ; CBM80

FD15 RESTOR: KERNAL RESET
The KERNAL routine RESTOR ($ff8a) jumps to this routine. It restores
(copys) the KERNAL vectors at $fd30 to $0314-$0333. Continues through
VECTOR.

.fd15 ldx #$30
 ldy #$fd ; $fd30 - table of KERNAL vectors
 clc ; Clear carry to SET values.

FD1A VECTOR: KERNAL MOVE
The KERNAL routine VECTOR ($ff8d) jumps to this routine. It reads or sets
the vactors at $0314-$0333 depending on state of carry. X/Y contains the
adress to read/write area, normally $fd30. See $fd15.
A problem is that the RAM under the ROM at $fd30 always gets a copy of the
contents in the ROM then you perform the copy.

.fd1a stx $c3 ; MEMUSS - c3/c4 temporary used for adress
 sty $c4
 ldy #$1f ; Number of bytes to transfer
.fd20 lda $0314,y
 bcs $fd27 ; Read or Write the vectors
 lda ($c3),y
.fd27 sta ($c3),y
 sta $0314,y
 dey
 bpl $fd20 ; Again...
 rts

FD30 KERNAL RESET VECTORS
These are the vectors that is copyed to $0314-$0333 when RESTOR is called.
These vectors are the same in JiffyDOS, as in stock Commodore KERNAL.

.fd30 31 ea ; CINV VECTOR: hardware interrupt ($ea31)
.fd32 66 fe ; CBINV VECTOR: software interrupt ($fe66)
.fd34 47 fe ; NMINV VECTOR: hardware nmi interrupt ($fe47)
.fd36 4a f3 ; IOPEN VECTOR: KERNAL open routine ($f3a4)
.fd38 91 f2 ; ICLOSE VECTOR: KERNAL close routine ($f291)
.fd3a 0e f2 ; ICHKIN VECTOR: KERNAL chkin routine ($f20e)
.fd3c 50 f2 ; ICKOUT VECTOR: KERNAL chkout routine ($f250)
.fd3e 33 f3 ; ICLRCH VECTOR: KERNAL clrchn routine ($f333)
.fd40 57 f1 ; IBASIN VECTOR: KERNAL chrin routine ($f157)
.fd42 ca f1 ; IBSOUT VECTOR: KERNAL chrout routine ($f1ca)
.fd44 ed f6 ; ISTOP VECTOR: KERNAL stop routine ($f6ed)
.fd46 3e f1 ; IGETIN VECTOR: KERNAL getin routine ($f13e)
.fd48 2f f3 ; ICLALL VECTOR: KERNAL clall routine ($f32f)
.fd4a 66 fe ; USRCMD VECTOR: user defined ($fe66)
.fd4c a5 f4 ; ILOAD VECTOR: KERNAL load routine ($f4a5)
.fd4e ed f5 ; ISAVE VECTOR: KERNAL save routine ($f5ed)

FD50 RAMTAS: INIT SYSTEM CONSTANTS
The KERNAL routine RAMTAS($ff87) jumps to this routine. It clears the pages
0,2 and 3 by writing 00 into them. It also sets the start of the cassette
buffer - $033c, and determins how much free RAM-memory there is. (The
tapebuffer could probably be removed, since JiffyDOS doesn't use tapes at
all.) The memorycheck is performed by writing two different bytes into all
memory positions, starting at $0400, till it reaches the ROM (the byte read
is not the same as the one you wrote.) Note that the contents of the memory
is restored afterwards. Finally, bottom of the memory, and top of screen-
pointers are set.

Future implementations? - Make a faster RAMcheck routine which not reads
all bytes from $0400 and upwards. There can only be ROM at $8000 to $a000,
so why bother to check elsewhere. Save a few bytes ad lots of time!!

.fd50 lda #$00
 tay
.fd53 sta $02,y ; Fill pages 0,2,3 with zeros
 sta $0200,y
 sta $0300,y
 iny
 bne $fd53 ; all 256 bytes
 ldx #$3c
 ldy #$03 ; Set tapebuffer to $033c
 stx $b2 ; Variables TAPE1 is used.
 sty $b3
 tay
 lda #$03
 sta $c2
.fd6c inc $c2
.fd6e lda ($c1),y ; Perform memorytest. Starting at $0400 and upwards.
 tax ; Store temporary in X-reg
 lda #$55
 sta ($c1),y ; Write #$55 into memory
 cmp ($c1),y ; and compare.
 bne $fd88 ; if not equal... ROM
 rol a
 sta ($c1),y ; Write #$AA into same memory
 cmp ($c1),y ; and compare again.
 bne $fd88 ; if not equal... ROM
 txa
 sta ($c1),y ; Restore stored value
 iny
 bne $fd6e ; Next memorypos
 beq $fd6c ; New page in memory
.fd88 tya ; The memorytest always exits when reaching a ROM
 tax
 ldy $c2
 clc
 jsr $fe2d ; Set top of memory. X and Y holds address.
 lda #$08
 sta $0282 ; Set pointer to bottom of memory ($0800)
 lda #$04
 sta $0288 ; Set pointer to bottom of screen ($0400)
 rts

FD96 TAPE IRQ VECTORS
This table contains the vectors to the four tape-IRQ routines. The vectors
are: $fc6a - tape write I, $fcbd - tape write II, $ea31 - normal IRQ,
$f92c - tape read. This table could probably be removed, to gain another 8
bytes of free ROM for own code.

.fd96 6a fc bd fc 31 ea 2c f9

FDA3 IOINIT: INIT I/O
The KERNAL routine IOINIT ($ff84) jumps to this routine. It sets the init-
values for the CIAs (IRQ, DDRA, DRA etc.), the SID-volume, and the
processor onboard I/O port.

.fda3 lda #$7f
 sta $dc0d ; CIA#1 IRQ control register
 sta $dd0d ; CIA#2 IRQ control register
 sta $dc00 ; CIA#1 data port $ (keyboard)
 lda #$08
 sta $dc0e ; CIA#1 control register timer A
 sta $dd0e ; CIA#2 control register timer A

 sta $dc0f ; CIA#1 control register timer B
 sta $dd0f ; CIA#2 control register timer B
 ldx #$00
 stx $dc03 ; CIA#1 DDRB. Port B is input
 stx $dd03 ; CIA#2 DDRB. Port B is input
 stx $d418 ; No sound from SID
 dex
 stx $dc02 ; CIA#1 DDRA. Port A is output
 lda #$07 ; %00000111
 sta $dd00 ; CIA#2 dataport A. Set Videobank to $0000-$3fff
 lda #$3f ; %00111111
 sta $dd02 ; CIA#2 DDRA. Serial bus and videobank
 lda #$e7 ; 6510 I/O port - %XX100111
 sta $01
 lda #$2f ; 6510 I/O DDR - %00101111
 sta $00

FDDD ENABLE TIMER
This routine inits and starts the CIA#1 timer A according to the PAL/NTSC
flag. Different system clocks rates are used in PAL/NTSC systems.

.fddd lda $02a6 ; PAL/NTSC flag
 beq $fdec ; NTSC setup
 lda #$25
 sta $dc04 ; CIA#1 timer A - lowbyte
 lda #$40 ; PAL-setup #4025
 jmp $fdf3
.fdec lda #$95
 sta $dc04 ; CIA#1 timer A - lowbyte
 lda #$42 ; NTSC-setup #4295
.fdf3 sta $dc05 ; CIA#1 timer A - highbyte
 jmp $ff6e ; start timer

FDF9 SETNAM: SAVE FILENAME DATA
The KERNAL routine SETNAM ($ffbd) jumps to this routine. On entry, A-reg
holds the length of the filename, and X/Y the address in mem to the
filename.

.fdf9 sta $b7 ; store length of filename in FNLEN
 stx $bb ; store pointer to filename in FNADDR
 sty $bc
 rts

FE00 SETLFS: SAVE FILE DETAILS
The KERNAL routine SETLFS ($ffba) jumps to this routine. On entry A-reg
holds the logical filenumber, X the device number, and Y the secondary
address.

.fe00 sta $b8 ; store logical filenumber in LA
 stx $ba ; store devicenumber in FA
 sty $b9 ; store secondary address in SA
 rts

FE07 READST: READ STATUS
The KERNAL routine READST ($ffb7) jumps to this routine. The routine checks
if the current devicenumber is 2, (ie RS232) then the value of RSSTAT (the
ACIA 6551 status)is returned in (A), and RSSTAT is cleared. Else it reads
and returnes the value of STATUS.

.fe07 lda $ba ; read current device number from FA
 cmp #$02 ; device = RS232?
 bne $fe1a ; nope, read STATUS
 lda $0297 ; RSSTAT
 pha ; temp store

 lda #$00
 sta $0297 ; clear RSSTAT
 pla
 rts

FE18 SETMSG: FLAG STATUS
The KERNAL routine SETMSG ($ff90) jumps to this routine. On entry, the
value in (A) is stored in MSGFLG, then the I/O status is placed in (A). If
routine is entered at $fe1c the contents in (A) will be stored in STATUS.

.fe18 sta $9d ; store MSGFLG
.fe1a lda $90 ; read STATUS
.fe1c ora $90
 sta $90
 rts

FE21 SETTMO: SET TIMEOUT
The KERNAL routine SETTMO ($ffa2) jumps to this routine. On entry the value
in (A) is stored in the IEEE timeout flag. (Who uses IEEE nowadays?)

.fe21 sta $0285 ; store in TIMOUT
 rts

FE25 MEMTOP: READ/SET TOP OF MEMORY
The KERNAL routine MEMTOP ($ffa9) jumps to this routine. If carry is set on
entry, the top of memory address will be loaded into (X/Y). If carry is
clear on entry, the top of memory will be set according to the contents in
(X/Y)

.fe25 bcc $fe2d ; carry clear?
 ldx $0283 ; read memtop from MEMSIZ
 ldy $0284
.fe2d stx $0283 ; store memtop in MEMSIZ
 sty $0284
 rts

FE34 MEMBOT: READ/SET BOTTOM OF MEMORY
The KERNAL routine MEMBOT ($ff9c) jumps to this routine. If carry is set on
entry, the bottom of memory address will be loaded into (X/Y). If carry is
clear on entry, the bottom of memory will set according to the contents in
(X/Y)

.fe34 bcc $fe3c ; carry clear?
 ldx $0281 ; read membot from MEMSTR
 ldy $0282
.fe3c stx $0281 ; store membot in MEMSTR
 sty $0282
 rts

FE43 NMI ENTRY POINT
The processor jumps to this routine every time a NMI occurs (see jump
vector at $fffa). On entry all processor registers will be put on the
stack. The routine will check the presents of a ROM cartridge at $8000 with
autostart, and warm start it. Otherwise, the following warm start routine
is called.

.fe43 sei ; disable interrupts
 jmp ($0318) ; jump to NMINV, points normally to $fe47
.fe47 pha ; store (A), (X), (Y) on the stack
 txa
 pha
 tya
 pha
 lda #$7f ; CIA#2 interrupt control register

 sta $dd0d
 ldy $dd0d
 bmi $fe72 ; NMI caused by RS232? If so - jump
 jsr $fd02 ; check for autostart at $8000
 bne $fe5e
 jmp ($8002) ; Jump to warm start vector
.fe5e jsr $f6bc ; Scan one row in the keymatrix and store value in
$91
 jsr $ffe1 ; Check $91 to see if <STOP> was pressed
 bne $fe72 ; <STOP> not pressed, skip part of following routine

FE66 WARM START BASIC
This routine is called from the NMI routine above. If <STOP> was pressed,
then KERNAL vectors are restored to default values, I/O vectors initialised
and a jump to ($a002), the Basic warm start vector.
The NMI routine continues at $fe72 by checking the RS232, if there is
anyting to send.

.fe66 jsr $fd15 ; KERNAL reset
 jsr $fda3 ; init I/O
 jsr ee518 ; init I/O
 jmp ($a002) ; jump to Basic warm start vector

.fe72 tya ; Read CIA#2 interrupt control register
 and $02a1 ; mask with ENABL, RS232 enable
 tax ; temp store in (X)
 and #$01 ; test if sending (%00000001)
 beq $fea3 ; nope, jump to recieve test
 lda $dd00 ; load CIA#1 DRA
 and #$fb ; mask bit2 (RS232 send)
 ora $b5 ; NXTBIT, next bit to send
 sta $dd00 ; and write to port
 lda $02a1
 sta $dd0d ; write ENABL to CIA#2 I.C.R
 txa ; get temp
 and #$12 ; test if recieving (bit1), or waiting for reciever
 edge (bit4) ($12 = %00010010)
 beq $fe9d ; nope, skip reciever routine
 and #$02 ; test if recieving
 beq $fe9a ; nope
 jsr $fed6 ; jump to NMI RS232 in
 jmp $fe9d
.fe9a jsr $ff07 ; jump to NMI RS232 out
.fe9d jsr $eebb ; RS232 send byte
 jmp $feb6 ; goto exit
.fea3 txa ; get temp
 and #$02 ; test bit1
 beq $feae ; nope
 jsr $fed6 ; NMI RS232 in???
 jmp $feb6 ; goto exit
.feae txa ; set temp
 and #$10 ; test bit4
 beq $feb6 ; nope, exit
 jsr $ff07 ; NMI RS232 out
.feb6 lda $02a1 ; ENABL
 sta $dd0d ; CIA#2 interrupt control register
 pla ; restore registers (Y),(X),(A)
 tay
 pla
 tax
 pla
 rti ; back from NMI

FEC2 RS232 TIMING TABLE - NTSC

Timingtable for RS232 NMI for use with NTSC machines. The table containe 10
entries which corresponds to one of the fixed RS232 rates, starting with
lowest (50 baud) and finishing with the highest (2400 baud). Since the
clock frequency is different between NTSC and PAL systems, there is another
table for PAL machines at $e4ec.

Future implementations? Remove the table if you run a PAL machine, and put
some own code here.

 cmp ($27,x)
 rol fc51a,x
 ora ($74),y
 $sl $0ced
 eor $06
 beq $fed2
 lsr $01
.fed2 clv
 brk
 $dc ($00),y

FED6 NMI RS232 IN
This routine inputs a bit from the RS232 port and sets the baudrate timing
for the next bit. Continues to the RS232 recieve routine.

.fed6 lda $dd01 ; RS232 I/O port
 and #$01 ; test bit0, received data
 sta $a7 ; store in INBIT
 lda $dd06 ; lowbyte of timer B
 sbc #$1c
 adc $0299 ; <BAUDOF
 sta $dd06 ; store timer B
 lda $dd07 ; highbyte of timer B
 adc $029a ; >BAUDOF
 sta $dd07 ; store timer B
 lda #$11
 sta $dd0f ; CIA#2 control register B
 lda $02a1 ; ENABL
 sta $dd0d ; CIA#2 interrupt control register
 lda #$ff
 sta $dd06
 sta $dd07
 jmp $ef59 ; jump to RS232 receive routine
FF07 NMI RS232 OUT
This routine sets up the baudrate for sending the bits out, and adjusts the
number of bits remaining to send.

.ff07 lda $0295 ; M51AJB - non standard BPS time
 sta $dd06 ; timer B low
 lda $0296
 sta $dd07 ; timer B high
 lda #$11
 sta $dd0f ; CIA#2 control register B
 lda #$12
 eor $02a1
 sta $02a1 ; ENABL, RS232 enables
 lda #$ff
 sta $dd06
 sta $dd07 ; timer B
 ldx $0298 ; BITNUM, number of bits still to send in this byte
 stx $a8 ; BITC1, RS232 bitcount
 rts
.ff2f tax
 lda $0296
 rol
 tay

 txa
 adc #$c8
 sta $0299
 tya
 adc #$00
 sta $029a
 rts

FF41 FAKE IRQ
Fake IRQ entry that clears bit4 which is later tested for HW or SW
interrupt. This entry will always create a hardware interrupt.

 nop ; don't ask me??
 nop
 php ; store processor reg.
 pla ; get reg
 and #$ef ; clear bit4
 pha ; store reg

FF48 IRQ ENTRY
This routine is pointed to by the hardware IRQ vector at $fffe. This
routine is able to distinguish between s hardware IRQ, and a software BRK.
The two types of interrupts are processed by its own routine.

.ff48 pha ; Store Acc
 txa
 pha ; Store X-reg
 tya
 pha ; Store Y-reg
 tsx
 lda $0104,x ; Read byte on stack written by processor?
 and #$10 ; check bit 4 to determine HW or SW interrupt
 beq $ff58
 jmp ($0316) ; jump to CBINV. Points to FE66, basic warm start
.ff58 jmp ($0314) ; jump to CINV. Points to EA31, main IRQ entry point

FF5B CINT: INIT SCREEN EDITOR
The KERNAL routine CINT ($FF81) jumps to this routine. It sets up VIC for
operation. The original CINT is at $e518, and this patch checks out if this
is a PAL or NTSC machine. This is done by setting the raster compare
register to 311, which is the number of scanlines in a PAL machine. If no
interrupt occurs, then it's a NTSC machine.

.ff5b jsr $e518 ; original I/O init
.ff5e lda $d012 ; wait for top of screen
 bne $ff5e ; at line zero
 lda $d019 ; Check IRQ flag register if interrupt occured
 and #$01 ; only first bit
 sta $02a6 ; store in PAL/NTSC flag
 jmp $fddd ; jump to ENABLE TIMER

FF6E START TIMER
This routine starts the CIA#1 timer and jumps into a routine that handles
the serial clock.

.ff6e lda #$81 ; Enable IRQ when timer B reaches zero
 sta $dc0d ; CIA#1 interrupt controll register
 lda $dc0e ; CIA#1 control register A
 and #$80
 ora #$11 ; Force load of timer A values -bit4, and start -
bit0
 sta $dc0e ; Action!
 jmp $ee8e ; Continue to 'serial clock off'

FF80 KERNAL VERSION ID
This byte contains the version number of the KERNAL.

.ff80 sed $

FF81 KERNAL JUMP TABLE
This table contains jump vectors to the I/O routines. This is a Commodore
standard, so no matter what system you are using (VIC20, C64, C128, Plus4
etc) the jump vectors are always located at this position.

.ff81 jmp $ff5b ; CINT, init screen editor
.ff84 jmp $fda3 ; IOINT, init input/output
.ff87 jmp $fd50 ; RAMTAS, init RAM, tape screen
.ff8a jmp $fd15 ; RESTOR, restore default I/O vector
.ff8d jmp $fd1a ; VECTOR, read/set I/O vector
.ff90 jmp $fe18 ; SETMSG, control KERNAL messages
.ff93 jmp $edb9 ; SECOND, send SA after LISTEN
.ff96 jmp $edc7 ; TKSA, send SA after TALK
.ff99 jmp $fe25 ; MEMTOP, read/set top of memory
.ff9c jmp $fe34 ; MEMBOT, read/set bottom of memory
.ff9f jmp $ea87 ; SCNKEY, scan keyboard
.ffa2 jmp $fe21 ; SETTMO, set IEEE timeout
.ffa5 jmp $fbaa ; ACPTR, input byte from serial bus. JiffyDOS poits
 to $fbaa, the original to $ee13.
.ffa8 jmp $eddd ; CIOUT, output byte to serial bus
.ffab jmp $edef ; UNTALK, command serial bus UNTALK
.ffae jmp $edfe ; UNLSN, command serial bus UNLSN
.ffb1 jmp $ed0c ; LISTEN, command serial bus LISTEN
.ffb4 jmp $ed09 ; TALK, command serial bus TALK
.ffb7 jmp $fe07 ; READST, read I/O status word
.ffba jmp $fe00 ; SETLFS, set logical file parameters
.ffbd jmp $fdf9 ; SETNAM, set filename
.ffc0 jmp ($031a) ; OPEN, open file
.ffc3 jmp ($031c) ; CLOSE, close file
.ffc6 jmp ($031e) ; CHKIN, prepare channel for input
.ffc9 jmp ($0320) ; CHKOUT, prepare channel for output
.ffcb jmp ($0322) ; CLRCHN, close all I/O
.ffcf jmp ($0324) ; CHRIN, inpup byte from channel
.ffd2 jmp ($0326) ; CHROUT, output byte to channel
.ffd5 jmp $f49e ; LOAD, load from serial device
.ffd8 jmp $f5dd ; SAVE, save to serial device
.ffdb jmp $f6e4 ; SETTIM, set realtime clock
.ffde jmp $f6dd ; RDTIM, read realtime clock
.ffe1 jmp ($0328) ; STOP, check <STOP> key
.ffe4 jmp ($032a) ; GETIN, get input from keyboard
.ffe7 jmp ($032c) ; CLALL, close all files and channels
.ffea jmp $f69b ; UDTIM, increment realtime clock
.ffed jmp $e505 ; SCREEN, return screen organisation
.fff0 jmp $e50a ; PLOT, read/set cursor X/Y position
.fff3 jmp $e500 ; IOBASE, return IOBASE address

FFF4 SYSTEM HARDWARE VECTORS
This table contains jumpvectors for system reset, IRQ, and NMI. The IRQ and
NMI vectors points to addresses which contains an indirect jump to RAM, to
provide user defined routines.

.ffe4

.fffa 43 fe ; NMI hardware vector
.fffc e2 fc ; System reset vector
.fffe 48 ff ; IRQ hardware vector

