C64 Assembler Tutorial

= c64.ch

By Cruzer/CML
Updated 2001-12-29

Contents

Intro
How to get started, something about MC-mon's/assemblers/cross-assemblers, hex numbers, etc.
Move commands
Math/logical commands
Compare/Branch commands *
Vic Registers *
Colors, scan line position, setting up gfx, sprites
Interrupts *
Examples with comments *
- Raster bars
- Multiplexing
- FLI
- Scrolling
- Music
- Sinus dots
- Lines
- Flood Filling
- IRQ Loader
Optimizing your code *
Rolling it out/specialized routines.

* = Under contruction
Intro

This tutorial is intented for newbies who wanna code c64 assembler for the first time, aswell as oldies who want
to get it freshened up after years of lameness... | will try to write it as softcore/easy as possible, so everyone
should have a chance to try out the magical world of C64 machine code/assembler.

If you get hooked and want to learn more | can recommend the chapter "Basic to Machine
Language" from the good old C64 Programmers Reference Guide, which can be found online
right here on C64.CH

First of all, to give the newbies an idea of what machine code is, let me quote the mentioned
C64PRG. (You can skip it if you think you know what it's about)...

What is Machine Language?

At the heart of every microcomputer, is a central microprocessor. It's a very special microchip which is the
"brain" of the computer. The Commodore 64 is no exception. Every microprocessor understands its own
language of instructions. These instructions are called machine language instructions. To put it more precisely,
machine language is the ONLY programming language that your Commodore 64 understands. It is the NATIVE
language of the machine.

17

http://www.c64.ch/programming/
mailto:cruzer@c64.org
http://c64.ch/programming/C64PRG10.txt

If machine language is the only language that the Commodore 64 understands, then how does it understand
the CBM BASIC programming language? CBM BASIC is NOT the machine language of the Commodore 64.
What, then, makes the Commodore 64 understand CBM BASIC instructions like PRINT and GOTO? To answer
this question, you must first see what happens inside your Commodore 64. Apart from the microprocessor
which is the brain of the Commodore 64, there is a machine language program which is stored in a special type
of memory so that it can't be changed. And, more importantly, it does not disappear when the Commodore 64 is
turned off, unlike a program that you may have written. This machine language program is called the
OPERATING SYSTEM of the Commodore 64. Your Commodore 64 knows what to do when it's turned on
because its OPERATING SYSTEM (program) is automatically "RUN."

The OPERATING SYSTEM is in charge of "organizing" all the memory in your machine for various tasks. It also
looks at what characters you type on the keyboard and puts them onto the screen, plus a whole number of other
functions. The OPERATING SYSTEM can be thought of as the "intelligence and personality" of the Commodore
64 (or any computer for that matter). So when you turn on your Commodore 64, the OPERATING SYSTEM
takes control of your machine, and after it has done its housework, it then says:

READY.

The OPERATING SYSTEM of the Commodore 64 then allows you to type on the keyboard, and use the built-in
SCREEN EDITOR on the Commodore 64. The SCREEN EDITOR allows you to move the cursor, DELete,
INSert, etc., and is, in fact, only one part of the operating system that is built in for your convenience. All of the
commands that are available in CBM BASIC are simply recognized by another huge machine language
program built into your Commodore 64. This huge program "RUNS" the appropriate piece of machine language
depending on which CBM BASIC command is being executed. This program is called the BASIC
INTERPRETER, because it interprets each command, one by one, unless it encounters a command it does not
understand, and then the familiar message appears:

?SYNTAX ERROR
READY.

Okay, so now you know that... But how do we type in the code? There's basicly these alternatives: A machine
code monitor, an assembler and a cross-assembler. A machine code monitor is a little program built into
cartridges like The Final Cardridge and Action Replay which lets you write machine code and examine code
from other programs, like demos. An assembler is like a machine code monitor, just with some extra features
which makes it much easier to write big programs. The disadvantage is that it eats up quite a few valuable
bytes in the computer (typically about half the mem) so it's not ideal for memory intesive effects. A solution for
this problem is to use a cross-assembler which is placed in another computer (a PC for example) which is
connected to the c64 via a special cable to transfer the raw machine code.

Machine Code Monitors

This is IMHO the best way to learn machine code, since you can easily see what's going on in the machine. The
first thing you need to get started is a cartridge with an MC-mon (I use The Final Cartridge 3.) If you're using an
emulator all you need to do is download a cardridge file, and attach it to the emu. For example in Vice select
file -> attach cartridge image -> CRT file, and select the file... You can download The Final Cartridge 3 here.
Remember to reset the emu to make it work (alt-r in Vice).

Now, let's begin the fun by typing MON. Then some strange stuff appears, and you're ready to go. Okay, time
for our 1st piece of code (finally!) Type this:

.A2000 INC $D020
.A2003 JMP $2000

"A2000" means "Assemble from address 2000 (hex)". All addresses and numbers are hex numbers, but more
about that in a little while. The address could have been any other from $0000 to $FFFF, but be careful, cuz
some of them are reserved for other purposes, so until further notice we better stay within $1000-$9FFF. After
you press return on each line some weird numbers and letters appear on the line, and the code you entered is
moved to the right. Don't worry, that's the way it s'posed to be! ".A2003" should also appear automaticly, so
there's no need to type that yourself. After the last line ".A2006" appears, just press return here to exit the

217

http://www.c64.ch/programming/tfc3.zip

assembly mode, and type the magic command G2000 (means "goto address 2000") to start... If everything
went well you have now made your first machine code program: flickering border color ... Woah!...

Whenever you feel you have enjoyed it enuff, you can stop it by pressing Run/Stop+Restore or if you're on

emulator it's Esc+Page Up (atleast on Vice.) Alternatively you can also reset the computer. Remember to start
the mon again.

Hex Numbers

Okie dokie, time to explain a bit of what's going on. The weird numbers in the MC-mon are called hex numbers,

and the advantage of 'em is that it's easy to translate between binary numbers (0's and 1's) and hex numbers,

since a hex digit equals 4 bits. While normal numbers (aka decimal numbers) are based on 10 digits (0-9), hex

numbers have 16 (0,1,2,3,4,5,6,7,8,9,a,b,c,d,e.f). This means that the numbers from a-f have the values from
10-15, and 10 in hex means 16. Confused? Then you can play around with the numbers in the mon by typing
any 4-digit hex number like $C74F or $0003 and get the corresponding decimal number, and vice verca.

Remember to preceed hex numbers by a $-sign and decimal numbers by a #. You can also play with 'em in the

windows calculator, in scientific mode. Here you don't need $'s and #'s, you can just press hex and dec. Also
note that you don't need $-signs before hex numbers in mon-commands like A2000, G2000, etc.

Here's a little table that might clear things up a bit...

Decimal

0

Hex
00
01
02
03
04
05
06
07
08

Binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111

00001000

3/7

9 09 | 00001001
10 OA | 00001010
11 0B | 00001011
12 0C | 00001100
13 0D | 00001101
14 OE | 00001110
15 OF | 00001111
16 10 [00010000
17 1 00010001
18 12 | 00010010
32 20 [00100000
64 40 | 01000000
128 80 | 10000000
255 FF [11111111

Move Commands

Time for some commands, which gives you the power to command the commodore to do anything you want it
to. The first ones we're going to look at are in the category "move commands", since they can move data. On
other platforms you often have a command called move or mov, but on a c64 they're called other things like
LDA, STA, etc. The principle of move commands on c64 is that either you move something into a processor
register, or you move from a register to a memory address. The registers are called A (accumulator), X and Y.
They can each hold a byte, which is a number from 0 to 255, or in hex 00 to FF, or in binary 00000000 to
11111111. Let's have a little example, which you can type in and test like the previous piece of code...
(Remember to type .A2000 before the 1st line and all that!)

LDA #$07
STA $D021
BRK

Again, start it with G2000, and the amazing result should be a yellow screen.
Explaination:

LDA #$07 means "load accumulator with the value 7" and moves the number 7 (the color code for yellow) into
the accumulator (aka the A register.)

STA $D021 means "store the value of the accumulator into the memory address $D021", which is where the
background color is located.

BRK breaks out of the program so you return to the mon. This is necessary because the code doesn't loop
forever like in the flicker example.

Instead of LDA #$07 we could also write LDA $07, which would mean that it was the content of the address
$0007 we were moving into the accumulator. That's ofcuz a whole another story, so please notice that there's a
big difference between LDA value and LDA address . Always remember the number sign (#) when it's a value
you wanna LDA! If you try this...

4/7

LDA $D021
STA $D020
BRK

... it moves the background color to the border. Or maybe "move" is the wrong word since it doesn't change the
source address, it just copies it. As you might have guessed $D020 and $D021 controls the border/background
color. Everything that has to do with graphics is controlled by the addresses that start with $D0, but more about
that later.

Time to see what we can use the X and Y registers for. Every time we write LDA or STA we could just aswell
have used LDX/STX or LDY/STY. That would have resulted in the same effect, the only difference is that it's the
X and Y registers that are used instead of A. But these registers can also be used for some more purposes.
Let's try this...

IDX #$21
LDA #$0B
STA $D000,X
BRK

This is an example of socalled relative addressing. The first line loads X with the value $21, in the next line A
gets the value $00, and in the 3rd line the value of A is moved to the address $D000+X, which means $D021 in
this case. (The background color again... I'm really original, huh?)... Y can also be used for realive addressing
(STA $1234,Y), and you can also LDA relaive (LDA $1234,X)... The relative addressing modes are very useful
in loops, but more about that in the Compare/Branch section.

Another type of move commands is called transfer commands, and they move data within the registers. An
example is TXA which means transfer X to A. So if X held the value $DF, A is now $DF. As in other move
commands the source (X in this case) is not affected, so they both holds the value $DF now. Here's some more
transfer commands is: TXA, TYA, TAX and TAY. They all transfer the 1st register to the 2nd - eg. TAY means A
->Y.

Well, we haven't really covered all of the move commands, but | guess it's time to move on, so it doesn't get too
boring...

Math and Logical Commands

Now, let's see how we can alter the bit 'n' bytes instead of just moving 'em around. The math/arithmetic
commands lets you calculate and manipulate the bytes, either directly in the memory, or in the registers. For
instance, in the first example we had a command called INC $D020 which made the border color flicker. This
command means "increment $D020" and as you might have guessed, it adds 1 to the given address. If the
content of the address has reached maximum ($FF/255) it just restarts from 0. A related command is DEC,
which works the same way, just other way around, which means it decrements the value by 1, and restarts from
$FF if the value was allready 0. Let's have another color flicker example...

INC $D020
DEC $D020
JMP $2000

This time it just flickers between two colors, since it first adds 1 and then subtracts 1.

You can also inc/dec the X and Y registers (but not A for some strange reason.) This is done with these
commands: INX, DEX, INY, and DEY. So we could also make color flicker this way...

LDX $D020
INX

STX $D020
JMP $2000

This just looks a bit different since it's slower first to move the color value into the X register, then increment it,
and then move it back to the memory address.

57

Ok, say you want to increment a byte by 27. Then you could ofcuz just write an INC command 27 times. But a
smarter way would be to use the command ADC (add with carry) which can add any given number to the
accumulator. The following piece of code adds 27 to the address $0400, which by the way is the char in the
upper left corner of the screen, so you should see some kind of change there...

LDA $0400
CLC
ADC #$1B
STA $0400
BRK

As you might have guessed 1B is the hex value for 27. What you might not have guessed is that CLC means
clear carry flag. We will get into flags later, but intil now you just have to remember to clear carry before
adding, and set carry before subtracting. Here's an example of the latter...

LDA $0400
SEC
SBC #$1B
STA $0400
BRK

SEC means set carry and SBC means subtract with carry. Like most other commands ADC and SBC has
lots of different addressing modes. For example ADC $1234 which means add the value found in address
$1234 to A. So it does not affect the address, only A. To make it affect the address you must STA it afterwards.
Remember the relative addressing mode? It also works for ADC/SBC - eg. ADC $1234,X

If we can add and subtract, can we then multiply and divide too? Not quite, I'm afraid. It's only a C64, you know!
But we can push all the bits in a byte left or right, which is alsmost the same as multiplying or dividing by 2. For
instance LSR $0400 shifts the bits in address $0400 to the right, so if you had the value 6 there it will now be

3. However, if you LSR it again it will now be 1, because the rightmost bit is thrown away. ASL. $0400 will shift
them left which is the same as multiplying by 2. So the original value was 100 it will now be 200. This trick also
has its limitations since a byte can only be 255 at max, so if you try to ASL a value greater than 127 (hex 7F) you
will not get a correct result. You can ASL/LSR as many times as you want, and thereby multiply/divide by
2,4,8,16...

If you wanna multiply/divide by other values it's a bit trickier. The following code uses a combination of ASL and
ADC to multiply by 3...

LDA $5000
ASL
CLC
ADC $5000
STA $5000
BRK

As you can see we can also just type ASL without any address. This means that it's A that's shifted left. | think
I'll explain the previous example a bit more so it's clear what happens for everyone. Let's say the value of
$5000 is 4, and then let's see what happens with the accumulator...

LDA $5000 A=4

ASL =8

cLC

ADC $5000 A=12 (or $0C in hex)
STA $5000

BRK

If you want to play around with this some more you can use the mon command M which lets you view the
content of the memory. For example M 5000 lists the 8 bytes from $5000 to $5007. Then you can change the
values, and after pressing return it will take effect. For example you can change the value of $5000 to 04, then

6/7

run the previous piece of code, and then type M 5000 again to see if it has changed to OC.

77

	C64 Assembler Tutorial
	Contents
	Intro
	Machine Code Monitors
	Hex Numbers
	Move Commands
	Math and Logical Commands

