The Complete
Commodore
‘Machine Code
Programming

Course

For the CBM 64 and 128

Includes an
Assembler Program

Andrew Bennett
and
Surya

The Complete
Commodore Machine Code

Programming Course

The Complete
Commodore
Machine Code
Programming
Course

ANDREW BENNETT
and
SURYA

LONDON
Chapman and Hall/Methuen
NEW YORK

First published in 1986 by
Chapman and Hall Ltd/Methuen London Ltd
11 New Fetter Lane, London EC4P 4EE
Published in the USA by
Chapman and Hall/Methuen Inc
29 West 35th Street, New York NY 10001

© 1986 Andrew Bennett and Surya
Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol
ISBN 0 412 27250 4

This paperback edition is sold subject fo the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired
out, or otherwise circulated without the publisher’s prior
consent in any form of binding or cover other than that in
which it is published and without a similar condition
including this condition being imposed on the subsequent
purchaser.

All rights reserved. No part of this book may be reprinted
or reproduced, or utilized in any form or by any electronic,
mechanical or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage and retrieval system, without permission
in writing from the publisher.

British Library Cataloguing in Publication Data |
Bennett, Andrew
The complete Commodore machine code programming
course: includes an assembler program for the
CBM 64 and 128.

1. Commodore computers—Programming 2. Machine
codes (Electronic computers) 3. Microcomputers
—Programming
I Title Il Surya
00526 QA768.C6

ISBN 0-412-27250-4

[Library of Congress Cataloging in Publication Data |

Bennett, Andrew, 1964—
The complete Commodore machine code programming
course.
(Chapman and Hall computing)
Bibliography: p.
Includes index.
1. Commodore 64 (Computer)—Programming.
2 Commodore 128 (Computer)—Programming. 3. Assembler
language (Computer program language)
I Surya, 1963- . II Title. I Series.
QAT768C64B46 1986 005265 86-6797
ISBN 0-412-27250-4

Contents

Preface

Learning machine code

1.1
1.2

A word about the C128
The assembler

What is machine code?

21
2.2
2.3
2.4
2.5
2.6

Programming in BASIC
Programming in machine code
Why program in machine code?
Assemblers and assembly language
And finally . . .

Summary

Hexadecimal and binary

31
3.2
33
34
3.5
36

Binary

Hexadecimal

Why do we use hex?

Memory addressing y

Summary

Exercises

Machine code commands

4.1
4.2
43
44
45
46
4.7

The LDA, LDX, LDY, STA, STX and STY commands
Qur first machine code program

Running a machine code program

What if my machine code program crashes?
Remarks

Summary

Exercise

Labels, flags and branching

5.1

Labels

page ix

GO LD =

CONTENTS

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Using labels in BASIC

Using labels for branching

Labelling constants

The increase commands: INX, INY and INC

The decrease commands: DEX, DEY and DEC

The transfer commands: TAX, TAY, TXA and TYA
The conditional branching commands: BEQ and BNE
Flags

5.10 Creater-than and less-than comparisons
5.11 Out-of-range errors
8.12 Exercise

6 Addressing modes

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Immediate

Zero-page

Absolute

Relative

Implied

Absolute X and Absolute, Y
Zero-page X

Accumulator

Lo-Hi form

6.10 Indirect, Y
6.11 Indirect,X
6.12 Indirect

6.13 Summary
6.14 Exercise

7 Bit manipulation and logic (or ‘truth’) tables

11
72
13
74
15
16
177

What is bit manipulation?
Logic tables

ORA

AND

EOR

Summary

Exercise

8 Bit manipulation

81
8.2
83
8.4
85

The shift commands
The rotation command
The BIT commands
Summary

Exercise

31
32
32
34
35
36
317
39
40
41
42

BBBBAFEE RLBSZELEEESEERERS

(o]
—

61

CONTENTS

9 Mathematics in machine code 67
9.1 Eight-bit addition 68
9.2 Eight-bit subtraction 69
9.3 Sixteen-bit addition 70
9.4 Sixteen-bit subtraction 71
9.5 Multiplication and division by two 1
9.6 Division by two 12
9.7 Summary 72
9.8 Exercise 72
10 Machine code subroutines 73
10.] Machine code subroutines 73
10.2 The Kernal jump table 75
10.3 USR 76
10.4 Summary 17
105 Exercise il
11 Interrupts, the stack and adding commands to BASIC 78
11.1 Interrupts 18
11.2 The stack 79
11.3 Adding commands to BASIC 80
12 Application and practice 82
12.1 Program design 82
12.2 BASIC, machine code or both? 83
12.3 Doing several things at once 84
12.4 Debugging 84
125 Monitors 85
Afterword 87
Appendices

1 Quick conversion chart: decimal/hex/binary 88
2 (64 memory map 94
3 Screen codes 98
4 Colour codes 100
§ BASIC SYS routine 101
6 Answers to Exercises 102
7 The Kernal routine 106

8 A complete listing of the 6510 assembly language
instruction set 113
9 ASCII codes 135

Index 137

Preface

There is a perpetual question faced by anybody wanting to present a
technical subject to an audience unfamiliar with it: do you choose someone
expert in the subject and hope that they will be able to translate their
knowledge into plain English, or do you choose a professional communicator
and hope that they have a sufficient grasp of the subject to get their facts
right? That a large proportion of computer books are either badly written or
technically inaccurate is testimony to the fact that neither approach offers a
real solution.

This book takes a different approach. Instead of choosing between the
machine code programming expert and the professional communicator,
we've used both. Andrew is a professional programmer on the CBM 64,
while I'm a computer journalist and consultant by profession. We believe
that, by working together, we've come up with a guide which is far easier to
use than any other on the same subject. We hope you'll agree.

London, March 1966
Surya

1
Learning machine code

Learning machine code is easy.

Machine code is often seen, felt or talked about as something
complicated, mysterious and reserved for whizz-kids. When you see
machine code listings in books and magazines, the code and the jargon often
appear totally incomprehensible. You may have looked at other books or
articles, supposedly written for complete beginners, and found them
bewildering and confusing. You may have talked to experienced machine
code programmers and ended up wondering if they are from the same
planet or from one with a totally different language. Don't worry: you're.not
alone!

Most people find machine code confusing when they first encounter it. It's
perfectly natural: you're learning a new language. You have probably
forgotten how difficult and confusing BASIC seemed when you first began to
learn it. Yet within a week or so you were quite happily writing your own
programs and discovering more and more about the language. Machine
code is no different. It may seem a little complicated to begin with, but you
will be surprised when you realize how quickly your understanding has
grown.

We don't know just how quickly or easily you will learn. What we do know
is that all it takes is time and patience, plus a little effort. This book was
written with the complete beginner in mind. We do, obviously, assume
that you are reasonably familiar with BASIC, but we do not assume
any prior knowledge or experience of machine code. We start right at the
beginning.

We have designed this course with 'ease of use' as our prime concern.
And you can make your learning even easier by following a few simple
guidelines:

@ Take things slowly

We know that you will probably be eager to dive in and
start writing machine code masterpieces, but the time you
spend covering the basics will make life a hundred times
easier when you start learning more exciting techniques.

LEARNING MACHINE CODE

@ When in doubt, go back and re-read

Again, it is very tempting to rush straight on to the next
chapter as soon as you reach the end of the previous one.
Don't! Your understanding will be much deeper and
clearer if you take the time to make sure that you have
understood everything in the chapter.

@ Reinforce your understanding

We have already suggested re-reading any bits you are
not sure about, but we also recommend that you regularly
go back to earlier chapters to make sure you have not
forgotten any of the earlier material. Machine code is very
much interconnected, so this can be an extremely valuable
way of developing your knowledge of the subject. You will
find that the basics of the subject will make much more
sense to you when you come back to them for a second
and third time after covering some more advanced
material.

® Do the exercises!

The exercises have been carefully designed to test your
understanding and to give you the chance to put your new
skills into practice. You will learn much more easily and
effectively if you complete them, going back into the
chapter for help as you need it. Just reading the exercise
and then looking up the answer won't do you any good at
all. Doing is the easiest way of learning.

@ Practice!

As well as the exercises we have set, try out your own
ideas along the way. You may find that many of your ideas
don't work: that's fine - you'll actually learn more from
finding out why they don't work!

@ Type in the example programs

We know that typing in programs can be boring. It can
also be extremely interesting if you pay attention as you
enter them. You might wonder about how they work
before reading the full explanation. We have deliberately
kept these programs short to make them easy to enter, so
please do take the trouble: the practice is well worth it.
One of the main reasons for supplying an assembler as
part of this course was because we intend the book to be
used beside the computer, trying things out as you go
along. If you learnt BASIC that way, you will know what a
good system it is.

THE ASSEMBLER

® Enjoy it!

Machine code is not some kind of a test. It is a tool
designed to enable you to get even more power and
enjoyment from your C84. Experiment. Have fun. Enjoy
your new-found skills,

1.1 A word about the C128

The Commodore 128 is 100% upward-compatible with the Commodore 64.
This means that all C64 programs, BASIC or machine code, will run on the
C128. The assembler supplied with this book, and all the demonstration and
example programs, will run perfectly on the C128 without modification. All
references to the C64 should be taken to mean C64 or C128.

1.2 The assembler

In order to write machine code programs on your C64, you need a special
program called an assembler. These normally cost between £8 and £50, and
each one is slightly different from the rest. This means that learning machine
code using a separate book and assembler is not only expensive, it is also
hard work because the programs in the book may not work without
modification on the assembler you have bought. We thought that this was not
particularly helpful, so, with the willing co-operation of Chapman and Hall,
the book’s publisher, we decided to include an assembler with the book.
Since the assembler and the book were written together, the two are, of
course, 100% compatible.

The assembler supplied with this book was written in BASIC, with
machine code subroutines: a technique you will be able to use in your own
programs by the time you have completed this course! When you've typed it
in, or loaded it from the optional tape available, it's ready to do its work. Not
all of the explanation given below will make sense to you yet. Those of you
with some experience should read it carefully, to note any differences
between our assembler and the one you have used before, Beginners can
just read quickly through it, referring back to it as required.

To type a machine code program into your C64, load the assembler and
then enter the machine code just like a BASIC program except that the line
numbers must be above 5000. All the example programs in this book have
line numbers of 6000 or over. If you accidentally enter anything with a line
number of less than 5000, the assembler may be overwritten so enter NEW
and then load itagain. When you enter machine code into your C64, the code
you type is called the source code. Once this has been assembled (we will

LEARNING MACHINE CODE

explain what this means later in the book), the resulting program is called the
object code. A golden rule of writing machine code is: always save your
source code before assembling the program. That way, if your machine
code program crashes and causes the C64 to 'hang-up’, you can just switch
off and reload your source code to correct the mistake.

To enter source code, the first line of your program needs to tell the
assembler whereabouts in memory to store the program. This is done by
telling it the start address, and is done like so

8000 [(start address)

with one space between the left square bracket and the address. The
normal start address is $C000, so you would enter

5000 [$C000
or, if you want to use decimal numbering
5000 [49152

All this is explained properly later in the book, but those with some machine
code experience might like to note that the acceptable range of start
addresses for this assembler is $C000 to $D000.

To make life easy, the assembler can work with decimal, hex and binary
numbers (see Chapters 2 and 3). It can also use ASCII codes. Normally, the
assembler will assume that you are working in decimal. If you want to use
hex, binary or ASCI], you tell the assembler this by putting a prefix in front of
the number.

% = binary, e.g. % 10011011
$ = hex eg. $AS
* = ASCI] e.g. 'E means the ASCII code of E (NB: * = single quote mark)

Ifa number does not have any of these prefixes, the assembler will treat it as
a decimal number.
The syntax for a line of assembler code is

(line number) (instruction) (number) :(label) ;(remark)
An example of this would be
6000 LDA $5000 :LOOP ;LOOP BACK TO HERE

Not all machine code instructions require a number (as we will see later),
and labels and remarks are optional. Labels can be of any length, but must
start with a colon. Remarks can be of any length, but must start with a
semicolon. The total length of the line, however, must not be greater than 80
characters - just as in BASIC.

Ifa line does not have a label, the remark can go straight after the number

6000 LDA $5000 ;Like so

THE ASSEMBLER

Constant labels (as opposed to line labels) must be on a line of their own. The
format is-

(line number):(label) = (value)

For example

6000 :COLOUR1=5$07

You are also allowed simple maths

6010 :COLOUR2=COLOURI1+1
6020 :COLOUR3=COLOUR1-1

This assembler has three aditional commands, which we have called dot
commands because they are preceded by a dot! You will not find these
commands in a normal assembler.

The first dot command is BYT. This places single-byte numbers of up to
255 in memory after your machine code program. Thus

7010 .BYT $50 :DATA

would place the number $50 in memory and label it DATA, so that
7020 LDA DATA

would place $50 into the accumulator.
The second dot command, WOR , is the same as BYT except that it allows
you to place numbers of up to 65535 into memory

7010 .WOR $0400 :DATA
Finally, .TXT places a string into memory
7030 .TXT “CBM 64" :LOGO

Note that dot commands must be on a line of their own, with one dot
command per line.

Finally, you must end your source code (the program you type in) with
END on a line of its own. This is to let the assembler know where the program
ends. When you have finished entering your source code, just enter RUN to
assemble it into object code. When assembly is complete, the assembler
will print out the start and end addresses so that you can save the object
code.

So, without further ado, let's begin at the beginning.. . .

2
What is machine code?

This chapter will give you an overall understanding of what we mean by
machine code, how it differs from BASIC and the purpose of programming in
it. When you have read it, you should be able to answer the following
questions:

@ What is machine code?

@ What is the point of programming in machine code?
® What is assembly language?

® What is hex?

When you first bought your C64, the salesperson probably told you that its
natural programming language was BASIC. In fact, the C64's native language
is machine code. (BASIC itself is actually written in machine code, but we
will talk about this further on.) Later you will understand why we say this, but
before then we have to explain exactly what we mean by machine code.

2.1 Programming in BASIC

To understand what we mean by machine code programming, we need to
look firstly at what happens when we program in BASIC. In BASIC, we use
variables to store and calculate values. To calculate the number of hours
someone has been alive, for example, we would write a program something
like that shown in Listing 2.1.

Listing 2.1

10 REM BASIC program 1
20 REM Calculates approx. age in hours

30 PRINT “[{CLR]"
40 INPUT “Please enter your age in years";YEAR
50 INPUT “ and months”; MONTH

60 LET DAY(1)=YEAR*365.25

PROGRAMMING IN BASIC

70 LET DAY(2)=MONTH*30.6

80 LET DAY=DAY(1)+DAY(2)

90 LET HOUR=INT(DAY*24)

100 PRINT “Congratulations!”

110 PRINT “You've been alive for over “;HOUR;" hours!"
120 END

In this program, we are using six variables. A variable, of course, is just a
label for a value. When we tell BASIC to LET HOUR=INT(DAY*24), it finds
the value of DAY, multiplies it by 24, strips everything after the decimal point
and places the result into the variable HOUR

In reality, the C64 has stored the value of DAY in a memory location. We
don't know which location, and it doesn't matter to us: all we have to do is
refer to the variable and the C64 will examine the correct location to find the
value. A simplified view of this process is shown later in this chapter.

In order for the C64 to remember’ the value of a variable, it has to store
both the variable name and the value somewhere in RAM. In reality, each
letter of the variable, and the value itself, would occupy a separate memory
location (address) but for now we will take a simple view and pretend that
each variable name and value is stored in a single address. Later on in the
book we will examine the process in more detail.

Let us take the example

10 LET A=§

BASIC would first check whether the variable A already exists. It does this
by checking a variable look-up table: every time a variable is defined, it
adds the variable to the table:

Variable look-up table

| Variable | Stored at which address? |

| | l

If it does not find the variable in the table, it assumes that it is being defined
for the first time. It will then find the first free memory location in the variable
storage area of memory and store the variable at this address:

Variable storage area

| Address | Variable label | Value |

|49152 |A |6 i

l 1 l |

WHAT IS MACHINE CODE?

Now if we tell BASIC to alter the value of the variable
20 LET A=A+1

it will first check whether it exists by consulting its variable look-up table:

Variable look-up table

| Variable| Stored at which address? |

| A | 49152 |

! 1 i

Since the value of A is already stored at location 49152, BASIC will simply
perform the calculation (5+1=6) and then store the new value at the same
address as the old one:

Variable storage area

| Address | Variable label | Value |

[49182 |A |6 l

l 1 | |

It is possible, of course, to tell BASIC to store a value in a particular memory
location. We do this using the ‘POKE address, value' statement. The following
piece of BASIC

10 POKE 49152,64

tells BASIC to store the value 64 in memory location 49152. Thus we could use
memory locations instead of variables to store values. Instead of

10 LET A=5§
we could say
10 POKE 49152,5

Likewise, ‘PEEK(address)’ is used to look up the value stored at an address.
So instead of

20 PRINT A
we would say
20 PRINT PEEK(49152)

WHY PROGRAM IN MACHINE CODE?

2.2 Programming in machine code

So, what has all this to do with learning about machine code? Well, in
machine code everything is done by working directly with memory
locations - just like POKEing and PEEKing.

Let's suppose we wanted to print "HELLO" on the screen. In BASIC we
would just say

10 PRINT “HELLO"

In machine code we would have to place each letter onto the screen
individually. What we do, in effect, is to POKE the character code of each
letter into the area of memory the C64 uses to display things on the screen.
This is something you may have done in BASIC for speed — you can see an
example of this technique in Listing 2.2.

There is nothing difficult about working directly with memory locations, it
just takes a bit of getting used to. You don't have to have an IQ in four figures
and you don't need to be a genius at programming. All you need is to be
competent at BASIC programming and willing to concentrate.

Listing 2.2

1@ REM (C) A.R.BENNETT 1985

20 @

39 REM BASIC VERSION

42 @

120 PRINT"J": TI$="000000"

1190 FORI=8TOS99:POKE1824+1,811POKESS236+1,14:POKE1@24+1 ,32:1NEXT
120 PRINT"®":TI$,TI

138 END

READY.

2.3 Why program in machine code?

Ok, so machine code just requires concentration and practice, but why
bother? What's wrong with BASIC? There are two main reasons for
programming in machine code: power and speed.

Machine code is more powerful than BASIC because you have greater
control over not only what the C64 does, but how it does it. This is something
we will explain later, once we have got you writing your own machine code
programs, but we can demonstrate the speed of machine code right now.
Take a look at Listings 2.2 and 2.3. Both do the same job — they move a
graphics character along each line of the screen, erasing the character
currently there before moving to the next position. The difference is that
Listing 2.2 is a straightforward BASIC program while Listing 2.3 sets up and

10

WHAT IS MACHINE CODE?

Listing 2.3

1828 REM MACHINE CODE VERSION

1905 :

1812 FORI=BTO7Q:tREADAIPOKE4S152+1 ,A:T=T+AINEXT
10290 IFT<>11018THENPRINT"UERROR IN DATA STATEMENTS!!":STOP
1230 TI$="000080":SYS491S2IPRINT "H"TIS; TItEND
1848 :

195@ DATA 169,0,133,247,169,4,133,248

1860 DATA 169,0,133,249,169,216,133,258

1072 DATA 162,0,160,0,169,81,145,247

1880 DATA 169,14,145,249,169,32,145,247

1298 DATA 209,192,250,208,239,24,165,247

1188 DATA 105,258,133 ,247,165,248,185,0

1118 DATA 133,248,24,16%5,249,105,250,133

1128 DATA 249,165,2350,105,08,133,250,232

1138 DATA 224,4,208,206,96,255,0

READY.

runs a machine code program (we will explain what this means a little later;
all you need to know for now is that the second program uses machine code).
Type in and RUN each program in turn. Each program will time itself, and
display the total time taken.

You will have noticed that the machine code version runs over 400 times
faster than the BASIC one! A pretty good reason to learn machine code! Just
think of what you can do with that kind of speed in your own programs. If you
are wondering why machine code is so fast, you need to ask the question the
other way around: Why is BASIC so slow?

So, let us go back to BASIC for a moment and find out what happens when
we execute a piece of BASIC code. Let us suppose you type this into your
C64

PRINT “Aren't example PRINT statements boring?”

The C64 may appear to display the sentence the instant you press the
RETURN key, but there is actually a considerable delay — as we saw in
Listing 2.2 above. The reason for this is that, as we mentioned earlier, BASIC
is actually written in machine code. The C64 itself does not know how to
PRINT anything: it needs a machine code program to display things on the
screen, and this is in fact what happens.

When the C64 encounters a BASIC statement (like PRINT), it 'looks up' the
machine code program. In this example, when it finds the PRINT program,
the C64 will look at what follows the PRINT statement. In this case it finds a
quotation mark, so it knows that we want to print everything up to but not
including the next quote. The PRINT program then places each character,
one at a time, onto the screen. After the closing quote, the PRINT program
checks for variables or values to be printed before ending. The C64 then
looks for the next BASIC statement.

ASSEMBLERS AND ASSEMBLY LANGUAGE

11

The reason that BASIC is so slow is two-fold. First, it takes time to look up
each BASIC statement. And second, because the machine code programs
which make up BASIC have to perform a variety of jobs (PRINT, for example,
is used to print the contents of quotes, straight values and variables), they are
generally inefficient. Although the time taken to print a single item may not
be noticeable, add up all the keywords in even a short program and you soon
see that those short delays quickly multiply into long ones.

BASIC programming is a bit like talking to a foreigner through an
interpreter. You have to speak to the interpreter in English, the interpreter
then mentally translates the statement into the foreign language before
finally passing on the translated message. Communication is slow and
inefficient. You may have heard BASIC described as an interpreter or
interpreted language for this reason.

2.4 Assemblers and assembly language

Ok, so now that we know a little about how BASIC works we can - at last -
start talking about machine code! Something that often confuses people
when they first come across machine code is what does machine code
actually look like? You will have seen listings in books and magazines
looking like Listing 2.3 above, consisting of masses of unintelligible numbers
in DATA statements, described as machine code. And you have probably
also seen listings like this

[$C000
LDA #8$08
STA $0400
LDA #8$05
(etc)

described as machine code. So which one is really machine code? Well, if
you want to be completely accurate then the answer is neither! True
machine code is actually written in binary (base two) notation and would
look something like this

01001100 00000100
10100000 01110001
(etc.)

But while the above might make perfect sense to a computer, we humans
find it a little harder to cope with! For this reason, there are two alternative
methods of writing machine code. The first, which we used in Listing 2.3
above, is known as a BASIC loader. All this does is use the decimal
equivalents of binary instructions and addresses and uses BASIC to POKE
them into memory. This is a useful technique to use in magazines, because

WHAT IS MACHINE CODE?

anyone can type them in without any understanding of machine code. But,
while decimal numbers are an improvement on binary ones, this sort of line

2000 DATA 21,4,16,203,5,76

1s not much easier to understand! So a third method of programming in
machine code was developed: assembly language programming, often
known simply as assembler. So what is assembly language?

Well, machine code commands take the form

(instruction) (number)
In binary, this might look like
01000010 00110101

And in decimal (as part of a BASIC loader)
DATA 66,56

The number can be either a value or an address in memory, while the
instruction tells the C64 what to do with, or to, the value or address.

In assembly language, binary instructions are replaced by three-letter
codes, known as mnemonics, and binary numbers are replaced by
hexadecimal (base 16, usually known simply as hex) ones. We will find out
about binary and hexadecimal numbering in the next chapter, but for now all
we need to know is that hex numbers are indicated by placing a dollar sign
($) in front of them. So, 15 means decimal 15 while $15 means hex 15 (decimal
21).

So, a line of assembler would look something like

LDA #808

The assembler equivalent of the REM statement is a semicolon, so the same
line might look like

LDA #8308 ; Load accumulator with H

When people say that they can program in machine code, they usually mean
that they can program in assembler, Very few people program in binary
these days (!), and it is assembler that you will be learning with the help of
this book.

Because different computers have different types of processors, or CPUs,
there are different types of assembler. The C64 has a 6510 processor and so
is programmed in 6510 assembler. Incidentally, the 6510 is almost identical
to the 6502 (used in the BBC and Apple computers, among others) so you will
also be able to program in 6502 assembler!

SUMMARY

2.5 And finally...

The final thing to mention in this chapter isthe '#' (hash sign). Normally when
we use a (hex) number in assembler, the C64 will assume that we mean the
memory location. So, if you typed

LDA $08 ; Don't worry about what this does just yet

into your ASSEMBLER, the C64 would use the memory location $08. If,
however, you typed

LDA #$08 ; Or this, for that matter!

then the C64 would use the hex value $08. So the hash sign is just a way of
telling the C64 that we mean the actual number and not the memory
location.

2.6 Summary

Machine code is the direct manipulation of memory
locations (just like POKEing and PEEKing). BASIC, on the
other hand, normally organizes the C64's memory itself.

BASIC is slow firstly because the C64 has to look up the
machine code program that actually does the work, and
secondly because BASIC is designed for flexibility rather
than efficiency.

True machine code programming is performed in binary
(base 2) notation, but hardly anyone programs in binary
these days. Assembler is a kind of half-way house
between binary and BASIC and is what most people mean
by machine code.

Assembly language programming uses hex (base 16)
notation, and three-letter instructions known as mnemonics.
Hex numbers are preceded by a dollar sign (for example,
$15) to differentiate them from decimal numbers. In
assembler listings, hex numbers are assumed to refer to
memory locations unless they are preceded by a hash sign
(for example, #$15). Numbers with a hash sign are taken
to be literal values.

You should also know the meanings of the following terms:
memory location (or address), variable look-up table, variable storage area,

14

WHAT IS MACHINE CODE?

interpreter (or interpreted language), binary, BASIC loader, ASSEMBLER
(or assembly language), mnemonics, hexadecimal, 6510, 6502,

If there is anything in this summary you are not sure about, please go back
and re-read the relevant parts of the chapter.

3
Hexadecimal and binary

This chapter explains the two numbering systems used in machine code;
hexadecimal and binary. When you have read it, you should be able to

@ Convert from hex to decimal using only a calculator
@ Convert from binary to decimal using only a calculator

@ Convert from decimal to hex using the program in this
chapter

@ Convert from decimal to binary using the program in
this chapter

@ Instantly recognize decimal, binary and hex numbers

The ability to count is one of civilization's most basic skills. Just think how
much of our everyday lives are dependent of the concept of numbers,
Without the ability to count we would have no calendars, clocks, money . . .
hey, this sounds pretty good! Ah, well.

In order to count, we need some kind of numbering system. The most
obvious numbering system would be to have a different symbol for each
number. This would be fine for numbers up to about ten or twenty, but once
you start going above this you are going to find it difficult to remember all the
different symbols. For this reason, numbering systems use a small number of
symbols divided into different columns. Thus in the decimal system, 1
represents one while 10 represents ten and 100 one hundred.

The decimal (base 10) system is the most obvious one since we each have
ten digits on the end of our hands. It is not, however, the only system in use.
Old money, for example, used base 12: twelve pennies made one shilling.
Computers use three different numbering systems: decimal (base 10),
hexadecimal (base 16) and binary (base 2). Since you are already familiar
with base 10, let us use this as our first example. It might seem a bit like
primary school maths (which it is), but it is important to understand the
principle of decimal numbering before we look at other bases.

All numbering systems use columns to represent different values. The
highest number any column can contain is one less than the base. Thus in

HEXADECIMAL AND BINARY

base 10, the highest number allowed in a single colum is nine. To write the
number ten, we put a one in the tens column and a 0 in the units column:

10.

The meaning of the columns is the same in any base. The column before the
point is units (ones), the column to the left is the base (in decimal, ten), the
column to the left of this is the base squared (in decimal, ten times ten = one
hundred) and the next the base cubed (in decimal, ten times ten times
ten = one thousand) and so on

Base® Base Units

100s 10s Is Decimal value

1 0 0 One hundred

0 1 0 Ten

0 0 | One

1 1 1 One hundred and eleven

When a number equals the base, we ‘carry’ into the next column. Let us take
the example of a simple addition

Base Units

Operation 10s Is Decimal value
0 4 Four

+ 0 6 Six

= 1 0 Ten

Ok, so this is all obvious stuff. So let us look at another base, say base 5.
Remember that the highest number allowed in a single column is one less
than the base, so base 5 will use only the digits 0, 1, 2, 3 and 4. To write
decimal 5 in base 85, would carry over into the base column

Base? Base Units
25s 5s Is Decimal value
0 1 0 Five

Now let us do a simple addition in base 5

BINARY

11

Base Units
'Operation 8s Is Decimal value
0 4 Four
- 1 3 Eight
= 2 2 Twelve

To convert the answer 22, in base 5, to decimal we simply multiply the figure
in the base column by the base (in this case, 2 X 5) and add on the units
column; (2 x 8) + 2 = 10 + 2 = 12. To convert a larger number, say 432 in
base 5 to decimal, the same process applies

Base? Base Units

28s 5s Is

4 3 2
=(4x28)+@Bx8H+@x1
=100+ 15+ 2

= 117 decimal.

3.1 Binary

You will remember that the highest figure used in a single column is one less
than the base. So in binary (base 2), the only digits used are 0 and 1. These
are sometimes referred to as off and on. Thus

Base? Base Units

4 2 1 Decimal value
1 0 0 Four

0 1 0 Two

0 0 1 One

1 1 1 Seven

Blnary digiTS are known as bits. You may have heard that the C64 is an 8-bit
computer or has an 8-bit processor. This simply means that it can deal with
up to eight columns of binary digits

HEXADECIMAL AND BINARY

Base’ Base® Base® Base* Base® Base?® Base Units

128s 64s 32s 16s 8s 4s 2s Is
1 1 1 1 1 1 1 1

Thus the larges number the C64 can handle atone goisbinary 11111111, We
can calculate this as

(AIx128)+(1x64)+(1x32)+(1x16)+(IX8)+(1x4)+(1x2)

+(1x1)
=1284+64+32+16+8+4+2+1
= 255.
Figure 3.1
Value (decimal): 128 64 32 16 8 4 2 1
BIT BIT BIT BIT BIT BIT BIT a;r
- 5 | 4| 3 1 1)}

You will probably already be familiar with the figure 255 as the maximum
value allowed in certain functions, and you may know that 255 is the
maximum value that can be sored in a single memory location (byte). To
store a number larger than 255, the C64 uses two bytes. Thus the highest
number the C64 can handle is binary 1111111111111111 which translates to
decimal 65535, or 64K (1K = 1024 characters). Thus 65535 is the C64's highest
memory location.

We have already seen how we convert from binary to decimal, but
converting the other way around is more difficult. For this reason we have
provided you with a simple program (Listing 3.1) to do the job for you. Simply
type in any decimal number up to 255 and the program will convert it to
binary. To avoid confusing decimal and binary numbers (does 101 mean one

Listing 3.1

12 REM DECIMAL TO BINARY

20 1

30 Bs="D1"

49 INPUT*JINPUT DECIMAL NUMBER (®-835535): "sD#:D=VAL(D%)

5@ 1FD<@O0RD >63535THENSD

680 PRINT"NMBINARY NUMBER = X%*!

70 FORI=1STOOSTEP-1:G=INT(D/2¢1):0=0-G*21tIIPRINTMIDS(B®,G+1,1)) INEXT
READY.

HEXADECIMAL

19

hundred and one, or five?), we will follow the standard computing
convention of placing a percent sign (%) in front of all binary numbers used
from now on. Thus %101 is binary (decimal 5) while 101 is decimal.

3.2 Hexadecimal

Hex (base 16) is the numbering system you will use most when you write
your own machine code programs. Since hex is base 16, the highest figure
we can have in a single column is the equivalent of 15. There is, however, a
problem here. Each digit must fit into a single column. Since there are no
symbols for digits greater than nine, we will have to invent sgme. Rather than
use unfamiliar symbols, hex uses the letters A to F to represent the numbers
10 to 18. Thus

ecimal: 0 1- 2 3 4 8 6 7T 8 9 10 11- 12 18 14718

Hex: 0.1 2..3.4 8 8.7 88 A& B . .C "D. BEsp

Thus decimal 16 would be hex 10. As with binary, we have the problem of
distinguishing hex from decimal. Is 11 decimal or hex (decimal 17)? Again,
we use a simple convention to get round the problem. Hex numbers are
preceded by a dollar sign ($). Thus $10 is hex (decimal 16) while 10 is
decimal.

So let us look at how hex works

Base? Base Units

2656s 16s Is Decimal value
1 0 0 256

0 1 0 16

0 0 1 1

1 1 1 213

Since the highest number the C64 can handle is 656535, we are only going to
deal with four digit hex numbers. To see the reason for this, let us calculate
the highest four-digit hex number ($FFFF)

= (4096 X F) + (256 X F) + (16 X F) + (1 X F)
= (4096 x 15)+ (256 X 15)+ (16 x 18)+ (1 x 15)
= 61440 + 3840 + 240 +15

= 65535

HEXADECIMAL AND BINARY

Figure 3.2

v Y i /
Value (decimal): 1x128+1x64 + 0x32 + 1216 + 1x8 + @x4 + Px2 + 1x1 = 217

As with binary, converting into decimal is straightforward (although a
calculator comes in handy if you are not too hot at mental arithmetic!).
Converting from decimal is more difficult, so again we have written a
program (Listing 3.2) to do the job for you. You will also find a useful chart in
Appendix 1.

Listing 3.2

1@ REM DECIMAL TO HEX

2o

39 H$="0123456789ABCDEF"

48 INPUT"WINPUT DECIMAL NUMBER (®-63535):";D$:D=VAL(D$)

59 IFD<®ORD>65335THEN4@

60 PRINT"NMMHEX NUMBER = $";

70 FORI=3TOBSTEP-1:G=INT(D/1641)iD=D-G*#16t1IPRINTMIDS(H® G+1,1)7 tNEXT
READY.

3.3 Why do we use hex?

A question which those new to machine code often ask is “Why does the C64
use hex?". The answer is simply that the C84, like any other computer,
actually works in binary. Hex is used as an alternative because a number like
$0100 is easier to handle than % 100000000! Decimal cannot be used since ten
is not a power of two whereas sixteen is.

Figure 3.3
Value (decimal): 4§96 256 16 1

| 1]

DIGIT DIGIT DIGIT DIGIT

] I)

MEMORY ADDRESSING

3.4 Memory addressing

We have already mentioned that the C64 has 65536 bytes (64K) memory
available. But when you switch on, the C64 tells you that it has only 38911
bytes available to BASIC. What happened to the other 26625 bytes? We will
discuss memory in more detail later, but let us take a quick look now at the
way the C64's memory is arranged. The C64 has 64K of RAM. Some of this
RAM, however, is needed by the C64 to take care of its own workings. The
first 2047 bytes, for example, are used by the Kernal to store information. The
Kernal is the name given to the C64's operating system: the set of machine
code routines which take care of the workings of the C64. (The most useful
Kernal routines are detailed in Appendix 7).

The Kernal uses this storage area to store such information as the current
cursor position, the colour of the screen, which line of a BASIC program is
being executed and so on. Also included in this area is the screen memory,
used to store the contents of the screen (you may have POKEd to this in
BASIC) and the sprite map pointers, used to keep track of sprite shape
definitions. From 2048 to 40959 is the memory area available for your BASIC
programs. The 8K following 40960 contains the BASIC programming
language. BASIC is in fact made up of a number of machine code programs.
These programs are stored here and automatically run whenever you run a
BASIC program. The 4K beginning at 49152 is the area normally used for our
machine code programs, and the rest of RAM is used for sound and graphics,
input/output Kernal.

The last thing we need to explain in this chapter is two pieces of machine
code jargon: paging and absolute addresses. For convenience, the C64's
memory is divided into areas (‘pages’) of 256 bytes. The first 256 bytes are
called zero-page, the next 256 page one, the next page two and so cn. An
absolute address is simply any address higher than $FF. A detailed, fully
annotated C64 memory map is given in Appendix 2.

Figure 3.4

S22 V8

Value (decimal): 2x 4P96+ 7x256+1x16 + 1x0 = 1000@

22

HEXADECIMAL AND BINARY

3.5 Summary

In order to be able to manipulate numbers, we need some
kind of numbering system. The decimal system (base 10)
is convenient for humans since we have ten fingers and
thumbs, but computers work in binary (base 2). Binary
digits are known as bits, and eight bits make one byte.

Because binary is inconvenient (the top of the C64's
memory would be %1111111111111111 in binary!), a
compromise system is used. This system is known as
hexadecimal, or hex (base 16). Any number between zero
and the top of memory can be stored in hex using just two
bytes.

In order to distinguish decimal, binary and hexadecimal
numbers, a simple convention is used. A percent sign
precedes binary numbers (for example, %01010000) and a
dollar sign precedes hex ones ($50).

3.6 Exercises

In order to ensure that you understand how to convert from binary and hex
into decimal, turn the following into decimal. The answers can be found in
Appendix 6.

1. $A0

2. %0110

3. $§FC

4. %1100

5. $9009

6. % 11000000
7. $C040

8. %01100011
9. $AD40

10. %11111000

Ifthere is anything in this summary you are not sure about, or if you got more
than one or two of the exercises wrong, please go back and re-read the
relevant parts of the chapter.

4
Machine code commands

Having covered the necessary background information, we are now ready
to begin learning our first machine code commands. In this chapter, you will
learn about the following commands:

® LDA
®STA
® LDX
®STX
®LDY
@ STY
® RTS

You will also learn how to use the following BASIC statement;
@®S5YS

By the end of this chapter you will be able to write your first machine code
program!

When we program in BASIC, most of the work is done using variables.
BASIC programming could therefore be defined as the manipulation of data
using variables (on the C64, the variables available are A—Z, AR—-ZZ,
B$-Z$ and AA$-ZZ$). When we program in machine code, most of the
work is done using memory locations directly rather than variables.
Machine code programming could therefore be defined as the direct
manipulation of memory.

In order to manipulate memory locations, we need some way of doing the
manipulating. C64 machine code programming offers us three different
manipulators which will fast become old friends: the accumulator, the X
index and the Y index. Manipulators work in a broadly similar way to
variables. They are used to select a value, perform an operation on that
value, and place the result into the same or a different location. Each

MACHINE CODE COMMANDS

manipulator acts on a single memory location and can therefore handle
values up to 255 ($FF, %11111111),

The most important manipulator is the accumulator. Many of the
mathematical commands used in machine code are only available through
the accumulator. The X and Y indices are primarily used within loops. They
are known as indices since they act as the ‘index' (counter) of loops. An
example of an index in BASIC would be the counterina FOR . . . NEXT loop

FOR A=0 TO 999: POKE 1024+A, 32: NEXT A

When we assign a value to a variable in BASIC, we can do so in one of two
different ways

A=50
B=A

In the first form a variable is assigned a constant, while in the second a
variable is set to the value of another variable. As we mentioned in Chapter
2, in machine code we distinguish between constants and memory locations
by preceding constants with a hash sign (#). Thus #$FF refers to the value
258 while $FF refers to memory location 255.

4.1 The LDA, LDX, LDY, STA, STX, and STY commands

In BASIC, to assign a value to a variable we use the LET statement

LET A=100

(although most BASICs, the C64 included, allow you to omit the LET). In
machine code, the LDA (LoaD Accumulator) command is used to assign a

value to the accumulator. We assign the value 32 ($20) to the accumulator like
S0

LDA #8%$20

Note that the hash sign (#) indicates that we mean the value $20 and not the
memory location.

LDA $20

would load the accumulator with the value stored in memory location $20.
The difference can be likened to the difference between

LET A=32

and

LET A=PEEK(32)

The LDX and LDY commands work in an identical fashion. So

OUR FIRST MACHINE CODE PROGRAM

LDX #%$20 :
loads the X index with the value 32 and
LDY #8$20

does the same for the Y index.

So far we know how to store the contents of a memory location in the
-accumulator, but not how to do anything with the value once we have got it
there. The most obvious things we will want to do are

(a) perform a calculation with it and place it back into the same memory
location, and
(b) place it into a different memory location.

We will deal with calculations in later chapters, but first let us find out how to
store the value of the accumulator in a memory location. This is performed
using the STA (STore contents of Accumulator) command. To place the value
of the accumulator into memory location 32, for example, we would use

STA $20
The accumulator retains its value until a new LDA command is issued, so
STA $21

would place the same value into location 33. The X and Y indices equivalents
are STX and STY. The command format is identical to STA.

Ok, let us do something moderately useful. The border colour of the C64 is
stored in memory location 53280. So to make it yellow, in BASIC we would
POKE 53280 with the colour code for yellow (7)

POKE 53280,7

To achieve the same effect in machine code we would write
LDA #8$07

to load the accumulator with the value 7, and then

STA $D020

to place this value into memory location 53280.

4.2 Our first machine code program

We know enough to write our first machine code program! This program will
place a white letter A in the top left-hand corner of the screen. This kind of
masterpiece is not likely to worry Jeff Minter over-much, admittedly, but we
all have to start somewhere: even Minter probably started out by writing a
similar program!

2 | | MACHINE CODE COMMANDS

Before we begin writing our program, we have to tell the assembler
whereabouts in memory to store it. We do this by a [(opening square
bracket) followed by the start address in hex. The start address is the
memory location used to store the first byte of the program

[$C000

The address $C000 is the start of the 4K area reserved for machine code
programs. You can store them elsewhere (you have to if your programs
require more than 4K RAM), but you can easily move them if required just by
changing the above line.

The next line of our program assigns the screen code for the letter A (1) in
the accumulator

LDA #8$01

(A complete list of character codes can be found in Appendix 3: while colour
codes can be found in Appendix 4.) To place a character onto the screen, we
need to place the screen code of the character into the appropriate section
of screen RAM. Screen RAM begins at the top left-hand corner of the screen
with 1024. So we need to store the content of the accumulator at location 1024
($0400)

STA $0400

On a relatively new C64, you may be able to see this character as soon as
your program reaches this point. On older machines, however, you will not
see anything because the character will be displayed in the background
colour of the screen! We need to place a colour code into the top left-hand
corner of colour memory, which begins at 55296 ($D800)

STA $D800

Since we have not changed the value of the accumulator, it will still contain its
original value of 1. Since 1 is the colour code for white, the character in the
top left-hand corner of screen memory (our letter A) will appear in white.
We need one final line to complete our program, and that is RTS. RTS
(ReTurn from Subroutine) is the equivalent of the BASIC RETURN statement.
It is normally used to return from within a subroutine. If, however, it is used
when you are not in a subroutine it instructs the C64 to return to BASIC.

If you have not already done so, type the above program into the
assembler supplied with this book. It should look like this.

5000 [$C000
5010 LDA #8$01
5020 STA $0400
6030 STA $D800
8040 RTS

WHAT IF MY MACHINE CODE PROGRAM CRASHES?

To assemble your program, simply enter RUN. The assembler will then work
through your program, assembling a line at a time, until the finished program
is ready to run at address $C000.

4.3 Running a machine code program

If you have followed the above steps, typing in the program and then
entering RUN, the program is now ready to be run. The more impatient of
you will already have discovered that the BASIC command RUN does not
work with machine code programs! Instead, we use the command SYS
(address). SYS tells the C64 to execute the machine code program which is
at the specified address. Since our program is at address $C000 (49152), we
simply enter

SYS 49162

All being well, a white A will have appeared at the top left-hand corner of the
screen and the READY prompt will have returned a couple of lines below
the SYS command. Congratulations: you have just written your first machine
code program!

There is another way of running a machine code program, and that is to
use the USR command rather than SYS. USR is a little more complicated, but
can be extremely useful. It is explained in Chapter 10.

4.4 What if my machine code program crashes?

Something which many people worry about is: What happens when you-
crash your C64 with a POKE or machine code program? If you are one of
these people, we have both an assurance and a warning for you. The
assurance is that you absolutely cannot damage your machine in any way by
incorrect POKEing or crashing a machine code program. The warning is that
you can cause the machine to lock up'. If this happens, you may have to
switch it off and on again to cure the fault. While this will not do any
damage, you will lose whatever you had in memory. For this reason, we offer
you one golden rule when writing any machine code program: Always save
your program to tape or disk before executing it. If you don't follow this
advice, don't blame us if you spend three hours typing in a masterpiece and
then find that the machine locks up when you try to run it because youmade a
simple mistake in the second line!

MACHINE CODE COMMANDS

4.5 Remarks

Most books on BASIC programming advise you to include REM statements
in your programs, remarks that remind you what the various bits of code do.
This advice applies a hundred times more to machine code programs.
Without remarks, you will find that you will have forgotten the workings of
your programs within hours, let alone weeks or months. This is especially
true when you are just beginning to learn.

In BASIC, we use the REM statement to indicate remarks. In machine
code we use the semicolon (). This can be used, just like a REM, either on
the end of a line or on a line of its own

LDA #8$01 ;Load accumulator with 1

Semicolons can also be used on their own to separate sections of your
programs. We will also be using remarks and separators extensively in the
more complicated programs in later chapters.

4.6 Summary

Machine code programming can be defined as the direct
manipulation of memory locations. Machine code uses
three ‘manipulators’ (used like variables): the accumulator,
the X index and the Y index. LDA is used to LoaD the
Accumulator with a value, and STA to STore the contents
of the Accumulator at a specified address. The equivalent
commands for the X and Y indices are LDX, LDY, STX and
STY. The accumulator and indices retain their values after
an STA, STX or STY.

Before you can write a machine code program, you
need to specify the start address. This is done as follows:
[(start address). To end a program, you use RTS. When
you have written a program, RUN will assemble it and
return you to BASIC. You then use SYS (start address)
(remember that the start address must be in decimal) to
execute it.

Finally, semicolon is the equivalent of the BASIC REM
statement. We strongly suggest using it extensively,
especially while you are fairly new to machine code.

EXERCISE

4.1 Exercise

Write, assemble and execute a machine code program to place your first
name at the top left-hand corner of the screen, with each letter in a different
colour. You will need to refer to Appendix 3, Appendix 4 and Appendix 5. An
example answer is shown in Appendix 6.

5
Labels, flags and branching

This chapter introduces labels, flags and branching. When you have read it,
you should be able to answer the following questions:

@ What is a label?

@ How are labels assigned?

@® What are the two uses for labels?

@ What is a flag?

® How do we branch in machine code?

You will also be able to use the following machine code commands:

@ INX

@ INY

@®INC

® DEX
®DEY
® DEC
® TAX
@® TAY
® TXA
® TYA
® BEQ
® BNE
@®BCC
® BCS

® CMP
® CPX
® CPY

USING LABELS IN BASIC

31

5.1 Labels

A label is simply a name given to a line number or constant value in a
machine code program. You can name (label) a line number or value at
the beginning of a program, and then refer to the label. Labels are not
variables for the simple reason that the value of a label cannot be
altered once it has been set. Thus the following label definition is legal

6000 :VALUE=$01
(the colon is equivalent to the BASIC LET statement), but this
6010 :VALUE=VALUE+1

is not. Before we look at how labels are used in machine code, let us
see how we might use them in BASIC,

5.2 Using labels in BASIC

The first thing to point out is that standard C64 BASIC Version 2.0 does
not support labels, but some other BASICs do. Here we will explain how
labels could be used in a BASIC which supports them.

There are two ways of using labels. The first is to label program lines.
When you are writing a program, you will often want to GOTO or
GOSUB to a routine which you have not yet written, A typical example
might be something like

640 REM IF SCORE BEATS HIGH-SCORE GOTO WIN ELSE GOTO LOSE
650 IF SC)HS THEN GOTO 5000 ELSE GOTO 6000

You then have to remember to write the appropriate routines at these
line numbers or, if you have to write them somewhere else, alter the
line to suit. A much simpler and neater way would be to write the line
as

680 IF SC)HS THEN GOTO WIN ELSE GOTO LOSE
The first line of each routine would then look like
5000 :WIN:

6000 :LOSE:

Not only can you then.not worry about where the routines finally end up,
but you also no longer need the REM statement in line 640 as the line
becomes self-explanatory. All we have done is to label two lines and
then branch to them by referring to these labels.

LABELS, FLAGS AND BRANCHING

The second use of labels is to label constants. For example, if you
intended to use the constant 3,14159265 (pi) more than once in a BASIC
program, you might assign a variable PI somewhere near the beginning

120 P1=3.14159265

Next time you wanted to use pi, you could simply use PI
300 D=2*PI"R

You can do a similar thing in machine code

6000 :P1=3.14169265
7000 LDA #PI

5.3 Using labels for branching

To use a label for branching, you must first label the line you want to
jump to. This is done by placing the label after a colon

6050 LDA #804 :DISPLAYSCORE

To jump to this line, you would use one of the branching instructions we
will learn about later in this chapter

7010 BEQ DISPLAYSCORE

We have already stressed the importance of using remarks in machine
code programs, similarly, we strongly recommend using meaningful
labels.

5.4 Labelling constants

Constants are labelled in a very similar way to BASIC, instead of LET,
you use a colon

6010 :BORDERCOLOUR=$D020

or

6020 :RED=$02

Not only do labels make life easier while you are writing the program

(meaningful words are a lot easier to remember than numbers), but they also
make your programs much more readable. Compare

7000 LDA #$02
7010 STA $D020

with
7000 LDA #RED
7010 STA BORDERCOLOUR

LABELLING CONSTANTS

Labels are also convenient if you want to change something throughout your
program. If, for example, you were using the colours green and blue for your
screen displays and wanted to change them to yellow and red, you need
only change your colour labels. So, for example, if your original labels looked
like this

6010:FOREGROUND=$05

6020:BACKGROUND=$06

you can change them to read

6010:FOREGROUND=$07
6020:BACKGROUND=$02

and re-assemble the program.

Right at the beginning of this chapter we said that labels are not the same
as variables because their values cannot change within a program. The
reason for this is that the assembler replaces labels with their values
throughout a program during assembly. For example, let us take the
following short program

6000 [$C000

6010 ;This does not do anything useful so do not bother assembling it
6020 :SCREENPOSITION =$0400
6030 :COLOURPOSITION=$D800
6040 :COLOUR=$03

6050 :CHARACTER=$5SE

6060;

6070 LDA #COLOUR

6080 STA COLOURPOSITION
6090 LDA #CHARACTER

7000 STA SCREENPOSITION

This would be assembled as if it were written

6070 LDA #8$03
6080 STA $D800
6090 LDA #8$SE
7000 STA $0400

Labels cannot change their value within a program because they are used
while the program is being assembled and not while it is running. Thus

7000 STA CHARACTER+1

is legal (the assembler calculates the value of CHARACTER+ 1 and uses this
during assembly), while

7000:CHARACTER=CHARACTER+1
is not because CHARACTER has already been defined as a label and cannot

LABELS, FLAGS AND BRANCHING

now be redefined. If you wanted to achieve the same effect, you would have
to use another label like so

7000:CHARACTER2=CHARACTER+1

5.5 The increase commands: INX, INY and INC

The fact that we cannot alter the value of a label within a program presents us
with a problem when we want to create a loop. In BASIC, we could create a
loop to display the numbers one to ten like so

100 FOR A=1TO 10
110 PRINT A
120 NEXT A

If we did not have the FOR . . . NEXT loop to help us, we would write it like
this

100 A=A+1
110 PRINT A
120 IF A<10 THEN GOTO 100

But this method involves changing the value of the variable A. Since we can
not do that with machine code labels, how would we write a loop in machine
code? Well, 6502 assembler supplies us with three instructions for this
purpose: INX, INY and INC. INX tells the assembler to INcrease the X index
by one. In other words, it is equivalent to the BASIC statement X=X+1. INY
is, of course, the Y index equivalent, adding one to the Y index. We will
discuss INC in a moment.

All three instructions feature roll-over. To illustrate the point, enter and
assemble the following program:

6000 [$C000 ;Assemble at decimal 49152
6010 LDX #8FF ;Load the X index with decimal 265

6020 INX :Increase the X index by one
6030 STX 828 ;Store the X index value in location decimal 828
6040 RTS ;Return to BASIC

If you now run the program (SYS 49152) and PRINT PEEK(828) you will see
that the value returned is zero,

The INC instruction works in exactly the same way as INX and INY, but
instead of operating on one of the indices, it acts on a specified memory
location. We will see some more complicated uses of INC when we deal with
addressing modes in Chapter 6, but its simplest forms, and the only two we
need worry about now, are

INC $XX

THE DECREASE COMMANDS: DEX, DEY AND DEC

and
INC $XXXX

Both instruct the assembler to increase the value of the specified address by
one. Thus

6010 LDA #8058 ;Load accumulator with five
6020 STA $FF :Store five in address $FF
6030 INC $FF ;JIncrease value in address $FF by one

would leave address $FF with a value of $06 stored in it (the original value of
$08 plus the INC increase of $01).

5.6 The decrease commands: DEX, DEY and DEC

In most loops, we want to increase the value of the loop counter (known as a
‘forward’' loop). There are, however, occasions when we would want to
decrease it (a 'backward' loop). For example

100 FOR C=10 TO 1 STEP-1
110 PRINT C:FOR B=0 TO 250:NEXT B:REM Delay loop
120 NEXT C:PRINT “Take-off!"

or, without using a FOR . . . NEXT loop

100 C=10

110 C=C~—L:PRINT C:B=0

120 B=B+ L.IF B<250 THEN GOTO 120
130 IF C)1 THEN GOTO 110

140 PRINT “Take-off!"

In machine code, the method is exactly the same for backward loops as for
forward loops, the only difference being that we use the decrease
instructions instead of the increase ones. DEX, DEY and DEC are, as you
would expect, the backward loop equivalents of INX, INY and INC. Thus
DEX decreases the value of the X index by one, DEY decreases the value of
the Y index by one and DEC decreases the value of the specified address by
one.
The decrease instructions all feature roll-under, so that

6010 LDX #800
6020 DEX

would leave the X index with a value of $FF ($00 minus one). Again, you can
demonstrate this by entering and assembling the following short program:

6000 [$C000 ;Assemble at decimal 49152
6010 LDA #8$00 ;Load accumulator with zero
6020 STA 828 ;STA accumulator value at address decimal 828

LABELS, FLAGS AND BRANCHING

6030 DEC 828 ;Decrease value of address decimal 828 by one
6040 RTS ;Return to BASIC

If you now SYS 49152 to run the program and PRINT PEEK(828) you will see a
value of decimal 286.

5.1 The transfer commands: TAX, TAY, TXA AND TYA

So far we have seen how to increase and decrease the values of the X index,
the Y index and any chosen address. We have not seen how to do the same
with the value of the accumulator. There is not any direct way of adding to or
subtracting from the value of the accumulator, but there is a simple way
around the problem using the transfer commands. The transfer commands
are used to transfer the value of the accumulator to either of the indices and
vice-versa. They have a number of uses, but one of the main onesis toadd to
or subtract from the value of the accumulator. The instructions are

TAX Transfer Accumulator value to the X index

TAY ;Transfer Accumulator value to the Y index
TXA ;Transfer X index value to the Accumulator
TYA :Transfer Y index value to the Accumulator

In all cases, the value you are transferring stays the same: a copy of the value
is transferred. For example

6010 LDA #$07 :Load accumulator with 7
6020 TAX ‘Transfer accumulator value (7) to X index

would leave both the accumulator and the X index with a value of 7. To
increase the value of the accumulator by one, we would

6010 TAX {Transfer accumulator value to X index
6020 INX :Increase X index by one
6030 TXA :Transfer X index value back to accumulator

Similarly, to decrease the value of the accumulator you would replace line
6020 with

6020 DEX :Decrease X index by one

We could, of course, have used the Y index instead of the X one. In practice,
you will probably already be using one of the indices and so would use the
other one to increase or decrease the value of the accumulator.

THE CONDITIONAL BRANCHING COMMANDS: BEQ AND BNE

5.8 The conditional branching commands: BEQ and BNE

A construct common to all computer languages is the conditional branch.
This is just a fancy way of saying a branch (GOTO is a BASIC example of a
branch instruction) which only happens if one or more conditions are met.
The obvious example in BASIC is the IF ... THEN statement

100 IF A=B THEN GOTO 500
110 IF C<>D THEN GOSUB 1500

Before we look at the first of the machine code examples, BEQ and BNE, let
us take a slightly closer look at the IF ... THEN construct.

The IF ... THEN statement is in two parts. First, there is the comparison
(following the IF statement) and second, the branch or action (following the
THEN statement). What BASIC does is to set a flag dependent on the result of
the comparison. Let us look at our first example, setting the values of A and B
before we do so

90 A=10: B=10
100 IF A=B THEN GOTO 500

BASIC would first evaluate the comparison
A=10, B=10 therefore A=B

It then sets a flag telling itself to execute the branch or action following the
next THEN statement

Set THEN flag to TRUE

Next it reads the code following the THEN statement and checks the status of
the THEN flag

THEN flag is true, so execute code: GOTO 500

If A=5 and B=10, the same process would occur except that the THEN flag
would be set to FALSE and the code following the THEN would be ignored.
We can see from this that although the two keywords are used together, IF
and THEN are actually separate operations. We need to understand this
because machine code does the equivalent of an IF . , . THEN statement in
two completely separate steps. Let us look first at the equivalent of IF.

The machine code equivalent of the IF statement is the comparison
statement. This takes three forms, of course, for the accumulator, X index and
Y index

CMP ;CoMPare specified value with the accumulator
CPX ;ComPare specified value with the X index
CPY ;ComPare specified value with the Y index

The two uses of the CMP instruction are

LABELS, FLAGS AND BRANCHING J

CMP #$01 ;Compare accumulator with the value one
and
CMP $01 :Compare accumulator with the value stored in address one

If the comparison is true, a COMPARISON EQUAL flag is set; otherwise one
of the COMPARISON NOT EQUAL flags are set.

So far, we have made a comparison but we have notacted on it: all we have
done is to set a flag. This is where the machine code equivalent of the THEN
statement comes in. This is the branch instruction set

BEQ :Branch to the specified label if the comparison flag is EQual
(usually stated as ‘Branch if EQual’)
BNE :Branch to the specified label if the comparison is Not Equal

(usually stated as ‘Branch if Not Equal’)
So, for example, a machine code search routine might contain:

6010 BEQ FOUND ;Record found, branch to FOUND line
6020 BNE SEARCH ;Not this one, branch back to SEARCH line

Ok, let us summarize all this, CMP is the basic comparison instruction. The
format is ‘CMP #$(value)’ or ‘CMP $(address)’. CMP instructs the
assembler to compare the value, or the value stored in the specified
address, with the value of the accumulator. If the two values are equal, an
equal flag is set. If the two are different, a not-equal flag is set. CPX and CPY
work in exactly the same way except that the comparison is made with the X
and Y index respectively and not with the accumulator.

Once the equal or not-equal flag has been set, we can act on the status of
the flag by the branch instructions: BEQ and BNE. The formats of the
instructions are ‘BEQ (label)’ and BNE (label)’ respectively. BEQ will
branch to the line containing the specified label if the equal flag is set, while
BNE will branch to the label if the not-equal flag is set.

Enter and assemble the following demonstration program:

6000 [$C000

6010 :SCREEN=$0400 Top-left of screen

6020 :COLSCREEN=$D800 :Top-left of colour screen

6030 LDA #801 :Character code of ‘A’

6040 LDX 828 ;Load X index with decimal 828
6050 CPX #8$00 ;Compare X index value with zero
6060 BEQ XISZERO ;Branch to line with XISZERO label
6070 LDA #$02 ;Character code of ‘B’

6080 STA SCREEN :XISZERO ;Top-left of screen

6090 LDA #801 :Colour code of white

6100 STA COLSCREEN :Top-left of colour screen

6110 RTS ;Return to BASIC

Once you have assembled the program, enter

FLAGS

POKE 828,00:REM Place zero in location 828
SYS 49152

A white ‘A’ will have appeared at the top left-hand corner of the screen, This
1s because the comparison in line 6050 set the equal flag to true, and thus the
program branched from line 6060 to 6080 and so line 6070 was never
executed.

Now enter the following, remaining in BASIC

POKE 828,200:REM Place 200 in location 828
SYS 49152

This time a white 'B' will have appeared. This is because the comparison in
line 6050 failed (that is, the equal flag was not set), the branch in 6060 is
therefore not carried out and so line 6070 is executed, loading 'B' into screen
memory. The BASIC equivalent of this would be

100 A=1: IF X <> 0 THEN A=2

5.9 Flags

We had a very brief look at flags in Chapter |, now it is time to see how they
work. You will remember that a flag is simply a bit which can be set to either
1 (often known as frue) or 0 (known as false). The C64 has a number of built-in
‘status’ flags held in a memory location known as the Status Register or
Process Register. This looks something like that shown in Fig. 5.1, We have
already dealt with one of these flags, albeit without knowing it, and that is the
Zero flag. This is the flag used by our friends CMP, CPX and CPY. If the result

Figure 5.1
N[V B. 1Dtk Pagat L
Negaltive
flag oOverflow
flag ynysed
Break
flag pecimal
mode
Interrupt
flag gisable et
i flag Carry

flag

|

j LABELS, FLAGS AND BRANCHING

of a comparison is true (equal), then the zero flag is set to 1. If the comparison
is false (not equal), the zero flag is set to 0.

To understand why it is called the zero flag, we have to know how the
assembler carries out a comparison. In fact, it does it in the simplest way
possible; subtract one from the other. So

6010 LDA #$01
6020 CMP #801

is like saying
A=1
ZEROFLAG=A-1

Since #$01—#801 equals zero (meaning that they are equal), the zero flag is
set to 1 (zero=true). If the two were not equal, the subtraction would result in
a value greater than zero and so the zero flag would be set to 0 (zero=false).

5.10 Greater-than and less-than comparisons

So far we have learnt how to use the comparison instructions together with
BEQ and BNE to compare two values for equal or not-equal. At other times,
though, we would want to know more than this: if the two are not equal, we
will often want to know which one is greater. This is where the other two
branch instructions come in

BCC :Branch if Carry Clear (tests for less-than)

BCS :Branch if Carry Set (tests for equal-to or greater-than)
These are used in exactly the same way as BEQ and BNE as we shallsee ina
moment (machine code is actually very easy once you get started —

everything works in the same way!). There are, however, two things which
often confuse beginners until they are familiar with BCC and BCS

1. Which is which?

Does BCC or BCS test for less than?
(It's BCC).

2. Which way round the comparison is done.
Which one of the following branch to LESSTHAN?
(a)LDA #%$20

CMP #$20
BCC LESSTHAN

or

(b) LDA #%21
CMP #$20
BCC LESSTHAN

(It's (a)).

OUT-OF-RANGE ERRORS

Fortunately, you will have no such problems if you take two or three minutes
‘now to memorize the following simple reminders:

(a) To remember which of BCC and BCS tests for less-than, remember that
‘C'1s lower than 'S' in the alphabet. Put another way, the ASCII value of C
is less than the ASCII value of S.

(b) To remember which way round comparisons are done, just think of how
you would do it in BASIC

100 IF A<6 THEN...

‘The value given after the less-than sign (in this case, 6) is compared with
the value before (“is A less than 6?"). Thus, “Is the accumulator (or X or Y
index) less than the value after the comparison instruction?"

Remember also that BCS tests for greater-than or equal If you want to test
only for greater-than, you would have to do a BEQ before doing a BCS.

6010 CMP #8056

6020 BEQ EQUAL

6030 BCS GREATERTHAN
6040 BCC LESSTHAN

In BASIC, this would look like

100 IF A=5 THEN GOTO 1000:REM EQUAL ROUTINE
110 IF A>=8 THEN GOTO 2000:REM GREATER-THAN ROUTINE
120 IF A<8 THEN GOTO 3000:REM LESS-THAN ROUTINE

5.11 Out-of-range errors

There is one slight complication to branching: you will sometimes get an ‘out
of range' error during assembly. To explain why, we have to understand how
the assembler stores branching instructions in memory. But before we do
this, let us get our priorities right and tell you what to do if you get the error!
The simple rule is: “If the branch is out of range, reverse the test." For
example if
6010 CMP #8$20
6020 BEQ EQUAL
6030 LDX #830

resulted in an ‘out-of-range’ error, rewrite it the other way round

6010 CMP #820

16020 BNE NOTEQUAL

6030 J]MP EQUAL

6040 LDX #$30:NOTEQUAL

LABELS, FLAGS AND BRANCHING

The JMP (JuMP) instruction simply tells the assembler to jump to the label
following it (in this case, NOTEQUAL). In other words, it is just like a GOTO
statement in BASIC except that we use a label instead of a line number. Ok,
that's the solution, but why do we have the problem in the first place? Well,
branch instructions are stored in two bytes. The first is the instruction itself
(for example, BEQ), and the second is the number of bytes the C64 should
jump.

The problem is that you can branch both forwards and backwards. Since
the C64 has only one byte to store both the distance to be jumped and the
direction, how doesit do it? Well, it uses the seventh bit to store the direction:
a zero means jump forward, and a one means backward. So, for example

%00000011
means jump three bytes forward, while
% 10000011

means jump three bytes backward. The problem, of course, is that the
maximum distance the C64 can store this way, leaving the seventh bit free for
the direction, is % 1111111, or decimal 127. Anything greater than this causes
an ‘out-of-range’ error.

5.12 Exercise

Write a program to check the contents of 828. If it contains 2 then turn the
border RED otherwise turn background colour equal to contents of 828,

6
Addressing modes

‘This chapter explains addressing modes. It covers

® Immediate
® Zero-page
@ Absolute

® Relative

® Implied

@® Absolute X
® Absolute,Y
@ Zero-Page, X
@ Lo-Hi storage (used by the indirect addressing modes)
@ Indirect,Y

@ Indirect X

® Indirect

Every machine code instruction will either branch or jump to a different
section of the program, store a value somewhere or retrieve a value from
somewhere. These operations break down into what are known as
addressing modes. (A full list of machine code instructions, showing which
one belongs in which addressing mode, is given in Appendix 8.)

In Chapter 2, you may remember that we mentioned the difference
between absolute and zero-page numbers. We said that an absolute
number has four hex digits and is between $0100 (decimal 256) and $FFFF
(decimal 65535) inclusive. A zero-page number, in contrast, has only two hex
digits and is between $00 and $FF (decimal 255) inclusive. Absolute and
zero-page are two different addressing modes. Thus

LDA $22

is a zero-page instruction (that is, it is executed in zero-page addressing
mode), while

LDA $0400

ADDRESSING MODES

is an absolute instruction (that is, it is executed in absolute addressing
mode).

Addressing modes are a very important part of machine code
programming. In this chapter, we will examine each addressing mode in
turn. Some of them have rather esoteric-sounding names! Do not worry too
much about the names - you will learn them quickly enough as they become
familiar to you — but do make sure that you understand the function of each.

This chapter presents quite a lot of information. None of it is particularly
complex, but it is important to have a thorough understanding of it, so take it
slowly and carefully. Let us start by looking at the modes we have already
used.

6.1 Immediate

Immediate mode is used to load values into manipulators and memory
locations, Examples of immediate mode instructions are

LDA #8$50
STA $D020

and, since our assembler allows us to use decimal values as well as hex ones
LDA #10

One of the main uses of immediate mode is to set up and use labels

‘BLUE=$06
:SCREENCOL=$D020

LDA BLUE
STA SCREENCOL

6.2 Zero-page

Zero-page occupies the first 256 bytes of memory ($00 to $FF inclusive). Most
of zero-page is required by the C64's BASIC and operating system, but some
locations are available for use in your machine code programs. The memory
map in Appendix 2 shows which ones. Because so few locations in zero-page
memory are available to you, you would not normally store straightforward
values in them. You would usually use them for some of the other addressing
modes examined in this chapter.

The reason that zero-page memory is largely used by the C64 itself is that
the closer to the start of memory a routine or value is, the less time it takes to
locate it and thus the faster the C64 will operate. You may have noticed a
similar effect in your BASIC programs, where the early sections of your

RELATIVE

program run slightly faster than an identical routine later in the program. For
this reason, it is a good idea to put the most commonly-called subroutines at
the beginning, rather than end, of your programs.

6.3 Absolute

Examples of absolute mode commands are

LDA $C000
STA 49152

Absolute addressing is the one normally used in machine code program-
ming. It allows you to address all of the C64's memory. Machine code
programs and data can be stored anywhere in memory, provided that the
addresses are not required by the C64 for other purposes. One point to
watch out for is to make sure that you do not use memory required by the
assembler.

As you become more experienced, you will get to know the C64's memory
better, but for now we suggest you stick to the 4K block beginning at $C000.
All the examples in this book use this block of RAM.

6.4 Relative

Relative addressing is the name given to all the branch instructions. They
are so-called because they branch relative to the current program location.
As we saw in Chapter 5, the assembler can jump up to 127 bytes either
forwards or backwards. The calculation of how many bytes, and in which
direction, to jump is performed automatically by the assembler.

Let us see how this works in practice

7000 LDA #$50

7010 CMP $25

7020 BEQ EQUAL

7030 RTS

7040 LDA $0400:EQUAL

This program simply compares the value of location $25 (decimal 37) to the
value #8$50 (decimal 80). If the two are equal (that is, location $25 contains the
value #%$80), the program branches to line 7040. Otherwise it continues to
line 7030 where it returns to BASIC.

When you assemble the program, the assembler calculates that line 7040
(labelled EQUAL) is one byte ahead of the current program position. (The
reason that it is one, rather than two, bytes ahead is that the RTS command is
the next line due to be executed and is therefore zero bytes ahead.) It thus
converts line 7020 to read, in effect

_ ADDRESSING MODES

7020 BEQ+$01 :NB: This line is not valid, it simply illustrates the principle of
what happens
The assembler supplied with this course is known as a ‘two-pass' assembler.
That is, it assembles the program in two stages. In the first stage (or pass), it
assembles the commands but leaves the labels as they are. In the second
pass, it calculates the values of all the labels and inserts these values in place
of the labels. There is another type of assembler known as a single-pass or
simple assembler. These do not allow the use of labels and are thus useless
for anything but the smallest programs and persevering programmer!
The advantage of relative addressing, if used throughout a program, is that
it is relocatable. This means that you can shift the program anywhere in
memory without re-assembling it You must, however, use relative
addressing throughout, so you cannot use JMP or other absolute instructions.
Wiriting relocatable programs requires considerable skill, but is ideal for
short machine code utilities which other users might want to place
somewhere else in memory to avoid conflicting with their own routines.

6.5 Implied

Implied addressing is one of the simplest addressing modes. It is the name
given to all instructions which have no target, source or branch bytes
following them. So far, the implied commands we have looked at include the
transfer commands (TAX, TXA, TAY and TYA), the increase and decrease
commands (INX, INY, DEX and DEY) and RTS. They are known as implied
commands because they imply the value and/or address to be used. For
example, INY means increase the Y index by one and place the result back
into the Y index.

6.6 Absolute, X and Absolute,Y

We have already seen that the X and Y indices can be used as an alternative
to the accumulator, but they also have their own special uses. The first of
these are Absolute, X and Absolute, Y modes. Commands in this mode take
the form

LDA (address) X
LDA (address),Y

where the address is in the range $0100—$FFFF. This mode is equivalent to
the BASIC statement

100 POKE 1024+X,100

ABSOLUTE X AND ABSOLUTE,Y

47

where the X in the above example would be replaced by the X or Y index.
So, to achieve the equivalent of the above line in machine code you would

6010 LDA #$64 ;Set accumulator to decimal 100
6020 STA $0400,X ;Add value of X index to the address and then carry out the
command

In other words, if the X index were set to $10, the above example would be
equivalent to

6020 STA $0410

If you would like a more formal definition, the value of the index is added to
the absolute number following the instruction, and the instruction is carried
out on the resultant value. Figure 6.1 illustrates this process. Since both
indices can hold up to $FF (decimal 255), the range of addresses you can
control in this mode is (address) to (address)+$FF.

Figure 6.1
$05

STA $0400 X STA _$0405
is the equivalent of

Accumulator =D $0405

Ok, so much for how it works (and if you are still not sure, the following
program will make things clear), why would you want to use it? Well, as you
may have already guessed, it is very useful for writing loops. Suppose you
wanted to write a program to fill the first 100 positions of the screen with a
reversed yellow block. In BASIC, we would write the program like so

100 FOR I=0 TO 99
110 POKE 1024+1, 160:REM 160 = character code for reversed block
120 POKE 55296+1, TREM 7 = colour code for yellow

130 NEXT I

In machine code, we would do it in Absolute,Y mode like this
6000 [$C000

6010:SCREEN$0400 :Define label as start of screen RAM
6020:COLSCREEN=$D800 ;Define label as start of colour RAM
6030;

6040 LDY #8$00 :Initialize Y to zero

6050 LDA #$A0:LOOP ;Load accumulator with decimal 160
6060 STA SCREEN,Y ;Store reversed block in screen RAM
6070 LDA #8307 ;Load accumulator with decimal 7
6080 STA COLSCREEN,Y :Store yellow code in colour RAM

6090 INY ;Increase the Y index by one

ADDRESSING MODES

6100 CPY #$64 iCheck for decimal 100

6110 BNE LOOP ;Branch back to loop if less than 100
6120;

6130 RTS

If you want to see this in action (and it is worth seeing the speed!), assemble
it, clear the screen and SYS 49152, The first 100 character positions will turn
almost instantaneously yellow. A very similar task to this, filling colour RAM
with a particular colour, is of course a common requirement in many
programs. In BASIC, we would do it like this

100 FOR I=0 TO 999:POKE 56296+1, 8:NEXT I:REM Orange

For other colours, of course, you would substitute another colour code for the
8 — see Appendix 4 for a list of colour codes.

Even though we are POKEing, this still takes a crawlingly slow 10.18
seconds to execute: not much good for swift colour changes in all-action
games! The solution, of course, is to rewrite the above in machine code and
SYS this routine instead. The machine code equivalent looks like this (this
program introduces some new concepts which we will explain in a moment,
so don't worry if you don't understand it all)

6000 [$C000

6010:COLSCREEN=$D800 Start of colour RAM

6020;

6030 LDY #8$00 ;Load Y index with zero

6040 LDA #$07 ;Load accumulator with 8 (orange)

6050 STA COLSCREEN,Y:LOOP ;First quarter of colour RAM
6060 STA COLSCREEN+$0100,Y ;Second quarter of colour RAM
6070 STA COLSCREEN+$0200,Y :Third quarter of colour RAM
6080 STA COLSCREEN+$02E8,Y ;Final quarter of colour RAM

6090 DEY :Decrease Y index by one
6100 BNE LOOP :Branch back to LOOP
6110;

6120 RTS

This takes 0.17 second to execute — an impressive difference!
Let us go through the above program in detail. There are four specific
points you may have noticed:

1. The accumulator is initialized outside the loop. This means that it is only
initialized once; if it had been inside the loop, it would have been
initialized 255 times. Although loading a value into the accumulator takes
only a minute fraction of a second, a minute fraction of a second multiplied
by 258 can become quite a significant delay. Even machine code can be
slowed down by careless programming.

2. We have used the fact that the accumulator, like the indices, retains its

ACCUMULATOR

49

value once set until loaded with a different value. (STA, remember, places
a copy of the accumulator value in the specified address: it leaves the
accumulator untouched.) We do not need to reload the accumulator with
the colour code each time.

3. You will almost certainly have noticed that we have a BNE instruction
without a CPY. This is because the decrease command (DEY)
automatically sets the zero flag, and the BNE instruction will therefore
compare the Y index with zero without a CPY #8$00 command. The same
is true of the increase command, INX. You can, of course, put the CPY or
CPX commands in anyway, and you may find it helps to do this to start
with, but remember that every command you can eliminate will speed up
your program, particularly within loops.

4. The screen is shaded in roughly four quarters. There is a slight overlap in
that some parts of the screen get shaded twice, but the time loss in this is
less than the time loss in writing a more elaborate loop to check for this.

Short routines like this are very handy to slot into your BASIC programs. By
far the easiest way to do this is to convert the program into DATA statements,
POKE it into RAM and then SYS it. Of course, converting the program
manually would be a tedious task, so we have written a program to do the job
for you - you will find it in Appendix 5. One word of warning concerning this
mode. You must make sure that the result of a calculation does not exceed
$FFFF, if it does, the result will roll-over into zero-page memory and your
program will probably crash. It certainly will not work in the way you wanted
it to!

6.7 Zero-page, X

This works in an identical fashion to Absolute, X except that it operates on
zero-page addresses. Thus

LDA $D0,X
STA $FFX

Note that the Y index cannot be used with the accumulator instructions in this
mode. You can, however, achieve the same effect using the X index

LDX $D0,Y ;Load X index with content of $D0+Y
TXA $D0 iTransfer this value to the accumulator

6.8 Accumulator

The accumulator addressing mode is the name given to machine code
commands which act directly on the accumulator. These include ROL and

\ ADDRESSING MODES

ROR, and are discussed in Chapter 8. Appendix 8, detailing all the
commands in the 6510 instruction set, shows which commands act on the
accumulator.

6.9 Lo-Hi form

Lo-Hi form is not an addressing mode, but we need to discuss it before going
any further since it is used by all the remaining addressing modes. Lo-Hi is
the form in which the C64 stores numbers greater than $FF . Since each
memory location can only hold one byte, that is a value up to decimal 255
($FF), the C64 needs some way of handling numbers greater than this. It
does so by using two consecutive locations. Let us look at an example

LDA $D000

This command is stored in three consecutive bytes. The first byte is the code
for the instruction itself, in this case $AD (decimal 173), the code for LDA. This
is the code for absolute mode. The two remaining bytes are used to store the
two halves of the number; $D0 and $00. The reason for the name Lo-Hi,
however, is that the low-byte, that is the smaller of the two numbers, is stored
first (Fig. 6.2). So $D000 is stored as $00 and $D0. Thus the whole line of code
is stored like so

$AD $00 $DO

Lo-Hi form may seem a little awkward at first, but it is simple enough once
you have grown used to it.

To enable you to split up an absolute number into its Lo- and Hi-bytes, we
have written two special commands into your assembler. These are (and).
To load the accumulator with the Lo-byte of an address

Figure 6.2

SalmBol- 70| 8 6

s

HI LO

HI=$B7 LO=$8C
Stored in LO-HI form as $8C, $B7

INDIRECT,Y

51

LDA #<$0400

and the Hi part

LDA #>$0400

You can also do the same with labels, thus
LDA #>SCREEN

6.10 Indirect,Y

The first of the addresses to use Lo-Hi form is indirect, Y mode. Indirect, Y is
one of the most useful commands you will come across once you start writing
anything other than very simple programs because it allows you to act on
large amounts of memory.

This mode uses two consecutive zero-page addresses to point to another
address in memory like so

LDA (SFE),Y

The brackets around the address tells the assembler that a Lo-Hi form
number has the Lo-byte stored at that address and the Hi-byte at the
following address (in this case, $FF). Let us suppose that $FE contains $00
and $FF contains $04. When we convert these two bytes from Lo-Hi form into
absolute, we get $0400. In other words,

LDA ($FE),Y
is the same, in this case, as
LDA $0400,Y

which we looked at earlier in this chapter. Incidentally, in the above
example, we happened to use $FE and $FF as the pointer to an absolute
address, but you can use any free addresses in zero-page, bearing in mind
that you need two consecutive free locations. Free addresses are shown in
Appendix 2.

To illustrate the use of this mode, let us write a short routine to clear the
high-resolution screen (which starts at $8000).

6000 [$C000

6010:HIRES +$8000

6020 LDA #<HIRES

6030 STA $F7

6040 LDA #>HIRES

6050 STA $F8

6060 LDX #$00 ;USE X index as counter
6070 LDY #$00:LOOP1

ADDRESSING MODES

6080 LDA #$00

6090 STA ($F7),Y:LOOP2

6100 DEY

6110 BNE LOOP2

6120 INC $F8 iIncrease Hi-byte

6130 INX ;Add one to counter

6140 CPX #32 :Finished?

6150 BNE LOOP1 ;:No - go back to beginning of loop
6160 RTS :Yes - end

The important point about this program is that the indirect, Y command in line
6090 is used in place of the hundreds of absolute, Y which we would have
otherwise needed.)

6.11 Indirect,X

Indirect, X is — in contrast to indirect,Y — one of the least-used modes. It
works in a slightly more complicated way to indirect, Y. A pair of consecutive
zero-page locations are once again used as a pointer, but the resultant
address forms another, second, pointer. Let us see what this means with an
example:

LDA ($FEX) :Note that the X is inside the brackets

If $FE holds $00, and $FF holds $60, the resultant address is $6000. This
address, however, is used as a second pointer and the following operation is,
in effect, carried out:

LDA ($6000,X) :NB:Not a legal command

Now, let us imagine the addresses around $6000 hold these values:

Location Value
$6000 $00
$6001 $04
$6002 $10
$6003 $04

If the X index were set to 0 (zero) when the LDA ($FE,X) command were
carried out, the accumulator would be loaded with the contents of address
$0400. If the X index equalled 1, the accumulator would be set to $1004. This
is best shown in the following table:

SUMMARY

X index value Address loaded into accumulator
0 $0400
1 $1004
2 $0410

and so on. Compare this table with the one above to see how it works. If you
want to set up a series of pointers in this way (and it is very rare to need to do
s0), make sure that the X index holds an even value to ensure the correct
address is loaded.

6.12 Indirect

The last of our addressing modes is indirect. This is only available when
using the JMP (JuMP) command and is often used in the C64's BASIC and
Kernal routines. It is best left until you are fairly experienced, but comes in
very useful in writing programs which will automatically adjust themselves to
suit their requirements (simply changing a single memory location causes
the pointer to lead to a completely different routine).

The command stores a pointer in an absolute address. The format of the
command is

JMP ($6000)

If $6000 contains $00 and $6001 contains $C1, the C64 would jump to the
routine beginning at $C100.

6.13 Summary

The C64 has eleven different addressing modes (ways of
treating memory). Each addressing mode has at least one
command associated with it. Which command uses which
addressing mode can be seen in Appendix 8.

We have seen new ways of using familiar commands,
depending on the mode we are in. You do not need to
worry about the names of the different modes, but you
should know how to use the new command structures.

The chapter contains a lot of information, which you
probably will not take in at one go. You might like to take
a break at this point and re-read the chapter again later
before continuing. We know this process of reading and

ADDRESSING MODES

re-reading can seem tedious at times, but you will be glad
you made the effort later on.

6.14 Exercise

Write a program to put the C84 character seton screen (starting in top left) in
yellow.

1

Bit manipulation and logic
(or ‘truth’) tables

This chapter explains the concepts of bit manipulation and logic (or ‘truth’)
tables. This allows us to control individual bits within any given memory
location. By the time you have completed the chapter, you will be able to
answer the following questions:

® What is bit manipulation?
® What are the two main reasons for using it?
@ What is a logic or truth table?

You will also be able to use the following machine code commands:

® AND
® ORA
® EOR

7.1 What is bit manipulation?

When we program in BASIC, we normally think of memory in terms of bytes,
each location or address occupying one byte. But each byte is, of course,
made up of eight bits (binary digits, remember). Thus decimal 10is stored as
#%00001010.

When we program in machine code, it is often useful to think of memory
locations as eight bits instead of a simple byte. Rather than altering valueasa
whole byte, we may want to simply change a single bit. There are two main
reasons for wanting to do this. First, there are certain bytes (known as
registers) which are designed to be controlled by setting and resetting
individual bits. Second, using individual bits to store simple on/off flags can
give considerable memory savings. For example, if you are writing an
adventure game and a certain room in it has four doors, you could use four
bits of the same byte to store the open/closed door flags:

BIT MANIPULATION AND LOGIC (OR TRUTH’) TABLES

Door1 Door2 Door3 Door4 Spare Spare Spare Spare

1 0 1 1 0 0 0 0

You could even use the four spare bits as other flags, perhaps for objects or
characters. If you use all eight bits, you can store information in an eighth of
the space you would use if you used a whole byte for each flag (Fig. 7.1). Put
another way, your adventure could be eight times as big and still fit into the
same memory! Bit manipulation is pretty useful! Bit manipulation, as you
have probably already guessed, is performed in binary. So if you are less
than 100% confident about your understanding of binary numbering, go back
now and re-read Chapter 3!

Figure 7.1
Value (decimal): 128 64 32 16 8 4 2 1
; l ' l | l | . l | I | l | :
: BIT ; BIT ! BIT : BIT : BIT : BIT : BIT : BIT :
P76 vE ¢+ 40 3| i ! l
i i i i i i | i !

Remember that binary numbers are preceded by a percentage sign (‘%"),
just as hex numbers are preceded by a dollar sign (‘§). So, for example

LDA %00000011
would load the content of location decimal 3 into the accumulator, while
LDA #%00000011

would load the accumulator with the value decimal 3. Bit manipulation is
actually carried out using logic tables, so let us find out about these.

1.2 Logic tables

Logic tables are simple tables (Fig. 7.2) showing what happens to a bit when
itis acted on using one of the bit manipulation commands. Liet us look in detail
at each of the three bit manipulation commands, starting with ORA.

ORA

57

Figure 7.2
AND ORA EOR
g |0=z0 0|00 0| 0=z0
p|13@ e1131 B 1%1
1 (030 110 %1 1(03%1
111 %1 1 1% 1 111480

1.3 ORA

The ORA command allows you to set (make equal to 1) any individual bit or
bits in a byte. For example, suppose that you wanted to set bit four in location
$033C (decimal 828). You do not even need to know the current value of the
bit, you can simply set it anyway: if it is not set (0) it will be set (1), and if it is
already set it will stay that way. To set bit four

LDA $033C ;Load current value into accumulator
ORA #%00010000 ;Set bit 4
STA $033C ;Store new value at the same address

Let us suppose the original value of $033C was %11000011. After the ORA
command, setting bit 4, it would become %11010011. Figure 7.3 shows how

Figure 7.3

0
I F 1 P4 7

10R@ 10R@ O@OR@ QOR1 GORG @OR@ 10RO 10R@

I 8 O O G e

1 1 0|1 0|0 |1 1

BIT MANIPULATION AND LOCIC (OR TRUTH) TABLES

this works., What happens is that the ORA logic table is performed on each
bit in turn. If you ORA a bit with 0, you leave it unchanged. If you ORA a bit
with 1, you set it to | regardless of its original value. You may hear of binary
digits being referred to as masks. This is because all the bits ORAd with 0
are left unchanged: in other words, they are ‘'masked’. Masking is used with
all the bit manipulation commands. Another term you will probably come
across is logical commands. This is just another term for bit manipulation
commands.

You will use the ORA command a lot when you use the C64's video and
sound registers. For example, suppose you wanted to turn on sprites 3and 6.
To do this, you simply set bits 3 and 6 of the sprite-enable register $15
(decimal 21). Using ORA to do this means that you do not run the risk of
mistakenly turning off other spritesalready in use. So, for example, if you had
defined the label VIDEQ as the beginning of the video registers, you would
simply
LDA VIDEO+21 ;Load current value of sprite-enable register

ORA #%01001000 ;Set bits 3 and 6
STA VIDEO+21 ;Store new value in register

You do not risk changing any of your other sprites, because only bits 3and 6
will be affected: all the others remain unchanged.

1.4 AND

AND works in exactly the same way as ORA, except that it is used to switcha
bit or several bits off rather than on. Since 0 AND 0 equals 0, and 0 AND 1
equals 0, all you have to do to turn a bit off is to AND it with zero. For example,
to turn off bit 3 in location $033C:

LDA $033C :Load accumulator with contents of $033C
AND #%11110111 ;AND this value so that bit 3 is turned off
STA $033C :Store new value back into same location

Figure 7.4 illustrates this process.

If a bit is already set, ANDing it with 1 means that it remains set. If a bit is
not set, ANDing it with either 0 or 1 will leave it unset. If a bit is set and
ANDed with a 0, it will be unset.

1.5 EOR

EOR differs from ORA and AND in that it does not have a direct BASIC
equivalent. You can see from its logic table that EOR 'toggles' a bit, so thata 1
becomes a 0 and a 0 becomes 1 (Fig. 7.5). Thus to toggle bit 6 of location
$033C

O T

1AND1 1AND1 @ANDI! PAND1 @AND@ @AND1 1AND@ 1AND1

I 2 O Y

VY s - B B2

-l Y f

1EOR1 1EORP @EOR@ GEOR1 GEORP GEORP 1EORP 1EORM

BIT MANIPULATION AND LOGIC (OR TRUTH') TABLES

LDA $033C :Load accumulator as before
EOR #%01000000 ;Toggle bit 6, leave other bits unchanged
STA $033C :Store new value in same location

Bit 6 is EORed with 1 and is thus toggled, all the other bits are EORed with 0
and left unchanged.

EORing is most useful where a flag will be constantly flipping between
one value and another. An example would be in a space-invader style game,
where a flag would be used to store the direction the invaders are moving in.
When they reach the edge of the screen, the flag needs to be toggled to the
opposite direction. Thus a 0 could represent moving right, while a 1 means
moving left.

7.6 Summary

This chapter introduced the concept of bit manipulation —
changing one or more individual bits while leaving the rest
of the byte unchanged. This is useful for controlling various
C64 registers, and for storing flags in a memory-efficient
way. Bit manipulation is carried out using logical
commands and binary numbers, the technique being
known as masking. The logic tables shown in this chapter
illustrate how the three logical commands — ORA, AND
and EOR - work. The following chapter examines more
advanced bit manipulation.

1.7 Exerxcise

Write a program to move a sprite horizontally across the entire screen
making sure not to forget the MSB bit when the sprite passes the X=286
position. A time delay will have to be written into the program so that the
sprite can be seen.

8
Bit manipulation

This chapter covers using bit manipulation to move bits left and right, and
check whether a particular bit is set or unset. By the time you have
completed it, you will be able to use the following commands:

The shift commands

@ LSR
® ASL

The rotation commands

® ROR
@® ROL

Plus
@ BIT

In Chapter 7, we looked at logical (bit manipulation) commands to set,
unset and toggle the value of any individual bit within a byte of the C64's
RAM. This chapter introduces commands which allow us to shift all the bitsin
a byte left or right, and to check whether an individual bit is currently set or
unset. These commands all use the accumulator addressing mode
described in Chapter 6. As before, we will describe each in turn, beginning
with the simplest of all: the shift commands.

8.1 The shift commands

The two shift commands allow you to move all of the bits in a byte either left
or right. These are LSR and ASL. LSR stands for Logical Shift Right. It moves
all eight bits of a byte one bit to the right. The right-most bit (bit 0) ‘falls over'
into the carry flag, and the left-most bit (bit 7) is set to zero as is shown in Fig.
8.1

62

BIT MANIPULATION

Figure 8.1

BIT BIT BIT BIT BIT BIT BIT BIT

0474615413421 "401C

LSR can be used in a somewhat clumsy way to test the status of any bit. The
way to do this is to use LSR as many times as required to move the bit you
wish to test into the carry flag. Thus to test bit 3 of location $033C, you would
load the value into the accumulator, perform four LSRs on the value (to move
bit 3 into the carry flag) and then use BCC (Branch if Carry Clear) or BCS
(Branch if Carry Set) to test the value

LDA $033C :Load the required value into the accumulator
LSR A :Bit 0 now in carry flag, bit 3 becomes bit 2
LSR A :Bit 1 in carry flag, original bit 3 becomes bit 1
LSR A :Bit 2 in carry flag, original bit 3 becomes bit 0
LSR A :Bit 3 is now in the carry flag

BCC ZERO ;Branch to line labelled ZERO if carry flag=0

This processisillustrated in Fig. 8.2. The program would thus jump to the line
labelled ZERO if the original bit 3 was not set (that is, it equalled zero). The

Figure 8.2 Carry

flag

- T ISR R O O I R O I I)
S-Sl N e 5 o o I I N B O 1
o i e R] 61 Bl 1
g (g le 294 |0"D 1
e il e e o [I I 0

THE SHIFT COMMANDS

value of $033C, of course, remains as it was, so bit 3 is still where it originally
was in the actual location being tested. Only the accumulator has changed
value. The A following the LSR command tells the assembler to use the
accumulator mode.

Figure 8.3

BIT BIT BIT BIT BIT BIT BIT BIT

Cot 7+ 65 4=F 3t 2~ 1<t 0~ 0

ASL, Arithmetic Shift Left, works in exactly the same way as LSR, but
shifting to the left instead of to the right. ASL shifts each bit one position to the
left, bit 7 moving into the carry flag and bit 0 being set to zero (Fig. 8.3).
Again, to test a bit using ASL, you would shift the required bit into the carry
flag. To test bit 5 of our old friend $033C, for example

LDA $033C ;Load value
ASL A Bit 7 moves into carry flag
ASL A :Bit 6 moves into carry flag
ASL A Bit 5 moves into carry flag
BCC ZERO :Branch to line labelled ZERO if bit 7 was zero
Again, we can show thisin diagrammatic form in Fig. 8.4. Which ofthe two shift
Carry Figure 8.4
tlag
Sanion| 0 SRR TR B
. v et e s et
e | 1 ¥ lovle™ 15T | & E9
pro | g |lo|1 |11 |0|0]|0
am | 9 o1 |1|1|0|0 0|0

BIT MANIPULATION

commands you use is up to you. We suggest that it makes sense to use LSR if
the bit you want to test is nearer to the right of the byte (that is, bits 0, 1, 2and
3) and ASL if the bit is nearer to the left (that is, bits 4 and 5 - we will show you
a simpler way of testing bits 6 and 7 below, using the BIT command). In this
way you use the minimum amount of memory necessary.

8.2 The rotation commands

The rotation commands are similar to the shift commands in that they allow
you to shift bits left and right. The difference is that the rotation commands, as
the name implies, shift the bits around in a circle. The easiest way to see what
we mean is to look at Fig. 8.5. Briefly, the rotation commands shift all the bits
round in a circle which includes the carry flag. So if you rotate everything
once to the right, bit 0 will become the carry flag, and the carry flag is moved
into bit 7. All other bits move down one.

Figure 8.5

BIT BIT BIT BIT BIT BIT BIT BIT

I.C e -:7—-;-6—-’5—’4*--‘-3——-2—"1—-9-0-

-~

ROR, ROtate Right, rotates everything one bit to the right as is shown in
Fig. 8.5. So, for example, to rotate the contents of - you've guessed it— $033C,
two places to the right

LDA $033C :Load accumulator

ROR A :Rotate accumulator bits one place right

ROR A ;And again

STA $033C :And put the new value back where it came from
An alternative way of doing this is

ROR $033C :Rotate contents of location $033C

ROR $033C ;And again

This second example by-passes the accumulator, thus leaving the
accumulator free for other purposes. The ROR command is very rarely used,
its primary use being in relatively complex mathematics, but it is simple
enough to learn and you may need it someday, so it is worth the small amount
of effort it involves. Until you are more experienced, however, file it away
under ‘will come in useful later',

THE BIT COMMAND

Figure 8.6

BIT BIT BIT BIT BIT BIT BIT BIT

L 7« 6<F 5<F 4<f 3<F 2«1 1<} 0 +—— C 1=

>

ROL, ROtate Left, is the complement of ROR. It rotates all the bits of the
specified byte one place to the left. Bit 7 moves into the carry flag, and the
carry flag moves into bit 0 as shown in Fig. 8.6. So to rotate two places to the
left

LDA $033C :Load accumulator

ROL A :Rotate accumulator bits one place to the left
ROL A ;One more time

STA $033C :Put the new value back where it belongs
or simply

ROL $033C ;Rotate value of location one place left

ROL $033C ;Once again

Aswith ROR, there are other uses for ROL, but these should be left until your
experience in using machine code has grown.

8.3 The BIT command

The methods given above for testing the status of an individual bit (that is,
finding out whether it is a one or zero) are a bit clumsy. They also mean
changing the value of either the accumulator or a memory location or both. A
much neater way of testing just bits 6 and 7 is to use the BIT command. BIT
cannot be used to test any other bits. The BIT command uses the zero flag to
show the status of a bit. Because it does not affect memory or the
accumnulator, it is known as a non-destructive command.

BIT is not available in immediate mode (see Chapter 6), so it must be used
directly on a memory location. When you use BIT, the whole byte is ANDed
(bit-by-bit) with the contents of the accumulator. If the result of this AND is
zero, the zero flag is set to zero; if the result is one, the zero flag is set to one.
Also, the sixth and seventh bits are moved into the N and V bits respectively.
Let us use BIT to test the sixth bit of our old favourite, $033C

BIT $033C :Move bit 6 into the V flag, and bit 7 into the N flag
BVS SET ;Branch if the V flag is Set to the label SET

Although BIT uses the accumulator as the comparison, it does not matter

~ BIT MANIPULATION

what the accumulator is set to since we are only interested in the values of the
V or N flags. Similarly, to test bit 7

BIT $033C :Same comparison and effect as before
BMI SET :Branch if N flag is Set to the label SET

Thus BIT is the simplest method of testing bits 6 and 7.

8.4 Summary

In this chapter we introduced the bit manipulation
commands for moving all the bits in a byte left or right.
The main purpose for this is to test the value of an
individual bit. LSR and ASL are the normal commands used
to test the values of bits 0 to 5, while BIT is usually used to
test bits 6 and 7. The rotation commands, ROR and ROL,
are normally reserved for complicated mathematics: we do
not recommend using them until you are fairly
experienced.

8.5 Exercise

Write a program to copy the actions of eight ROR commands on the contents
of location 828 using the LSR command.

9
Mathematics in machine code

This chapter introduces mathematics in machine code. By the end of it, you
will know how to use machine code for

@ addition

@ subtraction
@ multiplication
@ division

of both 8- and 16-bit numbers.

Don't panic! Machine code maths is easy once you've got the hang of it.

We give you this helpful advice at the beginning of the chapter because
machine code maths has an undeserved reputation for being difficult, It's not,
it just takes a bit of getting used to, that's all. In BASIC, maths is simple. You
just use the relevant BASIC keyword or symbol together with any necessary
parameters and the complete calculation is done for you. Thus no sooner
have you entered

PRINT (79*(COS(5)+.98))/T—(2*.47)

and back comes the answer 21.36276874 (you always wanted to know that,
didn't you?).

In machine code, however, there are only two formal arithmetic
commands, for addition and subtraction. Multiplication and division have to
be done using these and other commands. Also, the method used for any
arithmetic operation depends on whether you are working with an 8- or
16-bit number. That's the bad news. The good news is: take this chapter nice
and slowly, stopping after each example to make sure you understand it
completely, and you will wonder what all the fuss was about. We are going to
start with 8-bit arithmetic (that is, working with numbers in the range 0-255),
and then move onto 16-bit work (numbers in the range 0-65535).

MATHEMATICS IN MACHINE CODE

9.1 Eight-bit addition

Eight-bit addition is the addition of any two numbers in the range $00—$FF
(decimal 0-255). To add two numbers together in BASIC, we would do this

A=200+20:REM A now equals 220

In machine code, we use the command ADC (ADd with Carry). Thisadds the
specified value to the value in the accumulator, then places the result into the
accumulator. So to add 200 ($C8) and 20 ($14)

LDA #8C8 :Load first value into the accumulator
ADC #8§14 ;:Add the second value to the accumulator

The accumulator now contains the value $DC ($C8 plus $14).

So what's all this ‘with carry’ bit? Well, the above descriptionisa very slight
simplification of what actually happens. ADC actually adds the specified
value, the content of the accumulator and the content of the carry flag. So if
the carry flag had been set to 1, the previous example would have left the
accumnulator with a value of $DD ($C8 plus $14 plus $01).

To get around this problem, when we do not want to add-in the value of the
carry flag, we simply clear it first using the CLC (CLear Carry) command

LDA #8$C8
CLC
ADC #8$14

Figure 9.1

ADC #

Accumulator + $A@ + carry flag =—=J> accumulator

Figure 9.1 shows this process. You can also use the ADC command to add
one to the accumulator. You may remember from Chapter 5 that while INX
will increase the X index by one, and INY increases the Y index by one,
there is no INA command. Well, you achieve the same affect by setting
the carry flag to one and then performing an ADC to add zero to the
accumulator

SEC ;SEt Carry flag to 1
ADC #800 ;Add zero plus the carry flag (1) to accumulator

Thus the accumulator is increased by one (original value plus zero plus the
value of the carry flag, which we set to one).
The ADC command uses roll-over to cope with values larger than $FF.

EIGHT-BIT SUBTRACTION

Thus

LDA #$C8 ;Load accumulator with decimal 200
CLC ;CLear Carry

ADC #3$C9 ;Add decimal 201 to accumulator

would leave decimal 145 in the accumulator (2004201 —256=145). To show
that roll-over has occurred, the carry flag is set to one. So if you perform any
addition where the result could be greater than 255, you will need to test the
carry flag to make sure the result is correct. You do this using the BCC or BCS
commands.

9.2 Eight-bit subtraction

The command for subtracting two numbers in the range $00 to $FF is SBC:
SuBtract with Carry. This command subtracts the specified value from the
accumulator, then places the result into the accumulator. Again, the carry
flag also comes into the calculation but the inverse of the carry flag is
subtracted, and not the carry flag itself. So, if the carry flag was set to zero, an
extra one (the inverse of the carry flag) would be subtracted from the
accumulator. If the carry flag was set to one, nothing extra would be
subtracted (the inverse of one is zero). There is a good reason for subtracting
the inverse, which we will explain in a moment.

It's obvious from this that, just as we had to clear the carry flag before
adding, we must set it before subtracting

LDA #$CB :Decimal 203
SEC :SEt Carry flag to one, so that inverse is zero
SBC #8$C8 ;SuBtract decimal 200 and inverse of carry flag

This would leave the accumulator set to 3 (203-200-0) as shown in Fig. 9.2. If
you try to subtract a number larger than the value of the accumulator,
roll-under occurs, If this happens, the carry flag is set to zero. This, of course,
is the reason why the inverse of the carry flag is subtracted: if we left it at
zero, we would not know if roll-under had occurred. Again, if your
calculation could end up with a result less than zero, causing roll-under, you
must check the carry flag using BCC or BCS.

Figure 9.2
SBC #$A0
Accumulator - $Aﬂ - complement of =D accumularor

carry flag
(c)

10

MATHEMATICS IN MACHINE CODE

9.3 Sixteen-bit addition

Sixteen-bit addition is just a simple extension of 8-bit addition. It is normally
used to increase the Lo-Hi pointers (see Chapter 6). Let us see how we
would add $32 (decimal 50) to the contents of two locations labelled LO and
HI. HI, of course, is LO+1. The two 8-bit numbers are really just a way of
storing one 16-bit value.

Remember that Lo-Hi numbers are stored in reverse order. So $033C
would be stored as $3C (in the Lo-byte) and $03 (in the following Hi-byte).
When we add a number to LO, we need to check the carry flag. If the carry
flag is set, roll-over has occurred and we need to add one to HI. (This works
in exactly the same way as manual addition, where you ‘carry’ one and add it
to the next column up, or an abacus, where ten beads in one column are
replaced by one bead in the next column up.) We do this like so

LDA LO ;Load the accumulator with contents of LO
CLC iClear the carry flag

ADC #8332 ;Add $32 to the accumulator

STA LO ;Store the new result in location LO

BCC CLEAR JIf carry flag is clear, skip next command

INC HI ;Carry flag is set, so add one to value in HI

LDA #$20:CLEAR JIf carry flag not set, program jumps to here

In other words, if the addition to the value stored in the location LO results in
avalue of greater than 255, the carry flag wil be set. The BCC test will fail and
the INC command will be executed, increasing the value stored in location
HI by one. If, however, the addition results in a value of 255 or under, the
carry flag will not be set, the program will branch to the line labelled CLEAR
and the value stored in HI will be left untouched.

A more elegant method is to alter the second part of the program like so

LDA LO

CLC

ADC #8$32

STA LO

LDA HI :Load accumulator with value of location HI
ADC #$00 ;Add zero plus carry flag to the accumulator
STA HI ;Store result back in location HI

If the addition to the LO component results in a value greater than 255, the
carry flag is set to one and this value, the one, isadded to the HI component. If
the result was 255 or under, the carry flag remains set to zero and the HI
component remains the same.

You can use either method, but the second is neater and, more importantly
perhaps, slightly faster. You will find that most programmers use the second
method for this reason.

MULTIPLICATION AND DIVISION BY TWO

11

9.4 Sixteen-bit subtraction

As with addition, 16-bit subtraction is a simple extension of 8-bit subtraction.
Again, let us take the example of a pair of locations LO and HI, together
forming a 16-bit number. To subtract $32, we would

LDA L.O ;Load accumulator with LO component
SEC ;Set the carry flag to one

SBC #$32 :Subtract $32

STA LO ;Store the result back in location LO

LDA HI ;Load accumulator with HI component
SBC #$00 ;Subtract zero plus value of the carry flag
STA HI ;Store the result back in location HI

If the first subtraction resulted in a value of less than zero, thus causing
roll-under, the carry flag is set to zero. The inverse of zero, i.e. one, is then
subtracted from the HI component. If the first subtraction did not cause
roll-under, the carry flag remains set to one and the inverse, i.e. zero, is
subtracted from the HI component leaving it as it was.

9.5 Multiplication and division by two

In Chapter 8, we looked briefly at the shift commands ASL and LSR. We
showed how they could be used to detect the status of a bit, but we can also
use them to multiply and divide by two (the more mathematically inclined of
you will probably have already realized how this is done). To multiply a
number by two, simply use ASL. This shifts everything one place to the left
and thus the value of each bit is doubled. In other words each bit, and
therefore the whole byte, is multiplied by two. Remember that the left-most
bit is shifted into the carry flag. If the carry flag is set after an ASL, therefore,
you know that the hew value is greater than $FF (decimal 255).
So, to multiply the contents of location $033C by two, simply

ASL $033C

Of course, if you shift left again, you again multiply by two. So two ASLs is the
same as multiplying by four

ASL $033C ;Multiply by two

ASL $033C ;Multiply by two again, that is multiply by four

and so on in powers of two. So three ASLs would multiply by eight, four ASLs

by sixteen, and so on. Do not forget that you would need to check the carry
flag after each multiplication to check whether an overflow occurred.

12

MATHEMATICS IN MACHINE CODE

9.6 Division by two

Division by two is, of course, the opposite of multiplication by two. So instead
of using the ASL command, to shift left, you use LSR to shift right. As with
multiplication, if you shift repeatedly, you divide by increasing powers of
two. Thus if you use LSR three times, you will divide the byte by eight (2°3).
So, to divide a byte by two

LSR BYTE

Of course, because machine code maths can only work in integer arithmetic
(that is, whole numbers), the BASIC equivalent of this is

A=INT(BYTE/2)
So if BYTE contained the value one, LSR BYTE would return a value of zero.

9.7 Summary

This chapter explained how to add and subtract in
machine code, as well as how to multiply and divide by
two. If you want to multiply or divide by more than two,
you have to multiply or divide by two several times. So to
multiply a value by nine, for example, you would multiply
the value by two three times and then add the value:
(value X2 X 2 X 2) + value = value X 9.

Remember that you must always set the carry flag to
zero before adding, and to one before subtracting. You
should then check the value afterwards in case the result
was greater than 255 or less than zero.

9.8 Exercise

Write a program to multiply the single byte (up to 255) contents of location
828 by three. Note that such a program cannot cope when the contents of 828
are greater than 256/3.

10
Machine code subroutines

This chapter introduces machine code subroutines. When you have
finished reading it you will:

@ be able to write your own machine code subroutines

@ be able to use the C64's built-in machine code
subroutines

@ know the difference between a subroutine and a macro

@ be able to use the BASIC function USR to call machine
code programs

10.1 Machine code subroutines

Subroutines are a convenient way of saving memory and dividing a program
into manageable chunks. In BASIC, you use GOSUB (line number) to jump to
a subroutine; you then write the subroutine beginning at that line number
and ending with a RETURN statement. You save memory because you can
use the same piece of code in two or more different parts of your program.
Machine code subroutines operate in exactly the same way, GOSUB and
RETURN being replaced by the exact equivalents JSR and RTS. JSR stands
for Jump to SubRoutine, and RTS, as we mentioned earlier in the book, for
ReTurn from Subroutine. RTS, of course, returns to BASIC if it is used outside
a subroutine. Suppose you wanted to write a subroutine to clear the screen.
The first thing to do is to choose a name for the routine. If you have used
Simons' BASIC, or a similar extended BASIC, you will have come across
procedures. Procedures are simply named subroutines, Instead of GOSUB
5000, for example, you might use PROC HISCORES, and instead of RETURN
you would use something like ENDPROC. Machine code subroutines work
in a similar way in that you give them a name, and then use this name to call
the routine. All you do is label the first line of the routine

7000 ;CLEARSCREEN

14

MACHINE CODE SUBROUTINES

Then, whenever you wanted to call the subroutine, you just
JSR CLEARSCREEN ;Jump to the SubRoutine called CLEARSCREEN

Simple!

Some extended BASIC procedures allow you to pass parameters to them.
To explain what we mean by this, suppose you wanted to write a procedure
(subroutine) to centre a piece of text horizontally. This makes screen
displays look neater. In the standard C64 Version 2 BASIC supplied with the
machine, you would write a subroutine something like this

2000 REM Centre the text in A$

2010 LM=(40—LEN(A$))/2

2020 FOR A=1 TO LM:PRINT CHR$(32);NEXT A
2030 PRINT A$

2040 RETURN

To use the subroutine, you would then have to place the text you want
centred in A$ and then call the subroutine

150 A$="***ALIENS ATTACKING!!***"
160 GOSUB 2000

With procedures, however, we would write the subroutine like so

2000 DEFROC CENTRETEXT(AS$):REM DEFine PROCedure called CENTRETEXT
2010 LM=(40—LEN(A$))/2

2020 FOR A=1 TO LM:PRINT CHR$(32);;NEXT A

2030 PRINT A$

2040 ENDPROC

And call it by
150 PROC CENTRETEXT("***ALIENS ATTACKINGI!I***")

In this case, the text ***ALIENS ATTACKING!II***' is a parameter which is
passed to the subroutine.

Some assemblers allow you to pass parameters to machine code
subroutines: these special subroutines are called macros. Note that the
assembler supplied with this course does not support macros, as you are
unlikely to need them while you are learning machine code. Once you have
become more experienced, however, you may like to buy an assembler
with a macro facility.

The two other important differences between a subroutine and a macro,
besides the fact that macros allow parameters to be passed to them, are:

(@) Macros can be stored on disc or, at a push, on tape. Some macro
assemblers supply you with a ready-made library of macros on disc: this
is well-worth looking out for if you do choose to buy a macro assembler.

(b) When you call a macro, the machine code is inserted into memory at the

[THE KERNAL JUMP TABLE

current position. This can be wasteful of memory, particularly since
library macros are, by their very nature, designed to be as general as
possible. On the other hand, this does mean that you can write a
complete program just by joining different macros together and adding
in a bit of your own code.

10.2 The Kernal jump table

The C64's Operating System is known as the Kernal. It is made up of
hundreds of small subroutines which carry out simple tasks like printing
characters to the screen, reading data from the datasette and so on. Rather
than have to write our own machine code programs to do that sort of thing,
wouldn't it be great if we could just borrow whatever subroutines we needed
from the Kernal? Good news: we can. We just use JSR to jump to the location
of the subroutine you want to use.

At first glance, there would seem to be a slight problem in this idea. After
all, Commodore has brought out a number of different versions of the Kernal
ROM, and has moved some of the subroutines around. Don't we have to know
exactly which version of the C64 we've got, and then look up the address of
each subroutine we want for that particular version? Thankfully, no! In what
an unkind person might describe as a rare example of forward-thinking on
Commodore's part (we, of course, don't think anything of the sort), the
company foresaw this problem way back in the days of the PET (the what?).

What Commodore did was to create a special area of the Kernal called the
Kernal Jump Table. This table is in exactly the same place in every C64, and
is still in the same place in the Commodore 128, This table contains a pointer
for each subroutine in the Kernal. The pointer is simply the address where
the subroutine can be found in this particular version of the Kernal. So, all you
have to do is to JSR to the address of the subroutine you want in the Kernal
Jump Table, and the C64 will then automatically transfer you to the correct
address. So any machine code program written on any of the C64's or,
indeed, on the C128, will run on any other version of the machine, Thisis one
of the reasons that all C64 software runs on the C128. To call a Kernal
subroutine, then, you only need to know its pointer address in the Kernal
Jump Table. You can look up this address in the Kernal routines in Appendix
2 of this book. You set the accumulator and indices to the required values
(these are normally passed to the Kernal routine as parameters) and then JSR
to the appropriate pointer address.

Let us see how this works in practice. Supposing that we wanted to printa
character to the screen at the current cursor position. To do this, we would
use the Kernal routine called PRINT. This takes the value of the accumulator,
converts it to the ASCII equivalent (see Appendix 9 for a list of ASCII codes)

16

MACHINE CODE SUBROUTINES

and prints this character at the current cursor position. If you look up PRINT
in Appendix 8, you will see that its pointer address is $FFD2 (decimal 65490).
So, to print the letter ‘A’ ($41, decimal 65), we would

LDA #8$41 :Load accumulator with ASCII A
JSR $FFD2 ;Jump to pointer address of the PRINT subroutine

And that's all there is to it! The Kernal jump table looks up the actual address
of the PRINT routine for you, and this routine then prints the A to the screen.

10.3 USR

Until now, the way we have run our machine code programs from BASIC s to
use SYS followed by the start address of the program. There is, however, an
alternative method of doing it the USR command. The syntax is

(variable) =USR ({parameter))
So, for example
A=USR (10)

USR is intended for a machine code program which takes a value, processes
it in some way and then returns a different value. In other words, it is for use
when you have written a machine code function.

A function is simply a name for a subroutine which takes one value and
returns a different one. An example of a built-in BASIC function is

A=RND (10)

So, for example, you may have written a program to draw a circle, with the
centre of the circle at the current graphics-cursor position. You could use
USR to tell your program what diameter circle to draw

220 A=USR(25):REM Draw circle of diameter 25 pixels

In this case, we would not use the value returned since we only need to pass
the value one way. Another example, where a value is passed both ways,
might be a machine code program which performs a complex calculation
(BASIC is very slow at certain types of calculations). In this case you would
pass the original value to the machine code program and get the result of the
calculation back

360 X=USR (211)
360 PRINT “THE ANSWER IS";X

You may be wondering how the C64 knows where to look for the machine
code program, since we have not given it a start address. The answer is that
the start address is stored in Lo-Hi form in decimal locations 785 and 786.

EXERCISE

11

What happens when a USR command is executed is that the parameter
(the number in brackets after the USR command) is converted to hex and
placed into a special memory location called the Floating Point Accumulator
(FPA). To read this number in your machine code program, JSR $BCOB. This
calls a subroutine which places the Lo-byte of the FPA in location $65 and the
Hi-byte in location $64. This is the opposite way around to the usual Lo-Hi
form. You can then use this value in your program in the usual way. When you
have finished, and want to place a number back into the FPA, simply JSR
$B391. This routine reads the Lo- and Hi-bytes from $68 and $64 respectively
and places the resulting value into the FPA. This value is then converted to
decimal and stored in the variable preceding the USR command.

10.4 Summary

Machine code subroutines work in an almost identical way
to BASIC ones. To create a subroutine, simply label the
first line and end with an RTS command. To call the
subroutine, just JSR (label). There is a special kind of
subroutine called a macro. Macros can have parameters
passed to them, and can be stored on tape or disc for later
inclusion in other programs. The assembler supplied with
this book does not support macros, but you may find it
useful to buy one which does once you are a more
experienced machine code programmer,

The C64's operating system, called the Kernal, contains
hundreds of useful machine code subroutines. You can use
any of these in your own programs by JSRing to the
appropriate pointer address in the Kernal Jump Table (see
Appendix 7). These addresses are the same for any
version of the C64 and C128. If you want to pass
parameters (values) between BASIC and a machine code
program, you use USR instead of SYS to run the program.

10.5 Exexcise

Write a program to clear screen and write your name in the top left-hand
comner using only the CHROUT (see Kernal routines) routine to output the
letters.

11

Interrupts, the stack and
adding commands to BASIC

This chapter introduces three important subjects: interrupts, the stack and
adding commands to BASIC. All are fairly complex, so this chapter simply
forms an introduction to the subject. When you have read it, you will
understand:

@ the interrupt program

@ how to write interrupt-driven software
@ what the stack is and how it operates
@ how to add extra commands to BASIC

11.1 Interrupts

Whenever you turn on your C64, you are presented with a flashing cursor.
This flashing is just one of the many jobs performed by a machine code
program called the interrupt program. Fifty times per second, no matter
what your C64 happens to be doing at the time, it is interrupted by the
interrupt program. This program flashes the cursor, updates the built-in
clock so that TIME$ always contains the correct value, and checks to see
whether any keys are being pressed. Having done all this, it then returns to
whatever job it was doing before the interrupt. A fiftieth of a second later, the
same thing occurs, and again a fiftieth of a second after that. And so on. You
can see from this that the C64 is actually pretty busy even when it appears to
be doing nothing! It has to make a note of exactly what it is doing, run the
interrupt program and then carry on from wherever it left off.

There are times when it would be useful if we could persuade the interrupt
program to do a few things for us while it is at it. We might, for example, want
to display a real-time clock on the screen. If we tried to update this
ourselves, we would have to JSR to our clock update routine at least once a
second — our program would be nothing but JSRs and we would not have
either room or time to do anything else! Fortunately, we can modify the
interrupt program.

THE STACK

19

The interrupt program is stored at $EA31, This address is stored in Lo-Hi
form in $0314 and $0315. So, all we have to do is to replace the values in these
locations with the address of our own routine and the C64 will jump to there
fifty times a second instead. There are, of course, two important points to
bear in mind. First, whatever you do within your routine must take
considerably less than a fiftieth of a second. And second, the C64 cannot
function without the standard interrupt program: for this reason, the last
command in your own interrupt routine must be JMP $EA31. This means that
the C64 will execute your routine first, and then jump to the normal interrupt
program afterwards. Let us write an example interrupt routine (Listing 11.1)
to flash the top line of the screen.

Listing 11.1

5000 [$CO00

5010 ;

5920 ;*x INTERRUPT FLASH TOP LINE #%
5039 ;

5040 :SCREEN=$0400

5050 ;

5060 SEI :STOP INTERRUPTS

5278 LDA #<USERINT REPLACE INTERRUPT
5880 STA $8314

5098 LDA #>USERINT

5128 STA $0315

5119 CLI *RESTART IMNTERRUPTS

5120 RTS RETURN TO BASIC

5138 ;

5140 LDY #3$99 :USERINT :START OF USER INTERRUPT
5150 LDA SCREEN.Y :LOOP

5160 EOR #:1100002008

S517@ STA SCREEN,Y ;PUT IT BACK-REVERSED
5189 INY

5198 CPY #H40

5200 BMNE LOOP

5218 JMP $EA31 ;GOTO USUAL INTERRUPT
Sa2e9

5230 END

READY.

11.2 The stack

The stack is a special area of memory used by the interrupt program. Before
the C64 jumps to the interrupt routine, it ‘makes a note' of what it is doing so
that it can carry on after the interrupt as if nothing had happened. To do this,
it stores all the information it needs on the stack. The stack operateson a Last
In, First Out (LIFO) basis. This is just like a stack of cards: the last one you put

INTERRUPTS, THE STACK AND ADDING COMMANDS TO BASIC

onto the stack will (obviously) be on top, and will therefore be the first one to
be taken when someone takes a card from the stack.

The command you need to place a number onto the stack is PHA, which
stands for PusH Accumulator. This takes the value stored in the accumulator
and puts a copy of it onto the top of the stack. The complementary command,
PLA, Pull Accumulator, removes the value on the top of the stack and stores
it in the accumulator, It is important to note that PHA leaves the original value
in the accumulator, while PLA alters the accumulator.

The stack can be used by experienced machine code programmers to
temporarily store values without using up other memory locations. This is not
recommended to you at this stage as it is extremely easy to lose track of
which value is at the top of the stack at any given moment. You will however,
probably want to use it once you are more familiar with the stack.

11.3 Adding commands to BASIC

Ok, now for the exciting bit! You may or may not be surprised to know that
you now have almost all the information you need to begin adding your own
commands to BASIC! When the C64 runs a BASIC program, it checks each
line of the program, character-by-character. It then checks to see if it
recognizes any of the code as a BASIC keyword. The program which
performs this check is called CHRGET. The CHRGET routine is read in from
ROM and stored in RAM while the C64 is being used. Because CHRGET is
stored in RAM, you can alter it to check for your own, additional, BASIC
keywords.

The standard CHRGET routine is shown in Listing 11.2. Don't worry if you
do not understand all of it, you can change it to include a check for extra

Listing 11.2
NORMAL CHRGET ROUTINE®
2 9073 ESB7A INC $7A
1 ©9e75 Deez2 BNE $2078
2 9877 EE7B INC 7B
3 @78 nAbDanez LDA wo22A
4 @e7C C93A CMP #%3A
S ©e7E BooA BCS s$@08n
6 ©eese cCsze CMP W20
7 ©8es2 FOEF BEQG #0073
8 ©esq 38 SEC
9 @885 ES3e SBC #s30
12 @e87 38 SEC
11 eese ESDe SBC #sDo
12 ee8A 60 RTS

ADDING COMMANDS TO BASIC 81

keywords without knowing how it works. To add your own keywords, simply
modify CHRGET to branch to a machine code program of your own once it
hasreached the end of its own check. Your program performs its own search
for your extra keywords; if it finds one, it then jumps to the machine code
program (Fig. 11.1) you have written to carry out the command.

Figure 11.1

NEW CHRGET ROUTINE:

8 @873 4Cceece JMP #COB8
1 eevs a2 BYT sa2
2 8877 EevB INC 7B
3 @878 aAD2ve2 LDA so227
4 @evC C93A CMP H$3A
5 ©evE BooA BCS $0R8A
6 ©e8se C929 CMP Hs$20
7 ©@es2 FeEF BEQ s@873
8 9esq 38 SEC
9 @e8s ES39 SBC #s$30
i@ e@e8vy 38 SEC
11 @ess ESD? SBC #sDO
12 ©eesn 60 RTS
READY.

PROGRAM AT $Co20:

8 Ceea EB7A INC $7A

1 Cceez peeo2 BNE $CO086

2 Ceeq Es?B INC s7B

3 Cees A91S LDA #%19

4 Cees 800904 STA %2400

5 CeeB 4Cc7900 JMP $0878
READY

12
Application and practice

You are now well on the way to becoming a fully-fledged machine code
programmer! From here on in it's just a case of getting as much practice as
pessible, and learning from your own experience — just as you did with
BASIC. This chapter wraps things up by covering:

@ Designing a machine code program

@ Choosing between BASIC, machine code and a
combination of the two

@ Doing several things at once
@ Debugging
@ Monitors

12.1 Program design

Designing machine code programs is no different in principle from
designing BASIC programs. It is, however, more important since you can
often get away with beginning a BASIC program with little or no planning;
with machine code, however, you will probably end up totally confused if
you try to do this — particularly while you are still relatively new to the game.

There are two main approaches to program design. The first is known as
flowcharting, and the second as top-down design. You have probably heard
of both, but in case you are not clear what the difference is, let us briefly
explain the two systems. In flowcharting, you start at the beginning of the
program and write down what happens at each stage of the program. You
deal with any branches and so on as you meet them, and keep going until you
reach the end of the program. In other words, flowcharting is a sequential
approach: dealing with each section of the program in the sequence in
which it will occur. Top-down design, which is gradually taking over from
flowcharting as the most popular approach, involves taking an overall view,
and then going into more detailed 'levels' of the program. So, for example,
the top level of the program would be an address list program. The second

BASIC, MACHINE CODE OR BOTH?

level might consist of putting original data in, modifying data and searching
for addresses. The third level would split each of these tasks into their
component parts, the next level divides these into their subtasks and so on.
The bottom level is the code itself.

Figure 12.1 illustrates the difference between the two approaches.
Personally, we prefer top-down programming, believing it to be easier and
clearer, but choose whichever method you prefer.

Figure 12.1
Flow chart Top down design
Start Make coffee
| i !
Fill keftle Boil water Prepare coffee Drink coffee

Turn on gas I I | | I]

Get instant coffee Fill Turn Wait Get Pur2 Pour Drink
keltle on Lor_ A2 coffee spoons boiling coffee
. gas boi into water

Put 2 spoons into a cup kettle cup into cup

Wwait
1 } No
Kettle boiled ?

Yes
Pour water into cup

Drink coffee

12,2 BASIC, machine code or both?

Once you have planned your program in outline, the first decision to be
made is whether to program in BASIC or machine code. BASIC may be slow,
but if you can bash out a working program which does the job adequately in
20 minutes, why bother with machine code? Machine code is normally used
where BASIC would be too slow.

In many cases, you will find that BASIC is fine for most of the program, it is
just one or two places where everything slows down. If this is the case, the
solution is to write the main program in BASIC and rewrite the offending
routines in machine code. You can then SYS to these as required. A typical
example where this approach would be useful is in colouring the screen. All
you do is end your machine code program with a final RTS so that it returns to
BASIC when it's finished. The BASIC program will then continue.

APPLICATION AND PRACTICE

There are some cases, though, where speed is essential throughout the
program. The main example, of course, is arcade-style games, where you
want lots of different things to be happening very quickly. It is here where
machine code comes into its own, and you would use it to write the entire
program.

12.3 Doing several things at once

One of the things many people associate with machine code programs is that
everything happens at once! The aliens fly around, the laser gun moves,
bombs drop, the timer decreases, music plays. . . . The reality, of course, is
that the C64 - like all currently available computers— can only do one thing at
a time. But because machine code is so fast, it can appearto do a lot of things
at once. Interrupts are one way of doing several things all within a fiftieth ofa
second, but you can only execute very short bits of code in the interrupt
routine. For most things, you have to rely on making your code — particularly
loops — as fast and efficient as possible.

Loops are very useful for doing several things at once. The loop to move
the space-invaders, for example, should also check which keys are being
pressed and move the gun, make a sound, update the timer and score and so
on. In BASIC, this technique would be hopelessly slow and jerky, but in
machine code it may well be so fast that you have to put a delay loop in to
slow things down enough to make the game playable!

12.4 Debugging

When something goes wrong with a program, the fault is known as a bug.
Debugging is the process of correcting the faults: removing the bugs. The
old saying about a byte of prevention is worth a megabyte of cure (or
something like that) holds especially true for machine code programming,
Plan your programs properly, write them logically and type them in carefully
and you will keep your debugging to a minimum.

To find the bug in a program, the first thing to do is to take a careful note of
the symptoms. Even if the program crashes completely make a note of
exactly where in the program it crashed: what was on the screen at the time?
That way you will be able to work out what it was doing when it crashed and,
therefore, the section of the code that is at fault. If the wrong value was
displayed, make a note of the value that should have been displayed and the
value actually shown. Check related values: Are they correct? If so, the fault
lies in the calculation of the incorrect value. Otherwise the bug may be in the
calculation of earlier values. If something appears on the screen in the wrong

MONITORS

place or in the wrong colour, where should it have appeared and what colour
should it have been? Is everything else in the right place and in the correct
colour? Make a careful note of the symptoms, and debugging is usually
straightforward.

One common mistake (you probably made it when typing in one or more
of the programs in this book) is to forget to enter a # sign when you want a
value. Instead of using the value itself, the C64 would then use the value
stored in that memory location. This simple mistake can cause all sorts of
unexpected results, so be aware of it when you are typing programs in.

Once you have found the bug, go back to the source code and correct it.
Save the corrected program to tape or disk and then re-assemble it and try
again. We cannot emphasize this point too strongly, by the way: always,
always save your source code to tape or disc before assembling it. This does
not just apply to the original program, it applies every time you modify it. It is
easy to correct one bug and, in doing so, create another one. And the second
bug may cause a complete crash. So don't take the chance of losing your
work: save it!

12.5 Monitors

A monitor, not the type that sits on your desk with your C64, is a collection of
small programs that allow you to poke around in your C64's memory,
examining and changing values. They can be extremely useful for
debugging your own object code, and are even more useful if you want to
modify someone else's machine code program and you do not have the
source code.

There are plenty of monitors available for the C64, so it would be unfair of
us to recommend any particular one. We do, however, suggest that you insist
on the following features:

A disassembler. This is almost the opposite of an
assembler. It allows you to convert object code into source
code. Well, we say ‘almost’ because it will actually only
display object code in source-code form. It will not actually
allow you to alter the source code. You can, however, use
it to make sense of object code and perhaps borrow ideas.

A hunt command. Quite often, when you are debugging,
you will be looking for a particular value in memory. This
might be a number, letter or command. A hunt command
allows you to state the value you are looking for and the
area of memory to search. It will then tell you whereabouts
in memory the value can be found.

APPLICATION AND PRACTICE

A fill command. Useful for testing purposes, a fill command
allows you to fill a specified area of memory with a
specified value.

A monitor command. All monitors will have this, since the
name is derived from this function. A monitor allows you to
specify an area of memory, and the contents of the area
will be displayed on screen as either hex or decimal
values, or, optionally with some monitors, ASCII characters.
You can then use the cursor keys to move to an address
and modify it. This is the method old-time machine code
programmers had to enter their programs before
assemblers were introduced.

A simple assembler. A simple assembler is one which
works in the usual way except (a) it assembles each line of
code straightaway, and (b) it does not allow the use of
labels. It is not much use for writing proper programs, but
it can be very useful for trying out little ideas and making
small changes to your program without going back to your
full assembler.
A save command. The normal BASIC SAVE command only
allows you to save BASIC programs. If you want to save
machine code, you either have to save the source code or
you need a command to save the contents of an area of
memory. This is what the save command in a monitor does.
You tell it the start and end address of your program, and
it will save the object code to either tape or disc. This
allows you to create object code cassettes and discs to
give to other people, or to sell.

To load object code, use

LOAD “(filename)”,8,1:REM Disk

or

LOAD “(filename)",1,1:REM Tape

A trace (single-step) function. This allows you to execute a
machine code program one line at a time. After each line,
the monitor displays the values of the accumulator and
indices, and the line just executed. You then press a key
(usually the SHIFT key) to continue to the next line. This is
a very handy aid to debugging.

Break points. This is similar to the trace function. Instead of

stopping after every line, you tell it where to stop. This is
useful if you know roughly where the bug is.

Afterword

If you've now completed the course: congratulations! If you're flicking idly
through the book in your local bookshop: don't just stand there, buy it!

Provided you have worked your way carefully through each chapter,
completing the exercises, you now have a firm grounding in 6510 machine
code programming. All you need to do now is practise, practise, practise!
Just like you did with BASIC.

You can learn a lot from looking at other people’s programs, particularly
ones which have been heavily annotated. Magazines are a good source of
useful routines: check out Personal Computer World's Subset, for example.
Computer clubs are also a great source of ideas and help: there is nearly
always someone who has experienced the exact same problem as you,
only 6 months ago. While it can be infuriatingly frustrating to have
someone provide a solution in 10 seconds to a problem you have been
working at for the past 10 days, it is also a tremendous help!

Happy programming, and we look forward to seeing your latest game on
the computer store shelves 6 months from now!

APPENDIX 1

Quick Conversion Chart:
Decimal/Hex/Binary

DEC IMAL HEX BINARY

aoe 00 700000000
201 01 #0000200 |
aez 22 700000010
ae3 03 720000011
284 *24 700000100
285 $05 70000101
aes 06 7peAno 110
207 a7 “oe000111
oes 02 %noao {200
2a3 $03 7an0ee 1001
219 $eA 7900910192
ety *0B 100981011
212 $0C 720001100
213 00 7Peoo1101
214 FOE vopeeailio
213 *OF vaeoe1111
216 $10 00010000
217 11 700010001
a1s 12 700010010
219 %13 »peaeiee1t
220 %14 voeolialoo
21 %15 veeaieieol
fae %16 “epe10110
223 17 700010111
224 #18 700911000
225 %18 7oge11001
aze *1A zeeall1o1e
27 $1B veeo11011
az8 #1C ¥eea11100
o029 #$10 7eoall1101
238 $1E veeaiil1e
231 $1F Zeee11111
a3e 20 700100000
233 $21 700100001
234 22 7eoi1o0010
235 $23 700190011
238 %24 “001909 100
e37 %23 veai1ee101

a3s 26 7aai0811@

QUICK CONVERSION CHART: DECIMAL/HEX/BINARY

DEC IMAL HEX BINARY

233 27 7oe100111
fa4q0 28 veaioio00
241 $29 “eai191001
242 *2A veaioiole
243 28 7eaie1011
244 $2C 7oa101100
245 20 veaie1101
248 $2E Zoo101110
247 $2F 7ea1o1111
a4q8 *30 700110000
243 $£31 7oe110001
258 32 vZea110010
251 33 veo110011
as2 %34 700110100
253 *35 zee110101
254 $36 zeoa11011@
255 *37 7Zea11e111
ase *38 7eo11 1008
as7? $39 vee111001
ass *3A Zeo111010
2538 3B 7Zee111011
asa $3C Zeo111100
251 30 7ag111101
aea2 $3E zeai11111e@
263 $3F vZeo111111
264 %40 701000000
285 $41 701000001
<11 %42 701000012
2e7 43 vo1000011
ec8 44 %01000 100
269 £45 va1000101
ave %46 vei1o00110
271 *47 7a1000111
ava $48 791001000
ar3 43 7e1001001
az4 *4A 7a1001010
875 4B 7a1e01011
ave $4C 7o1001100
av? %40 “a19e1101
278 $4E 7e1e01110
273 $49F vel1eo1111
fase *50 7Za1010000
as1 $51 va1010001
easa 52 7e19010010
283 53 “ea1910011
284 54 vel1e10100
a8s *55 7Za1010101
ase 56 7e1010110
es? 57 721810111
a8s $58 791011000
283 39 71811001

2se £3A 7a10110180

APPENDIX 1

DEC IMAL HEX
291 $58
ase $3C
293 50
294 $SE
295 $SF
e9e $60
29?7 $61
esse $62
fass $63
100 $64
121 $55
102 $66
103 67
104 $68
105 68
1086 $6A
107 $6B
108 $6C
103 %60
11@ $6E
111 $6F
112 $70
113 71
114 72
115 73
118 74
117 75
118 $76
119 $77
122 $78
121 $73
122 $7A
122 $7B
124 $7C
125 $70
126 $7E
127 $7F
12e $80
129 $81
130 $82
131 33
132 *24
123 $25
124 $26
125 37
126 28
137 $29
132 24
128 *°P
140 $2C
141 *80
142 $3E
143 *3F

BINARY

va1e11011
7a1a1110@
7e1011101
781011110
ve1e11111
721100000
“21100001
781100018
721100011
7911001090
701100101
vai1100110
7ze11e0111
Zo1101000
val1101001
zZai1101018
vo1101011
Z7a1101100
7a1101101
zZo11e111@
Za1101111
791110000
721110001
71110010
ve1110811
721110100
781110101
zai11011@
Zai111e111
781111000
“o1111001
781111010
7o1111011
“P1111100
a1111101
Za111111@
Za1111111
710000000
710000001
710000010
“ieeagall
710009 100
“ioeeo1el
“ieeoa1 10
%10790111
“ieen19eo
100901001
“10001019
“10001011
10001100
710001101
“ieee111e
“1eea1111

QUICK CONVERSION CHART: DECIMAL/HEX/BINARY

91

DECIMAL HEX BINARY

144 *30 “1ea10000
145 31 iee1e0a1
1486 *392 nigaieaia
147 *33 nigaieall
142 $94 71ea1910a
149 #3935 #ioaie1et
150 $3€ 7109101180
151 *37 “ie919111
192 398 z1e91 1292
153 33 %10811001
154 ¥3R “1eai1010
1SS *3B “iee11011
15 $3C “ieai1100
157 *30 %192911191
158 $9E ziea1111@
159 *9F “iea11111
1@ *ABD 12100000
151 $A1 “19100081
162 A2 “iei1oe010
163 *A3 ©ie1een1t
164 FRa vie100100
e *AS “19190191
1€€ *AE 719190110
157 A7 7ie1e8111
162 AL zieio1000
1eg $A9 “19101001
178 *AA %lo191010
171 $AE “ie181011
172 *AC “ilo191100
173 *+AD “19101101
174 FAE 712101110
175 $AF #10181111
176 $B0 %191 19000
177 $B81 719110001
178 $B2 710110010
179 $B83 719110011
189 B4 Z1e110100
181 B85 zie110101
182 $B6 z1@110110
183 $B7 7ie110111
184 $B88 %Z18111000
185 B89 7i@111001
188 *BA zi@111010
187 $BB ziet111e11
188 $BC zi@111100
188 8D #iei111101
18@ $BE Z1@111110
191 $BF Z10111111
192 sCo 711000000
193 sC1 711000001
194 sca2 %Z11000018
195 $C3 “11000011

196 $C4q %11000100

APPENDIX 1
DEC IMAL HEX
187 $CS
188 sCe
188 $C7
2o0 scs
LT scs
2e2 $cA
203 sce
204 scc
2es $CD
206 $CE
207 $CF
28 s00
ELE] D1
210 sD2
211 s03
212 sD4
213 $DS
214 $06
215 *07
2186 sD8
217 $08
218 $DA
218 $0B
220 sDC
221 $0D
gee2 $DE
223 SOF
224 $EQ
225 $E1
226 sE2
227 $E3
eezs $E4
229 $ES
230 $ES
231 SE7
232 sES
233 $ES
234 S$EA
23s $EB
236 $EC
237 $ED
238 $EE
238 SEF
240 $FO
241 $F1
242 sF2
243 $F3
244 $F4
245 SES
248 sFe
247 SF7
248 $F8

249 $F9

BINARY

711000101
z#11900110
711000111
11001000
711001001
11001010
711001011
110901100
“ilee11e1
11001110
“Zl1ee1111
711010000
11010001
7119010010
7#11010011
711010100
%iie10101
711010118
Z11910111
7119011000
711011081
711011010
711011011
7i1@e11100
z11@11101
71111110
zZ11@11111
#11100000
711100001
%il1100010
711100011
711100100
7#11100101
7zit1100110
Zi11100111
711101000
“Z11101001
7111010180
11101011
711191100
“11101101
711101118
“111@1111
711110800
Z11110001
“i1110010
Zii111e011
zZi1110100
Zzi1118101
zi1111011@
Z11118111
“Zi1111000
Zi1111001

QUICK CONVERSION CHART: DECIMALVHEX/BINARY

DEC IMAL HEX BINARY

258 SFA Zi1111010
251 FB Zi1111011
2352 SFC zit111100
2353 *FD #itt111e1
254 SFE Zi111111@
255 SFF zZiiti1111

The program used to generate the above table.

10
2e
28
35
40

H$="0 123456 79SABCDEF *

OPEN1 ,4:CMD1

PR INT"DEC IMAL HEX BINARY"

PRINT"— — .
FORJ=ATORSS:PRINT: J$=MIDSCSTRS(J) ,2) J$=RIGHTH("000" +J%,3):
PRINTJ®,

GOSUBEQDD

GOSUBS000

NEXT

PRINTH1:CLOSE1:END

4999 1

Seae D=J

5020 PRINT"X":

5030 FORI=7TOOSTEP-1:G=INT(D/2¢1):0=D-G*2t1:PRINTMIDS("O1",

G+1,1)7sNEXT:PRINT,

5040 RETURN

s505a

5000 D=J

6038 PRINT"$";

6042 FORI=1TOBSTEP-1:G=INT(D/1611)>/D=D-G*161I!PRINTMID®$(H®,

G+1,1) tNEXT:PRINT,

6052 RETURN
READY.

APPENDIX 2

C64 memory map

HEX DEC IMAL Description

L]] 6512 Data Direction

a1 1 6510 Input/Output

a2 2 Unused *
83-04 3-49 Vector: Floating -> Integer

25-06 5-6 Vector: Integer -» Floating

av T Search character

a8 8 Scan for quote

a3 8 Last TAB position

2A 19 Flag: $8@ = LOAD, %81 = VERIFY

[:]:] 11 Pointer: Input buffer / MNo. of Subscripts
ec 12 Default DIM

{]a] 13 Data Type: $08 = Numer ic, $FF = String
BE 19 Data Type: $88 = Floating, $80 = Integer
aF 15 Flag: DATA scan ~ LIST quote ~ Garbage call
10 18 Flagt Subscript / User Function (FNX)

11 17 Flag: $@89 = [NPUT, $40 = GET, %38 = READ
12 18 Flag: ATN sign ~ Compar ison Result

13 19 Flag! Current INPUT prompt

14-15 2e-g1 Integer value

16 22 Pointer: Temporary string stack

i7-18 23-24 Vectort Last temporary string

19-21 235-33 Stack for temporary strings

ae-a23 34-37 Utility pointer area

26-2A 38-42 Product of multipl ication (Floating-point)
eB-2c 43-44 Pointer: Start of Basic program

2D-2E 45-96 Pointer: Start of Basic variables

2F-30 47-48 Pointer: Start of Basic arrays

31-32 49-50 Pointer: End of Basic arrays

33-34 S51-852 Pointer: Bottom of string storage

35-38 53-54 Utility string pointer

37-38 55-56 Pointert Limit of Basic memory

39-3A 57-58 Current Basic line number

3e-3C 59-60 Previous Basic line number

30-3E 61-62 Pointer: Basic statement for CONT

3F-40 €3-64 Current DATA line number

41-42 65-66 Current DATA item address

43-494 E67-68 Vector: INPUT

45-48 69-70 Current Basic variable name

47-48 7i-7e Pointert Current Basic variable address
49-4A 73-74 Pointert Variable in FOR/MNEXT

4B-60 75-96 Temp pointer ~ Data area

61 a7 F.P. Accumulator #1: Exponent

62-65 88-101 F.P. Accumulator #1! Mantissa

B6 102 F.P. Accumulator #1: Sign

C64 MEMORY MAP

Descr iption

Pointer! Series evaluation constant

F.P. Accumulator #1: Overflow

F.P. Accumulator #2: Exponent

F.P. Accumulator #2: Mantissa

F.P. Accumulator #2: Sign

F.P. AccHl vs F.P. AccH2 sign comparison
F.P. Accumulator #1: Rounding

Pointert! Cassette buffer

CHRGET subroutine - Get next Basic character
Pointer! Mext character of Basic text
F.P. RND seed

STatus

Flag: RVYS Key ~ STOP Key

Constant for tape timing

Flag: 0@ = LOAD, %81 = VERIFY

Flag! Serial output buffered character
Serial output buffered character

Tape End Of Tape received

Register save

MNumber of open files

Input device number

Output (CMD) device number

Tape character parity

Flag: Tape byte received

Flag: $9@ = Program, %88 = Direct mode
Tape pass 1 errors

Tape pass 2 errors

Jiffy clock <(TI)

Number of serial bits

Number of cy~les

Tape sync countdoun

Pointert! Tape buffer

RS-232 Input bits ~ tape temp

RS-232 Input bit count / tape temp
RS-232 Check for start bit

RS-232 Input byte buffer / tape temp
RS-232 Parity / tape temp

Pointer! Tape buffer / Screen scrolling
Tape end addresses / End of program
Tape timing constants

Pointer: Start of tape buffer

RS-232 Bit count ~ tape temp

RS-232 Mext bit /. tape End of Tape flag
RS-232 Byte out buffer

Length of Current file name

Current logical file number

Current secondary address

Current device number

Pointert Current file name

RS5-232 Parity out / tape temp

Tape write block count

Serial word buffer

Tape motor interlock

1/0 start address

Pointer: Tape load temps

Current Key pressed $08 = No Key
Mumber of characters in Keyboard queue
Flag: $91 = Reverse chars, $28 = Ord chars
Pointer: End of line for INPUT

LR I O 1

APPENDIX 2

HEX DECIMAL Description
c9-CcA 201-282 Cursor position (X,Y> for INPUT
ce 203 Flag: Shifted characters
cc 204 Cursor flash, $8@ = enable
con 2es Cursor flash rate
CE 286 Character under cursor
CF = 0rg Flagt Last cursor flash on/off
De 208 Flag: INPUT or GET from Keyboard
Di1-D2 2e9-218e Pointert Current screen line
D3 211 Cursor position <column only)
D4 212 Flagt Quote mode %88 = Mo
0s 213 Screen line length
oe 214 Cursor position <(row only?
D7 215 Temp data area
(a]:] 2186 Number of Inserts
D8-F2 217-242 Screen line link table
F3-F4 243-244 Pointer: Colour screen position
FS-F& 245-246 Pointer: Keyboard decode table
F7-F8 247-248 Pointert RS-232 Input buffer
F9-FA 299-250 Pointert RS-232 Output buffer
FB-FE 251-2549 Zero-page memory left free for users *
FF 255 Basic temp data area
2100-01FF 256-511 Stack area
P00 -0258 512-600 Basic INPUT buffer
p259-e262 E01-618 Logical file number table
fa263-826C 611-628 Device number table
P260-0276 621-6390 Secondary address table
2277 -0280 631-6482 Keyboard queue . 2
8281 -0282 641-642 Pointer: Start of Basic memory
P283-0284 643-644 Pointert Top of Basic memory
P28s 645 Flag: IEEE timeout
[F=4=1=3 646 Current colour code
ez287 647 Colour under cursor
oe88 648 Page containing screen memory
fa28s 649 Size of Keyboard buffer
a28A 658 Key repeat $@0=MNo repeat, #$82=All repeat
PEBB 651 Repedt Key speed
ezsc B52 Repeat delay
8280 653 Flag: Keyboard shift ~ CBM kKey ~ CTRL Key
P28E 654 Last shift pattern
PEBF -9250 655-656 Pointert Set up Keyboard table
2291 B57 Flag: #$8@ = Disable ~ %88 = Enable shift
P23z 658 Flag: $@@ = scroll enable
2293 659 RS-232 control register
9294 668 RS-232 command register
P295-8296 B661-662 RS-232 Bit timing
P287 663 RS-232 status register
ee9s8 664 RS-232 number of bits to send
9289-029A 665-666 RS-232 speed
2288 667 RS-232 index to end of input buffer
[=3- o] 668 RS-232 start of input buffer
228D €63 RS-232 start of output buffer
P29E 679 RS-232 index to end of output buffer
229F -02A0 671-672 IRR save during tape operations
B2Aal B73 RS-232 enable
22A2 6874 Timer for tape operation
P2A3 673 Tape temp used during read
22A4 676 Tape temp used during read
B2AS 677 Screen row marker

B22A6 678 Flag! #$8@ = NTSC, $81 = PAL T.V. system

C64 MEMORY MAP

97

HEX

BE2AT -D2BF
P2Ce-02FE
P2FF

2300-0301
e3ez-8303
2304 -0303
9306 -0307
23e8-0303
P30A-0308
03ec

2300

03I0E

a30F

P30

B211-0312
8313

9314-8315
A31E-8217
p218-0319
P31A-B31B
P21C-831D
P31E-@31F
0320-9321
p3z2-0223
2224-8325
f326-8327
D328-0329
P32A-032B
P32C~-9320
93RE-932F
2330 -08331
9332-9333
0224-033B
@833C-83FB
P3FC-O3FF
2400 -OTVET
BTEE-O7F7
Q7FB8-B7FF
PEOD -7FFF
8000 -9FFF
ADOR -BFFF
CePa-CFFF
D28e -DBZE
DB2F -D3FF
Da@@-DalC
D41D-D?7FF
Deee-DBFF
DCea-DCoF
DDeo -DDeF
E@20-FFFF

D@2’ -DFFF
EDOR-FFFF

% signifies an area of memory which can be utilised for user machine

DEC IMAL

679-703
784 -766
767
768-769
770-771
772-773
?774-778
776-777
778-779
780
781
7ea
783
784
785-786
787
788-7889
790-791
792-793
794-795
796-797
798-798
see-goi1
802-803
804 -805
806 -807
ea8-803
B1@-811
812-813
814-815
816-817
818-819
sze-827
s28-1019
192e-1023
1924 -2023
2024-2039
2040-2047
2048-32767
32768-40953
49960-49151
48152-53247
S53248-33294
53295-354271
S4272-54300
54301-55295
55296-36319
56320-56335
S56576-56591
57344 -65535

53248-57343
57344-683533

Description

Unused

Sprite map 11

Unused

Pointer: Basic error messages
Pointer: Basic warm start
Pointer: Tokenise Basic text
Pointer:! Basic text LIST
Pointer! MNew Basic code 1linkK
Pointer! Evaluate Basic token
Accumul ator save

¥ index save

Y index save

Status register save

Jump instruction for USR
Pointert For Basic's USR
Unused

Pointert Hardware interrupt
Pointer! Break interrupt (BRK?
Pointert Non-maskable interrupt
Pointer: Kernal OPEN routine
Pointer : Kernal CLOSE routine
Pointer! Kernal CHKIN routine =
Pointer: Kernal CHKOUT routine
Pointer: Kernal CLRCHN routine
Pointer: Kernal CHRIN routine
Pointer: Kernal CHROUT routine
Pointer! Kernal STOP routine
Pointert Kernal GETIN routine
Pointer: Kernal CLALL routine
Pointert User defined

Pointer: Kernal LOAD routine
Pointert Kernal SAVE routine

Unused

Tape buffer and Sprite maps 13, 14 and 1S
Unused

Screen in normal position

Unused

Sprite map pointers

Basic program area

Cartridge area / More Basic program area
Bas ic ROM

Free RAM for user machine code programs
Video registers

VIC Il video chip

Sound registers

SID sound chip

Colour screen

Interface chip 1

Interface chip 2

Kernal Operating System ROM

Alternate as character set ROM
Alternate as RAM

code programs and variables,

Alternate areas of memory depend upon the contents of location 1.

-

+t 2 AN XECCAHOIODTVOZICEXL==IOTMOODDIMA

OO~NUADLILOMN -G

Screen codes

APPENDIX 3

- N e = =

+ W v o~

v A = 00NN D W -GN

34
35
36
37
38
as
a0
41
ae
43
44
a5
48
47
a8
a8
=0
=51
s2
s3
54
=55
56
57
s8
=9
60
61
s2
63
64

I B e R e R

s —"Le_NoXs @)

6%
66
57
&8
63
70
71
72
73
74
75
76
77
78
79
80
81
82
83
g4
85
86
87
a8
ea
=1
at
a2
93
94
as
96
a7

la®™"+4d Fal <3 raraNE _B"1 10

LB

L g

g8
a9
100
101
102
103
104’
185
106
107
108
108
110
111
112
113
114
115
118
117
118
1189
120
121
1ae
123
124
125
128
127

SCREEN CODES

1024
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464

1544
1584
1624
1664
1704
1744
1784
1824
1864
1904

1984

Screen memory map

20

30

39

20

APPENDIX 4

Colour codes

Black
White
Red
Cyan
Purple
Creen
Blue
Yellow

RO e WD — O

8

9
10
11
12
13
14
15

Orange
Brown
Light red
Crey 1
Crey 2
Light green
Light blue
Crey

Colour memory map

20 30

39

55296

55336

55376

55416

55456

55496

55536

55576

55616

55656

55696

55736

55776

55816

55856

55896

55936

55976

56016

56056

56096

56136

56176

56216

56256

24

12
11
12
13
14
15
16
{ir g
i8
12
a2e
21
ee
23
24
25
26
27
a8
29
30
31
32
a3
34
as
as
ar
a8

APPENDIX 5

BASIC SYS
routine

REM ¥4 d ks st et bbhetbnes
REM *x% *%
REM %% MAKE M/C INTO DATA %
REM =» WITH CHECKSUM %
REM %% £
REM =% <C> ARB 21,185 %
REM =% %
REM ®k kbbb ddbisdt bt abbhrehineess

PRINT"J"

INPUT "0OTHE START ADDRESS:"!S

INPUT "MMTHE END ADDRESS! "JE! IFE=<STHENRUN

IMPUT "LIME MUMBER START: ";LM: IFLMN<S@THENI3

PRINT"J":T=0

PRINT " " FLN? "L ="LMN+207 "I} FORI="S; "WTO"E;
PRINT"MiL=L+10:T=0:FORJ=0TOS!READAIPOKEL ;A T=T+A"
LN=LN+10:PRINTLN; "MI=1+1:";

PRINT*MNEXTJREADB IFT< >BTHEN? "CHR#<34)7 "ERROR IN LINE! *CHR#<34)) "JLtSTOP"
LM=LMN+12:PRINTLN? "HI=I-1:NEXTItRETURN" IREM %%%%
PRINT"LMN="LN+18;*1S="Sf "1E="E? "1G0TO23"

PRINT“H":POKEE31, 13:POKES32, 131 POKEE33, 131 POKES34, 131POKE188 ,41END
H

PRINT " 00" ' LM"BDATA " §

FORJ=BTOStA$=STRE(PEEK (J+8)) 1A$=MIDS$ (A%, 21 tPRINTAS$" , "s

T=T+PEEK (J+6) tNEXT T$=MIDSC(STR$(T) ,2) iIPRINTT#1S=8+B1LN=LN+10
PRINT*S="§7 "tLN="LN; *1E="E7 "t GOTO30" tPRINT"H"

1

POKEG31,13:POKEE32, 13+POKE198 ,2'END

b

IFS<{ETHEN23

L

1=@:RESTORE

PRINT".3g" } tFORJ=OTO7: I=1+1tPRINTItNEXTJIREM DELETE THE LINES
PRINT"I="171IFI<40THEMPRINT":GOTO37"
PRINT*"H":FORJ=BTOB:POKEG31+J, 131 NEXTPOKE 198 ,9:END

t
IFI1<{40THEN33
END

READY.

APPENDIX 6

Answers to Exercises

Chapter 3

1 160 5 36873 9 44352
26 6 192 10 248
3 252 7 49216

4 12 8 199

Chapter 4

5000 [$CO00

jSe1e

5020 'ANSKWER - CHAPTER 4 EXERCISE

S0ece

5870 LDA W$13 S

5088 STA $0400 ;SCREEN
5098 LDA #$15 U

51980 STA #0401

5110 LDA #$12 R

5120 STA $0482

5130 LDA #H$19 Y

5140 STA $0403

5150 LDA #s$a1 A

5168 STA #0404

5170

5180 LDA #$01 JWHITE
5198 STA $0800 ;COLOUR SCREEN
5200 LDA #$03 ;CYAN
5210 STA %0801

5220 LDA #$04 ;PURPLE
5238 STA sDBv2

5240 LDA #$05 ;GREEN
5250 STA %0803

5260 LDA #$07 ; YELLOW
52790 STA %0804

5280 ¢

529@ RTS

5300 END

READY.

ANSWERS TO EXERCISES

Chapter 5

S002 [sCoPD

5019

5020 AMSLER - CHAPTER S EXERCISE
S5930

5040 :BORDER=%D020

5950 :BACKGROUMND=$D021

Sese 7

Sa70 LDA 228

5080 CMP W$92 (CHECK VALUE

5098 BMNE MNOTEQUAL :BRAMCH IF NOT = 2
s190 ;

5118 STA SBORDER

5120 JMP EXIT G0 TO EXIT

5130 ¢

5148 STA BACKGROUND :NOTEQUAL
5159

5160 RTS 1EXIT

5170 END

READY .

Chapter 6

S000 [$CO00

s5019 :

5020 sANSWER - CHAPTER 6 EXERCISE
5030 ;

5048 :SCREEN=$0400

5850 :YELLOW=?

S506@ :COLSCREEN=$0D3S00

save ;

S@8@ LDY #$20 ;INITIALISE Y

5092 TYA :LOOP GET VALUE FOR RACC.
Si@® STA SCREEN,Y !PLACE IT ON SCREEN
5119 LDA HYELLOW

5120 STA COLSCREEM.Y ?PLACE YELLOWL ON COLOUR SCREEN
5138 INY

5140 CPY H$00

5158 BME LOOP

5160 :

5170 RTS

5180 END

READY.

Chapter 7

Se00 [sCooe

S5210 ¢

5020 'ANSKWER - CHAPTER 7 EXERCISE
5830 !

5049 :(VIDEO=$D00® ;VIDEO CHIP
59045 :MSB=VIDEO+%18 SPRITE MSB

APPENDIX 6

Sas5e
5068
Save
Sese
5090
5100
St11e
5120
5130
51490
5150
5160
Si17e
5180
5190
S2e0
sS210
Saae
s523e
5240
5250
5260
save
S2ee
Sase
5300
5310
S32e
5330
5340
5350
5360
5370
5380

i
LDY
LDA
sSTY
sTA
LDA
STA
LDA
AND
sSTA
;
INC
LDX
DEX
BNE
INY
BNE
¥

Hs00

#1900

VIDEDO ?SPRITE @ - X

VIDEO+1 ;SPRITE @ - Y

#Ho1t

VIDEO+21 ?SPRITE @ = ON

MSB

#41111111@ 'TURN OFF MSB FOR SPRITE ©
MSB

VIDEO :LOOP! *MOVE SPRITE 9
Hoe

tDELAY! DELAY

DELAY1

LOOP 1

;Y IS NOW ZERO

¥
STY
LDA
ORA
STA
i
INC
LDX
DEX
BNE
INY
BNE
'
RTS
END

READY .

VIDEO ?SPRITE @, X=0

MSB

#/00000001 ;MOVE SPRITE @ ONTO RHS OF SCREEN
MSB

VIDEO :LOOP2
#ao

tDELAYZ2
DELAY2

LoorP2

Chapter 8

Seoe
Se1e
Seee
Se3e
Se4qn
sese
Sese
Seve
Sese
Sese
5100
Si110
Size
5138
S140

JANSWER - CHAPTER 8 EXERCISE

’
LDX
CcLC
‘A
LDA
LSR
INY
CPX
BNE
I
RTS
END

READY.

H$00 s INITIALISE X
JCLEAR CARRY

828 1LOOP
A

#so8
LOOP SCARRY NOT CLEARED WITHIN LOOP

ANSWERS TO EXERCISES

Chapter 9

5000 [$CO00

5010 s

5020 JANSWER - CHAPTER 8 EXERCISE
5030

58490 LOA 828

5058 TAY sSTORE ACC IN Y

5060 rMULTIPLY ACC BY 2

5070 ASL A

5080

S@9@ CLC jCLEAR CARRY

5190 STA 828 (828 NOW CONTAINS PEEK(828)%2
5118 TYA

5120 ADC 828

5130 STA 828 :ADD ORIGINAL CONTENTS
51490 »

5150 828 NOW CONTAINS PEEK(828)x3

Chapter 10

5000 [$Ceao

Se10 ¢

5020 rANSWER - CHAPTER 18 EXERCISE
S030 »

504@ CHROUT=$FFD2

5050

5060 LDA #147

5078 JSR CHROUT fCLEAR SCREEN
5080

5090 LDA #'A

519® JSR CHROUT ;DO EACH LETTER IN TURN
5110 LDA #'N

5120 JSR CHROUT

5130 LDA #'D

5149 JSR CHROUT

5150 LDA #'R

5160 JSR CHROUT

5170 LDA #'E

5188 JSR CHROUT

5190 LOA #'W

5200 JSR CHROUT

s210 s

5280 RTS

5230 END

READY.

APPENDIX 1

The Kernal routine

Namet CHRIN

Operationt! Get a stream of characters from the Kevboard.

Call Address: $FFCF, 63487

Registers Affected: Accumulator, X

Description: This routine takes input from the kKeyboard and is the one
used by the normal input on the CE64. The routine flashes the cursor
and awaits input. When a carriage return in inputed the routine
returns. The routine is then called for each inputed character. For

example:

Seee [sCooo

Se1e

5012 ;CHRIN EXAMPLE

5014 ;

5020 1CHRIN=S$FFCF

5030 'BUFFER=828 JCASSETTE BUFFER

5048 7
5052 LDY #$2@ ; INITIALISE Y INDEX

5868 JSR CHRIN :CHRINTESTI

5878 STA BUFFER,Y STORE EACH CHARACTER

5888 INY

5088 CMP #13 JRETURN PRESSED

5198 BNE CHRINTEST1 NO - GO BACK FOR ANOTHER CHARACTER
5183 »

5118 RTS

READY.

THE KERNAL ROUTINE 102

Name ¢t CHROUT

Operationt Output a character to the screen.
Call Addresst: $FFD2, 65490

Registers Affected: Accumulator

Descriptiont This routine is one the most useful Kernal routines. It
outputs any ASCII character held in the accumulator to the screen. You
can use it to change colour, clear the screen, home the cursor or

print any character that you wish.

5000 [$COV0

5010

5015 ;CHROUT EXAMPLE

5020 »

5032 'CHROUT=s$FFD2

Se4q0

5050 LDY #s00

5060 LDOA TEXT.,Y :CHROUTTEST! FGET NEXT CHARACTER
5870 CMP #H'Q IS IT AN '@’

5080 BEQ@ CHROUTTESTZ FYES - EXIT

5090 JSR CHROUT *NO - PRINT IT

5100 INY

5110 JMP CHROUTTEST! ;GO BACK FOR NEXT CHARACTER
5120 »

5139 RTS :(CHROUTTEST2

5140 .TXT "ANDREW IS ACE®" 1TEXT

READY .

Mame! GETIN

Operationt! Get a character from the Keyboard.
Call Address! SFFE4, 653508

Registers Affected: Accumulator, X, Y.

Descriptiont This routine gets a single character from the Keyboard
and returns it in the accumulator. The cursor is NOT flashed. I no

Key has been pressed then zero is returned in the accumulator.

108

APPENDIX 7

S0 [sCooo

Seie ;

5015 FGETIN EXAMPLE

sez2e ;

5030 (GETIN=$FFE4

5040 :TEMP=828

5050

5060 LOY #s$0Q

5878 STY TEMP :GETINTEST! FSTORE Y TO PROTECT IT
5088 JSR GETIN !GET A CHARACTER FROM KEYBOARD
5099 CMP #13 7IS IT A RETURNPRINT

5190 BEQ@ GETINTESTZ2 fYES - EXIT

5110 CMP #$00 :NO KEY PRESSEDPRINT

5120 BEQ GETINTEST1 ?YES - G0 BACK FOR ANOTHER CHARACTER
5130 LDY TEMP :GET ¥ FROM STORE

5148 STA $0400,Y ;PLACE CHARACTER ON SCREEN
5158 INY

5168 JMP GETINTEST! sGO BACK FOR MORE

5185 »

5178 RTS :GETINTEST2

5200 END

READY.

Mamet: LOAD

Operation: Load memory from cassette or disk.

Call Addresst $FFDS5, 65493

Registers Affected: Accumulator, X, Y.

Pescriptiont! This routine will load an area of memory of msc program

“v»om disKk or tape into the CE4. Before you can use it you must JSR to

the SETLFS and SETNAM routines. The accumulator must be set to zero

for load.

[* LOAD example *1]

Seoe
Seie
S015
5020
Se3e
Se4q0
5050
5060
Save

[sCeed

:

JLOAD EXAMPLE

:

ILOAD=$FFDS
tSETLFS=3$FFBA
1SETNAM=$FFBD

H

LDA #$21 ;FILE NUMBER = 1

THE KERNAL ROUTINE

109

5080 LODX W$@1 :TAPE DEVICE = |
5090 LDY #$01 sNOT A RELOCATED LOAD
51908 JSR SETLFS

5110 »

5120 LDA Wse8

5130 JSR SETNAM JNO FILE NAME
51499

5150 LDA #$80 LOAD NOT VERIFY
516@ JSR LOAD

5170

5180 RTS

5190 »

5200 END

READY.

Mame t PLOT

Operationt Set or Read cursor position.
Call Address: $FFF®, 65520

Registers Affected: pAccumulator;, X, 7. .

Descriptiont This routine moves the position of the cursor to anyuwhere
on the screen. If used with CHROUT, vou can print characters anyuhere

on the screen. The carry flag must be clear and the x and y positions

for the cursor must be held in the X and Y indexes. If the carry is

set then the position of the cursor is returned in X and Y.

{x PLOT example %]

Seee [sceee

S5ees s

5010 JPLOT EXAMPLE

5013 »

5020 (PLOT=$FFF@

5038 1CHROUT=$FFD2

Se49 s

J@se cLc

5060 LDY W18 JCOLUMN NUMBER
5870 LDX W$D8 sROW NUMBER
Sese® JSR PLOT

5080 JSR WRITEPLOT

Sie0 »

S11@ CLC

5120 LDY #18 yCOLUMN NUMBER

APPENDIX 7

5160 LDX ##18 yROW NUMBER

5178 JSR PLOT

5180 JSR WRITEPLOT

5190 ;

5200 RTS

S219 5

5220 LDY W$00 (WRITEPLOT

5230 LDA TEXT,Y tWRITEPLOT!I FGET NEXT CHARACTER OF TEXT
5290 CMP #'€ 718 IT 'E'PRINT

5250 BEQ WRITEPLOT2 :YES - EXIT
5260 JSR CHROUT JPRINT THE CHARACTER
5270 INY

5289 JMP WRITEPLOT!

5290 RTS 'WRITEPLOT2

5300 s

5310 .THT "PLOTE" :TEKT

5328 END

READY.

Name : SAVE

Operation: Save memory to cassette or disk.
Call Address: $FFD8, 65436

Registers Affected!: Accumulator, X, Y.

Descriptiont This routine will save any area of memory or m/c program
to disk or tape. Before you use it you must call the SETLFS and SETNAM
routines. You must place the start address in lo-hi format in page
zero and the end address in lo-hi in the X and Y indexes. The
accumulator must then be loaded with the page-zero offset of the start
address pointer. So that if you use $F7 and $FB as the pointer, you
will load the accumulator with $F7.

[* SAVE example %]

5000 ['$Co00

Se1e ;

5015 rSAVE EXAMPLE - SAVE $7000 TO s7100
Seze

5039 :SAVE=SFFD8

5049 'SETLFS=$FFBA

5050 :SETNAM=S$FFBO

THE KERNAL ROUTINE 111

5870 LDY WSFF ;NO SECONDARY ADDRESS
5080 LDA W$@1 FILE NUMEBER = |

5090 LDX W$®1 ;TAPE DEVICE = |

5100 JSR SETLFS

5110

5120 LDA WS$OO :NO FILE NAME

5130 JSR SETNAM

5140 ;

5150 LDA #$0@ :L0 PART OF START ADDRESS
5160 STA $F?

5170 LDA W$?8 :HI PART OF START ADDRESS
5180 STA $F8

5190 LDX #$0@ :LO PART OF END ADDRESS
5200 LDY W$71 sHI PART OF END ADDRESS ($7100)
5219 LDA WSF7 ;OFFSET FOR START ADDRESS
S220 JSR SAVE

5230

5240 RTS

5250 7

5260 END

READY.

MNaine t SETLFS

Dperationt Set up a file,
Call Addresst! $FFBA, B34E6

Rec lasters Affected: MNone.

Deacriptiont This routine sets up a file for the LOAD and SAVE
routines. You must load the accumulator with the file number, the X
index with the device number and the Y index with the secondary
address, For cassette and disk operation, the Y index must be set to

$FF (P%5)., See the LOAD and SAVE examples for examples of SETLFS.

112 _ APPENDIX 7

Name @ SETHMAM

Operationt Set up a file name,
Call Addres=z: $FFBD, 654693

Registers Affected: None.

Description: This routine sets up a file name for the LOAD and SAVE
routines. The accumulator is loaded with the length of the name and
the W and Y indexes are loaded with the lo and hi parts of the address
of the start of the name. For examples of SETNAM's useage see the LOAD

and SAVE examples.

APPENDIX 8

A complete listing of the
6510 assembly language
instruction set

Name ¢ ADC
Operationt Add memory to Accumulator with Carry

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form ! ! Bytes

I ! ! ! !
I Immediate | ADC #$GQ ! 63 ! e !
! Zero Page ! ADC sQaQ ! 65 ! [!
! Zero Page,X ! ADC %QQ,X ! 73 ! 2 !
! Absolute ! ADC $QAGRQ ! 8D ! 3 !
! Absolute X ! ADC $0QQQ,X ! 70 ! 3 !
! Absolute,Y ! ADC $QQEQR,Y ! 73 ! 3 !
| C(Indirect,X? ! ADC (%QQ,X) ! 61 ! 2 !
! ¢Indirect),Y ! ADC <$QQ),Y ! 71 ! - !
! ! ! ! !

Flags affected: ! N ! 2 1 C ! 1 ! D! V!

Name : AND
Operationt AND memory with Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form 1 ! Bytes

| ! ! ! !
I Immediate ! AND #$Q0Q ! 29 | e !
| Zero Page ! AND $GQ ! 25 ! 2 !
| Zero Page ,X ! AND %QQ,X ! 33 ! 2 !
| Absolute ! AND $QQQQ ! 20 ! 3 !
! Absolute X ! AND $QQQa,X ! 3D ! 3 !
! Absolute,Y ! AND $QQGa,Y ! 33 ! 3 !
! C(Indirect.,X> ! AND ($QQ,X)> ! 21 ! 2 !
! ¢Indirect),Y ! AND ($QQ)>,Y ! 31 ! 2 !
] (]]] 1

114 _ APPENDIX 8

Flags affected: ! N ! Z ! C ! 1 ' D! V!

Name: ASL
Operationt Shift left one bit (Accumulator or Memory)

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! 1 Form 1 ! Bytes |
! ! ! ! !
! Accumulator ! ASL #sQQ ! 2A ! 1 !
! Zero Page ! ASL sQQ ! a8 ! 2 !
| Zero Page X ! ASL sQQ,X ! 18 ! 2 !
! Absolute ! ASL %0QQRQ ! 9E ! 3 !
! Absolute X ! ASL $QQ0Q,% ! 1E ! 3 !
! ! ! ! !

Flags affectedt ! N ! Z 1t C ! 1 DI V!

MName : BCC
Operationt Branch on Carry Clear

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

1 ' ! i 1
| Relative ! BCC %00 1 Ze 2 i

Flags affected: I N ! 2 1 C) 1 1 D! NI

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET

115

Name t BCS
Operationt Branch on Carry Set

! Addressing Mode ! Assembly Language ! Opcode ! Number of |
! Form ! I Bytes !

! Relative ! BCS sQQ ! BO ! 2 !

Flags affected: ' N ! 2 ' C ! 1 ' D ! V!

Name : BEQ
Operationt: Branch on Zero

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
] 1 Form L ! Bytes !

! [[! !
! Relative ! BEQ $QQ ! F@ ! 2 !
! 1 ! 1 !

Flags affected: ! 1 ! ! ! ! !

Name: BIT
Operationt Test bits in memory with Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! 1 Bytes 1
! ! ! ! 1
! Zero Page I BIT sQQ ! 24 1 B !
! Absolute ! BIT $QQQAQ ! 2c ! 3 !

! ! 1

Flags affected: ! N ! Z ' C ! I ' D ! Vv !

116

APPENDIX 8

Name : BMI
Operationt Branch

on Minus

! Addressing Mode ! Assembly Language | Opcode ! Number of !
1 ! Form ' ! Bytes !
! ! ! ! 1
! Relative ! BMI sQQ ! 30 ! e !
! ! ! ! !
Flags affected! ! N ! 2 ' C ! 1 'D ! WV 1!
! ! ! ! ! ! !
Name ¢ BNE
Operationt! Branch on not Zero
! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! 1 Form ! ! Bytes !
! ! ! ! !
! Relative ! BNE $Q0Q ! Do ! e !
! ! ! ! !
Flags affectedt ! N ! 2 ' C ! I ' D! V!
! ! ! ! ! ' !
MName: BPL
Operation: Branch on Pius
! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !
] ! ! ! !
! Relative ! BPL GG ! 10 ! 2 !

Flags affected: !

NI1Z1LECLTIIDIYVI

! ! ! ! ! !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 117

Name : BRK
Operationt: Break

! Addressing Mode ! Assembly Language ! Opcode | Number of |
! ! Form ! ! Bytes 1

! ! ! ! !
! Implied ! BRK ! 29 ! 1 !
! ! ! ! !

Flags affectedt ! N ! 2 1 C ! 1 ! D! V!

! ! S O ! !

Name ! BYC
Operationt Branch on Overflow Clear

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! =50 Form ! ! Bytes !

! ! ! ! !
! Relative ! BVC sa@ ! 1) ! =] !
! ! ! ! I

Flags affected: ! NI 2 1t C ¢ 1 1 D! V!

! ! ! ! ! ! !

Name t BVS
Operation: Branch on Overflow Set

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
1 ! Form ! ! Bytes !

! ! ! ! !
! Relative ! BVS sQQ ! 70 ! e !
' ! ! ! !

Flags affectedt ! N | 2 I C ! 1 1 D! V!

118 APPENDIX 8

Name ¢ CLC
Operationt Clear Carry flag

! Addressing Mode | Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! ! ! ! !
! Imelied ! CLC { 18 ! 1 !
! ! ! ! !

Flags affected: ! N ! Z ' C | I ' D ! V!

| IR ER i R . ' A

Name: CLD
Operationt: Clear Decimal Mode

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes 1

! Implied

cLo ! oe ! 1 !

Flags affected: | N1 2 1 C It I ! D! VI

Name?® CLI
Operationt Clear Interrupt Disable flag

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! ! ! ! !
! Implied ! CLI ! 58 ! 1 !
{ ! ! ! !

Flags affected: ! N ! Z ' C ! T ' D ! Vv !

IS ! ! % ! !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 119

Name : CLV
Operationt Clear Overflouw Flag

! Addressing Mode ! Assembly Language ! Opcode | Number of !
! ! Form ! ! Bytes !

! Implied ! CLv ! B8 ! 1 ! P

Flags affected: | N ! Z ' C I 1 I D! V!

S R, R SN R R

Name ¢t CMP
Operation: Compare memory with Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! Bytes !
! ! ! | !
! Immediate ! CMP H3QQ 1 cs ! 2 !
! Zero Page ! CMP $GQ ! CcS ! 2 !
| Zero Page,X ! CMP %0QG, X ! DS ! 2 !
! Absolute ! CMP $QQQQ ! cD ! 3 !
! Absolute X ! CMP $QQ00Q,% ! DD ! 3 !
| Absolute,Y ! CMP %QQQQ4A.,Y ! DS ! 3 1
I C(Indirect, X)) ! CHMP ($QQ,X) ! ci1 ! 2 !
! ¢(Indirect),Y | CMP ($QQ)>,Y ! D1 ! 2 1
! ! ! ! !

Flags affected! ! N ! 2 t C ! 1T 'D ! V!

Namet! CPX
Operation: Compare Memory with X index

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! Bytes !
! L ! ! !
! Immediate ! CPX #$GQ ! E® ! a2 !
| Zero page | CPX $QQ ! E4 ! 2 !
! Absolute | CPX $QQQQ ! EC ! 3 !

! ! !

! |

APPENDIX 8

Flags affectedt ! N ! 2 1 C I I I D! V!

Name: CPY
Operationt Compare Memory with Y index

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! Bytes !
! 1 ! ! !
! Immediate I CPX #sQaQ 1 ce 1 2 :
| Zero page ! CPX ®QQ ! ca ! (-4 !
| Absolute ! CPX $QQQQ ! cc ! 3 !

| ! 1 1

Flags affected:t ! N ! 2 ' C ! I 't D! V!

s 1 21 2! ! ! !

Name : DEC
Operationt Decrease Memory by One

! Addressing Mode ! Assembly Language ! Opcode ! MNumber of !

! ! Form ! ! Bytes !
1 1 | ! |
! Zero page ! DEC #QQ ! ce 1 -4 !
! Zero page, X ! DEC %GQ.,X ! D& ! 2 !
! Absolute ! DEC sQQ@aQ ! CE ! 3 1
! Absolute X ! DEC $QQQQ.X ! DE ! 3 !
1] ! ! !

Flags affected: ! N ! Z2 ' C ! 1 !'D ! v !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 121

Name : DEX
Operation: Decrease X index by One

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! Form ! | Bytes !

! ! ! | !
! Implied DEX ! cAa ! 1 !
! ! I ! !

Flags affected:t ! N ! 2 1 C ! 1 I D V!

Name : DEY
Operationt: Decrease Y index by One

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! 1 Form ! ! Bytes |

! ! ! ! !
! Implied ! DEY ! 88 ! 1 !
! ! ' ! !

Flags affected: ! N ! 2 ' C ! T ! D | V!

Namet! EOR
Operationt Exclusive-OR Memory With Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form ! ! Bytes !
! ! ! ! !
! Immediate ! EOR #s$QGQ ! 48 ! 2 !
! Zero Page ! EOR sQQ ! 43 ! =4 !
! Zero Page . X ! EOR $QQ,X ! 55 ! =4 1
! Absolute ! EOR $QGGQR ! 40 ! 3 !
! Absolute X ! EOR $QQGQ,% ! SD ! 3 I
! Absoclute,Y ! EOR $QQQQ.,Y ! 59 ! 3 !
! ¢(Indirect ,X) 1 EOR ($QQ@,X) ! 41 ! 2 !
! ¢(Indirect),Y ! EOR ($QQ)>,Y ! 41 ! 2 !
! ! ! ! !

122

APPENDIX 8

Flags affected: ! N !' 2 I C ! T ' D ' ¢y

P x ! ox ! ! ! ! !
Name : INC
Operationt Increase Memory by One
! Addreszsing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !
! ! ! ! 1
! Zero page ! INC #QQ ! E6 ! =4 !
! Zero page . X ! INC %QQ.,X ! F& ! 2 !
! Absolute ! INC $QQQRQ ! EE ! 3 !
! Absolute X ! INC #QQaa,% ! FE ! 3 !
! 1 ! 1 !
Flags affected: ! N ! Z2 ' C ! 1 ' D ! W !

I = 1 x| ! ! ! !
Name: INX
Operation: Increase ¥ index by One
! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes 1
I ! ! ! 1
! Implied TOINK ! E8 ! 1 !
! ! ! ! !
Flags affected: ! N ! 2 ' C ! T I D! V!

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 123

Name: INY
Operation! Increase Y index by One

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! Implied !t OINY ! cs ! 1 !

Flags affected: | N ! Z ! C ! I 1 DI V!

Name t JMP
Operationt Jump

! Addressing Mode ! Assembly Language ! Opcode ! Number of |

! ! Form 1 ! Bytes !
! ! ! ! !
! Absolute ! JMP $QGQQR ! 4Cc ! 3 !
! Indirect ! JMP ($QQEQR) ! B8C ! 3 !

! ! ! !

Flags affected: ! N I 2 ' C ! I ' D ¢ v !

Name: JSR
Operationt Jump To Subroutine

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

] ! ! ! !
! Absolute ! JSR $QQQAQ ! 2e ! 3 !
! ! ! ! !

Flags affected: ! N ! Z ' C ! 1 ' D | Vv !

124 APPENDIX 8

Name : LDA
Operationt! Load Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! Bytes !
! 1 ! ! !
! Immediate ! LDA #$Q0 ! As ! 2 1
| Zero Page ! LDA $2Q ! AS ! 2 !
! Zero Page,X ! LDA #0Q.,X ! BS ! 2 !
! Absolute ! LDA $QQQAG ! AD ! 3 !
! Absolute X ! LDA $QQEA, X ! BD ! 3 !
! Absolute,Y ! LDA $QQGA&,Y ! B9 ! 3 !
! ¢Indirect,X) ! LDA ($QQ,X)> ! Al ! 2 !
! ¢(Indirect),Y | LDA ($QQ>,Y ! B1 ! =4 !
1 ! ! ! !

Flags affected: ! N ! Z !t C ! I ' D! W !

Name : LDX
Operationt! Load ¥ Index

! Addressing Mode ! Assembly Language ! Opcode ! Number of |

! ! Form ! ! Bytes !
! ! ! ! !
! Immediate ! LDX H$QQ ! A2 ! o !
! Zero Page I LDX Q0 ! AG ! 2 !
! Zero Page,Y ! LDOX $QQ.,Y ! BE ! 2 !
! Absolute ! LDK $Q000 ! AE ! 3 !
! Absolute,Y ! LDX #QQQQa.,Y ! BE ! 3 !
1 ! ! ! !

Flags affected: ! N ! 2 1 C !t I ' D !t ¥V !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 125

MName : LDY
Operation: Load ¥ Index

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form 1 ! Bytes !
! ! ! ! !
! Immediate ! LDY #$Q0 ! AB ! 2 !
! 2ero Page ! LDY $@Q ! A4 1 2 !
! Zero Page,X ! LDY #GQ,X ! B4 ! 2 !
! Absclute I LDY Q0GR 1 AC ! 3 !
! Absolute X ! LDY $Q000,% ! BC ! 3 !
! ! ! ! !

Flags affected: ! N ! 2 ' C ! T ' D ! ¥ !

Name: LSR
Operation: Shift Accumulator Or Memory One bit Right

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Farm ! 1 Bytes !
[} ! !] 1
! Accumulator ! LSR A ! 4A ! 1 !
! Zero Page ! LSR $0QQ ! 46 ! 2 !
! Zero Page ., X ! LSR $QQ,X 1 56 ! 2 !
! Absolute ! LSR $QGEQ ! 4E ! 3 !
! Absolute X ! LSR $0GQQ,X ! SE ! 3 !
! 1 1 1 1

Flags affected: ! N ! 2 1 Cc I 1 I DI ¥

APPENDIX 8

Name : NOP
Operationt Mo Operation

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes 1

' ' ' ! 1
! Implied ! NOP I EA | 1 !
' i ' ! :

Flags affectedt ! N ! 2 ! C ! 1 ' D ! V!

Name t ORA
Operationt OR Memory With Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form ! ! Bytes |
! ! ! ! !
! Immediate ! ORA #3$00Q ! 29 ! 2 !
! Zero Page ! ORA %00 ! 25 ! 2 ¢
| Zero Page ,X ! DRA $0Q,X ! 15 ! 2 !
! Absolute ! ORA $0QQQG ! 20 | 3 |
! Absolute X ! ORA $QQQAQ,X ! iD ! 3 !
! Absolute,Y ! ORA #$00QQQ,Y ! 19 ! 3 !
! CIndirect ,X) ! DORA (%0Q,X) ! 21 ! - !
! CIndirect),Y ! ORA ($QQ),Y ! 11 ! 2 !
1] 1 [}

Flags affected: ! N ! Z2 ' C ! I ' D ! Vv !

Name ! PHA
Operationt Push Accumulator Onto Stack

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! ! ! ! !
! Implied ! PHA ! a8 ! 1 !
! ! ! ! !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 127

Flags affected: ! N ! 2 1 C ! I ' D I ¥ !

Name : PHP
Operation? Push Status Onto Stack

! Addressing Mode ! Aszembly Language ! Opcode ! MNumber of !
! ! Form ! ! Bytes !

! 1 ! ! !

I Implied I PHP 1 @8 ! 1 !
! [' i !

Flags affected: ! N ! 2 ' C ! 1 ' D ! VI

Name: PLA
Operation: Pull Accumulator Off Stack

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! Implied ! PLA 1 68 ! 1 !

Flags affected: ! N ! 2 ' C ! 1 ' D ! v !

Name : PLP
Operationt Pull Status Off Stack

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! By tes !

! Implied ! PLP I 28 ! 1 !

APPENDIX 8

Flags affected: ! N ! Z ' C ! I ' D! W !

| ---- FROM STACK ---- !

Name : ROL
Operationt Rotate Accumulator Or Memory One bit Left

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! By tes 1
! ! ! ! !
! Accumulator ! ROL A ! 2R ! 1 !
! Zero Page ! ROL #QQ ! 26 ! e !
! Zero Page . X I ROL #$QQ,% 1 36 ! 2 !
! Absolute ! ROL #QQQQ ! 2E ! 3 !
! Absolute X ! ROL #0QQG,% ! 3E ! 3 !
! ! ! ! !

Flags affected: ! N ! Z ' C ! 1T ' D ' Y !

Name : ROR
Operation: Rotate Accumulator Or Memory One bit Right

! Addressing Mode ! Assembly Language ! Opcode ! MNumber of !

1 ! Form ! 1 Bytes !
1 ! 1 ! !
! Accumulator ! ROR A ! BA ! 1 !
! Zero Page I ROR $0Q 1 66 ! = !
! Zero Page ., X ! ROR #$00Q,% ! 76 ! 2 !
! Absolute ! ROR $GREE ! 6E ! 3 !
! Absolute X ! ROR #$QQQQ,% ! 7E ! 3 !
1 [}) 1 1

Flags affected: ! N ! Z ' C ! I ' D! ¥ !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 129

Name: RTI
Operationt Return From Interrupt

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Faorm ! ! Bytes !

! ! ! ! !

! Implied I RTI ' 49 ! 1 !
! ' | ' !

Flags affected! ! N ! Z ' C ! I 'D ! v !

! ---- FROM STACK ---- !

Name : RTS
Operationt Return From Subroutine

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! Implied ! RTS ! €0 ! 1 !

Flags affected: ! N ! Z ¢t C ! I !'D ! V!

Narme : SBC
Operatiornt Subtract Memory From Accumulator With Borrow

' Pddresszing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! Bytes 1
! ! ! ! |
! Immediate | SBC #$0Q ! ES ! 2 1
! 2ero Page I SBC $QQ ! ES ! 2 !
! Zero Page , ™ ! SBC $0QQ,X% ! F3 ! a2 !
! Absolute ! SBC $0QG4 1 ED ! 3 !
! Absolute X ! SBC $0QQQ,X ! FD ! 3 !
! Absolute,Y ! SBC $QQQRA,Y ' F8 ! 3 !
! ¢(Indirect, ®? | SBC (%QQ,X> ! E1l ! 2 |
! ¢(Indirect?,Y ! SBC ($QQ),Y ! F1 ! 2 !
! ! ! ! 1

APPENDIX 8

Flags affected: ! N ! 2 ' C ! I ' D ¢t V!

Mamet SEC
Cperationt: Set Carry Flag

! Addressing Mode ! Assembly Language ! Opcode ! Number of
! ! Form ! 1 Bytes

' Implied ! SEC ! 3s ! 1 !

Flags affected: | N1 Z 1 C ! 1T 1 D} VI

Name ¢ SED
Operation: Set Decimal Flag

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form 1 Bytes !

-

! ! ! ! !
! Implied ! SED ! F8 ! 1 !
! ! ! ! !

Flags affectedt I N L 2 1 C 11 L D! V]

Name: SEI
Operation: Set Interrupt Disable Flag

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! Bytes !

! ! ! ! !
! Implied ! SEI ! 78 ! 1 !
! ! ! ! !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET

131

Flags affected:t ! N ! 2 1 C ! I !'D ! Vv !

SR (ST DT O AETN

Name : STA
Operationt Store Accumulator In Memory

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form ! ! By tes !
! ! ! ! !
! Zero Page ! STA *0Q ! 85 ! e !
! Zero Page X ! STA #$QQ, X ! a5 ! e !
! Absolute ! STA $0GGQG ! 8D ! 3 !
! Absolute ¥ ! STA $QQQAA,X ! S0 ! 3 !
! Absolute,Y ! STA #QQQQ,Y ! 9s ! 3 !
! ¢(Indirect , ¥ ! STA ($QQ,X) ! 81 ! 2 1
! (Indirect),Y ! STA ($QQ),Y ! at ! 2 !
! ! ' ! !

Flags affected:t | N1 Z ! C ! I ' D | Vv !

Name: STX
Operationt Store X Index In Memory

! Addressing Mode ! Assembly Language ! Opcode ! Number of

! ! Form ! ! By tes L
! ! ! ! !
! Zero Page ! STX #$0Q { 86 ! 2 !
! 2ero Page.,Y ! STX $QQ,Y ! a8 ! 2 !
! Absolute ! STX $000Q ! 8E ! 3 !

! ! ! !

Flags affected: ' N} Z ' C ! I ' D ! ¥ !

132 APPENDIX 8

Name: STY
Operation: Store Y Index In Memory

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! ! Form ! ! By tes]
! ! ! ! !
! Zero Page ! 8TY #QQ ! 84 ! e !
! Zero Page ,X ! STY $QQ,X ! 84 ! B !
! Absolute ! STY $QQEQAQ 1 8C 1 3 !
! ! ! ! !

Flags affected:t ! N | 2 ! C ! I ' D ! V!

Mame: TAMX
Operationt! Transfer Accumulator to X Index

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! Bytes !

! Implied ! TAX ! AA ! 1 !

Flags affected: ! N ! 2 't C ' 1 ' D ! V!

Namet TAY
Operationt Transfer Accumulator to Y Index

! Addressing Mode ! Assembly Language ! Opcode ! Number of !
! ! Form ! ! By tes !

! Implied ! TAY ! A8 ! 1 !

Flags affected: ' N ! 2 ' C ' 1 ' D ' VY !

COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET

133

Namet! TS
Operationt Transfer Stack Pointer To X Index

! Addressing Mode ' Assembly Language ! Opcode ! MNumber of !

! Form ! ! Bytes !

Impl ied I TSX ! BA ! 1 !

Flags affected: ! N ' 2 ¢t C ' 1 't D ' @ !

Namet TxA
Operationt Transfer X Index To Accumulator

! Addressing Mode ! Assembly Language ! Opcode ! Number of !

! Form ! ! By tes !

Impl ied ! THA ! B8R ! 1 !

Flags affected: I N |1 Z ' C ! 1 ' D ! v !

Name: TS
Operationt Transfer X Index To Stack Pointer

! Address ing Mode ! Assembly Language ! Opcode ! Number of !

! Form ! ! Bytes !

Implied ! TS ! A ! 1 !

Flags affected: ! N ! 2 ' C ! I ' D I v

134

APPENDIX 8

Name : TYA

Operationt

Transfer

Y Index To Accumulator

! Addresszing Mode ! Aszembly Language ! Opcode ! Number of
! ! Farm ! ! Bytes

! ! ! !

! Implied I TYA ! a8 ! 1

Flags affected:

ASCII codes

APPENDIX 9

-0 0 ~NOU s W -8

PPN a=

* oA

-

MO wv A =000 ULEWN-OG -

as
34
as
3e
37
3s
3s
a0
ai
ag
a3
a4
as
a6
a7
as
48
s0
51
se
53
54
55
s6
57
s8
s9
=)
61
s2
63
64

NLXE<CH®”IRVPVOZICxe=IO0MMODODD

65
66
67
68
69
7e
74
7e
73
74
-
76
5! &
78
79
80
81
=15
83
84
85
86
87
88
89
a8

| — % | > amA

I

I [y e S il Y A ¢

Ads—" 4L e _»o0X-

a1
=1
a3
84
as
=13
a7
as
a8
108
191
1e2
183
184
105
1es
107
108
1e9
11@
111
112
113
114
115
116
11?7
118
119
120
121
1ee
123
124
125
126
17
128
129
130
131
132

136 | APPENDIX 9
133 - | 175 o | 218
134 r 176 & | 218
135 -+ 177 | 217
136 T 178 + | 218
137 4 179 + | 219
138 | 180 H a2ee
138 I 181 | 221
140 1 182 a 2e2
141 = 183 h | 223
14 =1 l1ea 224
143 - | 185 1 2es
144 Jd | 188 = | 226
145 a 187 - | eav
146 *] 1es - | 228
147 = 189 | 2e9
148 . 190 ® | 230
149 " 191 I | 231
150 = 192 - | 232
151 L 183 r | 233
152 I 194 1 | 234
153 - 195 | e3s
154 1986 « | 236
155 - 197 L | 237
156 - 198 a 238
157 | 199 - | 239
158 | 200 r | 240
159 = 2e1 + | 241
160 | eea -+ | 242
[| 161 4 203 4 243
@ 162 L | 204 | 244
= 163 N | 2o 1 245
— | 184 7 | ees 1 | 248
| 165 r | sev = | 2av
n 166 b’ 2e8 ”» 248
I 167 @ 2o - | 249
- 168 - 2ie =5 25e
r 169 * 211 a 251
1 170 | 212 = | 252
F 171 s | 213 4 253
. 172 X | 214 234
L 173 ‘ 255
4 174

Index

Page numbers in bold refer to main entries.

Accumulator 24
Absolute addressing 43
Address 7
start 28
Addressing
memory 21
modes 43
Addressing modes
absolute 45
absolute, X 46
absolute, Y 46
accumulator 49
immediate 44
implied 46
indirect 53
indirect, X 52
indirect, Y 51
relative 45
zero-page 43, 44
zero-page, X 49
Always save source code! 27
AND 88 59
ASL 61,63
Assembler 3,11, 12,86
Assembly
of programs 33
language 11

Base2 15
Base 10 15
Base 16 15
BASIC 6
adding commandsto 80
loader 11
or machine code? 83
BCC 40
BCS 40
BEQ 37,38
Binary 15,17

Bitsand bytes 17, 18, 55
Bitmanipulation 55, 61
BIT 65
BNE 37,38
Branching
conditional 37
labelsfor 32

CHRGET 80
CMP 37,38
Constants 32
CPU 12
CPX 37
CPY 37
Crashes 27

Debugging 84

DEC 35

Decimal 15
-to-binary conversion 18
-to-hex conversion 20

DEX 35

DEY 35

Disassembler 85

Division 72

Eight-bit addition 68
subtraction 69

EOR 88,59

Errors, out-of-range 41

Flags 37, 39, 56
Flowchart 83

Hash 13
Hexadecimal 19, 20

INC 34
Indices 24

138 INDEX
Interrupts 78, 84 ROM
INX 34 Registers 85
INY 34 process 39
status 39
NP 42 Relocatable code 46
Remarks 28
ROL 65
Kernal 21
; Roll-over 34
Kernal jump table 75 Agtider-aB
ROR 64
Labels 31,33 Rotation commands 64
LDA 3‘5‘ RTS 26
LDX i i
= Running a machine code program 27
Logictables 56 Save source code! 27
Lo-Hi 80 ScreenRAM 26
Loops 34,35 Shift commands 61
LSR 61,62 Simple assembler 86
Sixteen-bitaddition 70
Machine code 9 subtraction 71
areareserved for 26 Source code saving 27
or BASIC? 83 STA 25
our first program 25 Stack 79
program crashes 27 Startaddress 28
running a program 27 Subroutines 73
Manipulators 23 SYS 27
Mathematics 67
Memory, addressing 21 TAX 36
Mnemonics 12 TAY 36
Monitors 85 Top-down programming 83
Multiplication 71 Truth tables see Logic tables
TXA 36
Or 57 TYA 36
ORA 57
Operating system 21 USR 76
Page 21 Variables 7,23
PEEK 8 Variable look-up table 7
POKE 8 Variable storage area 7
Processor 12

Programdesign 82

RAM screen 26

Xindex 23

Yindex 23

The Complete Commodore
Machine Code Programming Course

Andrew Bennett and Surya

Here, at last, 1s a really easy-to-follow introduction
to machine code programming on the
Commodore 64 and 128 computers.

Written with the absolute beginner in mind, the
course starts with the question '‘What 1s machine
code?', explains the background concepts
necessary for a complete understanding of the
subject, then guides the reader gently through first
the simple and later more complex programming
steps.

The aim of the book 1s clear: to turn the reader
Into a competent machine code programmer as
quickly and painlessly as possible. Every new
command or concept 1s illustrated with a fully-
annotated sample program and a thorough
explanation.

Best of all, the course includes a free machine
code assembler. Not only does this save you
money, but you are guaranteed 100% compatibility
petween what you read in the book and what
happens when you use the assembler.

By the end of the course, you will be able to
write programs that not only contain features
impossible to write in BASIC, but which run
hundreds of times faster than a BASIC program!

A Chapman and Hall/

Methuen Paperback ISBN 0O-4l2-27250-4
COMPUTING

11 New Fetter Lane
London EC4P 4EE

29 West 35th Street
New York NY 10001 80412

	CCI20190907_0000-crop
	CCI20190907_0001-crop
	CCI20190907_0002-crop
	CCI20190907_0003-crop
	CCI20190907_0004-crop
	CCI20190907_0005-crop
	CCI20190907_0006-crop
	CCI20190907_0007-crop
	CCI20190907_0008-crop
	CCI20190907_0009-crop
	CCI20190907_0010-crop
	CCI20190907_0011-crop
	CCI20190907_0012-crop
	CCI20190907_0013-crop
	CCI20190907_0014-crop
	CCI20190907_0015-crop
	CCI20190907_0016-crop
	CCI20190907_0017-crop
	CCI20190907_0018-crop
	CCI20190907_0019-crop
	CCI20190907_0020-crop
	CCI20190907_0021-crop
	CCI20190907_0022-crop
	CCI20190907_0023-crop
	CCI20190907_0024-crop
	CCI20190907_0025-crop
	CCI20190907_0026-crop
	CCI20190907_0027-crop
	CCI20190907_0028-crop
	CCI20190907_0029-crop
	CCI20190907_0030-crop
	CCI20190907_0031-crop
	CCI20190907_0032-crop
	CCI20190907_0033-crop
	CCI20190907_0034-crop
	CCI20190907_0035-crop
	CCI20190907_0036-crop
	CCI20190907_0037-crop
	CCI20190907_0038-crop
	CCI20190907_0039-crop
	CCI20190907_0040-crop
	CCI20190907_0041-crop
	CCI20190907_0042-crop
	CCI20190907_0043-crop
	CCI20190907_0044-crop
	CCI20190907_0045-crop
	CCI20190907_0046-crop
	CCI20190907_0047-crop
	CCI20190907_0048-crop
	CCI20190907_0049-crop
	CCI20190907_0050-crop
	CCI20190907_0051-crop
	CCI20190907_0052-crop
	CCI20190907_0053-crop
	CCI20190907_0054-crop
	CCI20190907_0055-crop
	CCI20190907_0056-crop
	CCI20190907_0057-crop
	CCI20190907_0058-crop
	CCI20190907_0059-crop
	CCI20190907_0060-crop
	CCI20190907_0061-crop
	CCI20190907_0062-crop
	CCI20190907_0063-crop
	CCI20190907_0064-crop
	CCI20190907_0065-crop
	CCI20190907_0066-crop
	CCI20190907_0067-crop
	CCI20190907_0068-crop
	CCI20190907_0069-crop
	CCI20190907_0070-crop
	CCI20190907_0071-crop
	CCI20190907_0072-crop
	CCI20190907_0073-crop
	CCI20190907_0074-crop
	CCI20190907_0075-crop
	CCI20190907_0076-crop
	CCI20190907_0077-crop
	CCI20190907_0078-crop
	CCI20190907_0079-crop
	CCI20190907_0080-crop
	CCI20190907_0081-crop
	CCI20190907_0082-crop
	CCI20190907_0083-crop
	CCI20190907_0084-crop
	CCI20190907_0085-crop
	CCI20190907_0086-crop
	CCI20190907_0087-crop
	CCI20190907_0088-crop
	CCI20190907_0089-crop
	CCI20190907_0090-crop
	CCI20190907_0091-crop
	CCI20190907_0092-crop
	CCI20190907_0093-crop
	CCI20190907_0094-crop
	CCI20190907_0095-crop
	CCI20190907_0096-crop
	CCI20190907_0097-crop
	CCI20190907_0098-crop
	CCI20190907_0099-crop
	CCI20190907_0100-crop
	CCI20190907_0101-crop
	CCI20190907_0102-crop
	CCI20190907_0103-crop
	CCI20190907_0104-crop
	CCI20190907_0105-crop
	CCI20190907_0106-crop
	CCI20190907_0107-crop
	CCI20190907_0108-crop
	CCI20190907_0109-crop
	CCI20190907_0110-crop
	CCI20190907_0111-crop
	CCI20190907_0112-crop
	CCI20190907_0113-crop
	CCI20190907_0114-crop
	CCI20190907_0115-crop
	CCI20190907_0116-crop
	CCI20190907_0117-crop
	CCI20190907_0118-crop
	CCI20190907_0119-crop
	CCI20190907_0120-crop
	CCI20190907_0121-crop
	CCI20190907_0122-crop
	CCI20190907_0123-crop
	CCI20190907_0124-crop
	CCI20190907_0125-crop
	CCI20190907_0126-crop
	CCI20190907_0127-crop
	CCI20190907_0128-crop
	CCI20190907_0129-crop
	CCI20190907_0130-crop
	CCI20190907_0131-crop
	CCI20190907_0132-crop
	CCI20190907_0133-crop
	CCI20190907_0134-crop
	CCI20190907_0135-crop
	CCI20190907_0136-crop
	CCI20190907_0137-crop
	CCI20190907_0138-crop
	CCI20190907_0139-crop
	CCI20190907_0140-crop
	CCI20190907_0141-crop
	CCI20190907_0142-crop
	CCI20190907_0143-crop
	CCI20190907_0144-crop
	CCI20190907_0145-crop
	CCI20190907_0147c-crop
	Blank Page
	Blank Page
	Blank Page

