




The Complete 
Commodore Machine Code 

Programming Course 



The Complete 
Commodore 

Machine Code 
Programming 

Course 

ANDREW BENNETT 
and 

SURYA 

LONDON 

Chapman and Hall/Methuen 
NEW YORK 



First published in 1986 by 
Chapman and Hall Ltd/Methuen London Ltd 

11 New Fetter Lane, London EC4P 4EE 
Published in the USA by 

Chapman and HalVMethuen Inc 
29 West 35th Street, New York NY 10001 

© 1986 Andrew Bennett and Swya 

Printed in Great Britain by]. W. Arrowsmith Ltd, Bristol 

ISBN 0 412 27250 4 

This paperback edition is sold subject to the condition that it 
shall not, by way of trade or otherwise, be Jent, resold, hired 

out. or otherwise circulated without the publishers prior 
consent in any form of binding or cover other than that in 

which it is published and without a similar condition 
including this condition being imposed on the subsequent 

purchaser. 

All rights reserved. No part of this book may be reprinted 
or reproduced, or utilized in any form or by any electronic, 

mechanical or other means. now known or hereafter 
invented. including photocopying and recording, or in any 

information storage and retrieval system without permission 
in writing from the publisher. 

British Library Cataloguing in Publication Data 

Bennett, Andrew 
The complete Commodore machine code programming 

course: includes an assembler program for the 
CBM 64 and 128. 

J. Commodore computers-Programming 2. Machine 
codes (Electronic computers) 3. Microcomputers 

-Programming 
I. Title II. Surya 

005.2'6 QA76.8.C6 

ISBN 0-41?-27250-4 

Library of Congress Cataloging in Publication Data 

Bennett, Andrew; 1964-
The complete Commodore machine code programming 

course. 
(Chapman and Hall computing) 

Bibliography: p . 
Includes index. 

1. Commodore 64 (Computer)-Programming. 
2. Commodore 128 (Computer)-Programming. 3. Assembler 

language (Computer program language) 
1 Swya, 1963- . IL Title. III. Series. 

QA76.8.C64B46 1986 005.265 86-Q797 
ISBN 0-412-27250-4 



Contents 

Preface page ix 

1 Leaming machine code 1 
1.1 A word about the Cl28 3 
1.2 The assembler 3 

2 What is machine code? 6 
2.1 Programming in BASIC 6 
2.2 Programming in machine code 9 
2.3 Why program in machine code? 9 
2.4 Assemblers and assembly language 11 
2.5 And finally . .. 13 
2.6 Summary 13 

3 Hexadecimal and binary 16 
3.1 Binary 17 
3.2 Hexadecimal 19 
3.3 Why do we use hex? 20 
3.4 Memory addressing 21 
3.5 Summary 22 
3.6 Exercises 22 

4 Machine code commands 23 
4.1 The LDA, LDX, LDY, STA, STX and STY commands 24 
4. 2 Our first machine code program 25 
4.3 Running a machine code program 27 
4.4 What if my machine code program crashes? 27 
4.5 Remarks 28 
4.6 Summary 28 
4.7 Exercise 29 

6 Labels, flags and branching 30 
5.1 Labels 31 



vi CONTENTS 

5.2 Using labels in BASIC 31 
5.3 Using labels for branching 32 
5.4 Labelling constants 32 
5.5 The increase commands: INX, INY and INC 34 
5.6 The decrease commands: DEX. DEY and DEC 35 
5.7 The transfer commands: TAX, TAY, TICA and TYA 36 
5.8 The conditional branching commands: BEQ and BNE 37 
5.9 Flags 39 
5. 10 Greater-than and less-than comparisons 40 
5. 11 Out-of-range errors 41 
5.12 Exercise 42 

6 Addressing modes 43 
6.1 Immediate 44 
6.2 Zero-page 44 
6.3 Absolute 45 
6.4 Relative 45 
6.5 Implied 46 
6.6 Absolute,X and Absolute, Y 46 
6.7 Zero-page,X 49 
6.8 Accumulator 49 
6.9 Lo-Hi form 50 
6. 10 Indirect, Y 51 
6.11 Indirect,X 52 
6. 12 Indirect 53 
6.13 Summary 53 
6. 14 Exercise 54 

7 Bit manipulation and logic (or 'truth') tables SS 
7.1 What is bit manipulation? 55 
7.2 Logic tables 56 
7.3 ORA 57 
7.4 AND 58 
ZS EOR 58 
7.6 Summary 60 
7. 7 Exercise 60 

8 Bit manipulation 61 
8.1 The shift commands 61 
8.2 The rotation command 64 
8.3 The BIT commands 65 
8.4 Summary 66 
8.5 Exercise 66 



CONTENTS vU 

9 Mathematics in machine code 67 
9.1 Eight-bit addition 68 
9.2 Eight-bit subtraction 69 
9.3 Sixteen-bit addition 70 
9.4 Sixteen-bit subtraction 71 
9.5 Multiplication and division by two 71 
9.6 Division by two 72 
9.7 Summary 72 
9.8 Exercise 72 

10 Machine code subroutines 73 
10.1 Machine code subroutines 73 
10.2 The Kernal jump table 75 
10.3 USR 76 
10.4 Summary 77 
10.5 Exercise 77 

11 Interrupts, the stack and adding commands to BASIC 78 
11.1 Interrupts 78 
11.2 The stack 79 
11.3 Adding commands to BASIC 80 

12 Application and practice 82 
12.1 Program design 82 
12.2 BASIC, machine code or both? 83 
12.3 Doing several things at once 84 
12.4 Debugging 84 
12.5 Monitors 85 

Afterword 87 

Appendices 
l Quick conversion chart: decimal/hex/binary 88 
2 C64 memory map 94 
3 Screen codes 98 
4 Colour codes 100 
5 BASIC SYS routine 101 
6 Answers to Exercises 102 
7 The Kernal routine 106 
8 A complete listing of the 6510 assembly language 

instruction set 113 
9 ASCII codes 135 

Index 137 





Preface 

There is a perpetµal question faced by anybody wanting to present a 
technical subject to an audience unfamiliar with it: do you choose someone 
expert in the subject and hope that they will be able to translate their 
knowledge into plain English, or do you choose a professional communicator 
and hope that they have a sufficient grasp of the subject to get their facts 
right? That a large proportion of computer books are either badly written or 
technically inaccurate is testimony to the fact that neither approach offers a 
real solution. 

This book takes a different approach. Instead of choosing between the 
machme code programming expert and the professional communicator, 
we've used both. Andrew is a professional programmer on the CBM 64, 
while I'm a computer journalist and consultant by profession. We believe 
that, by working together, we've come up with a guide which is far easier to 
use than any other on the same subject. We hope you'll agree. 

London, March 1986 
Surya 





I 

Learning machine code 

Leaming machine code is easy. 
Machine code is often seen, felt or talked about as something 

complicated, mysterious and reserved for whizz-kids. When you see 
machine code listings in books and magazines, the code and the jargon often 
appear totally incomprehensible. You may have looked at other books or 
articles, supposedly written for complete beginners, and found them 
bewildering and confusing. You may have talked to experienced machine 
code programmers and ended up wondering if they are from the same 
planet or from one with a totally different language. Don't worry: you're.not 
alone! 

Most people find machine code confusing when they first encounter it. It's 
perfectly natural: you're learning a new language. You have probably 
forgotten how difficult and confusing BASIC seemed when you first began to 
learn it. Yet within a week or so you were quite happily writing your own 
programs and discovering more and more about the language. Machine 
code is no different. It may seem a little complicated to begin with, but you 
will be surprised when you realize how quickly your understanding has 
grown. 

We don't know just how quickly or easily you will learn. What we do know 
is that all it takes is time and patience, plus a little effort. This book was 
written with the complete beginner in mind. We do, obviously, assume 
that you are reasonably familiar with BASIC, but we do not assume 
any prior knowledge or experience of machine code. We start right at the 
beginning. 

We have designed this course with 'ease of use' as our prime concern. 
And you can make your learning even easier by following a few simple 
guidelines: 

e Take things slowly 
We know that you will probably be eager to dive in and 
start writing machine code masterpieces, but the time you 
spend covering the basics will make life a hundred times 
easier when you start learning more exciting techniques. 



2 LEARNING MACHINE CODE 

e When in doubt, go back and re-read 
Again, it is very tempting to rush straight on to the next 
chapter as soon as you reach the end of the previous one. 
Don't! Your understanding will be much deeper and 
clearer if you take the time to make sure that you have 
understood everything in the chapter. 

e Reinforce your understanding 
We have already suggested re-reading any bits you are 
not sure about, but we also recommend that you regularly 
go back to earlier chapters to make sure you have not 
forgotten any of the earlier material. Machine code is very 
much interconnected, so this can be an extremely valuable 
way of developing your knowledge of the subject. You will 
find that the basics of the subject will make much more 
sense to you when you come back to them for a second 
and third time after covering some more advanced 
material. 

• Do the exercises! 
The exercises have been carefully designed to test your 
understanding and to give you the chance to put your new 
skills into practice. You will learn much more easily and 
effectively if you complete them, going back into the 
chapter for help as you need it. Just reading the exercise 
and then looking up the answer won't do you any good at 
all. Doing is the easiest way of learning. 

e Practicel 
As well as the exercises we have set, try out your own 
ideas along the way. You may find that many of your ideas 
don't work: that's fine - you'll actually learn more from 
finding out why they don't work! 

e Type in the example programs 
We know that typing in programs can be boring. It can 
also be extremely interesting if you pay attention as you 
enter them. You might wonder about how they work 
before reading the full explanation. We have deliberately 
kept these programs short to make them easy to enter, so 
please do take the trouble: the practice is well worth it. 
One of the main reasons for supplying an assembler as 
part of this course was because we intend the book to be 
used beside the computer, trying things out as you go 
along. If you learnt BASIC that way, you will know what a 
good system it is. 



THE ASSEMBLER 

eEnjoy it! 
Machine code is not some kind of a test. It is a tool 
designed to enable you to get even more power and 
enjoyment from your C64. Experiment. Have fun. Enjoy 
your new-found skills. 

1.1 A word about the Cl28 

The Commodore 128 is 100% upward-compatible with the Commodore 64. 
This means that all C64 programs, BASIC or machine code, will run on the 
Cl28. The assembler supplied with this book, and all the demonstration and 
example programs, will run perfectly on the Cl28 without modification. All 
references to the C64 should be taken to mean C64 or C 128. 

1.2 The assembler 

In order to write machine code programs on your C64, you need a special 
program called an assembler. These normally cost between £8 and £50, and 
each one is slightly different from the rest. This means that learning machine 
code using a separate book and assembler is not only expensive, it is also 
hard work because the programs in the book may not work without 
modification on the assembler you have bought. We thought that this was not 
particularly helpful, so, with the willing co-operation of Chapman and Hall, 
the book's publisher, we decided to include an assembler with the book. 
Since the assembler and the book were written together, the two are, of 
course, 100% compatible. 

The assembler supplied with this book was written in BASIC, with 
machine code subroutines: a technique you will be able to use in your own 
programs by the time you have completed this course! When you've typed it 
in, or loaded it from the optional tape available, it's ready to do its work. Not 
all of the explanation given below will make sense to you yet. Those of you 
with some experience should read it carefully, to note any differences 
between our assembler and the one you have used before. Beginners can 
just read quickly through it, referring back to it as required. 

To type a machine code program into your C64, load the assembler and 
then enter the machine code just like a BASIC program except that the line 
numbers must be above 5000. All the example programs in this book have 
line numbers of 6000 or over. If you accidentally enter anything with a line 
number of less than 5000, the assembler may be overwritten so enter NEW 
and then load it again. When you enter machine code into your C64, the code 
you type is called the source code. Once this has been assembled (we will 



4 L~RNING MACHINE CODE 

explain what this means later in the book), the resulting program is called the 
object code. A golden rule of writing machine code is: always save your 
source code before assembling the program. That way, if your machine 
code program crashes and causes the C64 to 'hang-up', you can just switch 
off and reload your source code to correct the mistake. 

To enter source code, the first line of your program needs to tell the 
assembler whereabouts in memory to store the program. This is done by 
telling it the start address, and is done like so 

5000 [ (start address) 

with one space between the left square bracket and the address. The 
normal start address is $COOO, so you would enter 

5000 [ $COOO 

or, if you want to use decimal numbering 

5000 [ 49152 

All this is explained properly later in the book, but those with some machine 
code experience might like to note that the acceptable range of start 
addresses for this assembler is $COOO to $0000. 

To make life easy, the assembler can work with decimal, hex and binary 
numbers (see Chapters 2 and 3). It can also use ASCII codes. Normally, the 
assembler will assume that you are working in decimal. If you want to use 
hex, binary or ASCII, you tell the assembler this by putting a prefix in front of 
the number. 

% = binary, e.g. % 10011011 
$=hex, e.g. $AS 
' = ASCII, e.g. 'E means the ASCII code of E (NB: ' = single quote mark) 

If a number does not have any of these prefixes, the assembler will treat it as 
a decimal number. 

The syntax for a line of assembler code is 

(line number) (instruction) (number) :(label} ;(remark) 

An example of this would be 

6000 LOA $5000 :LOOP ;LOOP BACK TO HERE 

Not all machine code instructions require a number (as we will see later), 
and labels and remarks are optional. Labels can be of any length, but must 
start with a colon. Remarks can be of any length, but must start with a 
semicolon. The total length of the line, however, must not be greater than 80 
characters - just as in BASIC. 

If a line does not have a label, the remark can go straight after the number 

6000 LOA $5000 ;Like so 



THE ASSEMBLER 

Constant labels (as opposed to line labels) must be on a line of their own. The 
format is -

( line number):(label)=(value) 

For example 

6000 :COLOUR1=$07 

You are also allowed simple maths 

6010 :COLOUR2=COLOUR1 + l 
6020 :COLOUR3= COLOUR1- l 

This assembler has three aditional commands, which we have called dot 
commands because they are preceded by a dot! You will not find these 
commands in a nonnal assembler. 

The first dot command is BYT. This places single-byte numbers of up to 
255 in memory after your machine code program. Thus 

7010 .BYT $60 :DATA 

would place the number $50 in memory and label it DATA, so that 

7020 LDA DAT A 

would place $50 into the accumulator. 
The second dot command, WOR , is the same as BYT except that it allows 

you to place numbers of up to 65535 into memory 

7010 .WOR $0400 :DATA 

Finally, .TXT places a string into memory 

7030 . TXT "CBM 64" :LOGO 

Note that dot commands must be on a line of their own, with one dot 
command per line. 

Finally, you must end your source code (the program you type in) with 
END on a line of its own. This is to let the assembler know where the program 
ends. When you have finished entering your source code, just enter RUN to 
assemble it into object code. When assembly is complete, the assembler 
will print out the start and end addresses so that you can save the object 
code. 

So, without further ado, let's begin at the beginning ... 



2 

What is machine code? 

This chapter will give you an overall understanding of what we mean by 
machine code, how it differs from BASIC and the purpose of programming in 
it. When you have read it, you should be able to answer the following 
questions: 

• What is machine code? 

e What is the point of programming in machine code? 

e What is assembly language? 

• What is hex? 

When you first bought your C64, the salesperson probably told you that its 
natural programming language was BASIC. In fact, the C64's native language 
is machine code. (BASIC itself is actually written in machine code, but we 
will talk about this further on.) Later you will understand why we say this, but 
before then we have to explain exactly what we mean by machine code. 

2.1 Programming in BASIC 

To understand what we mean by machine code programming, we need to 
look firstly at what happens when we program in BASIC. In BASIC, we use 
variables to store and calculate values. To calculate the number of hours 
someone has been alive, for example, we would write a program something 
like that shown in Listing 2. l. 

Listing 2.1 

10 REM BASIC program 1 
20 REM Calculates approx. age in hours 
30 PRINT ''[CLR]" 
40 INPUT "Please enter your age in years'';YEAR 
50 INPUT " and months"; MONTH 
60 LET DAY(l)= YEAR*365.25 



PROGRAMMING IN BASIC 

70 LET DAY(2)=MONTH*30.6 
80 LET DAY=DAY(l)+DAY(2) 
90 LET HOUR=INT(DAY"24) 
100 PRINT "Congratulations!" 
110 PRINT "You've been alive for over ";HOUR;" hours!" 
120 END 

In this program, we are using six variables. A variable, of course, is just a 
label for a value. When we tell BASIC to LET HOUR= INT(DAY*24), it finds 
the value of DAY, multiplies it by 24, strips everything after the decimal point 
and places the result into the variable HOUR 

In reality, the C64 has stored the value of DAY in a memory location. We 
don't know which location, and it doesn't matter to us: all we have to do is 
refer to the variable and the C64 will examine the correct location to find the 
value. A simplified view of this process is shown later in this chapter. 

In order for the C64 to 'remember' the value of a variable, it has to store 
both the variable name and the value somewhere in RAM. In reality, each 
letter of the variable, and the value itself, would occupy a separate memory 
location (address) but for now we will take a simple view and pretend that 
each variable name and value is stored in a single address. Later on in the 
book we will examine the process in more detail. 

Let us take the example 

10 LET A=S 

BASIC would first check whether the variable A already exists. It does this 
by checking a variable look-up table: every time a variable is defined, it 
adds the variable to the table: 

Variable look-up table 

I Vanable I Stored at which address? I 

If it does not find the variable in the table, it assumes that it is being defined 
for the first time. It will then find the first free memory location in the variable 
storage area of memory and store the variable at this address: 

Variable storage area 

I Address I Variable label I Value I 

I 49152 I A 5 

l 
7 



8 WHAT IS MACHINE CODE? 

Now if we tell BASIC to alter the value of the variable 

20 LET A= A+l 

it will first check whether it exists by consulting its variable look-up table: 

Variable look-up table 

I Variable I Stored at which address? I 

I A I 49152 

Since the value of A is already stored at location 49152, BASIC will simply 
perform the calculation (5+ l =6) and then store the new value at the same 
address as the old one: 

Variable storage area 

I Address I Variable label I Value I 

j 49152 I A 16 

It is possible, of course, to tell BASIC to store a value in a particular memory 
location. We do this using the 'POKE address, value' statement. The following 
piece of BASIC 

10 POKE 49152,64 

tells BASIC to store the value 64 in memory location 49152. Thus we could use 
memory locations instead of variables to store values. Instead of 

10 LET A=5 

we could say 

10 POKE 49152,5 

Likewise, 'PEEK(address)' is used to look up the value stored at an address. 
So instead of 

20 PRINT A 

we would say 

20 PRINT PEEK(49152) 



WHY PROGRAM IN MACHINE CODE? 

2.2 Programming in machine code 

So, what has all this to do with learning about machine code? Well, in 
machine code everything is done by working directly with memory 
locations - just like POKEing and PEEKing. 

Let's suppose we wanted to print "HELLO" on the screen. In BASIC we 
would just say 

lO PRINT "HELLO" 

In machine code we would have to place each letter onto the screen 
individually. What we do, in effect, is to POKE the character code of each 
letter into the area of memory the C64 uses to display things on the screen. 
This is something you may have done in BASIC for speed - you can see an 
example of this technique in Listing 2.2. 

There is nothing difficult about working directly with memory locations, it 
just takes a bit of getting used to. You don't have to have an IQ in four figures 
and you don't need to be a genius at programming. All you need is to be 
competent at BASIC programming and willing to concentrate. 

Listing 2.2 

10 REM <C> A.R.BENNETT 198~ 
20 : 
30 REM BASIC VERSION 
40 f 

100 PRINT"~"ITJ$="000000" 
110 FOR!=0T09991POKE1024+I,81tPOKE~~296+!,t4:POKE1024+!,321NEXT 
120 PRINT"•"JT!$,TI 
130 Ef'D 
READY. 

2.3 Why program in machine code? 

Ok, so machine code just requires concentration and practice, but why 
bother? What's wrong with BASIC? There are two main reasons for 
programming in machine code: power and speed. 

Machine code is more powerful than BASIC because you have greater 
control over not only what the C64 does, but how it does it. This is something 
we will explain later, once we have got you writing your own machine code 
programs, but we can demonstrate the speed of machine code right now. 
Take a look at Listings 2.2 and 2.3. Both do the same job - they move a 
graphics character along each line of the screen, erasing the character 
currently there before moving to the next position. The difference is that 
Listing 2.2 is a straightforward BASIC program while Listing 2.3 sets up and 



10 WHAT IS MACHINE CODE? 

Listing 2.3 

1000 REM Mf'ICHINE CODE VERS ION 
100:5 I 

1010 FORI • 0T0701REAOAIPOKE49 1:52+ I , A: T=T+A INEXT 
1020 IFT<> ll018THEl'FRINT".:£RROR IN CATA STATEMENTS! !" t STOP 
1030 TI$•"000000" 1SYS49 1:521 PR I NT"•" ;TIS 1TI1Ef'.I) 
1040 I 
10:50 DATA 169, 0 , 133,247 ,169,4,133 , 2 48 
1060 DATA 169,0 , 133,249 , 169,2 16 ,133,2:50 
1070 DATA 162, 0,160,0 , 169,9 1 , 14:5 ,247 
1080 DATA 169, 14 , 145 ,249, 169,32, 145 ,247 
1090 DATA 2 00,192 ,250 ,209,239,24 , 165,247 
1100 DATA 105 ,250 , 133 ,247, 165,249, 10 5 , 0 
1110 DATA 133,248,24 , 16 :5 ,249,105,250 ,133 
1120 DATA 2 49, 16:5 ,250,105,0 ,133,250,232 
1 130 DATA 224 , 4 ,208 ,20 6,96,255,0 
READY. 

runs a machine code program (we will explain what this means a little later; 
all you need to know for now is that the second program uses machine code). 
Type in and RUN each program in tum. Each program will time itself, and 
display the total time taken. 

You will have noticed that the machine code version runs over 400 times 
faster than the BASIC one! A pretty good reason to learn machine code! Just 
think of what you can do with that kind of speed in your own programs. If you 
are wondering why machine code is so fast, you need to ask the question the 
other way around: Why is BASIC so slow? 

So, let us go back to BASIC for a moment and find out what happens when 
we execute a piece of BASIC code. Let us suppose you type this into your 
C64 

PRINT "Aren't example PRINT statements boring?" 

The C64 may appear to display the sentence the instant you press the 
RETURN key, but there is actually a considerable delay - as we saw in 
Listing 2.2 above. The reason for this is that, as we mentioned earlier, BASIC 
is actually written in machine code. The C64 itself does not know how to 
PRINT anything: it needs a machine code program to display things on the 
screen, and this is in fact what happens. 

When the C64 encounters a BASIC statement (like PRINT), it 'looks up' the 
machine code program. In this example, when it finds the PRINT program, 
the C64 will look at what follows the PRINT statement. In this case it finds a 
quotation mark. so it knows that we want to print everything up to but not 
including the next quote. The PRINT program then places each character, 
one at a time, onto the screen. After the closing quote, the PRINT program 
checks for variables or values to be printed before ending. The C64 then 
looks for the next BASIC statement. 



ASSEMBLERS AND ASSEMBLY LANGUAGE 

The reason that BASIC is so slow is two-fold. First, it takes time to look up 
each BASIC statement. And second, because the machine code programs 
which make up BASIC have to perform a variety of jobs (PRINT, for example, 
is used to print the contents of quotes, straight values and variables), they are 
generally inefficient. Although the time taken to print a single item may not 
be noticeable, add up all the keywords in even a short program and you soon 
see that those short delays quickly multiply into long ones. 

BASIC programming is a bit like talking to a foreigner through an 
interpreter. You have to speak to the interpreter in English, the interpreter 
then mentally translates the statement into the foreign language before 
finally passing on the translated message. Communication is slow and 
inefficient. You may have heard BASIC described as an interpreter or 
interpreted language for this reason. 

Z.4 Asaemblers and assembly language 

Ok, so now that we know a little about how BASIC works we can - at last -
start talking about machine code! Something that often confuses people 
when they first come across machine code is what does machine code 
actually look like? You will have seen listings in books and magazines 
looking like Listing 2.3 above, consisting of masses of unintelligible numbers 
in DATA statements, described as machine code. And you have probably 
also seen listings like this 

[ $COOO 
LOA #$08 
STA$0400 
LDA #$05 
(etc) 

described as machine code. So which one is really machine code? Well, if 
you want to be completely accurate then the answer is neither! True 
machine code is actually written in binary (base two) notation and would 
look something like this 

01001100 00000100 
10100000 01110001 
(etc.) 

But while the above might make perfect sense to a computer, we humans 
find it a little harder to cope with! For this reason, there are two alternative 
methods of writing machine code. The first, which we used in Listing 2.3 
above, is known as a BASIC loader. All this does is use the decimal 
equivalents of binary instructions and addresses and uses BASIC to POKE 
them into memory. This is a useful technique to use in magazines, because 

11 



12 WHAT IS MACHINE CODE? 

anyone can type them in witho11t any understanding of machine code. But, 
while decimal numbers are an improvement on binary ones, this sort of line 

2000 DATA 21,4,16,203,6,76 

is not much easier to understand! So a third method of programming in 
machine code was developed: assembly language programming, often 
known simply as assembler.' So what is assembly language? 

Well, machine code commands take the form 

(instruction} (number) 

In binary, this might look like 

01000010 00110101 

And in decimal (as part of a BASIC loader) 

DATA 66,66 

The number can be either a value or an address in memory, while the 
instruction tells the C64 what to do with, or to, the value or address. 

In assembly language, binary instructions are replaced by three-letter 
codes, known as mnemonics, and binary numbers are replaced by 
hexadecimal (base 16, usually known simply as hex) ones. We will find out 
about binary and hexadecimal numbering in the next chapter, but for now all 
we need to know is that hex numbers are indicated by placing a dollar sign 
($)in front of them. So, 15 means decimal 15 while $15 means hex 15 (decimal 
21). 

So, a line of assembler would look something like 

LDA #$08 

The assembler equivalent of the REM statement is a semicolon, so the same 
line might look like 

LDA #$08 ; Load accumulator with H 

When people say that they can program in machine code, they usually mean 
that they can program in assembler. Very few people program in binary 
these days (!), and it is assembler that you will be learning with the help of 
this book. 

Because different computers have different types of processors, or CPUs, 
there are different types of assembler. The C64 has a 6510 processor and so 
is programmed in 6510 assembler. Incidentally, the 6510 is almost identical 
to the 6502 (used in the BBC and Apple computers, among others) so you will 
also be able to program in 6502 assembler! 



SUMMARY 

2.5 And finally ... 

The final thing to mention in this chapter is the '# ' (hash sign). Normally when 
we use a (hex) number in assembler , the C64 will assume that we mean the 
memory location. So, if you typed 

LDA $08 ; Don't worry about what this does just yet 

into your ASSEMBLER, the C64 would use the memory location $08. If, 
however, you typed 

LDA #$08 ; Or this, for that matter! 

then the C64 would use the hex value $08. So the hash sign is just a way of 
telling the C64 that we mean the actual number and not the memory 
location. 

2.6 Summary 

Machine code is the direct manipulation of memory 
locations (just like POKEing and PEEKing). BAsIC, on the 
other hand, normally organizes the C64's memory itself. 

BASIC is slow firstly because the C64 has to look up the 
machine code program that actually does the work, and 
secondly because BASIC is designed for flexibility rather 
than efficiency. 

True machine code programming is performed in binary 
(base 2) notation, but hardly anyone programs in binary 
these days. Assembler is a kind of half-way house 
between binary and BASIC and is what most people mean 
by machine code. 

Assembly language programming uses hex (base 16) 
notation, and three-letter instructions known as mnemonics. 
Hex numbers are preceded by a dollar sign (for example, 
$15) to differentiate them from decimal numbers. In 
assembler listings, hex numbers are assumed to refer to 
memory locations unless they are preceded by a hash sign 
(for example, # $15). Numbers with a hash sign are taken 
to be literal values. 

You should also know the meanings of the following terms: 
memory location (or address), variable look-up table, variable storage area, 



.:: 14 WHAT IS MACHINE CODE? 

interpreter (or interpreted language), binary, BASIC loader, ASSEMBLER 
(or assembly language), mnemonics, hexadecimal, 6510, 6502. 

U there is anything in this summary you are not sure about, please go back 
and re-read the relevant parts of the chapter. 



3 

Hexadecimal and binary 

This chapter explains the two numbering systems used in machine code: 
hexadecimal and binary. When you have read it, you should be able to 

e Convert from hex to decimal using only a calculator 

e Convert from binary to decimal using only a calculator 

e Convert from decimal to hex using the program in this 
chapter 

e Convert from decimal to binary using the program in 
this chapter 

e Instantly recognize decimal, binary and hex numbers 

The ability to count is one of civilization's most basic skills. Just think how 
much of our everyday lives are dependent of the concept of numbers. 
Without the ability to count we would have no calendars, clocks, money .. . 
hey, this sounds pretty good! Ah, well. 

In order to count, we need some kind of numbering system. The most 
obvious numbering system would be to have a different symbol for each 
number. This would be fine for numbers up to about ten or twenty, but once 
you start going above this you are going to find it difficult to remember all the 
different symbols. For this reason, numbering systems use a small number of 
symbols divided into different columns. Thus in the decimal system, 1 
represents one while 10 represents ten and 100 one hundred. 

The decimal (base 10) system is the most obvious one since we each have 
ten digits on the end of our hands. It is not, however, the only system in use. 
Old money, for example, used base 12: twelve pennies made one shilling. 
Computers use three different numbering systems: decimal (base 10), 
hexadecimal (base 16) and binary (base 2). Since you are already familiar 
with base 10, let us use this as our first example. It might seem a bit like 
primary school maths (which it is), but it is important to understand the 
principle of decimal numbering before we look at other bases. 

All numbering systems use columns to represent different values. The 
highest number any column can contain is one less than the base. Thus in 



16 HEXADECIMAL AND BINARY 

base 10, the highest number allowed in a single colum is nine. To write the 
number ten, we put a one in the tens column and a 0 in the units column: 

10. 

The meaning of the columns is the same in any base. The column before the 
point is units (ones), the column to the left is the base (in decimal, ten), the 
column to the left of this is the base squared (in decimal, ten times ten = one 
hundred) and the next the base cubed (in decimal, ten times ten times 
ten = one thousand) and so on 

Base2 Base Units 

lOOs 10s ls Decimal value 

l 0 0 One hundred 
0 l 0 Ten 
0 0 1 One 
1 1 One hundred and eleven 

When a number equals the base, we 'carry' into the next column. Let us take 
the example of a simple addition 

Operation 

+ 

Base Units 

10s 

0 
0 

ls 

4 
6 

Decimal value 

Four 
Six 

0 Ten 

Ok, so this is all obvious stuff. So let us look at another base, say base 5. 
Remember that the highest number allowed in a single column is one less 
than the base, so base 5 will use only the digits 0, 1, 2, 3 and 4. To write 
decimal 5 in base 5, would carry over into the base column 

Base2 Base Units 

25s Ss ls Decimal value 

0 0 Five 

Now let us do a simple addition in base 5 



BINARY 

Base Units 

Operation 5s ls Decimal value 

0 4 Four 

+ 1 3 Eight 

2 2 Twelve 

To convert the answer 22, in base 5, to decimal we simply multiply the figure 
in the base column by the base (in this case, 2 x 5) and add on the units 
column: (2 x 5) + 2 = 10 + 2 = 12. To convert a larger number, say 432 in 
base 5 to decimal, the same process applies 

Base2 Base Units 

25s 5s ls 

4 3 2 

= (4 x 25) + (3 x 5) + (2 x l) 
= 100 + 15 + 2 
= 117 decimal. 

3.1 Binary 

You will remember that the highest figure used in a single column is one less 
than the base. So in binary (base 2), the only digits used are 0 and l. These 
are sometimes referred to as off and on. Thus 

Base2 Base Units 

4 2 Decimal value 

1 0 0 Four 
0 1 0 Two 
0 0 1 One 
1 1 1 Seven 

Binary digiTS are known as bits. You may have heard that the C64 is an 8-bit 
computer or has an 8-bit processor. This simply means that it can deal with 
up to eight columns of binary digits 

~ 



18 HEXADECIMAL AND BINARY 

Base7 Bases Base4 Base3 Base2 Base Units 

128s 64s 32s 16s 8s 4s 2s ls 

Thus the larges nwnber the C64 can handle at one go is binary 1111 l l l l. We 
can calculate this as 

(l x 128) + (l x 64) + (l x 32) + (l x 16) + (l x 8) + (l x 4) + (l x 2) 
+ (l x l) 
= 128 + 64 + 32 + 16 + 8 + 4 + 2 + l 
= 255. 

Figure 3.1 

Value (decimal): 128 64 32 16 

r ' Ir 

BIT BIT BIT BIT 

7 6 5 4 

8 4 2 

' ' 
BIT BIT BIT BIT 

3 2 1 0 

You will probably already be familiar with the figure 255 as the maximwn 
value allowed in certain functions, and you may know that 255 is the 
maximwn value that can be sored in a single memory location (byte). To 
store a nwnber larger than 255, the C64 uses two bytes. Thus the highest 
nwnber the C64 can handle is binary l l l l l l l l l l l l 1111 which translates to 
decimal 65535, or 64K (l K = 1024 characters). Thus 65535 is the C64's highest 
memory location. 

We have already seen how we convert from binary to decimal, but 
converting the other way around is more difficult. For this reason we have 
provided you with a simple program (Listing 3.1) to do the job for you Simply 
type in any decimal nwnber up to 255 and the program will convert it to 
binary. To avoid confusing decimal and binary nwnbers (does l 01 mean one 

Listing 3.1 

10 REM OECIMA~ TO BINARY 
20 I 

30 8$• 0 01° 
48 lt.f>UT"~lt.f>UT OECIM'\~ l'«JMBER <8-6~~3~lt 0 10$rO•VA~<O•> 

~0 IF0<00R0>8~~3~THEN40 

60 PRINT "- HNARY l'«JMBER • X"1 
70 FORl•1~T00STEP-11G•INT<0/2tl>IO•S-G•2tlrPRINTMl0$(9$,G+1,1l111-.EXT 
READY. 



HEXADECIMAL 

hundred and one, or five?), we will follow the standard computing 
convention of placing a percent sign (%) in front of all binary numbers used 
from now on. Thus %101 is binary (decimal 5) while 101 is decimal. 

3.2 Hexadecimal 

Hex (base 16) is the numbering system you will use most when you write 
your own machine code programs. Since hex is base 16, the highest figure 
we can have in a single column is the equivalent of 15. There is, however, a 
problem here. Each digit must fit into a single column. Since there are no 
symbols for digits greater than nine, we will have to invent sqme. Rather than 
use unfamiliar symbols, hex uses the letters A to F to represent the numbers 
10 to 15. Thus 

Decimal: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Hex: 0 2 3 4 5 6 7 8 9 A B C D E F 

Thus decimal 16 would be hex 10. As with binary, we have the problem of 
distinguishing hex from decimal. Is 11 decimal or hex (decimal 17)? Again, 
we use a simple convention to get round the problem. Hex numbers are 
preceded by a dollar sign ($). Thus $10 is hex (decimal 16) while 10 is 
decimal. 

So let us look at how hex works 

Base2 Base Units 

256s 16s ls Decimal value 

l 0 0 256 
0 l 0 16 
0 0 l l 
l l l 273 

Since the highest number the C64 can handle is 65535, we are only going.to 
deal with four digit hex numbers. To see the reason for this, let us calculate 
the highest four-digit hex number ($FFFF) 

= (4096 x F) + (256 x F) + (16 x F) + (l x F) 
= (4096 x 15)+ (256 x 15)+ (16 x 15)+ (l x 15) 
= 61440 + 3840 + 240 + 15 
=65535 

19 



20 HEXADECIMAL AND BINARY 

Figure 3.2 

1 1 0 1 1 0 0 1 

' ' 
Value (decimal): 1x128+1x64+0x32+1x16 + 1x8 + 0x4 + 0x2 + 1x1 = 217 

As with binary, converting into decimal is straightforward (although a 
calculator comes in handy if you are not too hot at mental arithmetic!). 
Converting from decimal is more difficult, so again we have written a 
program (Listing 3.2) to do the job for you. You will also find a useful chart in 
Appendix 1. 

Listing 3.2 

10 REM OECIMA~ TO HEX 
20 ' 
3~ H$•"01234~6789ABCOEF " 

40 lt-PUT"~It-PUT OECIMA~ l'l.JMBER <0-6~~3~>•"10$t O•VA~(0$) 

~0 IF0<00R0>6~~3~THEN40 

60 PR INT"9"EX l'l.JMBER • $ " 1 
70 FORI • 3T00STEP-l•G•!NTC0/16tl> •O•O-G$16tl•PRINTMI0$(H$,G+l,1>1 tNEXT 
READY. 

3.3 Why do we use hex? 

A question which those new to machine code often ask is "Why does the C64 
use hex?". The answer is simply that the C64, like any other computer, 
actually works in binary. Hex is used as an alternative because a number like 
$0100 is easier to handle than% 100000000! Decimal cannot be used since ten 
is not a power of two whereas sixteen is. 

Figure 3.3 

Value (decimal) : 4~96 256 16 

DIGIT DIGIT DIGIT DIGIT 

3 2 1 0 



MEMORY ADDRESSING 

3.4 Memory addreaing 

We have already mentioned that the C64 has 65536 bytes (641<) memory 
available. But when you switch on, the C64 tells you that it has only 38911 
bytes available to BASIC. What happened to the other 26625 bytes? We will 
discuss memory in more detail later, but let us take a quick look now at the 
way the C64's memory is arranged. The C64 has 64K of RAM. Some of this 
RAM. however, is needed by the C64 to take care of its own workings. The 
first 2047 bytes, for example, are used by the Kemal to store information. The 
Kemal is the name given to the C64's operating system: the set of machine 
code routines which take care of the workings of the C64. (The most useful 
Kemal routines are detailed in Appendix 7). 

The Kemal uses this storage area to store such information as the current 
cursor position, the colour of the screen, which line of a BASIC program is 
being executed and so on. Also included in this area is the screen memory, 
used to store the contents of the screen (you may have POKEd to this in 
BASIC) and the sprite map pointers, used to keep track of sprite shape 
definitions. From 2048 to 40959 is the memory area available for your BASIC 
programs. The 8K following 40960 contains the BASIC programming 
language. BASIC is in fact made up of a number of machine code programs. 
These programs are stored here and automatically run whenever you run a 
BASIC program. The 4K beginning at 49152 is the area normally used for our 
machine code programs, and the rest of RAM is used for sound and graphics, 
input/output Kemal. 

The last thing we need to explain in this chapter is two pieces of machine 
code jargon: paging and absolute addresses. For convenience, the C64's 
memory is divided into areas ('pages') of 256 bytes. The first 256 bytes are 
called zero-page, the next 256 page one, the next page two and so en. An 
absolute address is simply any address higher than $FF. A detailed, fully 
annotated C64 memory map is given in Appendix 2. 

Figure 3.4 

$ 2 7 1 0 

Value (decimal) : 2x4096t7x256+1><16 + 1x0 • 100130 

21 



' - ~ 
.. ,.----' 22 HEXADECIMAL AND BINARY 

In order to be able to manipulate numbers, we need some 
kind of nwnbering system. The decimal system (base 10) 
is convenient for humans since we have ten fingers and 
thwnbs, but computers work in binary (base 2). Binary 
digits are known as bits, and eight bits make one byte. 

Because binary is inconvenient (the top of the C64's 
memory would be %1111111111111111 in binary!), a 
compromise system is used. This system is known as 
hexadecimal, or hex (base 16). Any number between zero 
and the top of memory can be stored in hex using just two 
bytes. 

In order to distinguish decimal, binary and hexadecimal 
nwnbers, a simple convention is used. A percent sign 
precedes binary numbers (for example, %01010000) and a 
dollar sign precedes hex ones ($50). 

3.6 Exercises 

In order to ensure that you understand how to convert from binary and hex 
into decimal, turn the following into decimal. The answers can be found in 
Appendix 6. 
1. $AO 
2. %0110 
3. $FC 
4. %1100 
5. $9009 
6. % 11000000 
7. $C040 
8. %01100011 
9. $AD40 
10. %11111000 

If there is anything in this summary you are not sure about, or if you got more 
than one or two of the exercises wrong, please go back and re-read the 
relevant parts of the chapter. 



4 

Machine code commands 

Having covered the necessary background information, we are now ready 
to begin learning our first machine code commands. In this chapter, you will 
learn about the following commands: 

e LDA 

e STA 

e LDX 

e sTX 

e LDY 

e sTY 

e RTS 

You will also learn how to use the following BASIC statement: 

e SYS 

By the end of this chapter you will be able to write your first machine code 
program! 

When we program in BASIC, most of the work is done using variables. 
BASIC programming could therefore be defined as the manipulation of data 
using variables (on the C64, the variables available are A- Z, AA- ZZ, 
A$- Z$ and AA$- ZZ$). When we program in machine code, most of the 
work is done using memory locations directly rather than variables. 
Machine code programming could therefore be defined as the direct 
manipulation of memory. 

In order to manipulate memory locations, we need some way of doing the 
manipulating. C64 machine code programming offers us three different 
manipulators which will fast become old friends: the accumulator, the X 
index and the Y index. Manipulators work in a broadly similar way to 
variables. They are used to select a value, perform an operation on that 
value, and place the result into the same or a different location. Each 



. .,,--
24 1¥CHINE CODE COMMANDS 

manipulator acts on a single memory location and can therefore handle 
values up to 255 ($FF, % 11111111). 

The most important manipulator is the accumulator. Many of the 
mathematical commands used in machine code are only available through 
the accumulator. The X and Y indices are primarily used within loops. They 
are kno.wn as indices since they act as the 'index' (counter) of loops. An 
example of an index in BASIC would be the counter in a FOR ... NEXT loop 

FOR A= O TO 999: POKE 1024+A, 32: NEXT A 

When we assign a value to a variable in BASIC, we can do so in one of two 
different ways 

A=SO 
B= A 

In the first form a variable is assigned a constant, while in the second a 
variable is set to the value of another variable. As we mentioned in Chapter 
2, in machine code we distinguish between constants and memory locations 
by preceding constants with a hash sign ( # ). Thus # $FF refers to the value 
255 while $FF refers to memory location 255. 

4.1 The LDA, LDX, LDY, STA, STX, and STY commands 

In BASIC, to assign a value to a variable we use the LET statement 

LET A= lOO 

(although most BASICs, the C64 included, allow you to omit the LET). In 
machine code, the LDA (LoaD Accumulator) command is used to assign a 
value to the accumulator. We assign the value 32 ($20) to the accumulator like 
so 

LOA # $20 

Note that the hash sign(# ) indicates that we mean the value $20 and not the 
memory location. 

LOA $20 

would load the accumulator with the value stored in memory location $20. 
The difference can be likened to the difference between 

LET A= 32 

and 

LET A= PEEK(32) 

The LDX ;:tnd LDY commands work in an identical fashion. So 



OUR FIRST MACHINE CODE PROGRAM 

LOX #$20 

loads the X index with the value 32 and 

LOY #$20 

does the same for the Y index. 
So far we know how to store the contents of a memory location in the 

accumulator, but not how to do anything with the value once we have got it 
there. The most obvious things we will want to do are 

(a) perform a calculation with it and place it back into the same memory 
location, and 

(b) p lace it into a different memory location. 

We will deal with calculations in later chapters, but first let us find out how to 
store the value of the accumulator in a memory location. This is performed 
using the STA (STore contents of Accumulator) command. To place the value 
of the accumulator into memory location 32, for example, we would use 

STA $20 

The accumulator retains its value until a new LOA command is issued, so 

STA $21 

would place the same value into location 33. The X and Y indices equivalents 
are STX and STY. The command format is identical to ST A. 

Ok, let us do something moderately useful. The border colour of the C64 is 
stored in memory location 53280. So to make it yellow, in BASIC we would 
POKE 53280 with the colour code for yellow (7) 

POKE 53280,7 

To achieve the same effect in machine code we would write 

LOA #$07 

to load the accumulator with the value 7, and then 

STA $0020 

to place this value into memory location 53280. 

4.2 Our first machine code program 

We know enough to write our first machine code program! This program will 
place a white letter A in the top left-hand comer of the screen. This kind of 
masterpiece is not likely to worry Jeff Minter over-much, admittedly, but we 
all have to start somewhere: even Minter probably started out by writing a 
similar program! 

25 



--~·----. 

26 MACHINE CODE COMMANDS 

Before we begin writing our program, we have to tell the assembler 
whereabouts in memory to store it. We do this by a [ (opening square 
bracket) followed by the start addres.s in hex. The start addres.s is the 
memory location used to store the first byte of the program 

[ $COOO 

The addres.s $COOO is the start of the 4K area reserved for machine code 
programs. You can store them elsewhere (you have to if your programs 
require more than 4K RAM), but you can easily move them if required just by 
changing the above line. 

The next line of our program as.signs the screen code for the letter A (1) in 
the accwnulator 

LDA #:$01 

(A complete list of character codes can be found in Appendix 3: while colour 
codes can be found in Appendix 4.) To place a character onto the screen, we 
need to place the screen code of the character into the appropriate section 
of screen RAM. Screen RAM begins at the top left-hand corner of the screen 
with 1024. So we need to store the content of the accumulator at location 1024 
($0400) 

STA$0400 

On a relatively new C64, you may be able to see this character as soon as 
your program reaches this point. On older machines, however, you will not 
see anything because the character will be displayed in the background 
colour of the screen! We need to place a colour code into the top left-hand 
corner of colour memory, which begins at 55296 ($0800) 

STA $0800 

Since we have not changed the value of the accumulator, it will still contain its 
original value of l. Since l is the colour code for white, the character in the 
top left-hand corner of screen memory (our letter A) will appear in white. 
We need one final line to complete our program, and that is RTS. RTS 
(Re'furn from Subroutine) is the equivalent of the BASIC RETURN statement. 
It is normally used to return from within a subroutine. If, however, it is used 
when you are not in a subroutine it instructs the C64 to return to BASIC. 

If you have not already done so, cype the above program into the 
as.sembler supplied with this book. It should look like this. 

6000 [ $COOO 
5010 LDA #:$01 
5020 ST A $0400 
6030 ST A $0800 
6040 RTS 



WHAT IF MY MACHINE CODE PROGRAM CRASHES? 

To assemble your program, simply enter RUN. The assembler will then work 
through your program, assembling a line at a time, until the finished program 
JS ready to run at address $COOO. 

4.3 Running a machine code program 

If you have followed the above steps, typing in the program and then 
entering RUN, the program is now ready to be run. The more impatient of 
you will already have discovered that the BASIC command RUN does not 
work with machine code programs! Instead, we use the command SYS 
( address) . SYS tells the C64 to execute the machine code program which is 
at the specified address. Since our program is at address $COOO ( 49 l 52), we 
simply enter 

SYS 49152 

All being well, a white A will have appeared at the top left-hand corner of the 
screen and the READY prompt will have returned a couple of lines below 
the SYS command. Congratulations: you have just written your first machine 
code program! 

There is another way of running a machine code program, and that is to 
use the USR command rather than SYS. USR is a little more complicated, but 
can be extremely useful. It is explained in Chapter 10. 

4.4 What if my machine code program. crashes? 

Something which many people worry about is: What happens when you 
crash your C64 with a POKE or machine code program? If you are one of 
these people, we have both an assurance and a warning for you. The 
assurance is that you absolutely cannot damage your machine in any way by 
incorrect POKEing or crashing a machine code program. The warning is that 
you can cause the machine to 1ock up'. If this happens, you may have to 
switch it off and on again to cure the fault. While this will not do any 
damage, you will lose whatever you had in memory. For this reason, we offer 
you one golden rule when writing any machine code program: Always save 
your program to tape or disk before executing it. If you don't follow this 
advice, don't blame us if you spend three hours typing in a masterpiece and 
then find that the machine locks up when you try to run it because you made a 
simple mistake in the second line! 

27 



.--'----. 
28 

.--·~---' 

~CHINE CODE COMMANDS 

4.5 Rem.arias 

Most books on BASIC programming advise you to include REM statements 
in your programs, remarks that remind you what the various bits of code do. 
This advice applies a hundred times more to machine code programs. 
Without remarks, you will find that you will have forgotten the workings of 
your programs within hours, let alone weeks or months. This is especially 
true when you are just beginning to learn. 

In BASIC, we use the REM statement to indicate remarks. In machine 
code we use the semicolon (';'). This can be used, just like a REM, either on 
the end of a line or on a line of its own 

j 

LDA #$01 ;Load accumulator with l 

Semicolons can also be used on their own to separate sections of your 
programs. We will also be using remarks and separators extensively in the 
more complicated programs in later chapters. 

4.6 Summary 

Machine code programming can be defined as the direct 
manipulation of memory locations. Machine code uses 
three 'manipulators' (used like variables): the accumulator, 
the X index and the Y index. LOA is used to LoaD the 
Accumulator with a value, and STA to STore the contents 
of the Accumulator at a specified address. The equivalent 
commands for the X and Y indices are LOX, LOY, STX and 
STY. The accumulator and indices retain their values after 
an STA, STX or STY. 

Before you can write a machine code program, you 
need to specify the start address. This is done as follows: 
( (start ad.d.rffa). To end a program, you use RTS. When 
you have written a program, RUN will assemble it and 
return you to BASIC. You then use m ( ltut addrea) 
(remember that the start address must be in decimal) to 
execute it. 

Finally, semicolon is the equivalent of the BASIC REM 
statement. We strongly suggest using it extensively, 
especially while you are fairly new to machine code. 



EXERCISE 

4.7 Exercise 

Write, assemble and execute a machine code program to place your first 
name at the top left-hand comer of the screen, with each letter in a different 
colour. You will need to refer to Appendix 3, Appendix 4 and Appendix 5. An 
example answer is shown in Appendix 6. 

29 



5 

Labels, flags and branching 

This chapter introduces labels, flags and branching. When you have read it, 
you should be able to answer the following questions: 

• What is a label? 

• How are labels assigned? 

e What are the two uses for labels? 

• What is a flag? 

e How do we branch in machine code? 

You will also be able to use the following machine code commands: 

e INX 
e INY 

e INC 
e DEX 
e DEY 
e DEC 
e TAX 
e TAY 
e TXA 
e TYA 
e BEQ 
e BNE 
e BCC 
e acs 
e cMP 
e cPx 
e cPY 



USING LABELS IN BASIC 

5.1 Labels 

A label is simply a name given to a line number or constant value in a 
machine code program. You can name (label) a line number or value at 
the beginning of a program, and then refer to the label. Labels are not 
variables for the simple reason that the value of a label cannot be 
altered once it has been set. Thus the following label definition is legal 

6000 :VALUE= $01 

(the colon is equivalent to the BASIC LET statement), but this 

6010 :VALUE=VALUE+l 

is not. Before we look at how labels are used in machine code, let us 
see how we might use them in BASIC. 

S.Z Using labels in BASIC 

The first thing to point out is that standard C64 BASIC Version 2.0 does 
not support labels, but some other BASICs do. Here we will explain how 
labels could be used in a BASIC which supports them. 

There are two ways of using labels. The first is to label program lines. 
When you are writing a program, you will often want to GOTO or 
GOSUB to a routine which you have not yet written. A typical example 
might be something like 

640 REM IF SCORE BEATS HIGH-SCORE GOTO WIN ELSE GOTO LOSE 
650 IF SC) HS THEN GOTO 5000 ELSE GOTO 6000 

You then have to remember to write the appropriate routines at these 
line numbers or, if you have to write them somewhere else, alter the 
line to suit. A much simpler and neater way would be to write the line 
as 

650 IF SC) HS THEN GOTO WIN ELSE GOTO LOSE 

The first line of each routine would then look like 

5000 :WIN: 

6000 :LOSE: 

Not only can you then. not worry about where the routines finally end up, 
but you also no longer need the REM statement in line 640 as the line 
becomes self-explanatory. All we have done is to label two lines and 
then branch to them by referring to these labels. 

31 



~·-----, 

32 
~·------' 

LABELS, FLAGS AND BRANCHING 

The second use of labels is to label constants. For example, if you 
intended to use the constant 3.14159265 (pi) more than once in a BASIC 
program, you might assign a variable PI somewhere near the beginning 

120 PI=3.1416926S 

Next time you wanted to use pi, you could simply use PI 

300 D=2*PJ-R 

You can do a similar thing in machine code 

6000 :PI=3.141S926S 
7000 LOA #Pl 

5.3 Using labels for branching 

To use a label for branching, you must first label the line you want to 
jump to. This is done by placing the label after a colon 

6060 LOA # $04 :DISPLA YSCORE 

To jump to this line, you would use one of the branching instructions we 
will learn about later in this chapter 

7010 BEQ DISPLAYSCORE 

We have already stressed the importance of using remarks in machine 
code programs; similarly, we strongly recommend using meaningful 
labels. 

5.4 Labelling constants 

Constants are labelled in a very similar way to BASIC; instead of LET, 
you use a colon 

6010 :BORDERCOLOUR=$0020 

or 

6020 :RED= $02 

Not only do labels make life easier while you are writing the program 
(meaningful words are a lot easier to remember than numbers), but they also 
make your programs much more readable. Compare 

7000 LOA #$02 
7010 STA $0020 

with 

7000 LOA #RED 
7010 STA BORDERCOLOUR 



LABELLING CONSTANTS 

Labels are also convenient if you want to change something throughout your 
program. If, for example, you were using the colours green and blue for your 
screen displays and wanted to change them to yellow and red, you need 
only change your colour labels. So, for example, if your original labels looked 
like this 

6010:FOREGROUND=$06 
6020:BACKGROUND= $06 

you can change them to read 

6010:FOREGROUND=$07 
6020:BACKGROUND=$02 

and re-assemble the program. 
Right at the beginning of this chapter we said that labels are not the same 

as variables because their values cannot change within a program. The 
reason for this is that the assembler replaces labels with their values 
throughout a program during assembly. For example, let us take the 
following short program 

6000 [ $COOO 
6010 ;This does not do anything useful so do not bother assembling it 
6020 :SCREENPOSITION =$0400 
6030 :COLOURPOSlTION =$0800 
6040 :COLOUR=$03 
6060 :CHARACTER=$6E 
6060; 
6070 LDA #COLOUR 
8080 STA COLOURPOSITION 
6090 LDA #CHARACTER 
7000 ST A SCREENPOSITION 

This would be assembled as if it were written 

6070 LDA #$03 
6080 ST A $0800 
6090 LDA #$6E 
7000 ST A $0400 

Labels cannot change their value within a program because they are used 
while the program is being assembled and not while it is running. Thus 

7000 ST A CHARACTER+ l 

is legal (the assembler calculates the value of CHARACTER+ land uses this 
during assembly), while 

7000:CHARACTER=CHARACTER+ l 

is not because CHARACTER has already been defined as a label and cannot 



34 LABELS, FLAGS AND BRANCHING 

now be redefined. If you wanted to achieve the same effect, you would have 
to use another label like so 

7000:CHARACTER2=CHARACTER+ 1 

5.5 The increue commands: INX, INY and INC 

The fact that we cannot alter the value of a label within a program presents us 
with a problem when we want to create a loop. In BASIC, we could create a 
loop to display the numbers one to ten like so 

100 FOR A= 1 TO 10 
110 PRINT A 
120NEXT A 

Ifwe did not have the FOR ... NEXT loop to help us, we would write it like 
this 

100 A=A+l 
110 PRINT A 
120 IF A<lO THEN GOTO 100 

But this method involves changing the value of the variable A. Since we can 
not do that with machine code labels, how would we write a loop in machine 
code? Well, 6502 assembler supplies us with three instructions for this 
purpose: INX, INY and INC. INX tells the assembler to INcrease the X index 
by one. In other words, it is equivalent to the BASIC statement X=X+ 1. INY 
is, of course, the Y index equivalent, adding one to the Y index. We will 
discuss INC in a moment. 

All three instructions feature roll-over. To illustrate the point, enter and 
assemble the following program: 

6000 [ $COOO 
6010 LOX #$FF 
6020 INX 
6030 STX 828 
6040 RTS 

;Assemble at decimal 49152 
;Load the X index with decimal 255 
;Increase the X index by one 
;Store the X index value in location decimal 828 
;Return to BASIC 

If you now run the program (SYS 49152) and PRINT PEEK(828) you will see 
that the value returned is zero. 

The INC instruction works in exactly the same way as INX and INY, but 
instead of operating on one of the indices, it acts on a specified memory 
location. We will see some more complicated uses oflNC when we deal with 
addressing modes in Chapter 6, but its simplest forms, and the only two we 
need worry about now, are 

INC $XX 



THE DECREASE COMMANDS: DEX. DEY AND DEC 

and 

INC $XXXX 

Both instruct the assembler to increase the value of the specified address by 
one. Thus 

6010 LDA #$05 
6020 STA $FF 
6030 INC $FF 

;Load accumulator with five 
;Store five in address $FF 
;Increase value in address $FF by one 

would leave address $FF with a value of$06 stored in it (the original value of 
$05 plus the INC increase of $01). 

5.6 The decrease commands: DEX, DEY and DEC 

In most loops, we want to increase the value of the loop counter (known as a 
'forward' loop). There are, however, occasions when we would want to 
decrease it (a 'backward' loop). For example 

100 FOR C= 10 TO I STEP- I 
110 PRINT C:FOR B=O TO 250:NEXT B:REM Delay loop 
120 NEXT C:PRINT ''Talce-offl" 

or, without using a FOR ... NEXT loop 

100 C=lO 
110 C=C- l :PRINT C:B=O 
120 B=B+ l:IF B< 250 THEN GOTO 120 
130 IF C) 1 THEN GOTO 110 
140 PRINT ''Talce-offl" 

In machine code, the method is exactly the same for backward loops as for 
forward loops, the only difference being that we use the decrease 
instructions instead of the increase ones. DEX. DEY and DEC are, as you 
would expect, the backward loop equivalents of INX. INY and INC. Thus 
DEX decreases the value of the X index by one, DEY decreases the value of 
the Y index by one and DEC decreases the value of the specified address by 
one. 

The decrease instructions all feature roll-under, so that 

6010 LDX #$00 
6020 DEX 

would leave the X index with a value of $FF ($00 minus one). Again, you can 
demonstrate this by entering and assembling the following short program: 

6000 [ $COOO 
6010 LDA #$00 
6020 STA 828 

;Assemble at decimal 49152 
;Load accumulator with zero 
;ST A accumulator value at address decimal 828 



:.~ 
6030 DEC 828 
6040 RTS 

LABEL;;, FLAGS AND BRANCHING 

;Decrease value of address decimal 828 by one 
;Return to BASIC 

If you now SYS 49152 to run the program and PRINT PEEK(828) you will see a 
value of decimal 255. 

5.7 The transfer commands: TAX, TAY, TXA AND TYA 

So far we have seen how to increase and decrease the values of the X index, 
the Y index and any chosen address. We have not seen how to do the same 
with the value of the accumulator. There is not any direct way of adding to or 
subtracting from the value of the accumulator, but there is a simple way 
around the problem using the transfer commands. The transfer commands 
are used to transfer the value of the accumulator to either of the indices and 
vice-versa. They have a number of uses, but one of the main ones is to add to 
or subtract from the value of the accumulator. The instructions are 

TAX 
TAY 
TXA 
TYA 

;Transfer Accumulator value to the X index 
;Transfer Accumulator value to the Y index 
;Transfer X index value to the Accumulator 
;Transfer Y index value to the Accumulator 

In all cases, the value you are transferring stays the same: a copy of the value 
is transferred. For example 

6010 LDA #$07 
6020 TAX 

;Load accumulator with 7 
;Transfer accumulator value (7) to X index 

would leave both the accumulator and the X index with a value of 7. To 
increase the value of the aecumulator by one, we would 

6010 TAX 
6020 INX 
6030 TXA 

;Transfer accumulator value to X index 
;Increase X index by one 
;Transfer X index value back to accumulator 

Similarly, to decrease the value of the accumulator you would replace line 
6020 with 

6020 DEX ;Decrease X index by one 

We could, of course, have used the Y index instead of the X one. In practice, 
you will probably already be using one of the indices and so would use the 
other one to increase or decrease the value of the accumulator. 



THE CONDITIONAL BRANCHING COMMANDS: BEQ AND BNE 

S.8 The conditional branching commands: BEO and BNE 

A construct common to all computer languages is the conditional branch. 
This is just a fancy way of saying a branch (GOTO is a BASIC example of a 
branch instruction) which only happens if one or more conditions are met. 
The obvious example in BASIC is the IF ... THEN statement 

100 IF A=B THEN GOTO 500 
110 IF C<>D THEN GOSUB 1500 

Before we look at the first of the machine code examples, BEQ and BNE, let 
us take a slightly closer look at the IF .. . THEN construct. 

The IF .. . THEN statement is in two parts. First, there is the comparison 
(following the IF statement) and second, the branch or action (following the 
THEN statement). What BASIC does is to set a flag dependent on the result of 
the comparison. Let us look at our first example, setting the values of A and B 
before we do so 

90 A= 10: B= 10 
100 IF A= B THEN GOTO 500 

BASIC would first evaluate the comparison 

A= 10, B= 10 therefore A=B 

It then sets a flag telling itself to execute the branch or action following the 
next THEN statement 

Set THEN flag to TRUE 

Next it reads the code following the THEN statement and checks the status of 
the THEN flag 

THEN flag is true, so execute code: GOTO 500 

If A=S and B= 10, the same process would occur except that the THEN flag 
would be set to FALSE and the code following the THEN would be ignored. 
We can see from this that although the two keywords are used together, IF 
and THEN are actually separate operations. We need to understand this 
because machine code does the equivalent of an IF ... THEN statement in 
two completely separate steps. Let us look first at the equivalent of IF. 

The machine code equivalent of the IF statement is the comparison 
statement. This takes three forms, of course, for the accumulator, X index and 
Y index 

CMP 
CPX 
CPY 

;CoMPare specified value with the accumulator 
;ComPare specified value with the X index 
;ComPare specified value with the Y index 

The two uses of the CMP instruction are 



38 

CMP #$01 

and 

CMP $01 

LABE;LS, FLAGS AND BRANCHING 

;Compare accumulator with the value one 

;Compare accumulator with the value stored in address one 

If the comparison is true, a COMPARISON EQUAL flag is set; otherwise one 
of the COMPARISON NOT EQUAL flags are set. 

So far, we have made a comparison but we have not acted on it: all we have 
done is to set a flag. This is where the machine code equivalent of the THEN 
statement comes in. This is the branch instruction set 

BEO 

BNE 

;Branch to the specified label if the comparison flag is EQual 
(usually stated as 'Branch if EQual') 
;Branch to the specified label if the comparison is Not Equal 
(usually stated as 'Branch if Not Equal') 

So, for example, a machine code search routine might contain: 

6010 BEO FOUND ;Record found, branch to FOUND line 
6020 BNE SEARCH ;Not this one, branch back to SEARCH line 

Ok, let us summarize all this, CMP is the basic comparison instruction. The 
format is 'CMP #$(value)' or 'CMP $(address)'. CMP instructs the 
assembler to compare the value, or the value stored in the specified 
address, with the value of the accwnulator. If the two values are equal, an 
equal flag is set. If the two are different, a not-equal flag is set. CPX and CPY 
work in exactly the same way except that the comparison is made with the X 
and Y index respectively and not with the accwnulator. 

Once the equal or not-equal flag has been set, we can act on the status of 
the flag by the branch instructions: BEQ and BNE. The formats of the 
instructions are 'BEQ (label)' and 'BNE (label )' respectively. BEQ will 
branch to the line containing the specified label if the equal flag is set, while 
BNE will branch to the label if the not-equal flag is set. 

Enter and assemble the following demonstration program: 

6000 [ $COOO 
6010 :SCREEN=$0400 
6020 :COLSCREEN=$D800 
6030 LDA #$0 l 
6040 LDX 828 
6050 CPX #$00 
6060 BEO XISZERO 
6070 LDA #$02 
6080 STA SCREEN :XISZERO 
6090 LDA #$0 l 
6100 STA COLSCREEN 
6110 RTS 

;Top-left of screen 
;Top-left of colour screen 
;Character code of 'A' 
;Load X index with decimal 828 
;Compare X index value with zero 
;Branch to line with XISZERO label 
;Character code of 'B' 
;Top-left of screen 
;Colour code of white 
;Top-left of colour screen 
;Return to BASIC 

Once you have assembled the program, enter 



FLAGS 

POKE 828,00:REM Place zero in location 828 
SYS 49162 

A white 'A' will have appeared at the top left-hand comer of the screen. This 
is because the comparison in line 6050 set the equal flag to true, and thus the 
program branched from line 6060 to 6080 and so line 6070 was never 
executed. 

Now enter the following, remaining in BASIC 

POKE 828,200:REM Place 200 in location 828 
SYS 49162 

This time a white 'B' will have appeared. This is because the comparison in 
line 6050 failed (that is, the equal flag was not set), the branch in 6060 is 
therefore not carried out and so line 6070 is executed, loading 'B' into screen 
memory. The BASIC equivalent of this would be 

100 A= 1: IF X <> 0 THEN A=2 

5.9 nags 

We had a very brieflook at flags in Chapter 1, now it is time to see how they 
work You will remember that a flag is simply a bit which can be set to either 
1 (often known as hue) or 0 (known as false). The C64 has a number of built-in 
'status' flags held in a memory location known as the Status Register or 
Process Register. This looks something like that shown in Fig. 5.1. We have 
already dealt with one of these flags, albeit without knowing it, and that is the 
Zero flag. This is the flag used by our friends CMP, CPX and CPY. If the result 

Figure 6.1 

N v B D I z c 

Negative 
flag Overflow 

flag Unused 

Break 
flag Decimal 

mode Interrupt 
flag disable 

flag Zero 
flag Carry 

flag 



40 LAB£'.~S, FLAGS AND BRANCHING 

of a comparison is true (equal), then the zero flag is set to l. If the comparison 
is false (not equal), the zero flag is set to 0. 

To understand why it is called the zero flag, we have to know how the 
assembler carries out a comparison. In fact, it does it in the simplest way 
possible: subtract one from the other. So 

6010 LDA #$01 
6020 CMP #$0 l 

is like saying 

A=l 
'ZEROFLAG=A-1 

Since #$01-#$01 equals zero (meaning that they are equal), the zero flag is 
set to l (zero= true). If the two were not equal, the subtraction would result in 
a value greater than zero and so the zero flag would be set to 0 (zero=false). 

S.10 Greater-than and less-than comparisons 

So far we have learnt how to use the comparison instructions together with 
BEQ and BNE to compare two values for equal or not-equal. At other times, 
though, we would want to know more than this: if the two are not equal, we 
will often want to know which one is greater. This is where the other two 
branch instructions come in 

BCC ;Branch if Carry Clear (tests for less-than) 
BCS ;Branch if Carry Set (tests for equal-to or greater-than) 

These are used in exactly the same way as BEQ and BNE as we shall see in a 
moment (machine code is actually very easy once you get started -
everything works in the same way!). There are, however, two things which 
often confuse beginners until they are familiar with BCC and BCS 

l. Which is which? 
Does BCC or BCS test for less than? 
(It's BCC). 

2. Which way round the comparison is done. 

or 

Which one of the following branch to LESSTHAN? 

(a)LDA # $20 
CMP # $20 
BCC LESSTHAN 

(b) LDA #$21 
CMP # $20 
BCC LESSTHAN 

(It's (a)). 



OUT-OF-RANGE ERRORS 

Fortunately, you will have no such problems if you take two or three minutes 
now to memorize the following simple reminders: 

(a) To remember which of BCC and BCS tests for less-than, remember that 
'C' is lower than 'S' in the alphabet. Put another way, the ASCII value of C 
is less than the ASCII value of S. 

(b) To remember which way round comparisons are done, just think of how 
you would do it in BASIC 

100 IF A<6 THEN ... 

The value given after the less-than sign (in this case, 6) is compared with 
the value before ("is A less than 6?"). Thus, "Is the accumulator (or X or Y 
mdex) less than the value after the comparison instruction?" 

Remember also that BCS tests for greater-than or equal. If you want to test 
only for greater -than, you would have to do a BEQ before doing a BCS. 

6010 CMP #$06 
6020 BEQ EQUAL 
6030 BCS GREATERTHAN 
6040 BCC LESSI'HAN 

In BASIC, this would look like 

100 IF A=S THEN GOTO lOOO:REM EQUAL ROUTINE 
llO IF A>=S THEN GOTO 2000:REM GREATER-THAN ROUTINE 
120 IF A<S THEN GOTO 3000:REM LESS-THAN ROUTINE 

5.11 Out-of-range errors 

There is one slight complication to branching: you will sometimes get an 'out 
of range' error during ~embly. To explain why, we have to understand how 
the assembler stores branching instructions in memory. But before we do 
this, let us get our priorities right and tell you what to do if you get the error! 
The simple rule is: "If the branch is out of range, reverse the test." For 
example if 

6010 CMP #$20 
6020 BEQ EQUAL 
6030 LOX #$30 

resulted in an 'out-of-range' error, rewrite it the other way round 

6010 CMP #$20 
6020 BNE NOTEQUAL 
6030 JMP EQUAL 
6040 LOX #$30:NOTEQUAL 

41 



.,·:---..., 

.,··----' 
LABELS, FLAGS AND BRANCHING 

The JMP (JuMP) instruction simply tells the assembler to jump to the label 
following it (in this case, NOTEQUAL). In other words, it is just like a GOTO 
statement in BASIC except that we use a label instead of a line number. Ok, 
that's the solution, but why do we have the problem in the first place? Well, 
branch instructions are stored in two bytes. The first is the instruction itself 
(for example, BEQ), and the second is the number of bytes the C64 should 
jump. 

The problem is that you can branch both forwards and backwards. Since 
the C64 has only one byte to store both the distance to be jumped and the 
direction, how does it do it? Well, it uses the seventh b it to store the direction: 
a zero means jump forward, and a one means backward. So, for example 

%00000011 

means jump three bytes forward, while 

%10000011 

means jump three bytes backward. The problem, of course, is that the 
maximum distance the C64 can store this way, leaving the seventh bit free for 
the direction, is% 1111111, or decimal 127. Anything greater than this causes 
an 'out-of-range' error. 

5.12 Exercise 

Write a program to check the contents of 828. If it contains 2 then turn the 
border RED otherwise turn background colour equal to contents of 828. 



6 

Addressing modes 

This chapter explains addressing modes. It covers 

e immediate 

• Zero-page 

e Absolute 

e Relative 

• Implied 

e Absolute,X 

• Absolute, Y 
e Zero-Page,X 

e Lo-Hi storage (used by the indirect addressing modes) 

e Indirect, Y 

e Indirect, X 

• Indirect 

Every machine code instruction will either branch or jump to a different 
section of the program, store a value somewhere or retrieve a value from 
somewhere. These operations break down into what are known as 
addressing modes. (A full list of machine code instructions, showing which 
one belongs in which addressing mode, is given in Appendix 8.) 

In Chapter 2, you may remember that we mentioned the difference 
between absolute and zero-page numbers. We said that an absolute 
number has four hex digits and is between $0100 (decimal 256) and $FFFF 
(decimal 65535) inclusive. A zero-page number, in contrast, has only two hex 
digits and is between $00 and $FF (decimal 255) inclusive. Absolute and 
zero-page are two different addressing modes. Thus 

LDA $22 

is a zero-page instruction (that is, it is executed in zero-page addressing 
mode), while 

LDA $0400 



44 ADDRESSING MODES 

is an absolute instruction (that is, it is executed in absolute addressing 
mode). 

Addressing modes are a very important part of machine code 
programming. In this chapter, we will examine each addressing mode in 
turn. Some of them have rather esoteric-sounding names! Do not worry too 
much about the names-you will learn them quickly enough as they become 
familiar to you - but do make sure that you understand the function of each. 

This chapter presents quite a lot of information. None of it is particularly 
complex, but it is important to have a thorough understanding of it, so take it 
slowly and carefully. Let us start by looking at the modes we have already 
used. 

6.1 Immediate 

Immediate mode is used to load values into manipulators and memory 
locations. Examples of immediate mode instructions are 

LOA #$50 
STA $0020 

and, since our assembler allows us to use decimal values as well as hex ones 

LOA # 10 

One of the main uses of immediate mode is to set up and use labels 

:BLUE= $06 
:SCREENCOL=$D020 

LOA BLUE 
STA SCREENCOL 

6.2 Zero-page 

liero-page occupies the first 256 bytes of memory ($00 to $FF inclusive). Most 
of zero-page is required by the C64's BASIC and operating system, but some 
locations are available for use in your machine code programs. The memory 
map in Appendix 2 shows which ones. Because so few locations ii;i zero-page 
memory are available to you, you would not normally store straightforward 
values in them. You would usually use them for some of the other addressing 
modes examined in this chapter. 

The reason that zero-page memory is largely used by the C64 itself is that 
the closer to the start of memory a routine or value is, the less time it takes to 
locate it and thus the faster the C64 will operate. You may have noticed a 
similar effect in your BASIC programs, where the early sections of your 



RELATIVE 

program run slightly faster than an identical routine later in the program. For 
this reason, it is a good idea to put the most commonly-called subroutines at 
the beginning, rather than end, of your programs. 

6.3 Absolute 

Examples of absolute mode commands are 

LOA $COOO 
STA 49152 

Absolute addressing is the one normally used in machine code program­
ming. It allows you to address all of the C64's memory. Machine code 
programs and data can be stored anywhere in memory, provided that the 
addresses are not required by the C64 for other purposes. One point to 
watch out for is to make sure that you do not use memory required by the 
assembler. 

As you become more experienced, you will get to know the C64's memory 
better, but for now we suggest you stick to the 4K block beginning at $COOO. 
All the examples in this book use this block of RAM 

6.4 Relative 

Relative addressing is the name given to all the branch instructions. They 
are so-called because they branch relative to the current program location. 
As we saw in Chapter 5, the assembler can jump up to 127 bytes either 
forwards or backwards. The calculation of how many bytes, and in which 
direction, to jump is performed automatically by the assembler. 

Let us see how this works in practice 

7000 LOA #$50 
7010 CMP $25 
7020 BEQ EQUAL 
7030 RTS 
7040 LOA $0400:EQUAL 

This program simply compares the value oflocation $25 (decimal 37) to the 
value # $50 (decimal 80). Ifthe two are equal (that is, location $25 contains the 
value # $50), the program branches to line 7040. Otherwise it continues to 
line 7030 where it returns to BASIC. 

When you assemble the program, the assembler calculates that line 7040 
(labelled EQUAL) is one byte ahead of the current program position. (The 
reason that it is one, rather than two, bytes ahead is that the RTS command is 
the next line due to be executed and is therefore zero bytes ahead.) It thus 
converts line 7020 to read, in effect 

45 



46 

7020 BEQ+ $01 

ADDRESSING MODES 

;NB: This line is not valid, it simply illustrates the principle of 
what happens 

The assembler supplied with this course is known as a 'two-pass' assembler. 
That is, it assembles the program in two stages. In the first stage (or pass), it 
assembles the commands but leaves the labels as they are. In the second 
pass, it calculates the values of all the labels and inserts these values in place 
of the labels. There is another type of assembler known as a single-pass or 
simple assembler. These do not allow the use of labels and are thus useless 
for anything but the smallest programs and persevering programmer! 

The advantage of relative addressing, if used throughout a program, is that 
it is relocatable. This means that you can shift the program anywhere in 
memory without re-assembling it. You must, however, use relative 
addressing throughout, so you cannot use JMP or other absolute instructions. 
Writing relocatable programs requires considerable skill, but is ideal for 
short machine code utilities which other users might want to place 
somewhere else in memory to avoid conflicting with their own routines. 

6.5 Implied 

Implied addressing is one of the simplest addressing modes. It is the name 
given to all instructions which have no target, source or branch bytes 
following them. So far, the implied commands we have looked at include the 
transfer commands (TAX, TICA, TAY and TYA), the increase and decrease 
commands (INX, !NY, DEX and DEY) and RTS. They are known as implied 
commands because they imply the value and/or address to be used. For 
example, INY means increase the Y index by one and place the result back 
into the Y index. 

6.6 Absolute,X and .Absolute,Y 

We have already seen that the X and Y indices can be used as an alternative 
to the accumulator, but they also have their own special uses. The first of 
these are Absolute,X and Absolute,Y modes. Commands in this mode take 
the form 

LDA (address) ,X 
LDA (address),Y 

where the address is in the range $0100-$FFFF. This mode is equivalent to 
the BASIC statement 

100 POKE 1024+X,100 



ABSOLUTE,X AND ABSOLUTE, Y 

where the X in the above example would be replaced by the X or Y index. 
So, to achieve the equivalent of the above line in machine code you would 

6010 LDA #$64 ;Set accumulator to decimal 100 
6020 STA $0400,X ;Add value of X index to the address and then carry out the 

command 

In other words, if the X index were set to $10, the above example would be 
equivalent to 

6020 STA $0410 

If you would like a more formal definition, the value of the index is added to 
the absolute number following the instruction, and the instruction is carried 
out on the resultant value. Figure 6.1 illustrates this process. Since both 
indices can hold up to $FF (decimal 255), the range of addresses you can 
control in this mode is (address) to (address) +$FF. 

$115 
\ 

Figure 6.1 

STA $ 04011 X STA $0405 
is the equivalent of ~ 

Accumulator =====::{> $0405 

Ok, so much for how it works (and if you are still not sure, the following 
program will make things clear), why would you want to use it? Well, as you 
may have already guessed, it is very useful for writing loops. Suppose you 
wanted to write a program to fill the first 100 positions of the screen with a 
reversed yellow block In BASIC, we would write the program like so 

100 FOR I=O TO 99 
110 POKE 1024+1, 160:REM 160 = character code for reversed block 
120 POKE 55296+ 1, 7:REM 7 = colour code for yellow 
130 NEXT I 

In machine code, we would do it in Absolute, Y mode like this 

6000( $COOO 
6010:SCREEN$0400 
6020:COLSCREEN =$0800 
6030; 
6040 LDY #$00 
6050 LDA #$AO:LOOP 
6060 ST A SCREEN,Y 
6070 LDA #$07 
6080 STA COLSCREEN,Y 
6090 INY 

;Define label as start of screen RAM 
;Define label as start of colour RAM 

;Initialize Y to zero 
;Load accumulator with decimal 160 
;Store reversed block in screen RAM 
;Load accumulator with decimal 7 
;Store yellow code in colour RAM 
;Increase the Y index by one 

47 



48 ADDRESSING MODES 

6100 CPY # $64 
6110 BNE LOOP 
6120 ; 
6130 RTS 

;Check for decimal 100 
;Branch back to loop if less than 100 

If you want to see this in action (and it is worth seeing the speed!), assemble 
it, clear the screen and SYS 49152. The first 100 character positions will turn 
almost instantaneol.J.SlY yellow. A very similar task to this, filling colour RAM 
with a particular colour, is of course a common requirement in many 
programs. In BASIC, we would do it like this 

100 FOR1= 0 TO 999:POKE 55296+1, S:NEXT I:REM Orange 

For other colours, of course, you would substitute another colour code for the 
8 - see Appendix 4 for a list of colour codes. 

Even though we are POKEing, this still takes a crawlingly slow 10.18 
seconds to execute: not much good for swift colour changes in all-action 
games! The solution, of course, is to rewrite the above in machine code and 
SYS this routine instead. The machine code equivalent looks like this (this 
program introduces some new concepts which we will explain in a moment, 
so don't worry if you don't understand it all) 

6000[ $COOO 
60 lO:COLSCREEN = $0800 
6020; 
6030 LDY # $00 
6040 LDA # $1J7 
6050 STA COLSCREEN,Y:LOOP 
6060 STA COLSCREEN+ $1Jl00,Y 
6070 STA COLSCREEN+$1J200,Y 
6080 STA COLSCREEN+ $1J2E8,Y 
6090 DEY 
6100 BNE LOOP 
6110; 
6120 RTS 

;Start of colour RAM 

;Load Y index with zero 
;Load accumulator with 8 (orange ) 
;First quarter of colour RAM 
;Second quarter of colour RAM 
;Third quarter of colour RAM 
;Final quarter of colour RAM 
;Decrease Y index by one 
;Branch back to LOOP 

This takes 0.17 second to execute - an impressive difference! 
Let us go through the above program in detail. There are four specific 

points you may have noticed: 

1. The accumulator is initialized outside the loop. This means that it is only 
initialized once; if it had been inside the loop, it would have been 
initialized 255 times. Although loading a value into the accumulator takes 
only a minute fraction of a second, a minute fraction of a second multiplied 
by 255 can become quite a significant delay. Even machine code can be 
slowed down by careless programming. 

2. We have used the fact that the accumulator, like the indices, retains its 



ACCUMULATOR 

value once set until loaded with a different value. (ST A, remember, places 
a copy of the accumulator value in the specified address: it leaves the 
accumulator untouched.) We do not need to reload the accumulator with 
the colour code each time. 

3. You will almost certainly have noticed that we have a BNE instruction 
without a CPY. This is because the decrease command (DEY) 
automatically sets the zero flag, and the BNE instruction will therefore 
compare the Y index with zero without i3. CPY #$00 command. The same 
is true of the increase command, INX. You can, of course, put the CPY or 
CPX commands in anyway, and you may find it helps to do this to start 
with, but remember that every command you can eliminate will speed up 
your program, particularly within loops. 

4. The screen is shaded in roughly four quarters. There is a slight overlap in 
that some parts of the screen get shaded twice, but the time loss in this is 
less than the time loss in wri ting a more elaborate loop to check for this. 

Short routines like this are very handy to slot into your BASIC programs. By 
far the easiest way to do this is to convert the program into DATA statements, 
POKE it into RAM and then SYS it. Of course, converting the program 
manually would be a tedious task, so we have written a program to do the job 
for you - you will find it in Appendix 5. One word of warning concerning this 
mode. You must make sure that the result of a calculation does not exceed 
$FFFF; if it does, the result will roll-over into zero-page memory and your 
program will probably crash. It certainly will not work in the way you wanted 
it to! 

6.7 Zero-page,X 

This works in an identical fashion to Absolute,X except that it operates on 
zero-page addresses. Thus 

LDA$DO,X 
STA$FF,X 

Note that the Y index cannot be used with the accumulator instructions in this 
mode. You can, however, achieve the same effect using the X index 

LOX $00,Y ;Load X index with content of SDO+ Y 
TICA $00 ;Transfer this value to the accumulator 

6.8 Accam:a.lator 

The accumulator addressing mode is the name given to machine code 
commands which act directly on the accumulator. These include ROL and 

49 



so .ADDRESSING MODES 

ROR, and are discussed in Chapter 8. Appendix 8, detailing all the 
commands in the 6510 instruction set, shows which commands act on the 
accumulator. 

6.9 Lc>-Bi form 

Lo-Hi form is not an addressing mode, but we need to discuss it before going 
any further since it is used by all the remaining addressing modes. Lo-Hi is 
the form in which the C64 stores numbers greater than $FF . Since each 
memory location can only hold one byte, that is a value up to decimal 255 
($FF), the C64 needs some way of handling numbers greater than this. It 
does so by using two consecutive locations. Let us look at an example 

LDA $0000 

This command is stored in three consecutive bytes. The first byte is the code 
for the instruction itself, in this case $AD (decimal l 73), the code for LDA. This 
is the code for absolute mode. The two remaining bytes are used to store the 
two halves of the number: $DO and $00. The reason for the name Lo-Hi, 
however, is that the low-byte, that is the smaller of the two numbers, is stored 
first (Fig. 6.2). So $0000 is stored as $00 and $DO. Thus the whole line of code 
is stored like so 

$AD $00 $DO 

Lo-Hi form may seem a little awkward at first, but it is simple enough once 
you have grown used to it. 

To enable you to split up an absolute number into its Lo- and Hi-bytes, we 
have written two special commands into your assembler. These are (and) . 
To load the accumulator with the Lo-byte of an address 

Figure 6.2 

$ B 7 8 c 

HI LO 

HI= $87 LO= $8C 

Stored in LO - HI form as $8C, $B7 



LOA #<$0400 

and the Hi part 

LOA #>$0400 

INDIRECT,Y 

You can also do the same with labels, thus 

LOA #>SCREEN 

6.10 lndirect,Y 

The first of the addresses to use Lo-Hi form is indirect, Y mode. Indirect, Y is 
one of the most useful commands you will come across once you start writing 
anything other than very simple programs because it allows you to act on 
large amounts of memory. 

This mode uses two consecutive zero-page addresses to point to another 
address in memory like so 

LOA ($FE),Y 

The brackets around the address tells the ~mbler that a Lo-Hi form 
number has the Lo-byte stored at that address and the Hi-byte at the 
following address (in this case, $FF). Let us suppose that $FE contains $00 
and $FF contains $04. When we convert these two bytes from Lo-Hi form into 
absolute, we get $0400. In other words, 

LOA ($FE),Y 

is the same, in this case, as 

LOA $0400,Y 

which we looked at earlier in this chapter. Incidentally, in the above 
example, we happened to use $FE and $FF as the pointer to an absolute 
address, but you can use any free addresses in zero-page, bearing in mind 
that you need two consecutive free locations. Free addresses are shown in 
Appendix 2. 

To illustrate the use of this mode, let us write a short routine to clear the 
high-resolution screen (which starts at $8000). 

6000( $COOO 
6010:HIRES+$8000 
6020 LOA #<HIRES 
6030 STA $F7 
604-0 LOA #>HIRES 
6050 STA $F8 
6060 LOX # $00 ;USE X index as counter 
6070 LOY #$00:LOOP1 

51 



52 

6080 LDA #$00 
6090 STA ($F7),Y:LOOP2 
6100 DEY 
6110 BNE LOOP2 
6120 INC $F8 
6130 INX 
6140 CPX #32 
6160 BNE LOOP! 
6160 RTS 

_ADDRESSING MODES 

;Increase Hi-byte 
;Add one to counter 
;Finished? 
;No - go back to beginning of loop 
;Yes- end 

The important point about this program is that the indirect, Y command in line 
6090 is used in place of the hundreds of absolute, Y which we would have 
otherwise needed. 

6.11 lndirec:t,X 

Indirect,X is - in contrast to indirect,Y - one of the least-used modes. It 
works in a slightly more complicated way to indirect, Y. A pair of consecutive 
zero-page locations are once again used as a pointer, but the resultant 
address forms another, second, pointer. Let us see what this means with an 
example: 

LDA ($FE,X) ;Note that the X is inside the brackets 

If $FE holds $00, and $FF holds $60, the resultant address is $6000. This 
address, however, is used as a second pointer and the following operation is, 
in effect, carried out: 

LDA ($6000,X) ;NB:Not a legal command 

Now, let us imagine the addresses around $6000 hold these values: 

Location 

$6000 
$6001 
$6002 
$6003 

Value 

$00 
$04 
$10 
$04 

If the X index were set to 0 (zero) when the LOA ($FE,X) command were 
carried out, the accumulator would be loaded with the contents of address 
$0400. If the X index equalled 1, the accumulator would be set to $1004. This 
is best shown in the following table: 



X index value 

0 
1 
2 

SUMMARY 

Address loaded into accumulator 

$0400 
$1004 
$0410 

and so on. Compare this table with the one above to see how it works. If you 
want to set up a series of pointers in this way (and it is very rare to need to do 
so), make sure that the X index holds an even value to ensure the correct 
address is loaded. 

6.12 Indirect 

The last of our addressing modes is indirect. This is only available when 
using the JMP (JuMP) command and is often used in the C64's BASIC and 
Kemal routines. It is best left until you are fairly experienced, but comes in 
very useful in writing programs which will automatically adjust themselves to 
suit their requirements (simply changing a single memory location causes 
the pointer to lead to a completely different routine). 

The command stores a pointer in an absolute address. The format of the 
command is 

]MP ($6000) 

If $6000 contains $00 and $6001 contains $Cl, the C64 would jump to the 
routine beginning at $Cl00. 

6.13 Summary 

The C64 has eleven different addressing modes (ways of 
treating memory). Each addressing mode has at least one 
command associated with it. Which command uses which 
addressing mode can be seen in Appendix 8. 

We have seen new ways of using familiar commands, 
depending on the mode we are in. You do not need to 
worry about the names of the different modes, but you 
should know how to use the new command structures. 

The chapter contains a lot of information, which you 
probably will not take in at one go. You might like to take 
a break at this point and re-read the chapter again later 
before continuing. We know this process of reading and 

53 



54 ADDRESSING MODES 

re-reading can s~rn tedious at times, but you will be glad 
you made the effort later on. 

6.14 Exercise 

Write a program to put the C64 character set on screen (starting in top left) in 

yellow. 



7 

Bit manipulation and logic 
(or 'truth') tables 

This chapter explains the concepts of bit manipulation and logic (or 'truth') 
tables. This allows us to control individual bits within any given memory 
location. By the time you have completed the chapter, you will be able to 
answer the following questions: 

• What is bit manipulation? 

• What are the two main reasons for using it? 

• What is a logic or truth table? 

You will also be able to use the following machine code commands: 

e AND 

e oRA 
e EOR 

7.1 What is bit manipulation? 

When we program in BASIC, we normally think of memory in terms of bytes, 
each location or address occupying one byte. But each byte is, of course, 
made up of eight bits (binary digits, remember). Thus decimal 10 is stored as 
#%00001010. 

When we program in machine code, it is often useful to think of memory 
locations as eight bits instead of a simple byte. Rather than altering value as a 
whole byte, we may want to simply change a single bit. There are two main 
reasons for wanting to do this. First, there are certain bytes (known as 
registers) which are designed to be controlled by setting and resetting 
individual bits. Second, using individual bits to store simple on/off flags can 
give considerable memory savings. For example, if you are writing an 
adventure game and a certain room in it has four doors, you could use four 
bits of the same byte to store the open/closed door flags: 



56 BIT MANIPULATION AND LOGIC (OR 'TRUTH) TABLF.s 

Door l Door 2 Door 3 Door 4 Spare Spare Spare Spare 

0 0 0 0 0 

You could even use the four spare bits as other flags, perhaps for objects or 
characters. If you use all eight bits, you can store information in an eighth of 
the space you would use if you used a whole byte for each flag (Fig. 7.1). Put 
another way, your adventure could be eight times as big and still fit into the 
same memory! Bit manipulation is pretty useful! Bit manipulation, as you 
have probably already guessed, is performed in binary. So if you are less 
than 100% confident about your understanding of binary numbering, go back 
now and re-read Chapter 3! 

Figure 7.1 

Value (decimal): 128 64 32 16 8 4 2 1 

l l 1 1 1 l ! l 
BIT BIT BIT BIT BIT BIT BIT BIT 

7 6 5 4 3 2 1 0 

Remember that binary numbers are preceded by a percentage sign ('% '), 
just as hex numbers are preceded by a dollar sign ('$'). So, for example 

LOA %000000 ll 

would load the content of location decimal 3 into the accumulator, while 

LOA #%000000 ll 

would load the accumulator with the value decimal 3. Bit manipulation is 
actually carried out using logic tables, so let us find out about these. 

7.2 Logic tablea 

Logic tables are simple tables (Fig. 7.2) showing what happens to a bit when 
it is acted on using one of the bit manipulation commands. Let us look in detail 
at each of the three bit manipulation commands, starting with ORA. 



ORA 

Figure 7.2 

AND ORA EOR 
0 0 0 0 0· t 0 0 0· 0 
0 1 0 0 1 • ~ 1 0 1 1 
1 0 · t 0 1 0 1 1 0 • 1 
1 I t 1 1 1 • 1 1 1 0 

7.3 ORA 

The ORA command allows you to set (make equal to 1) any individual bit or 
bits in a byte. For example, suppose that you wanted to set bit four in location 
$033C (decimal 828). You do not even need to know the current value of the 
bit, you can simply set it anyway: if it is not set (0) it will be set ( 1 ), and if it is 
already set it will stay that way. To set bit four 

LOA $033C ;Load current value into accumulator 
ORA #%00010000 ;~t bit 4 
ST A $033C ;Store new value at the same address 

Let us suppose the original value of $033C was% 11000011. After the ORA 
command, setting bit 4, it would become % 11010011. Figure 7.3 shows how 

Figure 7.3 

0 0 0 0 1 

ORA 

0 0 0 1 0 0 0 0 

1 OR0 10R0 00R0 00R1 00R0 00R0 10R0 10R0 

t t t t t t t t 

57 



58 BIT MANJPULATION AND LOGIC (OR 'TRUTH') TABLES 

this works. What happens is that the ORA logic table is performed on each 
bit in turn. If you ORA a bit with 0, you leave it unchanged. If you ORA a bit 
with 1, you set it to 1 regardless of its original value. You may hear of binary 
digits being referred to as masks. This is because all the bits ORAd with 0 
are left unchanged: in other words, they are 'masked'. Masking is used with 
all the bit manipulation commands. Another term you will probably come 
across is logical commands. This is just another term for bit manipulation 
commands. 

You will use the ORA command a lot when you use the C64's video and 
sound registers. For example, suppose you wanted to turn on sprites 3 and 6. 
To do this, you simply set bits 3 and 6 of the sprite-enable register $15 
(decimal 21). Using ORA to do this means that you do not run the risk of 
mistakenly turning off other sprites already in use. So, for example, if you had 
defined the label VIDEO as the beginning of the video registers, you would 
simply 

LDA VIDE0+2l ;Load current value of sprite-enable register 
ORA #%01001000 ;Set bits 3 and 6 
STA VIDE0+2l ;Store new value in register 

You do not risk changing any of your other sprites, because only bits 3 and 6 
will be affected: all the others remain unchanged. 

7.4 AND 

AND works in exactly the same way as ORA, except that it is used to switch a 
bit or several bits off rather than on. Since 0 AND 0 equals 0, and 0 AND l 
equals 0, all you have to do to turn a bit off is to AND it with zero. For example, 
to turn off bit 3 in location $033C: 

LDA $033C ;Load accumulator with contents of $033C 
AND #% 11110111 ;AND this value so that bit 3 is turned off 
ST A $033C ;Store new value back into same location 

Figure 7.4 illustrates this process. 
If a bit is already set, ANDing it with 1 means that it remains set. If a bit is 

not set, ANDing it with either 0 or l will leave it unset. If a bit is set and 
ANDed with a 0, it will be unset. 

7.5 EOR 

EOR differs from ORA and AND in that it does not have a direct BASIC 
equivalent. You can see from its logic table that EOR 'toggles' a bit, so that a 1 
becomes a 0 and a 0 becomes 1 (Fig. 7.5). Thus to toggle bit 6 of location 
$033C 



EOR 59 

Figure 7.4 

1 0 0 0 0 

AND 

1 1 1 

Figure 7.5 

0 0 0 

EOR 

0 0 0 0 0 0 



60 BIT MANIPULATJON AND LOGIC (OR 'TRUTH') TABLES 

LDA $033C ;Load accumulator as before 
EOR #%01000000 ;Toggle bit 6, leave other bits unchanged 
ST A $033C ;Store new value in same location 

Bit 6 is EORed with l and is thus toggled, all the other bits are EORed with 0 
and left unchanged. 

EORing is most useful where a flag will be constantly flipping between 
one value and another. An example would be in a space-invader style game, 
where a flag would be used to store the direction the invaders are moving in. 
When they reach the edge of the screen, the flag needs to be toggled to the 
opposite direction. Thus a 0 could represent moving right, while a l means 
moving left. 

7.6 Summary 

This chapter introduced the concept of bit manipulation -
changing one or more individual bits while leaving the rest 
of the byte unchanged. This is useful for controlling various 
C64 registers, and for storing flags in a memory-efficient 
way. Bit manipulation is carried out using logical 
commands and binary numbers, the technique being 
known as masking. The logic tables shown in this chapter 
illustrate how the three logical commands - ORA, AND 
and EOR - work. The following chapter examines more 
advanced bit manipulation. 

7.7 Exercise 

Write a program to move a sprite horizontally across the entire screen 
making sure not to forget the MSB bit when the sprite passes the X = 256 
position. A time delay will have to be written into the program so that the 
sprite can be seen. 



8 

Bit manipulation 

This chapter covers using bit manipulation to move bits left and right, and 
check whether a particular bit is set or unset. By the time you have 
completed it, you will be able to use the following commands: 
The shift commands 

eLSR 
eASL 

The rotation commands 

eROR 
eROL 

Plus 

eBIT 

In Chapter 7, we looked at logical (bit manipulation) commands to set, 
unset and toggle the value of any individual bit within a byte of the C64's 
RAM This chapter introduces commands which allow us to shift all the bits in 
a byte left or right, and to check whether an individual bit is currently set or 
unset. These commands all use the accumulator addressing mode 
described in Chapter 6. As before, we will describe each in turn, beginning 
with the simplest of all: the shift commands. 

8.1 The shift commands 

The two shift commands allow you to move all of the bits in a byte either left 
or right. These are LSR and ASL. LSR stands for Logical Shift Right. It moves 
all eight bits of a byte one bit to the right. The right-most bit (bit 0) 'falls over' 
into the carry flag, and the left-most bit (bit 7) is set to zero as is shown in Fig. 
8.1. 



62 BIT MANIPULATION 

Figure 8.1 

BIT BIT BIT BIT BIT BIT BIT BIT 

0 7 6 5 4 3 2 0 c 

LSR can be used in a somewhat clumsy way to test the status of any bit. The 
way to do this is to use LSR as many times as required to move the bit you 
wish to test into the carry flag. Thus to test bit 3 of location $033C, you would 
load the value into the accumulator, perform four LSRs on the value (to move 
bit 3 into the carry flag) and then use BCC (Branch if Carry Clear) or BCS 
(Branch if Carry Set) to test the value 

LDA $033C ;Load the required value into the accumulator 
LSR A ;Bit 0 now in carry flag, bit 3 becomes bit 2 
LSR A ;Bit l in carry flag, original bit 3 becomes bit l 
LSR A ;Bit 2 in carry flag, original bit 3 becomes bit 0 
LSR A ;Bit 3 is now in the carry flag 
BCC ZERO ;Branch to line labelled ZERO if carry flag=O 

This process is illustrated in Fig. 8. 2. The program would thus jump to the line 
labelled ZERO ifthe original bit 3 was not set (that is, it equalled zero). The 

Figure 8.2 Corry 
flog 

St,,, I po•ition I I I 0 I 0 I I I 1 I G 
1 sr 
LSR 

2nd 
LSR 

3rd 
LSR 

4 rh 
LSR 

I 0 I I ·I I 0 I 0 I 1 I I D 
l0 l0 I I I l0 l 0 l1 I D 
l0 l0 l0 l1 I l1 l0 l0 I D 
l 0 l 0 l 0 l 0 l l 1 l 1 l 0 I ~ 



THE SHIFT COMMANDS 

value of $033C, of course, remains as it was, so bit 3 is still where it originally 
was in the actual location being tested. Only the accumulator has changed 
value. The A following the LSR command tells the assembler to use the 
accumulator mode. 

Figure 8.3 

BIT BIT BIT BIT BIT BIT BIT BIT 

c 7 6 5 4 3 2 0 0 

ASL, Arithmetic Shift Left, works in exactly the same way as LSR, but 
shifting to the left instead of to the right. ASL shifts each bit one position to the 
left, bit 7 moving into the carry flag and bit 0 being set to zero (Fig. 8.3). 
Again, to test a bit using ASL, you would shift the required bit into the carry 
flag. To test bit 5 of our old friend $033C, for example 

LOA $033C ;Load value 
ASL A ;Bit 7 moves into carry flag 
ASL A ;Bit 6 moves into carry flag 
ASL A ;Bit S moves into carry flag 
BCC ZERO ;Branch to line labelled ZERO if bit 7 was zero 

Again, we can show this in diagrammatic form in Fig. 8.4. Which of the two shift 

Corry 
flog 

Figure 8.4 

Start ~ 
position~ I I I l 0 l 0 l 1 l 1 l 1 I 

1st 
ASL 

2nd 
ASL 

3rd 
ASL 

4th 
ASL 

[] l
1 

l
1 

l 0 l 0 I 11 I 1° 1 

[] I l 0 l 0 I I l 1 l 0 l 0 I 

[] 1° 1° 1 I l
1 

l
0

l 0 l 0 I 

~ l
0

l l
1

l
1

l
0

l
0

l
0

l
0

I 

63 



BIT MANIPULATION 

commands you use is up to you. We suggest that it makes sense to use LSR if 
the bit you want to test is nearer to the right of the byte (that is, bits 0, l , 2 and 
3) and ASL if the bit is nearer to the left (that is, bits 4 and 5-we will show you 
a simpler way of testing bits 6 and 7 below, using the BIT command). In this 
way you use the minimum amount of memory necessary. 

8.2 The rotation commands 

The rotation commands are similar to the shift commands in that they allow 
you to shift bits left and right. The difference is that the rotation commands, as 
the name implies, shift the bits around in a circle. The easiest way to see what 
we mean is to look at Fig. 8.5. Briefly, the rotation commands shift all the bits 
round in a circle which includes the carry flag. So if you rotate everything 
once to the right, bit 0 will become the carry flag, and the carry flag is moved 
into bit 7. All other bits move down one. 

Figure 8.5 

BIT BIT BIT BIT BIT BIT BIT BIT 

..... c - - 7 - i. 6 -,. 5 - .. 4-r.. 3 - ... 2 - ,. 1 - · 0 -+-

I ' 

ROR, ROtate Right, rotates everything one bit to the right as is shown in 
Fig. 8.5. So, for example, to rotate the contents of-you've guessed it - $033C, 
two places to the right 

LDA $033C ;LOad accumulator 
ROR A ;Rotate accumulator bits one place right 
ROR A ;And again 
ST A $033C ;And put the new value back where it came from 

An alternative way of doing this is 

ROR $033C ;Rotate contents of location $033C 
ROR $033C ;And again 

This second example by-passes the accumulator, thus leaving the 
accumulator free for other purposes. The ROR command is very rarely used, 
its primary use being in relatively complex mathematics, but it is simple 
enough to learn and you may need it someday, so it is worth the small amount 
of effort it involves. Until you are more experienced, however, file it away 
under 'will come in useful later'. 



THE BIT COMMAND 

Figure 8.6 

BIT BIT BIT BIT BIT BIT BIT BIT 

7 6 5 4 3 2 0 c 

ROL, ROtate Left, is the complement of ROR It rotates all the bits of the 
specified byte one place to the left. Bit 7 moves into the carry flag, and the 
carry flag moves into bit 0 as shown in Fig. 8.6. So to rotate two places to the 
left 

LDA $033C 
ROLA 
ROLA 
STA $033C 

or simply 

ROL $033C 
ROL $033C 

;Load accumulator 
;Rotate accumulator bits one place to the left 
;One more time 
;Put the new value back where it belongs 

;Rotate value of location one place left 
;Once again 

As with ROR, there are other uses for ROL, but these should be left until your 
experience in using machine code has grown. 

8.3 The BIT command 

The methods given above for testing the status of an individual bit (that is, 
finding out whether it is a one or zero) are a bit clumsy. They also mean 
changing the value of either the accumulator or a memory location or both. A 
much neater way of testing just bits 6 and 7 is to use the BIT command. BIT 
cannot be used to test any other bits. The BIT command uses the zero flag to 
show the status of a bit. Because it does not affect memory or the 
accumulator, it is known as a non-destructive command. 

BIT is not available in immediate mode (see Chapter 6), so it must be used 
directly on a memory location. When you use BIT, the whole byte is ANDed 
(bit-by-bit) with the contents of the accumulator. If the result of this AND is 
zero, the zero flag is set to zero; if the result is one, the zero flag is set to one. 
Also, the sixth and seventh bits are moved into the N and V bits respectively. 
Let us use BIT to test the sixth bit of our old favourite, $033C 

BIT $033C ;Move bit 6 into the V flag, and bit 7 into the N flag 
BVS SET ;Branch if the V flag is Set to the label SET 

Although BIT uses the accumulator as the comparison, it does not matter 

65 



66 BIT MANIPULATION 

what the accwnulator is set to since we are only interested in the values of the 
V or N flags. Similarly, to test b it 7 

BIT $033C ;Same comparison and effect as before 
BMI SET ;Branch if N flag is Set to the label SET 

Thus BIT is the simplest method of testing bits 6 and 7. 

8.4 Summary 

In this chapter we introduced the bit manipulation 
commands for moving all the bits in a byte left or right. 
The main purpose for this is to test the value of an 
individual bit. LSR and ASL are the normal commands used 
to test the values of bits 0 to 5, while BIT is usually used to 
test bits 6 and 7. The rotation commands, ROR and ROL, 
are normally reserved for complicated mathematics: we do 
not recommend using them until you are fairly 
experienced. 

8.5 Exercise 

Write a program to copy the actions of eight ROR commands on the contents 
of location 828 using the LSR command. 



9 

Mathematics in machine code 

This chapter introduces mathematics in machine code. By the end of it, you 
will know how to use machine code for 

e addition 

e subtraction 

• multiplication 

e division 

of both 8- and 16-bit nwnbers. 
Don't panic! Machine code maths is easy once you've got the hang of it. 
We give you this helpful advice at the beginning of the chapter because 

machine code maths has an undeserved reputation for being difficult. It's not, 
it just takes a bit of getting used to, that's all. In BASIC, maths is simple. You 
just use the relevant BASIC keyword or symbol together with any necessary 
parameters and the complete calculation is done for you. Thus no sooner 
have you entered 

PRINT (79*(COS(5)+ .98))17-(2* .47) 

and back comes the answer 21.36276874 (you always wanted to know that, 
didn't you?). 

In machine code, however, there are only two formal arithmetic 
commands, for addition and subtraction. Multiplication and division have to 
be done using these and other commands. Also, the method used for any 
arithmetic operation depends on whether you are working with an 8- or 
16-bit number. That's the bad news. The good news is: take this chapter nice 
and slowly, stopping after each example to make sure you understand it 
completely, and you will wonder what all the fuss was about. We are going to 
start with 8-bit arithmetic (that is, working with numbers in the range 0-255), 
and then move onto 16-bit work (numbers in the range 0-65535). 



68 MATHEMATICS IN MACHINE CODE 

9.1 Eight-bit addition 

Eight-bit addition is the addition of any two numbers in the range $00-$FF 
(decimal 0-255). To add two numbers together in BASIC, we would do this 

A=200+20:REM A now equals 220 

In machine code, we use the command ADC (ADd with Carry). This adds the 
specified value to the value in the accumulator, then places the result into the 
accumulator. So to add 200 ($C8) and 20 ($14) 

LDA #$C8 
ADC #$14 

;Load first value into the accumulator 
;Add the second value to the accumulator 

The accumulator now contains the value $DC ($CS plus $14). 
So what's all this 'with carry' bit? Well, the above description is a very slight 

simplification of what actually happens. ADC actually adds the specified 
value, the content of the accumulator and the content of the carry flag. So if 
the carry flag had been set to 1, the previous example would have left the 
accumulator with a value of $DD ($C8 plus $14 plus $01). 

To get around this problem, when we do not want to add-in the value of the 
carry flag, we simply clear it first using the CLC (CLear Carry) command 

LDA #$C8 
CLC 
ADC #$14 

Figure 9.1 

ADC#® 

+ Accumulator + $A0 +carry flag c:={> accumulator 

Figure 9. 1 shows this process. You can also use the ADC command to add 
one to the accumulator. You may remember from Chapter 5 that while INX 
will increase the X index by one, and !NY increases the Y index by one, 
there is no INA command. Well, you achieve the same affect by setting 
the carry flag to one and then performing an ADC to add zero to the 
accumulator 

s~c ;SEt Carry flag to 1 
ADC #$00 ;Add zero plus the carry flag (1) to accumulator 

Thus the accumulator is increased by one (original value plus zero plus the 
value of the carry flag, which we set to one). 

The ADC command uses roll-over to cope with values larger than $FF. 



Thus 

LDA #$C8 
CLC 

EIGHT-BIT SUBTRACTION 

;Load accumulator with decimal 200 
;CLear Carry 

ADC #$C9 ;Add decimal 201 to accumulator 

would leave decimal 145 in the accumulator (200+ 201-256= 145). To show 
that roll-over has occurred, the carry flag is set to one. So if you perform any 
addition where the result could be greater than 255, you will need to test the 
carry flag to make sure the result is correct. You do this using the BCC or BCS 
commands. 

9.2 Eight-bit ltlbtraction 

The command for subtracting two numbers in the range $00 to $FF is SBC: 
SuBtract with Carry. This command subtracts the specified value from the 
accumulator, then places the result into the accumulator. Again, the carry 
flag also comes into the calculation but the inverse of the carry flag is 
subtracted, and not the carry flag itself. So, if the carry flag was set to zero, an 
extra one (the inverse of the carry flag) would be subtracted from the 
accumulator. If the carry flag was set to one, nothing extra would be 
subtracted (the inverse of one is zero). There is a good reason for subtracting 
the inverse, which we will explain in a moment. 

It's obvious from this that, just as we had to clear the carry flag before 
adding, we must set it before subtracting 

LDA #$CB 
SEC 
SBC #$C8 

;Decimal 203 
;SEt Carry flag to one, so that inverse is zero 
;SuBtract decimal 200 and inverse of carry flag 

This would leave the accumulator set to 3 (203-200-0) as shown in Fig. 9.2. If 
you try to subtract a number larger than the value of the accumulator, 
roll-under occurs. If this happens, the carry flag is set to zero. This, of course, 
is the reason why the inverse of the carry flag is subtracted: if we left it at 
zero, we would not know if roll-under had occurred. Again, if your 
calculation could end up with a result less than zero, causing roll-under, you 
must check the carry flag using BCC or BCS. 

Figure 9.2 

SBC #$A0 

Accumulator - $A0 - complement of ~ accumulator 
carry flog 

<c> 

69 



:: 70 MATHEMATICS IN MACHINE CODE 

9.3 Sixteen-bit addition 

Sixteen-bit addition is just a simple extension of 8-bit addition. It is normally 
used to increase the Lo-Hi pointers (see Chapter 6). Let us see how we 
would add $32 (decimal 50) to the contents of two locations labelled LO and 
HI. HI, of course, is LO+ l. The two 8-bit numbers are really just a way of 
storing one 16-bit value. 

Remember that Lo-Hi numbers are stored in reverse order. So $033C 
would be stored as $3C (in the Lo-byte) and $03 (in the following Hi-byte). 
When we add a number to LO, we need to check the carry flag. If the carry 
flag is set, roll-over has occurred and we need to add one to HI. (This works 
in exactly the same way as manual addition, where you 'carry' one and add it 
to the next column up, or an abacus, where ten beads in one column are 
replaced by one bead in the next column up.) We do this like so 

LDA LO ;Load the accumulator with contents of LO 
CLC ;Clear the carry flag 
ADC #$32 ;Add $32 to the accumulator 
ST A LO ;Store the new result in location LO 
BCC CLEAR ;If carry flag is clear, skip next command 
INC HI ;Carry flag is set, so add one to value in HI 
LDA #$20:CLEAR ;If carry flag not set, program jumps to here 

In other words, if the addition to the value stored in the location LO results in 
a value of greater than 255, the carry flag wil be set. The BCC test will fail and 
the INC command will be executed, increasing the value stored in location 
HI by one. If, however, the addition results in a value of 255 or under, the 
carry flag will not be set, the program will branch to the line labelled CLEAR 
and the value stored in HI will be left untouched. 

A more elegant method is to alter the second part of the program like so 

I.DALO 
CLC 
ADC #$32 
STA LO 
LDAHI 
ADC #$00 
STA HI 

;Load accumulator with value of location HI 
;Add zero plus carry flag to the accumulator 
;Store result back in location HI 

If the addition to the LO component results in a value greater than 255, the 
carry flag is set to one and this value, the one, is added to the HI component. If 
the result was 255 or under, the carry flag remains set to zero and the HI 
component remains the same. 

You can use either method, but the second is neater and, more importantly 
perhaps, slightly faster. You will find that most programmers use the second 
method for this reason. 



MULTIPLICATION AND DIVISJON BY TWO 

9.4 Sixteen-bit subtraction 

As with addition, 16-bit subtraction is a simple extension of 8-bit subtraction. 
Again, let us take the example of a pair of locations LO and HI, together 
forming a 16-bit number. To subtract $32, we would 

LDALO 
SEC 
SBC #$32 
STA LO 
LDAin 
SBC #$00 
STAin 

;Load accumulator with LO component 
;Set the carry flag to one 
;Subtract $32 
;Store the result back in location LO 
;Load accumulator with In component 
;Subtract zero plus value of the carry flag 
;Store the result back in location HI 

If the first subtraction resulted in a value of less than zero, thus causing 
roll-under, the carry flag is set to zero. The inverse of zero, i.e. one, is then 
subtracted from the HI component. If the first subtraction did not cause 
roll-under, the carry flag remains set to one and the inverse, i.e. zero, is 
subtracted from the HI component leaving it as it was. 

9.5 Multiplication and division by two 

In Chapter 8, we looked briefly at the shift commands ASL and LSR. We 
showed how they could be used to detect the status of a bit, but we can also 
use them to multiply and divide by two (the more mathematically inclined of 
you will probably have already realized how this is done). To multiply a 
number by two, simply use ASL. This shifts everything one place to the left 
and thus the value of each bit is doubled. In other words each bit, and 
therefore the whole byte, is multiplied by two. Remember that the left-most 
bit is shifted into the carry flag. If the carry flag is set after an ASL, therefore, 
you know that the new value is greater than $FF (decimal 255). 

So, to multiply the contents of location $033C by two, simply 

ASL $033C 

Of course, if you shift left again, you again multiply by two. So two ASLs is the 
same as multiplying by four 

ASL $033C ;Multiply by two 
ASL $033C ;Multiply by two again, that is multiply by four 

and so on in powers of two. So three ASLs would multiply by eight, four ASLs 
by sixteen, and so on. Do not forget that you would need to check the carry 
flag after each multiplication to check whether an overflow occurred. 

71 



72 MATHEMATICS IN MACHINE CODE 

9.6 Division by two 

Division by two is, of course, the opposite of multiplication by two. So instead 
of using the ASL command, to shift left, you use LSR to shift right. As with 
multiplication, if you shift repeatedly, you divide by increasing powers of 
two. Thus if you use LSR three times, you will divide the byte by eight (2"3). 
So, to divide a byte by two 

LSRBYTE 

Of course, because machine code maths can only work in integer arithmetic 
(that is, whole numbers), the BASIC equivalent of this is 

A= INT(BYTF/2) 

So if BYTE contained the value one, LSR BYTE would return a value of zero. 

9.7 Summary 

This chapter explained how to add and subtract in 
machine code, as well as how to multiply and divide by 
two. If you want to multiply or divide by more than two, 
you have to multiply or divide by two several times. So to 
multiply a value by nine, for example, you would multiply 
the value by two three times and then add the value: 
(value x 2 x 2 x 2) + value = value x 9. 

Remember that you must always set the carry fiag to 
zero before adding, and to one before subtracting. You 
should then check the value afterwards in case the result 
was greater than 255 or less than zero. 

9.8 Exercise 

Write a program to multiply the single byte (up to 255) contents of location 
828 by three. Note that such a program cannot cope when the contents of 828 
are greater than 256/3. 



IO 
Machine code subroutines 

This chapter introduces machine code subroutines. When you have 
finished reading it you will: 

e be able to write your own machine code subroutines 

• be able to use the C64's built-in machine code 
subroutines 

e know the difference between a subroutine and a macro 

e be able to use the BASIC function USR to call machine 
code programs 

10.1 Machine code subroutines 

Subroutines are a convenient way of saving memory and dividing a program 
into manageable chunks. In BASIC, you use GOSUB ( line number) to jump to 
a subroutine; you then write the subroutine beginning at that line number 
and ending with a RETURN statement. You save memory because you can 
use the same piece of code in two or more different parts of your program. 
Machine code subroutines operate in exactly the same way, GOSUB and 
RETURN being replaced by the exact equivalents JSR and RTS. JSR stands 
for Jump to SubRoutine, and RTS, as we mentioned earlier in the book, for 
ReTurn from Subroutine. RTS, of course, returns to BASIC if it is used outside 
a subroutine. Suppose you wanted to write a subroutine to clear the screen. 
The first thing to do is to choose a name for the routine. If you have used 
Simons' BASIC, or a similar extended BASIC, you will have come across 
procedures. Procedures are simply named subroutines. Instead of GOSUB 
5000, for example, you might use PROC HISCORES, and instead of RETURN 
you would use something like ENDPROC. Machine code subroutines work 
in a similar way in that you give them a name, and then use this name to call 
the routine. All you do is label the first line of the routine 

7000 ;CLEARSCREEN 



74 MACHINE CODE SUBROUTINES 

Then, whenever you wanted to call the subroutine, you just 

JSR CLEARSCREEN ;Jump to the SubRoutine called CLEARSCREEN 

Simple! 
Some extended BASIC procedures allow you to pass parameters to them. 

To explain what we mean by this, suppose you wanted to write a procedure 
(subroutine) to centre a piece of text horizontally. This makes screen 
displays look neater. In the standard C64 Version 2 BASIC supplied with the 
machine, you would write a subroutine something like this 

2000 REM Centre the text in A$ 
2010 LM=(40- LEN(A$))/2 
2020 FOR A= 1 TO LM:PRINT CHR$(32);:NEXT A 
2030 PRINT A$ 
2040 RETURN 

To use the subroutine, you would then have to place the text you want' 
centred in A$ and then call the subroutine 

150 A$="*** ALIENS ATTACKING!!!***" 
160 GOSUB 2000 

With procedures, however, we would write the subroutine like so 

2000 DEFROC CENTRETEXT(A$):REM DEFine PROCedure called CENTRETEXT 
2010 LM=(40-LEN(A$))/2 
2020 FOR A= 1 TO LM:PRINT CHR$(32);:NEXT A 
2030 PRINT A$ 
2040 ENDPROC 

And call it by 

150 PROC CENTRETEXT("***ALIENS ATTACKING!!!***") 

In this case, the text '***ALIENS A TT ACKING!ll* * *' is a parameter which is 
passed to the subroutine. 

Some assemblers allow you to pass parameters to machine code 
subroutines: these special subroutines are called macros. Note that the 
assembler supplied with this course does not support macros, as you are 
unlikely to need them while you are learning machine code. Once you have 
become more experienced, however, you may like to buy an assembler 
with a macro facility. 

The two other important differences between a subroutine and a macro, 
besides the fact that macros allow parameters to be passed to them, are: 

(a) Macros can be stored on disc or, at a push, on tape. Some macro 
assemblers supply you with a ready-made library of macros on disc: this 
is well-worth looking out for if you do choose to buy a macro assembler. 

(b) When you call a macro, the machine code is inserted into memory at the 



THE KERNAL JUMP TABLE 

current position. This can be wasteful of memory, particularly since 
library macros are, by their very nature, designed to be as general as 
possible. On the other hand, this does mean that you can write a 
complete program just by joining different macros together and adding 
in a bit of your own code. 

10.2 The Kemal jump table 

The C64's Operating System is known as the Kemal. It is made up of 
hundreds of small subroutines which carry out simple tasks like printing 
characters to the screen, reading data from the datasette and so on. Rather 
than have to write our own machine code programs to do that sort of thing, 
wouldn't it be great if we could just borrow whatever subroutines we needed 
from the Kernal? Good news: we can. We just use JSR to jump to the location 
of the subroutine you want to use. 

At first glance, there would seem to be a slight problem in this idea. After 
all, Commodore has brought out a number of different versions of the Kemal 
ROM. and has moved some of the subroutines around. Don't we have to know 
exactly which version of the C64 we've got, and then look up the address of 
each subroutine we want for that particular version? Thankfully, no! In what 
an unkind person might describe as a rare example of forward-thinking on 
Commodore's part (we, of course, don't think anything of the sort), the 
company foresaw this problem way back in the days of the PET (the what?). 

What Commodore did was to create a special area of the Kernal called the 
Kernal Jump Table. This table is in exactly the same place in every C64, and 
is still in the same place in the Commodore 128. This table contains a pointer 
for each subroutine in the Kernal. The pointer is simply the address where 
the subroutine can be found in this particular version of the Kemal. So, all you 
have to do is to JSR to the address of the subroutine you want in the Kernal 
Jump Table, and the C64 will then automatically transfer you to the correct 
address. So any machine code program written on any of the C64's or, 
indeed, on the C 128, will run on any other version of the machine. This is one 
of the reasons that all C64 software runs on the Cl28. To call a Kemal 
subroutine, then, you only need to know its pointer address in the Kemal 
Jump Table. You can look up this address in the Kemal routines in Appendix 
2 of this book You set the accumulator and indices to the required values 
(these are normally passed to the Kemal routine as parameters) and then JSR 
to the appropriate pointer address. 

Let us see how this works in practice. Supposing that we wanted to print a 
character to the screen at the current cursor position. To do this, we would 
use the Kemal routine called PRINT. This takes !he value of the accumulator, 
converts it to the ASCII equivalent (see Appendix 9 for a list of ASCII codes) 

75 



76 MAQHINE CODE SUBROUTINES 

and prints this character at the current cursor position. If you look up PRINT 
in Appendix 8, you will see that its pointer address is $FFD2 (decimal 65490). 
So, to print the letter 'A' ($41, decimal 65), we would 

LDA # $41 ;Load accumulator with ASCU A 
JSR $FFD2 ;Jump to pointer address of the PRINT subroutine 

And that's all there is to it! The Kernal jump table looks up the actual address 
of the PRINT routine for you, and this routine then prints the A to the screen. 

10.3 USR 

Until now, the way we have run our machine code programs from BASIC is to 
use SYS followed by the start address of the program. There is, however, an 
alternative method of doing it: the USR command. The syntax is 

(variable)= USR ( (parameter )) 

So, for example 

A= USR (10) 

USR is intended for a machine code program which takes a value, processes 
it in some way and then returns a different value. In other words, it is for use 
when you have written a machine code function. 

A function is simply a name for a subroutine which takes one value and 
returns a different one. An example of a built-in BASIC function is 

A= RND (10) 

So, for example, you may have written a program to draw a circle, with the 
centre of the circle at the current graphics-cursor position. You could use 
USR to tell your program what diameter circle to draw 

220 A= USR(2S):REM Draw circle of diameter 25 pixels 

In this case, we would not use the value returned since we only need to pass 
the value one way. Another example, where a value is passed both ways, 
might be a machine code program which performs a complex calculation 
(BASIC is very slow at certain types of calculations). In this case you would 
pass the original value to the machine code program and get the result of the 
calculation back 

350 X= USR (211) 
360 PRINT "THE ANSWER IS";X 

You may be wondering how the C64 knows where to look for the machine 
code program, since we have not given it a start address. The answer is that 
the start address is stored in Lo-Hi form in decimal locations 785 and 786. 



EXERCISE 

What happens when a USR command is executed is that the parameter 
(the number in brackets after the USR command) is converted to hex and 
placed into a special memory location called the Floating Point Accumulator 
(FPA). To read this number in your machine code program, JSR $BC9B. This 
calls a subroutine which places the Lo-byte of the FPA in location $65 and the 
Hi-byte in location $64. This is the opposite way around to the usual Lo-Hi 
form. You can then use this value in your program in the usual way. When you 
have finished, and want to place a number back into the FPA, simply JSR 
$B39 l. This routine reads the Lo-and Hi-bytes from $65 and $64 respectively 
and places the resulting value into the FPA. This value is then converted to 
decimal and stored in the variable preceding the USR command. 

10.4 Summary 

Machine code subroutines work in an almost identical way 
to BASIC ones. To create a subroutine, simply label the 
first line and end with an RTS command. To call the 
subroutine, just JSR (label). There is a special kind of 
subroutine called a macro. Macros can have parameters 
passed to them, and can be stored on tape or disc for later 
inclusion in other programs. The assembler supplied with 
this book does not support macros, but you may find it 
useful to buy one which does once you are a more 
experienced machine code programmer. 

The C64's operating system, called the Kernal, contains 
hundreds of useful machine code subroutines. You can use 
any of these in your own programs by JSRing to the 
appropriate pointer address in the Kernal Jump Table (see 
Appendix 7). These addresses are the same for any 
version of the C64 and Cl28. If you want to pass 
parameters (values) between BASIC and a machine code 
program, you use USR instead of SYS to run the program. 

10.S Exercise 

Write a program to clear screen and write your name in the top left-hand 
comer using only the CHROUT (see Kemal routines) routine to output the 
letters. 

77 



II 

Interrupts, the stack and 
adding commands to BASIC 

This chapter introduces three important subjects: interrupts, the stack and 
adding commands to BASIC. All are fairly complex, so this chapter simply 
forms an introduction to the subject. When you have read it, you will 
understand: 

e the interrupt program 

• how to write interrupt-driven software 

e what the stack is and how it operates 

e how to add extra commands to BASIC 

11.1 Interrupts 

Whenever you turn on your C64, you are presented with a flashing cursor. 
This flashing is just one of the many jobs performed by a machine code 
program called the interrupt program. Fifty times per second, no matter 
what your C64 happens to be doing at the time, it is interrupted by the 
interrupt program. This program flashes the cursor, updates the built-in 
clock so that TIME$ always contains the correct value, and checks to see 
whether any keys are being pressed. Having done all this, it then returns to 
whatever job it was doing before the interrupt. A fiftieth of a second later, the 
same thing occurs, and again a fiftieth of a second after that. And so on. You 
can see from this that the C64 is actually pretty busy even when it appears to 
be doing nothing! It has to make a note of exactly what it is doing, run the 
interrupt program and then carry on from wherever 'it left off. 

There are times when it would be useful if we could persuade the interrupt 
program to do a few things for us while it is at it. We might, for example, want 
to display a real-time clock on the screen. If we tried to update this 
ourselves, we would have to JSR to our clock update routine at least once a 
second - our program would be nothing but JSRs and we would not have 
either room or time to do anything else! Fortunately, we can modify the 
interrupt program. 



THE STACK 

The interrupt program is stored at $EA31. This address is stored in Lo-Hi 
form in $0314 and $0315. So, all we have to do is to replace the values in these 
locations with the address of our own routine and the C64 will jump to there 
fifty times a second instead. There are, of course, two important points to 
bear in mind. First, whatever you do within your routine must take 
considerably less than a fiftieth of a second. And second, the C64 cannot 
function without the standard interrupt program: for this reason, the last 
command in your own interrupt routine must be JMP $EA3 l. This means that 
the C64 will execute your routine first, and then jump to the normal interrupt 
program afterwards. Let us write an example interrupt routine (Listing l 1.1) 
to flash the top line of the screen. 

Listing 11.l 

5000 [ $C000 
5010 
5020 '** INTERRUPT FLASH TOP LINE ** 
5030 ; 
5040 : scREEN~$0400 

5050 
SEI JSTOP INTERRUPTS 
LOA tt<USERINT ;REPLACE 
STA $0314 
LOA It >US'ERlNT 
STA $0315 

INTERRUPT 
5060 
5070 
5090 
5090 
5100 
5110 CLI ;RESTART INTERRUPTS 
5120 RTS ;RETURN TO BAS~C 
5130 
5140 LOY lt$00 IUSERINT ;START OF USER INTERRUPT 
5150 LOA SCREEN,Y : LOOP 
5160 EOR tt:-:10,000000 
5170 STA SCREEN,Y ;PUT IT BACK-REVERSED 
5180 INY 
5190 CPY lt40 
5200 BNE LOOP 
5210 .Jl'P $EA31 JGOTO USUAL INTERRUPT 
5220 ; 

5230 El'IJ 
READY. 

11.2 The stack 

The stack is a special area of memory used by the interrupt program. Before 
the C64 jumps to the interrupt routine, it 'makes a note' of what it is doing so 
that it can carry on after the interrupt as if nothing had happened. To do this, 
it stores all the information it needs on the stack The stack operates on a Last 
In, First Out (LIFO) basis. This is just like a stack of cards: the last one you put 

79 



80 INTERRUPTS, THE STACK AND ADDING COMMANDS TO BASIC 

onto the stack will (obviously) be on top, and will therefore be the first one to 
be taken when someone takes a card from the stack. 

The command you need to place a number onto the stack is PHA, which 
stands for PusH Accumulator. This takes the value stored in the accumulator 
and puts a copy of it onto the top of the stack The complementary command, 
PLA, PulL Accumulator, removes the value on the top of the stack and stores 
it in the accumulator . It is important to note that PHA leaves the original value 
in the accumulator, while PLA alters the accumulator. 

The stack can be used by experienced machine code programmers to 
temporarily store values without using up other memory locations. This is not 
recommended to you at this stage as it is extremely easy to lose track of 
which value is at the top of the stack at any given moment. You will however, 
probably want to use it once you are more familiar with the stack 

11.3 Adding commanda to BASIC 

Ok, now for the exciting bit! You may or may not be surprised to know that 
you now have almost all the information you need to begin adding your own 
commands to BASIC! When the C64 runs a BASIC program, it checks each 
line of the program, character-by-character. It then checks to see if it 
recognizes any of the code as a BASIC keyword. The program which 
performs this check is called CHRGET. The CHRGET routine is read in from 
ROM and stored in RAM while the C64 is being used. Because CHRGET is 
stored in RAM, you can alter it to check for your own, additional, BASIC 
keywords. 

The standard CHRGET routine is shown in Listing l l.2. Don't worry if you 
do not understand all of it, you can change it to iriclude a check for extra 

Listing 11.2 

NORMAL CHfitOET ROUTtl'Er 

et flet73 E87A Ifie .-7f'I 
1 e0n1 00e2 BNE tiefl79 
2 9977 E67B Ifie .-78 
3 9979 A02Aet2 LOf'I tle22A 
4 997C C93A Cl'P #*3f'I 
~ etet7E Bet et A BCS tie fl SA 
6 0ee e C92et Cl'P tt.e0 
7 0982 F0EF BEQ tiefl73 
8 008 4 3 8 SEC 
9 008~ E930 SBC ••39 

10 0 087 38 SEC 
11 0088 E900 SBC •«>0 
12 0081'1 60 RTS 

READY. 



ADDING COMMANDS TO BASIC 

keywords without knowing how it works. To add your own keywords, simply 
modify CHRGET to branch to a machine code program of your own once it 
has reached the end of its own check. Your program performs its own search 
for your extra keywords; if it finds one, it then jumps to the machine code 
program (Fig. 11.1) you have written to carry out the command. 

Figure 11.1 

t£W CHRGET ROtJTit£1 

0 0073 4C00C0 Jl"P $C01!10 
0076 02 BYT $02 

2 0077 E67B If'C •7B 
3 0079 A02702 LOA $0227 
4 007C C93A c,,., tt•3A 
5 007E B00A BCS $01!1BA 
6 0080 C920 c,,., #920 
7 0082 F0EF BEQ .el073 
8 0084 38 SEC 
9 0085 E930 SBC #930 

10 0087 38 SEC 
11 0088 E900 SBC #901!1 
12 008A 60 RTS 

READY. 

PROGRAM AT $C000: 

0 C000 E67A If'C •7A 
C002 0002 St£ 9Cl!l06 

2 C004 E67B If'C .-?B 
3 C006 A919 LOA tt•19 
4 C009 900004 STA 9048 1!1 
~ C00B 4C7900 Jl"P $0079 

READY. 

81 



12 

Application and practice 

You are now well on the way to becoming a fully-fledged machine code 
programmer! From here on in i~s just a case of getting as much practice as 
pcssible, and learning from your own experience - just as you did with 
BASIC. This chapter wraps things up by covering: 

• Designing a machine code program 

• Choosing between BASIC, machine code and a 
combination of the two 

• Doing several things at once 

e Debugging 

• Monitors 

12.l Program design 

Designing machine code programs is no different in principle from 
designing BASIC programs. It is, however, more important since you can 
often get away with beginning a BASIC program with little or no planning; 
with machine code, however, you will probably end up totally confused if 
you try to do this - particularly while you are still relatively new to the game. 

There are two main approaches to program design. The first is known as 
flowcharting, and the second as top-down design. You have probably heard 
of both, but in case you are not clear what the difference is, let us briefly 
explain the two systems. In flowcharting, you start at the beginning of the 
program and write down what happens at each stage of the program. You 
deal with any branches and so on as you meet them, and keep going until you 
reach the end of the program. In other words, flowcharting is a sequential 
approach: dealing with each section of the program in the sequence in 
which it will occur. Top-down design, which is gradually taking over from 
flowcharting as the most popular approach, involves taking an overall view, 
and then going into more detailed 'levels' of the program. So, for example, 
the top level of the program would be an address list program. The second 



BASIC, MACHINE CODE OR BOTH? 

level might consist of putting original data in, modifying data and searching 
for addresses. The third level would split each of these tasks into their 
component parts, the next level divides these into their subtasks and so on. 
The bottom level is the code itself. 

Figure 12.1 illustrates the difference between the two approaches. 
Personally, we prefer top-down programming, believing it to be easier and 
clearer, but choose whichever method you prefer. 

Flow chart 

Start 

+ 
Fill kettle 

+ Turn on gos 

+ 
Get instant coffee 

+ Put 2 spoons into o cup 

+ 
Woit=:-J + No 

Kettle boiled? 
+ves 

Pour water into cup 

+ Drink coffee 

+ End 

+ 
0 

Figure 12.1 

Top down design 

Boil water 
I 
I 

Fill Turn Wait 
kettle on for 

gos boiled 
kettle 

Make coffee 

Prepare coffee 

I 
I 

Get Put 2 Pour 
coffee spoons boiling 

into water 
cup into cup 

12.2 BASIC, machine code or both? 

Drink coffee 

I 
Drink 
coffee 

Once you have planned your program in outline, the first decision to be 
made is whether to program in BASIC or machine code. BASIC may be slow, 
but if you can bash out a working program which does the job adequately in 
20 minutes, why bother with machine code? Machine code is normally used 
where BASIC would be too slow. 

In many cases, you will find that BASIC is fine for most of the program, it is 
just one or two places where everything slows down. If this is the case, the 
solution is to write the main program in BASIC and rewrite the offending 
routines in machine code. You can then SYS to these as required. A typical 
example where this approach would be useful is in colouring the screen. All 
you do is end your machine code program with a final RTS so that it returns to 
BASIC when it's finished. The BASIC program will then continue. 

83 



84 APPLICATION AND PRACTICE 

There are some cases, though, where speed is essential throughout the 
program. The main example, of course, is arcade-style games, where you 
want lots of different things to be happening very quickly. It is here where 
machine code comes into its own, and you would use it to write the entire 
program. 

12.3 Doing several things at once 

One of the things many people associate with machine code programs is that 
everything happens at once! The aliens fly around, the laser gun moves, 
bombs drop, the timer decreases, music plays . . .. The reality, of course, is 
that the C64- like all currently available computers- can only do one thing at 
a time. But because machine code is so fast, it can appear to do a lot of things 
at once. Interrupts are one way of doing several things all within a fiftieth of a 
second, but you can only execute very short bits of code in the interrupt 
routine. For most things, you have to rely on making your code - particularly 
loops - as fast and efficient as possible. 

Loops are very useful for doing several things at once. The loop to move 
the space-invaders, for example, should also check which keys are being 
pressed and move the gun, make a sound, update the timer and score and so 
on. In BASIC, this technique would be hopelessly slow and jerky, but in 
machine code it may well be so fast that you have to put a delay loop in to 
slow things down enough to make the game playable! 

12.4 Debugging 

When something goes wrong with a program, the fault is known as a bug. 
Debugging is the process of correcting the faults: removing the bugs. The 
old saying about a byte of prevention is worth a megabyte of cure (or 
something like that) holds especially true for machine code programming. 
Plan your programs properly, write them logically and type them in carefully 
and you will keep your debugging to a minimwn. 

To find the bug in a program, the first thing to do is to take a careful note of 
the symptoms. Even if the program crashes completely make a note of 
exactly where in the program it crashed: what was on the screen at the time? 
That way you will be able to work out what it was doing when it crashed and, 
therefore, the section of the code that is at fault. If the wrong value was 
displayed, make a note of the value that should have been displayed and the 
value actually shown. Check related values: Are they correct? If so, the fault 
lies in the calculation of the incorrect value. Otherwise the bug may be in the 
calculation of earlier values. If something appears on the screen in the wrong 



MONITORS 

place or in the wrong colour, where should it have appeared and what colour 
should it have been? Is everything else in the right place and in the correct 
colour? Make a careful note of the symptoms, and debugging is usually 
straightforward. 

One common mistake (you probably made it when typing in one or more 
of the programs in this book) is to forget to enter a # sign when you want a 
value. Instead of using the value itself, the C64 would then use the value 
stored in that memory location. This siJTiple mistake can cause all sorts of 
unexpected results, so be aware of it when you are typing programs in. 

Once you have found the bug, go back to the source code and correct it. 
Save the corrected program to tape or disk and then re-assemble it and try 
again. We cannot emphasize this point too strongly, by the way: always, 
always save your source code to tape or disc before assembling it. This does 
not just apply to the original program, it applies every time you modify it. It is 
easy to correct one bug and, in doing so, create another one. And the second 
bug may cause a complete crash. So don't take the chance of losing your 
work: save it! 

12.5 Monitors 

A monitor, not the type that sits on your desk with your C64, is a collection of 
small programs that allow you to poke around in your C64's memory, 
examining and changing values. They can be extremely useful for 
debugging your own object code, and are even more useful if you want to 
modify someone else's machine code program and you do not have the 
source code. 

There are plenty of monitors available for the C64, so it would be unfair of 
us to recommend any particular one. We do, however, suggest that you insist 
on the following features: 

A disassembler. This is almost the opposite of an 
assembler. It allows you to convert object code into source 
code. Well, we say 'almost' because it will actually only 
display object code in source-code form. It will not actually 
allow you to alter the source code. You can, however, use 
it to make sense of object code and perhaps borrow ideas. 

A hunt command. Quite often, when you are debugging, 
you will be looking for a particular value in memory. This 
might be a number, letter or command. A hunt command 
allows you to state the value you are looking for and the 
area of memory to search. It will then tell you whereabouts 
in memory the value can be found. 

85 



86 APPLICATION AND PRACTICE 

A fill command. Useful for testing purposes, a fill command 
allows you to fill a specified area of memory with a 
specified value. 

A monitor command All monitors will have this, since the 
name is derived from this function. A monitor allows you to 
specify an area of memory, and the contents of the area 
will be displayed on screen as either hex or decimal 
values, or, optionally with some monitors, ASCII characters. 
You can then use the cursor keys to move to an address 
and modify it. This is the method old-time machine code 
programmers had to enter their programs before 
assemblers were introduced. 

A simple assembler. A simple assembler is one which 
works in the usual way except (a) it assembles each line of 
code straightaway, and (b) it does not allow the use of 
labels. It is not much use for writing proper programs, but 
it can be very useful for trying out little ideas and making 
small changes to your program without going back to your 
full assembler. 

A save command. The normal BASIC SA VE command only 
allows you to save BASIC programs. If you want to save 
machine code, you either have to save the source code or 
you need a command to save the contents of an area of 
memory. This is what the save command in a monitor does. 
You tell it the start and end address of your program, and 
it will save the object code to either tape or disc. This 
allows you to create object code cassettes and discs to 
give to other people, or to sell. 

To load object code, use 

LOAD "(filename}",8, l:REM Disk 

or 

LOAD "(filename}",l,l:REM Tape 

A trace (single-step) function. This allows you to execute a 
machine code program one line at a time. After each line, 
the monitor displays the values of the accumulator and 
indices, and the line just executed. You then press a key 
(usually the SHIFT key) to continue to the next line. This is 
a very handy aid to debugging. 

Break points. This is similar to the trace function. Instead of 
stopping after every line, you tell it where to stop. This is 
useful if you know roughly where the bug is. 



Afterword 

If you've now completed the course: congratulations! If you're flicking idly 
through the book in your local bookshop: don't just stand there, buy it! 

Provided you have worked your way carefully through each chapter, 
completing the exercises, you now have a firm grounding in 6510 machine 
code programming. All you need to do now is practise, practise, practise! 
Just like you did with BASIC. 

You can learn a lot from looking at other' people's programs, particularly 
ones which have been heavily annotated. Magazines are a good source of 
useful routines: check out Personal Computer Worlds Subset, for example. 
Computer clubs are also a great source of ideas and help: there is nearly 
always someone who has experienced the exact same problem as you, 
only 6 months ago. While it can be infuriatingly frustrating to have 
someone provide a solution in lO seconds to a problem you have been 
working at for the past lO days, it is also a tremendous help! 

Happy programming, and we look forward to seeing your latest game on 
the computer store shelves 6 months from now! 



-. 
-. 

.APPENDIX 1 

Quick Conversion Chart: 
DecimaL'Hex/Binary 

DECIMAL HEX BINARY 

000 $00 X00000000 
001 $01 X00000001 
002 $02 X00000010 
003 $03 Y.00000011 
004 $04 X00000100 
005 $05 Y.1)0000101 
006 $06 X00P.lr.10 I 10 
007 $07 Y.00000111 
008 •08 %00001000 
009 $09 Y.00001001 
01~ $0A X00001010 
0 ! 1 $09 Y.0000 1011 
012 $0C XC!'000 1100 
013 $00 Y.00001101 
014 ~E %00001110 
!?I I '5 S0F %00001111 
~16 Sl0 Y.00010000 
017 Sil X0€1010001 
018 Sl2 X0el0 10010 
019 $13 %00010011 
020 $14 %00010100 
021 $15 %00010 101 
022 SIS :~00010110 

023 $17 %00010111 
024 SIS %00011000 
el25 SIS %00011001 
026 SIA %00011010 
027 $19 %00011011 
028 $IC %00011100 
029 $10 %00011101 
030 S1E %00011110 
031 $IF %00011111 
032 $20 X00100000 
033 $21 Y.00100001 
034 $22 %00100010 
035 $23 %00100011 
036 $24 %00100100 
037 $25 %00100101 
038 $26 x0010011ei 



QUICK CONVERSION CHART: DECIMAl/HEX/BINARY 89 

DECIMAL. HEX B 11'¥1RY 

039 $27 %00100111 
040 $28 %00101000 
041 $ 2 9 %00101001 
042 $ 2 A X00101010 
043 $ 2 8 %00101011 
044 $2C Y.00101100 
04:5 $20 %0010111!11 
046 $2E %00101110 
047 *2F %00101111 
048 *30 %00110000 
049 *31 %00110001 
0:50 *32 %00110010 
0:51 *33 %00110011 
0:52 $34 %00110100 
0:53 *3:5 Y.00110101 
0:54 $36 %00110110 
0:5:5 $ 3 7 %00110111 
0:56 $ 3 8 %00111000 
0:57 *39 %00111001 
0:58 S3 A %00111010 
0:59 $ 3 8 Y.00111011 
060 *3C Y.00111100 
061 $30 %00111 101 
062 *3E %001 11110 
063 *3F Y.00111111 
064 $40 X0 1000000 
06:5 $41 %01000001 
066 $42 %01000010 
067 $43 %01000011 
068 $44 %01000100 
069 $4:5 %01000101 
070 $46 X01000110 
071 $47 %01000111 
072 *48 Y.01001000 
073 *49 %01001001 
074 *4A Y.01001010 
07:5 $48 Y.01001011 
076 $4C %01001100 
077 $40 %01001101 
078 $4E %01001110 
079 $4F %01001111 
080 ~0 %01010000 
081 $:51 Y.01010001 
082 ~2 %01010010 
083 ~3 Y.01010011 
084 ~4 %01010100 
08:5 *:5:5 Y.01010101 
086 *:56 Y.01010110 
0 8 7 $:57 %0 1010111 
088 *:58 Y.01011000 
089 $09 Y.0101101!11 
090 ~A Y.01011010 



90 APPENDIX l 

OECl~l. HEX 8lN'IRY 
---

091 $:58 Y.01011011 
092 ~c Y.01011100 
093 ~o Y.01011101 
094 ~E Y.01011110 
09~ ~F Y.01011111 
096 $60 %01100000 
097 $61 Y.01100001 
098 $62 %01100010 
099 $63 %01100011 
100 $64 Y.01100100 
101 $6~ %01100101 
102 $66 Y.01100110 
103 $67 Y.01100111 
104 $68 %01101000 
10~ $69 Y.01101001 
106 $6A %01101010 
107 $68 Y.01101011 
108 $6C Y.01101100 
109 $60 %01101101 
110 $6E Y.01101110 
111 $6F x01101111 
112 $70 %01110000 
113 $71 X01I1000 I 
114 $72 Y.01110010 
11~ $73 Y.01110011 
116 $74 %01110100 
117 $7~ Y.01110101 
118 $76 Y.01110110 
119 $77 Y.01110111 
120 $78 %01111000 
121 $79 %01111001 
122 $7A %01111010 
123 $78 Y.01111011 
124 $7C Y.01111100 
12:5 $70 %01111101 
12 6 $7E Y.01111110 
127 $7F Y.01111111 
128 $80 %10000000 
129 $81 Y.Ul000001 
130 $82 X10000010 
131 $83 %10000011 
132 $84 Xl000010el 
1'.?3 sa:s Y.10elel0 1el1 
1'.?4 $96 :-: 100001 10 
1 '3~ $97 %10000111 
l '36 $88 '.~ 1 el00 I 0e0 
I '37 $'.?9 :~ 100010Cl 1 
138 SS A xrnei0101ei 
1 ?:? ~e % 1001!110 I 1 
1'10 $8C :-: 1000 I 100 
14 ! $80 %10001101 
14 2 $'3E %10001110 
143 SSF Y.10001111 



QUICK CONVERSION CHART: DECIMAL/HEX/BINARY 91 

OECIM'\L HEX BINARY 

144 SS0 %10010000 
14:5 SS! %10010001 
146 S92 %10010010 
147 S93 X1001001 I 
148 SS4 %10010100 
14S ss:s X\0010101 
I :50 S96 %100101 tel 
151 SS? %10010111 
I '5? S98 '<!0011000 
1'53 SSS Xl0011001 
1:54 SSA %10011010 
I '5~ sse X10011011 
I :5'? SSC X10011100 
1:57 S90 %10011 ti!! I 
158 $9E %1001t110 
!'59 SSF %10011111 
J '?0 SA0 %10100000 
!St SAi Xl0100001 
162 SA2 %10!00010 
163 SA3 :<I 0 1000 I I 
164 $1'>4 :<!0100100 
!6'5 flA:S :<1010011!11 
!€'? •~s Y.10100110 
!S? $1'17 X10100111 
16~ ~e %!0101000 
!!':~ SAS X10101001 
1"'0 •AA %10101010 
171 SAS X10101011 
17~ SAC %10101100 
173 SAO Xl0101101 
174 SAE %10101110 
17:5 SAF %10101111 
176 se0 X10110000 
177 SS! %10110001 
178 see %10110010 
17S S83 %10110011 
180 S84 X10110 tel0 
181 $8!5 X10110101 
182 SSS X10110110 
183 SB? X10110111 
184 sea X10111000 
18:5 SSS %10111001 
186 SSA X10111010 
1e7 see X10111011 
188 sec X10111100 
18S *80 X10111101 
1S0 SSE %10111110 
1S 1 $SF X10111111 
192 $Cf) Xl 1000000 
193 $C1 X110000fH 
194 $C2 Xl 1000010 
19:5 $C3 X11000011 
1S6 $C4 X11000100 



- 92 APPENDIX 1 
-

DECIM'IL HEX B 11'-ll'IRY 

197 $C!5 Xl 1000101 

19B $C6 Xl 1000110 
199 $C7 Xl 1000111 
20e $CB x11ee1000 
2e 1 $C9 x110e1ee1 
202 $CA x11ee 1e 10 
203 $CB X11001011 
204 $CC Xl 1001100 
20!5 *CO XI 1001lel1 
206 *CE Xl 1001110 
207 .CF Xl 1001111 
20B $00 Xl 1010000 
209 $01 Xl 1010001 
210 $02 Xl lel 10010 
211 $03 Xl 1010011 
212 $04 x11010100 

213 $0!5 x11e1e101 
214 $06 X11010110 
21!5 $07 Xl1010111 
216 $OB XI 1011000 
217 $09 Xll011001 
21B $CA X11011010 
219 $08 Xl1011011 
220 $CC Xl 1011100 
221 $00 X11011101 
222 $OE X11011110 
223 $OF X11011111 
224 $Eel Xl I 1000el0 
22!5 *El Xl 1100001 
226 $£2 Xl 1100010 
227 $E3 Xl 1100011 
22B $£4 Xl 1100100 
229 $£!5 Xl 1100101 
230 $£6 Xl 1100110 
231 $E7 Xl 1100111 
232 *EB Xl 1101000 
233 $£9 Xl 1101001 
234 $EA x111e1010 
23!5 *EB Xl 1101011 
236 *EC Xl 1101100 
237 *ED X11101101 
23B *EE X11101110 
239 *EF X11101111 
240 $Fel X11110000 
241 $Fl x111100e1 
242 $F2 x1111ee10 
243 $F3 x11 11ee 11 
244 $F4 x111101ee 
24!5 $F!5 x111101e1 
246 $F6 Xl 1110110 
247 $F7 x1111e111 
249 *FB x111110ee 
249 $F9 X11111001 



QUICK CONVERSION CHART: DECIMAUHEX/BINARY 

DECIMAL HEX BINARY 

2:50 $FA X1111 l0U, 
2:5 l $FB X1111 UH l 
2:52 $FC Xl 1111100 
2 :53 $FO Xllllll01 
2:54 $FE Xlllllll0 
2:5:5 $FF Xllllllll 

The program used to generate the above table. 

10 HS• "01234:567SSABCOEF" 
20 OPEN I I 4 : Cf'C.11 
30 PRINT "OECIMAL 
3:5 PRINT"~~~-

HEX BINARY" 

40 FORJ • 0T02:5:5:PRINT : JS•M10$(STRS(J),2)1J$=RIGHT$ ( "000"+J$,3): 
PRINTJ$, 

:50 GOSUB6000 
60 GOSLIB:5000 
70 1'£.XT 
80 PR!NT#llCLOSEl:El'CJ 
4999 I 

:5000 O•J 
:5020 PR INT"X"; 
:5030 FOR1 • 7T00STEP-t:G•INT <0/2 tl ) :O=O-G•2tl:PRINTMIOS <"01", 

G+ I , I); I NEXT: PRINT, 
:5040 RETURN 
:50:50 I 
6000 O• J 
6030 PR !NT"S"; 
6040 FORI•IT00STEP-t1G•INT<O/l6tl>IO•O-G•l6tl1PRINTM!OS<HS, 

G+l,l)JINEXT:PRINT, 
60:50 RETURN 
READY. 

93 



HE>< 

00 
01 
02 
03-04 
0:5-06 
07 
08 
09 
0A 
08 
0c 
00 
0E 
0F 
10 
II 
12 
13 
14-1:5 
16 
17 - 18 
19-21 
22-2:5 
26-2A 
28-2C 
20-2E 
2F-30 
31-32 
33-34 
3:5-36 
37-38 
39-3A 
38-3C 
30-3E 
3F-40 
41-42 
43-44 
4:5-46 
47-48 
49-4A 
48-60 
61 
62-6:5 
66 

APPENDIX 2 

C64 memory map 

DECIMAL 

0 
I 
2 
3-4 
:5-6 
7 
8 
9 

10 
11 
12 
13 
14 
I :5 
16 
17 
18 
19 
20-21 
22 
23-24 
2:5-33 
34-37 
38-42 
43-44 
4:5-46 
47-48 
49-:50 
:51-:52 
:53-:54 
:5:5-:56 
:57-:58 
:59-60 
61-62 
63-64 
6:5-66 
67-68 
69- 70 
71-72 
73-74 
7:5-96 
97 
98-101 

102 

OeSCI" !pt Ion 

6:510 Data Oil"ectlon 
6:510 Input/Output 
Unused 
Vectol"• Floating -> Integel" 
Vector• Integer -> Float Ing 
Search character 
Scan for quote 
Last TA8 position 
Flag: S00 a LOAD, $01 •VERIFY 
Pointer• Input buffer /No. of Subscripts 
Default DIM 
Data Type: $00 a ,.._.meric, -=F •String 
Data Type: *00 =Floating, $80 • Integer 
Flag: DATA scan/ LIST quote / Garbage call 
Flag• Subscript /User Function CFNX> 
Flag: S00 = IN"UT, *40 •GET, $98 •READ 
Flag• ATN sign /Comparison Result 
Flag: Current IN"UT prompt 
Integer value 
Pointer• Te11¥>orary string stacK 
Vector• Last temporary string 
StacK for te11¥>orary strings 
Utility polntel" area 
Product of ,.,.,ltlpllcatlon <Floating-point> 
Pointer• Start of 8aslc Pl"ogram 
Pointe!" • Start of 8aslc variables 
Pointer: Start of Basic &!"rays 
Pointe!"• End of Basic arrays 
Pointer: 8ottom of string stol"age 
Utility s tl"ing pointer 
Pointer: Limit of Basic memory 
Curl"ent Basic line number 
Pl"evious Basic line number 
Pointer• Basic statement for CONT 
Cul"rent DATA line numbel" 
Current DATA item address 
Vectol": IN"UT 
Current Basic variable name 
Pointe!"• Curl"ent Basic variable •ddress 
Pointer• Val"iable in FOR/I-EXT 
Temp pointer /Data area 
F.P. Accumulator Ml: Ex ponent 
F.P. Accurroulato~ Mt: Mantissa 
F.P. Accumulator Ml• Sign 



HEX DECIMAL. 

S7 103 
se 104 
S9 10:5 
SA-SO 10S- 109 
SE I 10 
SF 111 
70 112 
71-72 113-114 
73-SA 11:5-138 
7A-7B 122-123 
8B-8F 139- 143 
90 144 
91 14:5 
92 146 
93 147 
94 148 
9:5 149 
96 1:50 
97 · I :51 
98 1:52 
99 1:53 
SA 1:54 
9B I :5:5 
SC 1:56 
so 1:57 
'3E 1:58 
SF 1:59 
"l0-A2 IS0 - IS2 
A3 IS3 
A4 IS4 
A:S IS:S 
AS ISS 
A7 IS7 
AS IS8 
AS IS9 
AA 170 
AB 171 
AC-AO 172 - 173 
AE-AF 174-17:5 
B0-BI 17S-177 
9~-B3 178-179 
B4 180 
B:S 181 
es 182 
B7 183 
ea 184 
99 18:5 
SA 18S 
BB-BC 187-188 
80 189 
BE 190 
BF 191 
C0 192 
Cl-C2 193-194 
C3-C4 19:5-19S 
c:s 197 
cs 198 
C7 199 
ca 200 

C64 MEMORY MAP 

Description 

Pointer: Series evaluation constant 
F.P. Accumulator #t: Overflow 
F.P. Accumulator #2: Exponent 
F.P. Accun.1lator #2: Mantis~a 
F.P. Accumulator #2• Sign 
F.P. Ace#! vs F.P. Acc#2 sign co,,..arison 
F.P. Accumulator #I• Rounding 
Pointers Cassette buffer 
CHRGET subroutine - Get next Basic character 
Pointer: Next character of Basic text 
F.P. RNO seed 
STatus 
Flag• RVS Key /STOP Key 
Constant for tape timing 
Flag: •00 • L.OAO, $01 = VERIFY 
Flag• Serial output buffered character 
Serial output buffered character 
Tape End Of Tape received 
Register save 
f'.\Amber of open files 
Input device number 
Output <Cl'D> device number 
Tape character parity 
Flag: Ta pe byte received 
Flags •00 • Program, sa0 K Direct mode 
Tape pass 1 errors 
Tape pass 2 errors 
Jiffy clocK CTI> 
f'.\Amber of s erial bits 
f'.\Amber of cy~les 
Tape sync countdown 
Pointer: Tape buffer 
RS-232 Input bits / tape terrp 
RS-232 Input bit count /tape tel!'f> 
RS-232 ChecK for start bit 
RS - 232 Input byte buffer / tape temp 
RS-232 Parity / tape temp 
Po inter: Tape buffer/ Screen scrolling 
Tape end addresses / End of program 
Tape timing constants 
Pointer• Start of tape buffer 
RS -232 Bit count / tape temp 
RS-232 Next bit /. tape End of Tape flag 
RS -232 Byte out buffer 
L.ength o f Current file name 
Current l ogical file number 
Current secondary address 
Current device number 
Pointer• Current file name 
RS -232 Parity out /tape temp 
Tape writ e blocK count 
Seria l word buffer 
Tape motor interlocK 
I / O start address 
Pointer: Tape load terrps 
Current Key pressed $00 = No Key 
f'.\Amber of characters In Ke yboard ~ueue 
Flag: •01 • Reverse chars, $00 • Ord chars 
Pointer: End of line for Ir-FUT 

• 
* 
* 
* 
* 

95 



96 

HEX 

CS-CA 
CB 
cc 
co 
CE 
CF 
00 
01-02 
03 
04 
0:5 
06 
07 
OB 
09-F2 
F3-F4 
F:5-F6 
F7-FB 
FS-FA 
FB-FE 
FF 

0 100 -0 1 FF 
0200-02:58 
02:59-0262 
0263-026C 
0260-0276 
0277-0280 
0281-0282 
0283-0284 
028:5 
0286 
0287 
0288 
0289 
028A 
0288 
028C 
0280 
0 28E 
028F-0290 
0291 
0292 
1!1293 
0294 
029:5-0296 
0297 
1!1288 
0299-1!129A 
029B 
029C 
1!1290 
0 29E 
1!129F-1!12Al!I 
1!12A1 
0 2A2 
02A3 
0 2A4 
82A:'l 
1!12A6 

DECIMAL. 

201-202 
21!13 
204 
205 
206 
207 
208 
209-210 
211 
212 
213 
214 
21:5 
216 
217-242 
243-244 
24:5-246 
247-248 
249-2:50 
2:51-2:54 
2:5:5 
2:56-:511 
:512-600 
601-610 
611-620 
621-630 
631-640 
641-642 
643-644 
645 
646 
647 
648 
649 
6:50 
6:51 
6:52 
6:53 
6:54 
6:5:5 - 6:56 
6:57 
6:58 
6:59 
660 
661-662 
663 
664 
66:5-666 
667 
668 
669 
670 
671-672 
6 73 
674 
67:5 
676 
6 7 7 
678 

APPENDIX 2 

Description 

Cur s or position <X,Y> for INPUT 
Flag: Shifted characters 
Cursor flash, $00 = enable 
Cursor flash rate 
Character under cursor 
Flag: L.ast cursor flash on/off 
Flag: INPUT or GET from Keyboard 
Pointer• Current screen line 
Curs or position <column only) 
Flag• Quote mode $00 =No 
Screen line length 
Cursor position <row onl y ) 
Temp data a rea 
Number of Inserts 
Screen line linK table 
Pointer• Colour screen position 
Pointer: Keyboard decode table 
Pointer• RS-232 Input buffer 
Pointer• RS-232 Output buffer 
Zero - page memory left free for users 
Basic temp data area 
StacK area 
Basic Ir-.PUT buffer 
L.ogical file number table 
Device number table 
Secondary address table 
Keyboard· queue 
Pointer: Start of Basic memory 
Pointer : Top of Basic memory 
Flag: IEEE timeout 
Current colour code 
Colour under cursor 
Page containing screen memory 
Size of Keyboard buffer 
Key repeat $00•No repeat, $80• All repeat 
Repe't Key speed 
Repeat de I ay 
Flag• Keyboard shift / CBM Key / CTRI.. Key 
L.ast shift pattern 
Pointer: Set up Keyboard table 
Flag: $00 •Disable / $80 =Enable shift 
Flag : $00 =scroll enable 
RS-232 control register 
RS- 232 command register 
RS-232 Bit timing 
RS-232 status register 
RS-232 number of bits to send 
RS-232 speed 
RS-232 index to end of input buffer 
RS-232 start of input buff er 
RS-232 start of output buffer 
RS-232 Index to e nd of output buff er 
IRQ save during tape operations 
RS-232 enable 
Timer for tape operation 
Tape terrf> used during read 
Tape terrf> used during read 
Screen row marKer 
Flag: 91!11!1 • NTSC, $01 • PAL. T.V. system 

* 



HEX 

1!12A7 - 028F 
02C0 - 02FE 
1!12FF 
1!131!10-1!1301 
0302- 1!1303 
0304 - 1!130:5 
1!131!16- 0307 
031!18-0309 
1!130A-1!130B 
1!130C 
031!10 
0'30E 
0:.>0F 
03!0 
0?11-0312 
0313 
0314-031:5 
0'31S-0317 
0318-0319 
l!l31A-0318 
031C:-0310 
031E-031F 
0320-0321 
03::12-0323 
0324-032:5 
1!)326-0327 
0328-0329 
0 32A-032B 
032C-0320 
l!l3i'?E-032F 
0330-0331 
0332-0333 
0334-033B 
033C-03FB 
03FC-03FF 
0400-07E7 
07Ee-07F7 
07F8-07FF 
0e00-7FFF 

DECIMAL. 

679-703 
704-766 
767 
768-769 
770-771 
772-773 
774-77:5 
776-777 
779-778 
780 
781 
792 
783 
784 
785-786 
787 
788-789 
?'90-791 
792-793 
794-79:5 
796-797 
798-799 
800-801 
802-303 
804-80:5 
806-807 
808-809 
810-81 I 
812-813 
814-81:5 
816-817 
818-819 
820-827 
828-1019 

1020-1023 
1024-2023 
2024-2039 
2040-2047 
2048-32767 

8~00-9FFF 32768-40959 
A000-BFFF 40960 -49 151 
C000-CFFF 
0000-002E 
002F-03FF 
0400-041C 
0410-07FF 
0800-0BFF 
OC00-DC0F 
0000-000F 
E000-FFFF 

01!100-DFFF 
E000-FFFF 

49152-:53247 
:53248 - :53294 
5329:5-54271 
54272-:54300 
:54301-:5:529:5 
55296 -:563 19 
56320- :5633:5 
:56:576-:56:591 
57344-65535 

53248-57343 
57344-8:5:53:5 

C64 MEMORY MAP 

Description 

Unused 
Sprite map 11 
Unused 
Pointer• Basic error messages 
Pointer: Basic warm start 
Pointer• T0Ken1se Basic text 
Pointer• Basic text l.IST 
Pointer: New Basic code linK 
Pointer: Evaluate Basic toKen 
Accumulator save 
X index save 
Y index save 
Status register save 
Jump instruction for USR 
Pointer: For Basie's USR 
Unused 
Pointer• Hardware interrupt 
Pointer: Bre&K interrupt <BRK> 
Pointer• Non-masK&ble interrupt 
Pointer• Kernal OPEN routine 
Pointer: Kernal Cl.CSE routine 
Pointer: Kernal CHKIN routine 
Pointer: Kernal CHKOUT routine 
Pointer• Kernal Cl.RCHN routine 
Pointer: Kern&! CHRIN routine 
Pointer: Kernal CHROUT routine 
Pointer: Kern&! STOP routine 
Pointer• Kernal GETIN routine 
Pointer: Kern&! Cl.ALL routine 
Pointer• User defined 
Pointer• Kern&! LOAD routine 
Pointer• Kernal SAVE routine 

• • • 

Unused • 
Tape buffer and Sprite maps 13, 14 and 15 • 
Unused • 
Screen in normal position 
Unused • 
Sprite map pointers 
Basic program area 
Cartridge area /More Basic program area 
Basic ROM 
Free RAM for user machine code programs 
Video registers 
VIC II video chip 
Sound registers 
SIO sound chip 
Colour screen 
Interface ch Ip I 
Interface chip 2 
Kernal Operating System ROM 

Alternate as character set ROM 
Alternate as RAM 

• 

*signifies an area of memory which can be utilised for user machine 

code programs and variables. 

Alternate areas of memory depend upon the contents of location I . 

97 



APPENDIX 3 

Screen codes 

t!! 0 34 • 6:5 • 98 
A 1 .. 3:5 I 66 99 
B 2 • 36 67 100 
c 3 x 37 68 I 101 
0 4 & 38 69 • 192 
E :5 39 70 I 103 
F 6 40 71 - "'4' 
G 7 41 72 ,, 10:5 
H 8 • 42 "I 73 196 
I 9 + 43 ~ 74 ~ 107 
J 10 44 j 7:5 • tee 
K 1 1 4:5 L 76 L 1e9 
L. 12 46 ' 77 , 11e 
M 13 / 47 / 78 111 
N 14 0 48 r 79 ... 111? 
0 1 :5 1 49 .., 80 .A. 113 
p 16 2 :50 • 81 ... 114 
Q 17 3 :51 8 2 -i 11 :5 
R 18 4 :52 • 83 I 116 
s 19 :5 :53 I 84 I 117 
T 20 6 :54 r 8:5 I 118 
u 21 7 :5:5 x 86 119 
v 2e 8 :56 0 87 12e 
w 23 9 :57 • 88 11?1 

>< 24 :58 I 89 ..J 122 
y 2:5 I :59 • 90 • 123 
z 26 < 60 + 91 • 124 
[ 27 61 I 92 .J 12:5 
~ 20 62 93 • 126 
J 29 ? 63 " 94 .. 127 
t 30 6 4 ~ 9:5 .. 31 96 

32 I 97 
! 33 



1024 
1064 
11 04 
114' 
11 84 
1224 
1264 
1304 
1344 
1384 
1424 
1464 
1504 
15'4 
1584 
1624 
1664 
1704 
1744 
1784 
1824 
1864 
1904 
19'4 
1984 

0 10 

SCREEN CODES 

Screen memory map 

20 

99 

30 39 

0 

10 

20 

24 



0 Black 
l White 
2 Red 
3 Cyan 
4 Purple 
s Green 
6 Blue 
7 Yellow 

55296 
55336 
55376 
55416 
55456 
55496 
55536 
55576 
55616 

0 

APPENDIX 4 

Colour codes 

8 Orange 
9 Brown 

10 Light red 
11 Grey 1 
12 Grey 2 
13 Light green 
14 Light blue 
15 Grey 

Colour memory map 

10 20 30 39 

0 

5 5656 t-+-+-t-t-+-++-+-+-+-++-+-+-+-++-+-+-++-+-Jl--l--l-+--l-l--l--l-+--1-1--1--l-+--l-l--+-I 10 
5 5 696 +-++-+--1-l--l--l-+--l-l--l-+-+-+-+-++-+-+-++--l-l--l--l-+--l-l--l--l-+--1-1--1--l-+--l-l--+-I 
55 736 
55 776 t-+-+-t-t-+-++-+-+-+-++-+-+-+-++-+-+-++-+-1--1--1-+--l-+-++-+-+-+-++-+-+-l--+-I 

55816 
5 5856 +-++-+--1-l--l-+-+--l-l--l-+-+~+++-+~++--1-l--l--l-+--1-1--1--1-+--l-l--l-+-+--I-~ 
5 5896 t-+-+-t-t-t--++-+-+-+-++-+-+-+-++-+-+-++-+-l--l--l-+--1-1--1--1-+--l-+-++-+--l-l--+-I 
55 936 +-++-+--1-l--l-+-+--l-l--l-+-+~+-++-+~++-+-l--l--l-+--1-1--1--l-+--l-l--I-+-+~~ 
55 976 +-++-+--1-l--l-+-+--l-l--l-+-+~+++-+~++--1-l--l--l-+--1-1--1--1-+--l-l--l-+-+--I-~ 
56016 
56 056 t-+-+-t-+-+-++-+-+-+-++-+-+-+-++-+-+-++-+-1--1--1-+--l-l--l-+-+--l-l--l-+-+~l--+-I 20 
5 6096 t-+-+-+-t-l--l-+-+--l-+-++-+-+-+++-+l--l-++-+-l--l--l-+--1-1--1--l-+--l-l--l-+-+--l-+-+-I 
56136 
56176 
56 216 t-t-+-+-+-+-++-+-+-++-+-l--l--l-+--1-1--1--1-+--l-l--l-+-+~+++-+~+++-+l--I-+-+-< 
562~ ................. _._...__.___.__,_,_.L....J..--'--JL....L....L...l.-'-L....L.....L...J.-'-J....J...-'--'-'-.1-1......L-l-'--'--L--'--'L....1-_._.__, 24 



APPENDIX 5 

BASIC SYS 
routine 

I REM ••••••••••••••••••••••••••••••• 
2 REM •• •• 
3 REM •• M'IKE M/C INTO DATA •• 
4 REM •• WITH CHECKSUM •• 
5 REM •• •• 
6 REM •• <C> ARB 21 / 1/85 •• 
7 REM •• •• 
B REM ••••••••••••••••••••••••••••••• 
9 I 

le PRINT";.1" 
11 !!'$'UT "arHE START ADDRESS•"IS 
12 !!'$'UT "llllTHE El'll ADDRESS• " IE•IFE• <STHEl>AUN 
13 !~PUT "LINE NUMBER START•"ILN•IFLN<5eTHENl3 
14 PRINT".:J"IT• e 
15 PRINT"~"ILN1•a.. • 'LN+2e1•••FDRl •'Sl'llTO"EI 

16 PRINT"• •L•L+le•T• e•FDRJ• eT05•READA•PDKEl,A•T• T+A" 
17 LN• LN+te:PRINTLNl'•l • l+l•' I 
18 PRINT"NEXTJ•READB'•IFT<>BTHEN? 'CHR•<34 >;"ERROR IN LINE• ' CHR•<34)1 "1 L•STDP ' 
19 LN•LN+le•PRINTLN1 "•l • l - l•NEXTI•RETURN' •REM **** 
2e PRINT'LN•"LN+le1••s··s1 • 1E•'El '•OOT023' 
21 PRINT"•" •POKE631,13•POKE632,l31POKE633 , l31POKE634,131POKEl9B,4•El'll 
22 I 

23 PRINT"~"ILN'SlATA " I 
24 FORJ• eT05•A••STR•<PEEK<J+S >>•A••MID•<A$,2>•PRINTA•" , "I 
25 T• T+PEEK<J+S >•NEXT•T•• MID•<STR•<T>,2 >•PRINTT•1S• S+61LN•LN+le 
26 PRINT"S • 'SI "•LN="LNl "IE• "El'•OOT03e '• PRINT'•' 
27 I 

28 POKE631 , 13•POKE632,13•POKEl98 , 21El'll 
29 I 

3e IFS<ETHEN23 
31 I 

32 J •e•RESTORE 
33 PRINT'~' l lFORJ•eT07•1 • 1+1•PRINTl • NEXTJ •REM DELETE THE LINES 
34 PRINT" l • 'll•lFl <4eTHENPRlNT' •OOT037' 
35 PRINT'•" •FORJ• eT08•POKE631+J,131NEXT•POKEl9B , 91ENO 
36 I 

37 IFl<4eTHEN33 
38 El'll 
READY. 



APPENDIX 6 

Answers to Exercises 

Chapter 3 

1 160 
2 6 
3 252 
4 12 

Chapter 4 

s 36873 
6 192 
7 49216 
8 199 

:5000 [ $C000 
:5010 J 

:5020 JANSi..ER - CHAPTER 4 EXERCISE 
:5060 J 

:5070 LOA #$13 JS 
~080 STA $0400 JSC~EEN 
:5090 LOA #$1:5 JU 

~100 STA .-e401 
:5110 LOA #$12 JR 
~120 STA $0402 
:5130 LOA tl$l9 ; y 

~1 40 STA $0403 
:51 :50 LOA tl$0 l IA 
:5160 STA $0404 
:5170 J 

:5180 LOA #$01 J~ITE 
~190 STA $0800 JCOLOUR SCREEN 
:5200 LOA #$03 ICYAN 
~210 STA $0801 
~220 LOA 11$04 IPURPLE 
:5230 STA $0802 
:5240 LOA 11$0:5 1 GREEN 
~2~0 STA $0803 
:5260 LOA 11$07 1 YELLOW 
:5270 STA $0804 
:5280 1 

:5290 RTS 
:5300 Et-() 
READY. 

9 44352 
10 248 



Chapter S 

5000 c $C000 
5010 

ANSWERS TO EXERCISES 

5020 ;A"GWER - CHAPTER 5 EXERCISE 
5030 
5040 :eoROER•$0020 
5050 :BACKGROU"D•.0021 
'5060 1 

5070 LOA 928 
5030 CHP M$02 ;CHECK VALUE 
'5090 Bt-E NOTEQUAL J BRA"CH IF NOT 2 
'5100 
'5110 STA BORDER 
5120 JMP EXIT ;GO TO EXIT 
5130 1 

5140 STA BACKGROUNO :NOTF:QLIAL 

'5 160 RTS 1 EX IT 
5170 ENO 
READY. 

Chapter 6 

5000 c $C000 
5010 
5020 ;ANSWER - CHAPTER 6 EXERCISE 
5030 
5040 :SCREEN• $0400 
5050 :YELLOW•7 
5060 : COLSCREEN• .0900 
5070 
~080 LOY M$00 ; rtHTll'IL !SE Y 
5e90 TYA :LOOP JGET VALUE FOR ACC. 
5100 STA SCREEN,Y ;PLACE IT ON SCREEN 
5 I 10 LOA MYELLO~~ 
5 120 S TA COL SCREEN, Y ; PLACE YELLOl.J ON COLOUR SCREEN 
5130 !NY 
'5140 CPY M$00 
5 150 B"E LOOP 
5160 
517" RTS 
5180 ENO 
~EAOY. 

Chapter 7 

5000 c $C000 
5010 
5020 !ANSWER - CHAPTER 7 EXERCISE 
5030 J 

5040 IVIOE0• .0000 1VIOEO CHIP 
5045 : MSB•VIOE0+$10 JSPRITE MSB 



104 APPENDIX 6 

,0,0 I 

,060 LOY #$00 
,070 LOA #100 
,090 STY VIDEO ;SPRITE 0 - x 
,090 STA VIDEO+ I I SPRITE 0 - y 
,100 LOA #01 
,110 STA VIOE0+21 1SPRITE 0 • ON 
,120 LOA MSB 
'130 ANO ltXlll1111 0 STURN OFF MSB FOR SPRITE 0 
,140 STA MSB 
,1:50 I 

:5160 INC VIDEO : LOOP! I MOVE S PRITE 0 
:5170 LOX #00 
:5180 DEX 10ELAY1 IOELAY 
:5190 81'£ DELAY! 
:5200 !NY 
,210 Bl'E LOOP1 
:5220 1 

:5230 IY IS NOW ZERO 
:5240 I 

:52:50 STY VIDEO I S PRI TE 0, X•0 
5260 LOA MSB 
5270 ORA ltY'.0000000 1 1MOVE SPRITE 0 ONTO RHS OF SCREEN 
:5280 STA MSB 
5290 I 

:5300 INC VIDEO 1LOOP2 
:53 10 LOX #00 
:5320 DEX 10ELAY2 
:5330 Bl'E OELAY2 
5340 INY 
:53:50 Bl'E LOOP2 
:5360 1 

5370 RTS 
:5390 ENO 
READY. 

Chapter 8 

511110 c «:8ee 
5818 , 
5111!8 IANSloER - CHAPTER 8 EXERCISE 
5830 I 

5848 LOX #900 /INITIALISE x 
5058 Cl.C ICLEAR CARRY 
5068 , 
5070 LOA 928 ILOOP 
gee l.SR A 
5098 I~ 
9188 CPX #9118 
5118 81'£ LOOP I CARRY l'«JT CLEARED WITHIN LOOP 
511!0 , 
5138 RTS 
5140 El'.D 
READY. 



ANSWERS TO EXERCISES 

Chapter 9 

~000 [ $C000 
~011!1 I 
~1!120 IANSl-ER - CHAPTER 9 EXERCISE 
~030 I 

:5040 L.OA 828 
S0S0 TAY ISTORE ACC IN Y 
S060 111.JL.TIPLY ACC BY 2 
S0?0 ASL A 
~1!180 I 
5~S~ CL.C !CL.EAR CARRY 
~100 STA 828 1828 N:lW CONTAINS PEEK <B28>•2 
S 111!1 TYA 
S120 AOC 828 
S1 30 STA 828 ;AOO ORIGI"*IL CONTENTS 
S140 I 

SIS0 1828 l'«lW CONTAINS PEEK <828 >•3 
S160 I 

:5170 RTS 
:5180 ENJ 
READY. 

Chapter 10 

:5001!1 [ $C01!10 
:5010 1 

:51!120 IANSl-ER - CHAPTER 10 EXERCISE 
:5030 1 
:5040 tCHROUT•$FF02 
~0S0 I 
:51!181!1 LOA tl14? 
:5070 JSR CHROUT ICLEAR SCREEN 
:51!180 I 
:51!191!1 LOA tl'A 
:5 11!11!1 JSR CHROUT 100 EACH LETTER IN TURN 
Slll!I LOA tl ' N 
Sf21!1 JSR CHROUT 
S139 LOA tl'O 
~ 1 49 JSR CHROUT 
~tse LOA tl'R 
Sl69 JSR CHROUT 
S170 LOA tl'E 
S189 JSR CHROUT 
S191!1 LOA tl'W 
seee JSR CHROUT 
S210 1 

seee RTS 
~230 Efll> 
READY, 

105 



.APPENDIX 7 

The Kernal routine 

Name I CHRIN 

Ope ration• Get a stream of characters from the Keyboard. 

Cal l Address• *FFCF, 6~4S7 

Registers Affected• Accumulator, X 

Descrip tion s This routine taKes Input from the Keyboard and Is the one 

used by the normal Input on the C64 , The rout lne f I as~1es the cursor 

and awaits Input . ""en a carriage return In inputed the routine 

returns . The routine Is then called for each Inputed character. For 

example• 

~000 [ $C00 0 
~010 1 

~012 ICHRIN EXAl'l'LE 
~014 

~020 ICHR I N•*FFCF 
~030 1SUFFER•S2S 1CASSETTE SUFFER 
~040 1 
~0~0 LOY 
~060 JSR 

# $00 I INITIALISE Y 11'.DEX 
CHRIN •CHRINTESTI 

~070 STA BUFFER,Y ISTORE EACH CHARACTER 
~0S0 !NY 
~090 Cl'I' # 13 JRETURN PRESSED 
~ 10 0 BNE CHRINTESTI I NO - GO SACK FOR ANOTHER CHARACTER 
~ 10~ 1 

~110 RTS 
READY. 



THE KERNAL ROUTINE 

~-· CHROUT 

Operation• Output a character to the screen. 

Call Address• *FF02, 6:5490 

Registers Affected• Accumulator 

Oescr !pt Ion r Th Is rout lne Is one the most useful Kernal rout Ines. It 

outputs any ASCII character held In the accumulator to the screen. You 

can use It to change colour, clear the screen, home th• cursor or 

print any character that you wish. 

:5000 9(;000 
:5010 I 

:501:5 ICHROUT EXAl'FLE 
:5020 I 

:5030 •CHROUT•*FF02 
:5040 I 

:50:50 LOY llstl0 
:5060 LOA TEXT, Y : CHROUTTEST I I GET NEXT CHARACTER 
:5070 Cl'F 11'9 IIS IT AN •e• 
:5080 8EQ CHROUTTEST2 IYES - EXIT 
:5090 JSR CHROUT IND - PRINT IT 
:S 100 INY 
:5110 J,.,. CHROUTTESTI IGO SACK FOR NEXT CHARACTER 
:5120 I 
:5130 RTS •CHROUTTEST2 
:5140 .TXT "Ar-DREW IS ACE&" •TEXT 
READY. 

~mel GETIN 

Operation• Get a character from the Keyboard . 

Call Address• *FFE4, 6:5:508 

Registers Affected• Accumulator, X, Y. 

Description: This routine gets a single character from the Keyboard 

•nd returns It In the accumulator. The cursor Is NOT flashed. If no 

Key has been pressed then zero Is returned In the accumulator. 

107 



108 

::SeJeJeJ [ $CeJeJ0 
::SeJ tel 
::Selt::S IGETIN EXAl'PLE 
::SeJ2eJ 
::SeJ3eJ 1GETIN• $FFE4 
:5040 I TEl'P•828 
::SeJ::SeJ 
::SeJ6eJ LOY tlfileJ 

APPENDIX 7 

:5070 STY TEl'P •GETINTESTI /STORE Y TO PROTECT IT 
::SeJSeJ JSR GETIN IGET A CHARACTER FROM KEYSOARO 
:5090 Cl'P tll3 IIS IT A RETURl'l"RINT 
:5100 SEQ GETINTEST2 /YES - EXIT 
::SlleJ Cl'P tl$elel INO KEY PRESSEOPRINT 
:5120 SEQ GETINTESTt IYES - GO BACK FOR ANOTHER CHARACTER 
:5130 LOY TEl'P ;GET Y FROM STORE 
:5140 STA fil4eJ0,Y /PLACE CHARACTER ON SCREEN 
::St::SeJ INY 
:5160 JMP GETINTESTI ;GO BACK FOR MORE 
:516:5 I 
:5170 RTS <GETINTEST2 
:5200 ENO 
READY. 

Name• LOAD 

Op eration• Load memory from cassette or disK. 

Call Addressr $FFO::S, 6:5493 

Registers Affected: Accumulator, X, Y. 

C'escr !pt ion 1 Th is routine w I 11 I oad an area of memory of m/c prosiram 

~~om disK or tape into the C64. Before you can use it you must JSR to 

the SETl.FS and SETNAM routines. The accumulator must be set to zero 

for load. 

C• LOAD example *l 

:5000 C $CeJ0eJ 
::SeJleJ I 
::SeJ I ::S /LOAD EXAl'PLE 
:5020 I 
::SeJ3el •LOAO•$FFO::S 
:5040 1S£Tl.FS•$FFBA 
:50:50 1SETNAM• $FFBO 
:5060 I 
:5070 LOA tlfi!l IFILE NUMBER . 1 



THE KERNAL ROUTINE 109 

se8e l.DX 11$01 ITAPE DEVICE • I 
se9e l.DY 11*0 I I NDT A REl.OCATED 1..0AD 
s 1 ee JSR SETl.FS 
Site , 
s12e l.DA 11.ee 
Sl3e JSR SETl'.W'IM 11'.0 F 11..E l'.W'IME 
St4e , 
s 1 se l.DA ll$1!1e 11..0AD l'.OT VERIFY 
Sl6e J SR 1..0AD 
Sl 7e I 
Sl8e RTS 
Sl9e , 
s2ee El'll 
READY. 

Name I PL.OT 

Operation• Se t or Read cursor position. 

Call Address: SFFFe, 6SS2e 

Registers Affected• Accumulator ; X, 'Y'. 

Description• This routine moves the position of the cursor to anyNhere 

on the screen. If used with CHROUT, you can print characters anywhere 

on the screen. The carry flag must be c l ear and the x and y positions 

f or the c ursor must be held in the X and Y Indexes. If th• carrt Is 

set then the position of the cursor Is returned in X and Y. 

Cs Pl.OT e xa111>le sJ 

seee c sceee 
sees I 
se 1 e IPL.OT EXAPfl..E 
sets 
se2e IPl..OT•SFFFe 
se3e •CHROUT•SFFD2 
se4e , 
s0s0 Cl..C 
se0e l.DY 1118 ICOl..U~ NUl13ER 
:5070 t..D>< 11..,0 1 ROW NU113ER 
:5080 JSR Pl.OT 
:5090 J SR &.RITEPl..OT 
s 100 I 
Sile Cl..C 
s12e I.DY II I 8 I COl..U~ NUl13ER 



110 

S160 LOX #•10 JROW r-«.J"'3ER 
S170 JSR PLOT 
S160 JSR WRITEPLOT 
S190 
S200 RTS 
S210 J 

S220 LOY #9"0 •WRITEPLOT 

APPENDIX 7 

S230 LOA TEXT,Y •WRITEPLOTl JOET NEXT CHARACTER OF TEXT 
S240 Ctof> #'& JIS IT '&'PRINT 
sese SEQ WRITEPLOT2 JYES - EXIT 
S260 JSR CHROUT JPRINT THE CHARACTER 
S270 INY 
seee JtoP WRITEPLOTl 
S290 RTS •WRITEPLOT2 
S300 J 

5319 .TXT "PLOTe" •TEXT 
S320 Et-IJ 
READY. 

Name: SAVE 

Operation: Save memory to cassette or dlsK. 

Ca l l Addres s• •FFOe, 6S496 

Registers Affected• Accumul a tor, x , Y. 

Des cription• This routine wi ll save any area o f me mo r y or m/c program 

to d isK or tape. eefore you us•. It y ou must c al I the SETLFS and SETl'l'IM 

rout Ines . You must p 1 ace the start a ddress in I o - hi format in page 

zero and the end address In lo - hi in the X and Y lndexe~ . The 

accumulator must then be loaded with the page - zero o ff s et of t he s tar t 

address pointer. So that if yo u u s e $F7 a nd $F6 as the po i n ter , yo u 

will load the accumulator with $F7. 

S000 [ '$C000 
S010 
S01S ;SAVE EXA,..,,LE - SAVE $7000 TO $7100 
S020 I 

S030 :SAVE•$FF08 
S040 •SETLFS•$FF6A 
S0S0 •SETNAM• $FFBO 



THE KERNAL ROUTINE 111 

:5070 I.DY ll:SFF ;NO SECONOARY ADDRESS 
:5080 I.DA 11*01 JFil..E l'UMBER • 
:5090 I.OX 11$0 I 1TP.PE DEVICE • I 
:5100 JSR SETl..FS 
:5110 1 

:5 120 I.DA 11s00 1NO F 11..E NAME 
:5130 JSR SETNAM 
:51<10 I 
:51:50 I.DA 11$00 11..0 PART OF START ADDRESS 
:5160 STA :SF7 
:5170 I.DA 11$70 IHI PART OF START ADDRESS 
:5180 STA :SFB 
:5190 I.OX 11*00 Jl..0 PART OF El'«> ADDRESS 
:5200 I.DY 11$71 IHI PART OF Er-.D ADDRESS <*7 Ul0 > 
:5210 I.DA ll:SF7 IOFFSET FOR START ADDRESS 
:5220 JSR SAVE 
:5230 1 

:5240 RTS 
:52:50 J 

:5260 ENO 
READY. 

N~u>e : ZETl..fS 

Optrntlon • Set up a file. 

'nil Addres s • :SFFBA, 6:5<166 

R~~l•ter 1 Affect e d• None. 

~t•r.ript!ont This routine sets up a f i le f or the l..OAO and SAVE 

ro·~t Ines. You mus t I oad the accumulator w I th the f 1 le number , the x 

Index with the devic e number and the Y index with the s ec ondary 

address. For cassette and dlsK operation, the Y index r1".ls t b• set to 

SF~ <2:5:5 >. See the LOAD and SAVE examples for examples of SETl..FS. 



112 APPENDIX 7 

~~: SETNAM 

Opo~atlon : Set up a file name. 

Call Addre~s= SFFBD , 6~469 

Regi s ters Affected• None. 

Desc ription• This routine s ets up a file name for the LOAD and SAVE 

r outines. The accumulator Is loaded with the length of the name and 

the ~and Y indexes are loaded with the lo and hi parts of the address 

of the start of the name. For examples of SETNAM's useage see the LOAD 

and SAVE exal\"f> l es. 



APPENDIX 8 

A complete listing of the 
6610 assembly language 

instruction set 

Na.met AOC 
Operationt Add memory to Accumulator with Carry 

Addressing Mode 

Immediate 
Zero Page 
Zero Page,X 
Absolute 
Absolute,X 
Absolute,Y 
<Indirect,X> 
<Indirect>,Y 

Flags affected 1 

Name t Al'<> 

! 

Assembly Language 
Form 

AOC ••aa 
AOC $QQ 
AOC $QQ,X 
AOC $QQQQ 
AOC $QQQQ,X 
AOC $QQQQ,Y 
AOC ( $QQ ,x) 
AOC ($QQ), y 

N ! Z c 0 v 

! • 

Operation : Al'<> memory with Accumulator 

Addressing Mode 

Immediate 
! Zero Page 

Zero Page,X 
Absolute 
Ab so lute,X 
Absolute,Y 
<Indirect,X> 
<Indirect>,Y 

Assembly Language 
Form 

ANO ... QQ 
ANO $QQ 
ANO $QQ,X 
ANO $QQQQ 
Af'IJ $QQQQ,X 
Af'IJ $QQQQ,Y 
Al'<> ( SQQ,)( ) 
Af'IJ ( $QQ ),Y 

Opcode 

69 
6:5 
7:5 
60 
70 
79 
61 
71 

Opcode 

29 
2:5 
3:5 
20 
30 
39 
21 
31 

Nurnber of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 

Number of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 



114 APPENDIX 8 

Flags affectedt N z c 0 v 

! * * ! 

Name : ASL 
Operation: Shift left one bit <Accumulator or Memory) 

Addressing Mode 

Accurr..i 1 a tor 
Zero Page 
Zero Page,X 
Absolute 
Absolute,X 

Flags affected! 

Name: ace 

N 

Assembl y Language 
Form 

ASL #$QQ 
ASL $QQ 
ASL .OQ,X 
ASL $QQQQ 
ASL $QQQQ,X 

z c 0 

* ! * ! • 

Operationt Branch on Carry Clear 

Addre ssing Mode 

Relative 

Flags affected: 

Assembl y Language 
Form 

! BCC .OQ 

N ! Z c ! 0 

v 

v 

Opcode ! l'l.lmber of 
Bytes 

0A 
06 2 
16 2 
0E 3 
IE 3 

Opcode ' l'l.lmber of 
Bytes 

90 2 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Nam!! r BCS 
Operation• Branch on Carry Set 

Addre s sing Mode Assembly Language 
Form 

Relative ! BCS $QQ 

Flag s af-fected: N z c 0 

Nam!!: SEQ 
Operation : Branch on Zero 

Addressing Mode 

Relative 

Assembly Language 
Form 

SEQ $QQ 

Opcode 

80 

v 

Opcode 

F0 

N ! Z ! C 0 I V ! 

Flags a-f-fected: 

Nam!!I BIT 
Operation• Test bits in m!!mory with Accumulator 

Addressing Mode Assembly Language ! Opcode 
Form 

Zero Page ! BIT $QQ 24 
Absolute BIT $QQQQ 2C 

Fla.gs a-f-fected: N z c 0 I/ 

! • ! • ! • 

Number o-f 
Bytes 

Number o-f 
Bytes 

Number o-f 
Bytes 

2 
3 

115 



116 APPENDIX 8 

Name I BM I 
Op erat ion• Branch on Minus 

Addressing Mode 

Relat ive 

Flags affected• N 

Name: BNE 

Assembly Language 
Form 

BMI .aQ 

z c 0 

Operation: Branch on not Zero 

! Addressing Mode 

Relative 

Flags affected• 

Name : BPL 

N 

Assembly Language 
For-m 

Bl'E $QQ 

z ! c 0 

Operations Branch on Plus 

Addressing Mode 

Relative 

Flags affected• N 

Assembly Language 
Form 

BPL .aa 

z c 0 

Opcode 

30 

Opcode 

00 

v 

Opcode 

10 

f'l.lmt>er of 
Bytes 

2 

f'l.lmber of 
Byte s 

2 

f'l.lmber of 
Bytes 

2 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Name t BRK 
Operation1 BreaK 

Addressing Mode 

Imp l ied 

Flags affected• 

Name• eve 

N 

Assembly Language 
Form 

BRK 

z c 0 

! • 

Operation• Branch on Overflow Clear 

f'lddress int Mod• 

Relative 

Flags affected• N 

Namer BVS 

f'lssembly Language 
Form 

eve .ao 

z c 0 

Operation• Branch on Overflow Set 

Addressing Mode 

Relative 

Flags affected 1 ! N 

f'lssembly Language 
Form 

BVS *OQ 

z c ! 0 

Opcode 

v 

Opcode 

v 

Opcode 

70 

v 

l'llmber of 
Bytes 

l'llmber of 
Bytes 

2 

Number of 
Bytes 

2 

117 



118 APPENDIX 8 

Namer CLC 
Operation• Clear Carry flag 

Addressing Mode 

Imp 1 led 

Flags affected• N 

Name I CLO 

Assembly Language 
Form 

CLC 

z c 0 

! • 

Operation: Clear Decima l Mode 

Addressing Mode 

lmpl led 

Flags affected• N 

Name I CLI 

Assembly Language 
Form 

CLO 

z c 0 

' . 

v 

v 

Operation: Clear Interrupt Disable flag 

Addressing Mode 

Jmpl led 

Flags affec tedt N 

Assembly Language 
Form 

CLI 

z c 0 

! • 

v 

Opcode 

18 

Opcode 

09 

Opcode 

,.._.mber of 
Bytes 

,.._.mber of 
Bytes 

,.._.mber of 
Bytes 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Name1 CLV 
Operation• Clear Overflow F l ag 

Addressing Mode 

Imp I ied 

Flags affected ! N 

Name 1 c""" 

Assembly Language 
For'm 

CLV 

z ! c 0 v 

! • 

Opcode 

BS 

Operationt Compare memory with Accumulator 

Addressing Mode 

lnmedi a te 
Zero Page 
Zero Page,>< 
Absolute 
Absolute,>< 
Absolute,Y 
<Indirect ,><> 
<Ind ire ct>, Y 

Flags affected! N 

Assembly Language 
Form 

c""" #$QQ 
CMP $QQ 
Cl'F $QQ,X 
Cl'F $QQQQ 
CMP $QQQQ,X 
Cl'F *OQQQ,Y 
Cl'F <*OQ,X> 
Cl'F ($QQ),Y 

z c 0 

! • ! • ! • 

Name I CPX 
Operation• Compare Memory with >< index 

Addressing Mode 

lnmed iate 
Zer'o page 
Absolute 

Assembly Language 
Form 

CP>< tt*OQ 
CPX *OQ 
CPX *OQQQ 

v 

Opcode 

cs 
C:5 
0:5 
co 
00 
09 
Ct 
01 

Opcod e 

Eel 
E4 
EC 

l'A.lmber of 
Bytes 

l'A.lmber of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 

l'A.lmber of 
Bytes 

2 
2 
3 

119 



120 APPENDIX 8 

Flags affected• N z c D 

* ! * I * 

Name• CPY 
Operation• Compare Memory with Y index 

Addressing Mode 

Immediate 
Zero page 
Absolute 

Flags affected• 

Names DEC 

N 

Assembly Language 
Form 

CPX tt*OQ 
CPX $QQ 
CPX $QQQQ 

z c D 

• ! • ! • 

Operations Decrease Memory by One 

Addressing Mode 

Zero page 
Zero page,>< 
Absolute 
Absolute ,>< 

Flags affected• N 

Assembly Language 
Form 

DEC $QQ 
DEC *JQ,X 
DEC *OQQQ 
DEC $QQQQ,X 

z c D 

• ! • 

v 

v 

v 

Opcode 

Cfl 
C4 
cc 

Opcode 

C6 
D6 
CE 
DE 

2 
2 
3 

2 
2 
3 
3 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Name I DEX 
Operation• Decrease X index by One 

Addressin11 Mode 

Imp 1 led 

Fla11s affected• N 

Assembly Lan11ua11e 
Form 

DEX 

z c 0 

! • • ! 

Name I DEY 
Operations Decrease Y index by One 

Addressln11 Mode 

Implied 

Flags affectedr 

Name 1 EOR 

N 

Assembly Lan11ua11e 
Form 

DEY 

z c 0 

• ! • 

Opcode 

CA 

v 

Opcode 

88 

v 

Operations Exclusive-OR Memory With Accumulator 

Addressing Mode 

Immed late 
Zero Pa11e 
Zero Page,X 
Absolute 
Absolute,X 
Absolute,Y 
(Ind lrect ,x > 
(Indirect> ,Y 

Assembly Lan11ua11e 
Form 

EOR •.aa 
EOR *lQ 
EOR *OQ,X 
EOR *OQQQ 
EOR *OQQQ,X 
EOR *lQQQ,Y 
EOR (*lQ ,x) 
EOR (*OQ>,Y 

Opcode 

49 
4:5 
:5:5 
40 
:50 
:59 
41 
41 

,.....mber of 
Bytes 

,.....mber of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 

121 



122 APPENDIX 8 

Flags affected1 N z c 0 

! * ! * 

Name: INC 
Op er at ion 1 Incl"ease Memol"y by One 

Addressing Mode 

Zero page 
Zel"o page , X 
Absolute 
Ab s olut e ,X 

Flags aff ected! 

Name I INX 

Assembly Language 
Form 

INC $QQ 
INC $QQ ,X 
INC $QQQQ 
INC .OQQQ,X 

N ! Z c 

* ! * ! 

0 

Operation 1 Incl"ease X index by One 

Add ress in SJ Mode 

Imp l ied 

F l ags affected: N 

Assembly Language 
Fol"m 

INX 

z ! c 0 

! * * 

v 

v 

v 

Opcode 

E6 
F6 
EE 
FE 

Opcode 

EB 

Number of 
Bytes 

2 
2 
3 
3 

Number" of 
Bytes 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Na.me I INY 
Opet" at ion 1 Incl"ease Y index by One 

Addt"essing Mode 

Imp l ied 

Assembly Language 
Fol"m 

! INY 

Opcode 

cs 

Flags affected! N z c ! 0 ! v ! 

! * * ! 

Name 1 Jl'P 
Opet" at ion 1 JulT'f> 

Addt"essing Mode 

Absolute 
Ind ire ct 

Flags affected• 

Na.me I JSR 

N 

Assembly Language 
Fol"m 

Jl'P 9QQQQ 
J,... (9QQQQ) 

z c 0 

Opet"ationc JUIT'f> To Subt"outine 

Addt"ess ing Mode 

Absolute 

Flags affected• N 

Assembly Language 
FOl"m 

JSR 9QQQQ 

z c ! 0 

Opcode 

4C 

SC 

v ! 

Opcode 

21!1 

v 

~mbet" of 
Bytes 

~rnbet" of 
Bytes 

3 

3 

~mbet" of 
Bytes 

3 

123 



124 APPENDIX 8 

Name I LOA 
Operation1 Load Accumulator 

Addressing Mode 

Immediate 
! Zero Page 

Zero Pa9e,X 
Absolute 
Absolute,X 
Absolute,Y 

! <Indirect ,X> 
! <Indirect>,Y 

Flags affected1 

Name: LOX 

! 

Assembly Language 
Form 

LOA tl$QQ 
LOA $QQ 
LOA $QQ,X 
LOA $QQQQ 
LOA $QQQQ,X 
LOA $QQQQ,Y 
LOA ($QQ,X> 
LOA ($QQ),Y 

N ! Z ! C 0 

* ! * ! 

Operation : Load X Index 

Opcode 

AS 
A:5 
B:5 
AO 
BO 
BS 
Al 
Bl 

v 

Addressing Mode Assembly Language ! Opcode 
Form 

Immed late LOX ll$QQ A2 
I Zero Page I LOX $QQ AS 
! Zero Page,Y LOX $QQ,Y 86 

Absolute LOX $QQQQ AE 
Absolute,Y ! LOX $QQQQ,Y BE 

Flags affected: ! N z c ! 0 v 

* ! * ! 

Number of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 

Number of 
Bytes 

2 
2 
2 
3 
3 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Name: LOY 
Operation: Load Y Index 

' Addressing Mode ! Assembly Language ! Opcode 
Form 

Immediate LOY #$QQ A0 
Zer·o Page I LOY $QQ A4 
Zero Page,X I LOY $QQ,X B.4 
Absolute I LOY $QQQQ AC 

! Absolute,X I LOY $QQQQ,X BC 

Flags affected 1 ! N ! Z ! C ! 0 v ! 

* ! * ! 

Name: LS~ 

~mber of 
Bytes 

2 
2 
2 
3 
3 

Operation: Shift Accumulator Or Memory One bit Right 

' Addressing Mode 

Accumulator 
! Zer-o Page 

Zero Page,X 
! Absolute 

Absolute,X 
! 
! 

Assembly Language 
Form 

LSR A 
LSR $QQ 
LSR $QQ,X 
LSR $QQQQ 
LSR $QQQQ,X 

Fl ;i.gs ;i,ffected: • N ! z c 0 

Opcode 

4A 
46 
56 
4E 
5E 

v ! 

Number of 
Bytes 

2 
2 
3 
3 



126 APPENDIX 8 

Name I NOP 
Operations No Operation 

Addressing Mode 

! I111>lied 

l"lags affectedr 

Name • ORf'I 

Assembly Languag e 
Form 

NOP 

N Z c 0 v 

Operation• OR Memory With Ac cumu lator 

Addressing Mod• Ass embl y Language 
Form 

Ill"l'Mdiate ORA #$QQ 
Zero Page ORA .OQ 
Zero Page ,X ORA .OQ ,X 
Absolute ! ORA $QQQQ 
Absolute ,X ORA $QQQQ,X 
Absol ute,Y ORA $QQQQ,Y 
<Ind irect,X> ORA ( lfOQ ,X> 
<Ind ire ct>, Y ORA ($QQ ),Y 

Flags affected• N Z c 0 v 

! * * I 

Name I PHA 
Operation1 Push Accumulator Onto StacK 

Addressing Mode As s embly Language 
Form 

PHA 

Opcode 

EA 

Opcode 

09 
0:5 
I :5 
00 
10 
19 
0 I 
11 

Opcode 

48 

,.,.,,mber of 
Bytes 

,.,.,,mber of 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Flags affected : N Z ! C I l D v ! 

Name I PHP 
Operation : Push Status Onto StacK 

' Addressing Mode Assembly Language ! Opcode 
Form 

Impl led PHP 08 

Flags affected: N z c D ! V ! 

Name: PLA 
Ope rat ioro: Pu 11 Accumu 1 a tor Off StacK 

' Address ir1g Mode 

! 1-mpl ied 

Flags affected: 

Name: PLP 

Assembly Language 
Form 

PLA 

N I z c 0 

"' ! "' ! 

Operation: Pull Status Off StacK 

! Addressing Mode 

• Implied 

Assembly Language 
Form 

! PLP 

Opcode 

68 

v 

Opcode 

28 

Number of 
Bytes 

Number of 
Byte5 

Number of 
Bytes 



128 APPENDIX 8 

Flags affected: N!Z•C!I!D!V! 

---- FROM STACK ----

Name : ROL 
Oper a tion: Rotate Accumulator Or Memory One bit Left 

Addressing Mode Assembly Language ! Opcode ! Number of 
Form Bytes 

! Accumu I a tor ROL A 2A 
Zero Page ! ROL $QQ 2S 2 

I Zer· o Page ,X ROL $QQ,X 3S 2 
I Absolute ! ROL $QQQQ 2E 3 

Abso l ute,X ! ROL $QQQQ,X 3E 3 

Flags affected: ! N z c D v 

! * * ! * ! 

Name : RDR 
Operation: Rotate Accumulator Or Memory One bit Right 

Addressing Mode 

Acc umulator 
! Zero Page 

Zero Page ,X 
Absolute 
Absolute,X 

Flags affectedt N 

Assembly Language ! Opcode 
Form 

ROR A SA 
ROR $QQ SS 
ROR $QQ,X 7S 
ROR $QQQQ SE 
ROR $QQQQ,X 7E 

Z I C D v 

* ! * ! * 

Number of 
Bytes 

2 
2 
3 
3 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Name : RT! 
Operationt Return Fr om Interrupt 

Addressing Mode 

lmpl ied 

Flags affected: 

Name I RTS 

As s errbly Language 
Form 

RTI 

NIZIC!l ! O!V 

- - -- FROM STACK - -- -

Operationt Return From Subroutine 

Addressing Mode 

lrrw>l ittd 

Fl a gs a ffttctttd• N 

Na me• SSC 

Asserrbly Language 
Form 

RTS 

z c D v 

Opcode 

40 

Opcode 

60 

Number of 
Bytes 

Nurrber of 
Bytes 

Ol>'!"'at i o": S1J!:>tract Memory From Accumula.tor With Borrow 

• ~d dr e ssing Mode 

I lnimed i a t e ! 
I Ze ~c1 Page I 

I Zero Pag e ,X 
Abs o lute 

I Absolute ,X 
I Absol u t e , Y 

<I ndi r e c t ,X ) 
I < I n d i rec t ) , Y 

Asserrbl y Language 
Form 

SBC #$QQ 
SBC $QQ 
SBC $QQ,X 
SBC $QQQQ 
SBC $QQQQ,X 
SBC SQQQQ,Y 
SBC ($QQ,X ) 
SBC ($QQ), y 

Opc o de 

ES 
E!5 
F!5 
ED 
FD 
F9 
El 
Fl 

Number o f 
Bytes 

2 
2 
2 
3 
3 
3 
2 
2 



APPENDIX 8 

Flag s affected: N ! Z c 0 v 

I * ! * * I ! * 

M!.me: SEC 
Operation: Set Carry Flag 

Addressing Mode 

Imp I ied 

Flags affected: N 

Name I SEO 

Assembl y Language 
Form 

SEC 

z c 0 

* I 

Operation: Set Decimal Flag 

Addressi ng Mode 

Imp 1 ied 

Flags affected: N 

Name I SE ! 

Assembly Language 
Form 

SEO 

z c 0 

* 

Operation: Set Interru pt Disable Flag 

Addressing Mode Assembly Language 
Form 

SEI 

v 

v 

Opcode 

3B 

Opcode 

FB 

Opcode 

78 

l'Nmber of 
Bytes 

l'Nmbel' of 
Byter. 

l'Nmbel' of 
Bytes 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Flags &ffectedr N z c 0 

! * 

Name t STA 
Operation: Store Accumulator In Memory 

Addressing Mode Assembly Language 
Form 

Zero Page STA $QQ 
Zero Page,X STA $QQ,X 
Absolute STA $QQQQ 
Absolute,x STA $QQQQ,X 
Absolute,Y STA $QQQQ,Y 
<Indirect,X> STA ( $QQ,X) 
<Indirect>,Y STA ($QQ), y 

Flags affected! N z c ! ! 0 

Name: STX 
Op er at lon : Store X Index In Memory 

Addressing Mode Assembly Language 
Form 

Zero Page ! STX $QQ 
Zero Page,Y STX $QQ,Y 
Absolute STX $QQQQ 

Flag s affected 1 ' N z c 0 

v 

v 

v 

Opcode 

B3 
93 
BO 
90 
99 
Bl 
91 

Opcode 

BS 
96 
BE 

Number of 
Bytes 

2 
2 
3 
3 
3 
2 
2 

Number of 
Bytes 

2 
2 
3 



APPENDIX 8 

Name I STY 
Oper-atlon: Stor-e Y Index In Memor-y 

Addr-ess Ing Mode 

! Zer-o Page 
Zer-o Page,>< 
Absolute 

Flags affected : 

Name I TAX 

N 

Assembly Language 
For-m 

STY $QQ 
STY $QQ,>< 
STY $QQQQ 

z c 0 v 

Opcode 

B'I 
9'1 
BC 

Oper-~tion1 Tr- a nsfer- Accumulator- to>< Index 

1 Addr-esslng Mode 

1 tmp 1 led 

Fla9 s affected: 

Name: TAY 

Assembly Language 
For-m 

TA>< 

N I z C I ! 0 

* ! * 

Opcode 

AA 

v 

Oper- a tion: T~ ~ns fer- Accumulator- to Y Index 

! tmplied 

Flags affected: N 

As sembly Language 
For-m 

TAY 

z c 0 

! * ! • 

Opcode 

AB 

v 

Numb e r- of 
Bytes 

2 
2 
3 

Number- of 
Bytes 

Number- of 
Bytes 



COMPLETE 6510 ASSEMBLY LANGUAGE INSTRUCTION SET 

Na.me I TSX 
Opera.tion1 Transfer Sta.CK Pointer To X Index 

Address Ing Mode ! Assemb I y l..a.ngua.ge 
Form 

ImpJ ied TSX 

F l a.gs affected: N z c 0 

Na.me I TXA 

Opcode 

BA 

v ! 

Operation 1 Tran5fer X Index To Accu1™.• I a tor 

Addressing Mode 

Imp 1 ied 

F l ags a f fected : 

Name t TXS 

A5sembly Language 
Form 

! TXA 

N z ! c 0 

* ! * ! 

Opcode 

SA 

V I 

Operation: Transfer X Index To Sta.CK Pointer 

l'lddress ing Mode 

Imp I l e d 

Fl a g s af f e c t ed ! N 

Assembly l..a.n9ua.9e 
Form 

TXS 

z c 0 

Opcode 

SA 

v 

Number of 
Bytes 

Number of 
Byte5 

Number of 
Bytes 



134 APPENDIX 8 

Name I TYA 
Operation: Transfer Y I ndex To Accul'M.llator 

' Addressing Mode 

lmpl ied 

Flag ! affec'tedl N 

Assembly Language 
Form 

TYA 

z ! c D 

"' ! "' ! 

Opcode 

98 

v 

Number of 
Bytes 



APPENDIX 9 

ASCII codes 

0 33 A 6:5 91 

1 34 8 66 ~ 9 2 

2 .. 3:5 c 67 ] 93 

3 • 36 0 68 t 94 

4 x 37 E 69 .. 9:5 

:5 & 38 F 70 96 

6 39 G 71 • 97 

7 40 H 1e I 98 

8 41 I 73 99 

9 * 4e J 74 100 

10 + 43 K 7:5 101 

11 44 I.. 76 102 

1e 4:5 M 77 103 

13 46 N 78 184 

14 / 47 0 79 .... 10:5 

1 :5 0 48 p 80 106 

16 49 
17 2 :50 
18 3 :5 1 
19 4 :5e 

Q 81 
R 82 
s 83 
T 84 

j 107 

L 108 

' 109 

/ 110 

28 :5 :53 
el 6 :54 

u 8:5 
v 86 

r 111 
-, 112 

ee 7 :5:5 ~J 87 • 113 

e3 8 :56 x 88 114 

24 9 :57 y 89 • 11 :5 

es :58 z 98 I 116 

es 1 :59 r 117 

e1 < 68 x 118 

ea 61 0 119 

es > 6e • 120 

38 '? 63 I 121 

31 & 64 • 122 

3e + 123 
I 124 
I 12:5 

' 126 

"1111 127 
128 
129 
130 
131 
132 



136 APPENDIX 9 

133 17:5 0 21:5 
13'1 r 176 • 216 
13S .L 177 I 217 
136 T 178 • 218 
137 .. 179 + 219 
138 I 18l!I I 22l!I 
139 181 I 221 
1 'll!I 182 ' 222 
1 '11 183 ~ 223 
1'12 184 224 
1'13 18S I 22S 
1'14 ...J 186 - 226 
14S • 187 227 
1'16 • 188 228 
147 .J 189 229 
148 • 19l!I • 23l!I 
1'19 .. 191 231 
1 Sl!I 192 - 232 
1s1 • 193 ~ 233 
1S2 I 194 234 
1 S3 19S .. 23S 
1 S'I 196 • 236 
1 SS 197 L 237 
1S6 198 .. 238 
1:57 199 239 
1S8 2l!ll!I r 24l!I 
1S9 "\ 2l!l1 .L 2'11 
16l!I ~ 2 e 2 T 242 

I 161 J 2 l!l3 .. 243 - 162 L 284 I 244 
163 " 2l!IS I 24S 
16'1 / 2l!l6 I 246 

I 16S r 28 7 2'17 

• 166 ., 
288 248 

I 167 • e8s 249 - 168 e19 ...J 2Sl!I 
~ 169 • 211 • es 1 
I 17l!I I 212 • 2s2 
.. 171 r 213 .J 2:53 

• 172 x 21'1 2S4 
L 173 ' 2:5S 
, 174 



Index 

Page numbers in bold refer to main entries. 

Accumulator 24 Bitsandbytes 17, 18, 55 
Absolute addressing 43 Bit manipulation 55, 61 
Address 7 BIT 65 

start 28 BNE 37,38 
Addressing Branching 

memory 21 conditional 37 
modes 43 labels for 32 

Addressing modes 
absolute 45 CHRGET 80 
absolute, X 46 CMP 37,38 
absolute, Y 46 Constants 32 
accumulator 49 CPU 12 
immediate 44 CPX 37 
tmphed 46 CPY 37 
indirect 53 Crashes 27 
indirect, X 52 
indirect, Y 51 Debugging 84 
relative 45 DEC35 
zero-page 43, 44 Decimal 15 
zero-page, X 49 -to-binary conversion 18 

Always save source code! 27 -to-hexconversion 20 
AND 58, 59 DEX 35 
ASL 61, 63 DEY 35 
Assembler 3, I I, 12, 86 Disassembler 85 
Assembly Division 72 

ofprograms 33 
language II Eight-bit addition 68 

subtraction 69 
Base2 15 EOR 58,59 
Base 10 15 Errors, out-of-range 41 
Base 16 15 
BASIC 6 Flags 37, 39, 56 

adding commands to 80 Flow chart 83 
loader 11 
ormachinecode? 83 Hash 13 

BCC 40 Hexadecimal 19, 20 
BCS 40 
SEQ 37,38 INC 34 
Binary 15, 17 Indices 24 



-' 
138 

-' 

Interrupts 78, 84 
INX 34 
INY 34 

JMP 42 

Kernal 21 
Kernal jump table 75 

Labels 31, 33 
LOA 24 
LOX 25 
LOY 25 
Logic tables 56 
Lo-Hi 50 
Loops 34,35 
LSR 61, 62 

Machine code 9 
area reserved for 26 
orBASIC? 83 
our first program 25 
program crashes 27 
running a program 27 

Manipulators 23 
Mathematics 67 
Memory, addressing 21 
Mnemonics 12 
Monitors 85 
Multiplication 71 

Or 57 
ORA 57 
Operatingsystem 21 

Page 21 
PEEK 8 
POKE 8 
Processor 12 
Program design 82 

RAM. screen 26 

INDEX 

ROM 
Registers 55 

process 39 
status 39 

Relocatable code 46 
Remarks 28 
ROL 65 
Roll -over 34 

-under 35 
ROR 64 
Rotation commands 64 
RTS 26 
Running a machine code program 27 

Savesourcecode! 27 
Screen RAM 26 
Shift commands 61 
Simple assembler 86 
Sixteen-bit addition 70 

subtraction 71 
Source code saving 27 
STA 25 
Stack 79 
Start address 28 
Subroutines 73 
SYS 27 

TAX 36 
TAY 36 
Top-down programming 83 
Truth tables see Logic tables 
TXA 36 
TYA 36 

USR 76 

Variables 7, 23 
Variable look-up table 7 
Variable storage area 7 

Xindex 23 

Yindex 23 



Here, at last, is a really easy-to-follow introduction 
to machine code programming on the 
Commodore 64 and 128 computers. 

Written with the absolute beginner in mind, the 
course starts with the question 1What is machine 
code?', explains the background concepts 
necessary for a complete understanding of the 
subject, then guides the reader gently through first 
the simple and later more complex programming 
steps. 

The aim of the book is clear: to turn the reader 
into a competent machine code programmer as 
quickly and painlessly as possible. Every new 
command or concept is illustrated with a fully­
annotated sample program and a thorough 
explanation. 

Best of all, the course includes a free machine 
code assembler. Not only does this save you 
money, but you are guaranteed 100% compatibility 
between what you read in the book and what 
happens when you use the assembler. 

By the end of the course, you will be able to 
write programs that not only contain features 
impossible to write in BASIC, but which run 
hundreds of times faster than a BASIC program! 

A Chapman and HalV 
Methuen Paperback 
COMPUTING 

11 New Fetter Lane 
London EC4P 4EE 
29 West 35th Street 
New York NY 10001 

ISBN 0-412-27250-4 

9 780412 2725 09 


	CCI20190907_0000-crop
	CCI20190907_0001-crop
	CCI20190907_0002-crop
	CCI20190907_0003-crop
	CCI20190907_0004-crop
	CCI20190907_0005-crop
	CCI20190907_0006-crop
	CCI20190907_0007-crop
	CCI20190907_0008-crop
	CCI20190907_0009-crop
	CCI20190907_0010-crop
	CCI20190907_0011-crop
	CCI20190907_0012-crop
	CCI20190907_0013-crop
	CCI20190907_0014-crop
	CCI20190907_0015-crop
	CCI20190907_0016-crop
	CCI20190907_0017-crop
	CCI20190907_0018-crop
	CCI20190907_0019-crop
	CCI20190907_0020-crop
	CCI20190907_0021-crop
	CCI20190907_0022-crop
	CCI20190907_0023-crop
	CCI20190907_0024-crop
	CCI20190907_0025-crop
	CCI20190907_0026-crop
	CCI20190907_0027-crop
	CCI20190907_0028-crop
	CCI20190907_0029-crop
	CCI20190907_0030-crop
	CCI20190907_0031-crop
	CCI20190907_0032-crop
	CCI20190907_0033-crop
	CCI20190907_0034-crop
	CCI20190907_0035-crop
	CCI20190907_0036-crop
	CCI20190907_0037-crop
	CCI20190907_0038-crop
	CCI20190907_0039-crop
	CCI20190907_0040-crop
	CCI20190907_0041-crop
	CCI20190907_0042-crop
	CCI20190907_0043-crop
	CCI20190907_0044-crop
	CCI20190907_0045-crop
	CCI20190907_0046-crop
	CCI20190907_0047-crop
	CCI20190907_0048-crop
	CCI20190907_0049-crop
	CCI20190907_0050-crop
	CCI20190907_0051-crop
	CCI20190907_0052-crop
	CCI20190907_0053-crop
	CCI20190907_0054-crop
	CCI20190907_0055-crop
	CCI20190907_0056-crop
	CCI20190907_0057-crop
	CCI20190907_0058-crop
	CCI20190907_0059-crop
	CCI20190907_0060-crop
	CCI20190907_0061-crop
	CCI20190907_0062-crop
	CCI20190907_0063-crop
	CCI20190907_0064-crop
	CCI20190907_0065-crop
	CCI20190907_0066-crop
	CCI20190907_0067-crop
	CCI20190907_0068-crop
	CCI20190907_0069-crop
	CCI20190907_0070-crop
	CCI20190907_0071-crop
	CCI20190907_0072-crop
	CCI20190907_0073-crop
	CCI20190907_0074-crop
	CCI20190907_0075-crop
	CCI20190907_0076-crop
	CCI20190907_0077-crop
	CCI20190907_0078-crop
	CCI20190907_0079-crop
	CCI20190907_0080-crop
	CCI20190907_0081-crop
	CCI20190907_0082-crop
	CCI20190907_0083-crop
	CCI20190907_0084-crop
	CCI20190907_0085-crop
	CCI20190907_0086-crop
	CCI20190907_0087-crop
	CCI20190907_0088-crop
	CCI20190907_0089-crop
	CCI20190907_0090-crop
	CCI20190907_0091-crop
	CCI20190907_0092-crop
	CCI20190907_0093-crop
	CCI20190907_0094-crop
	CCI20190907_0095-crop
	CCI20190907_0096-crop
	CCI20190907_0097-crop
	CCI20190907_0098-crop
	CCI20190907_0099-crop
	CCI20190907_0100-crop
	CCI20190907_0101-crop
	CCI20190907_0102-crop
	CCI20190907_0103-crop
	CCI20190907_0104-crop
	CCI20190907_0105-crop
	CCI20190907_0106-crop
	CCI20190907_0107-crop
	CCI20190907_0108-crop
	CCI20190907_0109-crop
	CCI20190907_0110-crop
	CCI20190907_0111-crop
	CCI20190907_0112-crop
	CCI20190907_0113-crop
	CCI20190907_0114-crop
	CCI20190907_0115-crop
	CCI20190907_0116-crop
	CCI20190907_0117-crop
	CCI20190907_0118-crop
	CCI20190907_0119-crop
	CCI20190907_0120-crop
	CCI20190907_0121-crop
	CCI20190907_0122-crop
	CCI20190907_0123-crop
	CCI20190907_0124-crop
	CCI20190907_0125-crop
	CCI20190907_0126-crop
	CCI20190907_0127-crop
	CCI20190907_0128-crop
	CCI20190907_0129-crop
	CCI20190907_0130-crop
	CCI20190907_0131-crop
	CCI20190907_0132-crop
	CCI20190907_0133-crop
	CCI20190907_0134-crop
	CCI20190907_0135-crop
	CCI20190907_0136-crop
	CCI20190907_0137-crop
	CCI20190907_0138-crop
	CCI20190907_0139-crop
	CCI20190907_0140-crop
	CCI20190907_0141-crop
	CCI20190907_0142-crop
	CCI20190907_0143-crop
	CCI20190907_0144-crop
	CCI20190907_0145-crop
	CCI20190907_0147c-crop
	Blank Page
	Blank Page
	Blank Page

