- COMMODORE

- MAGAZINE

* ISSUE 6

* Keyboard Coding
% Printer Formatting

% Hard Disk Drives




REGISTERED FOR POSTING A8 A PUBLICATION: CATEGORY B

—
The objective of this magazine is to disseminate information to all users of Commodore com- \
puter products. This magazine contains a variety of information collected from other Com-
modore publications, and generated locally. Contributions from all Commodore User Groups,

and individual users are encouraged.

Advertising space is restricted and allocated on a first-come, first-served basis. Advertising
rates can be supplied on request.

All copy and advertising should be addressed to:

The Editor,
COMMODORE MAGAZINE,
P.O. BOX 336, ARTARMON

N.S.W. 2064
AUSTRALIA ‘
ISSUE No. COPY/ADV DEADLINE PUBLICATION DATE

1 February 18th ; March 6th

2 April 1st April 17th

3 May 13th May 29th

4 June 17th July 3rd

5 July 29th August 14th

6 September 9th September 25th

7 October 14th October 30th

8 November 25th December 4th
R >
Productlon/& Mervyn Beamish Graphics Pty. Ltd Printer: Liberty Print
'ypesetting: 82 Alexander Street, Crows Nest 108 Chandos Street, Crows Nest

2065 2067
Phone 439 1827 Phone 43 4398
SUBSCRIPTIONS
ol ™
Annual Subscription Single Copy
Postage paid within Australia $A30.00 $A5.00
Overseas Postage Paid $A38.00 $A6.00

Subscriptions to COMMODORE MAGAZINE can be obtained from your authorised Commo-
dore Dealer, or from:

COMMODORE MAGAZINE,
P.0. BOX 336, ARTARMON,
N.S.W. 2064,

AUSTRALIA.

Vol 1 1981
Vol2 1982

Typeset and assembled off Commodore Wordcraft disks j

%

PLEASE NOTE: To provide a good information service to Commodore users, we will regularly mention equipment,
software and services offered by companies and individuals not directly related to Commodore. In doing so, we are not
making recommendations, and cannot be responsible for the validity and accuracy of any statements made.



EDITOR’S DESK ...

The subscriptions to the Commodore
Magazine show a large interest from
VIC-20 users and we try to balance the
content of the magazine to suit all
readers.

However from time to time we
receive comments that the magazine
does not have articles of interest to a
particular reader. What we would like
to know, is what you would like to see.
Please drop us a line on the content
you would like to see in the magazine,
to advance your knowledge of the
Commodore product range.

We aim to cover topics that are of
use to beginners and experienced
Commodore users and sometimes
articles may appear that are general
knowledge to Commodore users but
may be the starting key to a
newcommer to this fascinating world
of computing.

Communications are rapidly becom-
ming a facit of personal computing. We
now have low priced modems that
allow you to simply connect your
computer to the telephone network to
communicate to the vast world of data
banks, information networks and other
computer users.

Commodore is supporting the
Australian Beginning and we are
working on setting up a bulletin board
that will provide up to the minute
product information, programming
advice, service details and of course a
mail facility directly into Commodore.

The aim is to provide Public Domain
software for the complete range of
Commodore computers to all subscr-
ibers and generate more interestinthe
\_ electronic mail concept.

table of contents

VorLome 2 1Ssve 6

Page Contents

2 News

3 Letters to the Editor

4 VIC Revealed

6 Product Review

7 Variable Manipulation

10 Relative Files

13 Commodore 9065/9090
Hard Disk Drives

14 Excerpts from a Technical
Notebook

16 Printer Formatting

20 : S.0.S. Some Other Sorts

23 The Shell Sort

26 Joysticks Revealed *

26 ‘So Thats How!

Using the Programmable
Functions Keys

27 Did You Know

30 VIC CHIP Memory Usage
33 Keyboard Decoding

34 VIC Printer

31 ViC-20 OImeS gy;fbm bv.g.f

next issue:

VIC Special
—Update On The VIC-20
Product Line Including Hardware
And Software Available
SUPERPET Update

list of advertisers

B.S Microcomp Inside Cover
Compute CBM Systems Back Cover
C.W. Electronics Page 18
Mervyn Beamish Graphics Page 33
Micropro Design Page 33

The Microcomputer House Page 22

Vol.2 Issue 5 Commodore Magazine 1



&
&

used
Commodore Business Machines.

The four new programs, EasyCalc,
EasyPlot, EasyFinance and EasyScan,
will be available in Australia very soon,
and will initally run on SuperPET and
Commodore 64 micros. In the near
future, the “Easy” programs will also
be available for other Commodore
micros including the recently announ-
ced “P” and “B” series.

EasyCalc is the biggest micro
worksheet available with 65 columns
and 999 rows. It replaces old
fashioned paper, pen and calculator
and saves many hours in solving a
wide range of numerical problems
such as budgets, cash flow forecasting,
product and resource planning, stock
fluctuations, engineering or scientific
data, trend analysis, agricultural yields
and floor plan models.

EasyCalc has “help” functions to
aid first-time users and experts alike. It
has the ability to print out all formulas
and assumptions, and its disk-based

in a business environment,

Commodore Announces
‘Easy’ Spreadsheet Programs

for SuperPET and
COMMODORE
64 Microcomputers

A “family” of four “Easy” spreadsheet programs, designed to provide
Commodore users with lightning-fast decision-making tools to be

has been introduced by

grid allows automatic matrix consolid-
ations. Additional features include
movement of data in a matrix,
selective row reporting and printing,
instant “what if’ calculations, and
integration with Commodore’s Easy-
Plot spreadsheet program.
Commodore’s EasyPlot allows
users to intepret and present numer-
ical data with high quality charts and
graphs, and produces bar and pie
charts, scatter diagrams and line
graphs. It analyzes relationships
between different data sets, and
charts population trends and stock
price fluctuations as well as othe
numerical information. The user-
oriented format of EasyPlot features
full-page printing of all charts and
graphs and integration with EasyCalc.
EasyFinance from Commodore
allows users to analyze alternatives
and see pros and cons so vital in
decision-making. Its features include

MODEM

Smith.

the telephone line.

of this issue.

DIRECT CONNECT

A Telecom Australia approved
direct connect modem that can be
used on the VIC-20 computer, or on
any suitably interffaced Commodore
computer, has been released by Dick

This low cost modem is a must for
any VIC owner, allowing access to the
many data bases that already exist, or
to exchange programs and data
between other computer owners via

A review of the product is on page 6

lease analysis, full loan amortization
functions, present and future cash
flow calculations and discounted cash
flow analysis to help make decisions
regarding borrowing, tax deductions
and the cost of inflation.

The fourth member of the new
spreadsheet family from Commodore,
EasyScan, is an instant access diary
that never lets you forget. It features
day, week, month or year at-a-glance,
organization of data by priorities and
“zoom” for in-depth scan. EasyScan
allows users to schedule time and
resources for optimum productivity
and also serves as an appointment
secretary and project planner/task
coordinator.

Announcements of the availability
and pricing for these products will be
made in the Commodore Magazine as
soon as they come to hand.

information.

Vol.2 Issue 6 Commodore Magazine 2

VIC PRODUCTS
ANNOUNCED

C.W. Electronics from Quuensland
have announced a range of VIC
products and accessories.

These include;

40/80 column expansion
VIC telephone dialler
VIC EPROM programmer
VIC Wordcraft

RTTY Interfaces

Reviews of many of these products
will be included in future issues of the
Commodore Magazine. Refer to the
advertisement on page 18 for further




LETTERS TO
THE EDITOR

Dear Editor.

I have just purchased a CBM 4016, know nothing about programming, but am having a lot of fun putting in the programs
that | found in back issues of the Commodore Magazine.

It appears that Commodore has a number of different computers, PET, 2.0, 4.0, VIC-20 and others — would you please
advise if the term PET is used for most Commodore computers or strictly restricted to PET computers. | have noticed a vast
reference in the magazine to 'your PET and wonder if the remarks apply to my machine.

Also, will programs published for the VIC-20 run on my machine? It would be helpful in program articles if it could be clearly
stated on which computers they apply, mainly for beginners like me.

PETER BUNGAY.

Thankyou foryour letter. We will endevourto make sure that the
programs are qualified as to the type of computer they will run on.
Most VIC-20 programs will run on the other
Commodore computers if they are programmed in BASIC
only and reference to the VIC features of colour and
sound are omitted. You do have to watch for references to
PEEK and POKE commands, as the locations
referenced may change from one computerto another.
The PET computer was the first computer
manufactured by Commodore.

It had a calculator styled keyboard and 8K of user memory.

Eventually this was replaced with a graphics keyboard version, still 40 column and was called the 3000 series in
Australia and the 2000 series in USA. The two models were the PET 3016 and PET 3032 which refered to the user
memory capacity. The 3000 series had BASIC version 2.0. (In fact the same BASIC as used in the VIC-20.)

To support a new version of the Disk Operating System, Commodore released the 4000 series which had two
models, the 4016 and 4032. These had BASIC version 4.0 as standard. An upgrade is available for the 3000 series
to become identical to the 4000 series.

The term PET has been loosely maintained with the 40 column computers and the term CBM has been used with
the 80 column computers, however the word PET is synonomous with Commodore and many people use it when
referring to any of the Commodore computers.

To compound the confusion, the 9000 series has been titled the SuperPET, even though it has an 80 column
screen.

Dear Editor.

I have recently obtained a CBM 8032 computer and am interested in learning more about assemblers and compilers. Are
there any products available to assist me.

PETER MACKAY.

Commodore markets the DTL BASIC Compilerin Australia and we feel that this is most suitable for increasing the
execution speed of a BASIC program, reducing the size of the program, and providing protection to the source
coding.

An Assembler Development Program is available as Public Domain Software, provided by Commodore.

Both these products are available from your Commodore Dealer.
Vol2 Issue 6 Commodore Magazine 3



VIC REVEALED

Steven Hall

Now that a sixmonth period has passed since the introduction of the
VIC-20, lets look back at the achievements and failings of the
product.

Technology is advancing at an
enormous rate, and already Commodore
have announced a new range of
equipment to compliment the popular
VIC series. It is, in fact, a sign of the
times when insurance underwriters
will write-off computer assets in only
3-5 years - due to technological
advances.

There are few otherfields where the
general public is able to buy products
only months away from its original
design stage, so in a way, the end-
users are also riding the technological
wave of computer advancement.
Which brings in probably the major
criticism of our industry, software
development is unable to keep up
with these advances. One can buy a
computer just released on the market
and find little software available to run
on it. Unfortunately, the end-user
wants the latest hardware with the
software support of a product that has
been two years on the market.

The problem is one of education in
the home computer field, you cannot
have the latest technology together
with a wealth of established software.
The business world has learnt from
this lesson and you are now finding
the established companies and
products making the greatest gains,
whereas the new computer companies
on the market are fighting fiercely fora
smaller portion of the pie.

With the VIC-20, | feel the Australian

Vol.2 Issue 6 Commodore Magazine 4

market has been extremely lucky.
With only 6 months gone, one can
open any of the popular computer
magazines and find dozens of
enterprising companies importing
recently developed software from the
European and American markets.

Some people thought the Australian
market was at a disadvantage having
a release date 6-12 months after the
mass markets of America and Europe.
But now we can pick and choose
whose software we want, and still
have the latest machines on the
market.

Also, here in Australia thereisavery
real grass roots industry developing
with companies from all over the
continent saying “Hey, we need
Australian software, lets develop our
own”, and are now releasing it on the
local markets. Programs like data
capture systems, word processing,
tutorials in subjects such as languages
and maths are being released almost
daily.

We now have a networking system
for VIC-20’s in schools, which mean
that our own children are being
exposed to computers from primary
level upwards.

Another advantage of being on the
forefront of computer development is
the fact that the cost is going down,
not up - as is 99% of all high
technological fields. You can have a
21,000 byte computer for only $528,

you would have had to pay more than
double that, in real money terms, only
two years ago. Accessories like disk
drives are plummeting in price, with
the aid of further discoveries in
storage medias.

So, where are we headed? We have
seen the start of the universal
computer with machines like the new
Commodore 64, which if rumors are
true, will eventually be able to emulate
other computer languages. As to
whether it will be in this new
generation of computers or the next,
remains to be seen.

Computer awareness and education
has started to boom - already in the
last three months | personally know of
four full time VIC-20 computer
schools being established in the
Sydney area alone! But the biggest
impact is in the home, for both
educational and entertainment. It is
here that the most significant change
has taken place. With a growth that is
almost breathtaking, parents have
shown acomputerawareness and are
purchasing home computers to give
their children first-hand experience of
computer usage and using these
machines to further their families
education.

I, for one, look forward to that
generation that will develop the home
computer to be mankinds greatest
tool since the wheel.



WE WROTE THE BOOK ON SOFTWARE!

The Commodore Software Encyclopedia is a com-
prehensive directory of over 1000 programs for
business, education, personal, and recreational ap-
plications. Listings are provided for such categories as:

e Business
including Dow Jones Portfolio Management,
Legal Time Accounting, Accounts Receivable,
Inventory Systems, Tax Preparation, Real
Estate Programs, Payroll, General Accounting,
Mailing List Management, and Visicalc.

Word Processing
Ultilities
Engineering Aids
Personal Aids
Games

VIC-20
Publications
Software Vendors
Hardware Overview
Overseas Suppliers
Education

including Math, Science, Social Studies, Ver-
bal Skills, and Administration.

OVER 1,000
APPLICATIONS
ONLY $14.95

Whether you’re interested in personal computers or
own a Commodore, this directory can be an invaluable
one in locating just the right software package for you.

Pick one up at your local Commodore dealer today
or return this coupon.

Note the directory lists programs available mainly from
North American suppliers. Agents for many of these
products are in Australia.

Please-send.. . = Z kil 2L Software Encyclopedia(s)
$1495 + $3.00 postage and handling. Enclose
cheque or money order.

Name
Address

Return to: Computer Reference
Guide
204/254 Victoria Ave.
Chatswood 2067

Fcommodore

COMPUTER

Vol.2 Issue 6 Commodore Magazine 5



For all those enthusiasts and
remote business users who find there
computing needs can be further
fulfiled by having the ability to
communicate with other users and
systems then, until now the only way
was to use an accoustically coupled
modem.

This somewhat awkward means of
data communication necessitated
that the user had to lift his telephone
receiver, dial the second parties
number and wait for a connection, at
this point the phone receiver then had
to be placed into the rubber cups of
the modem. A rather messy operation
let alone worry about the computer.

Now all of that is old hat, since Dick
Smith have released their 300 baud,
full duplex direct connect modem.

The unit just plugs straight into the
original telecom installed socket. The
input to the modem is RS232-C
standard so for your VIC-20 you will
require a VIC 1011A interface
cartridge and on CBM machines a
suitable IEEE-RS232 interface.

To use the unit the computer must
be loaded with some form of
communication software. The modem
set to “phone” position on the "phone
- modem” select switch and the
appropriate position on the “answer—
originate” switch.

To establish communication the
phone receiver is lifted and the
number dialed, on hearing the
receiving parties modem output tone,
the “phone— modem” switch can then
be set the “modem” position, the
green LED will then light to indicate
carrier detect.

Vol2 Issue 6 Commodore Magazine 6

Product Review

DIRECT CONNECT MODEM FOR VIC & CBM

The phone receiver can then be
hung-up. On completion of operation
the “phone — modem” switch must be
returned to the phone position.

The VIC-20 was tested using the
“VICterm” program from the “COMMS
Terminal” package (Code 310135).
Successful communication was estab-
lished with the “Australian Beginning”
and other data bases.

The only limitations on the unit
were:-

1. The need for telecom installation
2. When used with low signal
phones i.e. PABX systems results
tended to be unreliable.

Apart from these, the advantages
far outway the disadvantages, the
best being the price, $169.00.

Further details can be obtained
from your local Dick Smith retailer.



VARIABLE MANIPULATION

by Brad Fisher

I dabble in machine code a bit, and I've written a few stand-alone
routines that work by themselves, but I've always been terrified of
writing a routine that must interact with BASIC. Then one day, the
situation arose where | had to modify some variables in machine
code, that had been created by BASIC. So daunted was | that |
almost abandoned the program! But, what the heck, | could at least

give it a go.

| saw how relatively simple it was
(when compared to quantum physics),
but still wasn't sure. | played around a
bit, just to get the feel of it, and wrote
some short routines.

One routine swapped two variables.
It seemed such a simple thing to do.
(Skip this part if you aren’t interested
in the guts of it)

All simple variables are stored in a
tables at the end of your BASIC
program. Each entry in the table
consists of 7 memory locations of
BYTES.

The first two bytes in each type of
variable contains the name of the
variable. Incidentally, that is the
reason why only the first two
characters of a variable are recognised
— BALL$ and BACK$ are the same
variable — BAS.

These two characters also contain
coded information as to what type of
variable it is. For example, if the
variable is AA, then bytes one and two
would contain 65 and 65 (CHR$(65)="A).

If both characters are lessthan 128,
itis a floating point variable. If both are
greater than 127, it is an integer
variable, e.g. AA% would fill bytes 1
and 2 with 65+128 and 65+128.

A string (AA$) would produce 65
and 65+128 in the first two bytes.

Infloating point variables, the next5
bytes contain the actual value of the
variable, encoded in ‘Binary Coded
Decimal. (Don’'t ask me what it means
- I’'m not too sure myself).

Integer variables contain the actual
value in the next two bytes, labelled 3
and 4. Multiply the contents of byte 3
by 256 and add bytes 4, and you have
the value of the integer variable, sort
of. If the byte 3 is greater than 127,
then the integer value is negative.
Bytes 5, 6, and 7 contain zeros, to fill
out to seven bytes. (As you can see, no
space is saved by using integer

NAME 1|NAME 2| VALUE| VALUE 0 0 0 Integer Variables ]
1 2 3 4 5 6 7

NAME 1|NAME 2| VALUE | VALUE | VALUE | VALUE | VALUE Float. Point Variableﬂ
1 2 3 4 5 6 7

NAME 1|NAME 2|LENGTH|POINTERPOINTER| O 0 String Variables I

variables instead of floating point
variables).

String variables do not contain the
characters they represent. Instead,
the third byte contains the length of
the string. (This is the reason why a
string cannot exceed 255 characters.
One byte can only contain anumberin
the range 0-255.) The 4th and 5th
bytes contain a pointer to where the
string can be found. If the string is a
literal, for instance B$='HELLO’ then
the pointer will point to the letter ‘H’ in
the BASIC text. This is also done if you
READ A$ from a DATA statement-the
pointer points to the BASIC program.
However, if you have calculated a
string with MID$, CHRS, or A$=A$+B$
etc, then the operating system stores
the string in another area of free
memory, and the pointer is directed
here. If you multiply the contents of
byte 5 by 256 and add byte 4, you will
find the starting point for the string.
Simply count along (Byte 3) number of
characters.

After thinking about this for a
minute and a half, you should be able
to see thatyou can swap two variables
simply by changing the first two bytes.
This assumes both variables are the
same type. Otherwise you’ll just get
garbage.

| decided that | wanted to do it

differently. Instead of changing the
names over, | would change the bytes
which contain the variable, bytes
3,4,5,6 and 7. My reasoning was this: if
you use a variable heaps of times, it
takes lesstime tofind, if itis at the start
of the variable table. If you change the
name, the variable will jump about all
over the place. Changing the data
makes the variable stay put.

| ended up with a routine 33 bytes
long. But of course, it was crude! You
could swap a string with an integer
variable, or a floating point with an
array and create utter havoc! So, out
came the pencil and rubber, and |
created a test to ensure the same
variable type, with a“?TYPE MISMATCH
ERROR’ if you were naughty.

Fair enough. Would it work with
arrays too? No such luck It was an
utter disaster.

Out came the reference books, and
| discovered that array variables are
stored differently from simple variables.
The 3 zeros in integer variables and
the 2 zeros in string variables are left
out. When | swapped the five bytes
when using an array, | was corrupting
more than one variable!

So, the blue pencil struck again, and
| added a test for the variable type. If
an integer, swap only 2 bytes. If a
string, swap 3, and for floating point

Vol.2 Issue 6 Commodore Magazine 7



variables, swap all 5.

Now we have a routine which will
swap two variables of the same type,
and even from a string to a string array,
or floating point to floating point array.

The implications are staggering -
I’'m staggered if | can find a use for it!

Seriously, if you have a sorting
routine which orders an array and
does something like:- T$ B$(n) :
B$(n)= M$(m)=T$ then thisroutine is
foryou. Itis faster, and saves using the
extra variable. It probably also helps
postpone the dreaded garbage collec-
tion, which occurs when you do
extensive string manipulations.

Now for a closer inspection.

We want to write SYS location, first
variable, second variable.

First we have to check foracomma.
We'll use a routine from the operating
system for this. Next, find the first
variable. The operating system con-
veniently does this, and leaves a
pointer for us to follow indicating
where the variable can be found. We’'ll
store this pointer. It also leaves a flag
as to which type of variable it is. Store
this too.

Check for another comma, and find

the next variable. Store it's location
pointer.

Compare the variable type flags
with those stored from the previous
variable. If they are different, send a
“?TYPE MISMATCH:.

Now we look to find out what type of
variable it is, and get the appropriate
number of bytes to swap.

Now comes the easy part.

Get abyte. Saveit. Transferfrom the
second variable to the first. Restore
the saved byte. Store it in the second
variable.

Do it again if necessary.

DONE!

Now put our theories to the test.

BARTER. PRG BARTER. PRG
BASIC 2.0 VIC BASIC V2.
0000 20 F8 CD JSR CDF8 'check for a comma 0000 20 FD CE JSR CEFD 'check for a comma
0003 20 6D CF JSR CF6D 'search for variable location 0003 20 8B DO JSR DO8B '‘search for variable location
0006 85 OF STA OF 'store pointer to variable in 0006 85 ‘A5 STA AS 'store pointer to variable in
0008 84 10 STY 10 'zero page 0008 84 A6 STY A6 'zero page
000A A5 07 LDA 07 'save flags 000A A5 0D LDA 0D 'save flags
000C 85 01 STA 01 'which indicate 000C 85 01 STA 01 'which indicate
000E A5 08 LDA 08 'variable type 000E A5 OE LDA OE 'variable type
0010 85 02 STA 02 0010 85 02 STA 02
0012 20 F8 CD JSR CDF8 'check comma 0012 20 FD CE JSR CEFD ‘check comma
0015 20 6D CF JSR CF6D 'search for variable location 0015 20 8B DO JSR DO08B 'search for variable location
0018 85 BE STA BE 'store pointer in 0018 85 A7 STA A7 'store pointer in
001A 84 BF STY BF '‘zero page 001A 84 A8 STY A8 'zero page
001C A5 08 LDA 08 'compare type with that of 001C A5 OE LDA OE 'compare type with that of
001E C5 02 CMP 02 'first variable 001E C5 02 CMP 02 'first variable
0020 DO 16 BNE 0048 ‘different? then error 0020 DO 16 BNE 0048 '‘different? then error
0022 A5 07 LDA 07 'check other fiag 0022 A5 0D LDA 0D 'check other flag
0024 C5 01 CMP 01 ‘different? 0024 C5 01 CMP 01 ‘different?
0026 DO 10 BNE 0048 'then error 0026 DO 10 BNE 0048 'then error
0028 C9 FF CMP #S$FF 'is it a string? 0028 C9 FF CMP #SFF 'is it a string?
002A DO 04 BNE 0030 ! 002A DO 04 BNE 0030
002C A0 02 LDY #$02 'yes, so swap 3 002C A0 02 LDY #$02 'yes, so we'll swap 3 bytes
002E DO OA BNE 003A 'go to swap routine 002E DO 0A BNE 003A 'go to swap routine - )
0030 A5 08 LDA 08 'must be integer of floating point 0030 A5 0D LDA 0D 'must be integer or floating point
0032 DO 04 BNE 0038 ‘branch if integer 0032 DO 04 BNE 0038 'branch if integey
0034 A0 04 LDY #$04 'swap 5 for floating point 0034 A0 04 LDY #$04 'swap 5 for flo§t1ng point
0036 DO 02 BNE 003A 'go to swap routine 0036 DO 02 BNE 003A 'goto swap routine
0038 A0 01 LDY #$01 '‘swap 2 for integer 0038 A0 02 LDY #$01 '‘swap 2 for integer -
003A Bl BE LDA (BE), Y 'get byte from second variable 003A Bl A7 LDA (A7), Y 'get byte from Sec(?nd variable
003C 48 PHA 'store it temporarily 003C 48 PHA 'store it temporarily :
003D Bl OF LDA (OF), Y 003D Bl A5 LDA (A5), Y 'get byte from first variable
003F 91 BE STA (BE), Y 'store it in second variable 003F 91 A7 STA (A7), Y 'store it in.second variable
0041 68 PLA ‘retrieve original value 0041 68 PLA 'retrieve orignal value
0042 91 OF STA (OF), Y 'store it in first variable 0042 91 AS STA (A5), Y 'store it in first variable
0044 88 DEY 'decrease counter 0044 88 DEY 'decrease counter
0045 10 F3 BPL 003A 'go back if counter not minus yet 0045 10 F3 BPL 003A 'go back if counter not minus yet
0047 60 RTS 'all finished - return 0047 60 RTS 'all finished - return
0048 A2 A3 LDX #SA3 'error routine 0048 A2 16 LDX #S$16 'error routine
004a 4C 57 C3 JMP C357 'print type mismatch and ready 004A 4C 3A C4 JMP C43A 'print type mismatch and ready
BARTER. PRG
VIC BASIC V2. HEXDUMP
5 20 FD CE 20 8B
8 DO 85 A5 84 A6 BARTER. PRG
e A5 OD 85 01 A5 BASIC 2.0 HEXDUMP
5t OE 85 02 20 F3
S8 CE 20 8B DO 85
2 A7 84  ‘AB.ABDE - 20 P8 CD 207 6D LR T RS
o e
o3 Cc5 02 DO 26 AS wis B4 .10 ;A5 07 "85 O1 A Od
50 OD C5 01 DO 20 it 85 02 20 F8 CD 20 6D CF
ot C9 FF DO 04 A0 & 85 BE 84 BF A5 08 C5 02
o 02 DO OA A5 OD .d DO 26 A5 07 C5 01 DO 20
DO 62 C9 FF DO 04, AD 203488 0A
o DO 04 A0 04 :
. 02 A0 " 0F Bl a7 it A5 .08 DO -04: AD: @d.iDO - 02
. e
g A 1 B BE 4 Bl OF 91
4 3 BRI eL AT - 0 0 1 8
: 68 91" AS"°88" 10 o0 BE 68 91 OF 88 10 F3 60
o s
-
A A 00 00 OO0
.3 F3 60 A2 16 4C .t 2 A3 4C 57 ¢C3
S8 3A C4 00 00 OO0

Vol2 Issue 6 Commodore Magazine 8




BASIC OBJECT CODE LOADER -

BARTER.PRG BASIC 2.0
1 REM SCRIBE.PRG V01-02
1000

INPUT"START ADDRESS"; SA

1001 REM THIS IS THE ADDRESS YOU WISH TO LOAD THE ROUTINE INTO

1002 REM

1010 FOR I = 0 TO 9 : CO=0

1020 FOR J = 0 TO 7

1030 READ VA : POKE SA+(8*I)+J, VA

1040 CO=CO+VA : NEXT J

1050 READ SU : IF SU <> CO THEN PRINT"?DATA ERROR IN"; 10000+I*10:END:RUN

1060 NEXT I

1070 REM

1080 REM

10000 DATA 32, 248, 205, 32 109, 207, 133, 15, 981

10010 DATA 132, 16,165 7,133, 1,165 8, 627

10020 DATA 133, 2, 32, 248, 205, 32, 109, 207, 968

10030 DATA 133, 190, 132, 191, 165, 8,197, 2, 1018

10040 DATA 208, 38,165 7,197, 1, 208, 32, 856

10050 DATA 201, 255, 208, 4, 160, 2, 208, 10, 1048

10060 DATA 165, 8, 208, 4, 160, 4, 208, 2, 759

10070 DATA 160, 1,177,190, 72,177, 15, 145, 937

10080 DATA 190, 104, 145, 15, 136, 16, 243, 96, 945

10090 DATA 162, 163, 76, 87, 195, oo O 0O 683

READY.
BARTER.PRG DATA BLOCK FOR VIC BASIC V2.
10000 DATA 32, 253, 206, 32,139, 208, 133, 165, 1168
10010 DATA 132, 166, 165, 13,133, 1, 165 14, 789
10020 DATA 133, 2, 32,253, 206, 32, 139, 208, 1005
10030 DATA 133,167, 132, 168, 165, 14, 197, 2, 978
10040 DATA 208, 38,165 13,197, 1, 208, 32 862
10050 DATA 201, 255, 208, 4, 160, 2, 208, 10, 1048
10060 DATA 165, 13, 208, 4, 160, 4, 208, 2, 764
10070 DATA 160, 1,177,167, 72,177, 165, 145, 1064
10080 DATA 167, 104, 145, 165, 136, 16, 243, 96, 1072
10090 DATA 162, 22, 76, 58,196, O, O, O 514
READY.
SUBSTITUTE THESE LINES FOR THE DATA STATEMENTS IN
THE BASIC 2.0 VERSION OF THE OBJECT CODE LOADER.

HOW TO INSTALL THE
ROUTINE

If you are using the BASIC Code
Loader, simply input the start address
when asked. Suggestions are the
cassette buffer:-

PET - enter 826 VIC - enter 828

When you want to call the routine,
the procedure would be :-

SYS826,B%,F$

or SYS828,A%,B% etc.

The disadvantage of this method is
that you cannot then use the cassette
without destroying your routine.
Besides, far too many programs
already reside in PETs second
cassette buffer.

Another method would be to store it
at the top of memory. As you know

BASIC only has so much memory
available - **** BYTES FREE tells you
exactly how much. In order to prevent
BASIC from using our space, we are
going to decrease the amount of
memory it can use. This is only
temporary - it will still be there when
you next power up.

On the VIC, type:-

PRINT PEEK(55)+PEEK(56)*256.

The result is the current ‘top of
memory’. We want to use 80 bytes, so
subtract 80 from your top of memory.
I'll call this value MEMTOP.

PET users do the same:- PRINT
PEEK(52)+PEEK(53)*256. Subtract
80. Now, type:- A=INT(MEMTOP)/256)
:B=(MEMTOP)-256*A.

VIC users:- POKE55,B:POKE56,A

PET users:- POKE52,B:POKES53,A

This should lower your top of
memory by 80 bytes.

(We actually only need 77 bytes, but
using 80 makes the BASIC code
loader easier to write.)

If you own a PET that has a built-in
Machine Code Monitor, you could
enter the values from the Hexdump.
VIC owners with the Vicmon Monitor
Cartridge could do likewise. Those of
you with assemblers should be able to
follow the disassembly. Remember
that if you enter the code by these
methods, you must still protect it,
because if BASIC can getit's handson
your work, it will devour it body and
soul.(BASIC is very vindictive that way
- | hope you keep yours securely
chained in it's kennel er ..or is that
kernal?)

Vol.2 Issue 6 Commodore Magazine 9



RELATIVE FILES

by Paul Blair
PET Users Group, ACT

By now, users with BASIC 4.0 CPU’s and DOS 2 disk drives will be
experimenting with relative files. | don’t propose to go over the
mechanisms of using relative files....this has been adequately
documented in a number of freely available books and journals. The
main point to remember, however, is that relative file handling is built
around a unique relative record reference number, the number

two. So, anyrecord can be listed to the
screen in not more than a few
seconds. A binary chop search?
--ASK if this is new to you.

Deletion is also very easy ...the
descriptor file entry is returned to its

being used for read/write operations.

My examination of relative files came
about because of a request for a
simple listing program for about 1000
items. The program is to run in real
time, with frequent input, deletion and
amendment of records. The listing
had to be available for sorted output at
any time to the printer. | could cope
with the first requirements, but the
sorted output requirement seemed a
considerable difficulty.

My first thoughts ran to some form
of disk sort, but with 1000 items and a
fast sorting requirement, it was not a
practical solution. As the sort was a
prime requirement, | thought about
that aspect next, and decided to
create a descriptor file that could be
sorted easily, and which could be
used to control operations of the
relative files. The descriptor (or index)
file would contain a marker and a
unique record number. The marker
would indicate whether the particular
relative record is ‘occupied’ by an
active record, or ‘vacant’ available for
a new record. The marker chosen to
indicate ‘vacant’ record is the ,
because this character follows’Z’, and
will sort ‘vacant descriptors to the end
of the file.

To illustrate what all this means,
load and run FILE MAKER VI. This
program sets up the appropriate
sequential file, and writes 50 blank
relative records to disk The sequential
file looks like this:-

[001
[002
[003
and so on to Record #50
[050

As explained above, the left square
bracket ‘[ is the markertoindicate that
the record number following it is
‘vacant’.

Vol2 Issue 6 Commodore Magazine 10

Now load ‘USERV4’, and RUN it
From the menu, we decide to enter a
new record, Fred Nurk The keyfield is
given as NURK, and this willbe usedin
later operations.

Addition of a new item causes a
search for the first occurence of a T
character in the sequential descriptor
file ....say it finds ‘{016’. The program
takes the key field, and this key field
replaces the T. Using NURK as the
key field, Fred's descriptor file entry
would read ‘NURKO16’. The program
then writes Fred’'s details to Record
#16, and the descriptor file is sorted
...about 3 seconds for a 1000-entry
file.

Having a sorted list, the program
can find Fred again very quickly using
a binary chop search on all or part of
his key field. Typical search time
would be less than half a second, and
disk access takes another second or

original {016’ (so we will know that
Record #16 is once more available)
but the relative record is not erased. It
is left on disk until the next entry,
which overwrites the old record.

The final programs are not
complete, but the development pro-
grams FILE MAKER VI and USERV4
are, warts and all! FILE MAKER has
been explained. USERV4 is the (still
clumsy) file handler, not very pretty or
tidy but it seems to work Both
programs require BASIC 4.0 and DOS
2.

For demonstration purposes, each
relative record is 60 characters long,
made up of three sub-fields. The usual
partial record handling techniques
could be built into USERV4, if so
desired, greatly enhancing data
handling.

GOTCHAS: There are no handy
‘escape routes’ built in as yet, so be
careful if you ‘break out of the
program. :

T S

FILE MAKER V1
19 REM" r 1
11 REM™ ! MASTERFILE !
120 REM® I 14 MAY &2 |
138 REM" : :
140

GOSUBZSO
159

RE=CHRE{125 10PEMNZ, 5,2, "D sHASTERL

-1y _rl"-'" H

FORT=1TOSR :T$=STR${ T : T#=RIGHT#

(T LEMCTE3—13 i TH=RIGHT${ " 000" +T$. 3

140 TH="["+TFIPRINTH#Z, T$" . "R$;
17@ MEXT:CLOSEZ :GOSUBZED

15@ REM" : 4

17@ REM" | RELATIVE FILE |

208 REM" : :

Z1@

ZZd
=3a
Z40
Z&0

-
2-‘"

FRIMTH#1 ,CHRECZSE S
DCLOSE#1
ErMD
IFDS{Z@THEHRETURM
PRINMTDES:
280 IFDS=SQ@THEMRETURM
290 STOP
REH "l" -

DOPEMHEL . "MASTER FILE" DO, L0 0O0SURZEAD
RECORDH#1 , S0 :GOSUBZAR

tLOSUBZAD




USER V4

100 REM" —
11®@ REM" { MASTERUSER |
1Z0 REM" ] 1& MAY 82 |
120 REM" _

131 ONSHGOTO13Z,.134

132 ZH=Z:LORD"IUPERSORT4. $7AFF" S
134 CLRIPOREST (122 1POKE4% 1 Z2iIFOKESE .
135 LHE="-" FORA=1TOS ILNE= LN£+LNI HE TILHE=LEFTHILME . 270
140 GOSUB1400@:DIMMF$ <0 2 BLg=" " FORA=1TO: R
15@ OPENZ, S, 2. "QIMASTERLI: _; R"'GL;JE Q@D tA=-1

16@ A=A+ (INPUTHE MF$ (A sTE=ST i IFLEFTH MF AL Lo="["THEMTL=TL +{
145 IFTS=0THEM1Z®

17@ CLOSEZ :PRINT"H"A+1"RECORDS IM FILE®

12@ PRINT"@"TL"RECORDS UHUSED" tPRIMT"Q"LHF :00SLE1S00 100 UE L QDO
187 REM"

150 POME4S, 150

LE=BLF+BLE MNEXT

ey
188 REM" I MAIN MEML |
159 REM" _—

190 HOF="MAIM MENU" iGOZUBLIFIO@ :PRIMT"L{...TO ACD TO FILE" :FPRIMT"®...TO DELETE"
200 PRINT"ER...TO FIMD RECORD" :FRIMNT"2M...TO AHEHD" (FRINT"EE...TO FRIMNT®

210 PRINT"BS...TO QUIT" :PRINTLM$ iFRINT"SFLEASE MAKE “%IUR CHOICE"

ZZ@ GETAM$ :IFAM$E=""THEMZZ®

220 AN=YAL CAM$»  IFANS 1ORAM S THEMZZO

240 OMANGOSUE4@00 ,S000, {000, 7000, S300 , 20000 1 50T 01 7@

1497 REM" T
1498 REM" i WAIT A BIT !

1479 REM" L 4

1500 POKEISS,0:iPRIMT"EFRESS ANHY FEY TO COMTIMUE®
1510 GETAMF 1 IFANF=""THEN1IS1®

152@ RETURM

1

1797 REM" r 1
1995 REM" ! DIZK ERROR |
1999 REM" 5 y

2000 IFDS{ZOTHEMRETURN
2010 PRINTDS$
Z02@ IFDS=S@THEMRETURM
2030 STOP
210@ FORDL=1T0OZO@@ :MEXT :RETURM
3997 REM® . .
98 REM" ! ADD TO FILE |
2999 REM" L )
4000 FL=1:HD$="ADD A RECORD" :GOSUE17000 :G0SUE 1000 tFORLY=0TO4%
4005 IFLEFTH(MF$CUY)  13="["THEMID$=RIGHTFCMFECUY S , 33 1 I0=UAL S ID$) 160TO4020
4@1@ NEAT
4020 PRIMT"EMTER KEWMAME " :P3=1%:GO0SUB1ZO0@:FRIMTUENOUR HEY IZ: "Ff:l$=P§
4023 MF${UVI=F$+10%
4025 PRINT"BEMTER DETRILS ":P3
404@ FE=J$+" "+PFUV=I0:IG0SUEL
4997 REM"
4995 REM" | DELETE FILE |
4999 REM" - |
S@@@ HD$="DELETE" :G0SUB17900 :GOSUBSS18
S010 PRINT"NTYFE DM TC DELETE M@ FOR MEHUY
S@Z@ GETAME:IFANF=""THEHNSOZ®
S@30 IFAM$="M"THEM157®
S@40 IFAMF="D"THENFL=1 :GOTOS@LE
SOS@ GOTOS@ZE
SOE@ MF$(ZZ3="["+10%:G05UE 1500 :RETURH
SPe7 REM® . .
S¢FE REM" | FIMD RECCRD
SPFe REM" : :
i@@@ HOF="SEARCH" :G0SUEL7I0E
4010 PRINT"WHICH RECORD PLERSET "::FT=1I:503U812000:12T§=F$ :00SUEF000
4020 GOSUB1100Q:1G0SUBZ100 tRETURN
#7 REM" : .
REM" | AMMEC RECORD |
F:Er.1ll L 1]
HO$="AMEND RECORD® $GOSURLTS00 iPRINT "HACSE RECORD TG AMERIDT 3 iP3=1%
GOSUE1Z00@ 1 ZTH=F§ :GOSUBFOAA tUV=TT iPRINT " BAHEND To-
GDSUE4@E@:PPIHT"EFI~ED"'GGEUEEI““"L:i:”’TURH
7 REM" .
TePs REM" | PRINT FILES |
TeFY REM" : '
@00 HOF="LIZT OF RECE
010 FRIMT'FRESS ANY =
S0Z0 GETAME :IFANF=""THEMSOI®
S030 AR=0:FORUY=OTOSO tABF=LEF TH(MFECUN Y, L s IFABS=" [ "ORABE=" "THENSOSQ

GGOSUBLZOQQ i FRIMT"SNWOUR EMTRY IZ: "f+" "4+Pg
@IGOSUB ISR IRETLRN

—-.‘
=00

Vol.2 Issue 6 Commodore Magazine 11



7070
LT

7O7@
f100
7110
7120
9130
7140
7144
P144
P147
7148
P150
9140
170
P57
P
PP
10000
10557
19995
10995
11000
11210
11597
11793
11599
12000
12010
12020
12030
12040
12050
12040
12070
12050
12050
12100
12110
12129
12130
12997
12998

—~
12999

17000
12010

120z9
13997

13995
137979
14000
14010@
14792
149975
14799
17000
17997
192945
19999
20000
Z00i0
200z
20030
RERDY .

Vol2 Issue 6 Commodore

FRIMTRICHT O MFE0Us ) 350 CLEFTHCMPE U LEMOMF 00 2 ) -3 3 1AR=F
o = el p o aam e CHPE O CLENCHP RO ) -2 tAR=AR
HEXT tPRINT '@ LH$ :PRINT"OTOTAL UEED RECOMDS "ARFRINT SMLHE i
GOSUE1S00 tRETURMN

REM" ;

'8 REM" | CHOF ZEARCH ;
1

RE'.1II L

GOSUBE1QRQ0 1 E2T=0 1 2B=4%

EM=CT+IMT 2B -2T 5, 2 121 F=MF 0 2y 100ZUE T 140

IFZI$=2T$THEM=@£0

IFZT=2MTHENS15Q

IFEI$=""ORET$ :ZI$THENZT=2M 1 SOTORLD

ZB=CHMi1GOTOF010

ZB=2H

IFZE-1 - @THEMN®10Q

ZI§=MF§ ZB—-1: 1003 UBS1 S0 1 IF 214 s TTHTHENS L D0

ZB=2B-1 1G0TO?QF0

ZT=2M

IF2T+1 *ATHEN1 4@

CIF=MF$ I 2T+1 3 i00ZUER1 20 0 IFZ2T 4 :2THFTHEH®1 40

ZT=2T+1 :50T0%110

FORZZ2=CBTOZT iFRIMT "' LEF T MF$ 22 LEMMFECE2 0 5 -33

MHEXT

IFZ2=0THEMID$=RIGHT$MF$ {322

22=Z22-1:I0$=RIGHTH MF {2325 =

RETURM

PRIMT"® MO MATCH FOUND " iRETURHM

IFLEMC 2140 :LEMS ETH O THENZ I$=LEF TSI LEMN{ZETE 5

RETURHM

REM" 7

REM" !

REM" .

FOEET@S, 1 tPOREESQT, 1 tFPORE®DS L iPORERER , S iPOKET 47 , O 13321353 tRETURN
|

2 ID= AL CIDE) s 00T 45
e lD=tAL S IDES

1
SORT IT ALL |
1

REM" ,

REM" ACCE=S FILE |

REM" L |

DOFEM#1 . "MASTER FILE",D@:EDEUB:QGG:PEEDRD#i,{ID):IHPUT#ifIH;

FRIMT"ERECORD IZ—":PRIMT " IME s G0SUBZ1 00 iDCLOZERL tRETURN

REM" ; )

REM" | IMPUT IHFUT

F:Er-’ " 1, 1

Pg="" FORG=1TORZ sPRIMT"§" ; tHEST sFORO=LTORZ IPRINTY I 2 s HEET

GETA$:IFAF=""THEM1ZOiQ

IFﬁi:CHR;E13}THEHPRIHTLEFTiiEL$,PEWLEH{P$}i:RETURN

IFA$="+"THEMN]1ZBF®

IFA$: :CHRECZOOTHEM LI Z 100

IFP$=""THEN1Z0Q0Q

FORG=ATOLEM(F$ 3 tFRINT " 2 tHEAT 1 20T Z000

IFF$=""THEM1ZO1Q

IFLEM{P$ =1 THEMFP$="" :00TO1Z050

F4=LEFT$:PE LEMPF s -1 0 sPRINT"IEA 2 :CGOTOL1E2019

IFAF<" "ORCAF:"ZVAHDAFS "R " > THEMNIZ01D

IFF3=1THEMF$=R$ :FRINTFFCHR$F 13 2 tRETURN

IFLEMFP$ 0 =P2THENFRINTCHRE L2 2 sRETURM

P$=P$+A$ :PRIMTA$: :GOTOLZ010

REM" ¢ \

REM" | OUTPUT FILE |

F-Et.-‘ n L 1

DOFEM$#1 , "MASTER FILE" D@ :GOSUBEZEOR

RECORDHEL , (%Y tP$=LEF T4 F£+BLE, S0 tPRIMNTHL ,FF1G0ZUEZODD

DCLOSE#L sGOSUBZODQ tRETURM

REM" T \

REM" | FRETTY PRGE |

REM n L 3

FRIMT"T] naDRIMTYS RELATIVE FILES W' :PRIMT"SMZ-13 MAY S2d

FRIMNTLM$:RETURM:REM ROOM FOR MORE

REM" r )

REM" | PRGE HERDER |

F-Er.-‘ " 1 1
eMM=CLEM{HD$

REM" r
REM" i FIMIZH OFF |
REr.‘II 1, — |
IFFL=@THEHFRIMT" )" :EMD

OPEMZ, 2,2, "R tMASTERLIS T, 2 H" :GOSUEZ000
FORV=OTOR tFRINTHZ . MF§ A 5 3

HEAT sCLOZEZ sGOSUEZO00 sFRIMT " :EHD

Magazine 12 k




COMMODORE 9060/9090 HARD
DISK DRIVE

by lan Webster

Commodore has announced the release of two hard disk drive
peripherals for the CBM range of computers. These drives will
provide a significant increase in the power and versitility of CBM
computers wherever large data storage, speed of data access and
the integrity of large applications software are required. Lets take a

look at these new peripherals.

HARD DISK DRIVE
TECHNOLOGY

Hard disk drive technology is
completely different to that used in
floppy disk drives. A hard disk consists
of a cartridge containing one or more
solid platters mounted on a spindle.
Each platter is similar to an LP record.
This cartridge, either permanently
fixed or removeable, is mounted
within a disk drive. The platters rotate
at very high speed and retractable
heads, one for every surface in the
cartridge, are floated across the
surface of the disk. The heads are
aerodynamically designed to float on
avery thin cushion of airgenerated by
the rapidly spinning disk. The term
‘disk drive head crash’ actually refers
to the floating head either bouncing
off the surface of the disk or in
extreme cases crashing into the
surface of the disk and scratching the
surface.

Winchester technology solved the
problems involved in building small
hard disk systems that could be
economically manufactured to with-
stand the rigours of microcomputer
environments. These disk units typically
use a fixed cartridge of two to four
platters either8” or5” in diameter. The
cartridge and head assembly are
enclosed in a sealed unit to eliminate
the possiblity of foreign particles
contaminating the disk surface.

Typical data capacity of 5” drives is
5 to 10 Megabytes and 10 to 25
Megabytes for 8” drives. Data
capacity is usually given as unformat-
which is the capacity of
ie data of any iype,

ile  forme is the
capacity of the driv ccept blocks
of data after the operating system has
written the block formatting informa-

ted capacity

tion onto the disk The blocks on a
hard disk are organised as sectors,
tracks and cylinders. A sector is a
block of data, usually 256 or 512 bytes
of information. Sectors are organised
into tracks, which refer to all the
sectors at a particular radius of the
disk on one surface of the disk A
cylinder consists of all particular
tracks on all surfaces of the disk This
means that cylinder 5 contains all of

the sectors in track 5, surface 1,

surface 2, surface 3 and so on. The
term track is not often used with hard
disk terminology, as it is the cylinder
that is referenced by the disk
operating system. In fact the cylinder
is a three dimensional extension of a
track T{{:‘tﬂ"z.“ét Cylinder

==
Surface ! :
]

Track
4 ] /
Platter @——— Sector

Sectors are usually mapped
continuously within each cylinder, so
that sector 1, cylinder 5 would be
located on the first surface, sector 33
on the second surface, sector 65 on
the third surface and so on until all the
surfaces have been accessed.

COMMODORE HARD
DISK DRIVES

The Commodore hard disk drives
are built around units sourced from
Tandon. The Tandon Winchester unit
is built into a Commodore chassis
approximately 8” x 8” x 15” together
with Commodore’s |IEEE interface
electronics. Unfortunately for the
voyers, the Tandon Winchester drive

is sealed in a steel box, so the action of
the drive is not visible.

The platters spin continually at
3600rpm, more than 10 times faster
than the 300rpm of a CBM 8050 disk
drive. Track to track access time is 3
milliseconds, much faster than the 30
milliseconds of an 8050. The start up
delay of floppy disk drives is also
eliminated as the hard disk drive is
always rotating.

THE CBM 9060 HARD
DISK DRIVE

The CBM 9060 drive is based on a
Tandon 601 hard disk unit. This unit
has three platters with a head for each
surface of the disk cartridge. The
unformated capacity of the unitis 6.38
Megabytes. After formatting with 32
sectors per track and 153 cylinders of
6 tracks data capacity is 19442 blocks
or 497 Megabytes.

THE CBM 9090 HARD
DISK DRIVE

The CBM 9090 drive is based on a
Tandon 602 hard disk unit. This unit
has four platters with two heads per
platter. The unformatted capacity is
9.57 Megabytes and the capacity
after 153 cylinders of 8 tracks with 32
sectors pertrack have been formatted
is 7.46 Megabytes.

The performance specification of
both drives is identical.

HARD DISK DRIVE
INTERFACING

The disk drive is interfaced to the
IEEE bus similar to any other
Commodore peripheral device. The
device number of the drive defaults to
unit 8, drive zero but can be changed
to any other device address using the
standard technique. The drive cannot
be configured into multiple logical
drives and must be used as one drive.

HARD DISK DRIVE
SOFTWARE
The hard disk drives use Commodore

DOS 3.0 often referred to as
Continued on Page 30

Vol2 Issue 6 Commodore Magazine 13



Excerpts from a Technical Notebook

Bits & Pieces

*Faster Than A Speeding Cathode Ray!
10 PRINT“[CLR DN DN]IS NOT YOUR NAME
ABE LINCOLN?”:GOTO10

The string in the above statement prints and clears so
fast that the screen can’t keep up! You might expect the
text to ‘flash’ on and off. But, as the trace is scanning
the screen, the text actually prints, clears, and prints
again before the trace gets a chance to erase. It’s hard to
say how many, but BASIC prints and clears several
times during a single screen scan. Therefore, the text
appears to be stationary, as if the Clear Screen character
was not even there!

Vol2 Issue 6 Commodore Magazine 14

Then, they become ‘un-synchronized.” At this point, the
text appears to be drawn slowly across the line. The
trace draws part of the text and then it’s turned off
again by the Clear Screen. The same thing happens next
time around only a little farther to the left or right. It’s
rather hard to explain but not hard to imagine when
you’re looking at it.

Try different combinations by adding or removing
CLRs, DNs, characters, commas and semicolons. For
an interesting effect, add line 20 by simply duplicating
line 10 (remove the GOTO 10 and add it at the end of
line 20). Try this one too:




10 PRINT“[CLR 6DN]IS YOUR NAME ABE
LINCOLN?”;:GOTO10

6DN = 6 cursor downs. Different machines produce dif-
ferent results. These were done on forty column PETs.
80 column users will have to modify the statements
slightly to get the right effect since the scan speed is
somewhat different.

Richard also has a one-line game which surely could be
expanded! It uses the SHIFT key as a control. The first
line does all the work, the second merely gets it,going.

1 POKE A + T, 81:PRINT SPC(RND(TI)*36)“###”:T
=T+ PEEK(152)*2-1:

IF PEEK(A + T)=32 THEN 1

2PRINT “[CLR 24DN” : T=0: A = 32768

*Deriving Mathematical Functions
BASIC has some trigonometric functions implemented

*More One-Liners

1 FOR X=0TO 999 : POKE 32768 + X,
(PEEK (32768 + X) + 128) AND255:NEXT

1a=32768:i=0:j=38

2S=SGNUJ-1): FOR X=ITO JSTEP S : POKE A
+X,32: POKEA+X+8S,87:

NEXTX :1=39-1:J=39-J:GOTO 2

but not all that may at some time be required. Here is a
handy list:

Secant SEC(X) = 1/COS(X)

Cosecant CSC(X) = 1/SIN(X)

Cotangent COT(X) = 1/TAN(X)

Inverse Sine ARCSIN(X) = ATN(X/SQR(—-X*X+1))

Inverse Cosine ARCCOS(X) = —ATN(X/SQR(—X*X+1))+n/2
Inverse Secant ARCSEC(X) = ATN(X/SQR(X*X—-1))

Inverse Cosecant ARCCSC(X) = ATN(X/SQR(X*X —1))+ (SGN(X) — 1*7/2
Inverse Cotangent ARCCOT(X) = ATN(X)+ w/2

Hyperbolic Sine SINH(X) = (EXP(X)-EXP(—-X))/2

Hyperbolic Cosine COSH(X) = (EXP(X)+EXP(—-X))/2

Hyperbolic Tangent TANH(X) = EXP(— X)/(EXP(X)+EXP(—-X))*2-1
Hyperbolic Secant SECH(X) = 2/(EXP(X)—-EXP(—X)

Hyperbolic Cosecant CSCH(X) = 2/(EXP(X)—-EXP(—X)

Hyperbolic Cotangent

COTH(X) = EXP(—X)/(EXP(X)—EXP(-X))*2+1

Inverse Hyperbolic Sine ARCSINH(X) = LOG(X+SQR(X*X+1))

Inverse Hyperbolic Cosine ARCCOSH(X) = LOG(X+SQR(X*X—1))

Inverse Hyperbolic Tangent ARCTANH((X) = LOG((1+X)/(1—-X))/2

Inverse Hyperbolic Secant ARCSECH(X) = LOG((SQR(—X*X+1)+1/X))
Inverse Hyperbolic Cosecant ARCCSCH(X) = LOG((SGN(X)*SQR(X*X + 1/X))
Inverse Hyperbolic Cotangent ARCCOTH(X) = LOG((X+1)/(X—-1))/2

Vol2 Issue 6 Commodore Magazine 15




PRINTER FORMATTING

by Garry Mason

As you may know all CBM printers are intelligent; this means that
along with being able to print in normal mode, they can be setup to
perform formatting. For example, this could be used to produce
forms or reports with beautiful columns all correctly lined up,
without 10K of program text to get it to work.

Before we go into this subject any
further we should first become
acquainted with the idea of secondary
addresses and how they work

On the IEEE bus each listening
device must be given anumber. Thisis
used when communicating to make
sure that devices on the bus get only
the information directed at them. All
Commodore printers for example
have a device number of 4.

So when the IEEE controller (the
computer), starts to talk to any device,
it firstly puts the device number on the
bus and waits for a device to respond.
If no device respondsin 65 milliseconds
DEVICE NOT PRESENT will occur.
Once the device has responded data
transfer can continue. The data
transfer being prefixed in all cases by
transferring a special control character,
this being the secondary address. In
some cases this is ignored, in
Commodore devices this is used to
signal to the micro-processor that
something special is going on.

‘Special means a lotin Commodore’s
case. One of the most useful is to
control the formatting of text. The way
this works is to supply the printer with
a mask into which it can put data. This
means that the datacan be sentto the
printer without any special organisa-
tion. This becomes very useful in
putting variables into money format,
such as converting 10.9345 to
$10.93.

The way in which the mask is sentis
quite simple. The first thing to do is to
OPEN a file to the printer and set the
correct secondary address, thus
indicating that a mask will follow
under this address.

10 OPEN 14,2

The first digit is the file number,
followed by the device number and
then the secondary address. This
means that all references to logical

Vol.2 Issue 6 Commodore Magazine 16

file 1 are destined for device 4 and
secondary address 2. Secondary
address 2 being the factor which tells
the printer that a format mask is about
to follow.

Now if we execute:-
20 PRINT # 1, “ 99.99 AAAAA”

The CBM will send the mask which will
dictate how further information is to
printed.

To use printer formatting, the
secondary addresses we need to
know are:-

meaning, do @ot put this data
through the present mask

meaning, print the following
data and use the mask to format
the data

meaning, here2comes the mask.

With our example we now choose to
either use the mask or not, by
selecting which secondary address
we send data to the printer on. This
line will prepare the logical files for
use, and prints the header and an
example:-

30 OPEN 2,4,0: OPEN 3,4, 1

40 PRINT #2, “THIS COULD BE A
REPORT TITLE”

50 PRINT #3, 54.5894,
“IAMACOMPLETEFRUITCAKE”

60 CLOSE 1:CLOSE 2:CLOSE 3

Defining the mask to suit your needs
can be a joy once one has a grasp of
the symbols used. All the symbols do
is to tell the processor how to match
the incoming data with the mask
Different symbols mean different
ways of inserting the data into a mask
Anything else but a control symbol is
called a litteral, the litterals in the
above example were the space
characters. This is because these
spaces will always be printed as

spaces no matter how the data is
aligned. Other literals need to be
preceeded by the RVS symbol.

SYMBOL CHART

A The letter ‘A’ represents any
character or digit. A field of this
type would be left-justified and
would be padded on the right of
the field with blanks. Blanks can
be made to appear by using
SHIFTED spaces, instead of
spaces. Literals cannot be printed
in the middle of a field.

9 This is the general numeric
mask used for all numerics (no
letters). Any letter in this field will
cause the format of the whole
lineto break up. If a‘9’ is present
after the decimal point in a field,
then a zero will be printed if no
digit is sent. All unused digits
before the decimal point will
print a blank

4 This character is also for
displaying numerics. This, unlike
the ‘9 symbol, will force a0 to be
printed if there is no digit
available in that position. It can
be used to force a leading zero.

$ The use of a dollar symbol is
appropriate when money format
is required, as a dollar symbol
will be forced next to the field.
Note only one dollar will be
printed even if several are used.
The dollar symbol will be right
justified in the field.

S When this character is used, the
sign of the number, either - or’«
will be printed in that fixed
column. This cannot be used at
the end of a field.

- This symbo! will cause a minus
sign to be printed in the fixed
column, if the number s



negative. A blank will be
substituted if the data number is
positive.

Decimal points are used to line

up numeric fields under a
decimal point. A decimal point
may occur at any point in the
field. If two are used; a new field
will be designated upon meeting
the second decimal point Decimal

FORMATTING EXAMPLES.

FORMAT FIELD: DATA:

AAAAA ABC ABC
AAAAA ABCDEFG ABCDE
$5858 99 $99
$9999 99 $ 99
$99.99 77 $77.00
$99.99 4T $77.00
$99.99- =77 $77.00-
$$9.99 VAT $77.00
$$99.99 74T +$77.00
2777 77 0077
Z72.999 a7 00.77
2727.99 77 077.00
99 77 e

.99 .001 .00
S.999 1.5E-02 +.015
Z.999- 1.5E-02 0.015
Z2.999- -1.5E-02 0.015-

The printer software handles up to
ten significant figures, and an
exponent range = 99 on numbers
passed as data to be formatted.
Exponential numbers must be normal
ised so that numbers fall into the
range 0 <= x < 10.

If a numeric is to be sent to a field
which has too few character digits
then the whole field will be blanked
out with asterisks.

Other characters which remain the
same on each line (literals) can be
printed by preceeding the literal with
the reverse-on control character. This
allows one to construct forms which
use the CBM graphics characters to
form the lines.

Placing commas and semi-colons
in the PRINT # statement that sends
the data to the ‘mask’ can be very
important. Generally commas or semi-
colons may follow a numeric field, but
askip character may not. For strings, a
skip character must follow a string
otherwise the format line will be
corrupted. Commas, etc will be
ignored at the end of a string so a skip
character is a must.

Iffor some reason you wish to skip a
certain field completely, then two skip
characters must be included Compare
the following two examples:-

SK$=CHR$(29)

PRINT#1,“AAAA AAA AA”

PRINT#3, “FRED” SK$ “ALF” SK$
“GUNBY” SK$

PRINT#3, “FRED” SK$ SK$
“GUNBY” SK$

points cannot be put in alph-
anumeric fields.

The following table should
give an example of the results
obtained by the use of formatting
control.

EDITED RESULT:

produces on the printer:-

FRED ALF GU
FRED

The skip character is CHR$(29)

GU

Vol2 Issue 6 Commodore Magazine 17



FOR THE VIC

The introduction of Wordcraft 20 for the VIC brings
the benefits and advantages of full scale word
processing directly to the general public.

Until now only the business world could afford word
processing systems but this amazing price
breakthrough makes it available to everyone.
Wordcraft 20 comes on a cartridge ready to plug
into the back of the VIC. Included in the cartridge is
an extra 8K of RAM that is also available for use
with other programs — so not only do you get a
word processor but you also get a memory
expansion thrown in. The system also comes with
complete documentation catering both for the
inexperienced user and for those already familiar
with Wordcraft 80.

Just look at these features:

* Full use of colour and sound.

* Full compatibility with VIC 1515 printer, parallel
printers or RS232C serial printers.

* Full control over margins, document width, tab

stops, decimal tabs, justified output, multiple
copies. Complete control of the final output.

* Automatic underlining and emboldening.

* Full screen display with automatic paging.

* Full storage and retrieval facilities from disk and
tape.

* Full compatibility with Wordcraft 80.

* Name and address capabilities — including
labels.

* Full document merging facilities.

Wordcraft 20. The package that the VIC user has
been waiting for. A word processor of proven
quality at a low price.

For the first time ever, every home can have one.

ELECTRONICS N7
«

«V&
416 LOGAN RD.(PacificHwy) STONES oe“
CORNER, BRISBANE. TEL: (07) 397 0808,

397 0888 P.O.Box274,SUNNYBANKQLD.4109. TELEX AA40811

Vol2 Issue 6 Commodore Magazine 18




3

o CBM programmes and has all cursor
\ controlled upper and lower case.

o TELEPHONE DIALER

<
.(\" Turn your VIC 20 into a combination teledex and
g telephone dial. Just tellthe VIC what name you want
?‘ and presto! Other features included $119

0 VIC 20 40/80 COLUMN CARTRIDGE

C ~\
A Gives you 40-80

characters a column

e (not colour) with all VIC L s e
and CBM graphic chara- i,
o cters. Whats more it plugs i Y.
V into a standard off-the-shelf Bro AR SRR
Q VIC 20 - no expansion required. CE S
This little beauty will load all PET/

The unit is switchable from basic with out
losing program it requires no external power supply. Works well with 32k expansion if you
wish.

NOTE: Our promotions manager is sorry but it seems that we’'ve not been too clear on
previous advertisments for this unitl = THE VIC 20 40/80 CARTRIDGE WILL WORK ON A
STANDARD OFF-THE-SHELF VIC 20.with no expansion required.

INSTANT ROM EXPANSION CARTRIDGE
This cartridge allows you to expand to 32k with INSTANT ROM - NO MOTHER BOARD *
REQUIRED -
The cartridge this cartridge permitsothers to piggy back onto it giving these exclusive
features ® Expansion to 32k with no mother board ® While using the cartridge slot it still
permits use of other cartridges ® INSTANT ROM permits you to switch the VIC 20 off
without losing its memory ® no additional power source required. $199
INSTANT ROM p.o.a.

EPROM PROGRAMMER

A must for the serious computerist and software developer. This unit includes all cables
and interface program is in EPROM. $229

TDK-20 HAM INTERFACE

The TDK-20 is a complete RTTY and Morse code system for the VIC 20 computer. It is
delivered in a single cartridge, which is plugged into a standard off-the-shelf VIC 20 or
into an expansion board. Connect to your transciever (amatuer radio operators) or
reciever (shortwave listeners) and away you go.

Features include ® on board converter ® LED tuning indicator @ All shifts available:
170,225, 425-850Hz @ instant break operation ® WRU

$22

other optional extras include VIC CENTRE AFSK board $ 4
12 vt transformer $6.5

User port plug (1 required) $6.5

©

|

Send for fuller details.

©

|

o

|

(=)

|

ELECTRONICS
DEALER ENQUIRIES WELCOME

Prices and specifications subject to change without notice

Vol.2 Issue 6 Commodore Magazine 19



- (Some Other Sorts)

by

Dwight Wheeler

It’s been estimated (I don’t remember by whom) that of
all computer operations, about 25% of the time is spent
on sorting. If my own experience is any indication, I
would say that figure is probably accurate, or maybe
too low. In any case, sorts are indispensable and the
faster they run, the better.

You may already be familiar with the bubble sort, the
earliest “exchange” sort. While easy to code, such a sort
suffers from inefficiency. It will serve for small lists, but
when the job gets tougher, we should look elsewhere.
So, here’s a slightly different sort which adjusts the
lower boundary according to the status of the list to be
sorted.

I call this the “BBSORT” which is short for “Boundary
Bubble Sort.” As with all bubble sorts, the heaviest
items will sink to the bottom while the light ones rise to
the top. What makes this sort different is that it checks
the position in the list at which the last exchange is made
and that point becomes the new lower limit of the next
pass. Thus, if the list is in order at the start, no
exchanges are made, the lower boundary becomes 0,
and the sort stops after only one pass. Since most lists
are usually in partial order at the outset, this procedure
can mean a considerable saving in time.

Vol2 Issue 6 Commodore Magazine 20

Let’s look at the code:
100 REM ——> PGM: L

Since this sort is done in internal memory, we must set
up an array. A dimension (DIM) statement is necessary
for lists greater than 10 items. The maximum of 100 here
is arbitrary:

110 DIM A$(100)

120 REM.....LOAD ARRAY.....

Set the counter to 1:
130 :N.= 1

You could obtain your list for the array directly from
the keyboard, or from data files on disc or cassette, or
from DATA statements in the program, depending upon
your application. For this illustration we’ll use DATA
statements as the source. DATA can be placed anywhere
in the program, but I usually put it last so it can be
expanded without conflict in line numbers. Let’s read
the DATA:
140 READ AS$(N)

Check for the “end” of the data:
150 IF AS$(N)='" END''

Add one to the counter:
160 N N + 1

BBSORT

THEN 180




PROGRAMMER'’S TIPS

Go back and read another data item:
170 GOTO 140

When all the data have been read, line 150 will detect it
and jump down to the actual sort routine. But first we
must subtract 1 from the number of items in the array to
drop the “END” item which should not be included in
the list.

180 N =N - 1

190 SREM. 0L o« SORT .. st s
Here are the “working parts” of this sort. At the begin-
ning, we set the lower boundary (B) at the number of
items in the array (N) so that each entry will be looked
at at least once.

200 8 = N

Then we immediately check to see if there is anything in
the list. If not, the procedure stops at once:
210 IF B = 9 THEN 339

If B is not equal to zero, the program proceeds. At this
point we must establish an intermediate variable as a
position locator—call it J—and set it to the top of the
list, position O:

220 J = 9@

Now we step through the list from 1 to the end minus 1
with a FOR/NEXT loop using the index I:

230 FOR I =1 70 B-1

Compare the first item [A$(I)] with the next [A$(I + 1)].
240 IF AS(I) <= As(I+1) THEN 290

If the first item is less than or equal to the second, it is
skipped by jumping to the next I in line 290. If not, the
two items are exchanged using a standard three-step
exchange routine:

249 REM,....EXCHANGE... ..

A temporary variable T$ is set equal to the first item:
250 TS = AS$(I)

Then the first item is assigned the value of the second
(smaller) item:

260 AS(1) = AS(I+1)

The second item is then assigned the value of the tempo-
rary variable and the exchange is complete:

270 AS(I+1) = T9
So far so good, but here the plot thickens. Remember
“J”? That’s the position locator which keeps track of
the number in the list where the exchanges are made. In
this case, an exchange has been made at position I, so
we take note of that:

280 J =1
Then we go to the next item:

290 NEXT I

The program goes back to line 230, the index I is incre-
mented by one, and the next two items are compared,
etc. Each time an exchange is made, J takes on the value

of the index I at that point. When the whole list has been
scanned, J will have the value of the index where the last
exchange was made. If no exchanges were made, J will
equal zero since it was initialized to zero in line 220.

When the FOR/NEXT loop has been completed (at B-
1), control drops through to line 300 which sets the
lower boundary B to the new value J (which was the
point of the last exchange):

300 8 = J
Then we hop back up to see if the new boundary is zero.

310 GOTO 210

If B is not equal to zero, the list is run through again—
but only as far as the new lower boundary.

The loop is repeated until no exchanges are made
J = 0 = B). At this point, line 210 will transfer control
to the next segment of the program—in this case, the
printout.

2RO REM., ..l cBRINT .., .

330 FOR X = 1 TO N

340 PRINT AS(X);'" " ;

350 NEXT X

360 END
Finally, here is the long-lost DATA statement. As a
handy “benchmark” for comparing sorts, I often use
the sequence on the keyboard:

370 DATA Q,W,E,R,T,Y,U,1,0,P,A,S
DeF Gl Sy Kyl 3 Z4X3C,. VB, N;;M
Now, the moment of truth . . . run it, and count the
number of seconds it takes to sort. Just for fun, change
the DATA line to place all the letters in alphabetical
order. Run it again . . . surprise? It prints almost imme-
diately! So our “Boundary Bubble Sort” works and is
an improvement on the average bubble sort.

The loop is repeated until no exchanges are made and
J=0=B. When B=0, line 210 will transfer control to
the next segment of the program—in this case, the print-
out.

320 REM....PRINT....

330 FOR X = 1 TO N

340 PRINT AS(X);'" ',

350 NEXT X

360 END
Finally, here is the long-lost DATA statement. As a
handy “Benchmark” for comparing sorts, I often use
the sequence found on the typewriter keyboard:

370 DATA Q,w,E,R,T,Y,U,I1,0,P,A,S
D,F,G,H,J,K,L,Z,X,C,V,B,N,M,END

Finally . . . now’ the time . . . run it, and count the
seconds it takes to sort (about 8 seconds on an Apple II
Plus).

Vol2 Issue 6 Commodore Magazine 21




For kicks, change the DATA line to alphabetical order:

370 DATA A,B,C,D,E,F,G,H,I,J,K,L

M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z
Now run it again . .

18E REM > PGM: BESORT <2<
118 DIM AFECLAAD

128 REM ....L0R0 AREAY.. ..
138 H=1

148 REARD RFECH>

158 IF AFCHI="EHD" THEH 138
128 MH=h+1

178 GOTD 148

158 H=H-1

198 REM oo e S0ORET. wuns

208 B

1@ IF B=0 THEH 2338

2R JT=0

oEG FOR I=1 TO B-1

o4 IF AFCI? <= AFCI+1ld THEH =15
243 REM ...« ERCHAHGE. « o«

Every
PET needs

been written

ately! So our “Boundary Bubble Sort” does work, and
it is an improvement over a plain bubble sort. €=

. surprise? It prints almost immedi-

258 TH = RAFCI
SRR RECID = ASCI+10
279 AFCI+lr = TH
28 J=1
296 HEST I
SR =.
m1| G0TD 218
REA REM o .o o FRIMNT: 2w
33H FOR ¥=1 TO H
R4E PRINT Asox»e" e
zEa HEST =
SeB END
aTE DATA B MW E R, T U I, 0.F.H 5,
D.F,G,H, J KL Z28C,%,B-NM,
EHND
RERDY .

Introducing a new series of programs that are ‘FRIENDLY’ to the user and
represent outstanding value for money. . ..

and there will be more ‘FRIENDS’ coming

FRIEND 1 - Word Processor

An on-line ROM chip for 8, 16, and 32K machines. This Word Processor program has

by professionals specially for The Microcomputer House.

The program can be used with or without a printer and will be available shortly in

WP CHIP
DISK
TAPE

a FRIEND...

disk and tape versions as well.

$85
$70
$60

FRIEND 2 - Mailing List

This is a dual disk based system for the 4000 series microcomputers. It caters for
2,100 records per data disk and offers sort and select facilities. It will also be available
shortly for single disk systems.

MAILING LIST

$85

FRIEND 3 - Data Handler

This is a ROM chip containing a machine language routine which allows the program-

mer to control screen input. ® Alpha
@®Disk Fastget ® Field Reverse @ Field

Field Entry®Numeric Field Entry®Date Entry
Flash. Each of these functions have different

options. FRIEND 3 is a derivative of our security ROM used by all our packages.
4000 series and 8000 series $85 each.

All programs come with a complete instruction manual.

DEMONSTRATION STOCK AVAILABLE AT NEVER TO BE REPEATED PRICE

Bankcard
 Mail Orders

Welcome

Vol2 Issue 6 Commodore Magazine 22

JUST PHONE OR CALL IN

The Microcompuies
oMy House I _Lid.

1ST FLOOR, 133 REGENT STREET
CHIPPENDALE N.S.W.2008 PHONE (02) 699 6769




The computer world is indebted to Mr. D.L. Shell for
this sort which appropriately bears his name. I don’t
know what language he used initially but using his the-
ory I came up with this BASIC version. It should per-
form as prescribed on practically any computer.

While essentially another bubble sort, the Shell sort
improves its efficiency by making some radical moves
early in the game. Instead of comparing adjacent items
in the list (as with a standard bubble sort), this sort
compares items across a gap. This gap (call it G) starts
out at 1/2 the length of the list. Therefore, in the first
pass, members of the list can be moved from the middle
all the way up to the top, or, from the end, up to the
middle. This provides a very fast “rough sort” and
accounts for the overall greater speed.

After all the exchanges are made that can be with G
equal to 1/2 the length, the gap is halved again, and S0
on until the gap ends up at 1. The final passes (with a
gap of 1) are actually a regular bubble sort.

Our demo program will use a data array for testing, so
let’s jump rightin . . .
100 REM --> PGM: BBSORT <--
110 DIM As$(100)(Dimension the array)
120 REM.....LOAD ARRAY.....
130 N =1 (Set the counter)
140 READ AS$(N) Readthedata
150 IF AS(N)='"" END'' THEN 180
(Check for end of data)
160 N = N + 1
170 GOTO 140
180 N =N - 1
“end” item)
Now the data has been read into the array with N items
and we’re ready to get into the actual sort. As we said,
we’re calling the gap G and to start it is set to 1/2 the
total length of the list. In our test case, there are 26

(Increment the counter)
(Go back for next data item)
(Adjust array to exclude

&__’

Shell Sort

items in the list so N=26 and G = 13.

1390 REM . o b oo SORT s 0 0r o0

200 G = INT(N/2) i
The integer function is used to clip all the fraction if N is
an odd number. It’s always a good idea to check right
away to be sure that there are actually items in the list.
Also, this line will be used later to signal the end of the
sort.

210 IF G = 0O THEN 350

Time to step through the array list:

220 FOR T = 1 TOIN=G
I will vary from 1 to (26 —13) = 13. It is in the compari-
sons coming up that the Shell sort takes on its personal-
ity. The first item [A$(I)] is compared—not with the
adjacent item, A$(I + 1)—but with A$(I + G) where G is
the gap. In this case, I+ G =14. So, if the first item is
less than or equal to the 14th item, nothing is done. But
if it is greater, the two are exchanged:

230 IF A3(I) <= AS(I+G) THEN 290

240 REM.....EXCHANGE. ....

250 T$ = AS${I)

250 AS(I) = AS(I1+G)

270 AS(I+G) = Ts
We must have some way to know when the list is ordered
as well as it can be for each gap setting, so we establish a
flag E which records and exchanges. When an exchange
is made, E is set to the value 1.

280 E =1

Then I is incremented and the next comparison is made
using the same gap setting.
290 NEXT 1

What happens during the comparisons in the first com-
plete pass is illustrated in Figure 1. The comparisons

In our list, Q is the first item and F'is the 14th and they
are exchanged. The standard three-step routine is used

Vol2 Issue 6 Commodore Magazine 23




with the temporary variable T$:

which restilt in’ an exchange are indicated with an “x”.
You can see that some items have really moved up the
list: E G, J, K, and L are near the top while Q, W R, T
and Y have been moved over halfway down the list.
These are pretty good moves for just one pass and are
proof that the “gap” comparisons accomplish their pur-
pose. To see if exchanges have been made we check the
flag:

300 IF E = 0 THEN 330

If exchanges have been made, E will equal 1 (line 280)
and we must reset the flag to 0 so that we can check
again after the next pass:

310 E = O
Then back for another pass (using the same gap):

320 GOTO 210

If exchanges have not been made during the pass, E will
equal 0 which will be detected in line 300. Control will
pass to line 330 where we will cut the size of the gap in
half. Once again, the integer function will chop off the
remainder, if any: (see footnote)

330 G = INT(G/2)
And so back up to make another pass, but this time with
the gap cut from 13 to 6:

340 GOTO 210
The passes will continue with a gap of six until no more
exchanges can be made. The gap will then be cut to 33

more passes; then to 1 and a clean-up as a regular bub-
ble sort.

When no more passes are made, E will equal zero, G
will equal INT(1/2) which is zero and line 210 will pass
the program to the output print routine.
350 REM. ... .PRINT., 4.
360 FOR X = 1 TO N
370 PRINT As(X);" " ;
380 NEXT X
390 END
Of course, we must have data:
400 DATA Q,%w,E,R,T,Y,U,I,0,P,A,
s,0,F,G4H,J,K,L,Z,X,C,V,B,N
M, END
So you see that the Shell sort is not very difficult to
code. To prove that it is worthwhile to use, try some
comparison runs with other sorts and other benchmark
data. The added speech can be signficant in long lists
where every little bit helps. And that’s our Ry for dis-
orders. €

Footnote:

For you Theoreticians: If the integer function were not
used in line 330, the program would go into an infinite
loop when the gap became less than 1. G=(G/2) would
never reach zero and line 210 would never be true and
the program would never stop. I know—because I fell
into that trap on the very first trial run of this program!

—

/

Pittwater
I5| Com puter

-

NOW
AVAILABLE.....

22 CARTER RD,,
\BROOKVALE (02) 9396760

The Electronic Cash Book on both the 4000 Series
and the 8000 Series Commodore Computers.

This programme is designed to exactly emulate the
hand-written Cash Book but has the added features of
keeping a running bank balance; automatic deductions of
periodical payments -full details of these are kept on
file; reconciliation with the bank statements and a
printed list of unreconciled cheques.

It has full budgetry figures; automatic searches via
cheque number, payee or amount; also full reporting
functions with transaction listings, dissection summaries,
and detailed dissection listings. Depending upon the
version, there is up to 39 incoming dissections and 59
out going dissections.

We also advise that the 8000 Series will flow directly
into the IMS/COMMODORE General Ledger, thus
making it the ideal package for small businesses.

The retail price is $400.00 plus tax, where applicable.

Please contact your local dealer or Pittwater
Computer Sales J

Vol2 Issue 6 Commodore Magazine 24



PROGRAMMER'’S TIPS

Exchanges Made During the First Pass

End:
F,G,E,J,K,L,U,I,C,P,A,N,D,Q,W,H,R,T,Y,Z,X,0,V,B,S,M

Figure 1.

ot
.

i,

o

FEM s PGM: SHELL S0RT <<
OIM AEC10a

FEM ....LO0AD AREAY. « ..
H=1

READ AFdRNs

IF A= "EHMD" THEH 138
==t 1

GOTO 148

H=t—1

FEM 2o 50RT.was

DRES & P

IF G=8i THEHM 3358

FOR I=1 TO M-G

IF A$4I0 <= RAFCI+G2 THEWN 25
REM ... .EXCHANGE. ...

T$ = RECID

RECTD = ASCI+GED

RECIHGD = TH

E=1

HEST I

IF E=8 THEH 338

E=6

GOTO 214

G=INTCG 20

GOTO 216

FEM oo PRIMT....

FOR ==1 TO H

FRINT R$dxs:" "»

HERT =

END

ORTH B W.E R . T Y U I . 0.FPRAS0,F,. G H,T,K,L,2,8,C,%,B,H.M.END

]

XX
Foads

A XX]
ot

-
et

AR

e I
YT T

L o B e
X I o I X Y

s

B Y P I P T T LT T AT O LA O O T O S O LS e T T i i T

D BT B N T O O VT U T B T Y T O N P T L B o R T B T O O VN O L

Lo U ! IR T ot ORIt T Tt T o T ot T o B T o T B o Bt I

Vol.2 Issue 6 Commodore Magazine 25




Joysticks Revealed

by Steven Hall

Having had several enquiries on how to use a joystick in your own
programs, | feel it would be of interest to VIC-20 users to include the

following.

The main function of the control port,
which the joystick is pluggedinto, isto
received variable values from the pin
connections. To access these variable
values one must PEEK the relevant
registers. Peeking is, as the name
implies, looking into the computer's
memory banks and seeing what value
is there.

The correct registers to look into,
are 37151 and 37152. Now, if the
valuein37151is 122, thenthismeans
the joystick has been pressed
upwards (AWAY), a value of 110
means LEFT, 118 means down and
finally 94 means you are pressing the
fire button! Easy isn't it! Unfortunately
—if you are checking for right, you must
stop the keyboard scan for a second
by poking 37154 with PEEK(37154)

So That’s How You Use The P.F.

Keys
by Steven Hall

The P.F. Keys (Programmable Function
Keys) on the right hand side of the
VIC-20, can be used within a BASIC
program using the following short
program. Lines 20, 100, 110 are there
to check if you have the shift key held
down, forexample using function keys
2,46 or 8.

| have found the best use of the
keys is with musical programs to place
different values to my variables for
example, if A= 44 then D=8, and use
D to change volume in a piano
program etc. An increasing number of
Commodore cartridges use the P.F.
keys, the Super Expander letting you
set up the keys with a simple KEY
command. One of the new games
being released shortly, Omega Race
uses the keys to select which
character and screen colours you
want to play the game with.

Vol2 Issue 6 Commodore Magazine 26

AND 127 and then check 37152 fora
value of 128.

This whole operation is neatly
performed with the following program.

10 A=PEEK(37151)

15 GOSUB 100

20 IF A=126 AND B=247THEN 10

30 IF(AAND4)=0THEN PRINT“TOP";

40 |IF (A AND 8)=0 THEN PRINT
“DOWN?;

50 IF (A AND 16)=0 THEN PRINT
“LEFT”;

60 IF (A AND 32)=0 THEN PRINT
“BANG”;

70 IF (B AND 128)=0 THEN PRINT
“RIGHT”;

99 PRINT:GOTO 10

100 POKE 37154, PEEK(37154)
AND 127

120 B = PEEK(37152)
140 POKE 37154,255
160 RETURN

This leads to a great avenue of
projects, for example, creating tunes
by using the values from the joystick
to be input to the VIC-20’s speakers.
Or alternatively, use the output from
the joystick — if you have a super
expander cartridge — to draw pictures
on the screen — that can be very
interesting. Hint! use the fire button to
clear the screen or else you will fill up
with all squiggles very soon!!

The more you learn about BASIC or
machine code programming the more
useful those keys will become.
Nowdays, | load in a short assembler
routine, which automatically checks
to see if 'm pressing any of the keys
and then execute any commands |
have set for them — very useful!

10 A= PEEK(203)
20 B = PEEK (653)

30 C=0

40 IFA=39THEND=1:GOTO 100

50 IFA=47 THEND=3:GOTO 100

60 IFA=55THEND=5:GOTO 100

70 IFA=63THEND=7:GOTO 100

80 GOTO 10

100 IFB>1THENB=0

110 K=K+B

120 PRINT 'YOU PRESSED
FUNCTION KEY' ; D

130 GOTO 10




DIDY

KNOW

Here is a little tidbit that you may find interesting. Did
you ever wish that you could ‘hide’ parts of a program,
while leaving it all in BASIC and copyable? Well here is
a simple and effective way to do just that!

Simply load your program into memory, and place five
colons (:::::) in front of every statement that you wish to
hide, after the line number and before the BASIC line

cute them via a ‘goto.” List the program and you will see
that your secret code has vanished! To make the lines
reappear, just ‘goto’ the line number you assigned to the
second half of the statements below.

Try this little trick on the small program below just to
see it work, it’s fun and only costs you a little more
space for the five colons and the extra statements.

itself. Then just key in the following statements and exe-

10 rem “simple program”

20 print “this line will not be protected”

30 print “this line will not be protected either”

40 :::::print“but this line will. . . .’

50 :::::print“and this one too. . . .”

55 stop: rem “assume that this is the logical end of the program

60 rem “the coding from 60000-60020 will make the lines vanish
70 rem “the coding from 60030-60050 will make the lines reappear
60000 :::::fori = 1024 to 15000

60010 :::::ifpeek(i) = 58andpeek(i + 2) = thenpokei,0:i=i+5
60020 :::::next:stop

60030 :::::fori = 1024 to 15000

60040 :::::ifpeek(i) = Oandpeek(i + 1) = 58andpeek(i + 2) = 58thenpokei,58:i=1+5
60050 :::::next:stop

ensure that the search for the five colons continues
through your entire program.

PLEASE NOTE . . . the value of 15000 in lines 60000
and 60030 just needs to be any value large enough so
that it is larger than the number of bytes of your code to

Have any interesting little programs, tricks, etc. for
Commodore micros? Let us know and we’ll feature
them in Commodore Magazine. Send your suggestions
to:
“DID YOU KNOW”
Commodore Magazine
PO Box 336
Artarmon 2064
Australia

. Vol2 Issue 6 Commodore Magazine 27




PETKIt

Computer Cleaning Kit

quipe pacaalimpleza de Gomputadors
Kit per fa pulizia del Computer

A comprehensive range
of cleaning and maintenancs
products designed, developed
and perfected for the
computer user

Vol.2 Issue 6 Commodore Magazine 28



PETkIt

Computer Cleaning Kit

PETKkit is an excellent, simple-to-use kit for all the
cleaning and maintenance requirements of
Commodore PET Computers, Floppy Disc Drives
and Cassette Decks.

Periodic inspection and cleaning of R/W heads of
disc drives and cassette decks will ensure error-
free data capture and transmission.

Contents
1 Aerosol SAFECLENE
1 Aerosol FOAMCLENE
100 SAFEBUDS
10 SAEECLOTHS
100 SAFEWIPES (10 cm square)
10 SAFECLENS Sachets
1 FLOPPICLENE 54" Jacket
10 FLOPPICLENE Cleaning Discs
1 Glove

PET, Floppy Disc Drive and Cassette Deck
Maintenance

Spray FOAMCLENE liberally on to external
surfaces and wipe off with a SAFECLOTH. Repeat
as necessary. Avoid spraying FOAMCLENE directly
on to keyboards which should be cleaned with
SAFEBUDS moistened with FOAMCLENE only.

Floppy Disc Drive Maintenance
Read instructions carefully on the FLOPPICLENE
jacket. To clean the heads of Drive O, type the
following lines:
100PEN 1, 8,15
20FORA =1TO5: PRINT #1, “I0"": NEXT
30CLOSE 1
Insert the prepared FLOPPICLENE into Drive O with
the label face up, then type RUN. The heads will be
cleaned and the screen will display READY .

To clean the heads of Drive 1, type the following
lines:
WORENT, 8, 15
20R@RA = 1'TO 5. PRINT A 15118 NEXT
30CLOSE 1
Insert the prepared FLOPPICLENE into Drive 1 with
the label face up, then type RUN. The heads will be
cleaned and the screen will display READY .

NB: Type in the lines exactly as shown, without any
extra spaces.

AVAILABLE NOW
FROM YOUR
COMMODORE DEALER

Alternatively, if you are in a hurry and want to clean
the R/W head of an 8050, you may insert the
prepared FLOPPICLENE in the drive, press the door
latch and wait until the drive stops. Release the door
latch and repeat the process five or six times.

Load pads should be examined periodically and
replaced as required. No attempt should be made
to clean these pads.

NB Itis good practice to wear the glove supplied
when carrying out cleaning operations.

Cassette Deck Maintenance

Press eject/stop button to lift tape housing lid. Press
play button to allow easy access to R/W and erase
heads. Take a SAFEBUD and soak it with
SAFECLENE spray. Clean the heads from the top
with an up and down motion of the SAFEBUD.

NB DISCONNECT THE CASSETTE DECK FROM THE
PET BEFORE CLEANING

VDU Screen £
Apply a SAFECLENS Anti-Static Screen Wipe to the

VDU screen, then wipe the screen until it is dry with a
clean SAFEWIPE.

Remove foam packing strips from under aerosols
prior to using this PETKit.

O
ELEGTROLUBE

E commodore

COMPUTER

Vol2 Issue 6 Commodore Magazine 29



VIC CHIP MEMORY USAGE.

by Garry Mason

Because of the memory addressing
restrictions of the VIC chip, it is
necessary to have the screen located
below $2000. RAM based character
generators must also be located
below $2000, because of the internal
addressing restrictions of the 6561
(VIC chip).

When the 3K Super Expander is
used with a memory expansion
cartridge such as the 16K or 8K
expansion, the 3K Super Expander
RAM will be mapped out of the BASIC
memory map. This remapping is to
ensure continuous memory from
$1200 for BASIC programs. The 3K of
RAM in the cartridge can only be
accessed using PEEK and POKE or
assembly language routines. Using a
3K cartridge in the same configuration
will have the same effect.

based character generator by loading
the VIC register at 36869 with the
appropriate value indicated by the X in
the following table. RAM based

BASIC programs by resetting the start
of BASIC or End of BASIC pointers in
zero page.

The VIC chip can use the ROM

based character generators or a RAM

character generators should be POKE 36869, PEEK (36869) AND 15
protected against corruption by OR (X*16)

X Location Contents

Value HEX DECIMAL

0 8000 32768 Upper case normal characters

1 8400 33792 Upper case reversed characters
2 8800 34816 Lower case normal characters
3 8C00 35840 Lower case reversed characters
4 9000 36864 unavailable

5 9400 37888 unavailable

6 9800 38912 VIC chip — unavailable

7 9400 39936 ROM - unavailable

8 0000 0 unavailable

9 0400 1024 Only with 3K cartridge

10 0800 2048 Only with 3K cartridge

11 0A00 3072 Only with 3k cartridge

12 1000 4096 RAM

13 1400 5020 RAM

14 1800 6144 RAM

15 1C00 7168 RAM

Commodore 9060/9090 Hard Disk Drive
continued from Page 13

SuperDOS. This DOS is also available
in the CBM 8250 floppy disk drive and
may become available for the CBM
8050 drive. The major enhancement
of SuperDOS is that it can support
very large relative files. The DOS
supports a super side sector that
contains track/sector pointers to 127
groups of 6 side sectors for a
maximum relative file size of 23.25
Megabytes. This is much larger than
any existing CBM storage peripheral
and allows for expansion to larger
hard disk drives should they become
available.

Apart from this important feature,
the disk responds to the same
command structure as DOS 2.5. The
execution speed of some commands
has not been improved by the hard
disk, as a ‘HEADER' command will
take 105 minutes to format a CBM
9090 disk drive.

PROGRAMMING WITH
THE HARD DISK

As the disk is completely
compatible with the existing range of

Commodore storage peripherals, there
are few problems in developing an

Vol.2 Issue 6 Commodore Magazine 30

application using the disk peripheral.
The biggest problem is resolving the
use of Drive O for program disks and
Drive 1 for data disks. This can involve
extensive changes to software, esp-
ecially software that may still have to
be able to be used in a floppy
environment. The best approach is to
use a system parameterfile and touse
parameter driven file statements.

Itis possible to establish a very long
directory if the disk is being used to
store large numbers of files, this can
make life tedious if the user is
searching for a particular file. Most
standard disk utilities will work with
the hard disk, provided the appropriate
track and sector ranges are modified.

Backup is a problem that all
programmers will have to consider. It
is possible to copy any file that will fit
ontoa CBM 8050, to an 8050 drive. As
the copy operates at |IEEE data
transfer speed, a complete backup
from hard disk to floppy diskette will
take several hours. Most programmers
will be able to write short programs to
copy selected files onto floppy
diskette. The difficult problem involves
backup of very large relative files that
exceed the 719 block limit of an 8050
relative file. The only option is to write
a utility program that can dump a

relative file by splitting the file into
several 8050 size relative files, then
rebuild the file when a reload of the
hard disk is required. This type of
utility is not difficult to write and
involves manipulation of the disk BAM
and side sector tables.

USING THE HARD DISK

The hard diskis a delight touse. The
Commodore Accounting software has
been mounted on the CBM 9090 disk
at Commodore and provides a very
different environment to the 8050
version. Response to any request for
information that requires disk access
is immediate. Existing versions of
VISICALC and WORDCRAFT can be
used with the hard disk.

The hard disk provides a superb
environment for program development
as the tedium of disk swapping and
continual disk accesses for programs
and data is dramatically improved. The
productivity of program developers
usually improves dramatically if a hard
disk is available.

Over the next few months we will
start to see some exciting applications
for CBM computers using the hard
disks. If you are interested in using a
hard disk, contact your Commodore
Dealer for further information.




VIC 20 OPERATING
SYSTEM BUGS

by Robert Baker

Everyone should be aware by now that computer systems do not
always function 100% by the book. Occasionally, small errors or
operating system quirks appear and we can usually live with them
once documented and well known. More serious problems may
require upgrade or replacement ROM’s or program patches to
correct problems that cannot be programmed around by the user.

Well, the VIC-20 is no exception and
I've come across two problem areas
so far that bear mentioning. The first
problem has to do with the INPUT
command and line wrapping on the
VIC’s 22 column display. The problem
appears when you print a prompt for
an input command and the prompt is
longer than 22 characters, causing
the display line to wrap to a new line.
This is assuming that the prompt and
the input variable are separated by a
semicolon so that they're expected on
the same line. Whenever this situation
arises, the prompt itself is returned
along with any keyboard entry made
by the user.

When the program is expecting a
string input (A$), you simply get more
characters than you expected, but the
program still runs. If the program is
expecting a numeric response (A or
A%), then you get a REDO FROM
START error message. The input
prompt is re-displayed, and the
program waits for new input from the
user. Now you have a problem, since
no matter what you enter, the input
prompt is returned to the program
along with whatever keyboard entry is
made. Since the prompt is not a valid
number, the system is hunginaloop it
cannot get out of.

If you press the RETURN key
without entering any characters first,
the system simply returns the last
keyboard response entered on the

VIC so you're still stuck in the loop.
Even the RUN/STOP key cannot
always get you out of this error
condition since the program is not
really executing any BASIC statements.

Here's a little test program that will
quickly demonstrate what is happening
in your VIC:-

10 INPUT“PLEASE ENTER ANY
TEST REPSONSE”;A$
20 PRINT A$

When you enter your response and
press [RETURN], you will see the
entire prompt re-displayed followed
by your keyboard entry. If you now
type in, PRINT A$ as an immediate
command, you can prove to yourself
that the A$ response the program
received is really as shown with the
prompt included. If you change the A$
to A or A% in both lines, you'll now see
the REDO FROM START error when
you try to run the program again. You'll
even see the error when you input a
valid number response. Now try
pressing the RETURN key alone or
the RUN/STOP key to get out of the
loop. There are some ways to get out
of the loop but if all else fails just turn
off the VIC and start again. Fortunately,
you can easily overcome this problem
simply by adding a null string to the
beginning of the PRINT# statement:-

20 PRINT#3,“”,SPC(5);“HI THERE”

to make everything work correctly.

You see, the SPC or TAB only causes
the problem if it's the first item in the
PRINT# statement, any other place is
OK In this example, | used device #3,
the display screen, since it's the
simplest device to run test cases on.
The problem does, however, occur on
all devices using the PRINT# command,
including the printer!

These errors have been reported,
but there has been no response as to
how or when they'll be fixed. As long
as we know about them, they can be
avoided.

By the way, this same problem
occurs if you use a PRINT command
for the prompt and an INPUT
command to get the response, if there
is a semicolon at the end of the PRINT
argument. Try this little example:-

10 PRINT“PLEASE ENTER ANY
TEST RESPONSE”;

20 INPUT A$

30 PRINT A$

You should see the same results as
before. This problem is annoying but
can be avoided. The best methods are
to either limit input prompts to a single
line or get the input on a new line
without using the semicolon in the
PRINT statement.

As | mentioned earlier, there is
another problem area in the VIC-20
besides the one just described. The
second problem involves the PRINT#
command. When you open a logical
device and use the PRINT# command
to output to that device, you'll get a
SYNTAX error if the first argument of
the PRINT# statement is a TAB(..) or
SPC(.) function. This little example
shows what happens on the VIC:-

10 OPEN 3,3
20 PRINT#3,SPC(5);“HI THERE”

You should see a SYNTAX error
reported on line 20. You'll get the
same result if you replace SPC with
TAB. The line is perfectly correct
according to the manuals and will
execute.

Vol2 Issue 6 Commodore Magazine 31



KEYBOARD DECODING

by Garry Mason

The following is a list of all the values
that can be produced via the keyboard
matrix variable, which can be found in
zero page. This variable is produced
by a routine which reads the keyboard
X and Y scanning co-ordinates to
produce the following values. This
value corresponds to an offset. This
when added to a base address, gives
the position of information in ROM or
RAM, concerning that character. In
other words it is used as a pointer for
use in a look-up table. Once this is
done, the routine combines this with
other information, such as ‘is the
SHIFT key pressed?, to produce the
actual character value.

Some programmers use this
variable in lieu of the GET. The
advantage being that this variable
repeats, where as the the GET
statement would not. For example, in

a games situation the player holds
down the ‘4 key expecting the
program to continually pick the’4’ up
and act accordingly. If the program
uses the GET statement it will not pick
up any more than one character.
Whereas a program that uses the
keyboard matrix co-ordinates variable
would continue to pick up the ‘4’ key
and then act.

This table will help when converting
programs from one Commodore
Computer to another. The location
which was PEEKed for all new ROM
BASIC 4.0 machines (4032, 8032 and
3032) was 151 — matrix co-ordinates
of key down. This converts to location
197 on the VIC, being a BASIC 2.0
machine and location 515 on old
ROM BASIC 1.0 machines (2000
Series).

As you may have noticed, all the

CHARACTER CODES

characters available on the keyboard
are not represented here, this is
because the use of the shift key or
other control key have no effect onthe
value returned, these codes only refer
to the physical position on the
keyboard of each key. For example
there is no difference between the
code returned from the cursor down
key and the code returned from the
cursor up key. So in the table they are
listed as ‘vertical cursor key.

NOTE: The 8032 as you may know
has two number ‘pads’ on the
keyboard. For this reason the second
set (the ones not found on the number
pad) are shown as the punctuation
marks. The punctuation section is
missing from the VIC keyboard-this is
because all punctuation marks on the
VIC keyboard are supplied as shifted
numbers.

CHARACTER VIC: 3032, FAT 4032: 8032:
CODES 2001 Series

4032
lett zroan =
1 A
= i
<} T
= bk :
= =S il
= <} S
(5} R i
+ = N
A =3 <5 =5
HOME S = 159
DELETE =t 1 =6
n] i =1 =l
b4 ] =i av
E 43 = L
F ig = S
T S = =1t
iy 11 25 =23
i =1 EE HE
I 1z i VI
0 ma ¥ =
= 1= by 26 A
C} =3 15 i 122

Vol.2 Issue 6 Commodore Magazine 32




CHARACTER
CODES

3032,

FAT 4032: 8032:

2001 Series
4032

b

CFESI2TDO0 IS e
0
o

o

DR DO o (R O v O

.
H

" -5
» =
= L
i -
(o =
L e
"\t

e T Elan el

)
+
I
et ical cursoe 21

oo izontal cursor 23

Erwlisk Forc i
B S

= S O 0

LI R A L R Y

[EIRR

B L

e
X3

g
[
£
[
5
.
4
D}
)
-
¥

.
-
¥

-
-
e

0 0

P
p

O E = = =d = = = 00 A b
CFE = = =d = w60 T P

PR U I I 8 Y U O S ot B B T T | O O
W R B P2 o 200 0

LT i
Al

i¥y]
-
LA

A A
0y = 0

P
b
[
o
o
&

-«

B e B s S B 1 SR

Oy o= 00

S

LRSI S
P
X%
[RFR R
i

I P N O o e B Y o

= o

ALY

l'_C;
= R R
wd P

- 1

W

fLoe
;

Specialising in the sales & support of
the Commodore PET/CBM Microcomputers,
peripherals and interfaces, including:

@ IEEE488-RS232 COMMUNICATIONS

® RS232/CENTRONICS PRINTER INTERFACE
® EPROM PROGRAMMER

® WORD PROCESSOR PRINTER INTERFACE
For full details and prices call or write:

205/6 Clarke St Postal: P.O. Box 153
CROWS NEST NORTH SYDNEY
Ph:(02) 438 1220 NSW 2060

=y
M
P

_B]_G] PHOTOTYPESETTING

% Phototypesetting from text disks and/or
cassettes generated from Commodore
microcomputers.

* Complete art studio facilities

% Reports, software manuals, advertising,

ole-ete02) 439 1827

MERVYN BEAMISH GRAPHICS
82 Alexander St. CROWS NEST, NSW 2065

Vol.2 Issue 6 Commodore Magazine 33




USING THE VIC 1515 PRINTER

by Garry Mason

The VIC printer is probably one of the most intelligent devices that you
may have around the home, except the VIC of course.

I mean, how would you like to be in its position; not only does it
have to control the data flow on the serial bus but it also has to
control a lot of hardware as well. What with the head-movement, the
paper feed— both of which have to be perfectly controlled to get the
one hammer to hit the barrel as it flies past at exactly the right time.

This is the one printer that employs
characteristics not seen on most CBM
printers, the extensive use of control
codes. This means we do not have to
even consider the use of secondary
addresses.

There are in fact two of these
secondary addresses, but as they can
be accessed by control codes, we
need not worry about them.

Controlcodes are in fact characters
which, when they get to the printer,
are interpreted as something other
then the usual everyday character.
When these control characters reach
the printer, they are translated into
actions which change the way in
which the printer responds to data.

This is very much like the way the
VIC can put control characters in print
statements to produce special effects
on the screen. For example if the
CONTROL and the RVS key are used
in a print statement, the VIC will print
all following characters in reverse
field until told to stop. This can be
duplicated on the printer, just by
including the same control character
in the PRINT# statement.

10 A$=“[RVS|THISIS IN REVERSE
FIELD[OFF RVS]

20 OPEN4,4

30 PRINT A$ :REM PRINT ON
SCREEN

40 PRINT#4, A$
:REM PRINT TEXT ON

50 CLOSE 4: END

The control codes in this example
were RVS and OFF/RVS, these two
control codes can be inserted into text
by using the VIC screen editor. Other
control codes cannot be sent to the
printer in this manner and require the
user to use this type of approach.

Vol2 Issue 6 Commodore Magazine 34

10 OPEN 4,4
20 PRINT#4, “CHR$(18),“THIS IS

IN REVERSE FIELD”;CHR$(146)
30 CLOSE 4:END

In this example we have inserted
the control code which means turn on
reverse field printing in the form of
CHR$(18). The character code (18)
means exactly the same as the RVS
symbol, as it is the number 18 that
gets sent to the printer anyway.

UPPER & LOWER CASE

When the VIC-20 is turned on it is set
in upper case mode. This means that
keys typed without the shift key will
turn out to be in upper case and keys
typed with the shift key will come out
as graphics. This is the same as the
printer when it is also powered on. If,
on the other hand, you want your
printer to act like the VIC when in
lower case mode, you must use the
secondary address which does this.
This will not affect the printer in any
other way.

OPEN4,4,7 insteadof OPEN4,4

LINE SPACING

The next thing that can be easily set
is the line spacing. This controls how
far apart the lines are from each other.
Normally there are 6 lines to the inch.
If the printer is in graphics mode, i.e.
CHR$(8) has been sent at some time,
then the printer will squeeze 9 lines to
the inch. This has the effect of having
no space between the lines so a
vertical line will be printed without any
gaps down the page. This feature can
be demonstrated as follows:-

10 OPEN 4,4

20 FORC=1TO5

30 PRINT#4,CHR$(15);' THISISA
VERTICAL LINE”;CHR$(8)

40 NEXTC

50 CLOSE 1:END

Note that the print line only turnson
graphics mode to do the linefeed, and
then turns on text mode straight away.
This is because no text can be printed
in graphics mode.

COLUMNS & HEAD
POSITIONING

Columnising fields is usually done
on most printers by using the TAB or
PRINT USING statement. This is not
really possible on the VIC printer,
especially because the PRINT USING
statement is not supported in
Commodore BASIC.

The TAB statement is a relative
implimentation; this means that if a
tab is given, it will be added to the
present print head position. Whereas
it should calculate all printing
positions from the left margin.

To get around this little problem,
programmers usually send the printer
carriage back to the left margin
(without moving the paper up) and
TABbing out to the next column.
Unfortunately the VIC printer does not
have this facility.

All is not lost though, as the VIC
printer provides its own form of TAB.
This is done via the control code POS
or CHR$(16). This can be used in two
ways, depending upon which mode is
required. Firstly you can specify the
column number to start printing on, or
secondly you can specify which doton
the printer you want printing to begin
on.




PRINT#1,CHR$(16);“10 HI THERE”;
CHR$(16);“40 HI THERE”

The above example uses the
control mode POS to position the
" character positions. Only 80 positions
or columns can be TABbed to, using
this method.

Using the dot positioning command
is not as simple as it first looks. The
first thing to consider is how many
positions there are on a line; well the
VIC printer prints each character
using a 5 by 7 matrix. Seven vertical
dots by 5 horizontal dots. So to
position the print head to be in line
with the normal character position we

have to move the print head in sets of
six dots - five character positions plus
one for spacing. This type of
addressing is done via the same
control code (POS) but with the ESC
or escape code prefixed to the POS
code. The command then becomes:-

ESC
(27)

POS
(16)

HP
(xx)

LP
(xx)

HP and LP refer to the high and low
bytes of the dot position respectively.

This address is given in two bytes or
bits of information. LP allows the user
to access up to 255 positions, the
remainder of the 480 positions are

accessable by using HP. The valid
values for HP are O (for positions O-
255) or 1 (for positions 256-480). If
you wish to address the 256th
position, the complete command
would be (27),(16),(1),(0) and the 257th
position would be (27),(16),(1),(1).
The algorithum for calculating the
values where DA is the dot address is;

HP= INT(DA/256) LP= DA-HI*256

The following program shows how
this can be used to position text, first
by character position, then by dot
address.

122340675501 234567359012345678501 2345675501 2345678501 2345673901 2345673901234567350

READY.

COLUMMH4B

COLUMHES

VIC 1515 PRINWTER
YIC 1515 PRINTER
VIC 1515 PRIMWTER
YIC 1515 PRINTER
VIC 1515 PRINTER
VIC 1515 PRINTER
WIC 1515 PRINTER
VIC 15135 PRIMTER
YIC 1515 PRIMTER
YIC 13515 PRIMTER
YIC 1515 FPRINTER

19
%
20
49
—e
3%
ra
=]
1)
1o
liag
126
iza
148
13@
1608

OPEM4, 4

REM FRIMT COLUMH HUMEBER
RA$="1234567896"

FOR C=1 TO B8

REM FPRIMT#4,R%,;

HEXTC

REM PRIMT#4,

REM FRIMT#4,
FOR C=256T026@
MEXTC

CLOSES  EMD
READY .

REM USE CHARACTER POSITION ADDRESSIMG
REMPRIMT#4, CHR£(162; "40C0LUMM48" ; CHRE(1E) : "EBCOLUMNED "

REM USE DOT FOSITION ADDRESSIMG

LP=C HF=@: IFC>255THEN HP=1:LP=LP-25&
FRINT#4, CHRE(Z7 0 CHREC 160 CHRECHP Y, CHRE$ALP Y "VIC 1515 PRIMTER”

Program 1

The short program below uses this
feature to spread out the charactersin
a line to text equally, thus producing
an even right margin. It will work
correctly as long as the inputted string
does not exceed eighty characters.

This program is only a sample to
demonstrate the attractive output
which may be produced. The main

routine is in lines 6 to 30 and may be
incorporated into other programs,
such as a word processor, to produce
very nice results.

5 INPUT A$: OPEN 4,4: CMD4

6 IF RIGHT$(AS$,1)="" THEN A$=
LEFT$(A$,LEN(A$)-1): GOTO 6

10 A=LEN(AS): B=(474/(A-1))

20 FORC=0TOA-1:D=C*B:D=INT
(D/256): E=C*B-D*256

PRINT CHR$(15);CHR$(27);
CHR$(16);CHR$(D);CHRS$(E);
MID$(A$,C+1,1);

NEXT C

PRINT#4: CLOSE 4

30

35
40

Vol.2 Issue 6 Commodore Magazine 35



CHARACTER DEFINITION

Defining your own characters is
also possible by using graphics mode.
In text mode every character or byte of
information sent to the printer is
interpreted as one character that
occupies one character matrix.

In graphics mode, each byte is
interpreted as 7 dots in the vertical
plane of the current head position. If
text is sent to the printer in this mode
only garbage will be printed — if
anything at all.

Graphics mode is entered by using
the control code BS or CHR$(8) and is
exited by using CHR$(15) or S1.
Remember that the use of these
commands also affects the line
spacing as already shown. If 6 lines
per inch are required with graphics
mode then the user will have to switch
back to text mode before sending the
RETURN character at the end of each
PRINT# statement.

Getting back to defining characters;
the way in which lines are defined is
quite straight-forward. Each byte or
piece of information represents one
vertical line on the printer, each
vertical line being made up of 7 dots.

Each of the seven dots can be given
a value. When the total value for each
vertical is added up as follows; we are
left with a value (less than 255) that
represents that pattern. The only
abnormality with this is that you are
required to add on 128 to each of
these values.

VALUE: DOT:

1 0 0

2 0 0o

4 0 o 4

8 0 0

16 0] . 16
32 0 0

64 0 0

+128 +128 128+
TOTAL 128 148

from this we can form awhole string
of these bytes. If we make up 6 of
these vertical lines then we have
enough data to forge a character.

Taking the following example, we
end up with the following pieces of
data:-

00 4 -5 * 0.0
0 * 0 o * *
RN T O TR O
*-T0s 00 0 0
L S 0 0 il a0,
0 * 0 0 * *
Q0 w00
TOTAL

156 162 193 193 182 162

To complete this we need to insert
two control characters on either side
of the data. One in front, to switch the
printer in graphics mode and one
behind, to put the printer back into

text mode. See Program 2.

18 OPEN4, 4

4@ REM ADD OM COMTROLS
5@ B$=CHR$(S)+B$+CHR$(135)
68 REM PRIMT TEXT

DISK UNIT."

8@ REM COUNT

9@ DATA 6

199 REM GRAPHICS DATA

READY.

70 PRIMT#4,"THE ";B$." PRINTER GIVES YOU YRALUE FOR MOMEY .

THE G PRINTER GIVES ¥0OU YALUE FOR MOMEY., AS DOES THE G DISK UMIT.

20 REM READ IM CONTROL CHARACTERS
3 RB$="" :READ M :B&#="" FORC=1 TO M :RERD B ‘B$=B$+CHRE (B

11@ DRATA 156.162,193,153,182, 162

‘HEXT C

AS DOES THE ".B#."

Program 2

This type of program could be used
to print whole lines of dots on the
printer, if enough data was collected.
In fact you can even do screen dumps
of the VIC on a dot by dot basis.

Another on of the features would be
the repeat graphics function. This
function is very simple in operation,
what it does is to repeat one piece of
data that is sent after the repetition
number. This can be used for printing
a pattern. The syntax for repeating
graphics data is:-

SUB rep# data

26 (nn) (xx)

This will only work if the printer is
already in graphics mode when it
receives the SUB code. If more than
one piece of data is given, only thefirst
piece will be repeated until the end of
the repetition when the rest will be
printed. The following program shows
this- See Program 3.

< EMD OF GRAPHIC MODE

~—— EMD OF GRAPHIC MODE
———— EWD OF GRAPHIC MODE
~———————; EMD OF GRAPHIC MODE

RERDY.

1@ OPEM4, 4

Sa ﬁs‘" "
4@ REM READ IW REPEAT STRIMG

7@ FOR C=1 TO 100 STEF 29
30 RE=CHR$.CO

108 MEXT C

118 REM COMTROL DATA

120 DATR &.27,16.0.100.26
130 REM REPEAT COUNT

1486 DATA 4

15@ REM REFEART DATA

160 DATA 136.148.162,146

READY.

5@ READ M :B$="" :FORC=1 TO M
6@ REM DO LOOP CHRANGIMG MUMBER OF REPEATS

EMD OF GRAPHIC MODE

28 REM READ IM CONMTROL CHARACTERS
'FORC=1T0E :READ A :A$=AF+CHRECAD

‘HEXT C
‘READ B 'B$=BS$+CHR$CE) 'MEXT C

5@ FRIMT#4.A%;R%;B$;CHR$C1S) ;" EMD OF GRAPHIC MODE"

Program 3




MAKE THE MOST OF YOUR
COMMODORE

HIGH-RESOLUTION
GRAPHICS

Now you can give your PET/CBM a High-
Resolution Graphics capability with the MTU
Graphics Hardware and Software Package.
The Hardware is easily installed and the new
graphics board provides five EXTRA ROM
Sockets and 8k RAM MEMORY EXPAN-
SION which can be used for program or data
storage when graphics are not required. A
powerful graphics Software Package is
included and contains many extra BASIC
commands for drawing lines defining shapes
etc. The Graphics Hardware does not affect
normal operation of the Commodore.

Available on all PET/CBM -
BASIC 1, 2, 3, or 4.

RS232 TEST SET

The RS232 TESTSET is a small hand held

i device that connects inline with the interface

cable, the terminal or the modem and monitors
the line signals. The TESTSET passes all 25
lines through and so can be left connected
without affecting communications. It is|
completely portable as no batteries are required
since power us derived from the interface
signals. Each indicator circuit is current limited
to meet the requirements of the RS232
Interface Standard. Also the voltage range for
activating the bright LED display corresponds
with this standard and thereby reduces
troubleshooting to a “GO-NOGO” problem
instead of trying to measure active signals to
determine voltage levels. One 2-pin and one 3-

| pin jumper are included.

PRINTOUT

Don’t forget your PRINTOUT Magazine
Subscription - for Commodore PET/CBM
Lovers 12 issues p.a. from Jan. ’82 incl. postage
- $50.00 p.a.

VIC COMPUTING

For all VIC 20 owners, this sister to
PRINTOUT is a must. 6 issues p.a. incl
postage from Jan. ’82 - $25.00 p.a.

PROGRAMMERS TOOLKIT ROMS

These ROMs plug into spare sockets in your PET/CBMs and give the user additional commands
such as TRACE, single STEP, FIND, RE-NUMBER, AUTO line numbering, DUMP variable
contents, APPEND, and DELETE multiple lines. Also available are the DISK-O-PRO Tool-kits
which gives all the extra DOS 2.0 commands to DOS 1.0 users as well as commands like PRINT
USING, SCROLL and disk program MERGE -25 commands in all. The COMMAND-O provides
DISK-O-PRO commands for BASIC 4.0 users.

The Programmers Toolkit for BASIC 1.0/2.0/3.0/4.0 users.
DISK-O-PRO Toolkit for BASIC 2.0/3.0 users.

COMMAND-O Toolkit for BASIC 4.0 users.
HICR{JCOP]

MICROCOMPUTER SYSTEMS DESIGNERS

B.S. MICROCOMP
PTY. LIMITED,
4th & 3rd Floors,
561 Bourke Street,
Melbourne, 3000.

Tel: (03) 614 1433
614-1551

Telex: AA 30333.




Thelin

THAT JOINS ALL OFFICE FUNCTIONS

o e

e

N g pm——

i

Get it dll her
mth the Slltlgg:IOH‘

STO G AND RETRIEVING INFORMATION — CREATING, EDITING AND PRINTING OF TEXT
THEMATICAL CALCULATION - COMMUNICATING INFORMATION LONG DISTANCE.

Silicon Office is the first database management System for Commodore CBM Microcomputers whereby up to six files m

open and accessed simultaneously during a run. It is also the first system which permits intercommunication with fav" \
machines and user. The Silicon Office turns the CBM 8032 into a secretarial work station capable of emulating any applacdt, oKy,
package the user cares to think of.

Now one program which is continuously and completely resident in the memory of the CBM is capable of performiy

functions required to run a small business or office. This can mean anything from Accounting and Stock Control to
Processing, Statistical analysis, mailing lists and information filing — all at once, if necessary. Combine filing cabinets, le
typewriter and calculator in your office into one efficient unit

The Silicon Office package comprises of three integrated elements: a sophisticated word processor, a flexible data
management system and an option for inter computer communications — all in one memory resident program.
THIS BUSINESS PACKAGE IS NOW AVAILABLE AND WILL COMPRISE:

8023 DOT MATRIX/PSEUDO PRINTER eCOMMODORE CBM 8032 COMPUTER
#8050 DISC DRIVE UNIT 64K ADD-ON MEMORY BOARD (TOTAL 96K RAM)
e THE SILICON OFFICE PROGRAM MASTER DISC e TWO SECTIONAL A4 MANUALS

This package is available from:

ompute. CBMSYSTEMS .

5 PRESIDENT AVE., CARINGBAH © 525 5022




