Introduction by Syncware News Technical Director, Fred Nachbaur

Here is another article by Carol F. Milazzo, describing a way of transmitting your ZX81 programs and data to other computers, such as the Commodore C64. As in her previous article (Audio Frequency Counter, SWN 2:5), Carol demonstrates some interesting and useful machine-code techniques which are readily applicable to other applications. One of the most fascinating aspects of the program (for me) is that it uses the ZX ROM's own "de-tokenizing" routines to send Sinclair BASIC in ASCII format. This is done by first printing (or listing) to the display file, then translating the contents of the display file to ASCII and shipping it out via a simple interface.

Ms. Milazzo's interface is designed specifically with the Commodore in mind. We are adding an alternate interface which provides an RS232-compatible output. You could then use your ZX81/TS1000 to send ASCII text to an RS232 terminal, printer, or other device. We'll leave the exact implementation up to you. Although parameters like baud rate and stop bits are elegantly catered to, others (like parity check bits, presence/absence of inverse characters or lower case) will have to be added if your outside device requires them.

Some of you may recall that we had intended to publish Bob Berch's article on driving RS232 printers with your ZX81. However, since Bob's implementation has been readily available from him for some time (and at a most reasonable price), and since it was considerably longer than we have had space for in this medium, we had to postpone it, and postpone it again. Ms. Milazzo's alternative is considerably shorter, and more easily extensible to other applications.

TS2068 CHALLENGES: Can any of you 2068'ers work out a similar way of shipping ASCII text via your EAR port? This one should be easy, since your character set is already coded in ASCII. How about a routine for transmitting ZX81 programs/data to the 2068, and vice versa, through the MIC and EAR ports? In this case, you might want to take a slightly different approach, and translate the tokens as well as the alphanumeric and symbol characters. Also, you'll have to figure out a way to emulate a tape signal (Hint: "borrow" the required code snippets from the 2068 EXROM, and from David Wood's book "Practical Guide to M/L on the TS1000").

Whatever your preference machine-wise, we hope you can find uses for the techniques presented here.

INTRODUCTION

This article describes a project which may be useful for anyone desiring to use software for the ZX81, TS1000 or TS1500 on a different computer. The program version presented here is designed to convert Sinclair BASIC programs into ASCII text which can be sent from the Sinclair computer to the serial port of a Commodore C64 computer. The program can be used with other computers if the non-standard graphic characters are eliminated or appropriately changed. In addition to the program presented here, the user will require a terminal program that permits the receiving computer to download and save text, e.g. "Plus/Term" in Feb. 1985 Compute!, and a very simple hardware circuit to interface the computers.

The program described here consists of a portion in BASIC which is used to set the parameters, and to relocate the 327-byte Zilog Z80 machine language (ML) program which is in the first REM statement. Typically, 327 bytes can be reserved above RAMTOP by lowering it to 32441 (in 16K) using the following sequence: POKE 16388,185; POKE
THE BASIC PROGRAM

Upon running the BASIC program, the prompt "RELOCATE?" will appear. Enter "N" or ENTER alone if you desire to run the ML program at its original location in the REM statement. The response "Y" will cause the computer to request "NEW LOCATION=" which should be answered with 32441 in this example. Lines 110-140 copy the ML program to the new location and lines 150-220 make the required adjustments to the addresses in the ML code. The computer will then print "OUTSCREEN = RAND USR 32568, OUTPROG = PRINT USR 32568". This information should be noted, as these are the commands required to send a display screen or a BASIC program listing as ASCII text.

The computer then requests, "BAUD RATE?", which can be selected up to 2400 baud. Then it prompts "STOP BITS?" to select the number of stop bits between characters. By experience, one stop bit is usually sufficient for data speeds up to 1200 baud. At least 2 stop bits should be used for higher speeds.

In lines 290-400, the program calculates the required constants and POKEs them into the appropriate locations. The variable F in line 310 is set to the computer's clock frequency, nominally 3.25 MHz. Variable G in line 320 represents a fixed number of clock cycles in the bit length delay loop. (The "+10" adjusts the duration of the M/L commands at 40D3h and 40D4h, which only exist to allow a very fine adjustment in bit duration.) Then, "PRESS ENTER TO TRANSFER PROGRAM," and the ML routine is activated. (You can use this as a "test run" to make sure your system is working before transferring other programs.)

After the original program is NEWed, any desired BASIC program can be LOADed and transferred to a receiving computer by entering PRINT USR 32685, since the ML program is protected from the NEW command.

```
0 REM...(327 BYTES FOR ML)...
10 REM PET ASCII OUTPUT PROGRAM BY CAROL F. MILAZZO
20 PRINT "RELOCATE?"
30 INPUT A$
40 CLS
50 LET ORG=16514
60 LET DIS=0
70 IF A$<"Y" THEN GOTO230
80 PRINT "NEW LOCATION=";
90 INPUT LOC
100 PRINT LOC
110 LET DIS=LOC-ORG
120 FOR I=ORG TO ORG+326
130 POKE I+DIS,PEEK I
140 NEXT I
150 LET BH=16587+DIS
```

0 REM...(327 BYTES FOR ML)...
10 REM PET ASCII OUTPUT PROGRAM BY CAROL F. MILAZZO
20 PRINT "RELOCATE?"
30 INPUT A$
40 CLS
50 LET ORG=16514
60 LET DIS=0
70 IF A$<"Y" THEN GOTO230
80 PRINT "NEW LOCATION=";
90 INPUT LOC
100 PRINT LOC
110 LET DIS=LOC-ORG
120 FOR I=ORG TO ORG+326
130 POKE I+DIS,PEEK I
140 NEXT I
150 LET BH=16587+DIS
240 LET BL=16588+DIS
250 LET SB=16624+DIS
260 LET OS=16641+DIS
270 LET OP=16758+DIS
280 PRINT "OUTSCREEN = RAND USR ";OS,"OUTPROG = PRINT USR ";OP
290 PRINT "BAUD RATE? ";
300 INPUT R
310 LET F=3.25E6
320 LET G-93+10
330 LET M=INT (F/R+.5)
340 LET C=INT ((M-G+3310)/3339)
350 LET B=(M-G-3339*C+3323)/13
360 POKE BH,C
370 POKE BL,INT B
380 PRINT R,","STOP BITS? ",
390 INPUT S
400 POKE SB,S
410 PRINT S,",PRESS ENTER TO TRANSFER PROGRAM"
420 INPUT A$
430 PRINT USR OP
440 PRINT "BYTES"
450 PRINT
460 GOTO290
470 SAVE "PET ASCII"
480 RUN

THE MACHINE-LANGUAGE PROGRAM

The addresses given here refer to the original location of the ML program in the REM statement. The entry point for program transmission is at label OUTPROG (4176h). The computer is placed in FAST mode, and a 10 second silence follows. If required, the receiving computer's text buffer should be opened during this time. The text byte counter (407Bh) is zeroed, and the beginning address of the program is stored at 403Ch. A CONTROL Q is transmitted to signal beginning of transmission. At label NEWSCREEN (4196h) the screen is cleared. A check for BREAK is made, and a check is done to see if the end of the program has been reached. If either condition is true, then the program jumps to EXIT (41C4h). A CONTROL C is sent, signalling end-of-transmission, and the routine returns to BASIC with the byte-count in the BC register pair.

Otherwise, the successive program lines are printed on the screen, and from there are transmitted by a call to the OUTSCREEN subroutine. This routine will stop and display any line exceeding the 704 raster screen size. Such lines should be deleted to enable OUTPROG to transfer the program. The CONTROL characters are sent in case the receiving terminal program requires them for text loading. They may be changed as required by POKEing the needed values at 4192h and 41C5h.

The OUTSCREEN subroutine transmits text printed on the screen up to the display file character counter (DF-CC), which is used as an end marker. At 4101h, the blank spaces after the last screen line are eliminated by adjusting DF-CC to point right after the last printed character. The screen contents are then scanned and converted at OUTCHAR to PET ASCII characters and graphic symbols, with any appropriate RVS ON and RVS OFF characters. When the last screen character is sent, a jump is made to OUTCR which sends a carriage return and exits the subroutine.
The OUTBYTE subroutine (40D8h) sends out each byte (loaded into the E register) through the computer’s TV/TAPE port. Each bit is rotated through the carry bit, and the appropriate SPACE or MARK subroutine is called. The text byte counter is incremented before exiting back to the calling routine.

PET ASCII Output Machine Language Program for ZX81 by Carol F. Milazzo

```
TABLE 4082    20 BE BC A2 BB A1 BF AC A6 A8 A2 22 5C 24 3A 3F
4092    28 29 3E 3C 3D 2B 2D 2A 2F 3B 2C 2E 36 31 32 33
40A2    34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 4A
4082    4B 4C 40 4E 4F 50 51 52 53 54 55 56 57 58 59 5A

MARK 40C2    DBFE            IN A,(FE)
40C4    1804            JR DELAY

SPACE 40C6    D3FF            OUT (FF),A
40C8    1800            JR DELAY

DELAY 40CA    01015F          LD BC,5F01      (2400 baud rate constant)
LOOP 40CD    10FE            DJNZ LOOP
40CF    0D              DEC C
40D0    20FB            JRNZ LOOP
40D2    AF              XOR A
40D3    C0              RET NZ
40D4    C0              RET NZ
40D5    C9              RET

OUTCR 40D6    lE0D            LD E,0D         (SEND CR)
OUTBYTE*40D8    CDC640          CALL SPACE      (START BIT)
40DB    00              NOP
40DC    00              NOP
40DD    37              SCF

NEXTBIT 40DE    CB1B            RR E            (FETCH EACH DATA BIT)
40E0    280D            JRZ STOP
40E2    3006            JRNC SP
40E4    D0              RET NC

* 40E5    CDC240          CALL MARK
40E8    18F4            JR NEXTBIT

SP* 40EA    CDC640          CALL SPACE
40ED    18EF            JR NEXTBIT

STOP 40EF    1E02            LD E,02         (# OF STOP BITS)
STOPBIT*40F1    CDC240          CALL MARK
40F4    1D              DEC E
40F5    20FA            JRNZ STOPBIT
40F7    ED4B7B40        LD BC,(407B)
40FB    03              INC BC     (INCREMENT BYTE COUNTER)

        40FC    ED437B40        LD (407B),BC
4100    C9              RET

OUTSCREEN4101  2A0E40        LD HL,(DF-CC)
4104    AF              XOR A

COLLAPSE4105  2B              DEC HL      (COLLAPSE LAST SCREEN LINE)
4106    BE              CP (HL)
4107    28FC            JRZ COLLAPSE
```
CB76 BIT 6, (HL)
20F8 JRNZ COLLAPSE
23 INC HL
220E40 LD (DF-CC), HL
1600 LD D, 00 (RVS FLAG OFF)
2A0C40 LD HL, (D-FILE)
23 INC HL
E5 PUSH HL
ED4B0E40 LD BC, (DF-CC) (CHECK FOR END OF SCREEN)
A7 AND A
ED42 SBC HL, BC
7C LD A, H
B5 OR L
E1 POP HL
28BB JRZ OUTCR (RETURN IF END)
7E LD A, (HL) (FETCH A CHARACTER)
FE76 CP 76
2007 JRNZ OUTCHAR
18EB JR NEXTCHAR (1800 TO SEND CR AFTER EACH LINE)
07 RLCA
FE16 CP 16
3016 JRNC NORM
FE06 CP 06
3812 JRC NORM
FE08 CP 08
380C JRC INV
FE0C CP 0C
380A JRC NORM
FE12 CP 12
3804 JRC INV
FE14 CP 14
3802 JRC NORM
EE01 XOR 01
CB3F SRL A
F5 PUSH AF
300C JRNC RVS-OFF
15 DEC D
2805 JRZ SET-D
1E12 LD E, 12 (SEND RVS-ON)
CDD640 CALL OUTCR
18E6 JR NEXTCHAR
07 RLCA
FE16 CP 16
3016 JRNC NORM
FE06 CP 06
3812 JRC NORM
FE08 CP 08
380C JRC INV
FE0C CP 0C
380A JRC NORM
FE12 CP 12
3804 JRC INV
FE14 CP 14
3802 JRC NORM
EE01 XOR 01
CB3F SRL A
F5 PUSH AF
300C JRNC RVS-OFF
1600 LD D, 00
1601 LD D, 01
180A JR CONT
2005 JRNZ RESET-D
1E92 LD E, 92 (SEND RVS-OFF)
CONT 4166 F1 POP AF
4167 E5 PUSH HL
4168 0600 LD B,00 (TRANSLATE ZX81 TO PET
ASCII)

* 416A 4F LD C,A
416B 218240 LD HL, TABLE
416E 09 ADD HL, BC
416F 5E LD E,(HL)
* 4170 CDD840 CALL OUTBYTE
4173 E1 POP HL
4174 18A0 JR NEXTCHAR
OUTPROG 4176 CDE702 CALL FAST
4179 210024 LD HL, 2400
DELAY1 417C CD460F CALL BREAK-1 (CHECK FOR BREAK KEY)
417F D0 RET NC (EXIT IF BREAK PRESSED)
DELAY2 4180 10FE DJNZ DELAY2
4182 48 LD C, B
4183 2B DEC HL
4184 7C LD A, H
4185 B5 OR L
4186 20F4 JRNZ DELAY1
4188 227B40 LD (407B), HL (ZERO BYTE COUNTER)
418B 217D40 LD HL, PROGRAM (START OF PROGRAM)
418E 22EC40 LD (403C), HL
4191 1E11 LD E, 11 (SEND CONTROL Q)
* 4193 CDD840 CALL OUTBYTE
NEWSCREEN 4196 CD2A0A CALL CLS (CLEAR SCREEN)
4199 CD460F CALL BREAK-1 (CHECK BREAK KEY)
419C 3026 JRNCE EXIT (EXIT IF BREAK PRESSED)
419E 2A3C40 LD HL, (403C) (CHECK FOR END OF
PROGRAM)

41A1 ED4B0C40 LD BC, (D-FILE)
41A5 A7 AND A
41A6 ED42 SBC HL, BC
41A8 7C LD A, H
41A9 B5 OR L
41AA 2818 JRZ EXIT
41AC 2A3C40 LD HL, (403C)
41AF CD4507 CALL PRLINE (PRINT NEXT BASIC LINE)
41B2 2A3C40 LD HL, (403C)
41B5 23 INC HL
41B6 23 INC HL
41B7 4E LD C, (HL)
41B8 23 INC HL
41B9 46 LD B, (HL)
41BA 23 INC HL
41BB 09 ADD HL, BC
41BC 223C40 LD (403C), HL (STORE ADDRESS OF NEXT LINE)
* 41BF CD0141 CALL OUTSCREEN (SEND SCREEN)
41C2 18D2 JR NEWSCREEN
* THESE INSTRUCTIONS REQUIRE OFFSET CALCULATIONS WHEN RELOCATED

CHANGE THE FOLLOWING LINES TO GET STANDARD ASCII OUTPUT FOR OTHER COMPUTERS
BY ELIMINATING THE REVERSE AND GRAPHIC CHARACTERS:

<table>
<thead>
<tr>
<th>TABLE</th>
<th>4082</th>
<th>20 20 20 20 20 20 20 20 22 5C 24 3A 3F</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTCHAR</td>
<td>4130</td>
<td>E63F AND 3F</td>
</tr>
<tr>
<td></td>
<td>4132</td>
<td>1833 JR CONT+1</td>
</tr>
</tbody>
</table>

TRANSFERRING OTHER DATA

After transferring a program, any arrays or other values in the variables area may also be transmitted by printing them, using BASIC statements, then using RAND USR OUTSCREEN. For example, a 100-element numeric array A(100) can be sent by entering the following lines, and executing GOTO 1:

```
1 FAST
2 FOR I=1 TO 2000
3 NEXT I
4 LET OUTSCREEN=32568 (ML above 32441)
5 LET AD=9000
6 GOSUB 21
7 PRINT " DIM A(100):FOR I=1 TO 100:READ A:NEXT I"
8 GOSUB 18
9 FOR I=0 TO 95 STEP 5
10 PRINT " DATA ";
11 FOR J=1 TO 5
12 PRINT A(I+J);
13 IF J<5 THEN PRINT ".";
14 NEXT J
15 GOSUB 18
16 NEXT I
17 STOP
18 RAND USR OUTSCREEN
19 LET AD=AD+10
20 CLS
21 PRINT AD;
22 RETURN
```

Graphic displays can also be sent by using the OUTSCREEN subroutine. OUTSCREEN normally ignores the NEWLINE character at the end of each display line, but for sending graphic displays these should be used to send a carriage return (CR). This is done by POKEing 00 at 412Fh. Displays produced using the AT command may set DF-CC before the end of the screen text, causing OUTSCREEN to send only that part up to DF-CC. This can be corrected by inserting the command PRINT AT 21,31; before the RAND USR OUTSCREEN within the program. Non-ASCII text, e.g. machine-language files, can be transmitted by using the OUTCR subroutine. Each text byte must be POKEd into 40D7h, followed by executing RAND USR OUTCR. For example:

```
1 FAST
```
2 FOR I=1 TO 2000
3 NEXT I
4 LET OUTCR-32525 (ML above 32441)
5 FOR I=32441 TO 32767 (Send PET ASCII program)
6 POKE OUTCR+1,PEEK I
7 RAND USR OUTCR
8 NEXT I

THE INTERFACE

The hardware interface for the C64 is shown in Figure 1, and consists of the following components:

Figure 1. Schematic diagram of hardware interface to connect the output of the Timex/Sinclair ZX81 to a Commodore 64 computer.

<table>
<thead>
<tr>
<th>PART</th>
<th>RADIO SHACK#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>276-1122</td>
<td>1N914 diode</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>276-2009</td>
<td>NPN silicon transistor, 2N2222 etc.</td>
</tr>
<tr>
<td>R1</td>
<td>271-010</td>
<td>68 ohm 1/2W resistor</td>
</tr>
<tr>
<td>S01</td>
<td>C1-12</td>
<td>24-contact polarizing connector (DIGI KEY)</td>
</tr>
<tr>
<td>CR1164-1</td>
<td></td>
<td>2 polarizing keys for S01</td>
</tr>
</tbody>
</table>

Point "A" is connected to the TV/TAPE output of the computer logic chip. This is pin 16 of IC1 (ULA) on the ZX81/T51000 (junction of D9 and R29), or pin 53 of U5 (SCLD) on the T51500 (junction of D19 and R20). Point "B" is connected to +5V, and point "C" is connected to ground. In the interface circuit, D1 is used to protect the computer logic chip in case of Q1 failure. Q1 is connected as an emitter follower, identical to the common video output modification for these machines. Q2 converts the signal from Q1 to provide the proper on-off switching required by the Commodore user port. The edgeboard connector is used to connect the interface to the Commodore 64 user port. Point D is connected to pins B and C, and point E is connected to pin A of the user port.

OPERATION

In typical operation, the receiving computer is connected and set to the desired data speed and 8 bit word length. The Sinclair ML program is set up above RAMTOP as described, or in CMOS RAM or other available memory. The desired BASIC program is loaded into the Sinclair/Timex in the usual manner. The command PRINT USR [OUTPROG address] is executed, and the text buffer of the receiving computer is opened. The actual ASCII data transmission is seen as varying horizontal bars on the Sinclair monitor screen. Transmission may be aborted at any time by holding the BREAK key.

After any text transmission is terminated, the number of bytes sent is displayed in the upper left corner of the screen. The text buffer in the receiving computer should be closed, and the transmitted text saved to disk or tape. This ASCII file must be converted into BASIC tokens. The PLUS/TERM program described above includes a utility called "TOKENIZER", which performs this task for disk-drive users. Another utility program called "RECRUNCHER" appeared in July 1985 "Compute!" and works with tape or disk drive. Sinclair BASIC programs will rarely run on other computers without some translation of commands. Translation can be done line-by-line, or with the aid of a utility like "METABASIC" in April 1985 "Compute Gazette."

CONCLUSION
This project is a worthwhile investment, and has saved me the hundreds of thousands of keystrokes that the transfer of an extensive collection of programs would have required. I would appreciate any suggestions for improvements, or other feedback from users. (Send them directly to me, or care of this magazine.) I will supply this program on cassette to anyone who sends a nominal $5 for the tape and postage.

FIGURE 2

Here is an alternate interface circuit, which provides an RS232-compatible output signal. It uses an LM311 comparator, which is inexpensive, capable of about 100 mA output drive, and is commonly available. However, you could use other comparators or op amps instead.

Power can be provided with a bi-polar 9V supply, or from two 9V "transistor" batteries. Depending on the output drive requirement, a pair of alkaline batteries can run for up to about 28 hours. Note that the power on/off switch must be double-pole, to insure that both batteries are disconnected.

The connection shown is for a non-inverting configuration. If your system requires the signal to be inverted, exchange the two connections marked with "X".

Resistor R3 provides hysteresis (positive feedback) for rapid output transistions. Bypass capacitors Cl and C2 are for glitch-protection, and should be tantalum types rated at 10V or better. Exact capacitance values are non-critical, anywhere from .47 uF to 10 uF, is fine.