
antimon.org/dl/c64/code/stable.txt

Making stable raster routines (C64 and VIC-20) by Marko Makela (Marko.Makela@HUT.FI)

Preface

Too many graphical effects, also called raster effects, have been
coded in a very sloppy way. For instance, if there are any color bars
on the screen in a game or demo, the colors often jitter a bit,
e.g. they are not stable. And also, it is far too easy to make
virtually any demo crash by hitting the Restore key, or at least cause
visual distortions on the screen.

As late as a year ago I still hadn't coded a stable raster interrupt
routine myself. But then I had to do it, since I was researching the
video chip timing details together with my German friend Andreas
Boose. It was ashaming that we had the same level of knowledge when
it came to the hardware, but he was the only of us who had written a
stable raster routine. Well, finally I made me to start coding. I
used the same double-interrupt idea as Andreas used in his routine.

After a couple of errors my routine worked, and I understood how it
works exactly. (This is something that separates us normal coders
from demo people: They often code by instinct; by patching the routine
until it works, without knowing exactly what is happening. That's why
demos often rely on weird things, like crash if the memory is not
initialized properly.)

In this article, I document two methods of creating stable raster
routines on Commodore computers. The principles apply for most 8-bit
computers, not only Commodores, but raster effects are very rarely
seen on other computers.

Background

What are raster effects? They are effects, where you change the
screen appearance while it is being drawn. For instance, you can set
the screen color to white in the top of the screen, and to black in
the middle of the screen. In that way, you will get a picture whose
top half is white and bottom half black. Normally such effects are
implemented with interrupt routines that are executed synchronized
with the screen refresh.

The video chip on the Commodore 64 and many other videochips have a
special interrupt feature called the Raster interrupt. It will
generate an IRQ in the beginning of a specified raster line. On other
computers, like the VIC-20, there is no Raster interrupt, but you can
generate the interrupts with a timer, provided that the timer and the

1/17

http://www.antimon.org/dl/c64/code/stable.txt

videochip are clocked from the same source.

Even if the processor gets an interrupt signal at the same position on
each video frame, it won't always be executing the first instruction
of the interrupt routine at the same screen position. The NMOS 6502
machine instructions can take 2 to 9 machine cycles to execute, and if
the main program contains instructions of very varying lengths, the
beginning position of the interrupt can jump between 7 different
positions. This is why you need to synchronize the raster routine
when doing serious effects.

Also, executing the interrupt sequence will take 7 additional cycles,
and the interrupt sequence will only start after the current
instruction if the interrupt arrived at least two cycles before the
end of the current instruction. It is even possible that an interrupt
arrives while interrupts are disabled and the processor is just
starting to execute a CLI instruction. Alas, the processor will not
jump to the interrupt right after the CLI, but it will execute the
next instruction before jumping to it. This is natural, since the CLI
takes only two cycles. But anyway, this is only a constant in our
equation, and actually out of the scope of this article.

How to synchronize a raster interrupt routine? The only way is to
check the current screen position and delay appropriately many cycles.
There are several ways of doing this, some of which are very awful and
inefficient. The ugliest ways of doing this on the Commodore 64 I
know are busy-waiting several raster lines and polling the raster line
value, or using the Light pen feature, which will fail if the user
presses the fire button on Joystick port 1. Here I will present two
ways, both very elegant in my opinion.

Using an auxiliary timer

On the VIC-20, there is no Raster interrupt feature in the video chip.
All you can do is to use a timer for generating raster interrupts.
And if you use two timers running at a constant phase difference, you
can get full synchronization. The first timer generates the raster
interrupt, and the second timer, the auxiliary timer, tells the raster
routine where it is running. Actually you could even use the first
timer also for the checking, but the code will look nicer in the way I
will be presenting now. Besides, you can use the auxiliary timer idea
even when real raster interrupts are available.

The major drawback of using an auxiliary timer is initializing it.
The initialization routine must synchronize with the screen, that is,
wait for the beginning of the wanted raster line. To accomplish this,
the routine must first wait for a raster line that occurs a bit
earlier. About the only way to do this is with a loop like

2/17

 LDA #value
 loop CMP raster
 BNE loop

One round of this loop will take 4+3=7 cycles to execute, assuming
that absolute addressing is being used. The loop will be finished if
the raster register contains the wanted value while the processor
reads it on the last cycle of the CMP instruction. The raster
register can actually have changed already on the first cycle of the
BNE instruction on the previous run of the loop, that is 7 cycles
earlier!

Because of this, the routine must poll the raster register for several
raster lines, always consuming one cycle more if the raster register
changed too early. As the synchronization can be off at most by 7
cycles, a loop of 7 raster register value changes would do, but I made
the loop a bit longer in my VIC-20 routine. (Well, I have to admit it,
I was too lazy to make it work only with 7 rounds.)

After the initialization routine is fully synchronized the screen, it
can set up the timer(s) and interrupts and exit. The auxiliary timer
in my VIC-20 demo routine is several dozens of cycles after the
primary timer, see the source code for comments. It is arranged so
that the auxiliary timer will be at least 0 when it is being read in
the raster routine. The raster routine will wait as many extra cycles
as the auxiliary timer reads, however at most 15 cycles.

Using double raster interrupt

On the Commodore 64, I have never seen the auxiliary timer scheme
being used. Actually I haven't seen it being used anywhere, I was
probably the first one who made a stable raster interrupt routine on
the VIC-20. Instead, the double interrupt method is becoming the
standard on the C64 side.

The double interrupt method is based entirely on the Raster interrupt
feature of the video chip. In the first raster interrupt routine, the
program sets up another raster interrupt on a further line, changes
the interrupt vector and enables interrupts.

In the place where the second raster interrupt will occur, there will
be 2-byte instructions in the first interrupt routine. In this way,
the beginning of the next raster interrupt will be off at most by one
cycle. Some coders might not care about this one cycle, but if you
can do it right, why wouldn't you do it right until the end?

At the beginning of the second raster interrupt routine, you will read
the raster line counter register at the point where it is about to
change. When the raster routine is being executed, there are two

3/17

possibilities: Either the raster counter has just changed, or it will
change on the next cycle. So, you just need to compare if the
register changed one cycle too early or not, and delay a cycle when
needed. This is easily accomplished with a branch to the next address.

Of course, somewhere in your second raster interrupt routine you must
restore the original raster interrupt position and set the interrupt
vector to point to the first interrupt routine.

Applying in practice

I almost forgot my complaints about demos crashing when you actively
hit the Restore key. On the VIC-20, you can disable NMI interrupts
generated by the Restore key, and on the C64, you can generate an NMI
interrupt with the CIA2 timer and leave the NMI-line low, so that no
further high-to-low transitions will be recognized on the line. The
example programs demonstrate how to do this.

So far, this article has been pretty theoretical. To apply these
results in practice, you must definitely know how many CPU clock
cycles the video chip consumes while drawing a scan line. This is
fairly easy to measure with a timer interrupt, if you patch the
interrupt handler so that it changes the screen color on each run.
Set the timer interval to LINES*COLUMNS cycles, where LINES is the
amount of raster lines and COLUMNS is your guess for the amount of
clock cycles spent in a raster line.

If your guess is right, the color will always be changed in the same
screen position (neglecting the 7-cycle jitter). When adjusting the
timer, remember that the timers on the 6522 VIA require 2 cycles for
re-loading, and the ones on the 6526 CIA need one extra cycle. Keep
trying different timer values until you the screen color changes at
one fixed position.

Commodore used several different values for LINES and COLUMNS on its
videochips. They never managed to make the screen refresh rate
exactly 50 or 60 Hertz, but they didn't hesitate to claim that their
computers comply with the PAL-B or NTSC-M standards. In the following
tables I have gathered some information of some Commodore video chips.

 NTSC-M systems:

 Chip Crystal Dot Processor Cycles/ Lines/
 Host ID freq/Hz clock/Hz clock/Hz line frame
 ------ -------- -------- -------- --------- ------- ------
 VIC-20 6560-101 14318181 4090909 1022727 65 261
 C64 6567R56A 14318181 8181818 1022727 64 262
 C64 6567R8 14318181 8181818 1022727 65 263

4/17

 Later NTSC-M video chips were most probably like the 6567R8. Note
 that the processor clock is a 14th of the crystal frequency on all
 NTSC-M systems.

 PAL-B systems:

 Chip Crystal Dot Processor Cycles/ Lines/
 Host ID freq/Hz clock/Hz clock/Hz line frame
 ------ -------- -------- -------- --------- ------- ------
 VIC-20 6561-101 4433618 4433618 1108405 71 312
 C64 6569 17734472 7881988 985248 63 312

 On the PAL-B VIC-20, the crystal frequency is simultaneously the dot
 clock, which is BTW a 4th of the crystal frequency used on the C64.
 On the C64, the crystal frequency is divided by 18 to generate the
 processor clock, which in turn is multiplied by 8 to generate the
 dot clock.

 The basic timings are the same on all 6569 revisions, and also on
 any later C64 and C128 video chips. If I remember correctly, these
 values were the same on the C16 videochip TED as well.

Note that the dot clock is 4 times the processor clock on the VIC-20,
and 8 times that on the C64. That is, one processor cycle is half a
character wide on the VIC-20, and a full character on a C64. I don't
have exact measurements of the VIC-20 timing, but it seems that while
the VIC-20 videochips draw the characters on the screen, it first
reads the character code, and then, on the following video cycle, the
appearance on the current character line. There are no bad lines,
like on the C64, where the character codes (and colors) are fetched on
every 8th raster line.

Those ones who got upset when I said that Commodore has never managed
to make a fully PAL-B or NTSC-M compliant 8-bit computer should take a
closer look at the "Lines/frame" columns. If that does not convince
you, calculate the raster line rate and the screen refresh rate from
the values in the table and see that they don't comply with the
standards. To calculate the line rate, divide the processor clock
frequency by the amount of cycles per line. To get the screen refresh
rate, divide that frequency by the amount of raster lines.

The Code

OK, enough theory and background. Here are the two example programs,
one for the VIC-20 and one for the C64. In order to fully understand
them, you need to know the exact execution times of NMOS 6502
instructions. (All 8-bit Commodore computers use the NMOS 6502
processor core, except the C65 prototype, which used a inferior CMOS

5/17

version with all nice poorly-documented features removed.) You should
check the 64doc document, available on my WWW pages at
http://www.hut.fi/~msmakela/cbm/emul/x64/64doc.html, or via FTP at
ftp.funet.fi:/pub/cbm/documents/64doc. I can also e-mail it to you on
request.

Also, I have written a complete description of the video timing on the
6567R56A, 6567R8 and 6569 video chips, which could maybe be turned
into another C=Hacking article. The document is currently partially
in English and partially in German. The English part is available
from ftp.funet.fi as /pub/cbm/documents/pal.timing, and I can send
copies of the German part (screen resolution, sprite disturbance
measurements, and more precise timing information) via e-mail.

The code is written for the DASM assembler, or more precisely for a
extended ANSI C port of it made by Olaf Seibert. This excellent
cross-assembler is available at ftp.funet.fi in /pub/cbm/programming.

First the raster demo for the VIC-20. Note that on the VIC-20, the
$9004 register contains the upper 8 bits of the raster counter. So,
this register changes only on every second line. I have tested the
program on my 6561-101-based VIC-20, but not on an NTSC-M system.

It was hard to get in contact with NTSC-M VIC-20 owners. Daniel
Dallmann, who has a NTSC-M VIC-20, although he lives in Germany, ran
my test to determine the amount of cycles per line and lines per frame
on the 6560-101. Unfortunately, the second VIA of his VIC-20 is
partially broken, and because of this, this program did not work on
his computer. Craig Bruce ran the program once, and he reported that
it almost worked. I corrected a little bug in the code, so that now
the display should be stable on an NTSC-M system, too. But the actual
raster effect, six 16*16-pixel boxes centered at the top border, are
very likely to be off their position.

 processor 6502

NTSC = 1
PAL = 2

;SYSTEM = NTSC ; 6560-101: 65 cycles per raster line, 261 lines
SYSTEM = PAL ; 6561-101: 71 cycles per raster line, 312 lines

#if SYSTEM & PAL
LINES = 312
CYCLES_PER_LINE = 71
#endif
#if SYSTEM & NTSC
LINES = 261
CYCLES_PER_LINE = 65

6/17

#endif
TIMER_VALUE = LINES * CYCLES_PER_LINE - 2

 .org $1001 ; for the unexpanded Vic-20

; The BASIC line

basic:
 .word 0$; link to next line
 .word 1995 ; line number
 .byte $9E ; SYS token

; SYS digits

 .if (* + 8) / 10000
 .byte $30 + (* + 8) / 10000
 .endif
 .if (* + 7) / 1000
 .byte $30 + (* + 7) % 10000 / 1000
 .endif
 .if (* + 6) / 100
 .byte $30 + (* + 6) % 1000 / 100
 .endif
 .if (* + 5) / 10
 .byte $30 + (* + 5) % 100 / 10
 .endif
 .byte $30 + (* + 4) % 10
0$:
 .byte 0,0,0 ; end of BASIC program

start:
 lda #$7f
 sta $912e ; disable and acknowledge interrupts
 sta $912d
 sta $911e ; disable NMIs (Restore key)

;synchronize with the screen
sync:
 ldx #28 ; wait for this raster line (times 2)
0$:
 cpx $9004
 bne 0$; at this stage, the inaccuracy is 7 clock cycles
 ; the processor is in this place 2 to 9 cycles
 ; after $9004 has changed
 ldy #9
 bit $24
1$:
 ldx $9004
 txa
 bit $24

7/17

#if SYSTEM & PAL
 ldx #24
#endif
#if SYSTEM & NTSC
 bit $24
 ldx #21
#endif
 dex
 bne *-1 ; first spend some time (so that the whole
 cmp $9004 ; loop will be 2 raster lines)
 bcs *+2 ; save one cycle if $9004 changed too late
 dey
 bne 1$
 ; now it is fully synchronized
 ; 6 cycles have passed since last $9004 change
 ; and we are on line 2(28+9)=74

;initialize the timers
timers:
 lda #$40 ; enable Timer A free run of both VIAs
 sta $911b
 sta $912b

 lda #<TIMER_VALUE
 ldx #>TIMER_VALUE
 sta $9116 ; load the timer low byte latches
 sta $9126

#if SYSTEM & PAL
 ldy #7 ; make a little delay to get the raster effect to the
 dey ; right place
 bne *-1
 nop
 nop
#endif
#if SYSTEM & NTSC
 ldy #6
 dey
 bne *-1
 bit $24
#endif

 stx $9125 ; start the IRQ timer A
 ; 6560-101: 65 cycles from $9004 change
 ; 6561-101: 77 cycles from $9004 change
 ldy #10 ; spend some time (1+5*9+4=55 cycles)
 dey ; before starting the reference timer
 bne *-1
 stx $9115 ; start the reference timer

8/17

pointers:
 lda #<irq ; set the raster IRQ routine pointer
 sta $314
 lda #>irq
 sta $315
 lda #$c0
 sta $912e ; enable Timer A underflow interrupts
 rts ; return

irq:
; irq (event) ; > 7 + at least 2 cycles of last instruction (9 to 16 total)
; pha ; 3
; txa ; 2
; pha ; 3
; tya ; 2
; pha ; 3
; tsx ; 2
; lda $0104,x ; 4
; and #xx ; 2
; beq ; 3
; jmp ($314) ; 5
 ; ---
 ; 38 to 45 cycles delay at this stage

 lda $9114 ; get the NMI timer A value
 ; (42 to 49 cycles delay at this stage)
; sta $1e00 ; uncomment these if you want to monitor
; ldy $9115 ; the reference timer on the screen
; sty $1e01
 cmp #8 ; are we more than 7 cycles ahead of time?
 bcc 0$
 pha ; yes, spend 8 extra cycles
 pla
 and #7 ; and reset the high bit
0$:
 cmp #4
 bcc 1$
 bit $24 ; waste 4 cycles
 and #3
1$:
 cmp #2 ; spend the rest of the cycles
 bcs *+2
 bcs *+2
 lsr
 bcs *+2 ; now it has taken 82 cycles from the beginning of the IRQ

effect:
 ldy #16 ; perform amazing video effect
 lda $900f
 tax

9/17

 eor #$f7
0$:
 sta $900f
 stx $900f
 sta $900f
 stx $900f
 sta $900f
 stx $900f
 sta $900f
 stx $900f
 sta $900f
 stx $900f
 sta $900f
 stx $900f
 pha
 pla
#if SYSTEM & PAL
 pha
 pla
 nop
#endif
#if SYSTEM & NTSC
 bit $24
#endif
 nop
 dey
 bne 0$; end of amazing video effect

 jmp $eabf ; return to normal IRQ

And after you have recovered from the schock of seeing a VIC-20
program, here is an example for the C64. It does also something
noteworthy; it removes the side borders on a normal screen while
displaying all eight sprites. Well, it cannot remove the borders on
bad lines, and the bad lines look pretty bad. But I could use the
program for what I wanted: I measured the sprite distortions on all
videochip types I had at hand. (FYI: the sprites 0-2 get distorted at
the very right of the screen, and the sprites 6 and 7 are invisible at
the very left of the screen. You will need a monitor with horizontal
size controls to witness these effects.)

This program is really robust, it installs itself nicely to the
interrupt routine chain. It even has an entry point for deinstalling
itself. But in its robustness it uses self-modifying code to store
the original interrupt routine address. :-)

The code also relies on the page boundaries in being where they are.
The cycles are counted so that the branches "irqloop" must take 4
cycles. If the "irqloop" comes to the same CPU page with the branch

10/17

instructions, you must add one cycle to the loop in a way or another.
When coding the routine, I noticed again how stupid assembly coding
can be, especially conditional assembling. In a machine language
monitor you have far better control on page boundaries. BTW, you
might wonder why I disable the Restore key in a subroutine at the end
and not in the beginning of the program. Well, the routine was so
long that it would have affected the "irqloop" page boundaries. And I
didn't want to risk the modified programs working on all three
different videochip types on the first try.

In the code, there are some comments that document the video timing,
like this one:

;3s4s5s6s7srrrrrgg--||0s1s2s Phi-1 VIC-II
;ssssssssss ||ssssss Phi-2 VIC-II
;==========xx||XXX====== Phi-2 6510
; ^ now we are here

The two vertical bars "|" denote optional cycles. On PAL-B systems
(63 cycles per line), they are not present. On 6567R56A, which has 64
cycles per line, there is one additional cycle on this position, and
the 6567R8 has two additional cycles there.

The numbers 0 through 7 are sprite pointer fetches (from the end of
the character matrix, e.g. the text screen), the "s" characters denote
sprite image fetches, the "r"s are memory refresh, and the "g" are
graphics fetches. The two idle video chip cycles are marked with "-".
On the processor timing line, the "=" signs show halted CPU, "x" means
free bus, and "X" means that the processor will be halted at once,
unless it is performing write cycles.

 processor 6502

; Select the video timing (processor clock cycles per raster line)
CYCLES = 65 ; 6567R8 and above, NTSC-M
;CYCLES = 64 ; 6567R5 6A, NTSC-M
;CYCLES = 63 ; 6569 (all revisions), PAL-B

cinv = $314
cnmi = $318
raster = 52 ; start of raster interrupt
m = $fb ; zero page variable

 .org $801
basic:
 .word 0$; link to next line
 .word 1995 ; line number
 .byte $9E ; SYS token

11/17

; SYS digits

 .if (* + 8) / 10000
 .byte $30 + (* + 8) / 10000
 .endif
 .if (* + 7) / 1000
 .byte $30 + (* + 7) % 10000 / 1000
 .endif
 .if (* + 6) / 100
 .byte $30 + (* + 6) % 1000 / 100
 .endif
 .if (* + 5) / 10
 .byte $30 + (* + 5) % 100 / 10
 .endif
 .byte $30 + (* + 4) % 10

0$:
 .byte 0,0,0 ; end of BASIC program

start:
 jmp install
 jmp deinstall

install: ; install the raster routine
 jsr restore ; Disable the Restore key (disable NMI interrupts)
checkirq:
 lda cinv ; check the original IRQ vector
 ldx cinv+1 ; (to avoid multiple installation)
 cmp #<irq1
 bne irqinit
 cpx #>irq1
 beq skipinit
irqinit:
 sei
 sta oldirq ; store the old IRQ vector
 stx oldirq+1
 lda #<irq1
 ldx #>irq1
 sta cinv ; set the new interrupt vector
 stx cinv+1
skipinit:
 lda #$1b
 sta $d011 ; set the raster interrupt location
 lda #raster
 sta $d012
 ldx #$e
 clc
 adc #3
 tay
 lda #0

12/17

 sta m
0$:
 lda m
 sta $d000,x ; set the sprite X
 adc #24
 sta m
 tya
 sta $d001,x ; and Y coordinates
 dex
 dex
 bpl 0$
 lda #$7f
 sta $dc0d ; disable timer interrupts
 sta $dd0d
 ldx #1
 stx $d01a ; enable raster interrupt
 lda $dc0d ; acknowledge CIA interrupts
 lsr $d019 ; and video interrupts
 ldy #$ff
 sty $d015 ; turn on all sprites
 cli
 rts

deinstall:
 sei ; disable interrupts
 lda #$1b
 sta $d011 ; restore text screen mode
 lda #$81
 sta $dc0d ; enable Timer A interrupts on CIA 1
 lda #0
 sta $d01a ; disable video interrupts
 lda oldirq
 sta cinv ; restore old IRQ vector
 lda oldirq+1
 sta cinv+1
 bit $dd0d ; re-enable NMI interrupts
 cli
 rts

; Auxiliary raster interrupt (for syncronization)
irq1:
; irq (event) ; > 7 + at least 2 cycles of last instruction (9 to 16 total)
; pha ; 3
; txa ; 2
; pha ; 3
; tya ; 2
; pha ; 3
; tsx ; 2
; lda $0104,x ; 4
; and #xx ; 2

13/17

; beq ; 3
; jmp ($314) ; 5
 ; ---
 ; 38 to 45 cycles delay at this stage
 lda #<irq2
 sta cinv
 lda #>irq2
 sta cinv+1
 nop ; waste at least 12 cycles
 nop ; (up to 64 cycles delay allowed here)
 nop
 nop
 nop
 nop
 inc $d012 ; At this stage, $d012 has already been incremented by one.
 lda #1
 sta $d019 ; acknowledge the first raster interrupt
 cli ; enable interrupts (the second interrupt can now occur)
 ldy #9
 dey
 bne *-1 ; delay
 nop ; The second interrupt will occur while executing these
 nop ; two-cycle instructions.
 nop
 nop
 nop
oldirq = * + 1 ; Placeholder for self-modifying code
 jmp * ; Return to the original interrupt

; Main raster interrupt
irq2:
; irq (event) ; 7 + 2 or 3 cycles of last instruction (9 or 10 total)
; pha ; 3
; txa ; 2
; pha ; 3
; tya ; 2
; pha ; 3
; tsx ; 2
; lda $0104,x ; 4
; and #xx ; 2
; beq ; 3
; jmp (cinv) ; 5
 ; ---
 ; 38 or 39 cycles delay at this stage
 lda #<irq1
 sta cinv
 lda #>irq1
 sta cinv+1
 ldx $d012
 nop

14/17

#if CYCLES - 63
#if CYCLES - 64
 nop ; 6567R8, 65 cycles/line
 bit $24
#else
 nop ; 6567R56A, 64 cycles/line
 nop
#endif
#else
 bit $24 ; 6569, 63 cycles/line
#endif
 cpx $d012 ; The comparison cycle is executed CYCLES or CYCLES+1 cycles
 ; after the interrupt has occurred.
 beq *+2 ; Delay by one cycle if $d012 hadn't changed.
 ; Now exactly CYCLES+3 cycles have passed since the interrupt.
 dex
 dex
 stx $d012 ; restore original raster interrupt position
 ldx #1
 stx $d019 ; acknowledge the raster interrupt
 ldx #2
 dex
 bne *-1
 nop
 nop
 lda #20 ; set the amount of raster lines-1 for the loop
 sta m
 ldx #$c8
irqloop:
 ldy #2
 dey
 bne *-1 ; delay
 dec $d016 ; narrow the screen (exact timing required)
;3s4s5s6s7srrrrrgg--||0s1s2s Phi-1 VIC-II
;ssssssssss ||ssssss Phi-2 VIC-II
;==========xx||XXX====== Phi-2 6510
; ^ now we are here
 stx $d016 ; expand the screen
#if CYCLES - 63
#if CYCLES - 64
 bit $24 ; 6567R8
#else
 nop ; 6567R56A
#endif
#else
 nop ; 6569
#endif
 dec m
 bmi endirq
 clc

15/17

 lda $d011
 sbc $d012
 and #7
 bne irqloop ; This instruction takes 4 cycles instead of 3,
 ; because the page boundary is crossed.
badline:
 dec m
 nop
 nop
 nop
 nop
 dec $d016
;3s4s5s6s7srrrrrgg--||0s1s2s Phi-1 VIC-II
;ssssssssss cc ||ssssss Phi-2 VIC-II
;==========xXXX==||***====== Phi-2 6510
; ^ we are here
 stx $d016
;3s4s5s6s7srrrrrgg--||0s1s2s Phi-1 VIC-II
;ssssssssss ||ssssss Phi-2 VIC-II
;==========xx||XXX====== Phi-2 6510
; ^ ^^- we are here (6569)
; | \- or here (6567R56A)
; \- or here (6567R8)
 ldy #2
 dey
 bne *-1
 nop
 nop
#if CYCLES - 63
#if CYCLES - 64
 nop ; 6567R8, 65 cycles/line
 nop
 nop
#else
 bit $24 ; 6567R56A, 64 cycles/line
#endif
#else
 nop ; 6569, 63 cycles/line
#endif
 dec m
 bpl irqloop ; This is a 4-cycle branch (page boundary crossed)
endirq:
 jmp $ea81 ; return to the auxiliary raster interrupt

restore: ; disable the Restore key
 lda cnmi
 ldy cnmi+1
 pha
 lda #<nmi ; Set the NMI vector
 sta cnmi

16/17

 lda #>nmi
 sta cnmi+1
 ldx #$81
 stx $dd0d ; Enable CIA 2 Timer A interrupt
 ldx #0
 stx $dd05
 inx
 stx $dd04 ; Prepare Timer A to count from 1 to 0.
 ldx #$dd
 stx $dd0e ; Cause an interrupt.
nmi = * + 1
 lda #$40 ; RTI placeholder
 pla
 sta cnmi
 sty cnmi+1 ; restore original NMI vector (although it won't be used)
 rts

17/17

