__ ADVANCED
' COMMODORE 128
GRAPHICS AND SOUND

Stan Krute

No. 2630
$21.95

ADVANCED
COMMODORE 128

GRAPHICS AND SOUND

Stan Krute

[TAB

TAB BOOKS Inc.

Blue Ridge Summit, PA

This One’s For Sharron & Neil & Jason & Benjamin & Phred
With Love

FIRST EDITION

FIRST PRINTING

Copyright © 1988 by Stan Krute
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Krute, Stan.
Advanced Commodore 128 graphics and sound programming / by Stan
Krute.
p. cm.
Includes index.
ISBN 0-8306-0930-X ISBN 0-8306-8630-4 (pbk.)
1. Commodore 128 (Computer)—Programming. 2. Computer graphics.

3. Computer sound processing. |. Title. Il. Title: Advanced
Commodore One-twenty-eight graphics and sound programming.
QA76.8.C645K78 1987 87-29028
006.6'865—dc19 CIP

Questions regarding the content of this book
should be addressed to:

Reader Inquiry Branch
TAB BOOKS Inc.
Blue Ridge Summit, PA 17294-0214

Contents

List Of Programs
Preface
Introduction
Part |
Eighty-Column Graphics Package
Human Interface

System Interface

NEW Command From Assembly Language—Setting BASIC Program Text Start-
ing Address—Warm Start From Assembly Language—Kernel Routine Load
($FFD5)—Kernel Routine SetBnk ($FF68)—Kernel Routine SetLFS ($FFBA)—
Kernel Routine SetNam ($FFBD)—Memory Configuration—Cruising Thru Commas
In BASIC Program Text—Low-Memory Routine ChrGet ($0380)—Low-Memory -
Routine IndTxt ($03C9)—Memory Location 13 ($000D) aka Count—The IError
Vector—The |EscLk Vector—The IEscPr Vector—The |IEscEx Vector—Tokens:
Crunching New BASIC Commands—Tokens: Detecting New BASIC Commands—
Tokens: Un-Crunching New BASIC Commands—Undocumented ROM Routine
FndComTxt (43E2)—Undocumented ROM Routine FndTknTxt ($516A)—Low-
Memory Routine ChrGot—8502 Usage: Deriving An Absolute Value—8502 Us-

10

age: Two-Stage Masking—8502 Usage: Nibble Transfer—Undocumented ROM
Routine: GetByt (87F4)—Undocumented ROM Routine: GetWdByt ($8803)—8502
Usage: Multi-Byte Division By Powers Of 2—Screen Clearing Via BSOut—Kernel
Routine Swapper ($FF5F)—Clearing The 80-Column Graphics Screen—Setting
The 80-Column Chip for Text Or Graphics—80-Column Graphics Color Control
Nibbles—80-Column Graphics Pixel Operations—Block Write, Block Copy,
80-column Screen Registers 24 And 30 And 32 And 33—80-Column Color Nibbles

Program Notes

Undocumented ROM Routines—Moving BASIC Up To Fit Code Beneath It—
Horizontal Line Drawing Algorithms—Vertical Line Drawing Algorithm—
Bresenham’s Generalized Line Drawing Algorithm—Multiple Source Code Files—
Cheap Box Tricks—Range Adjustment To Optimize Testing—Generalizing A Draw
Command With A Point List—Calling The 80-Column Graphics Routines From
Assembly Language—Command Variation Based On Whether The BASIC
Interpreter’s In Direct Mode Or Running A Program—Modularity And
Optimization—Tables, Tables, Tables—Adding Commands To The Package—
Performance Testing

Stretching

Special Casing For 45° Lines—Other Geometric Figures—Code Unfolding—Bit-
Mapped Text

Calling Structure Diagrams
Subroutine Line Starts
Selected Algorithms
Program Listings

Part Il

Sound And Music Lab

Human Interface

Getting The Lab Going—The Lab Screen—Moving & Clicking Around The Lab—
Using The Help Screens—Using the SOUND Window—Some Recording
Concepts—Using The PLAY Window—Using The ENVELOPE Window—Using
The VOLUME Window—Using the TEMPO Window—Using The FILTER
Window—Using The Frame Counter—Using The Ten Buttons—Lab Wrapup—
Usigg MAKE S/M VARS—Using MAKE 40C SCREENS—Using S/M HELP
PACKER

System Interface

Using The Standard Text Screen RAM For Assembly Language Routines—Reading
From Any Memory Bank Via IndFet—Writing To Any Memory Bank Via IndSta—
Changing A BASIC Character String From Assembly Language—Drawing
Characters On The 40-Column Bit-Mapped Graphics Screen—Converting C-ASCII
Codes To Screen Poke Codes—Finding The 40-Column Text Screen—Using A
KeyChk Detour To Hide Selected Keys From The System—Detouring IIRQ To
Implement A Pseudo-Mouse And Cursor—Directly Reading The Keyboard From
Assembly Language—Directly Reading The Joystick From Assembly Language—

18

33

35

47

51

70

127

11

12

13

14

15

16

Sprite Motion From Assembly Language—Sprite Positioning From Assembly
Language—Inverting A Cell Of The 40-Column Bit-Mapped Screen—Inverting A
Cell Of The 40-Column Text Screen—Loading Data Into Memory Bank 1—Dealing
With Sprites In Alternate Text Screens—Direct Text Display From Assembly
Language—BASIC-Assembly Language Parameter Passing—Setting VIC's RAM
Bank And Quadrant (Video Bank)—Setting VIC’s 40-Column Text Screen Start-
ing Address—Changing Processor Speed—Determining Which Drive We (Prob-
ably) Came From—Using The CHAR Command For Precise Text
Positioning—Dealing With Disk Wackiness—Is A Sound Still Sounding?—Setting
Up An Error Handler

Program Notes

Use Of Outside Resources—The HA() Array—Data Structures And Variables For
Recording Sound/Music Frames—Algorithm For Recording A Sound/Music
Frame—Creating The Sprite Finger Cursor—Event-Driven Programming—
Positioning The Sprite On Lab/Help Screen Jumps—Mode Avoidance—Heavy
Modularity And Use Of Subroutines—Variable Initialization Via DATA Statements
And RESTOREs—Editors—Moving The Cursor With A Pseudo-Mouse—Input
Filtering—Assembly Language Tables—Displaying Variable-Length Strings In A
Fixed-Length Area

Stretching
Changing MAKE 40C SCREENS So It Works Without An 80-Column Monitor—

Inormeatan—More Visuals_—More Sophisioated Playback Contrals ||
Calling Structure Diagrams

Subroutine Line Starts

Selected Algorithms

Program Listings

Appendix A Useful Conventions
Appendix B Calling Structure Diagrams
Appendix C Pinhead Pseudo-Code
Appendix D System Interface Summary
Appendix E VIC Registers

Appendix F VIC Screen Colors
Appendix G Sprite Shadow Registers

Appendix H 8563 VDC Registers

149

157

159
185
190
236
346
350
357
360
367
370
371

375

Appendix | 8563 VDC Screen Colors
Appendix J 8563 VDC Attribute Bytes
Appendix K Poke Codes

Appendix L SID Registers

Appendix M SID Note Values

Appendix N ANDing And ORing

Appendix O Merlin-128 Pseudo-Ops

Appendix P Last Minute Program Adjustments

Index

379
380
381
384
386
388
390
392

397

List of Programs

EIGHTY-COLUMN GRAPHICS PACKAGE

G80 Install
Grafix 80

G80 Test Suite
G40 Test Suite

SOUND AND MUSIC LAB

S/M Asm 1

S/M Asm 2

S/M Help Packer
Make S/M Vars
Make 40C Screens
40C Edit
Sound/Music Lab

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

8-1.
8-2.
8-3.
8-4.

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-8.

Pages
Pages
Pages
Pages

Pages
Pages
Pages
Pages
Pages
Pages
Pages

71
73
119
123

237
264
301
302
305
308
321

vii

Preface

The folks from Pennsylvania have given the C-64 a worthy successor, the Commodore
128. Ignore the snobs who look at the low price and laugh. It’s got great graphics and
sound chips, an elegant memory management system, a sophisticated BASIC interpreter,
perfect C-64 emulation, a well designed keyboard, powerful CP/M capabilities, and plenty
of hooks for imaginative programmers. The hardware’s there; now it’s up to all you
clever coders to push the 128 to its limits and beyond. My aim in this book is to give
you a few tools that will ease the journey.

This book will show you some sophisticated C-128 graphics and sound program-
ming techniques. It’s packed with clear explanations and obsessively commented pro-
grams. The programs are written in BASIC 7.0 and 6502 assembly language. I've hacked
away on the 128 for over a year now, and made a number of interesting discoveries.
This book contains many of them.

Many wonderful people helped me get this information out to you. The book would
not be here without their kind assistance. I'd like to acknowledge a few of them here;
the rest know who they are. Bruce Hammond and the Starpoint Software crew let me
use their 128 for a couple of months that turned into ten, and sweetened the deal with
software, shared enthusiasm, and gallons of diet soda. Roger Wagner and Glen Bredon
trusted me with a prepublication copy of Glen’s rock-solid Merlin 128 assembler. Dan
Weston and Leslie Kay kept the flame burning. Diane Le Bold and Jim Gracely of Com-
modore went out of their way to provide useful system documentation on short notice.
Larry Jackel, Ray Collins, Kevin Burton, Bob Ostrander, and Ron Powers of TAB sup-
plied faith, beyond-infinite patience, motivational techniques, and an efficient publishing
operation. Jim, Laura, and Saylor Flett helped keep the author warm, cool, electrified,

viii

mobile, and well fed. Richard and Karen Perez supplied continued inspiration, both spiritual
and gastro-intestinal. The Wizard came through with miraculous gifts in the pinches. Scott
Statton appreciated the Plywood Palace. Levi Thomas shared love, intelligence, and en-
couragement. Dana Andrews provided a home away from home. John and Anita Pryor
appeared near the end with their remarkable energy and friendship. Ruth and Irving Krute
came up with their usual abundance of love and support. Steve, Cynthia, Raisin, and
Rags Fink provided last-minute philosophical discussions, archetypical accommodations,
love, more diet soda, and genre deconstruction. Steve Jasik made a last-minute loan
of time and equipment. The Plywood Palace cat friends maintained equilibrium and fa-
mily values at all times.

As I've mentioned in other books, sight and sound are two of the widest channels
into the human heart and mind. That’s why I’m partial to machines that excel in com-
municating with those two senses. The Commodore 128 is one of them. It’s a sturdy,
sophisticated instrument. Please use it well.

Introduction

Welcome to a slightly different kind of programming book. It’s for a slightly different kind
of programmer working on a different kind of hardware/software system and program-
ming a different kind of user interface. This programming relies heavily on graphics and
sound techniques to open a broad band of communication with computer users.

Computer hardware is getting more powerful all the time, as is the built-in systems
software and the specific applications programs— all working towards the goal of creat-
ing cybernetic tools that normal human beings can use. Machines like the Macintosh,
Amiga, Atari ST, Apple IIGS, and the IBM PS/2s are leading the trend. But they all
cost too much for the average user. The C-128 goes for a paltry couple of hundred dol-
lars, yet has the hardware muscle to pull off a lot of modern tricks. All it needs is a
little extra smart software magic to bring its powers to light. You're the one who’ll pro-
vide that magic, and this book will show you how.

Books that teach this new style of programming are more difficult to organize. The
kinds of programs that get these machines dancing are not short and sweet. The inter-
actions with the hardware and systems software are intricate. Even brief examples
aren’t brief anymore. The growing sophistication of the systems and the programmers
demands for more information that’s better organized, with a sweep that goes from grand
overview to tiny details—information that gives you a pile of useful tools.

Ultimately, at the rate of current developments, that’s just a couple of years—such
sophisticated programming tutorials or toolboxes will sit on some kind of laser-storage
medium and run interactively in multiple windows on your screen. You need all kinds
of cross-indexed, readily-accessible information when you're solving programming tasks:
language references; system information; system interface examples; user interface ex-

amples; syntax and structure diagrams; pseudo-code generators; and charts, graphs and
pictures.

We don’t all have that laser technology now. But it’s time to get ready. And so
we get to'the organization of this book, which is a bit unlike most other programming
texts—not just to be different, but because different needs demand different forms.

The goal is to get you dancing around the C-128 system, able to solve any sound
or graphics programming challenge that arises. Stealing from the more advanced gradu-
ate schools, I've used a project-oriented, case study method. This lets me touch on
both theoretical and practical issues. The book contains two major programming projects.
I've divided each project into eight sections. Each section forms a chapter of the book.

A project’s first section discusses its Human Interface. This section tells what the
project’s programs do, and how to use them. General design and ease-of-use issues
come to life in the specific C-128 context.

A project’s second section discusses its System Interface. This section tells about
the project’s programs’ interactions with the C-128 hardware and ROMs. Some of this
material clarifies information available elsewhere. Much of it is new, information I've
dug out by playing with the system.

Commodore is known for the byzantine nature of its systems, and the C-128 doesn’t
break that trend. What I do is show you how to dance around the C-128, tap-dancing
on the good ROM stuff, jitter-bugging on the good hardware stuff, pirouetting over the
muck.

The third section for each project is called Program Notes. That’s where I discuss
some of the important structural features of the project’s programs. I also point out some
of the more interesting language usages.

Fourth in each project’s array of tools is a section called Stretching. This is where
I suggest things you can do to extend the project. For example, though the 80-column
graphics routines I supply are faster than the ROM’s 40-column routines, there’s still
room for a two-to-four times speed optimization. So, in that project’s Stretching sec-
tion, I lay out some speedup techniques.

Fifth in each project comes a section of Calling Structure Diagrams. These are pic-
tures that show the essential architecture of the project’s programs. I think you’ll find
them invaluable as you learn to put together huge, bug-free suites of programs. More
specific detail on these diagrams can be found in Appendix B.

The sixth project section is called Subroutine Line Starts. Each routine in a program
is listed with the line in the source code where it begins. This’ll help you find routines
that are referred to in the other sections.

Seventh is a section of Selected Algorithms. Using a C/Pascal-like pseudo-code, these
algorithms show the work-horse intelligence of the project’s programs, unmarred by
the realities of BASIC 7.0 or 6502 assembly language. There’s some interesting code
here, including a Macintosh-like interrupt-driven cursor and a complete pseudo-code im-
plementation of an optimized Bresenham line drawing algorithm. Appendix C details the
Pinhead Pseudo-Code (PPC) that I use. If you’ve got a background in structured pro-
gramming, you should find it pretty transparent.

Finally, each project closes with its program’s source code. There’s a lot of it, and
it’s probably the most heavily commented you'll ever find. I can never figure out in the
bright light of morning what the heck I cranked out in the wee hours the night before.

Xi

So I write lots of comments, and polish the code organization for readability. There’s
a lot of code here. It’s highly modular and filled with software tools you might find use-
ful in other contexts.

So, that’s the layout of chapters for each project. You can profit from this book without
running the programs, but I think you're better off if you run them and play with modifi-
cations. Type in the code if you're long on time and short on money. But a couple of
hundred pages is a lot of typing to do. You can send for disks that contain all the book’s
listings; see the order form at the back of the book.

If you do type in the programs, you'll need an assembler. I recommend Glen Bredon’s
Merlin-128 System, available from:

Roger Wagner Publishing

10761 Woodside Avenue Suite E

Post Office Box 582

Santee, California 92071

(619) 562-3670

Several appendices appear at the back of the book. I suggest you read the first four
of them now. Appendix A: Useful Conventions, describes abbreviations and jargon (min-
imal) that I’ve used in the book. Appendix B: Calling Structure Diagrams, describes the
above-mentioned diagrams and their iconography. Appendix C: Pinhead Pseudo-Code,
documents the PPC. And Appendix D: System Interface Summary, steers you toward
the lines of code in the book’s programs that contain interesting system-related operations.

There are a number of other appendices. They're there so I can get all these loose
scraps of paper off my walls and desks. I hope they do the same for you.

Xii

Chapter 1:
Human Interface

The heart of this first programming project is a set of 80-column graphics routines. These
routines can be called from BASIC 7.0 or from assembly language. The assembly lan-
guage object file Grafix 80 contains the complete graphics package (routines and inter-
face code).

Prepare a disk that contains the compiled object code for G80 Install and for Grafix
80. See Figs. 8-1 and 8-2 for their assembly language source code.

G80 Install loads Grafix 80, adjusts the C-128 environment as necessary, and hooks
in the new graphics routines. Working from the C-128’s direct mode, not from within
a running program, give these two commands to run G80 Install:

BLOAD "G80 INSTALL"
SYS 7592

You now have six new graphics commands. They’'re designed to work like the
40-column graphics commands that are part of BASIC 7.0. Take a look at the first few
pages of the Grafix 80 program listing, Fig. 8-2, for detailed manual entries for the com-
mands. Briefly, the commands are as follows:

G80Box —draws outlined and filled boxes on the 80-column
graphics screen.

G80Color —sets the foreground and background colors for the
80-column graphics screen.

-—

G80Draw —draws points, lines, and connected series of lines on
the 80-column graphics screen.

G80Graphic —puts the 80-column display into text or graphics
mode, with optional screen clearing.

G80Scat —removes the 80-column graphics commands.

After running G80 Install, you can play with the commands from BASIC’s direct
mode. Then you can try the BASIC 7.0 program G80 Test Suite. Figure 8-3 lists its
source code. G80 Test Suite tests the performance of the 80-column routines. Make
sure you've run G80 Install, as shown above. Then run G80 Test Suite with this command:

RUN "G80 TEST SUITE”

G80 Test Suite contains numerous examples of calling the 80-column graphics rou-
tines from within a BASIC 7.0 program. If you want to compare the performance of the
80-column graphics routines to the C-128’s built-in 40-column BASIC 7.0 graphics com-
mands, get rid of the 80-column package, and run the program G40 Test Suite:

G80SCAT
RUN "G40 TEST SUITE”

The 80-column graphics routines can also be called from assembly language pro-
grams. See Chapter 4: Stretching.

Chapter 2:
System Interface

—

Remember, refer to Appendix D:System Interface Summary to locate instances of the
following items in the program code.

2.1 NEW COMMAND FROM ASSEMBLY LANGUAGE

BASIC 7.0’s NEW command clears out any BASIC programs currently in memory,
and sets a number of BASIC and system variables so a new program can get going.
It comes in quite handy when you've futzed with the system and want to clean up any
unforeseen side effects of the futzing before letting BASIC come back into play.

That’s why it’s used in G80 Install and Grafix 80. But in both instances I invoke
the NEW command from assembly language. Surprisingly, this turns out to be a simple
task. It’s done with a JSR call to a documented vector, JmpNEW, located at address
$AF84 in the ROM. A few preliminaries are required before the call: First, get the ma-
chine into a bank 15 memory configuration. Next, be sure the byte just before the start
of BASIC’s text area is zeroed (see section 2.2). Finally, set the zero flag of the 8502’s
processor to 1.

2.2 SETTING BASIC PROGRAM TEXT STARTING ADDRESS

Memory locations $002D-$002E, known as TxtTab, point to the start of a BASIC
program'’s text. Normally, the pointer value is $1C01. G80 Install moves BASIC text
two pages up in memory to make room for the Grafix 80 routines. It resets the TxtTab
pointer value to $1E01 to accomplish the move.

Notice the convention: the pointer points one byte into a memory page, and the
byte just before this start of BASIC text must be set to 0. Don’t ask me why, it’s a
convention that’s hung on from the earliest days of Pet BASIC, but it must be done.
So, in G80 Install, we set $1E00 to 0. And, when the user removes the Grafix 80 rou-
tines, we move BASIC’s text start back down to $1C01 and zero out $1C00.

2.3 WARM START FROM ASSEMBLY LANGUAGE

This is another part of the magic ritual to follow after fiddling with BASIC. A warm
start, also known as a soft reset, takes care of BASIC and system variables that a NEW
call doesn’t hit. Once again, the Commodore designers give us a nice documented entry
point, SoftReset, located at memory location $4003 in the ROM.

To review, here’s what to do if you want to fiddle with BASIC, then bring it back
to life safely: do the fiddling. Then get into a bank 15 memory configuration. Make sure
there’s a zero just before the start of BASIC text. Prime the processor’s zero flag, set-
ting it to 1. Call on JmpNew ($AF84). Call on SoftReset ($4003). This is what I do
in G80 Install before loading the Grafix 80 routines, and in Grafix 80 when the user chooses
to remove the new routines.

2.4 KERNEL ROUTINE LOAD ($FFD5)

The kernel’s LOAD routine lets you load disk files when you're working in assem-
bly language. There are some preliminaries. First, a call to SetBnk to tell the system
what memory configurations to use (see Section 2.5). Second, a call to SetNam to set
a file name and any control characters (see Section 2.7). Third, a call to SetLFS to set
its three parameters (see Section 2.6).

After the preliminaries, it’s time to call the load routine. It requires one parameter,
and can take up to three, all passed via the 8502’s main registers. A function selector,
passed in A, is required. If you want to truly load a file into memory, put a zero into
the A register. If you just want to check an area of memory against a file, put a non-zero
value into A. That tells Load to perform a verify operation. If you want to load the file
into memory at an address different than what the file header bytes indicate, X gets
the lo-byte of the load address, and Y gets the hi-byte. Also, the secondary address/com-
mand set up by the preliminary SetLFS call must be zero for this relocation to take effect.

In G80 Install, Load is used to pull in the Grafix 80 code. Study that code for a text-
book example of this vital routine’s use.

2.5 KERNEL ROUTINE SETBNK ($FF68)

SetBnKk is used to prepare for I/O operations. It’s usually called along with SetLFS
and SetNam before calls to Load, Open, and/or Save. It sets the memory banks to
be used with the upcoming operation. The first bank it sets indicates where data will
be Saved from orLoaded to. This is done by passing a logical bank number (0..15) in
the A register. It also sets the memory bank in which the file name string is living. This
is done by passing a logical bank number (0..15) in the X register. After these two registers
are set, you call on SetBnk with a JSR.

2.6 KERNEL ROUTINE SETLFS (SFFBA)

This kernel routine is called prior to using various kernel input/output routines. It
sets up a file’s logical file number, device number, and secondary address/command.
This is analogous to the numbers supplied when you use BASIC 7.0’s OPEN command.
The system stores the logical file number in the system global LA ($00B8), the device
number in the system global FA ($00BA), and the secondary address/command in the
system global SA ($00B9).

Prior to calling the routine with a simple JSR, the A register is loaded with the logi-
cal file number, the X register gets the device number, and the Y register gets a secon-
dary address/command. The logical file number will be used in subsequent operations
to refer to the file. The device number depends on the device. For example, disk drives
are usually numbered 8 and 9, printers are 4 and 5, etc. The secondary address/com-
mand gives further device-specific information, and its use is optional. If not used, the
Y register should be loaded with the value $FF (255).

In G80 Install, SetLFS is used to prepare for a Load command. This affects the
parameters passed to SetLFS in the A, X, and Y registers. The logical file number,
passed in A, is set to zero, since the Load command doesn’t use a logical file number.
The device number, passed in X, works in the usual way, taking the device number of
the disk drive we want to Load from. In G80 Install we use the device number last used,
plucked from memory location $00BA (FA). The secondary address/command, passed
in'Y, is set to 0 if we want the file to come in at an address different from what’s stored
in the file header. Otherwise, it’s set to some non-zero value. This second option is
used in G80 Install, since we want Grafix 80 to be loaded into its standard position. $FF
is a nice non-zero value to use, since it's as non-zero as an 8502 gets.

2.7 KERNEL ROUTINE SETNAM ($FFBD)

When setting up for an input/output operation, you have the option of using a name.
A name is used when dealing with true file devices, like disk drives and cassette recorders.
When opening up a physical device, such as a printer or display screen, the name is
omitted.

SetNam must be called to tell the system what you're doing about a name. If no
name is to be used, just load the A register with zero and call SetNam with a JSR.
If there is a name, the call preparation is different. The kernel routine SetBnk must
be called to tell the system which memory configuration (0..15) should be set before
looking for the name. Then the A register gets the length of the name, the X register
gets the lo-byte of a pointer to the name’s first character, and the Y register gets the
hi-byte of this pointer. Then SetName is called with a JSR. The name itself must be
followed by a zero byte in memory.

In this context ‘name’ is used in a general way to indicate the entire string we want
to pass to the file system. In opening a disk file, for example, such a name may be a
string as complex as the following, in which the actual file name is surrounded in the
name string by various control elements:

"@:THE FILE NAME,S,W"

In G80 Install, we're using SetNam to prepare for a load command. The name string
that gets set with a call to SetNam is contained in the G80 Install code. I stuff the A
register with the length of the name string, X with the lo-byte of a pointer to the name
string, and Y with the hi-byte of a pointer to the name string. When you examine this
G80 Install code, be sure to note how I've used the assembler’s labeling capabilities
to make the source code independent of any changes to the name string.

2.8 MEMORY CONFIGURATION

From BASIC, you can configure C-128 memory with the BANK command. It’s not
much tougher to do the job from assembly language. The configuration register appears
at $D500 when the I/0 block is switched into memory, and at $FF00 at all times. I recom-
mend you just use the $FF00 address, since it works just as well and is always available.

It’s a good idea to restore memory to its previous state when you're done fooling
around. Just save the current value of the configuration register, change it to a new value,
do your fooling around, then set the configuration register back to its original value.

The one trick is to figure out how to set up a configuration byte. Commodore mem-
ory management has never been perfectly straightforward, and the C-128 continues that
fine tradition. The C-128 Prg gives one of the better explanations, on pages 460-465.
Or take a look at Fig. 2-1. If your head is a bit lazy, though, Fig. 2-2 will help. It shows
the sixteen configuration bytes that correspond to bank setups 0 thru 15. Of course,
other configurations are possible; again, refer to Fig. 2-1.

You can find a table like Fig. 2-2 right in the C-128’s ROM. It runs from memory
location $F7F0 through to $F7FF.

There are some examples of memory configuration sprinkled throughout the vari-
ous 80-column graphics programs. In G80 Install, I want to get into a bank 15 configura-

The Bits In A Memory Configuration Byte

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Hi Mid o0 /0
Bank Select Space Space $ 4%%8 pace
- - - | $D000-
$C000-$FFFF $8000-$BFFF $7FFF | SDFFF
00=ram bank 0 OO=¥(emel rom 00=basic rom hi O=basic | 0=1/O
Ol=ram bank 1 Ol=internal Ol=internal rom lo
0 function rom function rom
10=expansion 10=external
4 10=external l=ram 1=ram/
1 lba“k 2 . function rom function rom rom
=expansion -
bank 3 11=ram 1l=ram

Fig. 2-1. Each bit in a memory configuration byte determines which physical memory locations will
show up in a particular logical address space.

6

Bank Configuration Byte In ...

Binary Hexadecimal Decimal
0 %00111111 $3F 63
1 %01111111 $7F 127
2 %10111111 $BF 191
3 %11111111 $FF 255
4 %00010110 $16 22
5 %01010110 $56 86
6 %10010110 $96 150
7 %11010110 $D6 214>
8 %00101010 $2A 42
9 ' %01101010 $6A 106
10 %10101010 $AA 170
11 %11101010 $EA 234
12 %00000110 $06 6
13 %00001010 $0A 10
14 %00000001 $01 1
15 %00000000 $00 0

Fig. 2-2. The C-128 has 16 standard memory configurations. For each one, this figure shows its con-
figuration byte in binary, hexadecimal, and decimal.

tion before fiddling around with BASIC. Bank 15 is particularly useful because it lets
you get at the major system resources: kernel and BASIC ROMS, system globals lo-
cated in RAM 0, and the I/O block. You can get into any memory configuration from
assembly language by stuffing the appropriate configuration byte into the configuration
register that always exists at $FF00. Also, note how the previous configuration is re-
stored when you’re done. In Grafix 80, I also fiddle with memory configurations. Right
before carrying out one of the new 80-column graphics commands, I put the machine
into bank 15, and restore memory to its previous configuration when the command car-
rving out’s done. Besides providing access to the major system resources mentioned

7

above, bank 15 lets me get at the current BASIC program’s source code and the Grafix
80 object code.

2.9 CRUISING THRU COMMAS IN BASIC PROGRAM TEXT

When Grafix 80 hits one of its 80-column graphics commands, it has to look for
parameters. As with built-in BASIC 7.0 commands, the 80-column graphics commands
expect their parameters to be separated by commas. It’s nice to have a routine that
makes sure a required comma is in the line, then cruises past the comma and picks up
the next element in the BASIC line. (By the way, by BASIC line element I mean a con-
stant, variable, command token, or vital piece of punctuation—anything other than a
space.) There’s such a comma cruising routine built into the BASIC ROM, but it’s un-
documented. So I wrote a similar little gem of my own, CommaCruz, for Grafix 80. It
calls the low-memory routine IndTxt (see Section 2.12) with an index of zero to grab
the current byte-of-interest from the BASIC line being parsed. If it’s a comma, Com-
maCruz finishes with a jump to ChrGet, which moves the BASIC line parser along and
grabs the first byte of the next element in the line, then returns to whoever called on
CommaCruz. If there’s no comma, CommaCruz finishes with a call to the system’s er-
ror handler, which will send out the popular ‘‘SYNTAX ERROR’’ message and bring
things to a crashing halt.

And someone told you the art of interpreter parsing was complex? Job protection
fog, folks.

2.10 LOW-MEMORY ROUTINE CHRGET ($0380)

This is one of the BASIC interpreter’s workhorse routines. Essentially, it moves
BASIC'’s text pointer along to the next BASIC line element, skipping through spaces,
and grabs the element’s first byte. The byte, or character, fetched is returned in the
processor’s A register. Various status flags get set, depending on what’s returned in
A: Ifit’s a colon ($3A) or zero, both of which function as BASIC statement separators,
the zero flag is set to 1. If it’s a digit 0..9 ($30..$39), the carry flag comes back cleared
to 0. If it’s in the range $00..$2F or $3A..$FF, the carry flag comes back set to 1.

In Grafix 80, many of the calls to ChrGet occur when a routine is handling one of
the new commands and needs to move along to the next element in a BASIC line. This
is often in preparation for calling one of the higher-level BASIC parsing routines, like
GetByt or GetWdByt (see Sections 2.26 and 2.27). In these cases, I don’t even look
at the character returned in the A register. Other times, I'm looking for specific tokens
or punctuation marks, as in some of the parameter-fetching functions and the CommaCruz
routine. In those cases, the call to ChrGet is followed by one or more CMP instructions
and branches based on those comparisons.

2.11 LOW-MEMORY ROUTINE INDTXT ($03C9)

This is a useful routine that lets you look at parts of the BASIC line currently being
parsed. It gives you an indexed look at the BASIC text, thus the name. As mentioned
above, the BASIC parser maintains a pointer into the text, TxtPtr ($003D-$003E). Be-
fore calling IndTxt, you load the Y register with an offset value. IndTxt then uses that

offset and TxtPtr to grab a byte from the BASIC line. In Grafix 80, IndTxt is used in
the CommaCruz routine.

2.12 MEMORY LOCATION 13 (3000D) AKA COUNT

This memory location is used by many of the ROM routines. In Grafix 80, it’s used
in the IEscLkDetor token crunching routine. After a successful call to the undocumented
ROM routine FndComTxt, which looks for a given command in a pointed-to table of
legal commands, Count holds the found command’s offset in that table. In Grafix 80,
OurComsText is the table that’s used. The table offset returned in Count is used by
ROM routines to supply a selector token for the to-be-crunched command.

Got all that? Let me fill in a few holes. When you write a program, you enter it
line by line. The BASIC interpreter takes each line and does some processing. One of
the main processing tasks is changing valid BASIC commands from C-ASCII text to a
condensed form. These condensed forms are called tokens, and may be one or two bytes
long. Many commands transform into a one-byte token. But there are so many com-
mands, some must be stored as two-byte tokens. The first byte of a token (the only
byte in a one-byte token) has bit 7 set to 1. That makes it easy for the interpreter to
find tokens, since bit 7 is easy to test (see all my previous discussions of 8502 bit-flagging),
and no other parts of a BASIC line other than tokens have bit 7 set to 1. (Actually, charac-
ters in a string constant can have bit 7 set to 1, but since these occur in a string, demar-
cated with quotation marks, they’re easily recognized and filtered out.) Since all the
one-byte tokens are used up, new commands are implemented as two-byte tokens. In
these two-byte tokens, the first byte (the one that has its high bit set to 1) is called
the lead-in token or lead-in byte, the second byte the selector token or selector byte.
Two lead-in tokens are used in the C-128, $FE and $CE. My 80-column graphics
commands use $FE as the lead-in token, since a complete set of vectors exists that makes
it easy to add commands that tokenize to $FE doubles. A given command’s selector
token is determined by taking the command’s position in its table (OurComsText is the
table in Grafix 80), and adding in some constants. Carefully check out the heavily-
commented |IEscLkDetor code to see how this all works.

2.13 THE IERROR VECTOR

This vector, located at memory locations $0300-$0301, allows the system, and any
other semi-intelligent lifeform, to send BASIC error messages to the current default
output device (usually the screen). To call it, load the X register with an error number,
then do an indirect jump thru this vector. For example:

LDX #SyntaxError
JMP (IError)

Pages 644-647 of the C-128 Prg provide a list of the error numbers, their messages,
and what they mean. In Grafix 80, I use this error facility when there’s been a mistake
involving the 80-column graphics commands.

2.14 THE IESCLK VECTOR

This vector, located at $030C-$030D, is called by BASIC’s parser near the end of
its token crunching activities. It’s sometimes called the token crunching vector. The
name comes from the fact it’s an indirect jump providing an escape hatch during com-
mand lookup. As mentioned before (Section 2.12), BASIC commands are converted to
tokens after a line is entered. This vector is there so you can provide a last-resort lookup
routine, when all the built-in command lists have been searched without success. In Grafix
80, we point this vector to our IEscLkDetor routine, which checks for one of the new
80-column commands.

The system calls IEscLk as it does most vectors, with an indirect jump:

JMP (IEscLk)

At the time of this jump, the A register contains the character BASIC’s parser is
looking at; that is, the first byte of the current BASIC line element of interest. If you
write a detour for this vector, your routine can check your own command lists. When
you’re done checking, you return to the parser loop by jumping to the regular IEscLk
handler. If you’ve found a valid command, you go to this exit jump with the carry flag
cleared to 0, the X register holding a code indicating whether the command crunches
to an $FE lead-in double-token (coded with a value of 0) or a $CE lead-in double-token
(coded with a value of 255), and the A register holding an adjusted version of the found
command’s selector token. Check out the IEscLkDetor code for more detail on this.
If you haven’t found a valid command, you go to this exit jump with the carry flag set to 1.

2.15 THE IESCPR VECTOR

This vector, located at $030E-$030F, is called by the BASIC interpreter when it’s
listing a tokenized BASIC line. The interpreter needs to convert tokens back into their
full C-ASCII command form to list them. This process is called un-crunching, and this
vector is sometimes called the token un-crunching vector. It’s name comes from the
fact it’s an indirect jump capable of providing an escape hatch during command printing.
It’s normally set to jump right back into the BASIC interpreter code in the ROM, but
you can redirect it and un-crunch double-byte tokens for commands you've added to
BASIC. Upon entry to a routine indirectly jumped to thru this vector, the X register
holds a code indicating whether the lead-in token is an $FE (coded with a value of 0)
or $CE (coded with a value of 255). The A register holds the selector token 23.

If the jumped-to routine decides that the double-token coded by X and A is valid,
and thus can be un-crunched, it ends by jumping to an undocumented un-crunching rou-
tine, FndTknTxt (see Section 2.21). To prepare for this exit jump, the X register gets
stuffed with an adjusted version of the selector token, A gets the hi-byte of a pointer
to a table of C-ASCII command names, and Y gets the lo-byte of that pointer. But if
the jumped-to routine decides that the double-token coded by X and A is invalid, it sets
the carry flag to 1 and jumps on to the regular IEscPr handler in the ROM.

Grafix 80 uses this vector for its new 80-column graphics routines. The vector is
reset to point to the routine IEscPrDetor. Check the heavily-commented code for vari-
ous implementation details.

10

2.16 THE IESCEX VECTOR

This vector rounds out the set that lets you add full-fledged commands to BASIC
7.0. It lives at $0310-$0311. The name comes from the fact it’s an indirect jump provid-
ing an escape hatch during command execution. When the BASIC interpreter comes
across an $FE double-token it doesn’t recognize, it jumps to the routine pointed to by
this vector. Normally, the vector points back into the ROM code. But it can be redirected
to a routine of your own design. This is what I’ve done in Grafix 80.

Upon entry to a routine pointed to by IEScEX, the $FE double-token’s selector to-
ken is in the A register. If this selector marks a valid command, you just go and carry
out the command, then clear the carry flag to mark success and return via a simple RTS.
If the selector is out of range, set the carry flag to mark failure and jump on to the regu-
lar IEscEx handler. Again, refer to the Grafix 80 code, in particular the IEscExDetor
routine, for heavily-commented real world examples of using this vector.

2.17 TOKENS: CRUNCHING NEW BASIC COMMANDS

We've covered most of this but here’s a mini-review and some further detail.

The key is redirecting the IEscLk vector to a special crunching routine, as covered
in Section 2.14. The new commands will have double tokens, with an $FE lead-in. You
also need to build a table containing the text of the new commands. One important fea-
ture of this table is the last character of each command must have its high bit (bit 7)
set to 1. That’s because of the way the ROM routines scan for commands. Most assem-
blers have a pseudo-op that takes care of this detail, though you can just figure out the
proper code with all those extra neurons you’re developing. The Merlin assembler sup-
plies the DCI pseudo-op to cover this situation. In Grafix 80, the command table is called
OurComsText. Finally, you need to associate selector tokens with each new command.
These can be any integer in the range $26 to $7F. In Grafix 80, this is done with the
constants listed in lines 255-263.

FndComText is an undocumented ROM routine you can call from the crunching
detour to carry out the crunching gruntwork. Section 2.20 gives further details about
using it.

2.18 TOKENS: DETECTING NEW BASIC COMMANDS

First, we have to come up with detour routines for IEscLk, IEscPr, and |IEscEx.
In crunching, we scan a table of command names, as mentioned in 2.17, and come up
with tokens. Then, in un-crunching, and executing new BASIC commands, we just run
some comparison tests on the token(s) to see if it’s one of our new commands. New
commands will have double tokens, so we look for a lead-in token match and a selector
token match.

2.19 TOKENS: UN-CRUNCHING NEW BASIC COMMANDS

Again, we've covered most of this but here’s a mini-review and some further detail.
The key is redirecting the IEscPr vector to a special un-crunching routine. Upon
entry, the X register holds a code indicating an $FE or $CE lead-in token, A holds the
selector token. If these two items indicate one of the new commands, we call on an

11

undocumented ROM routine, FndTknTxt, which does the actual un-crunching. Section
2.21 details the calling protocol for FndTknTxt.

2.20 UNDOCUMENTED ROM ROUTINE FNDCOMTXT ($43E2)

In Grafix 80, this is the routine IEscLkDetor calls to see if the BASIC parser is
looking at a command. To set up for the call, the processor’s A register gets the high
byte of a pointer to a table of command names, and Y gets the low byte of the pointer.
This table holds a number of command names, and the last character in each command
must have its high bit (bit 7) set to 1. Then FndComTxt is called with a JSR. It cruises
through the table of command names, seeking a match for the character string that the
BASIC interpreter is currently looking at via TxtPtr (see Sections 2.10 and 2.11). Upon
return, the carry flag is set if the routine found that BASIC’s sitting on a command from
the pointed-to table, and cleared if not. If a valid command was found, memory location
$000D holds the 0-based offset of the command within its table.

Be sure to refer to Chapter 3, Section 3.1 for more information on using un-
documented ROM routines.

2.21 UNDOCUMENTED ROM ROUTINE FNDTKNTXT ($516A)

This routine, IEscPrDetor calls to un-crunch a token. To set up for the call, the
processor’s A register gets the high byte of a pointer to a table of command names,
Y gets the low byte of the pointer, and X gets an adjusted offset into the 0-based table
that shows the appropriate command name. This offset is slightly weird, in that it gets
its high bit (bit 7) set. For example, if we want to print out the fifth command name
in the table, the index passed to FndTknTxt is $84 (remember, the table is 0-based).

2.22 LOW-MEMORY ROUTINE CHRGOT

This routine is actually a subset of the ChrGet routine, engineered by entering that
routine right after TxtPtr has been incremented. So, whereas ChrGet advances through
a BASIC line, ChrGot grabs the currently pointed to byte. That is, it gets a character
that’s already been got. ChrGot comes in handy in parsing routines. You can call ChrGet
to get the next character, play with it, even lose it in the play, then pick it up again
with ChrGot. Also, some of the built-in parsing routines, like GetByt and GetWdByt,
work through ChrGet. ChrGot lets you continue parsing after one of these calls. You'll
find numerous real-world examples sprinkled throughout the Grafix 80 code, particularly
in the various command parameter fetching routines.

2.23 8502 USAGE: DERIVING AN ABSOLUTE VALUE

This is a neat little trick, used in a couple of the Grafix 80 routines. Absolute value,
in case you don’t know, is the magnitude of a number, ignoring any negative signs. For
example, the absolute value of both —5 and 5 is 5, the absolute value of both-126 and
126 is 126. In Grafix 80, absolute value is used when we're figuring the length of a line
segment through subtraction, so we don’t have to worry about the positions of the end-
point coordinates in the subtraction.

12

As used, the procedure applies to one-byte signed values, which means they’re in
the range —128..127. The procedure involves a flip-flop followed by an incrementation.
Here’s a tidy little version:

LDA RawValue ; get the raw value
BPL :Done ; it’s already positive
EOR #$FF ; for a negative value, flip-flop it
CLC ; prepare to increment
ADC #1 ; increment
:Done STA AbsoluteValue ; store the absolute value

To work the same procedure on multi-byte signed values, you just flip-flop each
byte with an EOR, then add 1 to the result.

2.24 8502 USAGE: TWO-STAGE MASKING

Masking refers to the process of setting and clearing particular bits in a byte. It’s
synonym for the standard logical operations: ANDing, ORing, and EXCLUSIVE ORing.
Grafix 80 does a lot of masking, much of it setting and clearing bits and bytes for the
80-column display and attribute memories. Sometimes, the masking is a two-stage
process: an AND operation clears a range of bits, then an OR operation sets some of
those bits. Or an EXCLUSIVE OR flip-flops a mask byte, followed by an AND and/or
an OR.

Grafix 80 usually uses tables of masking bytes, picked up from the various routines
through indexing. As you read the Grafix 80 code, you'll see I played some condensa-
tion tricks on these tables. I enjoyed discovering the close, symmetrical relationships
between various AND and OR masks that let me squeeze these tables together.

2.25 8502 USAGE: NIBBLE TRANSFER

One of the holes in the 6502 family’s assembly language is an easy way to shift nib-
bles within a byte. The difficulty stems from the fact that the shift and rotate instruc-
tions only move one bit position at a time. So nibble transfers—moving bits 0..3 into
bits 4..7, or bits 4..7 into bits 0..3—have to be accomplished with multiple bit shifts.
In Grafix 80, there’s an example that shows how to move a byte’s lo-nibble (bits 0..3)
into the hi-nibble (bits 4..7). S/M ASM 2 has code that shows how to swap nibbles. If
any of you readers come up with more efficient 6502 nibble transfer techniques, please
write immediately to let me in on your discoveries.

2.26 UNDOCUMENTED ROM ROUTINE: GETBYT ($87F4)

This is the third undocumented ROM routine used in Grafix 80. Again, check out
Chapter 3, Section 3.1 for more information on this dangerous practice, why I stooped
to it, and other tidbits.

GetByt grabs a byte-sized integer parameter from a BASIC line. It doesn’t matter
whether the parameter’s expressed as a constant or a variable. GetByt does all the neces-
sary manipulations and conversions, then returns the recovered parameter’s value in

13

the processor’s X register. The BASIC parser’s pointer ends up at the next line ele-
ment following the parameter. In Grafix 80, GetByt is called on to grab parameters for
the various 80-column commands.

2.27 UNDOCUMENTED ROM ROUTINE: GETWDBYT ($8803)

This is the fourth and last undocumented ROM routine used in Grafix 80. It’s a close
relative toGetByt.

GetWdByt grabs a word-sized integer parameter and a byte-sized integer parame-
ter from a BASIC line. It’s a fairly common situation in BASIC 7.0 for a command to
expect a pair of parameters to come in this order, separated by a comma. Thus, this
function. Again, as in GetByt, it doesn’t matter whether the parameters are expressed
as constants or variables. GetWdByt does all the necessary manipulations and conver-
sions, then returns the lo-byte of the word-sized parameter in memory location $0016,
the hi-byte of the word-sized parameter in memory location $0017, and the byte-sized
parameter in the processor’s X register. The BASIC parser’s pointer ends up at the
next line element following the byte-sized parameter. In Grafix 80, GetWdByt is called
on to grab parameters for the various 80-column commands. For example, a command
may take a word-sized horizontal screen coordinate, and then a byte-sized vertical screen
coordinate.

2.28 8502 USAGE: MULTI-BYTE DIVISION BY POWERS OF 2

Every time you shift a byte that represents an unsigned integer value one bit to
the right, it has the same effect as dividing the byte’s value by 2. This makes division
by powers of 2 easy for such values, just shift right once for each power of 2 you want
to divide by. But you may not know how to do the same kind of quick division when
the number to be divided is stored in more than one byte. The trick is getting a bit 0
that shifts out of one of the bytes moved into bit 7 of the next-lowest byte in the num-
ber’s multi-byte representation, so the chain of bit shifts is unbroken. This can be done
with combinations of the LSR and ROR instructions. LSR shifts bits one position to
the right, putting a 0 into bit 7 of the byte and moving bit 0 into the carry flag. ROR
also shifts bits one position to the right, putting the contents of the carry flag into bit
7, then moving bit 0 into the carry flag. So, the way to accomplish division of a multi-
byte unsigned integer value by 2 is to start with the hi-byte, do an LSR to get the ball
rolling, then follow through with RORSs on each of the lower bytes. Each time you carry
this cycle through, each bit in the multi-byte representation moves 1 bit to the right,
and the number gets divided by two. Repeat the cycle twice, you’ve divided by 4; three
times, and you've divided by 8; and so on. Grafix 80 uses this technique to speed up
a number of its calculations.

2.29 SCREEN CLEARING VIA BSOUT

' This has been mentioned before, but Grafix 80 shows how sending a screen clear-
ing character ($93) (147) to the kernel routine BSOut works on the 80-column VDC
screen just as well as it does on the 40-column VIC screen.

14

2.30 KERNEL ROUTINE SWAPPER ($FF5F)

As I first scanned through my eagerly-awaited C-128 Prg, I remember coming across
this built-in function and wondering how soon I'd be using it. Well, there it is in Grafix
80’s CIrTx80 routine, written about three weeks after that first scan. Swapper switches
you to the screen mode you’re not in. That is, if you’re in 40-column screen mode, it
puts you into 80-column mode. If you're in 80-column screen mode, it puts you into
40-column mode. And it takes care of all the screen variables and tables that the system
uses to fiddle with a screen. There’s no preparation, just call it with a simple JSR.

2.31 CLEARING THE 80-COLUMN GRAPHICS SCREEN

Using BSOut to clear a screen only works when the screen’s in text mode. Graphics
mode is a little tougher. Grafix 80 has a little routine that clears the 80-column bit map.
It uses the 80-column chip’s block write capability. The algorithm is quite simple: for
each 256 byte page of the 80-column bit map display memory, fill that page with zeros.
256 bytes is the most we can tell the VDC chip to work on in one block write command.
Be sure to look at the code for the actual implementation of this algorithm.

2.32 SETTING THE 80-COLUMN CHIP FOR TEXT OR GRAPHICS

Bit 7 of VDC register 25 controls chip mode. Set the bit to 1 for bit map mode,
0 for text mode. In the normal, full-page (640 horizontal by 200 vertical) bit map situa-
tion, you’ll have to disable attribute memory because there’s no room for it. That’s done
by clearing bit 6 of register 25 to 0. When you go back to text mode, attribute memory
is enabled by setting bit 6 of register 25 to 1.

In Grafix 80, I use the full 640 by 200 bit map. So, to enter bit map mode I clear
bit 6 of VDC register 25 and set bit 7. Going back to text mode, I set bit 6 and clear
bit 7 of VDC register 25.

2.33 80-COLUMN GRAPHICS COLOR CONTROL NIBBLES

In 80-column bit map mode, with a full 640 horizontal by 200 vertical display, almost
all of the VDC chip’s 16K of private RAM is taken up by bytes for the bit map. There’s
no room left over for attribute memory. So, without an attribute area, the bit map dis-
play is limited to two colors, one for the foreground and one for the background. Bits
0..3 (the lo-nibble) of VDC register 26 hold a color code in the 0..15 range for the back-
ground color, and bits 4..7 (hi-nibble) of the same register hold a code for the foreground
color. If a byte in the bit map has a bit set to 1, it’ll show up in the foreground color.
If a bit is set to 0, it'll show up in the background color. See Section 2.35 for more infor-
mation on the color codes used in 80-column operations.

2.34 80-COLUMN GRAPHICS PIXEL OPERATIONS

In order to draw or clear a dot on the 80-column graphics screen, you set or clear
the appropriate bit in the appropriate byte of the VDC bit map memory. How to find
the appropriate bit and byte? There are 200 vertical positions, or rows, in the bit map,
and each row has 640 horizontal positions, or columns. Each byte in the bit map memory

15

controls eight pixels, and eighty bytes map one row of the bit map (640 pixels). For
once in my computer graphics work, the bit map is organized logically; that is, the first
80 bytes map the first row of pixels, the next 80 bytes map the second row, and so on.

Grafix 80 uses a routine called FigPoint to figure out bit and byte information for
a given screen pixel. First, it figures out the address of the byte the pixel lives in. It
takes the point’s vertical coordinate, and uses it to index into some tables to build the
address of the first byte in the point’s row. The easy way is to have tables with an ad-
dress for each of the 200 rows. To save some memory space, I've used shortened ta-
bles, and done some tricky indexing based on regularities in the addresses, but the idea’s
the same. After getting the address of the starting byte of the pixels’s row, FigPoint
takes the pixels’s horizontal coordinate and divides it by 8, since there are eight pixels
controlled by each bit map byte. The integer, part of the division’s result tells us the
row offset of our pixel’s byte; that is, how many bytes into the row the pixel’s byte
is at. [add that row offset value to the row’s starting address, and get the exact address
of the pixel’s byte. The remainder from the horizontal coordinate division gives me the
bit position in that byte that controls the given pixel.

Okay. I've got a pixel’s bit position in its byte, and the byte’s location in the VDC
RAM. To turn that pixel on, I just grab the byte, set the appropriate bit to 1, and store
the byte back into position. Section 1.2.30 covers grabbing and storing VDC RAM bytes.
Setting the appropriate bit to 1 is done with a mask and an ORA command. The pixel’s
bit position is used as an index into a table of ORing masks. Turning a pixel off is just
about the same, except that this time we clear the appropriate bit to 0 with a mask and
an AND command. This time, the pixel’s bit position is used to index into a table of
ANDing masks. In Grafix 80, all this stuff gets done in the routines Plotlt, GetTargByt,
PutTargByt, and PixelPop.

2.35 BLOCK WRITE, BLOCK COPY, 80-COLUMN SCREEN REGISTERS 24
AND 30 (WORD COUNT) AND 32 (BLOCK START ADDRESS HI) AND 33
(BLOCK START ADDRESS LO)

Registers 24, 30, 32, and 33 let you carry out block writes and block copies. Block
writes let you fill contiguous areas of VDC RAM with the same byte. Block copies let
you copy the contents of one contiguous area of VDC RAM to another contiguous area.
In both procedures, VDC register 30 is used to indicate how many bytes are in the mem-
ory block. Bit 7 of register 24 is used to indicate whether a block function is block copy
or block write. Registers 32 and 33 are used in block copies to indicate the starting ad-
dress of the transfer’s source block. In Grafix 80, block writing is used to clear the graphics
screen.

Here’s the official C-128 Prg block write procedure:

1. Using the VDC register writing algorithm, set VDC register 18 to the
hi-byte of the address of the initial byte in the block.

2. Similarly, set VDC register 19 to the lo-byte of the address of the initial
byte in the block.

3. Using the VDC register writing algorithm, put the value you want to write
to the block into VDC register 31 (the data register).

16

4. Using the VDC register writing algorithm, clear bit 7 of VDC register
24 to 0 to select the block write function.

5. Again using the register writing algorithm, put into VDC register 30 the
number of bytes in the block less one (since step 3 already wrote 1 byte)

Here’s the official C-128 Prg block copy procedure:

1. Using the VDC register writing algorithm, set VDC register 18 to the
hi-byte of the address of the initial byte in the destination block.

2. Similarly, set VDC register 19 to the lo-byte of the address of the initial
byte in the destination block.

3. Using the VDC register writing algorithm, set bit 7 of VDC register 24
to 1 to select the block copy function.

4. Using the VDC register writing algorithm, set VDC register 32 to the
hi-byte of the address of the initial byte in the source block.

5. Similarly, set VDC register 33 to the lo-byte of the address of the initial
byte in the source block.)

6. Again using the register writing algorithm, put into VDC register 30 the
exact number of bytes in the block.

2.36 80-COLUMN COLOR NIBBLES

When working with the 80-column screen, you get to set colors with nibble-sized
codes. But, unlike VIC graphics, you can’t just poke the standard C-128 BASIC color
numbers into attribute memory or the color registers. That’s because the VDC color
nibble codes are used directly to control the four components of the chip’s IBM-PC-like
color scheme: red, green, blue, and intensity. There’s a mistake in the C-128 Prg con-
cerning this subject: on page 302, they tell you that the nibble codes are determined
by taking the BASIC color codes and subtracting one. Nope. The codes are found by
figuring out which components are necessary to produce each of the sixteen colors, then
putting together a nibble by representing each present component with a one bit, each
absent component with a zero bit. Four components, four bits, one nibble. Got it? Ap-
pendix I shows all the VDC colors, the BASIC codes, and the nibble codes. You can
also find the same information at the end of Grafix 80, in the table HUNb80Tb.

17

Chapter 3:
Program Notes

3.1 UNDOCUMENTED ROM ROUTINES

You should NEVER use undocumented ROM routines in a commercial software prod-
uct. ROMs change quickly, and undocumented routines are usually misplaced in the
change.

However, since (1) Grafix 80 is written for learning, not selling, and (2) the un-
documented ROM routines I've used are long, twisted and handy, and (3) replacement
routines would add many pages to the source code, and (4) the undocumented ROM
routines are used only in the BASIC 7.0 interface to the 80-column routines. I’ve used
four of the no-no’s. Two are used in BASIC command text searches :FndComTxt and
FndTknTxt. Two others are used while fetching graphics command parameters from
BASIC: GetByt and GetWdByt. You'll find descriptions of these four routines in Chap-
ter 2: Sections 2.20, 2.21, 2.26, and 2.27 respectively.

Of course, you may own a C-128 with different ROMs than mine. What to do if you
want to use the 80-column graphics routines? There are two solutions. Here’s one: you
can call the routines from assembly language. That means you’ll have to fiddle with the
source code a bit, excising all the parts that have to do with BASIC interfacing, then
call the remaining routines as needed. More precisely: remove Install, Uninstall,
InsCrchDtr, InsUncrDtr, InsExecDtr, RmvCrchDtr, RmvUncrDtr, RmvExecDtr,
IEscLkDetor, IEscPrDetor, IEscExDetor, CommaCruz, DoG80Box, G8BoxGtPs,
DG80Color, G8ColGtPs, DoG80Draw, G8DrwGtPs, DoG80Graphic, and
G8GrfGtPs. Remove the running mode check and call to uninstall from DoG80Scat.
Remove the call to install from G80 Install.S. Recompile the code, then run G80 Install.

18

Now, to call one of the 80-column commands from assembly language, you set up the
command’s parameters, optionally call the command’s parameter-checking routine
(G8xxxChPs), then call the command’s execution routine (G8xxxDolt). Another trib-
ute to heavily-modular code. Section 3.10 has a few more details on calling the routines
from assembly language.

There’s a second way to deal with a ROM change that moves the undocumented
routines in Grafix 80. It’s a little tougher to pull off, but it maintains Grafix 80’s full power.
What you do is find the four routines in your ROM, then replace the old addresses with
the new ones. The replacement is done by changing lines 192, 194, 196, and 198 in
the constants section at the beginning of the Grafix 80 source code. Finding the new
routine addresses is done with the C-128 monitor. Each of the routines has a unique
sequence of bytes, or signature, that lets you find it. These signatures have a good chance
of surviving ROM changes. Figure 3-1 shows each routine’s current unique signature.

Here’s an example. If you want to find FndComTxt, enter the monitor and give
this command:

H F4000 FFFFF 85 25 84 24 A0 00 84

This tells the monitor to hunt in the bank 15 memory range $4000 . . $FFFF for
the sequence of seven bytes that make up FndComTxt’s signature. On my C-128, the
monitor comes back with the single address $43E2, which is where FndComTxt lives.
Note that in some cases the address returned by the monitor after a signature search
has to be adjusted; again, Fig. 3-1 tells all.

Sometimes these signatures do get changed. In that case, you have to use the mon-
itor to search for assembly language similar to the start of the current routines. Figure
3-2 shows the first few commands for each of the four routines. This code is pretty posi-

Undoc'd Location Unique Adjustments
ROM In My Signature To Address
Routine's C-128's In My C-128's Returned By
Name ROM ROM Monitor Search
FndComTxt $43E2 85258424 A0 00 84 none
FndTknTxt $516A 85258424 A0O00CA none
GetByt $87F4 A6 66 DO subtract 6
GetWdByt $8803 A6 67 4C add 5
Start Monitor search command with: H F4000 FFFFF

Fig. 3-1. If your C-128 has a different ROM than the author’s, you may have some difficulty finding
the four undocumented ROM routines used in the Grafix 80 project. This information should help you
find them.

19

FndComTxt STA $25
STY $24
LDY #3500
STY $0D
DEY
INY
LDA ($3D),Y
SEC
SBC ($24),Y
FndTknTxt STA $25
STY $24
LDY #$00
DEX
BPL *+$11 Fig. 3-2. Here are the first few in-
LDA ($24),Y structions for each of the four un-
PHA documented ROM routines used in
INC $24 the Grafix 80 project.
PLA
GetByt JSR $77D7
JSR $84AD
LDX 566
BNE *+$2F
LDX $67
JMP $386
GetWdByt JSR $77D7
JSR $8815
JSR $795C
Jmp GetByt

tion independent, so the odds are it won’t change very much in any revised ROMs. And,
if the routines do move, they usually don’t move very far.
Phew. See why we never use undocumented ROM routines in commercial code?

3.2 MOVING BASIC UP TO FIT CODE BENEATH IT

The C-64 has a number of nice nooks and crannies for stuffing assembly language
programs. The C-128 has even more. But, if your routines are going to interact heavily
with BASIC’s interpreter, it’s particularly useful to put code in RAM bank 1, beneath
BASIC’s text area. That minimizes memory configuring when the assembly routines
are running. The area $1300-$1C00 is usually available for this purpose. It provides 2304
bytes of memory space.

But the Grafix 80 code is large. I needed even more room. To get it, I moved the
start of BASIC’s text area up 512 bytes. G80 Install contains the code that does this,
and Sections 2.2 and 2.3 describe the process.

20

3.3 HORIZONTAL LINE DRAWING ALGORITHMS

Horizontal lines can be drawn faster than any other lines on most bit-mapped com-
puter displays, including the C-128’s. That’s because these displays use consecutive
bytes of screen memory to represent adjacent horizontal screen pixels. This organiza-
tion of data gives us what the computer science types call coherence. The fundamental
idea behind all fast horizontal line drawing algorithms is finding the byte that controls
the leftmost pixel in the line, adjusting that pixel’s bit, then continuing to adjust subse-
quent bits up through the rightmost pixel’s bit. Only the first pixel’s byte’s location has
to be calculated or looked up; subsequent pixel’s bytes follow consecutively. On the C-128
this coherence is especially helpful, due to the nature of 80-column screen RAM access.

The algorithm I use in the 80-column routines divides horizontal lines into three cases.
The first case is what I call a one-part line, in which the line’s pixels are controlled by
one byte of screen memory. The second case is what I call a two-part line, in which
the line’s pixels are controlled by two bytes of screen memory. The third case is what
I call a three-part line, in which the line’s pixels are controlled by three or more bytes
of screen memory. Figure 3-3 shows examples of these three line cases. And sheets
12 thru 15 of Fig. 7-2 give complete pseudo-code for the horizontal line drawing algorithms.

To draw a one-part line, I grab a mask for the left part of the line, grab one for
the right part, take their intersection to get a mask that represents the whole line, then
use that mask to adjust bits in the line’s byte. Figure 3-4 gives a picture of the process.

To draw a two-part line, I grab a mask for the left part of the line, then use that
mask to adjust bits in the left part’s byte. Then I grab a mask for the right part of the
line, and use it to adjust bits in the right part’s byte. Figure 3-5 gives a picture of this
process.

Examples Of Three Horizontal Line Cases
a heptad of one—part lines
IJ:I'rrrr'n'lln“l'l'rrlI#:Ell::lIhlnll:r:hnlmﬂ:l:n:lnj

a trio of two—part lines

o e o

a pair of three—part lines

Fig. 3-3. Our algorithm for drawing horizontal lines divides such lines into three classes: one-part lines,
two-part lines, and three-part lines. Here are some examples of each class.

21

Drawing A One—Part Horizontal Line
get a mask starting at
the line's leftmost pixel | | IZ%%W%Z%
& inc's rightmost pix NN EE
the line's rightmost pixel
take their intersection to get
a mask for the whole line I | W I |]

Fig. 3-4. Our algorithm for drawing a one-part horizontal line.

Drawing A Two—Part Horizontal Line

get a mask for the

left side of the line HERERENNNEEEEEEEN

draw the left

|
side of the line HEEEE | | ENENEEEE
get a mask for the
right side of the line
draw the right
side of the line

Fig. 3-5. Our algorithm for drawing a two-part horizontal line.

To draw a three-part line, I do the left and right parts the same as for a two-part
line. The middle section of the line, which consists of one or more whole bytes, is done
by preparing an adjusted byte, then storing it in each byte. Figure 3-6 gives a picture
of this process.

3.4 VERTICAL LINE DRAWING ALGORITHM

Vertical lines are also easy to draw on most bit-mapped displays. Coherence in these
cases comes from the fact that the pixels in a vertical line are controlled by bytes that

22

Drawing A Three—Part Horizontal Line

HEEEENNNEEEEEEEEEEEEEEEEEEEEEREE

get a mask for the left side of the line

IIIIT._iIIIIIII IEENEEEEEEERREN

draw the left side of the line

get an adjusted byte for the middle parts of the line

NEEEE L EEeeEeeE

draw the middle parts of the line

AN AAAN]

get a mask for the right side of the line

mmm e

draw the right side of the line

Fig. 3-6. Our algorithm for drawing a three-part horizontal line.

are separated by a constant number of memory locations. If you think about it, you'll
realize that this constant is the number of bytes that controls a row of the bit-mapped
display.

This leads to the simple algorithm used in Grafix 80. Start with the topmost point
in the line. Plot it. Then move down to the next pixel’s byte by adding the appropriate
constant. See sheet 12 in Fig. 7-2.

3.5 BRESENHAM’S GENERALIZED LINE DRAWING ALGORITHM

Horizontal and vertical lines can be drawn quickly, as detailed before, since there’s
no need for heavy calculation once the first point of the line is located. Other lines—the
slanted ones—aren’t quite so simple. Early generalized line drawing algorithms required

23

one or more multiplications to calculate each pixel’s location. Multiplication is slow, as
are the resulting algorithms.

Then along came a person named Bresenham, who did a little mental and algebraic
manipulation, and produced a generalized line-drawing algorithm that only requires addi-
tions and subtractions. These operations can be done quickly. Bresenham’s work is the
basis for the generalized line-drawing algorithm used in Grafix 80. In the discussion that
follows I'll refer to the algorithm as BGLDA (for Bresenham’s Generalized Line Draw-
ing Algorithm).

Think of drawing a line as moving a point from one of the line’s endpoints to the
other. When the point reaches its destination, it will have achieved a net change in both
its vertical and horizontal positions. In an ideal world, where display screens have in-
finite resolution, each time the point moves one integer position horizontally, it moves
some amount vertically. In most lines this amount won’t be an integer value. Here in
the real world, though, screens have finite resolution, and we can only move one pixel
at a time; that is, we're limited to integer value motion. What the BGLDA does is keep
track of the real vertical motion in a variable I call the erometer. Every now and then
the erometer overflows. That is, the real motion reaches an integer value. At that point
we move one position vertically, then reset the erometer.

The values used to adjust the erometer are based on the line’s slope. Different values
are used for steep (slope greater than 45°) and shallow (slope less than 45°) lines. Differ-
ent values are used for lines that rise or fall as the line goes from left to right. And,
just to complicate the previous paragraph’s discussion, sometimes the erometer keeps
track of horizontal motion, rather than vertical. All these implementation details can be
seen in the BGLDA pseudo-code, located on sheets 15 thru 18 of Fig. 7-2. Even more
detail can be found in the actual assembly language code, located on sheets 41 thru 46
of Fig. 8-2. But, remember, all of this is just detail. The big idea of the BGLDA is set-
ting up a variable that keeps track of non-integer changes, then overflows once an in-
teger value is reached.

3.6 MULTIPLE SOURCE CODE FILES

The C-128 doesn’t have enough room to hold large assembly language source files.
Most assemblers let you get around this by breaking a project up into a number of smaller
source files. This is done in the Grafix 80 program. The code is broken up into six files.
The files are connected by using the Merlin-128 pseudo-op PUT. See Appendix O for
details on this pseudo-op’s usage.

3.7 CHEAP BOX TRICKS

The Grafix 80 routines take it easy when it comes to drawing boxes. Outlined boxes
are drawn by calling on the horizontal and vertical line drawing routines. Filled boxes
are drawn by calling repeatedly on the horizontal line drawing routines. And, since these
routines are so quick, Grafix 80 box drawing is much faster than the C-128’s built-in
40-column box routines.

3.8 RANGE ADJUSTMENT TO OPTIMIZE TESTING

The Grafix 80 routine GBColChPs checks to see if parameters to the G80Color
command are in range. It pulls a little optimization trick when it checks the color number

24

parameter. The color parameter can take on values in the range 1 . . 16. G8CoIChPs
decrements the parameter value so it can check for values in the range 0 . . 15. This
is an easier range to check with assembly language code.

3.9 GENERALIZING A DRAW COMMAND WITH A POINT LIST

The G80Draw command operates like its 40-column counterpart, in that it can take
a list of points as input and then draw a series of connected lines. In the Grafix 80 pack-
age this ability is implemented by building a list of points.

The point list in turn is implemented as an array of point entries, G8DrwLst. This
array can hold up to 33 points. Each point is stored as three bytes: two bytes for a horizon-
tal coordinate and one byte for a vertical coordinate. The variable GBDLPts keeps track
of how many points are currently in the list. A zero-page variable, DLPntr, points to
the beginning of the list. Finally, the variable G8DLNdx indexes off of DLPntr to point
to the next open slot in the list.

G8DrwGtPs fetches parameters for the G80Draw command. It starts out by call-
ing InitPntLst to create a blank point list. Then, as points are picked up from the BASIC
line, it calls on the routine StorPntLst to add them to the point list.

G8DrwDolt draws single points and line segments. It checks the point list to see
what to do. No points, and it simply exits. One point, and it calls on FigPoint and Plotlit
to draw a single point. More than one point, and it draws a series of line segments that
connect the points.

Here's the simple algorithm G8DrwDolt follows for point lists containing two or more
points (stated slightly differently here than on sheet 10 of Section Fig. 7-2, but amount-
ing to the same code):

grab two points from the point list
CALL on DoLine to draw a line connecting them
WHILE
there’s a next point to grab from the point list
DO the following
grab that next point
CALL on DoLine to draw a line connecting it to the last line drawn

3.10 CALLING THE 80-COLUMN
GRAPHICS ROUTINES FROM ASSEMBLY LANGUAGE

This was mentioned briefly in Section 3.1. Each of the G80 Grafix commands sports
a modular design, as follows: Each command has an execution routine, named DoG80xxx.
This routine is followed by a set of command parameter variables. The execution routine
calls on three subsidiary routines: G8xxxGtPs, which fetches any command parameters
from the BASIC line; G8xxxChPs, which checks the legality of command parameters,
and G8xxxDolt, which carries out the command. To call one of the G80 Grafix commands
from assembly language, start by plugging parameters directly into the command’s pa-
rameter variables. If you don't trust your ability to pass clean parameters, call the
command’s G8xxxChPs routine to check their legality. Then just call the G8xxxDolt
routine to carry out the command.

25

You can see an example of this in the routine G8GrfDolt, which sets up parameters
and then calls on G8ColDolt.

3.11 COMMAND VARIATION BASED ON WHETHER THE
BASIC INTERPRETER’S IN DIRECT MODE OR RUNNING A PROGRAM

The Grafix 80 package shows you how to add commands to BASIC 7.0. When you
add a command, it’s easy to customize things so the command’s behavior is dependent
on whether the interpreter’s running a program or working in direct mode. The key
is memory location $007F. A zero value in this location indicates direct mode. A non-
zero value indicates program mode. The DoG80Scat routine gives an example of using
this location’s value (the GBOSCAT command works only in direct mode).

3.12 MODULARITY AND OPTIMIZATION

You'll notice that the routines used in the Grafix 80 package are highly modular.
This has some effect on the speed of execution. If you wanted to optimize for speed,
you might be tempted to combine some of the routines into more straight-line code.
Be careful. Modularity is just too useful to be thrown out in any but the most time-critical
situations. If you do need some extra speed, the first thing to do is examine your al-
gorithms for possible speedups. Then look for ways to speed up inner loops. Unrolling
a loop may be useful. Unrolling a loop just means that you do more things in the body
of the loop. The tradeoff is space for time. For example, a loop like this:

FOR
position = 1 TO 20
DO the following
erase (position)
. . . can be unrolled into a loop like this:
FOR
position = 1 to 20 STEP 4
DO the following
erase (position)
erase (position+ 1)
erase (position +2)
erase (position+3)

The second version’s code will be longer, but will usually run faster.

3.13 TABLES, TABLES, TABLES

The Grafix 80 routines use a number of tables. There are tables for BASIC com-
mands, masking pixels, addressing screen memory, and selecting colors. Tables let your
programs run quickly and cleanly. And changes are easy to make. Actually, heavy table
usage is just a subset of the following good idea: separate your code and data. That way
you can make certain types of modifications to one without worrying about the other.
Apple’s Macintosh systems make powerful use of this idea with their implementation
of the resource concept. But you can do similar things on any system, including the C-128.

26

3.14 ADDING COMMANDS TO THE PACKAGE

There are five steps to follow to add a command to the Grafix 80 package. The first
four hook your command into BASIC 7.0, and are pretty mechanical. The fifth step de-
mands a bit more of the mind: writing the code to execute the new command.

Let’s go through the steps. First: go to the token stuff area of the Constants sec-
tion of the Grafix 80 source code (lines 246-263 of Grafix 80 O.S.). Notice how there’s
a selector token equate for each of the commands already added to BASIC: TknBox,
TknColor, TknDraw, TknGraphic, and TknScat. The values of these selector tokens
begin at $27, with each command taking the next value. What you need to do is add
an equate for your new command, using the next available value. For example, the first
command you add could have an equate like this:

TknAnim = $2C ;selector token for GROANIMATE

Next step is to adjust the constant Ourlast, in the same section of the source code,
so it’s equal to the selector token with the greatest value. For example, if the example
above were the only command you were adding, the new equate would look like this:

OurLast = TknAnim ;last selector token for our commands

The third hookup step is to add the command to the OurComsText table. This ta-
ble is located at line 350 of the source file Grafix 80 5.S. It holds ASCII code for each
command, with this twist: the last character of the command gets its high bit set. Com-
mands are listed in the order of their selector tokens. The Merlin-128 assembler lets
you put ASCII strings in the proper format for this list with the DCI pseudo-op. Here’s
how you’d add our example command:

DCI 'g80animate’

The fourth step is to add an execution branch for the new command to the IESCEx-
Detor routine, located around line 240 of the source file Grafix 80 1.S. The pattern for
these branches should be evident from the current IEscExDetor code. Here’s how you'd
add a branch for the example command we’ve been using:

:Tst6 CMP #TknAnim ; is it GRBOANIMATE command?
BNE :Tst7 ; if not, next test
(or BNE :NotOurs if this is the last test)
JSR DoG80Anim ; it is, so execute the command
BCC :GoneZol ; if we make it back, always branches

So much for the mechanical steps. The fifth and final hookup step is writing the rou-
tine that’ll actually carry out the command. This execution routine must satisfy the fol-
lowing pseudo-code conditional:

IF
the routine executes successfully

27

THEN
the A-, X-, and Y- registers are preserved
return from the routine is via an RTS
the carry flag returns cleared
ELSE {the routine ran into an error condition}
the A- and Y- registers are preserved
the X register gets loaded with an error code
return from the routine is via a JMP thru the IError vector
the carry flag returns set

The execution routine will usually pick up some parameters from the BASIC line,
although that’s not always the case (see the Grafix 80 routine DoG80Scat). The

draw 100 random dots

ten trials

all times are in seconds

graphics chip| 40 40 40 40

width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time pertriall 1.15 0.54 1.15 0.54
standard deviation| 0.01 0.01 0.01 0.01

relative speed (1 = fastest)| 2.13 1.00 2.13 1.00

graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast

average time pertrial| 1.17 0.56 1.18 0.56

standard deviation| 0.01 0.01 0.01 0.01

relative speed (1 = fastest)| 2.17 1.04 2.19 1.04

graphics chip| 80 80

width of drawing area| 640 640
processor speed| slow fast
average time pertrial| 1.18 0.56
standard deviation| 0.01 0.01

relative speed (1 = fastest)| 2.19 1.04

Fig. 3-7. Results from performance tests on drawing random dots.

28

draw 100 random vertical lines

ten trials
all times are in seconds

graphics chip| 40 40 40 40

width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 4.89 2.31 4.89 2.31

standard deviation| 0.27 0.13 0.27 0.13
relative speed (1 = fastest)| 2.19 1.04 2.19 1.04

graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast

average time pertrial| 4.73 2.24 4.74 2.23
standard deviation| 0.26 0.13 0.26 0.12
relative speed (1 =fastest)| 2.12 1.00 2.13 1.00

graphics chip| 80 80
width of drawing area| 640 640
processor speed| slow fast
average time per trial| 4.76 2.24

standard deviation| 0.26 0.12
relative speed (1 = fastest)| 2.13 1.00

Fig. 3-8. Results from performance tests on drawing random vertical lines.

DOG80xxxx routines in Grafix 80 provide a number of examples of setting up execu-
tion routines.

3.15 PERFORMANCE TESTING

I used the programs G80 Test Suite and G40 Test Suite to test the performance
of the 80-column graphic commands. The results are summarized in Figs. 3-7 thru 3-12.
The source code for the two programs is in Figs. 8-3 and 8-4.

I tested performance by drawing pseudo-random samples of six types of graphics
objects: dots, vertical lines, horizontal lines, lines, outlined boxes, and filled boxes. For
each type of graphic object, there were four test sets run on the 40-column screen using
the BASIC 7.0 drawing commands, and six test sets on the 80-column screen using the

29

draw 100 random horizontal lines

ten trials

all times are in seconds

graphics chip| 40 40 40 40
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 4.37 2.07 6.64 3.14
standard deviation| 0.14 0.06 0.26 0.13
relative speed (1 = fastest)| 4.33 2.05 6.57 3.11
graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time pertrial| 2.13 1.01 2.16 1.04
standard deviation| 0.01 0.01 0.01 0.01
relative speed (1 = fastest)| 2.11 1.00 2.14 1.03
graphics chip| 80 80
width of drawing area| 640 640
processor speed| slow fast
average time per trial| 2.23 1.08
standard deviation| 0.01 0.01
relative speed (1 = fastest)| 2.21 1.07

Fig. 3-9. Results from performance tests on drawing random horizontal lines.

Grafix 80 extensions to BASIC 7.0. Test sets varied by the width of the active drawing
area and whether the processor speed was 1 or 2 megahertz. Ten trials, each based
on a different random seed, were run for each test set. The ten random seeds were
(1, 2, 45, 1291, 5987, 8711, 9261, 22222, 28835, 33287). Each trial drew 100 pseudo-
randomly located and sized instances of the graphic object.

The figures give three performance values for each test. The first indicates the aver-
age time (in seconds) per trial of 100 instances. The second value—standard deviation,
indicates the time variation between trials. The lower the standard deviation, the smaller
the time variation, signalling an algorithm that provides more consistent performance
over different data worlds. Finally, there’s a number that compares the average trail

30

times of the ten tests. The bigger the value here, the slower the test. 1.00 indicates

the fastest test.

Among the primary design goals for the Grafix 80 routines were consistency, relia-
bility, and lucidity. The reasonably low 80-column standard deviation values help indi-
cate this. Speed concerns were met by algorithmic refinement rather than code trickery.
And the bottleneck interface to 80-column display memory slows down any 80-column
graphics work. Interestingly, the Grafix 80 routines run as fast or faster than their
40-column counterparts. And, unlike the 40-column routines, the Grafix 80 routines can
be called directly from assembly language, which provides a marked speedup.

draw 100 random lines

ten trials

all times are in seconds

graphics chip| 40 40 40 40
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per triall 5.86 2.77 7.67 3.62
standard deviation| 0.22 0.10 0.28 0.13
relative speed (1 =fastest)| 2.12 1.00 2.77 1.31
graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 6.27 3.07 8.27 4.08
standard deviation| 0.25 0.12 0.28 0.14
relative speed (1 = fastest)| 2.26 1.11 2.99 1.47
graphics chip| 80 80
width of drawing area| 640 640
processor speed| slow fast
average time per trial| 13.05 6.51
standard deviation| 0.54 0.27
relative speed (1 = fastest)| 4.71 2.35

Fig. 3-10. Results from performance tests on drawing random lines.

31

draw 100 random outlined boxes

ten trials

all times are in seconds

graphics chip| 40 40 40 40
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 12.96 6.13 17.47 8.26
standard deviation| 0.64 0.30 0.82 0.38
relative speed (1 = fastest)| 3.52 1.67 4.75 2.24
graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time pertrial| 7.76 3.68 7.82 3.72
standard deviation| 0.52 0.24 0.52 0.24
relative speed (1 =fastest)| 2.11 1.00 2.13 1.01
graphics chip| 80 80
width of drawing area| 640 640
processor speed| slow fast
average time pertrial| 7.93 3.80
standard deviation| 0.52 0.25
relative speed (1 =fastest)| 2.15 1.03
Fig. 3-11. Results from performance tests on drawing random outlined boxes.
draw 100 random filled-in boxes
ten trials
all times are in seconds
graphics chip| 40 40 40 40
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 267.30 | 126.36 | 532.22 | 251.60
standard deviation| 30.66 14.50 61.11 28.89
relative speed (1 = fastest)| 44.11 20.85 87.83 41.52
graphics chip| 80 80 80 80
width of drawing area| 160 160 320 320
processor speed| slow fast slow fast
average time per trial| 11.83 6.06 13.55 7.32
standard deviation| 0.93 0.49 1.13 0.63
relative speed (1 =fastest)| 1.95 1.00 2.24 1.21
graphics chip| 80 80
width of drawing area| 640 640
! processor speed| slow fast
i average time per trial| 16.83 9.74
[standard deviation| 1.48 0.90
i relative speed (1 = fastest)| 2.78 1.61

Fig. 3-12. Results from performance tests on drawing random filled-in boxes.

32

Chapter 4:
Stretching

4.1 SPECIAL CASING FOR 45° LINES

Right now the Grafix 80 routines have special code for horizontal and vertical lines.
Another special case you may want to code for are 45° lines. They’re easy to recognize:
the vertical and horizontal displacements are equal. And they’re pretty easy to draw:
to get to the next pixel in a 45° line, just move one position vertically, then move one
position horizontally. For simplicity, you’ll probably want to start at the leftmost end-
point of the line. The code for vertical lines in Grafix 80 shows you the details of moving
vertically. And the Bresenham code shows you the details of moving horizontally.

4.2 OTHER GEOMETRIC FIGURES

Another way you can expand the Grafix 80 package is with commands to draw other
geometric figures: circles, ovals, regular polygons.

The circle and oval algorithms are too complex to describe here, but I can point
you at two good books: Artwick’s Applied Concepts in Microcomputer Graphics and Foley
& Van Dam’s Fundamentals Of Interactive Computer Graphics. Some of the hottest
algorithms for these figures are coded into the Apple Macintosh ROM, but you’ll need
to disassemble the code, not a trivial task.

Regular polygons (triangles, hexagons, pentagons, et al.) are simpler. A polygon
is drawn as a series of connected lines. Given a starting point and an orientation, simple
applications of trigonometry let you figure the endpoints of these connected lines. Refer
to any good high school trigonometry textbook for the details.

33

4.3 CODE UNFOLDING

The Grafix 80 code is highly modular. This nurtures reliability and keeps the code
size down. It also slows performance, due to the overhead of register-preserving func-
tion calls. If you like, you can speed things up by unfolding the code.

For example, the Grafix 80 line drawing routines (DoHorz, DoVert, and DoBres)
go through a chain of calls to plot a point on the screen: they call on Plotlt, which calls
on GetTargByt, PixelPop, and PutTargByt, which make calls to VDCRegPoke,
VDCMemPeek, and VDCMemPoke. You could replace all of these subroutine calls
with the actual subroutine code. That’s code unfolding. Speed would be increased, at
the expense of memory.

4.4 BIT-MAPPED TEXT

A feature missing from the Grafix 80 package is the ability to draw text characters
on the bit-mapped screen. Actually, bit-mapped text drawing can be done at many levels
of sophistication. I'll outline a few of those levels here, along with some implementation
hints. Note: as with many programming tasks, text drawing sophistication and algorith-
mic complexity increase together.

The simplest form of text drawing on a bit-mapped screen simulates a text display.
For the C-128’s 80-column screen that means each character is drawn within a box that’s
eight pixels wide and eight pixels high, and these boxes are aligned on a grid that’s 80
characters wide and 25 characters high. Eight bytes of data code a character, each byte
representing a row of the character’s image. To draw a character, the eight character
image bytes are transferred to screen memory. Given the 80h by 25v alignment con-
straints, each image byte falls evenly within a byte of screen memory. This simplifies
the transfer of image bytes. The next programming project in this book, the sound/mu-
sic lab, draws aligned text on the 40-column bit-mapped screen. The routine DrawBM-
Char does the work; you can find its source code in Fig. 16-1. Drawing text on the
80-column screen differs only in the details of screen memory arrangement and access.

A more sophisticated level of bit-mapped text drawing lets you draw characters at
any screen position, not just aligned to an 80h by 25v matrix. This means that the bytes
of the character image won’t necessarily line up with the bytes of screen memory. If
the bytes do line up, transfer is as described in the previous paragraph. If they don’t
line up, each image byte has to be shifted across into two bytes. Then masks are made,
and the transfer of image data can be carried out.

An even higher level of bit-mapped text drawing lets you draw characters of varying
widths. This means that you need to have width information for each character, and that
character images may fall anywhere in relation to screen memory byte boundaries.

Finally, how about being able to draw characters in any orientation on the screen?
That is, not just placing them horizontally, left to right, but at various angles. This is
most easily done by performing various planar transformations on the character image
data. Details on these sorts of transformations can be found in Foley & Van Dam’s
Fundamentals Of Interactive Computer Graphics.

34

Chapter 5:
Calling
Structure Diagrams

This chapter consists of four figures, as follows:

Fig. 5-1—calling structure diagram for G80 Install (1 sheet).
Fig. 5-2—calling structure diagram for Grafix 80 (8 sheets).
Fig. 5-3—calling structure diagram for G80 Test Suite (1 sheet).
Fig. 5-4—calling structure diagram for G40 Test Suite (1 sheet).

35

gBRA install - csd #1

ImphNEW

SetBnk

Main

Setlam

SetLFS5

Load

Install

grafix B@
b,

SoftReset

Fig. 5-1. Calling structure diagram for G80 Install.

36

grafix B@ - csd #1

Install

InsCrehDtr RmvCrehDtr
InsUncrDtr | .o Unlinstall RmvUncrDtr
InsExecDtr RmvExecDtr
FndCaomTxt
IEscLkDetar
‘%*(RE@EECLH)
FndTknTxt
I[EscPrDetor
(ReglEscPr)
-

Fig. 5-2. Calling structure diagrams for Grafix 80.

37

grafix B0
csd #2

DoGBHAColar -

IEscExDetor

DoGBBADraw -

DoGBAGraphic |

DoGBAScat pe--

9[(ReglEscEx)

IndTxt

- Commalruz

3| chrEet

9[(IError)

DoGBBBaox |- @

38

grafix BA
csd #3

.......... DoGBEABOox

Chriet

GetByt

Commalruz

GBHBoxGtPs

GetWdByt

ChrGot

OptMNxtByt

(IErrar)

GEBoxChPs

GBBoxDaolt

:Horiz

DoLine

(IErrar)

Verti

DolLine

39

grafix B
csd #4

------- DoLine

| OptNxtByt

I—— ChriGot

GetByt

|_ CommaCruz |- E]

FigPoint | —

GetTargByt

| Dalert —I:

Platit

PixelPap

PutTargByt

FigPoint

GetTargByt

:DoLftPrt —l:

PutTargByt

VDCMemPoke

DoHorz

GetTargByt

:DoRitPrt —[

PutTargByt

GetTargByt

PutTargByt -

40

grafix B4
csd #5

]
—| FigPoint
DoLine [
| :GoRite
— DoBres :Golp
—:GoDown
L Platit -
VDCRegPoke
GetTargByt
VDCMemPeek
VDCRegPoke
PutTargByt
VDCMemPoke

M1

grafix BA
csd #b

Chriet

GBColGtPs

- GetByt

Commalruz p--

GBColChPs

---------- DoGBACalar —

VDCRegPeek

— GBColDolt

I'_l_ll—__l

VDCRegPoke

9[(IErrar)

—{ [nitPntLst

— | ChrGet

— | GetByt

— GBDruwhtPs Commalruz @

— StorPntlst

---------- DoGBEADraw

|| GetlWdByt

[7] 1| ChrEat

grafix B8
csd #7

DoGEBDraw

GBDrwChPs

—

GBRJGrfCrs

— DoLing |-

GBDrwDalt FigPaint

— Platlt e

(IErrar)

(IErrar)

GBGrfDalt |-

DoGBBScat

Uninstall [m

ImpMew

SoftReset

43

grafix B8
csd #8

Chriet

—~ GBGrfGtPs

GetByt

- GBGrfChPs

------ DoGBAGraphic

-

— GBGrfDalt

—)| (IErrar)

1T 1

OptNxtByt [

VDCRegPeek

VDCRegPoke

InitBA

GBColDaolt

CirTxBA

CirGrBA H

_|: Swapper
BSOut

VDCRegPoke

IntGrfCrs

44

gHB test suite

Draw 188 Randam
Daots

Draw 188 Randaom
Veartical Lines

Draw 8@ Randam
Harizontal Lines

Draw BB Random
Lines

Draw 1B@ Randam
Outlined Boxes

Draw 8@ Randam
Filled Boxes

csd #1

— Initialize

Main Run

Program The

Block Tests
Report

— The
Results

Print
Result
Headings

Fig. 5-3. Calling structure diagram for G80 Test Suite.

45

g4l test suite

Draw 188 Randam
Dots

Draw 8@ Random
Vertical Lines

Draw 188 Random
Harizantal Lines

Draw 188 Randam
Lines

Draw 18@ Random
Outlined Boxes

Draw 1898 Random
Filled Baoxes

csd #]

—1 Initialize

Main Run

Program The

Block Tests
Report

— The
Results

Print
Result
Headings

Fig. 5-4. Calling structure diagram for G40 Test Suite.

46

Chapter 6:
Subroutine Line Starts

This chapter consists of three figures, as follows:
Fig. 6-1—list of subroutine line starts for Grafix 80 (3 sheets).

Fig. 6-2—list of subroutine line starts for G80 Test Suite (1 sheet).
Fig. 6-3—list of subroutine line starts for G40 Test Suite (1 sheet).

47

RA - Subroutine Line St Sheet 1 of 3
Install 0-317
Unlnstall 0-331
InsCrchDtr 1-3
InsUnertDtr o o 0 o 0 0o 1-30
InsExecDtr 1-57
RmvCrchDtr 1-84
RmvUnetDtr oo oL 1-105
RmvExecDtr 1-126
IEscLkDetor 1-147
IEscPrDetor 1-203
IEscExDetor 1-237
CommaCruz 1-280
DOGBOBOX . . « « « v v v e e e e e e 2-3
G8BoxGtPso 2-38
G8BoxChPs 2-127
G8BoxDolto o 2-190
Horiz 2-285
Verti L oo e 2-304
DoG80Color 2-321
G8ColGtPs 2-347
G8ColChPs v v v v v v 2-367
G8ColDolt 2-405
DoG80Draw0 .. e .. 33
G8DrwGtPso 3-40
InitPntLst 3-101
StorPntLst 3-126
G8DrwChPs 0. 3-172
GBAJGrfCrso 3-243
G8DrwDolt 3-283
DoG80Graphic 3-370
G8GrfGtPso 3-394
G8GrfChPs 3-413
G8GrfDolt 3-454
DoG80Scat o0 3-549
ImGrfCrs 4-3
DoLine 4-23
DoVert 497
DoHorz 4-151

Fig. 6-1. List of subroutine line starts for Grafix 80.

48

SRAFIX 80 - Subroutine Lin s

DoLftPrt 4-320
DoRitPrt 4-342
DoBres 4-393
:GoRiteo 4-647
GoUp 4-661
GoDowno 4-674
CI'Tx80o 5-3
C'Gr80o 5-42
FigPoint 5-89
Plotlt 5-166
GetTargByt 5-181
PutTargByt 5-186
PixelPop 5-219
VDCMemPoke 5-268
VDCRegPoke 5-270
VDCMemPeek 5211
VDCRegPeek 5-279
OptNxtByt 5-287
G80 TEST SUITE - Subroutine Line Starts Sheet 1 of 1

Main ProgramBlock 1270
Initialize 1350
RunTheTests 1820
Report TheResults 1930
Draw 100 RandomDots 2130
Draw 100 Random Vertical Lines 2320
Draw 100 Random Horizontal Lines 2510
Draw 100 Random Lines 2700
Draw 100 Random Outlined Boxes 2890
Draw 100 Random Filled Boxes 3080
Print Result Headings 3270

Fig. 6-2. List of subroutine line starts for G80 Test Suite.

49

G40 TEST SUITE - Subroutine Line Starts

Main Program Block

Initialize

Run The Tests

Report The Results

Draw 100 Random Dots

Draw 100 Random Vertical Lines
Draw 100 Random Horizontal Lines
Draw 100 Random Lines

Draw 100 Random Outlined Boxes
Draw 100 Random Filled Boxes
Print Result Headings

Sheet 1 of 1

1250
1330
1800
1910
2110
2300
2490
2680
2870
3060
3250

Fig. 6-3. List of subroutine line starts for G40 Test Suite.

50

Chapter 7:
Selected Algorithms

This chapter consists of three figures, as follows:
Fig. 7-1—selected algorithms from G80 Install (1 sheet).

Fig. 7-2—selected algorithms from Grafix 80 (22 sheets).
Fig. 7-3—selected algorithms from G80 Test Suite (4 sheets).

51

Selected Algorithms From G80 Install

main
save some registers
save current memory configuration
set memory configuration to Bank 15 (system bank)
set BASIC text start to a new position

zero out the byte just before BASIC text start
load in the GRAFIX 80 object code

call the ROM routine SoftReset to do a BASIC warm start
restore the entry memory configuration

restore some registers

RETURN

Sheet 1 of 1

do a BASIC NEW command by calling the ROM routine JmpNEW

call the GRAFIX 80 routine Install to install the 80—column routines

Fig. 7-1. Selected algorithms from G80 Install.

Selected Algorithms From GRAFIX 80

Install
call on InsCrchDtr to install a command crunching detour
call on InsUncrDtr to install a command un-crunching detour
call on InsExecDtr to install a command execution detour
RETURN

UnInstall
call on RmvCrchDtr to remove a command crunching detour
call on RmvUnerDtr to remove a command un-crunching
detour

call on RmvExecDtr to remove a command execution detour
RETURN

InsCrchDtr
save some registers
save the current command crunching vector
point the command crunching vector at our detour routine

restore some registers
RETURN

Fig. 7-2. Selected algorithms from Grafix 80.

52

Sheet 1 Of 22

InsUncrDtr
save some registers
save the current command un—crunching vector
point the command un—crunching vector at our detour routine
restore some registers
RETURN

InsExecDtr

save some registers
save the current command execution vector

point the command execution vector at our detour routine
restore some registers
RETURN

RmvCrchDtr
save some registers
point the command crunching vector back at its original routine
restore some registers
RETURN

RmvUncrDtr

save some registers

point the command un—crunching vector back at its original routine

restore some registers
RETURN

RmvExecDtr
save some registers
point the command execution vector back at its original routine
restore some registers :
RETURN

IEscLkDetor
save entry byte of program text
IF
the entry byte is one of the following :
end of input buffer

colon
question mark

a token
quotation mark
THEN do this
restore entry byte

53

54

JUMP to the regular IEscLk routine with flag set for
no—-command—found

call on the undocumented System routine EndComTxt to see
if the entry byte is the start of one of our 80-column
graphics commands

IF

FndComTxt says it didn't find one of our new commands
THEN
restore entry byte
JUMP to the regular IEscLk routine with flag set for
no—command—found
ELSE { one of our new commands was found)
set up registers for command tokenizing
JUMP to the regular IEscLk routine with flag set for
command—found

IEscPrDetor
IF
the lead-in token is not $FE
OR
the selector token is less than our first selector token
value
OR
the selector token is greater than our last selector token
value
THEN

JUMP to the regular IEscPr routine with flag set for
not-our-token
ELSE { we've found one of our token pairs }
set up for token un-crunching
JUMP to the undocumented System routine EndTknTxt to
un-crunch the token pair

IEscEx
IF
the selector token indicates the G830BOX command
THEN
call on DoG80Gox to carry out the command
RETURN
ELSE IF
the selector token indicates the GROCOLOR command
THEN

call on DoG80Color to carry out the command
RETURN

ELSE IF

the selector token indicates the GSODRAW command
THEN

call on DoG80Draw to carry out the command

RETURN
ELSE IF
the selector token indicates the GSOGRAPHIC command
THEN
call on DoG80Graphic to carry out the command
RETURN
ELSE IF

the selector token indicates the GBOSCAT command
THEN
call on DoG80QScat to carry out the command
RETURN
ELSE
JUMP to the regular JEscEx routine with a flag set to
signal not-our-token

mmaCruz
call on the System routine IndTxt to grab the
currently—pointed-at byte of BASIC text
IF
the byte represents a comma
THEN
JUMP to the System routine ChrGet to grab the next
meaningful byte in the BASIC statement and RETURN
ELSE ({ the byte doesn't represent a comma }
JUMP to the System routine IError to signal 'syntax error'

DoG80Box
call on G8BoxGtPs to fetch any command parameters

call on G8BoxChPs to check the legality of any parameters
IF
there's a problem with one of the parameters
THEN
JUMP to the IError routine to signal an
‘illegal quantity' error
ELSE { the parameters checked out okay }
call on G8BoxDolt to carry out the command
RETURN signalling that all went well

55

G8BoxGtPs
set the default paint parameter to ‘no—paint’
call on the System routine ChrGet to get the BASIC statement
element that follows G80BOX
IF
the next element is a comma
THEN
set color source to foreground
ELSE
call on undocumented System routine GetByt to get a color
source from the BASIC statement
call on CommaCruz to cruise through a comma
call on undocumented System routine GetWdByt to get a first
point's horizontal and vertical coordinates
store those coordinates
IF
there are no more elements to the BASIC statement
THEN
RETURN
{ there are more elements to the BASIC statement }
call on CommaCruz to cruise through a comma
IF
the next element isn't a comma
THEN
call on undocumented System routine GetWdByt to get a
second point's horizontal and vertical coordinates
move the graphics cursor to this second poing
call OptNxtByt and store the result as the paint parameter
IF
a call to ChrGot shows there are more elements to the
BASIC statement
THEN
JUMP to IError to signal a "syntax error”
ELSE
RETURN

G8BoxChPs
save some registers
IF
color source is not set for foreground
AND
color source is not set for background

THEN

restore some registers

RETURN, signalling an error
IF

first point's vertical coordinate is too large

OR

second point's vertical coordinate is too large
THEN

restore some registers

RETURN, signalling an error

IF
first point's horizontal coordinate is too large

OR
second point's horizontal coordinate is too large

THEN
restore some registers

RETURN, signalling an error
IF
paint parameter's not 0
AND
paint parameter's not 1
THEN

restore some registers
RETURN, signalling an error
Testore some registers
RETURN, signalling all is okay with the parameters

G8BoxDoll

save some registers
save current memory configuration
set memory configuration to Bank 15 (system bank)
use color source to set up for drawing or erasing
IF
the paint flag says "no paint"
THEN { we're working on an outlined box }
call on :Horiz to draw the first horizontal line
call on :Horiz to draw the second horizontal line
call on :Verti to draw the first vertical line
call on :Verti to draw the second vertical line
ELSE { we're working on a filled-in box }
figure the height of the box -- that is, how many
rows it contains

57

FOR
each of the box's rows

DO the following :
call on :Horjz to draw the row
restore the entry memory configuration
restore some registers
RETURN

:Horiz
set vertical coordinates
set horizontal coordinates
call DoLine to draw the line
RETURN

set horizontal coordinates
set vertical coordinates

call DoLine to draw the line
RETURN

:InitPntLst
save some registers
set the draw-list point counter to 0 ‘
set the draw-list indexer to the Oth byte of the list
set the draw-list pointer to the beginning of the list
restore some registers
RETURN

StorPntLst

save some registers

add the point's horizontal coordinate to the draw list using the
draw-list indexer and the draw-list pointer

add the point's vertical coordinate to the point list using the
draw-list indexer and the draw-list pointer

store the incremented (by three -- that's how many bytes
were just stored) draw-list indexer

increment the draw-list point counter

restore some registers

RETURN

8DrwDoll
save some registers

save entry memory configuration
set memory configuration to Bank 15 (system bank)
IF
there are points to draw
THEN
set up to draw or erase, based on foreground or
background being the color source
IF
there's just one point to draw
THEN
grab the point's coordinates off the draw list
call on FigPoint to set up the point's vital plotting info
call on Plotlt to draw the point
ELSE (there's more than one point to draw }
FOR
each of the line segments in the draw list
DO the following
grab the line segment's endpoint coordinates from
the draw-list, using the draw list pointer
call on DoLine to draw the line segment
move the draw-list pointer along
restore the entry memory configuration
restore some registers
RETURN

DoG80Scat
IF
we're not in direct mode
THEN
JUMP to IError signalling a "direct mode only" error
ELSE { we're in direct mode }
call on G8GrfDolt to get a cleared 80-column text screen
call on UnInstall to un-install the 80-column graphics
commands
zero out the byte just before the standard BASIC text
start
set the BASIC text start back to its standard position
call on the System routine JmpNEW to execute a BASIC NEW
command
call on the System routine SoftReset to do a warm start of
BASIC
RETURN, signalling that all went well

59

60

DolLine
save some registers
IF
the line is vertical
THEN
call on DoVert to draw a vertical line
ELSE
adjust line endpoints so first point is leftmost
IF
the line is horizontal
THEN
call on DoHorz to draw a horizontal line
ELSE ({ the line is sloped }
call on DoBres to draw a sloped line
restore some registers
RETURN

DoVenrt
save some registers
figure the height of the line
adjust points so the first point is topmost
call on FigPoint to set up the first point's vital plotting info
STARTING WITH
the first point
FOR
as many points as the line has height
DO the following
call on Plott to plot a point
move vital point—plotting info down to the next point in
the line
restore some registers
RETURN
DoHorz
save some registers
figure the length of the line
call on FigPoint to set up the first point's vital plotting info
figure out the bit-in-byte position for the line's rightmost point
figure out the bit-in-byte position for the line's leftmost point
IF
the line length is greater than 256
THEN
{ we have a three—part line—drawing situation }

call on ;3Part to draw the line
ELSE IF
the line length plus the leftmost point's bit-in-byte position
is less than 8
THEN
{ we have a one—part line-drawing situation }
call on ;1Part to draw the line
ELSE IF
the line length plus the leftmost point's bit-in-byte position
is less than 16
THEN
{ we have a two—part line—drawing situation)
call on ;2Part to draw the line
ELSE
{ we have a three—part line~drawing situation }
call on :3Part to draw the line
restore some registers
RETURN

:3Part
call on :DoLftPrt to draw the left part of the line
figure the number of bytes in the middle part of the line
prepare a byte that'll either draw or erase pixels
FOR
each byte in the middle part of the line
DO the following
call on VDCMemPoke to store the prepared byte
adjust a pointer to point to the right part of the line
call on :DoRitPrt to draw the right part of the line
RETURN

2Part
call on ;:DoLftPrt to draw the left part of the line
adjust a pointer to point to the right part of the line
call on :DoRitPrt to draw the right part of the line
RETURN

1Part
get an OR mask for the left part of the line
get an OR mask for the right part of the line
AND the OR masks together to get a custom mask
call on GetTargByt to grab the screen target byte

61

IF
we're drawing (turning bits on)
THEN
OR the target byte with the custom mask
ELSE { we're erasing (turning bits off) }
invert the custom mask
AND the target byte with the inverted custom mask

call on PutTargByt to store the screen target byte
RETURN

:DoL ftPrt
call on GetTargByt to grab the screen target byte
IF
we're drawing (turning bits on)
THEN
OR the target byte with the appropriate left part OR mask
ELSE { we're erasing (turning bits off) }
AND the target byte with the appropriate left part AND
mask
call on PutTargByt to store the screen target byte
RETURN

:DoRitPrt
call on GetTargBuyt to grab the screen target byte
IF
we're drawing (turning bits on)
THEN
OR the target byte with the appropriate right part OR
mask
ELSE { we're erasing (turning bits off) }
AND the target byte with the appropriate right part AND
mask
call on PutTargByt to store the screen target byte
RETURN

DoBres

save some registers

figure out the line's horizontal position change (Raw Delta X,
which will always be positive)

figure out the line's vertical position change (Raw Delta Y,
which can be positive or negative, andAa positive version,
Absolute Delta Y) o .

figure out whether the line rises or falls as it goes from left

to right
figure out whether the line's slope is steep (greater than 45°)
or shallow (less than 45°)
set increments, erometer, and counter as follows:
IF
the line is steep
THEN
set Increment One to twice Raw Delta X
initialize the Erometer to Increment One minus
Absolute Delta Y
set Increment Two to Erometer minus Absolute
Delta Y
initialize the Counter to Absolute Delta Y plus one
ELSE ({ the line is shallow }
set Increment One to twice Absolute Delta Y
initialize the Erometer to Increment One minus
Raw Delta X
set Increment Two to Erometer minus Raw Delta X
initialize the Counter to Raw Delta X plus one
call on FigPoint to set up the first point's vital plotting info
figure out the starting point's bit—in-byte position
call on Plotlt to draw/erase the starting point
decrement the Counter
FOR
the number of points in the Counter
DO the following :
IF
it's a shallow line
THEN
call on ;GoRite to move right one position
ELSE (it's a steep line }
IF
it's a rising steep line
THEN
call on :GolUp to move up one position
ELSE ({ it's a falling steep line }
call on ;GoDown to move down one position
IF
the Erometer value is negative
THEN
add Increment One to the Erometer
ELSE ({ the Erometer value is positive }
add Increment Two to the Erometer

63

IF
it's a shallow line
THEN
IF
it's a rising shallow line
THEN
call on ;GoUp to move up one position
ELSE { it's a falling shallow line }
call on :GoDown to move down one position
ELSE { it's a steep line }
call on ;GoRight to move right one position
store the point's bit-in-byte position
call on Plotlt to plot the point
restore some registers
RETURN

:GoRite
increment the target bit—in—byte position
IF
we've moved on into the next byte
THEN
reset the target bit-in-byte position to 0
increment the target byte pointer
RETURN

:GoUp
subtract a line's worth of bytes from the target byte pointer
RETURN

:GoDown
add a line's worth of bytes to the target byte pointer
RETURN

CIrTx80

save some registers

IF
we're in 40-column screen mode

THEN
call on the System routine Swapper to change to
80—columns from 40
clear the screen through a call to the System routine BSQut
IF

we were in 40-column screen mode upon entry

64

THEN
call on the System routine Swapper to change to
40—columns from 80

restore some registers

RETURN

CirGrg0
save some registers
FOR
each 256-byte page in the VDC RAM memory
DO the following
call on VDCRegPoke to set the VDC Update Address
registers to this page
call on VDCRegPoke to tell the VDC chip to fill this
page with 256 zeroes
restore some registers
RETURN

FigPoin
{ upon entry the routine is given a point's horizontal and
vertical coordinates }

save some registers

use the point's vertical coordinate to get the address of the
first byte in the point's row

add in the point's horizontal coordinate to get the address of
the point's byte

set the target byte pointer to that address

AND the lo-byte of the horizontal coordinate with %00000111
(+7) to get the point's bit—in-byte position

set the target bit-in-byte position to that value

restore some registers

RETURN

Plotlt
call on GetTargBuyt to fetch the target point's byte
call on PixelPop to set the target point's bit in its byte on or
off
call on PutTargByt to store the target point's modified byte
RETURN

GetTargByt

save some registers

call on VDCRegPoke to aim the VDC Update Address registers at

65

the target byte
call on YDCMemPeek to grab the target byte from VDC RAM memory
restore some registers
RETURN

PutTargByt
save some registers
call on VDCRegPoke to aim the VDC Update Address registers at the target byte
call on VYDCMemPoke to store the target byte into VDC RAM
memory
restore some registers
RETURN

PixelPop
save some registers
IF
we're turning a pixel on
THEN
OR the target byte with an on-mask customized to the
target pixel's bit-in-byte position
ELSE (we're turning a pixel off }
AND the target byte with an off-mask customized to the
target pixel's bit-in-byte position
store the modified target byte
restore some registers
RETURN

OptNxiByt
IF

a call to the ROM routine ChrGot shows there's nothing
left to fetch from the current BASIC statement
THEN
RETURN, signalling and carrying a default value of 0
ELSE IF
a call to CommaCruz to make sure there's a comma comes
back empty handed
THEN
RETURN, signalling and carrying a default value of 0

ELSE
call on the undocumented ROM routine GetByt to fetch a
byte-sized value
RETURN, signalling and carrying a fetched value

66

Selected Algorithms From G80 TEST SUITE

Main Pr m Block
Initialize constants and variables
Run The Tests

Report The Results
RETURN

Initialize
fetch a random seed (1..32768) from the user
fetch a screen width (0..639) from the user
give some feedback
speed up to 2 megahertz speed
FOR
each of 100 array elements
DO the following
FOR
each of 4 coordinate arrays { T(), B, L(), &R () }
DO the following
set the array's element to a value chosen randomly
from the element's permissible range of values

FOR

each of the six tests
DO the following

read in the test's