
C SUPER Pascal

Compiler and Software

Development System

By H. Schnepf

A Data Becker Product

C Published by:

Abacus Software

P.O. Box 7211

Grand Rapids, MI 45910

234502

C

Copyright Notice

Abacus Software makes this package available for use on a single

computer only. It is unlawful to copy any portion of this software

package onto any medium for any purpose other than backup. It is

unlawful to give away or resell copies of this package. Any /—

unauthorized distribution of this product deprives the authors of v_

their deserved royalties. For use on single-site multiple computers,

please contact Abacus Software to make arrangements.

Warranty

Abacus Software makes no warnings, expressed or implied, as to
the fitness of this software package for any particular purpose. In

no event will Abacus Software be liable for consequential damages.

Abacus Software will replace any copy of this software which is

unreadable, if returned within 30 days of purchase. Thereafter,

there will be a nominal charge for replacement

Third Printing, January 1987

Printed in U.S.A.

Copyright ©1986 Data Becker GmbH

Merowingerstrafie 30

4000 Dusseldorf, West Germany

Copyright © 1986 Abacus Software, Inc.

P.O. Box 7219

Grand Rapids, MI. 49S10

ISBN 0-916439-41-0

c

c

c

FOREWORD

This is the handbook to your SUPER Pascal Development System for the

Commodore 64 and 128. The minimum hardware required to run SUPER

Pascal is a C-64 (or C-128 in C64 mode), a 1541, and a television or

monitor. A second disk drive and printer will let you take full advantage of

SUPER Pascal.

This handbook is designed to help you understand the workings of SUPER

Pascal, assuming that you have had experience in the Pascal language. It is

not a basic course in Pascal, and makes no claims to that effect Before

using SUPER Pascal, you should be familiar with the PASCAL language

and how it works.

SUPER Pascal is a complete implementation of "Standard Pascal", based on

the "Pascal User Manual and Repent" (or "The Pascal Bible") by Kathleen

Jensen and Niklaus Wirth. You'll find SUPER Pascal to be one of the most

comprehensive Pascal systems ever offered for C-64 or similar machines.

One of the problems with the C-64 is the slow transfer of data between

computer and disk drive (250- 400 bytes per second); SUPER Pascal solves

that problem, allowing you to transfer 1250 bytes per second from disk to

computer and back. This means that disk access is increased threefold!

I should mention that when developing a comprehensive software package

as large in scope as SUPER Pascal, errors may occur. We have done our

best to make SUPER Pascal as bug-free as possible. Naturally if you do

encounter problems, please let us know. Your suggestions are always

welcome.

January 1985

H. Schnepf

c

c

c

c

c

TABLE OFCONTENTS

1.0 SUPER PASCAL-SYSTEM 1

1.1 SYSTEM OVERVIEW 1

12 LOADING THE SYSTEM 2

1.3 SHORTDESCRIPTION OF SUPER PASCAL 3

1.3.1 MAIN 3

1.3.2 ASSEMBLER 4

1.3.3 COMPILER 6

1.3.4 EDITOR 13

1.3.5 UTILITY 15

1.4 SYSGEN - SETTING UPYOUR SYSTEM 17

1.4.1 MAIN DISKETTES 18

1.4.2 WORK DISKETTES 19

1.4.3 COMPILER DISKETTES 19

2.0 MAIN MENU 21

2.1 MAIN MENU COMMANDS 21

2.1.1 A(=ASSEMBLER) 21

2.1.2 C(=COMPILER) 22

2.1.3 E(=EDITOR) 23

2.1.4 G(=GETFILE FROM DISKTO MEMORY) 23

2.1.5 H(=HELP) 24

2.1.6 J(=JUMP) 25

2.1.7 M(=MAP/DRTVE) 25

2.1.8 P=(UTMEMORY AS FILE TO DISK) 26

2.1.9 R(=RUN PROGRAM) 28

2.1.10 U(=UnLlTY) 30

2.1.11 W(=WRITE SOURCE) 30

2.2 EXIT TO BASIC 31

3.0 TEXTEDITOR 33

3.1 EDITOR COMMANDS 35

3.1.1 A:(=APPENDFILE) 35

3.12 C:(=CHANGE) 36

3.1.3 D(=DELETE) 36

3.1.4 F:(=FIND) 37

3.1.5 G:(=GET SOURCE FROM DISK) 38

3.2

3.3

3.4

3.5

3.6

4.0

4.1

3.1.6 H(=HELP)

3.1.7 L(=UST)

3.1.8 M(=MAP/DRIVE)

3.1.9 N:(=AUTO-NUMBERING)

3.1.10 a(=OUTPUT DEVICE)

3.1.11 P:(=PUT SOURCE TO DISK)

3.1.12 Q(=QUIT)

3.1.13 R(=RENUMBER)

3.1.14 S(=SHIFTLINE)

3.1.15 U:(=UPDATEFILE)

3.1.16 V(=VACANCY)

EDITING PASCALPROGRAMS

EDITING ASSEMBLER PROGRAMS

MIXEDPROGRAMS

INTERNAL ORGANIZATION OF THE EDITOR

TEXTFILE DESIGN

PASCAL COMPILER

SCOPE OF THE LANGUAGE

4.1.1 STANDARDLANGUAGE ELEMENTS

4.1.2 LANGUAGE EXTENSIONS

4.1.2.1 ADDITIONAL ASSIGNMENTS,

PROCEDURES AND FUNCTIONS

4.1.2.2 ADDITIONAL PROGRAM

STRUCTURES, EXTERNALS,

SEGMENTS

4.1.2.3 ASSEMBLER. ROUTINE DESIGN

4.1.2.4 COMPILER COMMANDS

39

39

40

40 r

41 v-

42

43

43

44

44

45

45

48

53

56

57

59

59

59

83 (

84

104

111

113

42 OPTIONS 116

4.3 THE COMPILATION PROCESS 120

4.4 ERROR MESSAGES 121

4.5 END OF COMPILATION 122

4.6 LOCALIZING RUNTIME ERRORS 124

5.0 THE 6510 ASSEMBLER 127

5.1 SOURCETEXT DESIGN 127

5.2 COMMAND SET 129

5.3 TYPES OF ADDRESSES 130

5.4 PSEUDO OPERATION CODES 134

5.5 RUNNING THE ASSEMBLER/OPTIONS 136

c

c

c

6.0

6.1

7.0

7.1

72

7.3

8.0

8.1

8.2

8.3

8.3.1

UTILITY MENU

UTILITY COMMANDS

6.1.1 A=(=ADVICE)

6.12 B(=BLOCKTABLE)

6.1.3 G=(=COPYFELE)

6.1.4 D(=DUPLICATEDISK)

6.1.5 E(=ENTERSECTOR)

6.1.6 F(=FETCH SECTOR)

6.1.7 G(=GET FILE FROM DISK TO RAM)

6.1.8 H(=HELP)

6.1.9 I(=INSERT ADVICE)

6.1.10 J(=JUMP)

6.1.11 K(=KILL TITLE)

6.1.12 L(=LOCKFILE)

6.1.13 M(=MAP/DRIVE)

6.1.14 N(=NEWDISQ

6.1.15 O(=ORGANIZEDISK)

6.1.16 P(=PUTRAMASFILETODISK)

6.1.17 O>QUIT)

6.1.18 R(=RENAME)

6.1.19 S(=STORE BYTE INTO MEMORY)

6.120 T(=TRANSFER MEMORY BLOCK)

6.121 U(=UNLOCKFILE)

6.122 V(=VIEW MEMORY

6.123 W(=WRITE DIRECTORY)

6.1.24 X(=XCLUDE BLOCK)

6.125 Y(=LISTFILE)

6.126 Z(=RELEASE BLOCK TO ZERO)

SYSTEM SPECIFIC INFORMATION

SYSTEM SIZE AND DEFINITIONS

MEMORY LAYOUT AND ADDRESSES

DISKETTE ORGANIZATION

PROGRAM EXAMPLES AND GRAPHIC EXTENSIONS

THE EDITORPROGRAM

RPNPROGRAM

THE GRAPHICS PACKET

HILBERT CURVES

8.4 C64 TO PASCAL DOS

143

144

144

145

146

147

148

148

149

150

150

150

151

152

152

153

154

154

155

155

156

157

157

158

159

160

161

162

163

163

167

169

173

173

189

194

206

210

9.0 APPENDIX 211

9.1 ERRORUST 211

9.2 FOR FURTHER READING 215

C

c

c

c

c

ABACUS Software SUPER Pascal Development System

1.0 SUPER PASCAL - SYSTEM

1.1 SYSTEM OVERVIEW

Super Pascal works with one or two 1541 disk drives. If you arc using two

1541 drives, the second 1541 drive should be designated as drive 9 (see your

1541 manual). SUPER Pascal refers to these as drive 0 and drive 1 (device

numbers 8 and 9 respectively). Drive 0 acts as the master drive. SUPER

Pascal searches drive 0 for the system programs, such as the Assembler,

Compiler, Editor and Utility programs.

Keywords, commands, names and identifiers are entered in upper-case, i.e.,

ASCII codes 65-90 ($41-$5A). These codes are entered as unshifted keys in

normal upper-case/graphics mode. In upper/lower-case mode, these

characters are displayed as lower case. This feature is peculiar to

Commodore machines, not Pascal.

The latter mode is the default when SUPER Pascal is initialized. Remember

to type statements, identifiers and names in lower case when in this mode! If

this confuses you, modes can be switched by pressing <C=+SHIFT>.

A few thoughts on the syntax for Pascal identifiers are in order here. These

identifiers are names defined for constants, variables, filenames, procedures,

functions, etc. Rules dictate that an identifier

consists of no more than 8 significant characters

begin with a letter

must use letters and numbers for the remaining characters,

as well as the character nJf(ASCII $5F), shown on the C-

64 as a back-arrow.

Screen dumps (printer outputs of the screen) can be done with a suitable

printer (Commodore, or another properly interfaced printer). Unusual

printer set-ups can be "tuned" in by software changes*

A third item worth mentioning here is the input of direct commands, and

response to the prompts. Generally, direct commands are issued using a

ABACUS Software SUPER Pascal Development System

single letter (e.g., ME" will call the Editor). Direct commands must be

followed by pressing the <RETURN> key. Later descriptions of these

commands do not mention this fact, so please keep this in mind. If the

command requires further information, you will be prompted (NOTE: in

some cases, a default value is available). If your input is illegal or invalid,

the system will ignore it, and you'll have to re-enter the command correctly.

If the system is expecting a numeric value - such as in the procedures READ

and READLN -- and you input a non-numerical response, the system will

respond tfIL.INPUT", and wait for the correct input. A <RETURN>

without any other input is interpreted as a 0. Integer values can be input in

decimal form or in hexadecimal form (e.g., 1024 = $0400) when preceded

by a dollar-sign (T),-

Due to the limitations of the integer range (-MAXINT..+MAXINT [-

32767..+32767]), any addresses from +32769 to +65535 should be specified

using hexadecimal notation ($8000..$FFFF).

Another strength of SUPER Pascal is the system's high resistance to errors

and bad input from the user. You'll be surprised at how well this program

handles errors.

12 LOADING THE SYSTEM

Loading SUPER Pascal is extremely simple. After turning on the computer

and disk drive(s), put the system disk into drive 0, and close the drive door.

Then type L0ADtf*lt/8/KRETURN>. The autoboot (load/run procedure)

takes over from there. If you happen to type LOAD" * ", 8<RETURN>, and

leave out the 1, the system will respond with READY. In this case just type

RUN<RETURN> to finish the loading process.

The autoboot displays the title screen, which asks you to press a key. Once

you've pressed a key, SUPER Pascal will display:

c

ABACUS Software SUPER Pascal Development System

LOADING ...

***** c-64 SUPER PASCAL - SYSTEM 5.3 *****

f~ BY H. SCHNEPF
^ (C) COPYRIGHT 1985 DATA BECKER

LICENSED BY ABACUS SOFTWARE

When the load procedure is completed, Pascal is initialized, and the system

displays die Main Menu:

* C-64 PASCAL-SYSTEM 5.3. *

COMMANDS « ...

A(SSEMBLER) H(ELP) R(UNPRGM)

C(OMPILER) J(UMP) U(TILITY)

E(DITOR) M(AP/DRIVE) W(RITESRCE)

G(ETRAM) P(UTRAM)

c .
Note that the cursor is represented here by a M@"

The 64's BASIC operating system has now been temporarily replaced by the

SUPER Pascal operating system; you can return to BASIC by shutting off

the computer.

13 SHORT DESCRIPTION OF SUPER PASCAL

Let's look at the elements of the Main Menu individually - this makes up

the RUNPAC, a set of machine code routines and compiled Pascal routines,

which allows us to create our own Pascal programs.

f~ 13.1 MAIN MENU

The Main Menu of SUPER Pascal has the following commands:

ABACUS Software SUPER Pascal Development System

'A'

'C

'E'

'G'

'H'

'J'

'M'

,p,

'R'

'U'

*w

(-ASSEMBLER)

Calls the 6510 assembler source-program.

(-COMPILER)

Calls the Pascal compiler.

<-EDITOR)

Calls the program to edit source files.

(=GETRAM)

Load a file into memory from disk.

(=HELP)

Prints Main Menu command list

(=JUMP)

Jump to machine code program found at

specified address.

(=MAP/DRIVE)

Displays disk directory.

(-PUTRAM)

Saves specific memory area contents to disk.

(«RUN PROGRAM)

Starts a Pascal program.

FUTILITY)

Calls utility program for working with files, etc.

(-WRITE SOURCE)

Formatted output of source-file to disk or printer.

c

c

132 ASSEMBLER

The assembler is used to create 6510 machine code programs from an

assembler source file. The machine code is stored as a file. The assembler

source files must have the following form:

«> TEXT LINE :ZZZZSLLLLLLLLSIIISOOOOOOOOOOOO...

ZZZZ = line number

S = space

fjj.TJ.TJj, o label field r

maximum of 8 characters (same as for Pascal identifiers).

Unused space in a label field is filled in with blank spaces.

c

ABACUS Software SUPER Pascal Development System

DI = instruction field

Operation codes (mnemonics) in 6510 assembler notation:

ASL CLC INC PHA SEI

BCC CLD INX PHP STA

BCS CLI INY PLA STX

BEQ CLV JMP PLP STY

BIT CMP JSR ROL TAX

BMI CPX LDA ROR TAY

BNE CPY LDX RTI TSX

BPL DEC LDY RTS TXA

BRK DEX LSR SBC TXS

BVC DEY NOP SEC TYA

BVS EOR ORA SED

Pseudo-operating-code notation:

c

.BA

-BY

.CT

.DL

.DS

.EN

.EQ

.NE

.OC

-OS

• • • =

00000000..=

begin assembly

insert byte

continue with source...

define label

displacement

end assembly

cond. assembly: equal 0

cond. assembly: not equal 0

object code clear

object code set

end of cond assembly

Operand field

As operands are labels, decimal numbers, hex numbers and +/-

combinations, the following types of addresses are permitted:

c

ABACUS Software

Operand

Operand,X

Operand,Y

(Operand,X)

(Operand),Y

(Operand)

♦Operand

♦Operand,X

♦Operand,Y

#Operand

#H,Operand

#L,Operand

A

SUP!

^absolute

^absolute indexed X

^absolute indexed Y

^indirect indexed X

=indirect indexed Y

^indirect absolute

=zeropage

=zeropage indexed X

=zeropage indexed Y

^immediate

^immediate high-byte

^immediate low-byte

=implicit Accumulator

SUPER Pascal Development System

c

A semicolon (;) at position 6, 15, or after 0 should precede any remarks or

commentary.

133 COMPILER

The compiler compiles Pascal source programs from diskette. The user then

has the option of putting the compiled program code (Pascal-Pcode) on disk,

or keeping it in memory.

The compiler accepts and compiles the following reserved words found in

the Pascal language:

WORDS:

AND

ARRAY

BEGIN

CASE

CONST

DIV

DO

DOWNTO

ELSE

END

FILE

FOR

FUNCTION

GOTO

IF

IN

LABEL

MOD

NIL

NOT

OF

OR

PACKED*

PROCEDURE

PROGRAM

RECORD

REPEAT

SET

THEN

TO

TYPE

UNTIL

VAR

WHILE

WITH

* PACKED will not always compile!! _

c

ABACUS Software SUPER Pascal Development System

The following standard identifiers are also permitted:

Constants: false, maxint, TRUE

Symbols:

Types:

Variables:

Procedures:

Functions:

ALFA, BOOLEAN, CHAR,

REAL, TEXT

INPUT, OUTPUT

GET, NEW,

READ, READLN,

REWRITE, WRITE,

ABS, ARCTAN, CHR,

EOF, EOLN, EXP,

ODD, ORD, PRED,

SIN, SQR, SQRT,

TRUNC

INTEGER,

PUT,

RESET,

WRITELN

COS,

LN,

ROUND,

SUCC,

Tn addition, all the standard characters mentioned in The Pascal Users

Manual and Reoort are accepted bv the compiler

>=

The following commands, etc., arc additions to SUPER Pascal Development

System:

Reserved Words:

AND combines BYTE-values

ELSE used as an alternative in a CASE statement

f~ NOT negates a BYTE-value

Q_ OR ORr's BYTE-value
SHL rapid integer multiplication by a factor of 2*n (n=0 to

16) without overflow checking

ABACUS Software SUPER Pascal Development System

SHR

USERFUNC

USERPROC

XTRNFUNC

XTRNPRGM

XTRNPROC

Other Indicators:

Constants:

Pi

STKPOI

Types:

BYTE

STRING

rapid integer division by a divisor of 2*n (n=0 to 16)

declares an external function written in machine code

declares an external procedure written in machine code

declares/defines an external Pascal function

declares an external Pascal program

declares/defines an external Pascal procedure

c

Variables:

MEM

RANDOM

Procedures:

ALLOCATE

CLOSE

CONTINUE

CLRTRAP

EXECUTE

the real number pi (3.141...)

the value of the variable stack pointer

a single-byte, preceded by the character

(range: #0-#255 = #$00-#$FF)

a dynamic array of CHAR, defined as :

RECORD

LENGTH:BYTE;

CHRS:[#0..L] OF CHAR

END

a pseudo-variable array that permits access to

memory (similar to PEEK and POKE in BASIC)

a pseudo-variable that produces a random real

number between 0 and 1;

sets pointer variables to an address accessible to

the user.

close and clears the file in last buffer

load and run a Pascal program from diskette

clear trap of runtime I/O errors

load a Pascal program from disk, and run

subprogram already in memory

c

c

ABACUS Software SUPER Pascal Development System

c

c

HEX converts integer or byte parameters to

hexadecimal

INDVC redirect input from device

KILL delete an unprotected (unlocked) file from

diskette

LOCK close and protect a file on diskette

LOAD loads external Pascal program, procedure or

function into memory from diskette

MARK records the current heap pointer

NAME assign a filename to a file

OUTDvc redirect output to device

RELEASE set heap pointer to previously MARKed value

SEEK set file position pointer for direct access

SETADR define starting address for an external Pascal or

machine language routine

SETDRV define disk drive for file access

SETTRAP activates trap for runtime-error (I/O errors)

Functions:

ANYKEY returns TRUE if any keyboard input is present

EOF returns TRUE if end of file or BREAK key

pressed (: boolean)

FRAC returns the fractional part of a real number

(:REAL)

FREE returns the amount of memory remaining on

Pascal variable stack (: INTEGER)

GETKEY returns the value of the next key in keyboard

buffer; otherwise, waits for next key (: CHAR)

HBYT returns the most significant byte value of an

integer (:BYTE)

HXS (=hexsum), returns the sum of two integer values

without checking for overflow, used for

calculating addresses (: INTEGER)

INT returns the integer value of a real number or

gives IL. QUANT . ERROR (: INTEGER)

c

ABACUS Software SUPER Pascal Development System

IOERROR returns the value for the I/O error (: INTEGER)

as follows:

0 « OK

1 « DISK ERROR

2 - NOT OPEN ERROR

3 = NOT CLOSED ERROR

4 = BUFFER OVERFLOW ERROR

5 = DIRECTORY OVERFLOW ERROR

6 = NOT FOUND ERROR

7 = DISK OVERFLOW ERROR

8 = DISK MISMATCH ERROR

9 = ILLEGAL FILE-OPERATION ERROR

10 = AFTER EOF ACCESS ERROR

11 = IEEE-ERROR

LOCALITY returns the current memory location of Pascal

variables (: INTEGER)

LOW converts an integer or a single number into high-

byte,low-byte (when possible)

LBYT returns the least significant byte value of an

integer (:BYTE)

LEN returns the length of a string (: INTEGER)

ROUND returns the rounded value of any real number

(:REAL)

SIGN gives previous item an integer or a real value

(:INTEGER)

SIZE returns the number of bytes occupied by a Pascal

variable (: INTEGER)

TRUNC returns the integer portion a real value (: REAL)

Structural Commands:

These commands aid in structuring Pascal programs:

FORWARD for forward definitions of PROCs and FUNCs

according to "The Pascal Bible"

SEGMENT to break a Pascal program into segments used for

overlay techniques

c

c

c

10

c

c

c

ABACUS Software SUPER Pascal Development System

ASSEMBLE converts the text to follow from Pascal into

assembly language.

Compiler Directives:

These commands change the defaults of the compiler.

&ADR+ activates output of addresses during compilation

&ADR- deactivates output of addresses

&CONTINUE instruct the compiler to continue compilation on

the given source-file

& INCLUDE instruct the compiler to include given sourcefile

in the compilation presently being done

&PCODE+ activates the P-code output

&PCODE- deactivate P-code display

&TRUTH identify section of source file for conditional

compilation

Error Messages:

The standard error messages identified by the compiler (according to the

Pascal User Manual and Report) are as follows:

22: '..' expected

23: V expected

24: 7 or')' expected

25: BOOLEAN constant expected

60: PROGRAM incomplete

182: Parameter list of extern PRGM not allowed

183: LOAD/SETADR only for externals

184: Externals without address definition

185 Slice-ARRAY must be CHAR or BYTE type

186: SLICE := SLICE not allowed

207: BYTE-const too large

208: Error in BYTE-const

209: Error in HEX-const

11

ABACUS Software SUPER Pascal Development System

210: Error in numeric const

400: FDLE-element too long

401: STRINGS not allowed here

402: Too many identifiers

403: READLN/WRITELN only with TEXT

405: Too many segments

406: Nested segments not allowed

407: Separated segments not allowed

408: Compiling of segmented PRGMS to RAM not allowed

409: Too many parameters

410: Error in '&'-option

411: Too many nested sources

Runtime Errors

Runtime errors can also include I/O errors:

OUT OF RNG. number out of range

NOTEXQ. non-executable P-code

NUM. OV. number overflow C
BAD SUBS. bad subscript

ILL. QUANT. illegal quantity

STK. OV. stack overflow

ZERODIV. division by 0

ILL. DVC. illegal device number

Options: The following items may be changed when the compiler is started

(contents in parentheses are defaults):

Start-of-program ($0800)

Starting address of heap (end-of-program)

Max. address of variable stack ($9000)

Compiling mode (disk), or RAM:

Memory location for comp. ($9000)

Test for end-of-memoiy (yes), or no:

File for post-mortem dump (no), or yes:

post-mortem filename (PMDUMP)

Suppress program listing (yes)

Suppress printer output (yes)

12

ABACUS Software SUPER Pascal Development System

L3.4 EDITOR

CThe editor sets the source-program into a screen-oriented format The line

numbers displayed in edit mode are there for editing only - they aren't part

of the program itself. The following commands available for changing

parameters in edit mode:

fA:f <=APPEND FILE)

Append specific file on diskette to file in

memory.

'C:' (^CHANGE)

Change the character string following ':' to

another string.

'D' (^DELETE)

Delete lines:

D delete ALL lines

(^ D xxxx delete line xxxx
D -xxxx delete up to and including line xxxx

D xxxx- delete from line xxxx on

D xxxx-yyyy delete from line xxxx to line yyyy

'F:f (=FIND)

Find and list the line containing the specified

character string.

'G:' (=GET SOURCE FROM DISK)

Load a source file from diskette into the Editor.

c

'H' \

Display Editor's command set.

'L' (=LIST)

List line(s); parameters are similar to 'D\

13

ABACUS Software SUPER Pascal Development System

'M' (=MAP/DRIVE)

Display disk directory; defines drive for 'A:',

'G:\ 'P:', and 'U:' commands.

'N' (=AUTO-NUMBERING) ^~
Automatically generate line numbers in

increments of 5, with an option of changing the

starting line number (Nxxxx).

'0' (OUTPUT DEVICE)

Change output device for display to screen or

printer.

0 screen

04,0 printer

'P:' (=PUT SOURCE TO DISK)

Save source file from editor to diskette (NOTE:

If a file of the same name already exists on the

diskette, the old file is overwritten). -.

'Q' (=QUIT)

Return to the Main Menu.

' R' (=RENUMBER)

Renumber lines in increments of 5, starting at

line number 1000.

'S' (=SHIFT LINE)

Move line(s) to a different memory range (S xxxx

- yyyy : zzzz ... move lines xxxx to yyyy to

location after line zzzz).

'U:' (=UPDATE FILE)

Append source file in Editor to file on diskette.

'V (=VACANCY) r~

List amount of memory left for text v_

14

ABACUS Software SUPER Pascal Development System

13S UTILITY

CThe Utility function has disk management commands, as well as some

useful monitor commands; this section gives you working memory in $4000

- $C200, and this register can be used as standard RAM. Here are the

commands:

'Af (=ADVICE)

Display any special information on a given file

(data, version number, etc.).

'B' (-BLOCKTABLE)

Display a diskette blocktable (similar to block

availability map).

'C (=COPY FILE)

Copy file from one diskette to another.

'Dr ("DUPLICATE DISK)

(~ Duplicate an entire disk (only possible with two
V drives).

'E' (=ENTER SECTOR)

Store any sector (=512 bytes) of memory to

diskette.

'F' (-FETCH SECTOR)

Load any sector of disk into memory.

'G' (=GET FILE FROM DISK TO MEMORY)

Load a file from diskette.

'H' (=HELP)

Display the Utility command list

f~ 'I' (=INSERT ADVICE)

(^ Input extra information (see ADVICE) to file on
diskette.

15

ABACUS Software SUPER Pascal Development System

'J' <=JUMP)

Jump to any program in memory.

rK' (=KILL FILE)

Scratch file from diskette.

rL' (=LOCK FILE)

Protect a file on diskette from killing of

overwriting. Locked files appear in the directory

in reverse video.

rM' Display the disk directory. Also defines the

drive for •A\ 'B\ 'E\ 'F, T, 'K', 'L\ fR\ 'U\

'X* and 'Z' commands.

rN' (=NEW MAP)

Generate new directory (in disk-formatting and

producing system disks).

rO' (=ORGANIZE DISK)

Reorganize disk contents; pack two disks' worth

of material to one disk, giving more memory

space (possible only with two drives).

rP' (=PUT MEMORY AS FILE TO DISK)

Store any memory range to diskette as a file.

rQ' (=QUIT)

Return to Main Menu.

rR' (=RENAME FILE)

Change the name of a file.

rS' (=STORE BYTE INTO MEMORY)

Place a value into any memory cell in the

computer (similar to POKE).

rT' (=TRANSFER MEMORY-PAGES)

Transfer any one of 256 bytes to another area in

memory.

16

c

c

c

ABACUS Software SUPER Pascal Development System

'U' (=UNLOCK FILE)

Unlock file protection.

'V (=VIEW MEMORY)

list any memory range in hexadecimal OR

ASCII (memory dump).

'Wf (=WRITE DIRECTORY)

Output all additional information in the disk

directory.

'X' (=XCLUDE BLOCK)

Exclude a block on diskette from further use.

'Y' (=FILE DUMP)

List file on diskette in hex or ASCII.

'Z' (^RELEASE BLOCK (SET ZERO))

Release used or kept block to diskette for later

reference.

IA SYSGEN - SETTING UP YOUR SYSTEM

As already mentioned, SUPER Pascal supports the use of two floppy disk

drives. However, the limitations of using only one drive are so minimal that

you could easily get along with one drive (only a few of Utility Menu

commands require two drives — 'D' and 'O').

We'd now like to offer a few words of advice on the use of SUPER Pascal.

First, please keep in mind that copying the original disk for your own

personal use is possible - but the Compiler and Assembler on that backup

won't run properly. All the other programs should run just fine, though.

The segmenting by the compiler (overlay-technique) requires the original

diskette to be in drive 0. Similarly, the assembler looks for the source file in

drive 0. Unfortunately, if you're using only one disk drive, the source code

17

ABACUS Software SUPER Pascal Development System

produced is saved on the original disk. It is best to use the system diskette

only for compiling and assembling.

1.4.1 MAIN DISKETTES

Let's have a look at the procedures for formatting a Super Pascal disk:

Several basic disks can be created using SYSGEN, called using the 'R'

command from the main menu. The program displays a header, and asks in

which drive the new disk lies:

* PASCAL-SYS.DISK. GENERATOR *

************ vs 5,3 *************

'DRIVE(MAP) = 0'

The default drive is 0. Next, you'll be asked for the disk title - supply a

name for the disk. Next comes the message:

INSERT DISK INTO DRIVE x

...PRESS: "RETURN" IF DONE!

Just to make sure, the system will ask

SURE TO REWRITE THE DISK ? Y/N

since generating a diskette will destroy any old material previously on the

disk.

If all is well, the program will format the diskette, put in a directory under

the given name, and put a LOADDAT file onto the diskette.

WARNING!!!

A diskette formatted by SYSGEN is readable ONLY by Super Pascal - you

can't use this disk in BASIC, unless you fonnat it normally. With a

SYSGEN disk, it is vital that LOADDAT - which contains the Pascal

operating system - be on the disk.

18

c

■c

c

ABACUS Software SUPER Pascal Development System

From the file UTILITY menu you can clear a Pascal directory using 'N',

duplicate a disk with 'D', and reorganize data with 'O'.

If a read/write error occurs during formatting, you'll see the following error

message:

FORMATTING OR FLOPPY ERROR!

•..EXECUTION NOT SUCCESSFUL!

REPEAT WITH ANOTHER DISK ? N/Y

Try again; or, if you tell the system "n", it will go back to the Main Menu.

1A2 WORK DISKETTES

Now, using the file UTILITY program and the COPY command ('C), you

can make work disks of your choice, e.g.:

An Editor Disk would be make up of LOADDAT and C_EDITOR (_

represents the back arrow key). You could use such a disk for developing,

editing and storing Pascal or assembly language source programs.

A Utility Disk would contain LOADDAT, CJJTILIT, CJPMDUMP and

SYSGEN (more on this in Section 4.6). This is a good choice for some

quick system work.

A Program Disk containing LOADDAT and the compiled Pascal programs

and/or assembled machine-code programs of your choice. This would

essentially be a user program disk, which would run on any C-64 without the

help of the original diskette.

1.43 COMPILER DISKETTES

Once you've copied the different programs off of the original diskette (with

the exceptions of the Compiler and Assembler, which are copy-protected),

and put them into work diskettes to suit your own needs, you may want to

19

ABACUS Software SUPER Pascal Development System

delete those files from the original diskette (K command in Utility Menu).

After doing so, you'll be left with LOADDAT, C_CPLR (Compiler) and

C_ASMBLR (Assembler), as well as 25 blocks (= 100 kilobytes) available

for assembling and compiling larger programs. When you are ready to r~

compile you copy the source program from the work diskette (if you haven't v_

a second disk drive) to the compiler diskette for writing and reading program

code. We're following one of the oldest rules in computing here: Make

backups whenever possible, and use the original only when necessary.

NOTE:

During compiling and/or assembling, the respective program will put a

temporary file (or set of files) on diskette, which can be found by the source

program. At least 3 blocks must be free on the diskette if you are running

only one disk drive. The first temporary file (CODDAT) becomes the

necessary program code after compiling/assembling; CODDAT is deleted

after the compilation/assembly. The temporary files can be accessed ONLY

if a break or error occurs during the compiling or assembly process.

We realize that, at first glance, the material given so far can look pretty

intimidating to the beginner. Rest assured that, like BASIC, the more you f~

work with this language, the more experienced you'll become in controlling ^~
its inner workings. Good luck with SUPER PASCAL!

C

20

c

c

c

ABACUS Software SUPER Pascal Development System

2.0 MAIN MENU

The Main Menu is the outer-most command set of SUPER Pascal; it gives

you access to the primary system programs, such as the Assembler,

Compiler, Editor, etc., or you can use it to run your own programs. After

user-written programs run, an "OK" message appears, and you are returned

to the Main Menu. The cursor is displayed in the Main Menu as a '<§>' sign.

This menu also gives you the ability to load specific memory registers from

disk or to save any memory range to disk.

The following is displayed when in the Main Menu:

* C=64 PASCAL-SYSTEM 5.3 *

COMMANDS = ...

A(SSEMBLER) H(ELP) R(UNPRGM)

C(OMPILER) J(UMP) U(TILITY)

E(DITOR) M(AP/DRIVE) W(RITESRCE)

G(ETRAM) P(UTRAM)

These are the direct commands mentioned earlier in this manual, which we

will now cover in detail. Remember that all commands and responses to

input must be followed by a <RETURN> (see 1.1).

2.1 MAIN MENU COMMANDS

2.1.1 A (= ASSEMBLER)

This command calls the onboard 6510 assembler, which allows you to

convert 6510 assembly language into 6510 machine code. The assembler

looks for an assembler source-program file on diskette, and will ask for input

concerning this file:

FILE-TITLE = ?

DRIVE(MAP) = X

21

ABACUS Software SUPER Pascal Development System

The default value of X is the number of the last disk drive used, so a

<RETURN> here will usually suffice.

You could use an asterisk (*) instead of an actual file-name; this instructs the

assembler to assemble the first textfile found. The assembler next offers a

verification of filename and corresponding drive number:

CONFIRM "FILENAME,DRIVE_NR"? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is

correct the assembler will load and run. This process begins with the

loading of the file LOADDAT; both LOADDAT and the assembler program

(C_ASMBLR) MUST be in drive 0. If the given name of the textfile isn't

found, the assembler generates an error message, and returns you to the

Main Menu. If the given file cannot be handled as a textfile, an error

message will appear, and you return to the Main Menu.

The individual commands and operation of the assembler are handled in

Chapter 5.

2.12 C(= COMPILER)

This command puts you in the compiler section, which allows you to create

Pascal programs. One very important feature to this compiler is the fact that

it accepts mixtures of 6510 assembly language and Pascal. When you press

fCf in the Main Menu, you will get prompts similar to those found in the

assembler:

FILE-TITLE = ?

DRIVE(MAP) = X

The default value of X is tfte number of the last disk drive used, so a

<RETURN> will usually suffice.

You could use an asterisk (*) instead of an actual filename; this instructs the

compiler to assemble the first textfile found. The compiler next offers a

verification of filename and corresponding drive number

22

c

c

c

ABACUS Software SUPER Pascal Development System

CONFIRM "FILENAME, DRIVE_NR"? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is

correct the compiler will load and run. This process begins with the loading

of the file LOADDAT; both LOADDAT and the compiler program

(C_CPLR) MUST be in drive 0. If the given name of the textfile isn't

found, the compiler generates an error message, and returns you to the Main

Menu. If the given file cannot be handled as a textfile, an error message will

appear, and you return to the Main Menu.

The program operation and individual commands of the compiler can be

found in Chapter 4.

213 E(= EDITOR)

This command loads and runs LOADDAT, then the text-editor (the file

CJEDITOR) from drive 0.

Assembler and Pascal source-programs can be modified using the editor,

then saved to diskette in Pascal DOS. Chapter 3 contains the individual

editor commands.

2,1.4 G (= GET FILE FROM DISK TO MEMORY)

This command loads any file into memory from diskette; this is especially

useful for temporarily storing information, as well as specifically loading

programs. The 'G' command will ask for input on the following parameters:

START-ADR. = ?

Input the starting address of the file to be loaded. As already mentioned in

1.1, the address can be input either in decimal or hexadecimal.

FILE-TITLE = ?

Input the name of the desired file.

23

ABACUS Software SUPER Pascal Development System

DRIVE (MAP) = X

Give the number of the drive containing the file. The default value for X

will be the number of the last drive used, so you could just press

<RETURN>, unless the file is in the "other" drive.

If all input is correct, the routine will load the file from diskette. The load

routine is part of the system diskette program LOADDAT, which must be

kept in drive 0. If this is not the case, or if the file is not found, a

corresponding error message will be given, and program control will return

to the Main Menu.

NOTE:

The 'G' command doesn't check to see if there is enough memory to hold

the file being loaded, nor does it see if the memory address given matches

the file's starting address. The file will be loaded at the stated starting

address, and will end at the EOF (end-of-file) marker supplied on the file.

The 'G' command can utilize the memory space from $0800 to $BBFF.

This can be extended to include screen memory ($0400 - $07FF).

After loading, the end address (END ADDRESS + 1) is displayed; and

program control returns to the Main Menu.

2.1£ H(=HELP)

This command calls the complete command list, just to remind you what's

available.

c

24

ABACUS Software SUPER Pascal Development System

2.1.6 J(=JUMP)

c
This command lets you jump to any machine-language or Pascal routine in

memory:

START-ADR. = ?

Input starting address of the routine.

NOTE:

If you give the starting address of an incomplete, or non-debugged program,

you may lose control of the system.

Memory from $0800 to $BBFF is at your disposal for programs. When

working with a machine-language program, you could insert RTS, which

will return you to the Main Menu, as long as locations $0028-$004F, $0340-

$0379 and $BC00-$F2FF are unchanged. Another method would be to put

in the m/1 command JMP $C200, which also returns you to the Main.

2X7 M(= MAP/DRIVE)

The 'M' command displays the contents of a disk (the directory, or MAP)

onscreen:

DRIVE (MAP) = X

Response to this prompt will display the directory in the drive number given

(default value ofX is the drive number last used, so a <RETURN> will do in

most cases).

The directory output is accomplished with the help of a routine in

LOADDAT, so it is vital that LOADDAT be in drive 0 when the 'M*

^ command is used.

A reminder The directory in Pascal DOS is designed quite differently from

that of "normal11 Commodore DOS 2.6; in fact, SUPER Pascal cannot read a

25

ABACUS Software SUPER Pascal Development System

directory made under the standard operating system, nor can BASIC read a

Pascal disk. With the exception of 22 blocks (with a standard block-size of

2S6 bytes each), the rest of the system disk is under Pascal DOS.

The directory will tell you the filenames and the amount of memory left on V_

the diskette. Remember that a block in Pascal DOS is equal to 4k (4096

bytes), as opposed to the 2S6 bytes per block in DOS 2.6.

The directory of a system disk looks something like this:

MAP OF DISK "PASCAL" :

LOADDAT SYSGEN CREDITOR C_UTILITY

C_CPLR C_ASMBLR C_PMDUMP

DISC 0 « 18 //

BLOCKS FREE !

Locked (protected) files appear with names in reverse video. For more

information on locking and unlocking files, please see the chapter on

utilities.

More detailed information concerning Pascal DOS and new disk commands (~

can be found in Chapters 6 (Utility) and 7 (System- Specific Information). v-

2.1.8 P (= PUT MEMORY AS FILE TO DISK)

This command is the opposite of 'G* - it saves any portion of memory to

diskette as a data file. It will allow you to generate any specific information

(data, program, etc.) on a file presently in memory, and put the information

into the directory. The following parameters must be taken care of:

START-ADR. = ?

Input the address at which the information to be saved begins (as before, in

either decimal or hexadecimal notation).

c

26

c

c

c

ABACUS Software SUPER Pascal Development System

END-ADR.+l = ?

Input the number immediately following the end address of the register (e.g.,

if the material stops at $0A00, input $0A01).

FILE-TITLE = ?

Type in the name as you wish to have it appear on the directory, bearing in

mind these rules:

* Identifiers have up to eight characters.

* Identifiers must begin with an upper-case character.

* Remaining characters in an identifier must be upper-case

characters, numbers and'_'.

DRIVE (MAP) =* X

Give the drive number, or press <R£TURN> for the default value.

After all parameters are in, on condition that no errors have occurred, the

save process calls LOADDAT, and stores the file on diskette. As before,

LOADDAT must be in system drive 0, or the routine will not work.

NOTC:

If there is a file of the same name already on the target disk, this older file

will be scratched and replaced by the file being saved; in short, you'll lose

the old file. There is an exception to this - if the older file is locked

(protected), you'll get the error message "ILLJFILE OPR. ERROR!".

If there isn't enough space on the disk, or if the disk has a write-protect tab, a

respective error message will be displayed, and the 'P' command breaks off.

During a save, the memory configuration shifts: $0000-$CFFF is RAM;

$D000-$DFFF is for I/O; and $E000-$FFFF contains the ROM (Kemal).

Barring errors, the program returns to the Main Menu.

27

ABACUS Software . SUPER Pascal Development System

2.13 R (= RUN PROGRAM)

The 'R' command gives the user the ability to call and run any compiled y—

Pascal program on diskette. The command automatically loads the program V_

into memory, and starts it, after filling in these parameters:

FILE-TITLE = ?

Input the filename.

DRIVE (MAP) = X

Give the corresponding drive number (or <RETURN> for default). After

correct input, the program is loaded with the help of LOADDAT (read from

drive 0); if LOADDAT cannot be found, an error message is displayed, and

the 'R' command is ignored.

Here are two simple methods for calling programs:

a) After compiling a program, respond to the filename prompt with " *". f~~

b) Call a program in 'R' mode using "*".

These cases assume that the system will immediately be able to find the

program on disk.

There are times when runtime-errors will happen (i.e., problems during a

program run); when this happens, the program returns you to the Main

Menu, and gives you the error message and address of the error, thusly:

... ERROR IN $

Here is a short list of runtime-errors:

OUT OF RNG. ERROR! number out of legal range

NOT EXQ, ERROR! program code cannot be executed C~

28

ABACUS Software SUPER Pascal Development System

c

c

NUM.OV. ERROR1

B.SUBS- ERROR

IL.QUANT. ERROR!

STK.OV. ERROR!

ZERO-DIV. ERROR!

IL.DVC. ERROR!

FLOPPY ERROR!

NOT OPEN ERROR!

NOT CLO. ERROR!

BUF.OV. ERROR!

DIR.OV. ERROR!

NOT FND. ERROR!

DSC.OV. ERROR!

DSC.MISM. ERROR!

IL, FILE OPR. ERROR!

AFTER EOF ERROR!

IEEE-ERROR!

numerical overflow beyond a predefined

integer range

bad subscript (array index)

illegal quantity

overflow of stack (variables)

division by zero

illegal device number

error in data transfer via disk drive

file not open

RESET/REWRITE attempted on an open

file

attempt to use more than three file buffers

not enough directory space

file not found

not enough memory on diskette

illegal/ non-matching diskette

illegal file operation

attempt to read file after EOF

data transfer error in IEEE-bus

A successful program run will end with the message "OK" displayed.

29

c

ABACUS Software SUPER Pascal Development System

2.1.10 U(= UTILITY)

This command loads and starts the utility section of the system diskette, first

loading LOADDAT (in drive 0) and C_UnLITY.

The utility program permits a simple file-management system. However,

you also get access to a set of monitor functions in this menu. In addition,

'U' mode lets you load and run programs without having to resort to

LOADDAT, making the system disk unnecessary once the Utility Menu is

loaded!

The idiosyncrasies of this menu are covered in Chapter 6.

2.L11 W(=WRTTE SOURCE)

9W gives you a hardcopy (printout) of a source program. Essentially, this

command will let you print out any text file, with line numbers to help you

in debugging. These line numbers are NOT part of the program itself - they /"~

are there as an aid to the user. ^~

You have the option of either printing the program on a continuous-feed

sheet (no pagination,etc.), or printing it out in a readable format, with page

headers.

Once you choose 'W, you'll have to answer a few prompts:

FILE-TITLE = ?

Input filename of the text to be printed

DRIVE (MAP) = X

Input drive number, or press <RETURN> for default.

After input, LOADDAT is loaded and run (did you remember to leave it in

drive 0?). If the file isn't found, or if it isn't a textfile after all, the command (^
will break off, and display an error message.

30

c

c

c

ABACUS Software SUPER Pascal Development System

Assuming the WRITE routine hasn't hit any problems, a new set of

parameters are displayed:

PRT-DEVICE = 4,0

Ifnecessary, you can change the primary (default 4) and secondary (default

0) addresses to suit your own printer.

LINES/PAGE - 72

This is for page formatting - the number 72 represents the total number of

lines per page.

Once input is completed, the printing begins immediately; you may stop the

printout at ant time using RUN/STOP, which will send you back to the

Main Menu.

If you should have a different form of printer (different from a serial-port

printer), you can change the primary address (4 = printer in serial port/ 5 =

user port). Both device addresses reside in a subroutine at $CA03.

Changing the device address can be done at $0373 (change to either 4 or 5).

22 EXIT TO BASIC

SUPER Pascal will return to BASIC when you press the RUN/STOP and

RESTORE keys, which executes a RESET routine and does a BASIC cold-

start As long as $C200-$FFFF remains unchanged, you can get from

BASIC back into SUPER Pascal by typing SYS 49664, which puts you in

the Main Menu.

31

c

c

c

ABACUS Software SUPER Pascal Development System

3.0 TEXT EDITOR

The editor is started from the Main Menu by pressing "E\ If you make a

diskette for editing, be sure to include LOADDAT - again, LOADDAT is a

necessity for booting this section -- in addition to the editor itself

(CREDITOR).

The following message is displayed in edit mode:

* C=64 SOURCE-EDITOR 5.3 *

COMMANDS = ...

A:(PPENDSRC) L(1ST) Q(UIT)

C:(HANGE) M(AP/DRIVE) R(ENUMBER)

D(ELETE) N(UMBERING) S(HIFTLINE)

F:(IND) O(UTPUTDVC) U:(PDATESRC)

G:(ETSOURCE) P:(UTSOURCE) V(ACANCY)

H(ELP)

No cursor is displayed in edit mode. In this mode, you can edit Pascal and

assembler programs as textiles, and save them to disk for

compiling/assembling later; this mode supplies 43000 bytes of memory

available to the user. Note that auto-repeat is in effect for all keys.

Essentially, the editor lets you edit and augment programs, with line

numbers supplied during editing. Each line can be 80 characters long - just

as in BASIC - and you have full control of the normal screen editing keys

(cursor up/dn/lft/rt;insert/delete). Revised lines are "installed" by pressing

<RETURN> when you're through editing. If you type in a line number and

<RETURN> only, and that number already exists, said line will be deleted.

Lines can be edited in any order, at any time; just move the cursor to the line

in question, correct, and press <RETURN>.

There is one small limitation in editing: It is impossible to start a text line

(i.e., immediately following a line number) with a number. If you do so,

you'll get one of two messages:

33

ABACUS Software SUPER Pascal Development System

ILLEG. LINE#!

EXECUTION NOT SUCCESSFUL!

If a line is typed in without line number, the first character will be read as a /""""

command, and again, you'll probably get V-

EXECUTION NOT SUCCESSFUL!

since the system will be confused by the number.

If command input is wrong, two common error messages are

ILLEG. SYNTAX!

EXECUTION NOT SUCCESSFUL!

These are the remaining error messages:

ILLEG. INPUT!

EXECUTION NOT SUCCESSFUL!

(illegal device number)

ILLEG. TITLE!

EXECUTION NOT SUCCESSFUL!

(illegal filename)

TITLE UNDEFINED!

EXECUTION NOT SUCCESSFUL!

('*' used for unspecified filename)

RAM OVERFLOW!

EXECUTION NOT SUCCESSFUL!

(insufficient memory)

COMMAND IGNORED!

(use of undefined command abbreviation)

Other errors encountered will be I/O errors, which will display messages, but

will not dump you from the editor, or destroy your file.

34

c

c

c

ABACUS Software SUPER Pascal Development System

3.1 EDITOR COMMANDS

Some of these commands have a colon (:) appended to them; the reason for

this is a string or set of numbers are expected to follow. If mistakes are

made in giving input, you'll be greeted with a syntax error. Remember, too,

that all input must be concluded with <R£TURN>.

3.1.1 A: (= APPEND FILE)

This command permits appending files on disk to files already in memory.

Its syntax sounds like this:

A:FILENAME

with FILENAME representing the file to be appended (added).This means

that the file is taken from the last disk drive used (which should be 0

immediately after the editor starts, but you can change that with the 'M'

command). The editor will ignore any illegal input, and respond with an

error message. When correct input has been supplied, the editor will get the

file from disk, and append the two programs.

To avoid any conflicts, the second file (the one to be appended) should be

shifted above the last address of the original file ('S').

If errors are encountered (file not found, file not a textfile, etc.), the

procedure is stopped, but the original file will remain behind. On the chance

that you run out of memory, the error message will read

RAM-OVERFLOW!

EXECUTION NOT SUCCESSFUL!

See 3.5 for help with memory trouble.

35

ABACUS Software SUPER Pascal Development System

3.1*2 C:(= CHANGE)

This command makes it possible to replace any text string with a new string. f~
Syntax: v~

C:STRING_OLD

refers to the old string. Alteration reads:

TO:STRING_NEW

A string can be defined as any character or set of characters found on the

keyboard, and printed onscreen. The editor uses all material following the

colons (:). Unused columns are filled in with blank spaces (NOTE: Do not

end strings with a space yourself).

If the change involves replacing a short string with a longer one, see that the

line doesn't have more than 80 characters, or this error message will turn up:

LINELENGTH EXCEEDED IN LINE: (~
... CURRENT TEXT LINE ...

You will have to go in and change this line "by hand"; 'C:' will not operate

with overstepped lines. Errors will not cause you to lose your text, though

(for additional help, see 3.S).

3JJ D(= DELETE)

This command deletes a line, or a number of lines, specified by the user.

D

alone will delete all text in the editor. You'll get a warning -

SURE TO DELETE THE COMPLETE SOURCE? Y/N V_

36

c

ABACUS Software SUPER Pascal Development System

- to avoid deleting something you may not want dumped. Respond 'Y1 if

you want to dispose of the text

Dxxxx

deletes line #xxxx; this is equivalent to typing just the line number with no

text following.

D-xxxx

deletes from beginning-of-file to line #xxxx

Dxxxx-

deletes from #xxxx to end-of-text

Dxxxx-yyyy

deletes from xxxx to yyyy. If yyyy is a number less than xxxx, then no text

f~ is scratched.

Input not following these patterns will be ignored, and treated as syntax

errors, excepting input using additional spaces between parameters.

3.1.4 F:(=FIND)

The 'F:1 command is handled much like the *C:' command; it allows you to

find any text string:

F:STRING

The editor will then list all lines containing this string. The listing can be

stopped and started by pressing the spacebar. The RUN/STOP key aborts

the listing, and halts the 'F:' command.

c

37

ABACUS Software SUPER Pascal Development System

G: (= GET SOURCE FROM DISK)

This command will load a textfile from diskette for editing. The command C

syntax is similar to'A:':

G: FILENAME

FILENAME, of course, refers to the file to be loaded from the last drive

used, or the drive stated by the 'M' command.

An asterisk (*) can also be used for FILENAME, provided that '♦' has been

predefined (see also *P:')* If no such file has been defined, or if an error has

been caused from 'A:' or 'U:' commands, you'll see

TITLE UNDEFINED!

EXECUTION NOT SUCCESSFUL!

onscreen; if this, or some other error message comes up, the command given

by the user will be ignored /—

Immediately after all proper input, the 'G:' command will load the file

requested from diskette into memory. The system will arrange the file into

lines numbered in fivefold steps, beginning at 1000 (i.e.,

1000,1005,1010,1015,etc.). NOTE: The line numbers are there for your

convenience only-they are not in fact part of the file itself.

Errors, such as file not found, no textfile, read error, etc., will stop the

command, and send you back to the editor. Whatever text loaded into the

system before the error will be available to you.

If there isn't enough memory to handle the file, this message appears:

RAM OVERFLOW!

EXECUTION NOT SUCCESSFUL!

However, you WILL be able to edit the text loaded up to the time of the r

overflow. v~

38

ABACUS Software SUPER Pascal Development System

NOTE:

Any text in memory when the *G:' command is called will be lost and

C overwritten by the new material. Be sure that this old material is saved

before calling a new file. If you choose not to save it, the 'G:' command

will ask:

SURE NOT SAVING THE SOURCE? Y/N

giving you the option of saving or not

3.1.6 H(=HELP)

*H' prints the complete command set onscreen, to remind you of all sections

of the program (MAIN/EDITOR/UTILITY).

3X7 L(=LIST)

This command allows you to list all or part of the textfile for review or

debugging, using the "artificial line numbers". Here arc the individual

versions of LIST:

L

lists entire text from beginning to end.

Lxxxx

lists line number xxxx.

L-xxxx

lists text from beginning up to line xxxx.

c

39

ABACUS Software SUPER Pascal Development System

Lxxxx-

lists lines xxxx to the end of the file.

Lxxxx-yyyy ^—

lists from xxxx to yyyy. If yyyy is less than xxxx, then no lines will be

listed

The listing can be slowed with the CTRL key, or stopped and started by the

spacebar. Press the RUN/STOP key to abort the listing altogether.

3.U M(= MAP/DRIVE)

For details on the 'M* command, see Chapter 2.1.7 ('M' in Main Menu).

Keep in mind that disk drive 0 will be the "main drive", i.e., that the system

will look there for LOADDAT and the respective system programs. The

'M' command will let you change drive numbers for 'A:', 'G:\ 'P:\ and f~
'U:\ V'

3.1.9 N (= AUTO-NUMBERING)

This command automatically generates line numbers in steps of S, allowing

you to add text There are two methods of starting auto-number mode:

N

which begins with a number 5 higher than the last number of text If no

previous text exists, then 'N' will start at line 1000.

Nxxxx

begins at line xxxx (determined by the user) and goes in five-step increments

from there.

40

c

c

c

ABACUS Software SUPER Pascal Development System

Auto mode will switch off if:

you move to a different line for editing, and press <RETURN>.

you enter a <RETURN> after a line number.

During auto mode, no other editing commands can be accessed; in order to

return to editing, use one of the above methods.

3.1.10 O(= OUTPUT DEVICE)

This lets you select the output device to be used. When the editor starts, the

output device is obviously the screen, but using

Ox,y

will let you redefine this device number; x represents the primary address,

i.e., the device number proper, and y the secondary address. If no number is

given for y, the default value will be 0. Here are three ways to reset the

output to the screen:

O0,0 (or) OO (or) O

Input of an illegal device number (other than 0 or 4-7) or secondary address

(other than 0-15) will result in

ILLEG. INPUT!

EXECUTION NOT SUCCESSFUL!

being displayed.

After redefining the output channel, the entire output - which would

normally appear onscreen -- will go to the specified device; this feature can

be very useful for the T:\ 'L' and 'M1 commands. On the other hand, your

best bet for a hardcopy of the text would be the 'W command in the Main

Menu, since that command gives you a neatly formatted printout of a file.

Output mode can be halted with the RUN/STOP key, or an error will change

the readout back to the screen.

41

ABACUS Software SUPER Pascal Development System

3.1.11 P (= PUT SOURCETO DISK)

This takes a text file from the editor, and saves it to disk. This text file can

later be compiled or assembled:

P:FILENAME

FILENAME is, of course, the name under which you want the file saved to

disk. You may first want to check the directory or change drives ('M'

command).

Rather than use a filename, you could use the identifier "*", in connection

with the 'G:' command which also allows for predefined filenames. If such

a filename hasn't been defined, or you have accidentally used 'A:' or 'U:\

the system will display

TITLE UNDEFINED!

EXECUTION NOT SUCCESSFUL!

The following prompt is displayed to insure against any other bad input:

CONFIRM "FILENAME,DRIVE_NRn? N/Y

Confirmation (T) begins the save procedure.

Any errors occurring during the save sequence (e.g., bad syntax, illegal

identifier) will display a corresponding error message, and bring the

command to a halt

The syntax rules for Pascal identifiers must be followed (as we've

mentioned before at Chapter 2.1.8). Be sure to reread those rules, as it will

make your file storage easier.

NOTE:

It is very important that you give a textfile a different name from the

compiled "program" version, when saving to disk - Pascal syntax suggests a

PROGRAM header (PROGRAM PROGRAM NAME; ...), to avoid any

overwriting problems.

42

ABACUS Software SUPER Pascal Development System

Here are the important identifiers:

S_NAME name of a Pascal source-file (source)

f A_NAME name of an assembler source-file (asmblr)

^- CJNAME name for Pascal program code (code)
M_NAME name for 6510 object code (M-prgm)

The remaining files (data) have no specific identifiers.

If you give the file to be saved a name identical to a file already on disk, the

old file will be scratched, and replaced by the new. However, if the file cm

disk is locked (protected), the save process will abort, and this message will

be displayed:

ILL.FILE OPR.

Corresponding error messages will come up for any I/O errors. Once the 'P:1

section is done, the old text remains in the editor for your work.

V^ 3.1.12 Q(=QUTT)

This command leaves the editor and returns you to the Main Menu. If there

is text in the editor when the 'Q' command is given, the system will ask

whether you want to save the file or not:

SURE NOT SAVING THE SOURCE? Y/N

Choosing'Y' (yes) erases the file and returns you to the Main Menu.

3.1.13 R (^RENUMBER)

The 'R* command comes in handy for renumbering programs (for, say,

C renumbering a program after editing). The numbering begins at 1000, and

increases in 5-step increments.

43

ABACUS Software SUPER Pascal Development System

If the need arises for more than four lines' worth of space for additional text,

just insert a new line number, a (* comment *), <RETURN>, and run the 'R'

command; this will give you 9 lines to work with.

3.1.14 S(=SHIFTLINE)

Often the user will find it necessary to move an entire set of program text to

another place (e.g., when appending files); to accomplish this, we've

included the'S' command. The syntax must be typed in as follows:

Sxxxx-yyyy:z z z z

The command moves lines xxxx through yyyy to the place defined by zzzz.

If the value for line yyyy is less then that of line xxxx, the command will be

ignored. On the other hand, if zzzz is defined within the ranges xxxx to

yyyy, the system will say

ILLEG. INPUT!

EXECUTION NOT SUCCESSFUL!

After moving text, it should be renumbered (see 'R' command). Now you

can work with the newly-moved text

3.1.15 U: (=UPDATE FILE)

To some extent, this is a companion to the 'A:' command - it allows you to

append text to files already on disk. The opening syntax sounds like this:

U:FILENAME

- FILENAME representing the file on disk (you may first want to verify

that filename with the 'M' command). The system will ask for verification:

CONFIRM "FILENAME,DRIVE NR"? N/Y

C

c

44

c

c

c

ABACUS Software SUPER Pascal Development System

A positive response ("Y") starts the save routine; any other character will

cancel the command.

If the file is locked (protected), the 'U:' command displays

ILL.FILE OPR.

and halts the command; any I/O errors will also display messages and abort

the command, although the text will remain in the editor.

NOTE:

The 'U:' command can, with repeated use, produce extremely long text files

-- longer, in fact, than the 'G:' command will be able to handle. Keep this in

mind, and watch file size carefully.

3.1.16 V (=VACANCY)

This command returns the amount of memory free in the editor at any time

(the empty editor has 43000 bytes free). Any time that memory runs out will

cause the following to be displayed, (see 3.5 for a solution).

RAM OVERFLOW!

EXECUTION NOT SUCCESSFUL

3.2 EDITING PASCAL PROGRAMS

This chapter will briefly cover writing Pascal programs in edit mode.

Source programs are input using the syntax described in the "Pascal User

Manual and Report". The reserved words (keywords and word symbols) and

identifiers use the ASCII characters from $41 to $5A (upper-case). These

will be printed differently on the C-64, as we mentioned at the beginning of

this manual.

45

ABACUS Software SUPER Pascal Development System

In the default mode of SUPER Pascal (lower/upper-case mode), these

characters appear as lower-case, rather than upper- case (to avoid confusion,

you can go back to upper- case/graphics mode by pressing C=/SHIFT).

Identifiers are distinguished by the "_" character (ASCII $5F, or "back- C"
arrow"). v-

The"{" and"}" characters, unavailable on the C-64, are replaced in SUPER

Pascal by "(♦" and ♦)". Any other characters, strings or CHAR-types are

those used on the 64.

There are a few restrictions imposed by the 64 in developing Pascal

programs, but these are so trivial, that they probably won't make that much

difference in your programming:

Textlines (including line number) cannot exceed 80

characters (solution — divide text into smaller sections);

First character of text (immediately following the line

number) cannot be a number (solution - start text with a

space); ^

No blank text lines (answer - input as a blank comment (*

♦));

Aside from that, the 'N' command (see Chapter 3.1.9) helps in making room

for plenty ofprogram development, where there seems to be no room.

Thanks to the large amount of text memory (43k), you can edit and write

Pascal programs that are downright huge. Large programs can be divided

into smaller sections, stored on disk in this form, and edited piece-by-piece.

A simple command at the end of each file tells the compiler that this is only

part of a program. We have managed to develop and effectively compile a

Pascal program of six separate sections of 40k each, and as far as we know,

the ability to divide programs is limitless, and can be used at your own

discretion (do keep in mind, though, that these sections must be absolutely

correct, syntactically speaking, before compiling).

The compiler command for continuing with another program section should ^—

read:

46

ABACUS Software SUPER Pascal Development System

^CONTINUE(FILENAME, DRIVE_NR);

(or)

&C (FILENAME, DRIVE_) ;

V~ This tells the compiler to get FILENAME for compiling, once it's through

with the present file, compile FILENAME from disk.

A simpler method:

&CONTINUE(FILENAME);

(or)

&C(FILENAME);

can be used if the additional source sections can be found on the same

diskette as the first program section.

Next in the intermediate commands for the compiler is a second routine for

larger programs, which basically includes one much-used routine at a certain

spot in the program, rather than type in that routine time and again:

C ^INCLUDE (FILENAME,DRIVE_NR) ;

V (or)
&I (FILENAME,DRIVE_NR) ;

This command interrupts the compiling of the present file, and pulls the

specified file (FILENAME) from disk, compiles that, and continues with the

old file. The file called by '&F is now an integral part of the original

program. Needless to say, the text called by '&F should be debugged and

ready to go before compiling, to avoid errors.

The short versions of this command are:

&INCLUDE(FILENAME);

(and)

&I(FILENAME);

f~ which, as above, will work if the file to be INCLUDEd is in the same drive

(^ as the original file.

47

ABACUS Software SUPER Pascal Development System

A program section can contain a number of '&C and '&V commands. A

program can work with up to 4 nested '<&T commands.

The INCLUDE command allows similar CONST-, VAR-, PROCEDURE-,

FUNCTION- or statement definitions to be used in different programs. Also,

individual routines can be used again and again, e.g., you could use the demo

program "Hilbert-Curve" in one of your high-resolution programs.

There's a third aid in designing Pascal source-code; the command for

conditional compilation. That is, versions of a program which differ from

one another in a few respects can be attended to as one program. The

conditional option reads:

&TRUTH(BOOLEAN_CONST);

(or)

&T(BOOLEAN_CONST);

This command tells the compiler to translate this section of the program text

only if the Boolean constant is TRUE. If the constant is FALSE, the

compiler ignores the text and continues searching until the TRUE

conditional command is found. The compiler will compile the TRUE

version only.

It should be self-evident that control can be turned on with '&T (TRUE)' and

off again with '&T (FALSE) \

The remaining compiler commands ('&P' and '&A') don't deal so much

with the source text as they do with information about the compiling process.

We will cover these in detail in the chapter on the compiler (Chapter 4).

33 EDITING ASSEMBLER PROGRAMS

This chapter will cover only the text editing assembler programs; particulars

of the assembler can be found in Chapter 5.

The assembler source follow tightly-assigned rules of syntax, in order for the

text to be properly converted to 6510 machine language. At the same time,

the source code must also be readable.

48

c

c

c

ABACUS Software SUPER Pascal Development System

These two items are often the reasons for an assembler source-code to have

specific columns drawn within a text line. They aren't normal procedure;

those columns are for the user's convenience. Though they aren't necessary

to compiling, four-digit line numbers (1000-9999) are also included for user-

readability. These are the same numbers generated by 'R' (see 3.1); starting

number 1000, steps of 5, up to 9999,43k of memory.

On to those column divisions: The assembler has certain ranges for specific

material within a line - a label Held, an instruction- or operator-field, and an

operand- or address-field. The room left on a line can be used for comments

if desired.

Here's a sample text line, with its individual features defined:

--> text line : zzzz llllllll hi oooooooo...

POSITION 1-4 (ZZZZ=line number)

Field for 4-digit line number.

POSITION 5 (space)

Blank space, separating line number from label field.

POSITION 6-13 (LLLLLLLL=label field)

This is where labels are placed for recognition by the assembler program.

The labels are linked together into an array. All identifiers are allowed here

as labels. The structural rules for labels are:

8 significant characters (no more can be used per field), whereby

the first character must be a letter, and

the remainder can be letters, numbers or"J\

Unused positions on a label field will be made up of spaces. If no label

exists in a line of text, then the entire field will be blank (spaces).

POSITION 14 (space)

49

ABACUS Software SUPER Pascal Development System

A space separating the label field from the instruction field

POSITION 15-17 (I I ^instruction or operator field)

This field is where the 6510 mnemonic instructions proper are put The ^-
abbreviations here ace identical to Commodores 6510 definitions. Here is a

list of these instructions:

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

INY

JMP

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PLP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Along with these instructions, there are several pseudo- commands, which

behave like assembler commands:

.OS.BA

.BY

.CT

.DL

.DS

.EN

.EQ

.NE

.OC
c

These pseudo-operations begin with a V at position 15. Chapter 5 contains

detailed descriptions of these commands, but we shall touch on these

pseudo-operands here.

POSITION 18 (space)

A blank space, separating the instruction field from the operand field to

follow.

POSITION 19 ff. (OOOOOOOO... = operand field)

Column 19 is the starting place of the operand field, the length of which

varies. This field gives the operands for the operation, i.e., the parameters

for the machine language commands. Here is where the symbolic or

absolute addresses appear, containing an address to which the routine should

jump, or a particular item on which the command should operate.

50

c

c

c

ABACUS Software SUPER Pascal Development System

The length of the operand field depends on the type of addressing used in the

command, the length of the label used, and the address range. The

maximum length of an operand is limited to linelength (80 characters,

including line number).

If you should wish to add any commentary (similar to REMS in BASIC) that

the system will ignore, you can do so after the operand field by adding a

space and a semicolon (;). You can also insert comments after placing a

semicolon at position 6 or IS.

We have some other commands in the assembler which are quite different

from the norm (.CT,.NE, etc. ~ see earlier in this chapter); these affect the

design on source-code and assembler processes.

The first of these is a string command:

.CT FILENAME

This command (mnemonic for "ConTinue") instructs the assembler to

translate the source file on diskette listed in the operand Held as

FILENAME. .CT allows you to work with assembler programs much larger

than the editor can handle; you can edit them in smaller sections, then

connect them into one unit with .CT.

Next we'll discuss the conditional commands

.EQ OPERAND and .NE OPERAND

in detail. These commands, similar to the conditional compiler instructions

(see 3.2), give the assembler the ability to choose between different versions

of a source program, and choose the one conditionally proper for editing and

saving. The mnemonic for JBQ means "If operand equals 0"; i.e., the

command converts the program that follows ONLY if the given operand is

equal to zero. In other words, the program would be acceptable if the

constant label at the beginning of the program equals 0.

The pseudo-instruction .NE ("if operand is not equal to 0") works much the

same way, except the operand would have to be anything but 0.

A conditional program section must be ended by the pseudocode

51

ABACUS Software SUPER Pascal Development System

which sets the assembler back to normal.

The following pages contain a sample program showing all these features. It V_

demonstrates carriage return output for the C-64, PET and ABC:

1100

1105

1110

•

•

1200

C64

PET

ABC

CR

.DL

.DL

.DL

.DL

1

0

0

SOD

;set

/set

;set

;set

label

label

label

label

C64

PET

ABC

to

to

to

1

0

0

CR to 13

1300 ♦ NE C64 ;cond. assemb. if C64O0

1350 BSOUT .DL $F1CA ;label BSOUT = address c

1390

1395 ;

1400

1405 ;

•

•

1450 BSOUT

•

1490

1495 ;

1500

1505 ;

•

•

1550 BSOUT

...

.NE

.DL

...

.NE

.DL

PET

$FFD2

ABC

$FF00

;end of cond. assemb.-C64

;cond. assemb. if PET <>0

ignored if PET = 0!

;end cond. assem. PET

;cond. assem. if ABC <>0

ignored here if ABC=0!

;set label BSOUT

c

52

ABACUS Software SUPER Pascal Development System

c

1590

2000 OUTCR

2005

2010

2015 ;

2020

2025 /

2030

2035

2040 ;

2040

LDA #CR

JSR BSOUT

;end cond. assemb. ABC

CR-output program/

;load CR-code and perform

;output routinef

.NE ABC /cond. assemb. if ABC <>0

give LF code (linefeed) as well

LDA #$0A /as CR (cancel by C64/PET)

JSR BSOUT /ignored here if ABC

is equal to 0

... /end ABC cond. assembly

c
3000

3005

3010

3015

/program for other versions

.CT DEMO_2 /assembly command/ which

/converts source file DEMO_2

/ if found on diskette.

3.4 MIXED PROGRAMS

c

A major strength of the SUPER Pascal compiler is its ability to handle

mixed programs - in other words, it isn't limited to Pascal; it can also deal

with machine-language routines within a Pascal program. Assembler

source-code is called into a Pascal routine with PROCEDURE or

FUNCTION; it's a simple matter to treat assembly routines as "normal"

Pascal functions or procedures. For more information on this matter, see

Chapter 4.1.2.3. For the moment, however, we'll look at a few relevant

aspects.

53

ABACUS Software SUPER Pascal Development System

As we said above, machine language routines can be inserted in a Pascal

program with PROCEDURE or FUNCTION. In addition to standard

procedures of machine-code syntax (see 3.3 and 5), certain parameters must

be fitted to the routine to make it a Pascal-compatible procedure or function. s~

The assembler section can be cordoned off with BEGIN and END, while the V_

compiler command

ASSEMBLE;

calls the program section.

This command should be developed somewhat to define the exact name and

location of the file (if the disk has more than one assembler program):

ASSEMBLE (FILENAME,DRIVE_NR) ;

TTie system looks for the FILENAME on the drive selected. If the file is on

the "working disk", all you need type in is

ASSEMBLE (FILENAME) ;

Pascal-level constants can be defined within the assembler routine. v_-

Furthermore, the contents of the Pascal variable stack can be read within

such a m/1 routine with STKPOI.

The machine-code routine is concluded with the instruction RTS, which

sends us back to the Pascal routine currently called. The chapter concerning

the assembler (5) suggests that the pseudo-command . EN should be used

after RTS. NOTE: the next line of the source program should be in Pascal.

The following routine will give you an example of what has been discussed:

Essentially, this program is a Pascal routine containing a machine-language

subroutine to change the 64'$ screen colors.

c

54

ABACUS Software SUPER Pascal Development System

c

c

c

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

PROCEDURE SCREENCOLOR

{}

{Pascal routine with a

{colors (parameters

U

ASSEMBLE;

•

CPUPORT .DL

SCREE_RG .DL
■

SEI

LDA

ORA

STA

LDY

LDA

STA

LDA

AND

STA

CLI

INC

BNE

INC

EXIT RTS

•

.EN

{}

{now back to

f}

$01

$D020

*CPUPORT

#3

*CPUPORT

#0

(STKPOI),Y

SCREE_RG

*CPUPORT

#$FC

*CPUPORT

*STKPOI

EXIT

*STKPOI+1

the Pascal

(COLOR:BYTE) ;

call to change screen)

in single-byte form)}

/broaden IRQ for

/different memory

;configuration

; (I/O enable)

;set index register

;get parameters

;set screen color

/reset memory

/config.I/O disable
•

/IRQ permit

;set-raise Pascal

/variable stack and

/thus parameters

/return to Pascal

/end Assem routine

routine)

2000 SCREENCOLOR(#0);

2005 {call to switch on screen color BLACK)

55

ABACUS Software SUPER Pascal Development System

35 INTERNAL ORGANIZATION OF THE EDITOR

We'll spend this chapter looking at the design of the editor, and give a few /""

explanations on how to write textfiles in this mode. The chapter will v~

conclude with memory management during edit mode.

With the exception of one critical section in machine language, the editor

itself is a Pascal program (see the complete listing in the Appendix of this

manual). When editing, the program organization and variables carry

greater weight than individual textlines; here we can see a connection

between necessary memory usage and the program's ability to find lines

quickly. The best type ofprogram in Pascal is a solidly-written one.

Program design involves being able to edit, delete, move and augment lines

without any problems to the system. The contents of a given line is defined

in terms of STRING-length, which is, of course, limited to line-length (80

chars.). Aside from that, the Pascal-heap (which contains the dynamic

variables) can also be altered. However, removing text strings which are no

longer needed can pose some problems with pointer manipulation, thus

slowing the program down. In addition, leaving these text strings in can take (~
up a good deal of memory. ^~

There is, however, a way out of our memory problems: Rather than keep the

text in memory, the editor will allow us to move memory around, and make

adjustments for text storage on disk to be called up later; as this space fills

up from loading (and as the strings become unnecessary), the garbage

collection is speeded up, and the heap pointers don't get pushed about by the

collection. Another good reason for using temporary storage is that it

increases the amount of memory available for writing programs. The

compiler commands &CONTINUE, & INCLUDE, ASSEMBLE and the

assembler command . CT are used in this respect

c

56

c

c

c

ABACUS Software SUPER Pascal Development System

3.6 TEXTFILE DESIGN

We'll conclude Chapter 3 with some remarks about the structure of textfiles.

They contain the information which will eventually become programs

(sourcefiles) in SUPER Pascal.

SUPER Pascal textfiles are designated with the filetype declaration TEXT

per standard Pascal (i.e., the FILE OF CHAR according to the "Pascal User

Manual and Report"), with the filename and type followed by a carriage

return (ASCII $0D). As mentioned before, source programs are saved

without line numbers or other characteristics of textfiles. An end-of- file

(EOF) character will not be produced, and is not an absolute requirement of

the files. An EOF can be set in the information section of the directory.

If have a source program that's unfamiliar to you, and you'd like to have a

look at it (for editing, curiosity, whatever), it's possible to write a file-

conversion program, to turn the file from SUPER Pascal back to a textfile.

We suggest that you have a good look at the "Pascal User Manual and

Report" for proper Pascal syntax and programming methods.

57

c

c

c

c

ABACUS Software SUPER Pascal Development System

4,0 PASCAL COMPILER

As mentioned previously, this manual is an instruction book for SUPER

Pascal, nothing more «it is not a Pascal tutor, nor is it intended to be. We

suggest that you check the chapter at the end of this book ("For Further

Reading") for a list of beginning Pascal texts.

The basic concepts and definitions of Pascal were essentially invented by

Niklaus Wirth, a professor at the Technische Hochschule (technical college)

of Zurich, Switzerland). Professor Wirth literally "wrote the book" on the

subject ~ the Pascal User Manual and Report which is the acknowledged

text on the language. The language name, Pascal, is in honor of the French

mathematician Blaise Pascal(1623-1662), who built a working mechanical

calculator in the 17th century.

4.1 SCOPE OF THE LANGUAGE

The SUPER Pascal compiler contains the complete set of commands and

"figures of speech" used in standard Pascal, plus a few commands that we

included to make C-64 programming easier. The chapters that follow give

definitions of these commands.

4.1.1 STANDARD LANGUAGE ELEMENTS

All Pascal programs are written in a block-oriented manner, with program

blocks divided into two sections - an arrangement section and a command

section. The arrangement section contains the definitions and declarations

necessary to the problems being handled, while the command section

contains the statements used for comparison, problem solving, etc.

Subprograms (procedures and functions) contained within such a main

program are written with the same block orientation. This top-down concept

is an important reason for the structural elegance of Pascal programs.

There's another, more functional reason for top-down programming: That

structure dictates the sequence in which the different language elements

59

ABACUS Software SUPER Pascal Development System

should appear. Now, on to the basics: The standard symbols and identifiers

are listed below followed by their definitions.

Every Pascal program begins with the program header, which gives filename s~

and individual parameters of a file. A header looks like this: V.

PROGRAM PROGRAM NAME (FILEPARAMETERLIST) ;

PROGRAM is the reserved word for the program header.

PROGRAM name represents the program identifier by which the program is

known; the SUPER Pascal compiler will save the program code to diskette

under this name.

NOTE:

The source program MUST be saved under a different name than the name

on the program header; otherwise, the sourcefile will be overwritten by

program code with the same name.

fileparameterlist refers to the other identifiers within a file (placed

within parentheses, with each parameter separated by commas), which are f~

used in the program. Two examples of this are INPUT and OUTPUT. These ^—
last two, needed for accessing external files, are relics from the early days of

the mainframe computer - used to call not only program code, but the

devices involved in retrieving data. On a home computer such as the 64, this

sort of thing is unnecessary for file retrieval, since we have immediate access

to disk. So, INPUT and OUTPUT for us stands for the keyboard and screen

respectively. You can use the parameter list -- but you don't absolutely

HAVE to; the program header can be abbreviated:

PROGRAM PROGRAM NAME;

which makes life much simpler.

The next must be included in the course of the arrangement section ~ the

label declaration:

LABEL LABELLIST; (~

label is the reserved word for label declaration.

60

c

c

c

ABACUS Software SUPER Pascal Development System

LABELLIST stands for the label numbers) (separated by comma(s)). The

label number should be used in connection with the GOTO command; the

number can be any whole number between 0 and 32767 (maxint).

The section following the label declaration is the constant arrangement:

CONST CONSTANTLIST;

CONST is the reserved word for constant arrangement

CONSTANTLIST refers to a set of constant definitions (separated by

semicolons (;)) required in the program -- these definitions consist of the

definition, followed by an equal sign (=), followed by the value of the

definition. It is permissible in SUPER Pascal to arrange defined values for

simple calculations, or for comparisons between constants. Here are some

possibilities, encompassed in one example:

CONST VALUE = 3; NUMBER = 0;

ENDVALUE =VALUE * $FF +5;RETURN= CHR($0D);

ASCII = ORD(X) ; LESS = PRED (MAX) ;

The full scope of these comparisons are described in 4.1.2.1 under language

extensions.

The constants

false (ordinal value 0),

TRUE (ordinal value 1),

and

MAXINT (ordinal value 32767)

are predetermined values.

There are two more constants, which aren't used in constant declarations per

se, but are handled within a program as if they are constants:

61

ABACUS Software SUPER Pascal Development System

NIL (as pointer constant for zero)

and

[] as constant for a blank number. v

The declarations end with the type declaration:

TYPE TYPELIST;

TYPE is the reserved wonl for the type arrangement.

TYPELIST stands for the sequence of type definitions (each separated by

semicolons (;)). The basic type definitions are set out thoroughly in the

Pascal User Manual and Report. It is possible to set subtypes in conjunction

with constants:

TYPE INDEX = 0 . -PRED (MAXVALUE) ;

COMMAND = ARRAY [CHR(O) . .PRED (' ')] OF CHAR;

ARRAY = ARRAY [1..10*10] OF INTEGER;

DAY = (SU,MO,TU,WE,TH,FR,SA); f~

WORKDAYS = SUCC(SU).♦PRED(SA); V—

User-defined scalar types (such as above) can go as high as 256 values.

Predetermined types:

BOOLEAN = (FALSE, TRUE);

CHAR = (CHR(O)..CHR($FF));

INTEGER = -MAXINT..MAXINT;

and

REAL

In addition to these, the following list contains reserved words usable for C
structure commands AND variable types: ^

62

ABACUS Software SUPER Pascal Development System

ARRAY

Arrays can be defined without limit as

V ARRAY [DIM1,DIM2. . .] OF ELEMENT;

ARRAY [DIM1][DIM2]... OF ELEMENT;

or

ARRAY [DIM1] OF ARRAY [DIM2] ... OF ELEMENT;

- take your choice.

RECORD

Fixed or variable records can be defined; variable records can be set up

within a CASE-list; the component variables (tagfield) will only be allowed

with a specific array definition in a memory location; the component

variable can be used with just a type name, so the array isn't an important

f~ part of the record.

SET

Quantities of all scalar types (REAL) are permitted; a SET can contain a

maximum of 256; the range must not go beyond 0..255.

FILE

FILE is not an element of a structured type itself, i.e., it doesn't fit in as an

element of an array, record, pointer or file. A FILE can be no more than

512 bytes (size of the file buffer).

A (POINTER)

The definition of pointer types is used in connection with the design of list

^ and branch structures (progression and recursion):

63

ABACUS Software SUPER Pascal Development System

BRANCH = MARK;

JOINT = RECORD

ENTRY:ARRAY [0..7] OF CHAR;

LBRANCH,

RBRANCH :BRANCH

END;

c

These structured types are predetermined according to the Pascal User

Manual and Report:

ALFA = ARRAY [0..7] OF CHAR;

and

TEXT = FILE OF CHAR;.

Next section deals with variable declarations:

VAR VARIABLELIST;

VAR is the reserved word for variable declaration.

VARIABLELIST states any set of variable groups, each group separated by

a semicolon (;). A variable group consists of a series of variable identifiers

(separated by commas (,)and ended by a colon (:)),for example:

c

VAR FLAG,SWITCH

CH

VALUE,NUMBER, SUMQ

TITLE,FILENAME

ARRAY

HEAP

:BOOLEAN;

:CHAR;

:INTEGER;

:ALFA;

:ARRAY [0..9] OF INTEGER;

:AINTEGER;

c

64

ABACUS Software SUPER Pascal Development System

The variables

INPUT

V and

OUTPUT

are predefined (under type TEXT).

In connection with these variable types, here are the memory requirements

for each type:

BOOLEAN, CHAR and user-specific variables - 1 byte

INTEGER- and pointer-variables - 2 bytes

REAL-variables - 6 bytes

SET-variables - 32 bytes

The variable arrangement set ends with the declaration of procedure and

function headers:

PROCEDURE PROCEDURENAME (PARAMETERLIST);

and

FUNCTION FUNCTIONNAME (PARAMETERLIST)rTYPENAME;

PROCEDURE is the reserved word for procedure assignment

FUNCTION assigns function (reserved word).

typename defines the function return value, i.e. the type of function called.

SUPER Pascal allows all types except FILE for this value.

(^ PARAMETERLIST defines the parameters for the given function/procedure.
Syntax follows the "Pascal User Manual and Report". SUPER Pascal

permits all sorts of parameters:

65

ABACUS Software SUPER Pascal Development System

parameter transfer by number,

11 " by name

and v_

procedure and function transfer by name.

Two examples:

FUNCTION FILEHANDLING(ELMNT:INTEGER;VAR SEQUrTEXT;

PROCEDURE ERROR): BOOLEAN;

PROCEDURE TEST(VAL1,VAL2:INTEGER;VAR MESG:ALFA;

FUNCTION CHECK:BOOLEAN);

These type definitions must be determined and set up before this routine,

either as computer default (predefined by system) or by the user.

The assignment set is done: Now we go on to the command set This section

contains the program activity proper; the entire command section is defined

(or bordered, if you prefer) by the reserved words

BEGIN

and

END

which give the start and end of the program. These two words are set off as

individual statements (nothing else on that line).

The individual statements from standard Pascal are given here, but you'll

have to check a Pascal instruction book for proper syntax and use; any

special differences between standard and SUPER Pascal will be laid out

below:

c

66

c

c

c

ABACUS Software SUPER Pascal Development System

: = (assignment)

Assignment operator goes to the left ~ the expression (variable) goes to the

right of the equal sign.

IF ... THEN ... ELSE ...

Checks conditions, and branches to whichever next statement applies -

much more practical than Commodore BASIC'S IF/THEN construct

CASE ... OF ... END

Sets up a multiple-choice of sorts, going to END if all else fails. SUPER

Pascal lets you make an infinite number of CASES. If none of the choices

work out, the program will immediately go to the next statement.

WHILE ... DO ...

No difference between standard and SUPER Pascal.

REPEAT ... UNTIL ...

No difference between standard and SUPER Pascal.

FOR . . . TO/DOWNTO ... DO

Loop number can be defined as any scalar variable (aside from REAL

variables).

WITH ... DO ... (record access)

This statement simplifies access to the array variables of a record. This can

save lots of memory in a source program by calling up a number of array

lists during runtime.

GOTO ...

This statement makes the program jump to the label specified (similar to

BASIC'S GOTO). Pascal very seldom uses GOTO, mainly because earlier

generations of the language never even HAD such a command; but there are

67

ABACUS Software SUPER Pascal Development System

a few exceptional situations that might be made simpler by using this

command. For example, when errors crop up, it was possible to tell the

compiler to take an "easy out" using GOTO, to cease program flow and return

control to you. Most of the time, though, other Pascal commands (e.g.,

IF/THEN/ELSE) had to suffice.

SUPER Pascal has a fully implemented GOTO statement; that is, no

limitations. You can use the statement to call up a procedure, function, or

even another program without compunction. One warning: IfGOingTOa

loop or set of loops, be sure that the loop (set) is properly structured - or the

system might get caught in an endless loop, which tends not to return

program control to you.

Standard procedures which are predefined in standard and SUPER Pascal

consist of:

DISPOSE

This procedure is used in standard Pascal for fteeing up parts of memory by

changing the dynamic (pointer-) variables on the heap (memory heap for

dynamic variables). The area can next be cleared out with NEW (see

corresponding section).

The memory reserved for dynamic variables is quite different in a small

computer (such as a C-64) as opposed to a mainframe. Mainframes have

massive amounts of memory, and seldom need to do very much adjusting.

SUPER Pascal, like most other Pascal versions for home equipment, has a

DISPOSE command. There are, of course, other commands used to change

the heap pointers (MARK and RELEASE).

GET

GET sets the read pointer (which is set for an opened file by RESET) for a

file element

Syntax: GET (FILEVARIABLE) ;

FILEVARIABLE stands for the identifier declared in the variable type

FILE. GET allows you to set the access pointer for the next character to be

read (see remarks under READ/READLN).

68

ABACUS Software SUPER Pascal Development System

c

c

c

NEW allocates and reserves a section of memory on the heap using a pointer

variable under Pascal control, i.e., the pointer containing the value for the

heap pointer is set to the next free space on the heap. The setting of the

heap pointer depends upon the size of the pointer variable.

Syntax: NEW (POINTERVARIABLE);

POINTERVARIABLE stands for the identifier declared under POINTER

(see arrangement section). This variable is accessed with

POINTERVARIABLEA.

NOTE:

Treat this command with care:

It can be adjusted to point to any memory location - careless adjustment

could be fatal to your variables, and even the program. Be sure you know

where you're aiming it...

A pointer set to NIL obviously sets that value to 0, i.e., memory location

$0000.

PACK

This procedure packs spread-out structured variables together (saves

memory) in standard PascaL SUPER Pascal already does this internally, so

this command isn't available.

PUT

Sets write pointer in conjunction with REWRITE (analogous to GET).

Syntax: PUT (FILEVARIABLE) ;

FILEVARIABLE stands for the identifier declared in the arrangement

section as FILE>.

69

ABACUS Software SUPER Pascal Development System

READ

This procedure has a double purpose: First, it serves to allocate access to

existing file elements under one target variable; second, it sets the read

pointer to the next file element

Syntax: READ (FILEVARIABLE, TARGETVARIABLELIST) ;

FILEVARIABLE stands for the identifier for accessing the existing file

variables. When handling a file as INPUT, this variable we needn't be so

explicitly described. The syntax for the simple version is

READ(TARGETVARIABLELIST);

TARGETVARIABLELIST stands for a set of file elements (each separated

by commas), for a set of variables - these represent at least one identifier.

Obviously, the target variables must be of the same type as the file elements.

An exception to the rule applies to TEXT filetypes (thus, INPUT files as

well). The target variables for these files can be declared as CHAR,

INTEGER and REAL types. Target species INTEGER and REAL will

automatically convert ASCII representations of strings in the file to the f~
binary coding used within variables.

There is another point to consider about the above. When reading

INTEGER and REAL values from a TEXT file, a numeric string must be

ended with the proper syntax. This end character will not be read: Rather,

the iead-access pointer will point to this character after the read operation.

This closing character must be recognized, or the next INTEGER or REAL

read operation will not take place. When READ encounters a numeric

variable, the access pointer will go to the start of the next number string.

Leading spaces are ignored when reading a REAL or INTEGER variable.

One item to be observed is the line delimiter used in TEXT filetypes (the

C/R, or carriage return: ASCII $0D, or 13 in decimal). When the file-access

pointer comes upon this character, the pointer is set to the function return

value of the function EOLN to TRUE. This return value is 0 on reading a

numeric variable; the read pointer then goes to the start of the next line. *-

The variable INPUT has a peculiar relationship to the text type itself.

This INPUT has its own file buffer (not to be confused with the keyboard

70

c

c

c

ABACUS Software SUPER Pascal Development System

buffer, in which any key pressed is held temporarily, until the C-64

operating system gets around to working with it). Suppose we have an

empty input buffer; if we call up file INPUT, the C-64 system routine

GETLINE is called upon once this buffer is filled. GETLINE reads the

keyboard and puts the given characters onscreen. Program control remains

in this routine until the <RETURN> key is pressed (EOLN). The line of text

is taken into the input buffer after <RETURN>. Now the input buffer will be

provided with the first target variable from the READ call. The access

pointer sets itself for however many characters are in the buffer, as is

necessary for the provision of the target variables. A new READ command,

or arrangement for another target variable immediately puts the next

character into the input buffer. The procedure GET (INPUT) works in

much the same way in resetting pointers by one character position.

The input buffer's involvement in this reading process continues until the

access pointer reaches a carriage return, which is interpreted as a space (or

as a 0). The next GETLINE and READ will cause the input buffer to refill,

whereby the access pointer goes back to the beginning of the buffer.

One difference between READing a diskette file and the file INPUT is the

response to illegal characters used for numerical variables: Such characters

(or bad syntax) will give you:

IL.INPUT

Bad access to a diskette file will stop the program with a runtime error, while

bad INPUT will let you re-enter the input without program stoppage.

READLN

READLN will require some re-reading of READ. Here we have an additional

use for the access pointer. Once all target variables are fed in, READLN sets

the pointer to the next carriage return; i.e., the next read access can be from

a diskette file AND call INPUT and GETLINE. It's possible to call up

READLN without a target variable list:

READLN (FILEVARIABLE) ;

or simpler still, for reading INPUT alone:

71

ABACUS Software SUPER Pascal Development System

READLN;

This procedure will set any file access pointer to the next carriage return.

Because READLN will only run properly if a c/r is read, the command is best ^~
used with TEXT filetypes.

If a file access (regardless of being called with GET, READ or READLN) isn't

preceded by a RESET for opening said file, the runtime-error

NOT OPEN ERROR!

will appear, and the program will cease.

This last doesn't apply to file INPUT, which doesn't open files per se;

RESET (INPUT) has a special meaning, to be covered later.

FESET

RESET opens a file for reading purposes, i.e., the file access pointer will be

set for the first element of this file. (^

Syntax: RESET (FILEVARIABLE) ;

FILEVARIABLE represents the identifier for a FILE variable declared in

the assignment section of the program.

RESET utilized with INPUT deserves special mention: The standard

procedure RESET (INPUT) resets the the read pointer (in the input buffer)

back to the start-of-buffer, then allows the buffer to read any new file

INPUT. This, unlike READLN, makes it possible to provide correct input, if

the file was incorrect

REWRITE

Analogous to RESET: rewrite opens a file for writing, i.e.,the file access

pointer is set to the start of the new sector of said file. r-

Syntax: REWRITE(FILEVARIABLE);

72

c

c

c

ABACUS Software SUPER Pascal Development System

FILEVARIABLE identifies the FILE variable declared in the assignment

section.

NOTE:

A file already on diskette (i.e., bearing the same name) will be deleted by

REWRITE, except when the file is locked (protected), in which case the

runtime-error message

IL.FILE OPR. ERROR!

is displayed, and program run is stopped.

rewrite (OUTPUT) isn't needed by our system, so it has been left out

We should supply some background information on the file procedures

RESET and REWRITE: When a diskette file is opened (regardless of

purpose [read or write]), the file- access is limited to the file buffer. This file

buffer is 1024 bytes in size (Ik, if you prefer); RESET loads the first sector

(512 bytes) of the opened file into the buffer.

Now, a relatively simple access mechanism in the file access pointer can pull

type and variable declarations set up in the file elements. Once the access

pointer goes beyond the first sector, the first sector moves to the "bottom"

half of the buffer, and the new sector is loaded into the "upper" half. This

adds up to fast and efficient file access. When the access pointer gets to the

conclusion of the last file element (end-of-file, or EOF), the return value of

the standard function EOF is set to TRUE. If, by some chance, the read

access finishes reading the file without running into EOF, the runtime-

message

AFTER EOF ERROR!

is displayed, and the program stops.

The write access to a file is similar to reading a file. REWRITE sets the

access pointer to the beginning of the extant file, reserving the file buffer.

WRITES and PUTs utilize this "half-and-half1 buffer usage (see the

previous paragraph).

73

ABACUS Software SUPER Pascal Development System

SUPER Pascal has a special command that must be used to end the write

process, and commit the remaining contents of the buffer to the diskette file.

This command is CLOSE, in a slightly different form from standard Pascal,

in that it closes the file opened with RESET or REWRITE, and clears the file f~
buffer for access to another file. V^

Now, regarding our fast file access system from a few paragraphs back:

SUPER Pascal has three such file buffers (each Ik) set up. This means that

you can only access three files at one time, regardless of whether they are

being accessed for reading or writing. This may not seem like much, but

we've had no problems in terms of practical usage with SUPER Pascal. In

fact, you'll find that three Ik buffers will be quite enough for handling the

most complicated file operations (reading sourcefiles, generating codefiles,

generating revised data, accessing sourcefiles temporarily for 2-pass

assembly, accessing variable data for a post-mortem-dump, etc.).

If you happen to try opening a fourth file buffer with RESET or REWRITE,

you'll get a

BUF.OV. ERROR! (buffer overflow)

and a stopped program.

One interesting feature of the file buffer system is the ability, when a RESET

and GET are called, to load any sector of a program-code file, and join it

with any callable external procedure or function. SUPER Pascal gives you a

number of direct commands to call up such routines ('M', 'G\ 'P', 'W');

these commands are contained in LOADDAT.

One thing not clearly discussed in the standard Pascal literature should be

mentioned here: Should a file be opened for reading with RESET, you can

switch from read access to write access at any time (i.e., regardless of

whether the pointer is at the beginning, middle, or end of the file). This is

simply a matter of using PUT instead of GET, and WRITE instead of READ.

So, it's an easy matter to add new data to any spot on the file ("UPDATE11).

The new file length, and the EOF marker are adjusted accordingly with this

switch. Once you switch from READ to WRITE, though, switching back to

READ isn't possible; otherwise, the new data will be lost.

74

c

c

c

c

ABACUS Software SUPER Pascal Development System

If a file, opened with REWRITE or RESET, has not been closed properly

(CLOSE), die program will halt, and

NOT CLO. ERROR!

will be displayed. As we mentioned before, this doesn't apply to file

INPUT. Attempts to read or write to an unopened file (with RESET or

REWRITE) will cause the system to state:

NOT OPEN ERROR!

This also doesn't apply to INPUT or OUTPUT.

WRITE

Like READ, WRITE has a double function: To arrange a new file element;

and to set the write pointer to the next position available for that file element

Syntax: WRITE (FILEVARIABLE, SOURCELIST) ;

FILEVARIABLE refers to the identifier for accessing extant file-variables.

When file OUTPUT is being handled, this variable is unnecessary. The

"short" syntax for this occasion is:

WRITE(SOURCELIST);

SOURCELIST stands for at least one expression (more than one would have

each separated by commas) representing output of file elements. It's

obvious that the source expression(s) must be of the same type as the file

elements. The file type TEXT (OUTPUT also fits in this class) is an

exception to the rule. Such source expressions as CHAR, BOOLEAN,

INTEGER and REAL can be listed in these files. These last three will be

automatically converted in the file from the binary system (used internally)

to ASCII. Integer or real output, as with boolean expressions, will be set out

in a specific format. Boolean sets will be printed without leading or ending

spaces.

OUTPUT is particularly helpful in making formatted screen or printed

output, when used with the write procedure. This array format is separated

from the source expression by a colon (:), thus:

75

ABACUS Software SUPER Pascal Development System

WRITE (FILEVARIABLE, SOURCEEXPRESSION: ARRAYFORMAT) ;

The file variable given must be a TEXT type. The source expressions will

now be put out in ARRAYFORMAT, right-justified. ARRAYFORMAT must be S~

an INTEGER type. The maximum allowable value for an ARRAYFORMAT ^~
hinges on the usual 132 characters per printer-line; the output buffer is also

limited to 132 characters. If this number is surpassed (or if the value is less

than 0), the runtime error

IL.QUANT. ERROR! (illegal quantity)

is displayed, and the procedure stops.

There is a further adjustment that can be made for the formatted output of

real numbers:

WRITE (FILEVARIABLE, REALEXPRESSION: ARRAYFORMAT:PLACE

FORMAT);

As above* the file-variable must be TEXT. ARRAYFORMAT is also covered

above. PLACEFORMAT - which must be INTEGER ~ the numbers are

formatted in fixed-point notation (i.e., decimal points are neatly lined up), f
There is a limitation; the numbers are limited to 11 decimal places, and the

last place rounded off. This can be adjusted to anywhere between 0 and 31

decimal places. A larger value for PLACEFORMAT will give you an

IL.QUANT. ERROR!

In contrast to the array format, die place format will take negative values.

This means that the real number is given in floating-point notation, but a

negative sign is attached. The range exists between -1 and -11; any steps out

of range bring up

IL.QUANT. ERROR!

See the next section (WRITELN) for output options.

c

76

ABACUS Software SUPER Pascal Development System

WRITELN

WRITELN basically goes under the same rules as WRITE. However,

CWRITELN also seeks out the target file(s) and resets the write pointer at each

C/R, then after printing, looks for the next line.

Syntax: WRITELN(FILEVARIABLE);

"Short" syntax (for use with OUTPUT):

WRITELN;

The command produces a formatted sourcelist WRITELN is used only with

TEXT files.

If attempts to access a file are made without a previous REWRITE or

RESET, you'll see

NOT OPEN ERROR!

f and the program will halt

NOTE:

It is always possible to write to a file opened with RESET i.e., a file opened

for reading). Internal control can switch the pointer to the end of the file, so

that new data can be written in. If the file in question is locked, the data

stays untouched, and the runtime-error

IL.FILE OPR. ERROR!

appears.

The functions defined by standard Pascal fall under three categories:

Type-conversion functions

C Conditional functions

Mathematical functions

77

ABACUS Software SUPER Pascal Development System

The first of these, the type-conversion functions, serves to convert a quantity

of one type into a quantity of another type. This allows different types to be

compatible to one another. To this set belong:

CHR V_

This converts any scalar argument (REAL numbers) to CHAR.

Syntax:

CHR(EXPRESSION) (function type:CHAR)

EXPRESSION stands for any scalar quantity. For example, typing in

CHR(65) or CHR($41)

gives the letter A and

CHR (13) or CHR($0D)

gives a carriage return (C/R). Naturally, you are limited to the size of the

character set (0-255, or $00-$FF). Any value above or below yields

IL.QUANT. ERROR!

ORD

This function performs the opposite of CHR; fiom an integer to any scalar

argument (REAL).

Syntax:

ORD(EXPRESSION) (function type:INTEGER)

EXPRESSION stands for any quantity. The function call gives the

respective ordinal number; numbering begins with 0. CHAR-size determines

the consequent ASCII-code of the ordinal value. /-

78

ABACUS Software SUPER Pascal Development System

The second group of functions are those which read all conditions in the

system (I/O register, for example), and act on the truth of those conditions

(TRUE or FALSE). These functions are therefore BOOLEAN in nature.

V- EOF

Reads the file access (GET, READ or READLN) for end-of-file; case is

TRUE ifreached, FALSE ifnot

Syntax:

EOF(FILEVARIABLE); {function type:BOOLEAN)

EOF can also check on file INPUT:

EOF(INPUT)

or in short form (without the argument)

EOF

Since the C-64 views keyboard input in the same way as file input, the EOF

flag can be set to TRUE by pressing the RUN/STOP key,

EOLN

This function can detect whether the read pointer finds a carriage return in a

TEXT file; TRUE if so, FALSE if not

Syntax:

EOLN(FILEVARIABLE) (function type:BOOLEAN)

This function is also useful for INPUT.

ODD

(_ Gives information regarding the remainder of an integer divided by 2. If the
remainder is 1, the function is TRUE; otherwise, FALSE.

79

ABACUS Software SUPER Pascal Development System

Syntax:

ODD(EXPRESSION) (function type:BOOLEAN)

The EXPRESSION used must be an INTEGER. V-

The third group of functions embrace the madiematical ("computing")

functions. Two common functions:

PRED

and

SUCC

which are used to determine the Predecessor and Successor to the

arguments).

Syntax:

PRED (EXPRESSION) (function type:EXPRESSION-TYPE) (~
SUCC (EXPRESSION) (function type:EXPRESSION-TYPE) V~

EXPRESSION must be defined as a REAL number. The return value of the

function will consistently be the same type as the argument (EXPRESSION).

PRED will be less than the defined value, while SUCC will be greater than

that value. This function should not be used with undefined values.

The remaining functions are arithmetical, and particularly useful for

scientific programs:

ABS (determines absolute value)

SQR (squares value)

Syntax:

ABS (EXPRESSION) (function type: EXPRESSION-TYPE) *~

SQR (EXPRESSION) (function type: EXPRESSION-TYPE) Q_

Both these functions will work with INTEGERS or REAL numbers.

80

ABACUS Software SUPER Pascal Development System

c

c

ARCTAN

COS

EXP

LN

SIN

(reverse of TAN-function)

(COSINE-function)

(exponent)

(logarithm)

(SINE)

SQRT (square root)

TRUNC (whole numbers (left of decimal pt))

ROUND (round off to next whole number)

These functions all have same syntax and type:

funct (EXPRESSION) (function type:REAL)

EXPRESSION is the expression used for the function; this argument can be

either INTEGER or REAL. The function value, returned, however, will

consistently be REAL, so SUPER Pascal has more call for the functions

TRUNC and ROUND than you would in standard Pascal. These functions

give you integers. In order to maximize the use of TRUNC and ROUND (i.e.,

to avoid limiting these functions to -MAXINT to +MAXINT) these two

functions belong to the REAL types. Converting these numbers to integers

is possible with INT:

INT(TRUNC(EXP(1))) — gives the integer 2

INT(ROUND(EXP(1))) — gives the integer 3

If illegal arguments are given for the functions LN and SQRT (negative

numbers, 0 for LN), the program will stop and display the error message

IL.QUANT. ERROR!

81

ABACUS Software SUPER Pascal Development System

Those are the standard functions in Pascal. The next few paragraphs discuss

the combining operations which can go within the expressions. The reserved

words according to standard Pascal are:

AND and OR v_

for logical boolean comparisons. The result is always a BOOLEAN

expression.

NOT

for logical negation. The result is likewise BOOLEAN.

IN

to test for quantity relationship. Result: BOOLEAN.

DIV

for whole-number division of integers. Result will be INTEGER.

MOD

for determining the remainder of integers. Result: INTEGER.

-I- and

as leading characters, and for the addition and subtraction of integer and/or

real numbers. An integer results from an equation made up of integers;

otherwise, the result is real.

is used to multiply integer and/or real numbers. As above, an all-integer

equation yields an integer result; otherwise the result is a real number.

c
for dividing integer and/or real numbers. The quotient will always be a real

number.

82

c

c

c

c

ABACUS Software SUPER Pascal Development System

Pascal recognizes a number of comparative operations (see below). These

comparisons must be used in conjunction with like types of numbers, i.e., all

integers, all real, etc. The result of such expressions is BOOLEAN.

= Test for equality

<> Test for inequality

< Test for "less than"

<= Less than or equal to test amount

> Greater than test quantity

>= Greater than or equal to test quantity

Please check your Pascal User Manual and Report for standard usage of

these elements. Now, on to one command that has nothing to do with the

assignment set, or the command section: Rather, it deals greatly with

compiler control:

FORWARD

This directive allows you to define blocks within a program which the

compiler will treat as procedures or functions. Thus, these

procedures/functions which have been predefine! can be called repeatedly:

This is useful for such things as recursion routines (see the Appendix for the

HELBERT curve sample program).

4.12 LANGUAGE EXTENSIONS

The language extensions in SUPER Pascal were required for two reasons:

First it's a difficult task to put a Pascal implementation into a computer the

likes of the C-64; its memory capacity, the fact that it is an 8-bit machine (8

bits=l byte), and its input/output functions require some changes from any

mainframe version of Pascal.

83

ABACUS Software SUPER Pascal Development System

Second, a complete language and programming system had to be set up

within the 64 which would bypass the standard operating system, and cut

down the time factor.

c
4.12.1 ADDITIONAL ASSIGNMENTS, PROCEDURES AND

FUNCTIONS

As with the normal assignment section, the block-design sequence applies

here. The assignment set begins with the

PROGRAM HEADER ASSIGNMENT

and the

LABEL ASSIGNMENT.

Once again, as mentioned previously, these parameters can only be

contained in the list in the program header. There are really no extra

commands for these lists.

On the other hand, the

CONSTANT ASSIGNMENTS

have a few extra surprises:

PI as the real constant 3.1415926536E+00

STKPOI -- the pointer for the Pascal variable stack.

STKPOI is the two-byte pointer for the lowermost memory cell for the stack

(top-of-stack). This pointer can call for parameters in the first line, or call

certain parameter values: These values are of the BYTE type, and are

characterized by the symbol

c
Let's clarify this a bit - this constant can handle a single-byte value, and not

a 2-byte integer, e.g.:

84

c

ABACUS Software SUPER Pascal Development System

CYAN = #3; SPRITE_ = #$3C;

The other supplements in constant assignment allow the use of simple

constant expressions. The following are allowed:

DXV, MOD, SHL, shr, for integer constants and/or

*r +r - their corresponding expressions

PRED, SUCC, ORD, LOW for all constants and/or

corresponding expressions

CHR for integer and byte constants

and/or corresponding expressions

LBYT, hbyt for integer constants and/or

corresponding expressions

TYPE ASSIGNMENT

There are two additional types:

BYTE = #0..#255;.

Defines the numerical contents of a one-byte-sized memory location. The

other predetermined type is

STRING

which allows you to predefine any sequence of characters of a length up to

to 132 characters (maximum print line in Super Pascal). A blank line is

permissible in the form ". Characters for string constants are, of course,

treated as CHAR constants.

Let's take a quick look at how to handle string lengths. The type STRING

is handled by the pointer like this:

RECORD LENGTH:BYTE; CHARACTER[1. ..LENGTH] OF CHAR

END;

85

ABACUS Software SUPER Pascal Development System

This means that every time a new string is read, placed or generated on the

heap (the memory heap for dynamic variables), more memory will be

provided. MARK and RELEASE are also commands that can be taken into

consideration when managing memory. This doesn't apply, however, to /-~

programs already containing string constants; they are automatically V_

provided for in the compiling process. Internally-defined record elements

are not accessible to the user.

Another intriguing point is the compatibility between a STRING and an

ARRAY[INDEX] OF CHAR.

This means that opposite assignments and comparisons are possible. It also

means that if a STRING quantity is longer than the defined ARRAY, the

string will be tailored accordingly; then again, if the string is shorter than the

chosen array, spaces will be inserted after the string to bring it to the same

size as the array. The heap changes with the combination of a CHAR array

with a string; the compiler, however, will only watch string length to avoid

overflow. One great advantage to STRING types is the possibility of

immediately reading these with READ or READLN (and with INPUT) from

files. Here's an example: (~

CONST LINELNGTH = #80; {constant decl.}

VAR TITLE:ALFA; {variable decl.}

LINE:ARRAY[0..PRED(LINELNGTH)] OF CHAR;

TEMP,

LINE :STRING;

BEGIN {command section}

READLN(LINE); {read string input}

LINE:=LINE; {provide an array}

IFLINE[0] IN ['A'..'Z'] THEN

TEMP:=LINE; {provide temp, string}

TITLE:=TEMP {provide an ALFA quantity}

END;

c

86

c

c

ABACUS Software SUPER Pascal Development System

VARIABLE ASSIGNMENTS

MEM :ARRAY[$0000..$FFFF] OF BYTE

RANDOM :REAL

MEM can access the entire memory of the C-64. That is, it can perform this

task if the elements of this array are defined as BYTE types. MEM will also

allow you to rearrange any memory cell (vague equivalent of "POKE") and

read these cell contents (similar to "PEEK"), e.g.:

MEM[$277] :=L0W('A'); writes an "A" to the first memory

location in the keyboard buffer and

NUMBER: =MEM [$C6]; transfers the number of the key

pressed to the byte-variable

NUMBER.

The variable RANDOM produces a random REAL number, which lies in the

range:

0<= RANDOM < 1 .

random is best used in programming that requires random numbers; be

forewarned, however, that the sequence of random numbers given isn't all

THAT random -- a seed number is determined at startup, and the set of

numbers depends upon that seed for its sequence.

COMMAND SET

The only modification to the command section is the CASE statement, with

an ELSE-branch. Syntax:

CASE ... OF ... ELSE ... END

This means that if none of the criteria for the CASE statement are met, the

ELSE will be the next command executed Here's a sample program:

87

ABACUS Software SUPER Pascal Development System

CASE CHARACTER OF

'A':ONE;

'B':TWO;

'C:BEGIN ONE;TWO END;

'D':THREE

ELSE BEGIN ONE;TWO;THREE END

END;

If none of die values contained in 'A' .. 'D' are encountered, CHARACTER

will go to the ELSE sequence: 'BEGIN ONE; TWO; THREE END1.

In contrast, this case statement operates differently without the ELSE:

CASE CHARACTER OF

'A':ONE;

'B':TWO;

'C:BEGIN ONE;TWO END ;

'D':THREE

END;

NOTE:

As in an IF/THEN statement, ELSE shouldn't have a semicolon preceding

it The compiler will generate an error message otherwise.

STANDARD PROCEDURES

There are a number of procedures in Super Pascal that are unavailable to

Standard Pascal. They are:

ALLOCATE

Unlike NEW, a pointer variable can be assigned to a memory cell by the

user.

Syntax: ALLOCATE (POINTERVARIABLE, EXPRESSION) ;

POINTERVARIABLE stands for the identifier declared as a pointer type

in the assignment section. Access to this variable occurs with

POINTERVARIABLEA.

c

c

c

ABACUS Software SUPER Pascal Development System

EXPRESSION stands for that expression determining the pointer address.

This expression must be an integer. You can, for example, define an

internal 2-byte address pointer as A INTEGER, and easily manage memory

in Super Pascal. Here's a sample program, using ALLOCATE:

TYPE LINE =

SCRN =

VAR I

TEMP

ARRAY[0..39]

ARRAY[0..24]

:INTEGER;

:LINE;

SCRNRAM:ASCRN;

BEGIN

OF

OF

ALLOCATE(SCRNRAM,$400);TEMP

FORI:=0 TO

SCRNRAMA[0]

END;

23 DO SCRNRAM'

:=TEMP

BYTE;

LINE;

:=SCRNRAMA[24];

*[SUCC(I)]:=SCRNRAMA[I];

This program gives you a continual screen scroll from top to bottom under

Pascal control. This uses the procedure ALLOCATE (SCRNRAM, $400) to

put the screen-repeat memory into $400 (decimal 1024). Bear in mind that

the color RAM should be moved as the screen has been shifted, for the best

demonstration of the program.

NOTE:

This procedure doesn't give you free reign over program code or other

variables. A complete knowledge of memory layout will be necessary.

CLOSE

See the section on standard language elements.

Syntax: CLOSE (FILEVARIABLE) ;

FILEYARIABLE is the FILE type defined in the assignment block. This

procedure will put the buffer contents to the last file opened for writing, and

close the file; the file buffer will then be cleared for the next access.

CLOSEing an unOPENed file produces the runtime error

NOT OPEN ERROR!

and a program break.

89

ABACUS Software SUPER Pascal Development System

CLRTRAP

This command, used without other parameters, clears the runtime error trap

for I/O (input/output) errors. This means that after calling this procedure,

neither a text error message nor a program break will occur. The I/O error

trap is switched on with SETTRAP.

CONTINUE

This procedure lets you load and start an entirely different Pascal program.

Syntax: CONTINUE (FILENAME, DRIVE_NR) ;

The new program must be in the drive number indicated (DRIVE_NR), and

must be listed under the proper identifier (FILENAME); the procedure

finishes the loading process. LOADDAT is necessary to this procedure, so

it must be in drive 0. If, by some chance, LOADDAT isn't available, a

respective error message and program break happens. The program is

loaded into the memory range where it was compiled.

A return to the original program isn't a vital part of this procedure, which

makes possible the use of

EXECUTE

This procedure is similar to CONTINUE in calling a new program; in this

case, though, it acts as a subroutine for the running program.

Syntax: EXECUTE (FILENAME, DRIVE_NR) ;

This procedure concludes the program load so that this procedure will

execute under the conditions given by CONTINUE. As above, FILENAME

and DRIVE_NR must correspond, and LOADDAT must be located in drive

0. The loaded program will be placed in the memory range at which it was

compiled, and will use the variable stack range assigned by the compiler.

Needless to say, the memory of the program first in memory must not run

into any conflict with the registers of the currently loaded program. You'll

have to program VERY carefully in terms of memory management and

variable assignment

90

c

c

c

ABACUS Software SUPER Pascal Development System

HEX

This procedure converts integers and byte-numbers into hexadecimal

numbers.

Syntax: WRITE (FILEVARIABLE, . . .HEX (EXPRESSION) . . .) ;

or

WRITELN(FILEVARIABLE,•..HEX(EXPRESSION)...);

EXPRESSION stands for any INTEGER or BYTE expression. The

expression can be input either in decimal or in hex (the latter with a dollar-

sign preceding the number,e.g., $0A3F).

INDVC

Switches the active input device.

Syntax: INDVC (EXPRESSION1, EXPRESSION2);

EXPRESSION1 refers to the desired primary address (device number),

while EXPRESSION2 gives the secondary address within the device. Both

must be INTEGER types, with the primary address set within limits (0 -

255). Any number beyond or below this range will present

IL.QUANT. ERROR!

as a runtime error, and the program will stop.

When Super Pascal is initialized, the primary and secondary addresses are 0,

which follows the INPUT "GETLINE" (from the keyboard).

EXPRESSION1 changes that device number in INDVC until a new

procedure call changes it to another device, or if switched "manually".

Runtime errors will reset the input device number to 0.

NOTE:

The primary address 2 will not operate the user port: It is NOT available as

an INDVC. Although the possibility exists to adapt Super Pascal for this

port, the system "as-istt will only work with serial devices.

91

ABACUS Software SUPER Pascal Development System

RILL

KILL will delete unlocked (non-protected) flies from the diskette and

directory. s~

Syntax: KILL (FILEVARIABLE);

FILEVARIABLE is the label for the file to be scratched. If this is attempted

with a locked file, the runtime error

IL.FILE OPR- ERROR!

appears, and the program stops. Locked flies can only be dealt with in the

Utility segment of the program. If the file isn't found in the running disk

drive, again, an error message and a program end will occur.

LOCK

This procedure can be used in the same manner as CLOSE, i.e., for closing

previously opened files. However, LOCK has one extra feature -- it protects

files from overwriting and deleting. /~

Syntax: LOCK (FILEVARIABLE) ;

FILEVARIABLE is the FILE declared in the assignment section. A file

need be locked only once (no need to do so repeatedly, unless you need

access to the file, and have to unlock it). Attempts to scratch a LOCKed file

will result in the program stopping, and

IL, FILE OPR. ERROR!

LOAD

LOAD puts an external Pascal routine into memory from diskette.

Syntax: LOAD(FILENAME/DRIVE_NR) ;

All that this command does is load the program, as opposed to CONTINUE C
and EXECUTE. The program must be loaded using the proper FILENAME

92

c

c

c

ABACUS Software SUPER Pascal Development System

and disk drive (DRIVE_NR). The load procedure itself requires the aid of

LOADDAT (which must be in drive 0).

This procedure loads the program code into the memory location at which

the code was compiled.

Program routines called with CONTINUE and EXECUTE

a) can handle independent Pascal programs; and

b) can be called for at any time;

while LOAD

a) will load independent programs, AND simple external

procedures and functions (xtrnprgm, xtrnproc &

XTRNFUNC); and

b)only offers one chance to use the command.

NOTE:

LOAD offers you no control over whether there is sufficient memory for the

routine being loaded; you'll have to be very precise in knowing how much

memory is involved, and how it is distributed

Other examples are quoted in Chapter 4.1.2.2.

MARK

Together with release, MARK serves to control management of the heap

(memory heap for dynamic variables).

Syntax: MARK(POINTERVARIABLE) ;

POINTERVARIABLE stands for the identifier for an A INTEGER pointer

variable, which becomes the active heap-pointer when the procedure is

called. This is the pointer to the topmost portion of the variable stack and

the ever-growing heap. Even when the heap is cleared (see NEW), any

input strings cause the heap to begin growing yet again. If a situation occurs

where the heap is unnecessary for storing strings or dynamic variables,

RELEASE sets the pointer back to the POINTERVARIABLE. The next

memory cell is available to you. See RELEASE for a short example.

93

ABACUS Software SUPER Pascal Development System

NAME

This procedure allows you to give a program a different name from that

stated by the current identifier.

Syntax: NAME (FILEVARIABLE, EXPRESSION) ;

FILEVARIABLE stands for the identifier which was declared within the

assignment section as a FILE variable. As long as no changes have been

made to this variable using name, the file variable will go under its

"normal" identifier, i.e., by that filename on diskette. After providing the

EXPRESSION, which must be alfa or STRING, the file-variable will be

changed to that name. Here's a short example:

VAR SOURCE:TEXT; {formal declaration of file}

TITLE:ALFA; {variable SOURCE,}

RESET(SOURCE);READ(SOURCE);CLOSE(SOURCE);

{access to a file with the name SOURCE} f~~

NAME(SOURCE,'OTHER'); {provision of actual name }

{OTHER for the formal var. }

{SOURCE, }

REWRITE(SOURCE); [access to file with current}

WRITELN(SOURCE,'1.LINE'); {name OTHER instead of}

CLOSE(SOURCE); {the formal identifier SOURCE, }

NAME(SOURCE,TITLE) {provision of name contained}

{in title as current file- }

{name, etc. }

c

94

c

c

c

ABACUS Software SUPER Pascal Development System

OUTDVC

OUTDVC switches current output device.

Syntax: OUTDVC (EXPRESSIONS EXPRESSION2)

EXPRESSION1 stands for the primary address of the desired device, while

EXPRESSION2 gives the appropriate secondary address. Both must be

INTEGERS; the primary address must be within the boundaries of 0 to 255.

Any differing address yields

IL. QUANT. ERROR!

and the program stops.

Thus, this procedure defines the output device to be used in conjunction with

OUTPUT, WRITE and/or WRITELN. Primary and secondary default

addresses (i.e.f when Super Pascal is started up) are 0 (screen). An OUTDVC

call (say, to send output to the printer) will remain at that address until the

procedure is called again. Runtime errors automatically switch the output

device back to 0.

NOTE:

As mentioned with INDVC, the user port is inaccessible.

RELEASE

This procedure represents the counterpart to the abovementioned procedure

MARK; with it, the heap memory can be released from any earlier definition

by MARK.

Syntax: RELEASE(POINTERVARIABLE);

POINTERVARIABLE is the A INTEGER identifier for a pointer variable,

which is contained in the "interim*1 heap pointer. This value will dictate

where the heap pointer will be set Below is an example of both MARK and

RELEASE:

95

ABACUS Software SUPER Pascal Development System

VAR HEAP1,HEAP2,HEAP3:AINTEGER; {decl. of three}

INFO/ALFA; (pointer variables of)

LINE:STRING; {AINTEGER type }

r
MARK(HEAPl); {heap pointer starts } v_

tat HEAP1 }

MARK(HEAP2); {current heap pointer)

{at HEAP2 }

READLN(LINE); {read a string placed}

INFO:=LINE; {on the heap and }

{INFO provided }

RELEASE(HEAP2); {reset heap pointer }

{to value HEAP2 }

MARK(HEAP3); {freeze up current }

{pointer at HEAP3 }

TRE_TREE; {call routine w/ dy- }

PRINT_TREE; {dynamic variable use}

RELEASE(HEAP3); {reset to value be- }

{fore procedure call }

RELEASE(HEAP1); {release entire heap }

etc. (^

SEEK

Used like RESET and REWRITE in opening files, the difference being that

RESET and REWRITE use the access pointer "as-is", while SEEK lets you

set that pointer.

Syntax: SEEK (FILEVARIABLE,EXPRESSION) ;

FILEVARIABLE stands for the identifier set up in the assignment section

(FILE type). EXPRESSION sets the position of the file-access pointer. In

cases where numbers might be an element in such a file (e.g., TEXT),

EXPRESSION must be a REAL number. The access pointer will always

take on the whole-number portion of that REAL expression. Negative

numbers lead to the message

IL.QUANT. ERROR! (_

and a break, while numbers that overshoot the end-of-file give

96

c

c

c

ABACUS Software SUPER Pascal Development System

AFTER EOF ERROR!

and a subsequent program end.

The distinction between read/write operations in SEEK mode depends on the

operation which follows: GET, READ or READLN puts you in read mode,

while PUT, WRITE or WRITELN lets you write to the file. The access

pointer will move to the next spot after each access.

After write access, any data after the write-position will be lost The

read/write operation is concluded with CLOSE or LOCK.

SETADR

This procedure contacts a running program to find and load an existing

routine. Unlike LOAD, this is for resident or quasi-resident routines (esp.

assembler routines). Syntax:

SETADR (PROCEDURE_FUNCTIONS_NAME, EXPRESSION) ;

PROCEDURE_FUNCTIONS_NAME represents the identifier of the

externally called procedure/function. These "EXTERNALS" shall be called

by these names which should have been defined in the procedure/function

assignments. The procedure SETADR establishes the connection between

name and actual address during runtime; this address is an integer stated in

EXPRESSION. This can be handy when a routine is needed time and again

(see 4.1.2.2 for an example).

SETDRV

This procedure sets the number of the current disk drive. The file-opening

procedures reset, rewrite and seek come after setdrv.

Syntax: SETDRV (EXPRESSION) ;

EXPRESSION must be an integer, and must state drive number (0 or 1,

nothing else).

97

ABACUS Software SUPER Pascal Development System

Initializing the program creates a default value of drive 0. And already-open

file needs no further file definition; drive number will hold until the file is

closed.

SETTRAP ^-

SETTRAP (no parameters) switches the I/O error trap back on. Having the

I/O error trap on will produce error messages and program breaks if (when)

the time comes. Switching the trap off gives no messages, but programs will

cease.

FUNCTION ASSIGNMENTS

There are three groups of predefined functions in Super Pascal:

Type conversion functions

Conditional functions

Mathematical functions

The first group consists of:

INT

This function converts real numbers into integers.

Syntax: INT (EXPRESSION) (function type: INTEGER)

EXPRESSION refers to a REAL expression. The conversion naturally

works only if the quantity remains within the limits of -

MAXINT...+MAXINT. Otherwise

IL.QUANT. ERROR!

comes up as a runtime error.

HBYT

LBYT y-

Both these functions deal with conversion of integers into BYTE quantities,

simultaneously isolating high-bytes (HBYT) and low-bytes (LBYT).

98

c

c

c

ABACUS Software SUPER Pascal Development System

Syntax: HBYT (EXPRESSION) (function type:BYTE)

LBYT (EXPRESSION) (function type:BYTE)

EXPRESSION is any integer. The function delivers the most significant

byte (HBYT) of this integer, and the least significant byte (LBYT) of same.

BYTE is the result in both cases. This can be convenient for m/1

programming, since both "half-bytes" add up to one integer.

LOW

This function converts any scalar argument type (REAL) into a BYTE

quantity.

Syntax: LOW (EXPRESSION) (function type:BYTE)

EXPRESSION stands for any scalar type. Using this function with integers

will limit you to conversions up to 255 ($FF).

The second group of functions don't just operate as predefined functions

which give Boolean information (yes/no cases), rather control internal

system conditions.

ANYKEY

This function is chiefly used in programs involving input from the user, or

just pausing until the user hits a key to go on. No parameters are needed:

Syntax: ANYKEY (function type:BOOLEAN)

It can be used, for example, for programming a wait loop, or perhaps you

can have the system do something else while it's waiting for a keypress:

WHILE NOT ANYKEY DO;

It's just as simple to set up a conditional branch:

IF ANYKEY THEN ... (ELSE -..);

99

ABACUS Software SUPER Pascal Development System

GETKEY

This function is comparable to BASIC'S GET statement; it awaits input from

the keyboard. No other parameters are necessary.

Syntax: GETKEY (function type:CHAR)

This allows you to read characters from the keyboard; every character will

be pulled from the keyboard buffer (i.e., with GETKEY, every character will

go to the buffer first). Here's an example of using GETKEY to control a

program:

CASE GETKEY OF ... (ELSE ...) END;

IOERROR

This has already been mentioned in connection with CLRTRAP and

SETTRAP; it checks for I/O errors - and if it finds one, looks to see which

error it is. This function, too, can be called without argument

Syntax: IOERROR (function type: INTEGER)

The only sensible time to use IOERROR is when the error trap has been

switched off with CLRTRAP; otherwise, the system automatically reacts to

any I/O errors. If, however, the trap is off, IOERROR will call up the

number of such an error (NOTE: The program won't halt in this state). Here

are the error numbers (all INTEGER, by the way):

FLOPPY ERROR

NOT OPEN ERROR

NOT CLO. ERROR

BUF.OV. ERROR

DIR.OV. ERROR

NOT FND. ERROR

DSC.OV. ERROR

DSC.MISM. ERROR

IL.FILE OPR. ERROR

AFTER EOF ERROR

IEEE-ERROR

(1)

(2)

(3)

(4)

(5)

(6)

<7)

(8)

(9)

(10)

(11)

c

100

ABACUS Software SUPER Pascal Development System

No I/O errors gives the function a 0.

Runtime errors that aren't I/O-based - as already mentioned - always stop

C the program; these same errors aren't affected by the error trap's status:

OUT OF RNG. ERROR

NOT EXQ. ERROR

NUM.OV. ERROR

B.SUBS. ERROR

IL.QUANT. ERROR

STK.OV. ERROR

ZERO-DIV. ERROR

IL.DVC. ERROR

See Chapter 2.1.9 (RUN PROGRAM) for the definitions of these messages.

There are other functions grouped with these three conditionals.

FREE

(_ Reads the amount of available memory between heap and stack at any time;
no argument is needed.

Syntax: FREE (function type:INTEGER)

The value returned to you is expressed in 256-byte increments (pages), i.e., 1

block=256bytes,4blocks=lK, etc. It's possible to end up with a

STK.OV ERROR

depending on the memory available.

LEN

c

LEN is an integer which supplies the length of a string, i.e., the number of

characters in a string.

Syntax: LEN (EXPRESSION) (function type:INTEGER)

101

ABACUS Software SUPER Pascal Development System

EXPRESSION refers to the string expression. This function is quite useful

for determining the length of an unknown string within a file, and

determining what to do about the length of same. The maximum allowable

length of a string is the available size of the I/O buffer, while the maximum

length of a printed line is 132 characters.

NOTE:

Attempts to overshoot these maximum lengths will lead to a system error.

SIZE

The size of a Pascal-variable can be found within a program with this

function.

Syntax: SIZE (TYPENAME) (function type: INTEGER)

TYPENAME stands for the identifier stated in the type assignment of the

program. Therefore, it is NOT the name of the variable itself, but of the type

of variable. The return value will be given in bytes (rather than blocks); the

value is given as an integer, in connection with ALLOCATE, i.e., the

memory adjustments for pointer variables can be used.

The third group of functions contains the following three:

HXS

(HeX-Sum) This can be used for adding two integers without worry of

overstepping the integer range.

Syntax: HXS (EXPRESSIONS,EXPRESSI0N2) (fiinc.type:INTEGER)

EXPRESSION1 and 2 stand for the two integers to be added For example,

HXS($7F00,$lA80) = $9980

and

HXS($A000f-$3800) = $6680.

102

ABACUS Software SUPER Pascal Development System

SIGN

The SIGN-function gives a preceding character with a numerical expression:

v Syntax: SIGN (EXPRESSION) (function type:INTEGER)

EXPRESSION can be either INTEGER or REAL. The function's result will

give this EXPRESSION as an integer (the positive number ... +1; negative,

.... -1). A functional argument of 0 gives a 0 result; similar to this example:

EXPRESSION - SIGN(EXPRESSION) * ABS(EXPRESSION)

FRAC

The mathematical function FRAC delivers the opposite of the already-

mentioned TRUNC - it gives you the fractional section of a real number.

Syntax: FRAC (EXPRESSION) (function type:REAL)

EXPRESSION stands for any REAL expression; FRAC will separate the

f~ decimal numbers, and these numbers will be the result sent back to you. The
^- leading character works the same here as in identifying functions.

These are the additional functions that you'll find in Super Pascal. The final

section consists of the mathematical operations used within expressions. In

addition to the normal operators:

SHL and SHR

Defined as reserved words. SHL (SHift Left) moves the bit pattern of an

integer to the left, while SHR (SHift Right) moves an integer quantity to the

right. The number of bits shifted is controlled by two operands:

Syntax: EXPRESSI0N1 SHL EXPRESSI0N2 (type:INTEGER)

EXPRESSI0N1 SHR EXPRESSI0N2 (type:INTEGER)

f~ EXPRESSION1 and 2 can be any integers; the result will also be an integer.

103

ABACUS Software SUPER Pascal Development System

Besides bit manipulation, these operations can also be used for quick

multiplication with a factor of 2AEXPRESSI0N (SHL) or fast division

with2EXPRESSION (SHR). Examples:

4747 SHL 2 = 4747 * (2A2) - 4747 * 4

1111 SHR 4 = 1111 / <2M) = 1111 / 16

AND OR NOT

These comparatives are BYTE types in SUPER Pascal; used for comparing

bit patterns and checking memory contents, the result will consequently be a

BYTE quantity. For example:

#3 AND#12(#$03 AND #$0C) givesthebyte #3 (=#$03),

#161 OR #25 (#$A1 OR #$19) gives #185 (=#$B9)

and

NOT #200 (NOT #$C8) gives the byte #55 (=#$37).

4.1.2.2 ADDITIONAL PROGRAM STRUCTURES, EXTERNALS,

SEGMENTS

This chapter will cover the techniques of program division and structure in

Pascal, along with the connection and declaration of EXTERNALS and

machine language routines. We'll try to include some common examples as

we go along.

At the top of the list is the segmenting of Pascal programs. This division --

better known as overlay-technique — involves breaking a larger program

into several cooperative program blocks; this is called into play with the

command

SEGMENT

Like FORWARD, this command is neither a reserved assignment command,

command symbol nor execution command; rather, it's a control command

for the compiler. The SEGMENT command is always in the same spot

(syntactically speaking) as FORWARD, i.e., immediately after the procedure

104

c

c

c

c

ABACUS Software SUPER Pascal Development System

and/or function header, segment tells the compiler to treat the entire

block of this procedure or function as a portion to be followed by other

sections that will be compiled in the same memory range. The compiler

notes the starting address of this block, and compiles those which follow at

the same starting address. In a way, the segments are compiled as parallel

program sections. The amount of memory reserved is dependent upon the

longest segment being compiled.

There are a few ground rules for defining segmented blocks:

a) They must be arranged one immediately after

another,

b) They must be defined as the same program level,

regardless of label,

c) Interlocked routines should be avoided and

d) The whole number 8 should not be overstepped.

These limitations are not that bad, considering that you can sidestep some of

them. For example, within a segment-assigned block, any deep

function/procedure can be nested - just as long as the remaining segments

use the same procedures/functions. You should keep in mind that when

working with segmented programs, the segments cannot be placed in the

proper sequence by the computer itself; the computer will compile according

to the sequence found on the diskette.

The 8-segment limit is really no problem, since there will be very few

occasions when you'll write a program as large as that One good example

of a segmented program is the compiler itself; it's made up of the following

segments:

INITIALIZATION in which the predefined identifiers,

functions and procedures are

declared,

MAIN SECTION which takes up compiling a block,

ASSEMBLER SECTION which assembles the built-in

assembly routines, and the

CONCLUDING SECTION statistical evaluation.

105

ABACUS Software SUPER Pascal Development System

These 4 segments, if put together normally, would take up a substantial

amount more memory ($0800 - $C200); as compiled here, they only take up

$0800 - $9000! Needless to say, segmenting programs is quite a practical

move with the C-64. f~

NOTE:

Any reloading of segments requires that those segments all be in the same

disk drive. Once the program is started, the disk drives can be switched

around within the program. An additional file buffer will not be necessary

for reloading segments.

The next two commands for developing larger programs shouldn't be

unfamiliar to you, since we've mentioned them earlier

CONTINUE EXECUTE

These procedures will let you load and run separate compiled (and complete)

programs. There are differences between the two:

CONTINUE allows chaining of different programs, i.e., the new program

can utilize variables and such defined in the previous program, or use its {~
own definitions. No memory collisions can occur with continue.

EXECUTE allows separate Pascal programs to be called as subroutines to the

main program. Memory must be set aside for both programs, so a solid

knowledge of memory layout and management would be wise before using

this technique.

"EXTERNALS"

We designed this category to allow for generating external programs and/or

program routines. You can see the disadvantages of EXECUTE (see above);

the command discussed here lets you define program routines as procedures

or functions. The compiler recognizes these external reserved words:

XTRNPROC (eXTeRNal PROCedure)

XTRNFUNC (eXTONal FUNCtion) s~

The compiler registers these as declared procedure/function identifiers and

their respective parameter lists. The proper block for this procedure/function

106

c

c

c

ABACUS Software SUPER Pascal Development System

is canceled, since it is, of course, assigned externally. Now, in order for the

program to find the EXTERNAL, a LOAD (for implicit address assignment)

or SETADR (for explicit assignment) must be included (see 4.1.2.1). The

assigned routines for XTRNPROC and XTRNFUNC are nested with the main

program's variable stack. You can define all parameters in SUPER Pascal

as predefined variable types; same goes for function values.

External procedures/functions will be compiled as such, i.e., contained in the

program header NOT by the word PROGRAM, but rather by their XTRN

identifiers and parameter lists. The rest is compiled like a normal Pascal

program block.

To round out the set, we come to declaration of entire external programs,

which are handled like the above externals.

XTRNPRGM (eXTeRNal PRoGraM)

No further parameters are needed; the main program calls the external

program using the identifier defined in the main routine. Here again, we

must be concerned about the starting addresses of external and main

program, whether loading implicitly or explicitly (LOAD and SETADR,

respectively). External programs are compiled "normally".

When using externals, it's important to remember that the main program will

load the externals into the given memory cells; there is always a possibility

of memory collision, if you haven't planned your memory layout carefully.

Calling externals with CONTINUE or EXECUTE avoids these problems.

The last point we'll cover in this sector will be the "USER" routines.

These represent an extra step beyond the external routines. Unlike the

externals, user routines are external machine-language routines, though

assigned like standard procedures and functions. There are two types:

USERPROC

USERFUNC

You would then give these routines identifiers matching those given within

the main program's assignment section. For more details on handling these

routines, see Chapter 4.1.2.3 on the "internal" m/1 routines.

107

ABACUS Software SUPER Pascal Development System

During runtime, the procedure SETADER must be used to assign the jump

address. The machine language routine must be consistent with the start-of-

program, because, for example, when loading a code-file into the file buffer

with RESET, the buffer address will equal the jump address. To help you

out a bit, here are some items concerning memory information, and a sample

program.

Regarding program design—

The main program (example) should run and work in

$2000 -$9FFF.

Three independent subprograms will be generated in

$0800 - $1FFF (SUB1, SUB2 and SUB3).

Registers $AO0O - $A7FF have been assigned to a

procedure (XJPROQ, while $A800 - $AFFF have been

assigned a function (XJFUNC).

An exit program (BADEXTT) has been designed for $0800

-$8FFF.

A machine-language routine (TEST1 and TEST2) will be

defined in $F100 - $F27F and $F280 - $F3FF, in

connection with the fileUSERCODE.

PROGRAM EXAMPLE;

CONST {address declaration for SUPER}

BUFFER1 = $F100; {Pascal system file buffers; }

BUFFER2 = BUFFER1 + $400; {an opened file will}

BUFFER3 = BUFFER2 + $400; {go to the first}

{free buffer }

TYPE

RECORD

RANGE:ARRAY[0..99] OF ALFA;

SET :SET OF CHAR;

END;

VAR

TABLE :ARRAY[1..3] OF RECORD;

FLOW :INTEGER;

108

c

c

c

ABACUS Software SUPER Pascal Development System

PROCEDURE REGULATE; {Decl. of a normal } •

BEGIN ... END; {Pascal procedure; }

XTRNPROC X_PROC {declaring an external }

(A,B:INTEGER;MSG:STRING); {procedure w/parameter}

{transfer; }

XTRNFUNC X_FUNC {declaring an external}

{ function }

(CH:CHAR;VAR TITLE:ALFA):BOOLEAN

FUNCTION READALFA {decl. of a normal }

(VAR READFILE:TEXT):ALFA; {Pascal function; }

VAR

INPUT:STRING;

BEGIN

READLN(READFILE,INPUT);READALFA:=INPUT;

END;

USERPROC TESTl {declares an)

(VAR TAB:RECORD); {assembler-procedure;}

USERFUNC TEST2:BOOLEAN; {declares an }

{assembler-function;}

PROCEDURE INIT;SEGMENT, {declares a procedure}

BEGIN {segment; }

LOAD(X_PROC,0); {load X_PROC from drive 0;}

LOAD(X_FUNC,0); {load X_FUNC from drive 0}

SETADR(TESTl,BUFFER1); {address transfer }

SETADR(TEST2,BUFFER1+$18O); {address transfer; }

RESET(USERCODE); {load program-code }

{into file bufferl}

FOR FLOW:=1 TO 3 DO

TESTl(TABLE[FLOW]); {multiple call of TESTl;}

IF NOT TEST2 THEN {call of Boolean function}

BEGIN {TEST2 }

CLOSE(USERCODE);

CONTINUE(BADEXIT,0) {prg. jump to BADEXIT}

109

ABACUS Software SUPER Pascal Development System

END;

END;

PROCEDURE PARTI(JOB:KENNER);{declaring second } f~
SEGMENT; {segment block; } V-
BEGIN

■

CASE JOB OF {call for one of the three }

LOAD :EXECUTE(SUB1,1); {Pascal subprograms -)

SAVE:EXECUTE (SUB2f 1) ; {SUB1, SUB2 or SUB3 }

REGISTER :EXECUTE(SUB3,1)

ELSE ...

END;

END;

FUNCTION PART2:BOOLEAN; {declaring the third }

SEGMENT; {segment block ; }

•

BEGIN

REGULATE; ^

PARTI(MENU); {call another segment;}

PART2:= {provision for function val.;}

READALFA(INPUT)='END'

END;

PROCEDURE EXIT;SEGMENT; {declaration of fourth }

BEGIN ... END; {segment block }

BEGIN {main program }

INIT; {call for INIT. segment; }

IF PART2 THEN EXIT {call for OK-output; }

ELSE CONTINUE(BADEXIT,0) {call for error-output;}

END.

c

110

c

c

c

ABACUS Software SUPER Pascal Development System

4.1.2.3 ASSEMBLER ROUTINE DESIGN

Inserting assembler routines in a Pascal program is a subject already touched

upon in Chapter 3.4; see that section for a sample program. Here, however,

we'll look at the "mechanism" used for parameters and function return

values. More detailed information on 6510 machine language will be found

in Chapter 5.2, but for LEARNING machine code, we suggest you read

books dealing directly with the subject (see Appendix).

Here are the commands accepted by the compiler for integrating 6510 code

and Pascal (pseudo-instructions: For the complete set, see Chapter 5.3):

.BA

This pseudo-instruction will tell the assembler the starting

address of the program to be assembled (also, the address

is vital to the Pascal program itself). This is the routine

which embeds the routine into the Pascal program.

.OC

This pseudo-command suppresses the machine-language

output, once the generation of the addresses (for the

address label) is complete (note: this command is not

provided in Pascal itself)- The machine code will be

produced within the Pascal program sequence.

.CT

This pseudocode will chain assembler sources (not

possible in Pascal proper).

Keep the following in mind regarding parameter and function values: The

place will be reserved on the Pascal variable stack for functions defined in

the assignment section, and for the function return value, i.e., the top- of-

stack will be adjusted accordingly. This will happen regardless of whether it

is a regular Pascal function, a machine-language function, or an external

"USER11 function. (NOTE:Please see Chapter 4.1.1 for variable size, and use

of the function SIZE). Machine programs have a different access

mechanism to the stack - indirect-indexed addressing.

Ill

c

ABACUS Software SUPER Pascal Development System

The relative address (calculated from top-of-stack) is put into the Y register

of the CPU; and the instruction

LDA<STKPOI),Y

lets any byte be put on the Pascal stack. If parameter bytes go over 256, the

most significant byte will be incremented by the zeropage pointer STKPOI.

STKPOI (address $2£) is recognized by Pascal as a predefined quantity.

When a function return value should be put onto the stack, it must appear in

the proper place on the stack (STA (STKPOI), Y), i.e., above all eventual

given parameters.

The stack pointer will again be corrected at the end of the machine-language

routine, i.e., set to the value preceding the call of the m/1 routine.

This point should be remembered when integrating m/1 and Pascal; constants

can be set up for the Pascal section within the m/1 section.

The sample here may clear up some of the mystery of parameter and

function return values: (

An assembler routine assigned with

FUNCTION DEMO (MSG: STRING; CHARACTR: CHAR; VAR

WORD:ALFA) : INTEGER

and called with

IF 36 - DEMO('HELLO',CX,TITLE) THEN ...

whereby CX should be a CHAR-variable, and TITLE and ALFA- variable.

Below is an illustration of stack management (TOS=top-of-stack):

c

112

ABACUS Software SUPER Pascal Development System

c

c

1. TOS before entering |

comparative expression|

2. Deposit a value of

36

3.Arranging a place for

the funct return value I

4. Deposit the string

address 'HELLO'

5. Deposit CX

6. Deposit address for

variable TITLE

7. TOS enters DEMO

(= STKPOI)

10,

11,

high address

$00

$24

ADR H

"adr l

ADR H

"adr l"

I

Parameter range which

can be accessed with

(STKPOI),Y

Deposit function

return value

STKPOI corrected when leaving

DEMO

Comparative operation

taken up

c

4.1.2.4 COMPILER COMMANDS

We mentioned before that you can embed different compiler directives

within a Pascal program. These commands are all preceded with an

ampersand (the '&' character). You can use the "long form", or an

abbreviated versions of the commands - here are both versions (the short

versions are printed here in pkrentheses):

113

ABACUS Software

&ADR+

&ADR-

&CONTINUE

&INCLUDE

&PCODE+

&PCODE-

&TRUTH

(&A+)

(&A-)

(&C)

(&D

(&P+)

(&P-)

(&T)

SUPER Pascal Development System

c

&CONTINUE and & INCLUDE, used for inserting and appending program

sources, have already been discussed in Chapter 3.2. &TRUTH, used in

conditional compiling, has also been explained. The remaining commands

(&ADR and &PCODE) serve to control address declaration and PCODE

output

&ADR+ will switch on address output, giving the memory address for every

line: This is useful for debugging runtime-errors. This output can be

switched off with &ADR-.

PCODE output is switched on using &PCODE+, and off with &PCODE-.

For every PCODE instruction given, the compiler generates a mnemonic

command abbreviation, with the memory location and necessary parameters

(in bytes). The PCODE abbreviations are as follows:

ADDI = ADD IMM. WORD

CALI - CALL INDIRECT

CALL = CALL ABSOLUTE

CALS = CALL SEGMENT

CPIB = COMPARE IMMEDIATE BYTE

CPIN = COMPARE IMM. n BYTES

CPIW = COMPARE IMMEDIATE WORD

EQUN = COMPARE n BYTES (=)

GEQN - COMPARE n BYTES (>=)

GETN = GET n BYTES (»

GOTO = GO TO

GRTI = COMPARE IMM. WORD (>)

GRTN = COMPARE n BYTES (>)

INCT = INCREMENT STACK

JCDO » COND.-JUMP DOWN

JCUP » COND.-JUMP UP

JMPC = COND.-JUMP ABSOLUTE

114

c

c

c

ABACUS Software SUPER Pascal Development System

JUMP = JUMP ABSOLUTE

LEQN = COMPARE n BYTES (<=)

LESN = COMPARE n BYTES (<)

LITB «= LOAD IMMEDIATE BYTE

LITW = LOAD IMMEDIATE WORD

LODA = LOAD ADDRESS

LODB ■= LOAD BYTE

LODS «= LOAD STRING

LODW = LOAD WORD

LODX = LOAD INDEXED

LSSI = COMPARE IMM. WORD «)

MULI = MULTIPLY IMM. WORD

NEQN = COMPARE n BYTES (<>)

NEWN = NEW n BYTES

NOP = NO OPERATION

OPRC = OPERATION CODE

PFIX = PREFIX OPR. CODE

PUTN = PUT n BYTES

RTRN ■= RETURN ABSOLUTE

RTNS = RETURN SEGMENT

STOB = STORE BYTE

STOS = STORE STRING

STOW = STORE WORD

STOX <= STORE INDEXED

SUBI = SUBTRACT IMM. WORD

TBYT = CHECK BOUNDS

WRTA = WRITE ARRAY

The &ADR and &PCODE commands can be started with a general command

at the start of the compiling process, then left on for the entirety of the

procedure.

115

ABACUS Software SUPER Pascal Development System

4.2 OPTIONS

SUPER Pascal offers a number of options for the compilation process itself.

You do, of course, have the "option" of not choosing any options - before

compiling, the system will ask you

DEFAULT OPTIONS ? N/Y

and if you wish to compile "as-is", press "N". If, however, you choose "Y",

the options will run off in sequence, beginning with

START-OF-PROGRAM

which allows you to change the staring address to your liking. You have

$0800 to $C1FF to work with, and, under very special circumstances, the file

buffer range ($F100 to $FEFF) at your disposal as well. With free choice of

starting address, it's possible for you to easily develop a larger program

packet from smaller units (with the help of the memory map). The default

value —

START OF PRGM » $0800

- can be retained, or changed (decimal OR hex value).

VARIABLE MEMORY

The compiler prompts with

START OF HEAP = EOPGM

to tell you the starting point of the heap (storage for dynamic variables),

from bottom of heap to the top of the stack (used for static variables). The

default is EOPGM (end-of-program), i.e., the heap will be placed immediately

after the end of the program being compiled. You, however, can reorganize

the heap to your preference. After defining the start-of-heap,

TOP OF STACK = $9000

denotes the default for the end of the stack. Be sure the input is correct or

116

C

c

c

c

ABACUS Software SUPER Pascal Development System

ILLEG. DECLARATION!

or even

START OF HEAP EXCEEDS TOP OF STACK!

can occur. All in all you have from $0800 to $C1FF for program code and

variable storage, and, in special circumstances ONLY, $F100 to $FEFF

(file-buffer space). If all input so far has been proper, we go on to

COMPILATION MODE

The compiler prompts you with

P.-CODE TO DISK ? N/Y

You have your choice of either compiling to diskette or compiling in RAM.

Diskette Compilation:

The default mode writes the p-code generated to disk as a

temporary file (CODDAT); the fix-up information used to

complete the compiling phase is placed in the so-called

FDCUP-FILE. The fix-up procedure is necessary to

eventually install the correct addresses into the program

code once the single-pass compiler is done. Analogous to

this is the management of assembler program sections,

which are assembled with a two-pass process - this is the

reason for the second choice —

RAM Compilation:

The compiler generates p-code directly into RAM

memory. The fix-up process and the two-pass procedure

will be handled in memory as well. The advantage to

RAM mode lies in the higher working speed, since no

write operation is required of the disk drive at the time;

however, one way or another, you'll still end up saving the

Pascal source to diskette.

In order to generate Pascal programs in RAM that you'll want to run later,

the compiler will claim some memory for itself, and will let you determine

the memory at which the compiled program will be located. The system will

ask

117

ABACUS Software SUPER Pascal Development System

STORING ADRS. = $9000

The default is $9000 (the compiler itself takes up $0800 - $8FFF); memory

available to you is $9000 - $C1FF. s~

Owing to parallel addressing, compiling segmented programs in RAM is

impossible; if attempted, the compiler will give an error message.

VARIABLE CONTROL

The compiler prompts with

TESTS OF BOUNDS ? N/Y

which gives you the choice of controlling the low-range defined variables.

The default identifies the variable-defined boundaries, and is extraordinarily

important for array-indices. The control is accountable for IL. QUANT.

ERROR messages (runtime). The control mechanism will be set into the

program as additional p-code.

NOTE: C~
Choosing variable control (bound test) should be for security of program ^~
control, on condition that the program has been thoroughly tested first For

example, false array indices (outside a defined array) tend to cause

extremely nasty and hard-tolocalize errors. Be very sure that the program is

as completely debugged as possible (and, of course, that enough memory is

available).

POST-MORTEM-DUMP

A particular problem in compiled programs is the diagnosis, analysis and

cure of runtime errors; the problem is often a serious one in Pascal. SUPER

Pascal has the ability to make a "post-mortem-dump1', i.e., after running into

a runtime error, the program section is dumped with corresponding section,

function, procedure, and gravity of the error; also, the variables are listed

with defined names and contents at that moment. Normally, the post

mortem-dump is suppressed, but this can be changed with the prompt

SUPPRESS PMDUMP ? N/Y

118

ABACUS Software SUPER Pascal Development System

Unless stated otherwise by you, a file will be dumped as

DUMP-TITLE = P_M_DUMP

V The printout will consist of the source-code on the one side, and the coded

program on the other. NOTE: You'll be better off debugging the source-

code, and just re-compiling the source.

A/P OPTION

By default, the compiler ignores the integral comimands &ADR+/ &ADR-

and &PCODE+ and &PCODE-:

IGNORE A/P-OPT. ? N/Y

Change this option ONLY if you're utilizing these commands*

OUTPUT FORM/HARDCOPY

The last option gives control over the output form during the compilation

f~ process. Default value for output is "suppressed":

SUPPRESS OUTPUT ? N/Y

*N' will give you a line-by-line listing of the source text onscreen. If output

is suppressed, the compiler generates an asterisk (*) for each line, and lists

only the names of procedures and functions being compiled.

SUPPR. HARDCOPY ? N/Y

clarifies whether the compiler will run output normally (onscreen) or send

the output to a printer. If the latter is desired,

OUTPUT DEVICE 4,0

will be the default for the primary and secondary device numbers. Incorrect

input will produce

ILLEG. INPUT!

119

c

ABACUS Software SUPER Pascal Development System

43 THE COMPILATION PROCESS

Pascal sourcecode (as well as procedures and functions written in 6510

assembler notation) will be converted by the SUPER Pascal compiler into a

viable pascal program. The compiler is accessed from the Main Menu using

the C-command. This subprogram awaits a source program (textfile) from

diskette. Once in the C-command menu, the system asks for the filename to

be compiled, and the disk drive in which said file can be found:

FILE-TITLE = ?

DRIVE(MAP) = x

Rather than give a filename, you can use an asterisk (*), which tells the

system to compile the last program contained within the editor. The system

will ask for confirmation:

CONFIRM "FILENAME,DRIVE_NR?W N/Y

Improper input will return the system to the Main Menu.

If all input is acceptable, the compiler loads into the computer from the ^~
system diskette; remember to have the disk with LOADDAT and C_CPLR

in drive 0. If these programs aren't in drive 0, or the textfile isn't in the

stated disk drive, the system will generate appropriate error messages, and

return to the Main Menu. If the file turns out NOT to be a textfile, a

corresponding error message will be displayed, and the compiler will abort

to the Main Menu.

After the compiler has initialized, and the source program has been opened

by the compiler, the following will appear

READY TO COMPILE: PROGRAM "NAME,DRIVE_NR"!

NAME represents the identifier for PROGRAM in the program header;

DRIVE_NR stands for the drive in which the source file exists.

If a source other than a program (e.g., an external function or external (^
procedure) is to be compiled, the above messages will use the appropriate

120

c

c

c

ABACUS Software SUPER Pascal Development System

word (XTRNPROC/XTRNFUNC) instead of the PROGRAM symbol. In

conclusion, the program will ask

DEFAULT OPTIONS ? N/Y

to confirm whether to use internally defined parameters or not ('Y' if so). If

the response is 'N', the relevant prompts will run by you (see Chapter 4.2).

Externals have no default values, so you'll have to go through the options

menu to provide parameters (again, see Chapter 4.2). NOTE: Externals

have no variable range of their own available.

Now the compiler will take the source program, and produce a viable

program code. Any syntax errors will be pointed out by the compiler (see

4.4).

Assuming no errors have cropped up, the program codes are linked and

saved; after this, the compiler returns program control to the Main Menu. If,

however, a compiling error arises in the text, or if the RUN/STOP key is

pressed, the compiler will immediately load and run the editor, to let you edit

the program. From there, you'll have to return to the Main Menu to

recompile the program.

4.4 ERROR MESSAGES

This chapter deals with the handling and classification of syntax errors

which might arise in the program text For those Pascal novices, you'll run

into many such errors in your first few attempts at programming; don't let

this get you down - expert programmers slip up a lot, too. If, after having

problems, you consider switching to a language other than Pascal, remember

that Pascal has error control* seldom seen in other languages. The compiler

drops out at the slightest discrepancy.

The compiler will display the error number, the offending line, and mark the

error itself with an up-arrow (A) (Note: This display will either occur on the

screen or the printer, dependent on what you have defined as an output

device). Screen output will await your acknowledgement of the error (press

121

ABACUS Software SUPER Pascal Development System

<SPACE> to continue). The compiler will then look for the next convenient

place to go, and continue compiling from that point on.

If the syntax problem is a meaningless write error (e.g., V instead of ';'),

the compiler gives you a WARNING rather than an ERROR.

The compilation process can be stopped at any time with the RUN/STOP

key; this will automatically load and run the Editor section, and the source

code being worked on at the time. This also happens at the end of the entire

compilation, if any errors have cropped up. Once edited, the program can be

re-saved using °*° to represent the most recent filename used.

The total number of errors and warnings is displayed at the end of

compilation (see Chapter 1.3.3 for a complete list of error messages, and the

error lists used at the end of this manual).

4.5 END OF COMPILATION

How the compilation ends depends upon the manner of compilation. Errors

in the sourcecode call the editor program, and reload the program (see

Chapter 3 [Editor] and 4.3 [Compilation Process]).

However, if all goes well, the compiler prompts for a statistical summary:

STATISTICAL SUMMARY? N/Y

1Y* (yes) puts out a list of data concerning the program -- see next page:

c

122

c

c

ABACUS Software SUPER Pascal Development System

STATISTICAL.SUMMARY OF "NAME w:

NO ERRORS! // xx WARNINGS!

MAXIMUM OF STATIC LEVELS = x

MAXIMUM OF VALID IDENTIFIERS

INCL. PREDFND. IDENT'S = XX

AT THE SCOPE OF "NAME "

MAX. OF VALID PARAMETERS «=» xx

DECLARATIONS IN DETAIL ...

DIV. REFERENCES = xx

CONSTANTS = xx

VARIABLES = xx

FIELD-IDENTIFIERS = XX

PROCEDURES = xx

FUNCTIONS = xx

PARAMETERS-BY-NAME = xx

TOTAL = xx

PRGM-PCODE AT: $xxxx $xxxx (= $xxxx)

HEAP/STACK AT: $xxxx ... $xxxx (« $xxxx)

LINKING AND SAVING "NAME_

> PRESS "RETURN"

Immediately following the last output line, the compiler begins fixing up the

p-code, diskette compilation, and connecting segmented program code. To

see how things came out, right after the compiler returns to the main menu,

hit R and "♦" to run the compiled program.

c

123

ABACUS Software SUPER Pascal Development System

4.6 LOCALIZING RUNTIME ERRORS

Runtime errors are those errors which aren't found during compilation; in /—

fact, the only time that you WILL find them is when the program is up and V_

running. The program will stop and give you a runtime message; this

doesn't give you specific information as to why the error occurred.

SUPER Pascal helps you avoid runtime errors. Clearing the I/O trap will

skip over I/O errors. Most of it has to come from YOU, though; the best

way to avoid errors is to do as much "fine work" in the testing stages as is

possible.

One especially important factor in debugging is the ability to find the

problem areas, Le., the place at which the runtime error occurred, and what

state the data is in at this point The "classical" solution is to surround the

suspected areas with WRITE statements

a) to convey up to what point the program runs properly

and

b) to output "suspicious" variables. /""""*

This, however, is time-consuming work. SUPER Pascal, which gives an

error message and the memory location involved, takes at least some of the

mystery out of finding the problem. Attempts at verifying errors by

recompiling the source using "&ADR+" is inexcusable.

Another aid is the post-mortem-dump. A program interruption gives all

available information, and allows you to find those especially tenacious

runtime errors. The PM-dump is in the Options menu (see Chapter 4.2).

If this option is chosen, a special marker will be put into the program; when

a runtime enor is encountered, the error display will automatically load and

run the post-mortem output control.

All available data up to and including the error will be tabulated and listed.

The variables will be listed by their identifiers AND present contents (when

possible). LOADDAT (for loading), C_PMDUMP (output program proper) f
and the respective program file must all be available. The PM-dump file

124

c

c

ABACUS Software SUPER Pascal Development System

will be in its specified drive, but LOADDAT and CJPMDUMPMUST be in

drive 0.

The PM output program will ask whether the output will be onscreen or to

the printer. This determines format for array and record variables.

Another trick in SUPER Pascal for finding runtime errors lies in the Editor

and Utility programs. Frankly, these don't help all that much -- they can be

in connection with the following:

The program call from the MAIN menu sets the address

pointer to the system address $0363 (ADRPRPO).

The return from a program to the MAIN menu - from

program end or runtime error -- makes an indirect spring

using the address pointer at $0361 (ADR_EXPO).

Calling a program will set in the MAIN a so-called

WARMFLAG ($0360), setting that flag to 0.

If the program is has a starting address matching up with

the pointers ADR_PRPO and ADR_EXPO, every program

break will jump immediately back into the program. It

goes to the start-of-program, be it first time or re-entry (

This is controlled by WARMFLAG).

c

125

c

o

c

c

ABACUS Software SUPER Pascal Development System

5.0 THE 6510 ASSEMBLER

The 6510 assembler runs completely in harmony with SUPER Pascal. This

assembler is, however, a separate program, and must not be confused with

the compiler-integrated assembler segment Essentially, the assembler takes

6510 assembler source code and helps you turn these source codes into

functional 6510 machine code.

The assembler itself is a Pascal program, but that makes no difference: It

will still turn out acceptable 6510 code, and you will only occasionally

notice that the SUPER Pascal assembler is slower than a standard machine

code assembler/monitor.

The great strength to this assembler is its ability to assemble huge source

texts; a splendid example of this is the m/1 runtime packet in SUPER Pascal

which has 200K of assembler squeezed into 8K of program code (divided

into 7 individual files).

Another advantage to this assembler is the fact that when machine language

is being generated directly to disk, there is no possibility of memory

collision occurring.

5.1 SOURCETEXT DESIGN

This material has already been touched upon in Chapter 3.3. Bearing that in

mind, we'll only recap the most important items here, just to avoid repeating

ourselves too much.

The assembler converts a textfile into 6510 machine language (if the source

text is in proper syntactical form). Each line is set up in a columnar

arrangement, with each column reserved for a specific purpose:

Text line : ZZZZ LLLLLLLL III OOOOOOOO.,.

POSITION 1-4 (ZZZZ » line number)

This field contains the line number.

127

ABACUS Software SUPER Pascal Development System

POSITION 5 (space)

This column separates the line number from the next item

(label field) with a space. f~

POSITION 6-13 (LLLLLLLL = label field)

This field contains the label by which specific areas within

an assembler program are recognized Labels are written

in the same manner as Pascal identifiers:

8 significant characters

First character must be a letter

Remaining characters can be letters, numbers and/or 9J

(ASCII $5F, the back arrow on the C-64)

POSITION 14 (space)

Separates the label field from the instruction field.

POSITION 15-17 (111 = instruction (operator) field) (~

This field contains the 6510 mnemonic instruction (see

5.2), and will also accept pseudocommands (see 5.4).

POSITION 18 (space)

This space separates the instruction field from the operand.

POSITION 19 ff. (OOOOOOOO... = operand field)

The operand field, in which the operand corresponding to

the operation (see above) is contained; the first line gives

the address type (see 5.3 for an explanation of addressing).

Commentary can be supplied after the operand field; begin the comment line

with a semicolon (;). ~

128

c

c

c

ABACUS Software SUPER Pascal Development System

52 COMMAND SET

The 6510 assembler built into SUPER Pascal accepts standard 6510 (or

6502, if you prefer) mnemonics, as well as pseudo-instructions (preceded by

a period V). Here are all the 6510 operation codes:

ADC Add memory to accumulator with carry

AND "and1' memory with accumulator

ASL shift one bit left (memory or accumulator)

BCC branch on carry clear

BCS branch on carry set

BEQ branch on result zero

BIT test bits in memory with accumulator

BMI branch on result minus

BNE branch on result not zero

BPL branch on result plus

brk force break

BVC branch on overflow clear

BVS branch on overflow set

CLC clear cany flag

CLD clear decimal mode

CLI clear interrupt disable bit

CLV clear overflow flag

CMP compare memory and accumulator

CPX compare memory and x-register

CPY compare memory and y-register

DEC decrement memory by one

DEX decrement x-register by one

DEY decrement y-register by one

EOR wexclusive-orft memory with accumulator

INC increment memory by one

INX increment x-register by one

INY increment y-register by one

JMP jump to new location

JSR jump to subroutine (retain return address)

LDA load accumulator with memory

LDX load x-register with memory

ldy load y-register with memory

LSR logical shift right (memory or accumulator)

129

ABACUS Software SUPER Pascal Development System

NOP no operation

ORA "or" memory with accumulator

PHA push accumulator on stack

PHP push processor status on stack f
PLA pull accumulator from stack

pLP pull processor status from stack

ROL rotate one bit left (memory or accumulator)

ROR rotate one bit right (memory or accumulator)

RTI return from interrupt

RTS return to subroutine (back to main prg.)

SBC subtract memory from accumulator w/ carry

SEC set carry flag

SED set decimal mode

SEI set interrupt disable status

STA store accumulator in memory

STX store index x in memory

STY store index y in memory

TAX transfer accumulator to index x

TAY transfer accumulator to index y

TSX transfer stack pointer to index x

txa transfer index x to accumulator

TXS transfer index x to stack pointer

TYA transfer index y to accumulator

53 TYPES OF ADDRESSES

The opcodes quoted in the last chapter are actually quite versatile - they can

be addressed in different ways. The different types of addresses and their

symbols are listed below. These types can be defined in the LABEL

EXPRESSION, with the respective operand and type stated there. The

expressions can

be made of symbolic labels

be in either decimal or hexadecimal form

be in CHAR form (ASCII)

present arguments for functions in H and L (high-byte,

low-byte form).

130

ABACUS Software SUPER Pascal Development System

c

c

c

The elements named can be combined with + and - for addition or

subtraction. Examples of these label expressions:

OUTPUT

I_O__PORT

TIMER1

L/BUFFER+41

$D 0 L,BUFFER

$001A 13 H,MEM0RY

$FFFE 1024 H,10000

. . ADDRESS+1 LBL-2

EXIT+$10 $400+65+$F0000-MEM ADR

The address types for the 6510 CPU:

IMP (implied)

ACC (accumulator)

IMM (immediate)

ABS (absolute)

ABX (absolute^)

ABY (absolute,Y)

ZPG (zero page)

ZPX(zeropage,X)

ZPY(zeropage,Y)

IXX (indexed,X)

IXY ((indexed),Y)

IND (indirect)

REL (relative)

Syntax: no operand section

Syntax: A

Syntax: #LABEL EXPRESSION

Syntax: LABEL EXPRESSIONS

Syntax: LABEL EXPRESSIONS

Syntax: LABEL EXPRESSIONS

Syntax: #LABEL EXPRESSION

Syntax: #LABEL EXPRESSIONS

Syntax: #LABEL EXPRESSIONS

Syntax: (LABEL EXPRESSIONS)

Syntax: (LABEL EXPRESSION),Y

Syntax: (LABEL EXPRESSION)

Syntax: LABEL EXPRESSION

These types coincide with the opcodes in the following table.

131

ABACUS Software SUPER Pascal Development System

OPCODE ADDRESS TYPES

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

INY

JMP

JSR

LDA

IMP

*

*

*

*

*

ACC

*

IMM

**

*

*

ABS

*

*

*

*

*

*

*

ABX

ABX

*

ZPO

*

*

ZPX

*

*

*

*

ZPY

*

*

*

*

TXY

*

*

*

*

*

TND

*

_REl|

ififif»ififif*
c

c

c

132

ABACUS Software SUPER Pascal Development System

c

c

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

MP

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ACC

*

*

MM

*

ABS

*

*

*

*

*

*

ABX

*

*

*

ABY ZPG

*

*

*

*

*

*

*

ZPX

*

*

*

*

*

ZPY

*

*

IXX

*

*

*

IXY

*

*

*

IND REL

c

133

ABACUS Software SUPER Pascal Development System

5.4 PSEUDO OPERATION CODES

The pseudo operation codes accepted by the assembler are for controlling the r

assembler and generating code. All pseudo opcodes are preceded by a v_

period (.):

CONTROL pseudo opcodes:

. BA (Begin Assembly)

Syntax: . BA ADDRESSEXPRESSION

This command defines the starting address for the machine code.

ADDRESSEXPRESSION stands for an absolute address in decimal or

hexadecimal form, or for an expression already defined as a label.

NOTE:

Expressions should NOT contain spaces; any material after spaces will be

viewed as commentary by the assembler (and consequently ignored).

.CT (ConTinue with...) (~
Syntax: . CT FILENAME

This command appends separate source programs. FILENAME stands for

the file desired in the current disk drive.

.DL (Define Label)

Syntax: . DL ADDRESSEXPRESSION

This command will determine the comparison between an already-used label

name, and the address given at ADDRESSEXPRESSION.

.EN (ENd of assembly)

Syntax: . EN

This signals the conclusion of assembly. . EN can be defined as a label (e.g.,

END .EN). s~

134

c

c

c

ABACUS Software SUPER Pascal Development System

.EQ (ifEQualtoO)

.NE (ifuNEqualtoO)

(end of condition)

SYNTAX: . EQ ADDRESSEXPRESSION

.NE ADDRESSEXPRESSION

. . . ADDRESSEXPRESSION

These instructions will handle conditional assembly; the details are handled

in 3.3.

.OC (ObjectcodeClear)

.OS (ObjectcodeSet)

Syntax: .OC

.OS

These codes switch the machine code generator off (.OC) and on (.OS); the

default value of the generator (i.e., at power-up) is ON. This option allows

insertion of already- assembled external program code.

PROGRAMMING pseudo opcodes:

.BY (BYte(table)

Syntax: . BY BYTELIST

This can insert any sequence of bytes of running machine code. The number

of bytes are governed by the size of the bytelist (min. 1 BYTE - max. to end-

of-line). If more bytes need be generated, just keep calling up . BY in the

lines to follow. A BYTELIST is any set of bytes; they can be in decimal or

hex; or, individual characters and strings, e.g.:

.BY 0 128 255

.BY 0 $80 $FF

.BY 'A' 'C 'E' 'U'

.BY 'SUPER PASCAL'

.BY 0 'A' $80 'DATA' 255

A commentary character (;) or a c/r ends the bytelist in any line.

135

ABACUS Software SUPER Pascal Development System

.DS (Displacement)

Syntax: . DS ADDRESSEXPRESSION

This command can create laige memory ranges in machine language. The

assembler generates code from $00 through the amount stated in

ADDRESSEXPRESSION; the assembly continues with the next available

memory address.

.SA (Set Address)

Syntax: . SA LABEL-EXPRESSION

From this command, the assembler generates a 2-byte address (low-

byte/high-byte) and puts it into the code. LABELEXPRESSION is an

expression made up of any labels and/or absolute addresses (hex or decimal).

5,5 RUNNING THE ASSEMBLER / OPTIONS

The assembler is loaded from the MAIN menu using the 'A'command; it

will load an assembler sourcecode from diskette. The system prompts with:

FILE-TITLE = ?

DRIVE(MAP) = X

The default value for x is the number of the disk drive last used; by rights,

then, you need only press <RETURN>.

If the file to be assembled was edited most recently, you can simply respond

to the FILENAME prompt by pressing * and <RETURN>. The system asks

for verification:

CONFIRM "FILENAME,DRIVE_NRM? N/Y

Any incorrect input will abort the assembler, and return you to the MAIN

menu.

When all materials have been properly entered, the assembler will load from _

the system diskette (which requires LOADDAT and C_ASMBLR in drive

136

ABACUS Software SUPER Pascal Development System

0). If the textfile is not found, or if the file isn't a textfile, the system will

display the proper error message and return you to the MAIN menu.

f Once the assembler has initialized, and the sourcecode file has been opened,

^- the assembler displays

* C=64 6510 ASSEMBLER 5.3 *

and prompts with

LISTING ? Y/N

so it knows whether or not to run a program listing (not designed like the

source text, but rather a listing of memory locations and machine code in hex

notation). If commentary running over 80 characters per line exists, the right

portion of the commentary will be cut off. The system questions further:

HARDCOPY ? Y/N

C-- giving you the option of seeing the listing on screen or on paper. If you

choose the latter, the output device numbers will be requested:

OUTPUT-DVC = 4,0

Once this is confirmed, PASS 1 of the assembly process will commence.

The assembler might find some syntax or formula errors: An error message

and the offending line will be displayed. For example,

2005 1_BUFFER LDA #1

will generate

ILLEG. CHARACTER IN LABEL ERROR IN ..

2005 1_BUFFER LDA #!

Clfyou're reading this onscreen rather than on a printout, the assembler will

wait for you to press the <RETURN> key before continuing - to give you a

chance to write the problem down.

137

ABACUS Software SUPER Pascal Development System

Here are the possible error messages:

ILLEG. CHARACTER IN LABEL ERROR IN ..

ILLEG. MNEMONIC ERROR IN . .

ILLEG. PSEUDO ERROR IN ..

ILLEG. OPERAND ERROR IN ..

ILLEG. BYTE-DEFINITION ERROR IN ..

LABEL NOT FOUND ERROR IN ..

DUPLICATE LABEL ERROR IN ..

ILLEG. ADDR. MODE ERROR IN ..

ILLEG. INDEX ERROR IN ..

ILLEG. ADDRESS ERROR IN ..

LONG BRANCH ERROR IN ..

.EN MISSING ERROR IN ..

If the first pass goes without a hitch, the assembler announces the good

news:

PASS 1 OK

- and starts PASS 2, which assembles the file, and stores it on diskette as a

temporary file (CODDAT). Errors are displayedjust as in PASS 1.

If all has gone well, the assembler lets you know -

PASS 2 OK.

> 0 ERRORS _—

- and asks for the name of the object code file:

TITLE OF OBJECT-FILE =

You give the identifier that you wish this m/1 program to have.

Next, you'll be asked about the fate of the label list

LABEL-FILE TO DISC ? Y/N /—

Choosing 'Y' will make the system ask for a Filename:

138

c

c

c

ABACUS Software SUPER Pascal Development System

TITLE OF LABEL-FILE =

LABEL-FILE TO PRTR ? Y/N

This gives you the option of printing out the label list file. If'Yf is chosen,

the system will ask for the printer address:

OUTPUT-DVC =4,0

If you so desire, the label file can be sent to the screen and/or the printer.

One more time, you'll be asked about the label list:

LABEL-LISTING ? Y/N

This time, if you say 'Y\ the system will put this listing onscreen. The list is

arranged in alphabetical order of labels, together with their address

definitions. The list can be stopped and resumed by pressing <SPACE>.

The RUN/STOP key aborts the output, and returns you to the MAIN menu.

Choosing 'N' for the label list prompt will also send you back to the MAIN

section.

If errors are found during PASS 2, the system scratches (deletes) the

temporary file CODDAT; the label list is still accessible, however. Leaving

the assembler automatically loads and starts the Editor, which loads the bad

sourcecode, so that you can immediately go in and debug it From there, you

must go back to the MAIN before calling the Assembler.

Pressing the RUN/STOP key while in the Assembler will display a

BREAK ...

and load the Editor and sourcefile.

Here is a short program demonstrating the design of an assembly program,

the program listing output, and the label list output The program should

switch the C-64's screen on and off in intervals of one second.

139

ABACUS Software SUPER Pascal Development System

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

DEMO

CPUPORT

VICREG17

MARKER

•

START

LOOP0

LOOP1

/

SWITCH

DUMMY

*

END

.BA

.DL

.DL

.DL

LDY

STY

JSR

DEC

JSR

DEX

BNE

DEY

BNE

JMP

LDA

ORA

STA

LDA

EOR

STA

LDA

AND

STA

RTS

.EN

$0800;DEMO PROGRAM SWITCH SCREEN

1 ; DETERMINE MEM. CONFIGURATION

$D0000+17 ; SW. SCREEN BIT 4 OFF

$FF00 /MARKER CELL FOR SCR. MODE

#0

MARKER

SWITCH

MARKER

DUMMY

LOOP1

LOOP1

;RESET COUNTER

/INITIALIZE MARKER

/SWITCH SCR. MODE

/MARK BIT 0

11-COUNT CPU TIME DELAY

/LOWBYTE COUNT

/256 TIMES

/HIGHBYTE COUNT

/256 TIMES

LOOP0 /SWITCH — BREAK CONDITION

*CPUPORT

#1

*CPUPORT

VICREG17

#$10

VICREG17

*CPUPORT

#$FC

*CPUPORT

/IS HERE

/I/O BANK ON

/INVERT BIT 4

/RAM-BANK ON

c

c

1000 $0800

1005 $0800

1010 $0800

1015 $0800

1020 $0800

DEMO .BA $0800

/DEMO PROGRAM SWITCH SCREEN

f

CPUPORT .DL 1

/DETERMINE MEM. CONFIGURATION

VICREG17 .DL $D0000+17

/ SW. SCREEN BIT 4 OFF

MARKER .DL $FF00

/MARKER CELL FOR SCR. MODE

c

140

ABACUS Software SUPER Pascal Development System

c

c

1025 $0800

1030 $0800 A0 00

1035 $0802 8C 00 FF

1040 $0805 20 17 08

1045 $0808 CE 00 FF

1050 $080B 20 2B 08

1055 $080E CA

1060 $080F DO FA

1065 $0811 88

1075 $0814 4C 05 08

START LDY #0 ;RESET COUNTER

STY MARKER

/INITIALIZE MARKER

LOOPO JSR SWITCH

/SWITCH SCR. MODE

DEC MARKER;MARK BIT 0

LOOP1 JSR DUMMY

;11-COUNT CPU TIME DELAY

DEX ;LOWBYTE COUNT

BNE LOOP1 ;256 TIMES

DEY ;HIGHBYTE COUNT

JMP LOOPO

/SWITCH — BREAK CONDITION

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

PASS

> 0

$0817

$0817

$0819

$081B

$081D

$0820

$0822

$0825

$0827

$0829

$082B

$082C

$082C

2 OK.

ERRORS

A5

09

85

AD

49

8D

A5

29

85

60

<

;

01 SWITCH

01

01

11 DO

10

11 DO

01

FC

01

DUMMY

;

END

LDA

ORA

STA

LDA

EOR

STA

LDA

AND

STA

RTS

.EN

> HERE

*CPUPORT

#1 ;I/O BANK ON

*CPUPORT

VICREG17

#$10;INVERT BIT 4

VICREG17

*CPUPORT

#$FC ;RAM-BANK ON

*CPUPORT

c

LABELLIST

CPUPORT $0001 DEMO $0000 DUMMY $082B

END $082C LOOPO $0805 LOOP1 $080B

MARKER $FF00 START $0800 SWITCH $0817

VICREG17 $D011

141

c

c

c

c

ABACUS Software SUPER Pascal Development System

6.0 UTIUTYMENU

The Utility program is an extremely useful software packge. You know that

a utility is universally defined as a program that helps you program; our

packet gives you simple disk management and help in running SUPER

Pascal. Pressing 'U1 brings you to the Utility menu; it is important that two

programs, LOADDAT and C_UTELIT, be in disk drive 0.

One advantage of the Utility program is that the loading of programs can be

handled in this section itself. Once this menu is started, the system diskette

is no longer needed. Here's what you'll see on initialization:

* C=64 FILE-UTILITY 5.3 *

COMMANDS = . . .

A(DVICE) J(UMP) S(TOREMEM)

B(LOCKTABLE) K(ILLTITLE) T(RNSFRMEM)

C(OPY) L(OCKFILE) U(NLOCKFILE)

D(UPLICATE) M(AP/DRIVE) V(IEWMEM)

E (NTERSECT) N (EWDISC) W (RITEDIR)

F(ETCHSECT) O(RGANIZE) X(CLUDEBLC)

G(ETRAM) Q(UIT) Z(EROBLOCK)

KNSERT ADV) R(ENAME)

The cursor always turns into a dollar-sign ($) when you're in Utility. As

mentioned previously, typing the first letter and <RETURN> gets you the

individual menu selections; all other input requires pressing the <RETURN>

key at the conclusion of the input line. Numbers can be entered in decimal

or hexadecimal form (preceded by $, of course). False string input will be

answered with

ILLEG. INPUT!

EXECUTION NOT SUCCESSFUL!

Improper numeric input will yield

143

ABACUS Software SUPER Pascal Development System

INVALID INPUT

EXECUTION NOT SUCCESSFUL!

Disk access defaults to system drive 0; the 'NT command can redefine drive C~
numbers. ^~

The Utility program is fairly insensitive to errors - any problems will bring

up appropriate error messages, and hand control back to the Utility menu

itself.

You have the option of sending Utility output to the screen or a printer. The

default printer address is 4,0 but you can change it at any time with

@X,Y

with X representing the primary address, and Y the secondary address.

6.1 UTILITY COMMANDS

6.1.1 A (= ADVICE)

This command lets you review the user-specific information in any file

(assuming that information has been added - see 'i'). First prompt is:

FILE-TITLE =

to which you respond with the filename which has the information you want

to view. The system searches the disk drive and displays

ADVICE TO "FILENAME,DRIVE_NRn:

current information ...

Ifno information exists,

... NO ADVICE INSERTED! V_

appears. If the file itself doesn't exist, you'll see

144

c

c

c

ABACUS Software SUPER Pascal Development System

TITLE NOT FOUND!

EXECUTION NOT SUCCESSFUL!

6.12 B (= BLOCKTABLE)

This command displays the block table map (or block availability map, as

it's known in BASIC) of a diskette. The table is in Pascal-DOS, which

means that the diskette is divided into 40 blocks of4K each, with each block

subdivided into 8 512-byte sectors.

'B' displays individual blocks with symbols explaining status. Here are the

symbols, and their definitions:

F (FREE)

The block displayed is ready to be used. The internal

content is 0.

I (INVALID)

This block shouldn't be changed; it contains the disk

directory and information (see 6.1.1 and 6.1.9). Internal

value is 255 ($FF).

U (USED)

This block is filled; internal value is >= 80 and <96.

X (eXCLUDE)

This block has been reserved from the DOS (see the 'X'

command); the block can be freed up with the 'Z'

command. Internal value is 256 ($FE).

The block table of the system disk looks something like this:

145

ABACUS Software SUPER Pascal Development System

BLOCK-TABLE OF DISC "PASCAL ,0"

... ('XCLUDE,FREE,INVALID,USED)

0:IUUUU UUUUU

10: UUUUU FFFFF

20: FFFFF FFFFF

30: FFFFF FFFFF

6.13 C(= COPY FILE)

Here you can copy Pascal-DOS files, regardless of type. The system

prompts for the following parameters:

SOURCE - DRIVE = ?

DESTINAT-DRIVE = ?

FILE-TITLE » ?

Any bad input will repeat the prompts. Once all input is sent, the system will

copy the file. If the system has two disk drives, the program will perform

data transfer in a block-wise manner, while the single-drive system will load

the file, ask you to change to the destination disk, and press <RETURN>,

which will save the file to the new diskette.

Other information (ADVICE) is copied as well as the file. The procedure

ends with "READY" displayed. If there is insufficient space on the

destination disk, you'll get either

DISC OVERFLOW!

EXECUTION NOT SUCCESSFUL!

or

MAP OVERFLOW!

EXECUTION NOT SUCCESSFUL!

If the destination disk has a filename identical to the file you're copying, f
you'll get

146

ABACUS Software SUPER Pascal Development System

FILENAME EXISTS ON DESTINATION-DISC!

SURE TO REWRITE FILE ? Y/N

/- to which if you respond 'Y\ the old file will be overwritten by the new.

6.1.4 D (= DUPLICATE DISC)

In cases where large amounts of information must be copied (or, for that

matter, all 40 blocks of a diskette), the 'D'command is at your disposal; it

can be used ONLY with a two-drive system:

SOURCE - DRIVE = ?

DESTINAT-DRIVE = ?

requires your response (0/1). Since the destination diskette may be

overwritten, you'll get this prompt to confirm:

DISC MAY BE USED; SURE TO REWRITE ? Y/N

^— Once the parameters have been given, the system performs blockwise
copying -

COPYING; PLEASE WAIT!

BLOCK IN PROGRESS ... x

If you try this command with only one disk drive, the system will protest:

NO DUPLICATING WITH SINGLE-FLOPPY!

EXECUTION NOT SUCCESSFUL!

Should something go wrong to stop the copying process (e.g., drive switched

off, no diskette in drive, unformatted diskette, etc.), a corresponding error

message appears, and execution ceases.

NOTE:

f Duplication can only be done on diskettes formatted with SYSGEN!!

147

c

ABACUS Software SUPER Pascal Development System

6.1,5 E (= ENTER SECTOR)

This command allows any 512 byte memory range to be saved to any sector

of the diskette. The following parameters are requested:

RAM-ADR = ?

SECTOR* = ?

Input errors will make these prompts repeat

Disk sectors are lined up in a logical sequence, with eight sectors to a block

(sectors 0-7 in block 0, sectors 8-15 in block 1, etc.), up to 319 sectors.

Double-drive systems offer sectors from 0-639.

In cases where the block is markedT or "IT (see 6.1.2), the system will ask

for confirmation:

CONDITION OF CORRESPONDING BLOCK: x

SURE TO SAVE INTO THIS SECTOR ? Y/N

NOTE:

There is a possibility of overwriting old data, or even destroying the disk

directory (sector 0); be careful.

6.1.6 F (= FETCH SECTOR)

The 'F' command is the reverse of 'Ef; it will transfer any sector from

diskette into memory. Prompts:

SECTOR* = ?

RAM-ADR = ?

Illegal input will be ignored. Once loaded, the sector can be displayed with

the 'V command

148

c

ABACUS Software SUPER Pascal Development System

NOTE:

The 'F' command doesn't check for sufficient memory space when loading.

You have the entire memory from $4000 to $C200 available for this

command (and, in exceptional cases, $0400-$07FF (screen memory)).

c
6.U G (= GET FILE FROM DISC TO RAM)

This command loads any file from diskette to the computer, which can be

useful for temporarily storing information as well as loading programs. This

dialogue occurs:

START-ADR = ?

~ give the address of where you want the program in memory (either in

decimal or hexadecimal).

FILE-TITLE = ?

f~ ~ you supply the filename.

DRIVE (MAP) = x

- give the drive number where the file can be currently found (default is the

last-used drive).

END-ADR+1 « $xxxx

-assuming the rest of the input was valid, give the ending address in

memory.

NOTE:

This command doesn't test for available memory, or whether any collisions

may occur (see the NOTE at T' for available memory).

149

ABACUS Software SUPER Pascal Development System

6X8 H(=HELP)

This command displays the complete command list for the Utility menu. s~-

6,1.9 I (= INSERT ADVICE)

Advice (extra information) is put in using this command (and read with 'A').

Mostly, this advice can consist of version number, memory range, starting

address, etc.).

FILE-TITLE = ?

asks for the filename to which you want to add comments.

CONFIRM "FILENAME,DRIVE_NRff? N/Y

asks for verification. If the title isn't on the diskette, the machine responds

with

c
TITLE NOT FOUND!

EXECUTION NOT SUCCESSFUL!

The prompt for the information will read:

WRITE THE ADVICE (MAX. 63 CHAR.)

AND TERMINATE WITH 'RETURN' !

The comments will be stored in sectors 1-5 (block 0) of the diskette.

6.1,10 J(=JUMP)

This allows ajump to any machine language or Pascal program in memoiy.

PRGM-ADR. = ?

150

c

ABACUS Software SUPER Pascal Development System

- you give the jump address.

c

c

NOTE:

There is no control over memory overlapping.

You have $4000 to $C200 at your disposal for a jump. When through with

the routine, it would be wise to have

JMP $0800

for the last command (this returns you to the Utility menu); do NOT return

to $0028-$004F, $034040379 or $0800-4000.

The 6510 command

JMP $C200

will return you to the MAIN menu.

6.1.11 K(= KILL TITLE)

The *K' command allows you to delete diskette files no longer needed.

FILE-TITLE = ?

asks for the filename you wish scratched.

CONFIRM "FILENAME,DRIVE_NR ? N/Y

asks for verification; 'Y* will delete the Hie (the disk drive can be redefined

with the 'NT command).

If the file isn't in the drive, you'll get

TITLE NOT FOUND!

EXECUTION NOT SUCCESSFUL!

and a stopped command.

151

ABACUS Software SUPER Pascal Development System

If the file is locked, the Utility will recheck -

FILE IS LOCKED!

SURE TO KILL THE FILE ? N/Y

Pressing 'Y' will kill the locked file.

At the conclusion of the process, the revised directory will be displayed

onscreen.

6.1.12 L(= LOCK FILE)

Files can be protected from overwriting and deletion by this command. The

Utility asks:

FILE-TITLE = ?

If file isn't existent, the system says

TITLE NOT FOUND! V-

EXECUTION NOT SUCCESSFUL!

The appropriate file is locked (and is shown in the directory in reverse

video).

6.L13 M(= MAP/DRIVE)

The 'M* command serves to display the directory (or MAP) of a diskette

onscreen.

DRIVE (MAP) « x

x defines the drive desired; the default is the last utilized disk drive, so a

<RETURN> alone will often suffice. c

152

ABACUS Software SUPER Pascal Development System

Note that the *M* command reads Pascal-DOS disks ONLY! Since the DOS

has been rewritten, the system cannot read disks formatted in the "normal"

way. The system disk, with the exception of 22 blocks of normal size (256

/- bytes), the entire Pascal disk is under Pascal-DOS.

The directory shows filenames and the number of blocks still available on

the disk (remember, Pascal blocks equal 4K each).

The map of the boot diskette looks like this:

MAP OF DISC "PASCAL ":

LOADDAT SYSGEN C_EDITOR C_UTILITY

C_CPLR C_ASMBLR C__PMDUMP

DISC 0 = 18 //

BLOCKS FREE !

Further information about chosen files can be had with the 'W command.

See Chapter 7 for more information about Pascal-DOS.

/" 6.1.14 N(= NEW DISC)

This command clears the directory of a diskette already formatted using

SYSGEN. First, state which drive has the disk to be "newed out":

DRIVE(MAP) = x

Default value is the last disk drive accessed. Incorrect input is treated as

mentioned earlier.

For security reasons, the Utility asks the user for confirmation:

DISC MAY BE USED; SURE TO REWRITE ? Y/N

If you wish to go on, respond with fY"; the system will ask:

DISC-TITLE « ?

-- you give the name you want given to the diskette.

153

ABACUS Software SUPER Pascal Development System

N OF DISCS = ?

Answering '1' will new one disk (40 blocks); '2' (assuming you have two

drives) will new BOTH disks for use as one (totaling 80 blocks). s~

The new directory will be listed on the screen

6.1.15 O(= ORGANIZE DISC)

This command works in connection with 'N* -- where in 'N\ two disk drives

are used to create one directory, this command can return us to "single disk"

status. Also, the disk is "organized" - a closer packing of files.

DRIVE (MAP) = x

x = the drive number which contains the system diskette. Concluding with

NEW SIZE =

reorganizes the disk. If your input above is equal to 2, be sure that the ^~
second disk is in drive 1 (the second drive). An input of 1 separates the

material in drive 0 from the files in drive 1. This procedure must conclude

with the 'N' command if the second diskette has files on it, the Utility says:

DISC >= 1 NOT FREE!

SURE TO RESIZE DISC ? Y/N

6.1.16 P (= PUT RAM AS FILE TO DISC)

Store any memory contents to diskette as a datafile (see 'G* to retrieve).

Parameters are as follows:

c

154

ABACUS Software SUPER Pascal Development System

START-ADR. = ?

END-ADR.+l = ?

FILE-TITLE = ?

£ DRIVE(MAP) = x

Addresses can be in decimal or hex; filenames must be given per syntax for

Pascal identifiers:

8 significant characters

1st char, must be a letter

remaining chars, can be letters, numbers and'_'

Default for x is the last drive number accessed.

NOTE:

Any file already on the destination diskette with the same name as the file

being saved will be overwritten, unless the original file is locked: Then

IL.FILE OPR. ERROR!

/"" will appear.

You have the following memory available to you for this procedure:

$0000-$CFFF(RAM); $D000-$DFFF(I/O); $E000-

$FFFF(KERNAL)

6.1.17 Q(=QUTT)

Exits Utility menu and goes to MAIN.

6.1.18 R (= RENAME FILE)

'R' lets you rename any file in the directory. The system will ask:

FILE-TITLE = ?

155

ABACUS Software SUPER Pascal Development System

You give the filename to be changed (NOTE: The disk with this file must be

in the directory, or a 'TITLE NOT FOUND!' error will appear).

REPLACEMENT- s~

is the prompt for the new filename. The directory will then be changed, and

the revised map shown onscreen.

If the new filename already exists, the Utility states

TITLE EXISTS ON THIS DISC!

EXECUTION UNSUCCESSFUL!

and the procedure is left undone.

It is also possible to change the diskette name itself with 'R\

6.1.19 S (= STORE BYTE INTO MEMORY)

Byte information can be immediately changed in the 64, and stored in

memory. The system will ask:

MEM-ADR =

CONTENTS=

Give the memory address and the contents of that address (both in decimal

or $hexadecimal); a CONTENT of over 255 ($FF) will be ignored by the

Utility.

NOTE:

No testing for the legality of the content in the memory location.

c

156

ABACUS Software SUPER Pascal Development System

6.1.20 T (= TRANSFER MEMORY-BLOCK)

CHere you can transfer memory contents (for test purposes) in increments of 1

memory page (256 bytes); however, the starting address can be virtually any

number (see below), just as long as you don't go past page borders (low-

order byte = $00).

ADR OF SOURCE - PAGE = ?

ADR OF DESTINAT-PAGE = ?

The input can be either in hex or decimal.

NOTE:

The target range isn't tested for what sort of manipulation it can perform.

Use this command only if you're well-versed in memory management You

have available memory of $4000- $CFFF.

6.1.21 U (= UNLOCK FILE)

^- Opposite of 'L' « unlock secured files.

FILE-TITLE « ?

requests the filename, which must be in the disk drive (drive can first be

redefined with 'M\ as necessary). If the file isn't onhand, the system

responds with

TITLE NOT FOUND!

EXECUTION NOT SUCCESSFUL!

and starts over again. Assuming that all is well, the file is unlocked, and the

revised directory is displayed.

c

157

ABACUS Software SUPER Pascal Development System

6.122 V (= VIEW MEMORY)

The 'V command lists any memory range to the screen or a printer; contents

will be printed out in hexadecimal and - when possible ~ in ASCII form /~

(hex-dump). The Utility asks for V-,

START-ADR. = ?

END-ADR.+l » ?

which can be given in either hex or decimal. If the start and end addresses

are identical, the Utility will show the one line on screen. If a fair amount of

memory is requested, the prompt

HARDCOPY TO PRINTER ? Y/N

will appear. Any changes to the printer addresses can be made according to

the introduction to this chapter.

A memory dump of, say, $C200-$C22F would look like this:

«MEMORY DUMP»

$C200:20 21 CA 12 C2 00 00 BC !

$C2O8:F1 Cl 00 00 00 C2 FD FF

$C210:00 00 4D 19 C2 FF Bl 11 ..M

$C218:C6 80 1C 2A 20 43 3D 36 ...* O6

$C220:34 20 20 50 41 53 43 41 4 PASCA

$C228:4C 2D 53 59 53 54 45 4D L-SYSTEM

Memory contents in the range $20-$7f are ASCII characters. This listing

can be stopped and restarted with the <SPACE> bar; pressing RUN/STOP,

however, aborts the program.

c

158

ABACUS Software SUPER Pascal Development System

6.1.23 W(= WRITE DIRECTORY)

CThiscommand sends an entire disk directory to the printer in extended form

(with extra information):

CONDITION:

Whether the file is locked or unlocked

STARTBLOCK

The first block in which information is stored on diskette.

LENGTH

File length -- in an X,Y format (X= number of 256-byte

pages, and Y= remainder not counted in X).

ADVICE

File information. If non is available, f~l is printed.

After calling the'W' command, you'll be asked for the drive number

DRIVE(MAP) = x

As before, the default for x is the last drive used.

Finally, the output mode will be asked for:

HARDCOPY TO PRINTER ? Y/N

Responding with MYM will start printer output Printer specification should

be done with '@X,Y\ as previously mentioned in the introduction to

Chapter 6.

You have a choice of seeing the extended directory onscreen or on paper ;

you have control over the first by pressing the <SPACE> bar to stop and

resume output Pressing RUN/STOP breaks off either screen or printer

f- output

Here is a sample directory - one of a disk just formatted with SYSGEN:

159

ABACUS Software SUPER Pascal Development System

« DIRECTORY OF DISC "PASCAL ,0" »

FILE-TITLE "LOADDAT"

CONDITIONCLOCKED STARTBLOCK: 1

LENGTH: 63.255 ADVICE:

(list of files)

TOTAL: 1 DISC //I TITLES //

5 BLOCKS (35 FREE)//

6.1.24 X (= 'XCLUDE BLOCK)

This command allows you to set aside blocks of memory from regular use

by the DOS. Such a block registers in the block availability map with a

value of 254 ($FE), and is marked on the block table with an 'X'. Answer

the prompt

EXCLUDING-BLOCK =

with an appropriate number; attempts to exclude the directory block (block

0) will be turned away with

INVALID INPUT!

EXECUTION NOT SUCCESSFUL!

The new BAM will be displayed on the screen.

Excluded blocks can be accessed with the 'E' command.

c

c

160

ABACUS Software SUPER Pascal Development System

6.1.25 Y(= LIST FILE)

f~ This generates a hex-dump from any Pascal-DOS-accessible file (similar to

C

*\nV, which dumps a certain memory range).

FILE-TITLE = ?

Give the name of the file to be listed -- must be in the directory (and,

consequently, in the disk drive).

HARDCOPY TO PRINTER ? Y/N

'Y' sends the file to the printer, rather than to the screen.

NOTE:

File dumps will begin with $0000, regardless of memory address at which

the file is located.

Onscreen dumps can be stopped and resumed with the <SPACE> bar ~

RUN/STOP aborts any dump format

Here's a sample dump:

« FILE-DUMP of "LOADDAT ,0" »

$0000:20 21 CA 12 F7 81 00 BA !

$0008:F1 Cl 00 00 00 F7 FE FF

$0010:00 00 4D 34 F8 4C 09 CA ..M4.L..

$0018:4C 06 CA 5E 02 79 41 26 L..A.YA&

$0020:F1 08 5F FA F7 08 FC 08 .._

$0028:40 29 79 5E 02 79 6B 79 @YYA.YkY

161

ABACUS Software SUPER Pascal Development System

6.1.26 Z (= RELEASE BLOCK TO ZERO)

This releases an excluded block for regular use by the Pascal-DOS, and give

the block a value of 0 (marked in the block table with an 'F).

RELEASING-BLOCK (TO ZERO) =

Input any number except 0 (directory block).

If this block is already occupied with memory, the system will confirm:

BLOCK IS USED! SURE TO RELEASE ? Y/N

REMEMBER: If you say 'Y1 after this prompt, the data that was in this

block is lost forever.

The procedure concludes with a display of the revised BAM.

c

c

162

ABACUS Software SUPER Pascal Development System

7.0 SYSTEM-SPECIFIC INFORMATION

c
This chapter should give you enough detailed information about SUPER

Pascal's design to let you develop, adapt and change it to suit your own

needs. You can reach this information with your own file access.

7.1 SYSTEM SIZE AND DEFINITION

c

c

Variable Design

BOOLEAN VARIABLES are one byte in size, and are one of two values:

FALSE

TRUE

00O0 0000

0000 0001

CHAR and BYTE VARIABLES represent user-specified scalar variables,

and run in a range from

to

0

255

($00)

($FF)

0000 0000

1111 1111

CHAR VARIABLES stand for the ASCII codes of the characters in the

C64's system.

INTEGER VARIABLES are two-byte, binary-coded numbers, where the

msb (most significant bit) contains the integer information (0 for positive, 1

for negative). They have the following range:

-32767 (-MAXINT) ($8001)

-1 ($FFFF)

0 ($0000)

1 ($0001)

+32767 (+MAXINT) ($7FFF)

1000 000 0000 0001

1111 1111 1111 1111

0000 0000 0000 0000

0000 0000 0000 0001

0111 1111 1111 1111

REAL VARIABLES total 6 bytes in binary-coded exponential form. The

most significant byte represents the binary exponent:

163

ABACUS Software SUPER Pascal Development System

(2A) -127 ($01) = 0000 0001

(2A) 0 ($80) = 1000 0000

(2A) 127 ($FF) = 1111 1111

The remaining five bytes represent the normal Mantissa, i.e., the msb is ^-
always 1, so that its representation is assured. The Mantissa function is

integral (1 = positive, 0 = negative). For example:

-23.5 would be (in binary) -10111.1 = -1.01111 ♦ 10 A 100

with the following 6 bytes: $84 $BC $00 $00 $00 $00

Zero is not available here. The value 0 would be arranged with an exponent

ofO($00)thus:

$00 $80 $00 $00 $00 $00

ADDRESS quantities are represented in two bytes.

SET VARIABLES can contain up to 256 elements (256 bits = 32 bytes).

The lesser byte represents the elements 0-7, while the greater byte stands for

the elements 248-255. (_

ARRAY VARIABLES are represented sequentially, from lowest to highest

address.

RECORD VARIABLES are analogous to array variables.

Here are the variables in sequence from top-of-stack to bottom-of-stack:

C

164

c

c

ABACUS Software

A, B: INTEGER; 1

C :REAL; 1

D,E:ARRAY[1..3] OF CHAR; |

F :RECORD

G :BOOLEAN;

H :BYTE;

CASE I:INTEGER;

1:(J:STRING);

2:(K:SET OF 0..255)

END;

SUPER Pascal Development System

HIGH ADDRESS

A(HIGH) |

A (LOW) |

B(HIGH) |

B(LOW) |

C(EXP) |

C (MAN.HIGH) |

C(MAN. 1) I

C(MAN. 3) I

C(MAN. 4) |

C(MAN. 5) 1

C(MAN. LOW) |

D[3] 1

D[2] 1

D[l] I

E[3] 1

E[2] 1

E[l] I

K(248..255) I

K(240..247) |

1 K(...) 1

1 K(8..15) / J(HIGH) |

1 K(0..7) / J(LOW) |

1 I(HIGH) I

1 K LOW) |

1 H |

1 G I

1 LOWEST ADDRESS 1

c

165

ABACUS Software SUPER Pascal Development System

PRCXZEDURE/FUNCTION descriptions take up 6 (7) bytes, and are set on

the stack with every procedure/function call. These 6 (7) bytes represent:

Dynamic link (2 bytes)

Return address(2 bytes)

Static link (2 bytes)

(segment nr. (1 byte))

System-defined runtime errors are as follows:

0 » OK

1 = NA

2 = IL.INPUT

3 = NA

4 « OUT OF RNG.

5 = NOT EXQ.

6 ■» NUM.OV.

7 = B.SUBS.

8 = IL.QUANT.

9 = STK.OV.

10 = ZERO-DIV

11 » IL.DVC.

12 = FLOPPY-

13 = NOT OPEN

14 = NOT CLO.

15 = BUF.OV

16 = DIR.OV.

17 = NOT FND.

18 = DSC.OV.

19 = DSC.MISM.

20 = IL.FILE OPR.

21 = AFTER EOF

22 « IEE -

(I/O error 0)

(I/O ERROR 1)

(I/O ERROR 2)

(I/O ERROR 3)

(I/O ERROR 4)

(I/O ERROR 5)

(I/O ERROR 6)

(I/O ERROR 7)

(I/O ERROR 8)

(I/O ERROR 9)

(I/O ERROR 10)

(I/O ERROR 11)

c

c

166

ABACUS Software SUPER Pascal Development System

12 MEMORY LAYOUT AND ADDRESSES

c
SUPER Pascal uses the following addresses in the 64:

c

c

$0028.

$002A.

$002C.

$002E.

$0030.

$0032.

$003A.

$0050.

$0067.

$0100.

$0185.

$01FA.

$0340.

$0349.

$0352.

$035B

$035C

$035D

$035E

$035F

$0360

$0361.

$0363.

$0365.

$036D

$036E.

$0370

$0371.

$0373

$0374.

$0376.

$037A.

.$0029

.$002B

.$002D

.$002F

.$0031

.$0039

.$004F

.$0066

.$006F

.$0184

.$01F9

.$01FF

.$0348

.$0351

.$035A

.$0362

.$0364

.$036C

.$036F

.$0372

.$0375

.$0379

.$03FF

Start-of-stack pointer

unused reserve pointer

base-pointer

top-of-stack pointer (STKPOI)

pointer for current heap

diverse pointers (usable in assembler

routines)

Fetch routine for "P-machine"

sundry zero-page cells

assorted C-64 system registers

INPUT buffer

6510 machine stack

RANDOM variable

Descriptor for 1st file buffer

Descriptor for 2nd file buffer

Descriptor for 3rd file buffer

Error-trap flag

I/O ERROR number

Working disk drive

"EXECUTE" flag

temporary disk drive

Warm flag

MAIN menu pointer

Start-of-program pointer

Filename for source transfer

Transfer drive for PUT/GET sector

Sector number for PUT/GET sector

INPUT device

INPUT secondary address

OUTPUT device

OUTPUT secondary address

assorted uses

OUTPUT buffer

167

ABACUS Software

$0800

$BBFF

$BC00..$C1FF

$C200..$C7FF

$C800..$F0FF

$CA03

$CA06

$CA09

$CA0C

$CA0F

$CA12

$CA15

SUPER Pascal Development System

Start of programming memory

End of regular free stack

MAIN menu variable stack

MAIN menu

SUPER Pascal runtime packet

JUMP for external printer routine

JUMP on GET sector

(variable transfer on Pascal stack:

Drive number (high)

Drive number (low)

Sector number(high)

Sector number(low)

RAM address (high)

RAM address (low))

JUMP on PUT sector

(variable transfer like GET sector)

JUMP on runtime error

(error number put on Pascal stack)

JUMP to MAIN menu

(JMP$C200)

Indirect JUMP on program end

(regular:MAIN menu (JMP($0361)))

Indirect JUMP to program

(regular at $0800 (JMP ($0363)))

c

c

$F300..$F6FF

$F700..$FAFF

$FB00..$FEFF

$FFFA..$FFFF

1st file buffer

2nd file buffer

3rd file buffer

Machine vectors

c

168

c

c

c

ABACUS Software SUPER Pascal Development System

13 DISKETTE ORGANIZATION

Diskettes are laid out in Pascal-DOS, i.e., 320 sectors (0..319), with each

sector totaling 512 bytes. Data is transferred in this DOS by the GET-sector

and PUT-sector routines ($CA06 and $CA09 respectively). Each sector in

Pascal-DOS is double the size of a normal DOS sector (256 bytes); the

changed DOS cuts the number of available disk blocks from 683 to 640,

with the remaining 43 blocks unused by SUPER Pascal. The blocks are

arranged as follows:

Track 1-17 / Sector 20

Track 18 / Sector 0, 1, 9, 10, 18

Track 19-24 / Sector 18

Track 25 - 30 /

Track 31-34 / Sector 16

Track 35 / Sector 6-16

The blocks T1/S20 and T2/S20 contain the loader software for changing the

DOS in SUPER Pascal. T18/S0 and T18/S1 hold the directory and BAM in

regular DOS, while T18/S9, S10, S18, as well as T17/S20, T16/S20,

T15/S20 and T14/S20 store the SUPER Pascal boot software.

The 320 sectors of a Pascal diskette aren't read individually; rather, in

clusters of eight (blocks). Such a block comprises 8 X 512 bytes « 4096

bytes or 4k. This block-wise arrangement of sectors gives you a total of 40

blocks per diskette, which increases to 80 blocks when two drives are used

in concert The first block of every diskette (#0) is reserved for internal use

(contains #255). Block 0 of sector 0 is set aside for the Pascal DOS

directory; this directory is arranged schematically. Sectors 1..5 of block 0

are used for storing advice (additional information). The remaining sectors

(6 and 7) are free.

GET-sector and PUT-sector (mentioned previously) allow access to all 320

sectors. With the help of these routines, you can reserve blocks for your

own file- and diskette management, or data handling; you can also handle

program control of the directory. Just use these routines as USER functions:

169

ABACUS Software SUPER Pascal Development System

USERFUNC GETSECTOR (DRIVE , SECTOR, RAMPOINTER: INTEGER)

:BOOLEAN;

and

USERFUNC PUTSECTOR (DRIVE , SECTOR, RAMPOINTER: INTEGER)

:BOOLEAN;

and use SETADR to get die desired address. Calling the function transfers

the disk drive number, sector and RAM pointer to the specified memory

range. If you've declared the memory range as a variable, you'll have to

give the function as parameters of the variable address (LOCALITY). The

return value of the function is FALSE for bad execution, and TRUE if

everything runs correctly.

The directory is accessed in SUPER Pascal in a similar manner; the directory

is loaded into an appropriate variable range. This declaration has the

following design:

(START (top end) OF DIRECTORY)

c

EQUALIZE

WORKBLOCK

BLOCKTABLE

LASTBYTE

STARTBLOCK

FIXFLAG

WORKNAME

TITLETABLE

DISCNAME

DISCNUMBER

DISCSIZE

:BYTE;

:BYTE;

:ARRAY[0..79] OF BYTE;

:ARRAY[0..37] OF BYTE;

:ARRAY[0..37] OF BYTE;

:SET OF 0-.37;

:ALFA;

:ARRAY[0..37] OF ALFA;

:ALFA;

:BYTE;

:BYTE;

^

(END (bottom end) OF DIRECTORY)

These variable declarations take up exactly S12 bytes (the sector with logical

number 0):

c

170

ABACUS Software SUPER Pascal Development System

c

Address 0

1

2.

10.

313.

321.

.9

.313

.321

.353

($000)

($001)

($002.

($00A.

($13A.

($142.

.$009)

.$139)

.$141)

.$161)

354..391 ($162..$187)

c

Diskette size (0 or 1)

Diskette number(0 - 1)

Diskette name (ALFA)

up to 38 filenames

(ALFA)

temp, work name (ALFA)

32 * 8 bits, first 38

with LOCK flag

38 * 1 byte in

position as EOF in

last "1541" block

38 * startblock in

filename order

80 * 1 byte for

blocktable

temporary work block

fillbyte

NOTE:

Try out program control via directory with a scratch disk FIRST!

Rebuilding a directory from scratch is rough work - make sure that your

variable declarations work out properly.

392.

430.

510

511

.429

.509

($188.

($1AE.

($1FE)

($1FF)

.$1AD)

.$1FD)

c

171

o

i'f'1 • . :■

■-.i IV ■

c

ABACUS Software SUPER Pascal Development System

8.0 PROGRAM EXAMPLES AND GRAPHIC EXTENSIONS

c
8.1 THE EDITOR PROGRAM

The complete Editor program is listed here as a demonstration program (the

Super Pascal Editor itself). You may have ideas on changing the program to

suit your own needs. AUTO LINE MODE offers machine-code-like

programming in Pascal.

{PASCAL - TEXT - EDITOR)

PROGRAM EDITOR;

LABEL 99;

C

CONST BUFFER

KEY_BUF

CRT_DVC

CRSRUP

SCRNLENG =80;

WARMFLG =$360;

ADR_PRPO =$363;

MAIN JMP =$CA12;

C

$F300; KEY_CNT

$0277; MAXLW_NR

0; BCSP

CHR($91);CRTN

LWTEMP

ADR EXPO

ADR COMM

>$C6;

»1;

=CHR($9D);

=CHR($D);

=$035F;

=$0361;

=$0365;

5.3 *';HEAD ='* C=64 SOURCE-EDITOR

ILL_LINE ='ILLEG. LINE#';

NOTXT_FL ='NO TEXT-FILE';

SURE_NSS ='SURE NOT SAVING THE SOURCE';

EX_N_SUC ='EXECUTION NOT SUCCESSFUL!';

ILL_SYN ='ILLEG. SYNTAX';

RAM_OVER ='RAM OVERFLOW;

TITLE_ND ='TITLE UNDEFINED';

ILL_TITLE ='ILLEG.TITLE';

ILL_INPUT ='ILLEG. INPUT';

TO_ ='TO:';

L_LEN_EX ='LINELENGTH EXCEEDED IN LINE:';

SURE_D_S ='SURE TO DELETE ALL THE SOURCE'

HELP ='HELP FOR:';

173

ABACUS Software SUPER Pascal Development System

BYTE_FREE ='0 BYTES FREE!';

ONLY_ENT =' PLEASE ONLY ENTER:';

DRV_MAP ='DRIVE(MAP) ' ;

CONFIRM ='CONFIRM "'; /"""

COM_IGN ='COMMAND IGNORED!'; V-

TYPE REF = AITEM;

ITEM = RECORD

NR:INTEGER;

NX:REF;

ST:STRING;

END;

BUFFSIZE = ARRAY [0..511] OF BYTE

INARRY = ARRAY [0..PRED(SCRNLENG)] OF CHAR;

VAR SOURCE :TEXT;

LOADDAT :FILE OF BUFFSIZE;

LINE,TRNSLINE,TPMLINE,FIRST :REF;

FROM,TIL,HNTR,NUM,AUTO NUMfDRIVE :INTEGER;

SPARE

CH

TITLE,SEEKSTR

NOT_DEF,SAVED,AUTO_FLAG

BEGINHEAP,LFDHEAP,ADRPOI

COMMON

NUMBER,LETTER

:INARRY;

:CHAR;

:STRING;

:BOOLEAN;

:AINTEGER;

:AALFA;

:SET OF '0' . .'9'

XTRNFUNC MAP_EXT: BOOLEAN;

FUNCTION COMPARE (SUSTR, TESTR, STRING;

STRTPOS:BYTE):BYTE;

ASSEMBLE;

;* SEARCH — ROUTINE *

c

c

174

ABACUS Software SUPER Pascal Development System

c

c

c

POI

HBAS

TEMP

7

START

LOOP

LOOP1

LOOP2

INCTEST

.DL

.DL

.DL

LDY

LDA

STA

DEY

BNE

LDA

STA

SEC

LDA

SBC

BCC

SBC

BCC

STA

CLC

LDA

TAX

ADC

STA

BCC

INC

LDY

INX

LDA

CMP

BNE

DEY

BNE

BEQ

INC

BNE

INC

STKPOI+4

STKPOI+6

STKPOI+8

#4

(STKPOI),Y

POI-1,Y

LOOP

(HBAS),Y

•TEMP

(POI),Y

*TEMP

EXIT

(STKPOI),Y

EXIT

*TEMP+1

(STKPOI),Y

*POI

*POI

LOOP1

*POI+1

*TEMP

(POI),Y

(HBAS),Y

INCTEST

LOOP2

EXIT

*POI

INCTEST1

*POI+1

175

ABACUS Software SUPER Pascal Development System

INCTEST1 DEC *TEMP+1

BPL LOOP1

LDX #0

EXIT TXA

LDY #5

STA (STKPOI),Y

TYA

CLC

ADC *STKPOI

STA *STKPOI

BCC EXIT1

INC *STKPOI+1

EXIT1 RTS

;

.EN

PROCEDURE JUMPMAIN;ASSEMBLE;

JMP MAIN_JMP

.EN

PROCEDURE STOP(MESSAGE:STRING);

BEGIN

WRITE(MESSAGE,'!',' ');

WRITELN(EX_N_SUC);AUTO_FLAG:=FALSE;

GOTO 99

END;

PROCEDURE SYN__STOP;

BEGIN STOP(ILL_SYN) END;

PROCEDURE OV_STOP;

BEGIN STOP(RAM_OVER) END;

PROCEDURE TEST_SURE(MSG:STRING);

BEGIN

READLN;WRITE(MSG,'? Y/N',BCSP);

READ(CH);WRITELN;

IF CHO'Y' THEN BEGIN WRITELN (COM_IGN) ;

GOTO 99 END

END;

176

ABACUS Software SUPER Pascal Development System

PROCEDURE TEST_FOR_SAVE;

BEGIN

CIF NOT SAVED THEN TEST_SURE(SURE_NSS)

END;

PROCEDURE WAIT_BRK;

PROCEDURE BREAK;

BEGIN

IF EOF THEN BEGIN READLN;OUTDVC<CRT_DVC,0);

GOTO 99 END

END;

BEGIN

BREAK;

IF ANYKEY THEN

IF GETKEY=f ' THEN

REPEAT

WHILE NOT ANYKEY DO BREAK

(~ UNTIL GETKEY=' '
END;

PROCEDURE IGN_SPACE;

BEGIN WHILE CH=f ' DO READ(CH) END;

PROCEDURE GETCH;

BEGIN READ(CH);IGN_SPACE END;

PROCEDURE TEST_SYNTAX;

BEGIN

IF EOLN THEN SYN_STOP;GETCH;

IF <CH<>':') OR EOLN THEN SYN_STOP

END;

c

PROCEDURE SET_LAST;

BEGIN LINEA-NR:=MAXINT

LINEA.NX:=NIL;MARK(LFDHEAP) END;

177

ABACUS Software SUPER Pascal Development System

PROCEDURE CLEAR;

BEGIN

RELEASE(BEGINHEAP);NEW(LINE);SET_LAST;

FIRST:=LINE; f~

SAVED :=TRUE V-

END;

PROCEDURE GET_NUM(VAR LN_NR: INTEGER) ;

BEGIN

IF NOT (CH IN NUMBER) THEN SYN_STOP;

LN_NR:=0;

WHILE CH IN NUMBER DO

BEGIN

IF LN_NR >3275 THEN STOP(ILL_LINE);

LN_NR:=10*LN_NR - 48 + ORD(CH);

IF NOT EOLN AND (INPUTA IN NUMBER) THEN

READ(CH)

ELSE CH:=' '

END

END;

PROCEDURE GETJSECND (TESTCH: CHAR) ;

BEGIN

GETCH;

IF CHOTESTCH THEN SYN_STOP;

IF NOT EOLN THEN BEGIN GETCH; GETJNUM(TIL) END

END;

PROCEDURE FROMJTIL;

BEGIN

FROM :=0;TIL:=PRED(MAXINT);

IF NOT EOLN THEN

BEGIN

GETCH;

IF CH='-' THEN

BEGIN

IF EOLN THEN SYN_STOP;

GETCH;GET_NUM(TIL)

END

178

c

c

c

ABACUS Software SUPER Pascal Development System

ELSE

BEGIN

GET_NUM(FROM) ;

IF NOT EOLN THEN GET_SECND('-') ELSE

TIL:=FROM

END

END

END;

PROCEDURE GET_TITLE(FOR_GET:BOOLEAN);

BEGIN

TEST_SYNTAX;

IF INPUTA='*' THEN

BEGIN

IF NOT_DEF THEN STOP(TITLE_ND);

IF FOR_GET THEN TEST_FOR_SAVE

END

ELSE

BEGIN

IF NOT(INPUTA IN LETTER) THEN

STOP(ILL_TITLE);

READ(TITLE);

IF FOR_GET THEN TEST_FOR_SAVE;

NOT_DEF:=FALSE;COMMONA:=TITLE

END

END;

PROCEDURE RENUMBER;

BEGIN

NUM:=1000; LINE:=FIRST;

WHILE LINEA.NXONIL DO

BEGIN LINEA.NR:=NUM;NUM:=NUM+5;

LINE:=LINEA.NX END

END;

PROCEDURE PREPARE;

BEGIN

SETDRV(DRIVE);NAME(SOURCE,COMMONA);

MEM[LWTEMP]:=LOW(DRIVE)

END;

179

c

ABACUS Software SUPER Pascal Development System

PROCEDURE SAV_SRCE(FOR_PUT:BOOLEAN);

BEGIN

GET_TITLE(FALSE);

READLN;

WRITE(CONFIRM,COMMONA,','DRIVE,'"? N/Y',BCSP);

READ(CH);WRITELN;

IF CHO'Y' THEN BEGIN WRITELN(COM_IGN) ;

GOTO 99 END;

PREPARE;

IF FOR_PUT THEN REWRITE(SOURCE)

ELSE

BEGIN

RESET(SOURCE);

WHILE NOT EOF(SOURCE) DO READLN(SOURCE)

END;

LINE:=FIRST;

WHILE LINEA.NXONIL DO

BEGIN WRITELN(SOURCE,LINEA.ST);

LINE:=LINEA.NX END;

CLOSE(SOURCE);SAVED:=TRUE f~

END; V-

PROCEDURE LOAD_SRCE;

VAR CNT:INTEGER;

BEGIN

PREPARE;

RESET(SOURCE);CNT:=0;

WHILE (SOURCEAOCRTN) AND (CNT<=80) AND NOT

EOF(SOURCE) DO

BEGIN

CNT:=SUCC(CNT);

IF (CNT>80) OR (SOURCEA<' ') THEN

BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END;

GET(SOURCE)

END;

IF SOURCEAOCRTN THEN

BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END; ()
CLOSE(SOURCE);RESET(SOURCE) ;

WHILE NOT EOF(SOURCE) DO

180

c

c

c

ABACUS Software SUPER Pascal Development System

BEGIN

LINEA.NR:=NUM;READLN(SOURCE,LINEA.ST); '

NUM:=NUM +5;

IF FREE<=3 THEN

BEGIN SET_LAST;CLOSE(SOURCE);OV_STOP END;

NEW(TMPLINE);LINEA.NX:=TMPLINE;LINE:=TMPLINE

END;

SET_LAST; CLOSE (SOURCE)

END;

PROCEDURE SEEK(LN_NR:INTEGER);

BEGIN

LINE:=FIRST;WHILE LINEA.NR<LN_NR

DO LINE:=LINEA.NX

END;

PROCEDURE CHANGE;

VAR

OLD_LINE;NEW_LINE:INARRY;

POSITION:BYTE;

SEEKLEN,OLDLEN,NEWLEN,FSTLEN,CMPLEN,DELTA,

FLOT:INTEGER;

SPEC:RECORD CASE INTEGER OF

0: (HEAP:AINTEGER) ;

1: (LENG:ABYTE);

2: (ADRS:INTEGER)

END;

BEGIN

TEST_SYNTAX;READLN(SEEKSTR);SEEKLEN:=LEN(SEEKSTR);

MARK(SPEC.HEAP) ;

WRITE(TO_);READ(TITLE);WRITELN;RESET(INPUT);

IF EOLN THEN FSTLEN:=0 ELSE FSTLEN:=LEN(TITLE);

DELTA:=SEEKLEN-FSTLEN;SPARE:=TITLE;

RELEASE(SPEC.HEAP);LINE:=FIRST;POSITION:=#0

WHILE (LINEA.NXONIL) AND NOT EOF DO

WITH LINEA DO

BEGIN

CMPLEN:=ORD(COMPARE(SEEKSTR,ST,POSITION));

IF CMPLENO0 THEN

181

ABACUS Software SUPER Pascal Development System

BEGIN

OLDLEN:=LEN(ST);

IF (OLDLEN-DELTA)>(SCRNLENG-4) THEN

BEGIN WRITELN(L_LEN_EX);WRITELN(NR,ST) ;

GOTO 99 END;

OLD__LINE: =ST; NEW_LINE: =OLD_LINE ;

FOR FLOT:= 0 TO PRED(FSTLEN) DO

NEW_LINE[PRED(CMPLEN+FLOT)]:=SPARE[FLOT] ;

FOR FLOT:= PRED(CMPLEN+SEEKLEN) TO

PRED(OLDLEN) DO

NEWJLINE[FLOT-DELTA]:=OLD_LINE[FLOT];

ST:=NEW_LINE;SPEC.LENGA:=LOW(OLDLEN-DELTA) ;

SPEC.ADRS:=HXS(SPEC.ADRS,SUCC(OLDLEN-DELTA)) ;

RELEASE(SPEC.HEAP);

POSITIN:=PRED(LOW(CMPLEN+FSTLEN);

IF FREE<=3 THEN OV_STOP

END

ELSE BEGIN LINE:=NX;POSITION:=#0 END

END

END;

PROCEDURE COMMANDS;

c

c

BEGIN

WRITELN('COMMANDS = .

WRITELNCA: (PPENDSRC)

C:(HANGE)

D(ELETE)

F:(IND)

G:(ETSOURCE)

WRITELN('

WRITELNC

WRITELNC

WRITELN('

WRITELN('

END;

L(IST)

M(AP/DRIVE)

N(UMBERING)

O(UTPUTDVC)

P:(UTSOURCE)

Q(UIT)');

R(ENUMBER)');

S (HIFTLINE) ') ;

U:(PDATESRC)')

V(ACANCY) ') ;

H(ELP)');WRITELN

C

182

ABACUS Software SUPER Pascal Development System

{MAIN PROGRAM}

BEGIN

V IF MEM[WARMFLG]=#1 THEN

BEGIN WRITELN;RELEASE(LFDHEAP) END

ELSE

BEGIN

NUMBER:=['O'..'9'];LETTER: = ['A' ..'Z'];

ALLOCATE(COMMON,ADR_COMM);

SETADR(MAP_EXT,BUFFERl);

AUTO_FLAG:=FALSE;NEW(TRNSLINE);

MARK(BEGINHEAP);MARK(LFDHEAP);CLEAR;

ALLOCATE(ADRPOI,ADR_PRPO);

FROM:=ADRPOIA;

ALLOCATE(ADRPOI,ADR_EXPO);

TDRPOIA:=FROM;

CNOT_DEF:=MEM[WARMFLG]<>#2;

IF NOT NOT_DEF THEN

BEGIN

DRIVE: =ORD (MEM [LWTEMP]) ; NUM: =10 0 0 ;

LOAD_SRCE

END

ELSE DRIVE:=0 ;

WRITELN;

WRITELN(HEAD:34);

WRITELN;COMMANDS;

MEM[WARMFLG]:=#1;SAVED:=TRUE

END;

c

183

ABACUS Software SUPER Pascal Development System

REPEAT

IF AUTO_FLAG THEN

BEGIN

WRITE(AUTO_NUM,' ':NUM);

READLN(CH);WRITELN;

MEM[KEY_BUF]:=LOW(CRSRUP);

MEM[SUCC(KEY_BUF)]:=LOW(CRTN);

MEM[KEY_CNT]:=#2;

AUTO_NUM:=AUT0_NUM+5;

IF AUTO_NUM>=32750 THEN STOP(ILL_LINE)

END;

READ(CH);IGN_SPACE;WRITELN;

IF CH IN NUMBER THEN {LINE NUMBER INPUT}

BEGIN

GET_NUM (NUM) ; IF NUMOAUT0_NUM-5 THEN

AUTO_FLAG:=FALSE;

SEEK(NUM);

IF LINEA.NR=NUM THEN f~

IF EOLN THEN V~

IF NOT AUTO_FLAG THEN LINEA:=LINEA.NXA

ELSE AUTO_FLAG:=FALSE

ELSE READ(LINEA.ST)

ELSE

IF NOT EOLN THEN

BEGIN

NEW (TMPLINE) ;

TMPLINEA:=LINEA;LINEA.NR:=NUM;

LINEA.NX:=TMPLINE;READ(LINEA.ST)

END

ELSE AUTO_FLAG:=FALSE;

IF AUTO_FLAG THEN

BEGIN

SPARE:=LINEA.ST;NUM:=0;

WHILE SPARE[NUM]=' ' DO NUM :=SUCC(NUM)

END;

184

ABACUS Software SUPER Pascal Development System

SAVED:=FALSE;

IF FREE<=3 THEN OV_STOP;

MARK(LFDHEAP)

r end

V ELSE {COMMAND INPUT)

BEGIN

AUTO_FLAG:=FALSE;CASE CH OF

'A' :BEGIN {APPEND}

RENUMBER;GET_TITLE(FALSE);

NOT_DEF:=TRUE;LOAD_SRCE

END;

'C:BEGIN {CHANGE}

CHANGE;SAVED:=FALSE

END;

'D':BEGIN {DELETE}

FROM_TIL;

IF (FROM=0) AND (TIL=PRED(MAXINT)) THEN

C BEGIN
^ TEST_SURE (SURE_D_S) ;

CLEAR

END

ELSE

IF FROM<=TIL THEN

BEGIN

SAVED:=FALSE;

SEEK(FROM);TMPLINE:=LINE;

SEEK(SUCC(TIL));TMPLINE#:=LINEA

END

END;

'P':BEGIN {FIND}

TEST_SYNTAX;

READ(SEEKSTR);LINE:=FIRST;

^ WHILE LINEA.NXONIL DO

(^ BEGIN
IF COMPARE(SEEKSTR,LINEA.ST,#0)<>#0 THEN

WRITELN(LINE*.NR,LINE#.ST);

185

c

ABACUS Software SUPER Pascal Development System

LINE:=LINEA.NX;

WAIT_BRK

END

END;

'G':BEGIN {GET}

GET_TITLE(TRUE);

CLEAR;NUM:=1000;

LOAD_SRCE

END;

'H':BEGIN {HELP}

WRITELN(HELP,HEAD);

WRITELN;COMMANDS

END;

'L':BEGIN {LIST}

FROM_TIL;SEEK(FROM);

WHILE LINEA.NR<=TIL DO

BEGIN

WRITELN(LINEA.NR,LINEA.ST);

LINE: =LINEA .NX;

WAIT__BRK

END

END;

'M' :BEGIN {MAP}

READLN;

WRITE(DRV_MAP,' " ',DRIVE,BCSP);

IF DRIVE>9 THEN WRITE(BCSP);

READ(FROM);WRITELN;

IF (FROM<0) OR (FROM>MAXLW_NR) THEN

STOP(ILL_INPUT);

DRIVE :=FROM;

SETDRV(0);RESET(LOADDAT);

GET(LOADDAT);GET(LOADDAT);GET(LOADDAT);

CLOSE(LOADDAT);

SETDRV(DRIVE); (
IF NOT MAP__EXT THEN

BEGIN DRIVE:=0;SETDRV(0) END

186

c

C

f~

ABACUS Software SUPER Pascal Development System

END;

'N':BEGIN {AUTO-NUMBERING}

IF EOLN THEN

BEGIN

AUTO_NUM: =10 0 0 ; LINE: «=FIRST ;

WHILE LINEA.NXONIL DO

BEGIN AUTO_NUM:=LINEA.NR+5;

LINE:=LINEA.NX END

END

ELSE

BEGIN

GETCH;GET_NUM(AUTO_NUM) ;

IF NOT EOLN THEN SYN_STOP

END;

AUTO_FLAG:=TRUE;NUM:=0

END;

'O':IF EOLN THEN OUTDVC(CRT_DVC,0)

{SET OUTPUT DVC}

ELSE

BEGIN

GETCH; GET_NUM (FROM) ; TIL: «0 ;

IF NOT EOLN THEN GET_SECND(',');

IF NOT ((FROM IN [0,4..7]) AND

(TIL<=15)) THEN

STOP(ILL_INPUT);

OUTDVC(FROM,TIL)

END;

'P':SAV_SRCE(TRUE); {PUT}

'0/ :BEGIN {QUIT}

TEST__FOR_SAVE;

OUTDVC(CRT_DVC,0);

JUMPMAIN

END;

'R':RENUMBER; {RENUMBER}

187

ABACUS Software SUPER Pascal Development System

'S':BEGIN {SHIFTLINE}

FROMJTIL;TEST_SYNTAX;

GETCH; GETJTOM (HNTR) ;

IF(HNTR>=FROM) AND (HNTR<=TIL) THEN

STOP(ILL_INPUT);

SEEK(SUCC(HNTR));

TRNSLINEA:=LINEA;TMPLINE:=LINE;

SEEK(FROM);

TMPLINEA:=LINEA;TMPLINE:=LINE;

SEEK(SUCC(TIL));

TMPLINEA : =LINEA; LINEA : =TRNSLINEA ;

RENUMBER; SAVED: =FALSE;

END;

rUr:BEGIN {UPDATE}

NOT_DEF:=TRUE;SAV_SRCE(FALSE)

END;

'V :WRITELN(FREE*25-77+(FREE*6)

DIV 10,BYTE_FREE)

ELSE

BEGIN

WRITELN(COM_IGNfONLY_ENT);

COMMANDS

END

END

END;

99: READLN

UNTIL FALSE

END.

c

188

ABACUS Software SUPER Pascal Development System

8.2 "RPN" PROGRAM

c
Here is the complete program listing for RPN, which you'll find on your

SUPER Pascal diskette in both compiled form and sourcecode. RPN

simulates the functions of an RPN pocket calculator; some runtime errors

will occur whatever shape die program is in, since some transcendental math

functions can cause such errors. The modular structure of this program

allows for easy modification.

(*

c

(*

(*

(*

(*

(*

(*

(*

RPN

THIS PROGRAM SIMULATES THE

FUNCTIONS OF A CALCULATOR

WHICH USES REVERSE POLISH NOTATION

(RPN) (NOTE: ALL INPUT MUST

CONCLUDE WITH <RETURN>

*)

*)

*)

*)

*)

*)

*)

*)

PROGRAM RPN;

CONST MAXBEF =79; CUP =CHR($91);

WARMFLG =$360; ADR_PRPO =$363;

ADR_EXPO =$361;

VAR REG :(X,Y,Z,T);

STACK :ARRAY[X..T] OF REAL;

LSTX,S1,KEYIN,ZW,QU :REAL;

FLOT,CON,PLACE,FIELD -.INTEGER;

CX :CHAR;

LSTRI :STRING;

BEFARR :ARRAY[0..MAXBEF]OF CHAR;

ADRPOI,HEAP : ''INTEGER;

c

189

ABACUS Software SUPER Pascal Development System

PROCEDURE EXIT;

ASSEMBLE;

JMP $C200

.EN

PROCEDURE ENTER;

BEGIN

FOR REG:=Z DOWNTO X DO

STACK[SUCC(REG)]:=STACK[REG]

END;

PROCEDURE CALC(RESULT:REAL;SINGLE:BOOLEAN);

BEGIN

LSTX:=STACK[X];STACK[X]:-RESULT;

IF NOT SINGLE THEN

FOR REG:=Y TO Z DO

STACK[REG]:-STACK[SUCC(REG)]

END;

PROCEDURE PRTSTK;

BEGIN

WRITELN(CUP,CUP,CUP,CUP,CUP,CUP);

WRITELNCT =- ': 10, STACK [T] : FIELD: PLACE);

WRITELNCZ « ' :10,STACK[Z] :FIELD:PLACE);

WRITELN('Y = ':10,STACK[Y]:FIELD:PLACE);

WRITELNCX = ' : 10,STACK[X] :FIELD:PLACE) ;

WRITELN;WRITELN(' ':39,CUP)

END;

PROCEDURE COMANDS;

BEGIN

WRITELN;WRITELN;

WRITELN C«COMMANDS FOR nRPN" »':32) ;

WRITELN (' =s===«================' : 2 9) ;

WRITELN('A=ABSOLUTE B=ROUND C=COSINE');

WRITELN('D=ROLL DOWN E=EXP F=FRAC);

WRITELN('G=GETMEM H=CLEAR X I=INTEGER');

WRITELN (' K=RECIPROCAL L=«LN M=MEM') ;

WRITELN('N=ENTER O=OUTP.FORM. P=PI');

190

c

c

c

c

ABACUS Software SUPER Pascal Development System

WRITELN('Q=SQUARE R=SQROOT S=SINE');

WRITELN('T=TANGENT U=ROLL UP V=SIGN');

WRITELN('W=CH.SIGN X=LAST X Y=X CH Y');

WRITELN (' Z«=RAND.NUM. @=ARCTAN') ; WRITELN;

WRITELN('RELATIONS: <,>,=');

WRITELN('OPERATORS:+,-,*,/');

WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;

WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;

WRITELN(CUP,CUP,CUP,CUP,CUP)

END;

PROCEDURE JOB;

BEGIN

CASE CX OF

'A':CALC(ABS(STACK[X]),TRUE);

' @' :CALC(ARCTAN(STACK[X]),TRUE);

'B':CALC(ROUND(STACK[X]),TRUE);

'C:CALC(COS(STACK[X]),TRUE);

'D':BEGIN

KEYIN:=STACK[X];

FOR REG:=X TO Z DO

STACK[REG]:=STACK[SUCC(REG)];

STACK(T]:=KEYIN

END;

'E':CALC(EXP(STACK[X]),TRUE);

'F':CALC(FRAC(STACK[X]),TRUE);

'G':BEGIN ENTER;STACK[X]:=S1 END;

'Hr:STACK[X]:=0.0;

'I':CALC(TRUNC(STACK[X]),TRUE);

'Kf:CALC(1/STACK[X],TRUE);

' Lf:CALC(LN(STACK[X]),TRUE);

'M':S1:=STACK[X];

'N':ENTER;

'0':BEGIN

FLOT:=INT(STACK[X]);

IF FLOT < 12 THEN

IF FLOT > 0 THEN

BEGIN

WRITELN(CUP,CUP,CUP,CUP,CUP,' ' :39) ;

WRITELNC ': 39);WRITELN (' ':39);

191

ABACUS Software SUPER Pascal Development System

WRITELNC ' :39) ;WRITELN;

PLACE:=-FLOT;

FIELD:=ABS(INT(ROUND(100*FRAC(FLOT))))

END f~

END; V.

' P':BEGIN ENTER;STACK[X]:=PI END;

'Q':CALC(SQR(STACK[X]),TRUE);

' R' :CALC(SQRT(STACK[X],TRUE);

'S':CALC(SIN(STACK[X],TRUE);

'Uf:BEGIN

KEYIN:=STACK[T];ENTER;

STACK[X]:=KEYIN

END;

'V : CALC (SIGN (STACK [X], TRUE) ;

' W : STACK [X] : =-STACK [X] ;

'X':BEGIN ENTER;STACK[X]:=LSTX END;

'Y':BEGIN

KEYIN:=STACK[X];STACK[X]:=STACK[Y];

STACK[Y]:=KEYIN

END;

'Z':BEGIN ENTER;STACK[X]:=RANDOM END;

'<':CALC(ORD(STACK[Y]<STACK[X]),FALSE) ;

' =' :CALC(ORD(STACK[X]=STACK[Y]),FALSE);

'>':CALC(ORD(STACK[X]=STACK[Y]),FALSE);

'+' :CALC(STACK[X]+STACK[Y],FALSE);

'-':CALC(STACK[Y]-STACK[X],FALSE);

' *' :CALC(STACK[X]*STACK[Y],FALSE);

'/' :CALC(STACK[Y]/STACK[X],FALSE);

END

END;

c

192

c

c

c

ABACUS Software SUPER Pascal Development System

(* ****************************** *)

(* *** MAIN OF RPN **** *)

(* ****************************** *)

BEGIN

IF MEM[WARMFLAG]=#O THEN

BEGIN

MARK (HEAP) ;COMANDS; LSTRI :=' SXC/' ;

BEFARR:=LSTRI;MEM[WARMFLAG] :=#1;

ALLOCATE (ADRPOI, ADRJPRPO) ;

FLOT:=ADRPOIA/ALLOCATE (ADRPOI, ADR_EXPO) ;

ADRPOIA:=FLOT;

END

ELSE

BEGIN

WRITELNCPRESS "SPACE" !':32,CUP)/

WHILE GETKEYO' 'DO/

WRITELNC ':39,CUP)/

WRITELN(CUP,' ':39,CUPfCUP);

WRITELN(" : 39, CUP)

END;

FOR REG := X TO T DO STACK[REG]:=0;

SI:=0/FIELD:=0/PLACE:=-ll;PRTSTK;

WHILE NOT EOF DO

BEGIN

READ(CX)/RESET(INPUT);

WHILE(INPUTA=' ') AND NOT EOLN DO READ(CX);

IF INPUTA IN ['0'..'9'] THEN

BEGIN

READLN(KEYIN)/ENTER;STACK[X]:=KEYIN

END/

ELSE

BEGIN

READ(CX);JOB/READLN

END/

PRTSTK/RELEASE(HEAP)

END/

EXIT

END.

193

c

ABACUS Software SUPER Pascal Development System

83 THE GRAPHICS PACKET

You won't need the 64's graphic capabilities in normal use of SUPER

Pascal. However, SGRAPH ill let you perform high-resolution tasks in

your own program routines. The routine is treated as a Pascal routine during

compiling — to install this routine into your own programs, just use the

compiler command

&INCLUDE(S_*GRAPH)

S_*GRAPH is written in machine code for the sake of speed, but is clearly

written to allow you to make your own changes. The HILBERT-CURVES

program in Chapter 8.2.1 uses the routine, and shows a few changes that can

be performed.

(* *)

(* GRAPHICS PACKET FOR C64 *)

(* *)

PROCEDURE GRAPHIC

(COM: GRAPHICCOMMAND; VAL1, VAL2, VAL3, VAL4: INTEGER) ;

ASSEMBLE;

/DEFINE MEMORY

;VIDEO CONTROLLER

/GRAPHIC SCREEN

/COLOR RAM

/DEFINE TEMPORARY

/MEMORY LOCATIONS ^

194

CPUPORT .DL

CONFIGURATION

VIDCTR

BITMAP

COLRAM

TMPMOD

TMPPOI

PLFLG

.DL

.DL

.DL

.DL

.DL

.DL

$0001

$D000

$2000

$0800

$FF01

$FF02

$FF03

c

c

c

ABACUS Software

TMP

XKOR

YKOR

COLOR

XKOR1

ZW

ZA

MSK

DIFO

DIF1

DIF2

DIF3

DIF4

DIF5

YKOR1

START

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

.DL

LDA

ORA

STA

LDY

LDA

ASL

TAX

LDA

STA

LDA

STA

JMP

r

SPRGRTAB .SA

.SA

.SA

.SA

.SA

.SA

.SA

.SA

.SA

STKPOI+4 j

STKPOI+6 ;

STKPOI+8 ;

STKPOI+9

STKPOI+34

STKPOI+36

STKPOI+37

STKPOI+38

STKPOI+39

STKPOI+40

STKPOI+41

STKPOI+42

STKPOI+43

STKPOI+44

STKPOI+45

#1

*CPUPORT

*CPUPORT

#8

(STKPOI),Y

A

SPRGTAB,X

*TMP

SPRGTAB+1,X

*TMP+1

(TMP)

GRAPHIN

GRAPHOUT

GCLEAR

COLCLEAR

DOT_ON

DOT_OFF

LINESET

LINECLR

REVERS

SUPER Pascal Development System

DEFINE ZEROPAGE CELLS

IN SUPER PASCAL

VIA STACK POINTER

;I/O ON AND

PASCAL RAM OUT

CALL GRAPHIC COMMAND FROM

STACK, AND USE AS POINTER

IN JUMP TABLE

/JUMP INDIRECTLY TO CALLED

ROUTINE

/GRAPHIC SCREEN ON

/GRAPHIC SCREEN OFF

/CLEAR GRAPHIC SCREEN

/CLEAR COLOR SCREEN

/SET DOT

/CLEAR DOT

/DRAW LINE

/CLEAR LINE

/REVERSE GRAPHIC SCREEN

195

ABACUS Software SUPER Pascal Development System

GRAPHIN LDA VIDCTR+17

STA TMPMOD

LDA VIDCTR+24

STA TMPPOI

LDA #$3B

STA VIDCTR+17

LDA #$28

STA VIDCTR+24

JMP EXIT

SWITCH ON GRAPHIC SCREEN

c
BITMAP MODE

/BITMAP AFTER $2000

GRAPHOUT LDA TMPMOD

STA VIDCTR+17

LDA TMPPOI

STA VIDCTR+24

/GRAPHIC SCREEN OFF

EXIT

EXITO

LDA

AND

STA

CLC

LDA

ADC

STA

BCC

INC

RTS

#$FC

*CPUPORT

*CPUPORT

#9

*STKPOI

*STKPOI

EXITO

*STKPOI+1

/PROGRAM EXIT

/PASCAL RAM SWITCHED ON

/AND I/O REGISTER OFF

/PASCAL STACK SET BACK A

/TOTAL OF 9 BYTES

;(1 BYTE + 4 INTEGER)

/BACK TO PASCAL

c

GCLEAR

GCLEARl

LDA #H,BITMAP

STA *TMP+1

LDY #L,BITMAP

STY *TMP

LDX #$20

TYA

STA (TMP),Y

INY

BNE GCLEARl

INC *TMP+1

DEX

BNE GCLEARl

JMP EXIT

/CLEAR GRAPHIC SCREEN

OF PAGES

c

196

ABACUS Software SUPER Pascal Development System

COLCLEAR

C

C
COLCLO

COLCL1

DEY

DEY

LDA (STKPOI),Y

ASL A

ASL A

ASL A

ASL A

STA *COLOR

DEY

DEY

LDA(STKPOI),Y

AND #$0F

ORA *COLOR

LDX #L,COLRAM

STX *TMP

LDX #H,COLRAM

STX *TMP+1

LDY #0

LDX #3

STA

DEY

BNE

DEX

BMI

INC

BNE

LDY

BNE

STA

JMP

(TMP),Y

COLCLO

COLCLO

*TMP+1

COLCLO

#$E8

COLCLO

<TMP),Y

EXIT

/CLEAR COLOR SCREEN

;LOWBYTE OF VALl FROM.

/STACK AS SCREEN COLOR

/LOWBYTE OF VAL 2 FROM

/STACK AS BORDER COLOR,

/AND STORED WITH

;SCREENCOLOR

/SCREEN INFORMATION STORED

/IN COLOR RAM

C

DOTOFF

DOTON

JSR SETO

JMP EXIT

JSR SET1

JMP EXIT

/UNSET DOT

/SET DOT

197

ABACUS Software

SETO

SET1

PLOT

PLOTO

TEST_X_Y

TESTCOR

TEST1

LDX

.BY

LDX

STX

JSR

JSR

JMP

/

LDY

LDA

BIT

BPL

EOR

AND

.BY

ORA

STA

RTS

/

JSR

RTS

/

DEY

LDA

STA

DEY

CMP

BCC

BNE

LDA

CMP

BCC

LDA

STA

DEY

LDA

BNE

DEY

LDA

CMP

#$80

$2C

#0

PLFLG

TESTCOR

HPOSN

PLOT

#0

*MSK

PLFLG

PLOTO

#$FF

(TMP),Y

$2C

(TMP),Y

(TMP),Y

TETCOR

(STKPOI),Y

*XKOR+1

#1

TEST1

IGNOR

#$3F

(STKPOI),Y

IGNOR

<STKPOI),Y

*XKOR

(STKPOI),Y

IGNOR

(STKPOI),Y

#200

SUPER Pascal Development System

/ROUTINE FOR SETTING OR

/UNSETTING

;DOT-POINTS

;GET & TEST COORDINATES

;CALC MEMORY POSITION

;DOT SET/CLEAR

;DRAW/CLEAR DOT IN

/POSITION CALCULATED

;HIBYTE OF VAL1 OR VAL3

;(=X) CALLED FROM STACK

;>1?

/IGNORE AND EXIT

/>=320?

/IGNORE AND EXIT

/LOWBYTE OF VALUES 1 OR 3

/CALLED AND STORED

/HIGHBYTE OF VAL2 OR VAL4

;(=Y) CALLED FR STACK

/<>0?:IGNORE AND EXIT

/LOWBYTE OF VALUES 2 AND 4

/CALLED FROM STACK/ >=200?

c

c

c

198

c

c

c

ABACUS Software

IGNOR

HPOSN

HPOSNO

BCS

STA

RTS

PLA

PLA

PLA

PLA

JMP

AND

STA

LDA

STA

LDA

LSR

LSR

LSR

TAX

LDA

AND

CLC

ADC

BCC

INC

CLC

ADC

STA

LDA

ADC

ADC

STA

LDA

AND

TAX

LDA

STA

RTS

IGNOR

*YKOR

EXIT

#7

*TMP

*XKOR+1

*TMP+1

*YKOR

A

A

A

*XKOR

#$F8

*TMP

HPOSNO

*TMP+1

LOWTAB,X

*TMP

*TMP+1

HIGHTAB,X

#H,*BTIMAP

*TMP+1

*XKOR

#7

BITTAB,X

*MSK

SUPER Pascal Development System

/IGNORE AND EXIT

/STORE Y-COORDINATES

/COMMAND EXECUTION

/FOR IGNORING ILLEGAL

/NUMBERS/ SUBROUTINE-LEVEL

/CORRECTION

/CALC MEMORY ADDRESSES

199

ABACUS Software

LINECLR

LINESET

LINEO

JSR

JMP

JSR

LDA

STA

LDA

STA

LDA

STA

LDY

JSR

LDA

LDX

LDY

PHA

LDA

LSR

LDA

ROR

LSR

LSR

SETO

LINEO

SET1

*YKOR

*YKOR1

*XKOR

*XKOR1

*XKOR+1

*XKOR1+1

#4

TESTCOR

*XKOR

*XKOR+1

*YKOR

SUPER Pascal Development system

/CLEAR LINE

;DRAW LINE

/FIRST COORDINATES

/SECOND SET OF COORDINATES

/CALLED, TESTED AND

/UTILIZED

/DEPENDENT & INDEPENDENT

*XKOR1+1

A

*XKOR1

A

A

A

/COORDINATES DETERMINED

/INDEPENDENTS INCREMENTED

/ENDPOINTS CLEARED/SET

c

c

STA

PLA

PHA

SEC

SBC

PHA

TXA

SBC

STA

BCS

PLA

EOR

ADC

PHA

LDA

SBC

*ZW

XK0R1

XKOR1+1

*DIF3

LINE3

#$FF

#1

#0

*DIF3

c

200

ABACUS Software SUPER Pascal Development System

c

c

c

LINE3 STA *DIF1

STA *DIF5

PLA

STA *DIF0

STA *DIF4

PLA

STA *XKOR1

STX *XKOR1+1

TYA

CLC

SBC *YKOR1

BCC LINE4

EOR #$FF

ADC #$FE

LINE4 STA *DIF2

STY *YKOR1

ROR *DIF3

SEC

SBC *DIF0

TAX

LDA #$FF

SBC *DIF1

STA *ZA

LDY *ZW

BCS LINE5

LINE1 ASL A

JSR R_L

SEC

LINE5 LDA *DIF4

ADC *DIF2

STA *DIF4

LDA *DIF5

SBC #0

LINE2 STA *DIF5

STY *ZW

JSR PLOT

INX

BNE LINE6

JMP EXIT

201

ABACUS Software

LINE 6

SETCELL

SETCELLO

SETCELL1

SETCELL2

U_O

TOPCELL

TOPCELLO

LDA

BCS

JSR

CLC

LDA

ADC

STA

LDA

ADC

BVC

INC

BNE

INC

LDA

AND

BNE

INC

LDA

CLC

ADC

STA

BCC

INC

RTS

BMI

7

LDA

BNE

DEC

DEC

AND

BNE

DEC

DEC

LDA

BNE

*DIF3

LINE1

U_O

*DIF4

*DIF0

*DIF4

*DIF5

*DIF1

LINE2

*TMP

SETCELLO

*TMP+1

*TMP

#7

SETCELL2

*TMP+1

#$38

*TMP

*TMP

SETCELL2

*TMP+1

SETCELL

*TMP

TOPCELLO

*TMP+1

*TMP

#7

SETCELL2

*TMP+1

*TMP+1

#$C8

SETCELL1

SUPER Pascal Development System

;SET UP 8 X 8 MATRIX

;(BOTTOM)

;LEAVE 8X8 FIELD

;SET UP TOP OF 8 X 8

/MATRIX

c

c

c

202

c

c

ABACUS Software

RGHCELL

RGHCELLl

RGHCELL2

R_L

LINKS

REVERS

REVERS1

LSR

BCC

ROR

INY

LDA

CLC

ADC

STA

BCC

INC

RTS

/

BPL

ASK

BCC

ROL

DEC

LDA

BNE

LDY

LDA

STY

STA

LDX

LDA

EOR

STA

INY

BNE

INC

DEX

BNE

RTS

*MSK

RGHCELL2

*MSK

#8

*TMP

*TMP

RGHCELL2

*TMP+1

RGHCELL

*MSK

RGHCELL2

*MSK

*TMP+1

#$F8

RGHCELLl

#0

#H,BITMAP

*TMP

*TMP+1

#$20

(TMP),Y

#$FF

(TMP),Y

REVERS1

*TMP+1

REVERS1

SUPER Pascal Development System

;SET UP RIGHT SIDE OF

;8 X 8 FIELD

/LEAVE 8X8 MATRIX

/DESIGN LEFT SIDE OF 8 X 8

/FIELD

/INVERSE VIDEO SCREEN

c

203

ABACUS Software SUPER Pascal Development System

LOWTAB .BY $00 $40 $80 $C0 ;LOWBYTE

.BY $00 $40 $80 $C0 /MULTIPLICATION

.BY $00 $40 $80 $C0 /TABLE

.BY $00 $40 $80 $C0

.BY $00 $40 $80 $C0

.BY $00 $40 $80 $C0 $00

/

HIGHTAB .BY $00 $01 $02 $03 ;HIGHBYTE

.BY $05 $06 $07 $08 /MULTIPLICATION

.BY $0A $0B $0C $0D /TABLE

.BY $0F $10 $11 $12

.BY $14 $15 $16 $17

.BY $19 $1A $1B $1C $1E

BITTAB .BY 128 64 32 16 8 4 2 1 /BIT TABLE FOR

/MASK BITS

.EN

c

PROCEDURE GRAPHIN (^GRAPHIC SCREEN ON*)/

BEGIN GRAPHIC(GRIN,0,0,0,0) END/

PROCEDURE GRAPHOUT (*GRAPHIC SCREEN OFF*);

BEGIN GRAPHIC(GROT,0,0,0,0) END;

PROCEDURE GRAPHCLR (*GRAPHIC SCREEN CLEAR*)/

BEGIN GRAPHIC(GCLR,0,0,0,0) END/

PROCEDURE COLCLR (*SCOLR,BCOLR:INTEGER*);

BEGIN GRAPHIC(CCLR,SCLOR,BCLOR,0,0) END;

PROCEDURE DOT (X,Y:INTEGER);

BEGIN GRAPHIC(ON,X,Y,0,0) END/

PROCEDURE UNDOT (X,Y:INTEGER);

BEGIN GRAPHIC(OFF,X,Y,0,0) END/

PROCEDURE LINE(Al,Bl,A2,B2:INTEGER)/

BEGIN GRAPHIC(LINS,A1,B1,A2,B2) END;

PROCEDURE CLINE(A1,B1,A2,B2:INTEGER)/

c

c

204

ABACUS Software SUPER Pascal Development System

BEGIN GRAPHIC(LINC,A1,B1,A2,B2) END;

PROCEDURE REVERS;

BEGIN GRAPHIC(REV,0,0,0,0) END;

(* END OF GRAPHIC ROUTINE *)

C

C

205

ABACUS Software SUPER Pascal Development System

83.1 HILBERT CURVES

The program listed below gives you a practical demonstration of the material

covered previously concerning graphics. The program draws meandering

lines, and can also do recursion. We suggest that you read Algorithms and

Data Structures by Niklaus Wirth. The program is stored on your system

disk under the name HILBERT. If you compile this program be sure to

change the defaults as listed in the program.

PROGRAM HILBERT;

(* START-OF-PROGRAM: $0C00

(* HEAP : EOPRGM

(* TOP-OF-STACK : $2000

(*

*)

*)

*)

*)

■*)

C

CONST

HX0=320; HY0=192;

CLRHOM=»CHR($93) ;

BACKSPC-CHR($ 9D);

TYPE

GRAPHICCOMMAND=(GRIN,GROT,GCLR,CCLR,ON,OFF,LINS,

LINC,REV);

VAR DEPTH,X0,Y0,HX,XXI,XX2,I,YYl,YY2:INTEGER;

CHARIN :CHAR;

(* *)

(* *)

&INCLUDE(S_GRAPH);

(* *)

(* &INCLUDE CAN INSERT ANY *)

(* USER PROGRAM *)

c

c

206

c

c

c

ABACUS Software SUPER Pascal Development System

PROCEDURE DRAW;

BEGIN

LINE (XXI, YY1,XX2,YY2) ;

XXI: «=XX2; YY1: =YY2 END ;

PROCEDURE B(I:INTEGER);FORWARD;

PROCEDURE C(I:INTEGER);FORWARD;

PROCEDURE D(I:INTEGER);FORWARD;

PROCEDURE A(I:INTEGER);

BEGIN

IF I> 0 THEN

BEGIN

D(1-1);XX2:=XX1-HX;DRAW;

A(I-l);YY2:=YY1-HY;DRAW;

A(I-l);XX2:=XX1+HX;DRAW;

B(I-l)

END

END;

PROCEDURE B;

BEGIN

IF I> 0 THEN

BEGIN

C(1-1);YY2:=YY1+HY;DRAW;

B(I-l);XX2:=XX1+HX;DRAW;

B (1-1);YY2:=YY1-HY;DRAW;

A(I-l)

END

END;

PROCEDURE C;

BEGIN

IF I> 0 THEN

BEGIN

B(1-1);XX2:=XX1+HX;DRAW;

C(I-l);YY2:=YY1+HY;DRAW;

C(I-l);XX2:=XX1-HX;DRAW;

D(I-l)

END

END;

207

ABACUS Software SUPER Pascal Development System

PROCEDURE D;

BEGIN

IF I> 0 THEN

BEGIN

A(I-l);XX2:=YY2-HY;DRAW;

D(I-l);XX2:=XX1-HX;DRAW;

A(I-l);YY2:=YY1+HY;DRAW;

C(I-l)

END

END;

BEGIN (*MAIN OF HILBERT*)

WRITELN(CLRHOM);WRITELN;

WRITELN('HILBERT - CURVES':26);

WRITELN;

WRITELN('THIS PROGRAM DRAWS HILBERT CURVES');

WRITELNC WITH THE HIGH-RES-GRAPHICS OF THE C-64');

WRITELN (' SEE: NIKLAUS WIRTH, ') ;

WRITELNC ALGORITHMS AND DATA STRUCTURES ');

WRITELN(' TEUBNER PUB., ') ;

WRITELN;

WRITELN('DEPTHS OF RECURSION CAN BE INPUT');

WRITELN('BETWEEN THE NUMBERS OF 1 AND 6');

WRITELN;

WRITELN('RUN/STOP EXITS HIGH-RES MODE;');

WRITELNC "E" EXITS THE PROGRAM ALTOGETHER.');

WRITELN;

WRITELN;

REPEAT

WRITECCHOICE (1-6,E) =?',BACKSPC) ;

REPEAT

CHARIN:=GETKEY

UNTIL CHARIN IN ['1'..'6'];

WRITELN(CHARIN);

IF CHARIN O'E' THEN

BEGIN

DEPTH:=ORD(CHARIN)-ORD(' 0');

GRAPHIN;GRAPHCLR;COLCLR(0,5);

HX:=HX0;X0:=HX DIV 2;

208

c

c

c

C

ABACUS Software SUPER Pascal Development System

HY:=HY0;Y0:=HY DIV 2;

I:=0;

REPEAT;

HX:=HX DIV 2;HY:=HY DIV 2;

X0:=X0 + HX DIV 2;

Y0:=Y0 + HY DIV 2;

XX1:=XO;YY1:=YO;

XX2:=XX1;YY2:=YY1;

UNTIL I = DEPTH;

REPEAT UNTIL EOF; (*WAIT FOR BREAK *)

GRAPHOUT

END

UNTIL CHARIN='E'

END.

209

ABACUS Software SUPER Pascal Development System

8.4 C64 TO PASCAL DOS

The program C64TOPAS on the main disk converts files from C64 format to /"""

SUPER Pascal DOS format The program is started by running it from the v_

Main Menu in the following manner:

R

FILE-TITLE = C64TOPAS

DRIVE(MAP) = 0

* FILE-TRANSFER C64-DOS TO PASCAL-DOS *

*************** vs 5.3 ***************

TITLE OF SOURCE-FILE (C64-FILE) = ...

Enter the C-64 file name.

The program will then ask if the file is stored in program or sequential

format.

PROGRAM OR SEQUENTIAL (P/S)?

Next enter the new name for the SUPER Pascal file.

TITLE OF PASCAL-FILE =?

Insert the C-64 formatted disk into drive 0.

INSERT DISC WITH SOURCE-FILE (C64-FILE)

INTO DRIVE 0! PRESS"RETURN" IF DONE

INSERT THE DESTINAT'-DISC (PASCAL-DISC)

INTO DRIVE 0! PRESS "RETURN" IF DONE. ^~

The file will be converted to SUPER Pascal DOS format

210

c

c

c

ABACUS Software SUPER Pascal Development System

9.0 APPENDIX

9.1 ERROR LIST

This is the complete SUPER Pascal list of compiler errors, per the Pascal

User Manual and Report

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

•

50:

51:

52:

53:

54:

ERROR IN SIMPLE TYPE

IDENTIFIER EXPECTED

'PROGRAM' EXPECTED

')' EXPECTED

' : '■ EXPECTED

ILLEGAL SYMBOL

ERROR IN PARAMETER LIST

'OF' EXPECTED

'(' EXPECTED

ERROR IN TYPE

'Aw' EXPECTED

'U"' EXPECTED

'END' EXPECTED

';' EXPECTED

INTEGER EXPECTED

'=' EXPECTED

'BEGIN'EXPECTED

ERROR IN DECLARATION PART

ERROR IN FIELD-LIST

',' EXPECTED

'*' EXPECTED

'..'EXPECTED

'.' EXPECTED

',' OR ')' EXPECTED

BOOLEAN CONSTANT EXPECTED

ERROR IN CONSTANT

':=' EXPECTED

'THEN' EXPECTED

'UNTIL' EXPECTED

'DO' EXPECTED

211

ABACUS Software SUPER Pascal Development System

55: 'TO' OR 'DOWNTO' EXPECTED

56: 'IF' EXPECTED

57: 'FILE' EXPECTED

58: ERROR IN FACTOR

59: ERROR IN VARIABLE

60: PROGRAM INCOMPLETE

•

101: IDENTIFIER DECLARED TWICE

102: LOW BOUND EXCEEDS HIGHBOUND

103: IDENTIFIER IS NOT OF APPROPRIATE CLASS

104: IDENTIFIER NOT DECLARED

105: SIGN NOT ALLOWED

106: NUMBER EXPECTED

107: INCOMPATIBLE SUBRANGE TYPES

108: FILE NOT ALLOWED HERE

110: TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE

111: INCOMPATIBLE WITH TAGFIELD TYPE

113: INDEX TYPE MUST BE SCALAR OR SUBRANGE

115: BASE TYPE MUST BE SCALAR OR SUBRANGE

116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

117: UNSATISFIED FORWARD REFERENCE (~
118: FORWARD REFERENCE TYPE IDENTIFIER IN VARIABLE

DECLARATION

119: FORWARD DECLARED;

REPETITION OF PARAMETER LIST NOT ALLOWED

121: FILE VALUE PARAMETER NOT ALLOWED

122: FORWARD DECLARATION FUNCTION;

REPETITION OF RESULT TYPE NOT ALLOWED

123: MISSING RESULT TYPE IN FUNCTION DECLARATION

124: F-FORMAT FOR REAL ONLY

125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER

126: NUMBER OF PARAMETERS DOES NOT AGREE WITH

DECLARATION

127: ILLEGAL PARAMETER SUBSTITUTION

128: RESULT TYPE OF PARAMETER FUNCTION

DOES NOT AGREE WITH DECLARATION

129: TYPE CONFLICT OF OPERANDS

130: EXPRESSION IS NOT OF SET TYPE

131: TESTS ON EQUALITY ALLOWED ONLY

133: FILE COMPARISON NOT ALLOWED

212

c

c

c

ABACUS Software SUPER Pascal Development System

134: ILLEGAL TYPE OF OPERAND(S)

135: TYPE OF OPERAND MUST BE BOOLEAN

136: SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE

137: SET ELEMENT TYPES NOT COMPATIBLE

138: TYPE OF VARIABLE IS NOT ARRAY

139: INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION

140: TYPE OF VARIABLE IS NOT RECORD

141: TYPE OF VARIABLE MUST BE FILE OR POINTER

142: ILLEGAL PARAMETER SUBSTITUTION

143: ILLEGAL TYPE OF LOOP CONTROL VARIABLE

144: ILLEGAL TYPE OF EXPRESSION

145: TYPE CONFLICT

146: ASSIGNMENT OF FILES NOT ALLOWED

147: LABEL TYPE INCOMPATIBLE WITH SELECTING

EXPRESSION

148: SUBRANGE BOUNDS MUST BE SCALAR

149: INDEX TYPE MUST NOT BE INTEGER

150: ASSIGNMENT TO STANDARD FUNCTION IS NOT

ALLOWED

151: ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED

152: NO SUCH FIELD IN THIS RECORD

153: TYPE ERROR IN READ

154: ACTUAL PARAMETER MUST BE A VARIABLE

158: MISSING CORRESPONDING VARIANT DECLARATION

159: REAL OR STRING TAGFIELDS NOT ALLOWED

160: PREVIOUS DECLARATION WAS NOT FORWARD

161: AGAIN FORWARD DECLARED

162: PARAMETER SIZE MUST BE CONSTANT

163: MISSING VARIANT IN DECLARATION

164: SUBSTITUTION OF STANDARD PROC OR FUNC NOT

ALLOWED

165: MULTIDEFINED LABEL

166: MULTIDECLARED LABEL

167: UNDECLARED LABEL

168: UNDEFINED LABEL

169: ERROR IN BASE SET

170: VALUE PARAMETER EXPECTED

171: STANDARD FILE WAS REDECLARED

177: ASSIGNMENT TO FUNCTION IDENTIFIER NOT ALLOWED

HERE

213

ABACUS Software SUPER Pascal Development System

178: MULTIDEFINED RECORD VARIANT

179: X-OPT OF ACTUAL PROC OF FUNC

DOES NOT MATCH FORMAL DECLARATION

182: PARAMETER LIST OF EXTERN PRGM NOT ALLOWED

183: LOAD/SETADR ONLY FOR EXTERNALS

184: EXTERNAL WITHOUT ADDRESS-DEFINITION

185: SLICE-ARRAY MUST BE OF TYPE CHAR OR BYTE

186: ASSIGNMENT OF SLICE TO SLICE NOT ALLOWED

201: ERROR IN REAL CONSTANT: DIGIT EXPECTED

202: STRING CONSTANT MUST NOT EXCEED SOURCE LINE

203: INTEGER CONSTANT EXCEEDS RANGE

206: INTEGER PART OF REAL CONSTANT EXCEEDS RANGE

207: BYTE-CONST TOO LARGE

208: ERROR IN BYTE-CONST

209: ERROR IN HEX-CONST

210: ERROR IN NUMERIC-CONST

250: TOO MANY NESTED SCOPES OF IDENTIFIERS

251: TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS

252: TOO MANY FORWARD REFERENCES OF PROC ENTRIES

257: TOO MANY EXTERNALS

258: TOO MANY LOCAL FILES

259: EXPRESSION TOO COMPLICATED

398: IMPLEMENTATION RESTRICTION

399: VARIABLE DIMENSION ARRAYS NOT IMPLEMENTED

400: FILE-ELEMENT TOO LONG

401: STRING NOT ALLOWED HERE

402: TOO MANY IDENTIFIERS

403: READLN/WRITELN ONLY WITH TEXT

404: PROGRAM INCOMPLETE

405: TOO MANY SEGMENTS

406: NESTED SEGMENTS NOT ALLOWED

407: SEPARATED SEGMENTS NOT ALLOWED

408: COMPILING OF SEGMENTED PRGMS TO RAM NOT

ALLOWED f~

409: TOO MANY PARAMETERS V_

410: ERROR IN '&' OPTIONS

411: TOO MANY NESTED SOURCES

214

c

c

c

ABACUS Software SUPER Pascal Development System

92 FOR FURTHER READING

ON PASCAL:

Alpert/Stephen: PASCAL. A structured strong Language

BYTE 3/78 BYTEPublications

Barron, D.W.: PASCAL, The Language and its Implementation

John Wiley & Sons, New York

Bowles: USCD PASCAL

BYTE 5/78

Jensen/Wirth: PASCAL User Manual and Report

Springer Verlag, New York

Zaks. R: Introduction to PASCAL including USCD PASCAL

Sybex, Berkeley CA

ON THE C-64 AND MACHINELANGUAGE:

Angerhausen/Becker/English/Gerits:

Anatomy of the Commodore 64

Abacus Software, Grand Rapids MI

Englisch, L.: The Advanced Machine Language Book for the

Commodore-64

Abacus Software, Grand Rapids MI

English/Szczepanowski: The Anatomy of the 1541 Disk Drive

Abacus Software, Grand Rapids MI

Commodore 64 Programmer's Reference Guide

215

ABACUS Software SUPER Pascal Development System

93 INDEX

c

c

c

ABS 80

Addition, binary 102

Additional

-definitions 84

-functions 84

-procedures 84

&ADR 114

Address types 130

ADVICE 144

ALFA64

ALLOCATE 88

AND 82,104

ANYKEY 99

APPEND 35

ARCTAN81

ARRAY 63

-access 86

ASSEMBLE 53,111

Assembler 4,127

-call 21

-commands 129

-errors 138

-routines 111

Assembly 136

Assignment 67

Auto line numbers 40

.BA 111,134

BEGIN 66

Bit manipulation 103,104

BLOCKTABLE 145,169

BOOLEAN 62,65

Boolean operations 104

BYTE 85

Bytelist 135

.BY 135

CASE-statement 67,87

CHANGE 36

CHAR 62

CHR78

Clear file 151

CLOSE 89

CLRTRAP90

Command section 66,87

Compiler 6,59

-call 113

-commands 22

-diskette 19

-errors 121,211

-mode 117

CONST 61

Constant assignment 61,84

CONTINUE, program 90,106

-source 47,51,114,134

&CONTINUE114

COPY 146

Copy file 146

COS 81

CPU-instructions 129

.CT 111,134

Default 116

DELETE 36

Directory 25,40,152,159

Direct commands 1

Disk-mode 117

Diskette-dup. 147

-organization 145,154,169

Diskette protection 152

DISPOSE 68

DIV82

.DL 134

DOS 169

.DS 136

217

ABACUS Software SUPER Pascal Development System

Dump 118,124,158,161

DUPLICATE 239

Editor 13,33

-call 23

-commands 35

-organization 56

-program 173

ELSE-of-CASE87

.EN 134

END 66

ENTER 148

EOF 79

EOLN79

.EQ135

Error trap 90,98

-messages 90,98,138

Error format 76

EXCLUDE 160

EXECUTE 90,106

EXP81

Externals 104

FALSE 61

FILE 63

File-copy 146

-buffer 74

-list 161

FIND 37

Formatted output 76

Formatting 17

FOR 67

FORWARD 83

FRAC 103

FREE 101

FUNCTION 65

Function assignment 65,84

GET 68

GETKEY 100

GET-RAM 23,149

GET-SECTOR 170

GET-SOURCE 38

GOTO 67

Hardcopy 30,41

HBYT98

Heap 89,93,116

HELP 24,39,150

HEX 91

Hex notation 2

HXS102

IF 67

IN 82

INCLUDE 47

&INCLUDE113

INDVC91

INPUT 60,65,74

Input buffer 74

INSERT ADVICE 150

INT 98

INTEGER 62

Integers 2

IOERROR 29,90,98,100

JUMP 25,150

KILL 92,151

LABEL 60

Label

-declaration 61,84

-definition 134

-expression 130

-listing 137

Languge extensions 83

LBYT98

LEN101

Line numbers 33

c

c

c

218

c

c

c

ABACUS Software

LIST 39

LN81

LOAD 92

LOADDAT 17

LOCK 92,152

Logical functions 104

LOW 99

MAIN menu 3,21

MAP 25,40,152,159

MARK 93

Machine-language program

108

MAXINT61

MEM 87

Memory

-addresses 167

-dump 158

-map 167

Mnemonic 129

MOD 82

Move

-line 44

-memory 157

NAME 94

.NE134

NEW 69

NEW-DISC 153

NIL 62

NOT 82,104

.OC 111,135

ODD 79

OPCodes 76,129

Options 116

OR 82,104

ORD78

ORGANIZE 154

Organization

SUPER Pascal Development System

-Editor 56

-Diskette 169

.OS 135

OUTDVC95

OUTPUT 60,65,73

OUTPUT-DEVICE 41

Output

-format 76

-buffer 76

Overlay 104

Parameters 113

Pascal 59

-compiler 59

-DOS 169

-programs 45

PCodell4

&PCODE 114

PEEK 87

PI 84

Pointer-type 63

POKE 87,156

Post-mortem dump 118,124

PRED80

Printer 2

PROCEDURE 65

-assignment 65,84

Program 60

-break 124

-head 60,846

-location 45

-start 116

Pseudo OP Codes 134

PUT 69

PUT-RAM 26,154

PUT-SECTOR 170

PUT-SOURCE 42

QUIT 43,155

219

ABACUS Software SUPER Pascal Development System

RAM-mode 118

RANDOM 87

RANDOM access 88

READ 70

READLN71

REAL 62

RECORD 63

RELEASE 95

RELEASE BLOCK (zero) 162

RENAME 55

RENUMBER 43

REPEAT 67

RESET 72

REWRITE 72

ROUND 81

RS-232 91,95

RUN-PROGRAM 28

RUN/STOP 79

Runtime-errors 90,98,124

.SA 136

Scratch 151

Search 37

SEEK 96

SEGMENT 104

Sector 148

SET 63

SETADR 97

SETDRV 98

SETTRAP98

SHIFT-LINE 44

Shift-memory 157

SHL103

SHR103

SIGN 102

SIN 81

SIZE 101

Source file 57

SQR80

SQRT81

Stack 116

Standard language elements 59

-functions 78

-procedures 68,89

STARTUP 19

Statistics 122

STKPOI84

STORE-MEMORY 156

STRING 85

String length 101

SUCC80

Sum 102

Syntax

-check 121

-error 121

SYSGEN 17

System size 163

-declaration 1

-information 163

-loading 2

Test-of-bounds 118

TEXT 64

Text

-editor 33

-file 57

Top-of-stackll3

Transfer line 44

Transfer memory 157

TRUE 61

&TRUE114

TRUNC81

TYPE 61

Type assignment 61,85

UNLOCK 158

UPDATE 44

USERFUNC 107

USERPROC 107

User-routines 107

c

c

c

220

c

c

c

ABACUS Software SUPER Pascal Development System

Utility 15,143

-call 30

VACANCY45

VAR65

Variable design 163

-check 118

-memory 116

-size 102

VffiW-MEMORY 158

WHILE 67

WITH 67

WRITE 75

WRITE-DIRECTORY 159

WRTTELN77

Write protection 152

WRTTE-SOURCE 30

XTRNFUNC106

XTRNPRGM 107

XTRNPROC 106

ZEROING 162

221

Auto-Run Super Pascal Programs

To make an auto-run Super Pascal program disk:

Load Super Pascal into your computer.

From the main menu run the SYSGEN program by:

r [RETURN] for r(unprgm)

SYSGEN [RETURN]

This creates a Super Pascal disk. When this is finished remove the newly
created Super Pascal Disk and insert the Master Super Pascal disk.

From the main menu goto the Utility menu by pressing:

u [RETURN] for u(tility)

Copy the program you wish to automatically start, using the c(opy)
command to the new Super Pascal Disk as follows:

c [RETURN] for c(opy)

source - drive: 0

destinat-drive: 0

file-title = program name

When the copy is finished rename "program name" to "startup" using
the r(ename) command as follows:

r [RETURN] for r(ename)

file-title = program name

replacement = startup

Restart the C-64 system and with the Super Pascal disk you created in the
disk drive simply type:

LOAD "*",8,1

The Super Pascal System will be loaded and your program will
automatically start. C

Abacas Software Super Pascal 64 Addendum

Super Pascal Addendum

This addendum consists of clarifications and corrections to the
C Super Pascal 64 manual. Page numbers refer to those in the Super

Pascal 64 manual.

A. (text follows program code at bottom of p. 86)

The type compatibility between STRING and CHAR array also

means that the procedures WRITE andWRlTELN can output

quantities of type CHAR in addition to quantities of type STRING.

For example, WRITELN (TITLE: 10); is absolutely correct in

Super Pascal if TITLE is defined as type ALFA.

B. (page 87, following the description of RANDOM and preceding
COMMAND SET)

Following the variable declaration comes the

y^ Procedure declaration

and

Function declaration

Except for the structuring and compiler instructions to be discussed
later, we will not say anything more about these two here.

The next part of a program block is the

Statement section

with its sequence of statements. Two extensions of Super Pascal

should be mentioned in the area of the statement section. The first is
regarding the

V^ := (assignment) statement

223

Abacus Software Super Pascal 64 Addendum

To allow for easy access to variables of type FILE and ARRAY OF

CHAR or ARRAY OF BYTE, the following access mechanisms

are provided:

File access v_

Instructions with the following syntax:

FILEVARIABLE(INDEX):=ELEMENT;

or

DESTVAR:=FILEVARIABLE(INDEX)/

can be used to access a precisely defined element of a file (random

access) for both reading and writing, depending on the assignment

FILEvariable stands for the identifier which was declared as a

variable of type FILE in the declaration section.

ELEMENT stands for a expression of the type of the elements of the

file in question.

DESTVAR stands for the identifier of a variable of the type of the

elements of the file in question.

INDEX stands for the number of the desired file element The

elements are placed in the file sequentially and the first element has

the number 0. The INDEX expression must be of type REAL so

that large files can be accessed. The integer portion of the index

expression will always be chosen. Negative values or values which

are too large lead to runtime errors:

IL.FILE OPR. ERROR or AFTER EOF ERROR!

If the element type of the file is a structured type, individual sub-

variables can also be accessed: ^-

FILEVARIABLE(SOOO).CITY:=fNEW YORK1;

224

c

c

c

Abacus Software Super Pascal 64 Addendum

If the file element contains a field definition of type ALFA.
Something like this is also allowed:

IF FILEVARIABLE(5000) .CITY [O^'N1 THEN ...

NOTE:

This method of file access implicitly includes opening and closing

the file, which takes a noticeable amount of time on the C64

because of the slow transfer of data to and from the disk drive.

Care must also be taken to ensure that three Hie buffers of the Super

Pascal system are available for file access. The Hie being addressed

must be accessible in the working disk drive (see the procedure

SETDRV).

Array access

In addition to the assignment of entire arrays or individual array

elements, sections of arrays (called slices) can be accessed in Super

Pascal. This is especially useful when working with CHAR arrays

and string quantities.

The syntax is as follows:

ARRAYVAR[>INDEX]:=EXPRESSION;

and

DESTVAR: =ARRAYVAR [>INDEX] /

In the first case, the quantity indicated by EXPRESSION is placed

in the array designated by ARRAYVAR at position INDEX. The

lowest array element has the number 0. INDEX must be of type

INTEGER, while the array variables must be of type ARRAY OF

CHAR or ARRAY OF BYTE.

NOTE:

During these assignment, the quantity EXPRESSION is placed over

the specified array range in its entirety, regardless of whether it fits

this range or not. Under certain circumstances, neighboring

variables may be overwritten! This assignment technique should be

used only for known relationships.

225

Abacus Software Super Pascal 64 Addendum

For example:

TITLE[>4]:=1234;

places the binary coding of the integer value 1234 in positions 4 v_

and 5 of the array TITLE.

TITLE[>4]:=TITLE;

leads to a "dangerous" range overflow because it places the entire

variable TITLE in the variable area at position 4 and beyond.

In the opposite assignment:

DESTVAR:=ARRAYVAR[>INDEX];

the destination variable will be tilled in its entire length with the

array elements of ARRAYVAR at position INDEX (inclusive).

Missing values will be taken from the variable storage adjacent to

ARRAYVAR.

Although the constructs presented here do not conform to the

Pascal concept, they do provide an easy way to process elements of

differing types and sizes, especially for system programming,

when applied conscientiously. If a particular problem is to be

solved using good Pascal style, there are other ways of

accomplishing the same things.

C* (This text is the conclusion of CLOSE, p. 89, bottom)

NOTE:

The CLOSE procedure must be used for a file opened for writing or

the information last written to the file will be lost. The information

will be written to the file buffer, but not actually stored in the given

file. The buffer is not written to disk until it is full or the file is

closed. s~

226

c

c

c

Abacus Software Super Pascal 64 Addendum

D. (Re-definition of LOAD,p. 93)

LOAD

LOAD loads an external Pascal program routine into memory.

Syntax:

LOAD (PROCEDURE_FUNCTION_NAME, FILENAME,DRIVE_NR) ;

In contrast to CONTINUE and EXECUTE, the LOAD procedure

allows only an external program routine to be loaded. The external

routine declared under an arbitrary identifier (PROCEDURE^

FUNCTION_NAME) will be loaded into memory during the

program run. It must be available under the given identifier

(FILENAME) in the given drive (DRIVE_NR). The procedure or

function identifier (PROCEDURE_FUNCTION_NAME) must not be

the same as the disk entry (FILENAME). The loading procedure

itself is performed by a utility routine in the file LOADDAT.

LOADDAT must be present in drive 0 or the program run will stop

with an error message.

Calling the loaded function is no longer part of the procedure; it

takes place as with a normal procedure or function via the identifier

declared with the reserved word symbols XTRNPRGM, XTRNPROC,

and xtrnfunc.

E, (text added to OUTDVC, p. 95 under NOTE:)

NOTE:

The inadequate input/output interface built into the C64 under the

primary address 2 (RS-232) is not available via OUTDVC. If you

are interested, you can make an adaptation with Super Pascal.

OUTDVC addresses only the devices connected to the serial
input/output bus.

F. (add to SEEK, p. 96-97)

The SEEK procedure can only be used on files which are available

in the drive defined as the current working drive. If the file is not

227

Abacus Software Super Pascal 64 Addendum

found, the program will stop with an appropriate error message.

The working drive can be defined with the procedure SETDRV,
discussed later.

This procedure positions the access pointer to the file element v_

whose ordinal number is determined by the value representing

EXPRESSION. The first element of a file, the element to which the

access pointer is set by RESET or rewrite, has the ordinal

number 0. The difference between read and write access results

from the operation following the SEEK procedure. GET, READ,

and READLN cause read accesses, while PUT, WRITE, and

WRITELN write to the file. After each access, the access pointer is

advanced one element

After a write access, any data behind the write position will be

erased. Only writing can continue in the file. Termination of the

read/write operations is done with CLOSE or LOCK. It is not

possible to write to a file which has been LOCKed. If an attempt is

made, the message

IL.FILE OPR. ERROR! (^

will occur and the program will be terminated.

G. (add to Chapter 4.6, p. 125, end of page)

If, at the beginning of a program, its entry address is taken from the

pointer adr_prpo and placed in the pointer ADR_expo, then

every program end will lead back to the called program. All you

must do is check at the beginning of the program whether it is being

called for the first time and must be initialized or whether this is a

re-entry. This can be determined from the WARMFLAG; if it is set at
the beginning of the program, it can be used to recognize a re-entry

and bypass the initialization routine. All variables will remain intact

The only problem is the actual jump to the MAIN menu (QUIT).

This is possible via a small assembly language routine which

executes a 65XX JUMP to the MAIN menu. More details can be

gathered from the listing of the editor program in Chapter 8.

228

MakeYour Choice
c C-64 or C-128

BASK Compile

Conptef* BASIC compiler

and dawtopmant package.

Speed up your program 8a
to 3Si. Cornel* to rnachln*

cod*, compact p-cod* or

both. 120 wolon: 40 or 00

col. monitor output and

FAST-mod* operation. '128

v*i*ion include* *xt*n$lv»

80-pag* pragrwnara guld*.

A Qrnl packag* thai no

Mttwar* fctwy ehoutd to

wtneuL C64 8)t.M

cu» 8to.ii

For school or software
d*v*topm*nl. LMffl th* C

tanguao*on the 94 oriji.

Comptes Into tor machin*
cod*. Added I2tt features:
CPAM S

OOK RAM dWL Cent** Ml

* C USinc. CALL: 61K twfl-

atol* for c*t*cJ cod*; Fast
toadnn; Two standard VO

Ebnvys plus math a graphic
Ibrari**, C44 999.98

C12I f89.98

Let your 04 or 128 conunun-

Icat* with the outsld* world.
Obtain Information from

various compute networks.
FWxibl*. command driven

terminal software packao*.

Supports most modems.
Xmod*m and Punter transfer

protocol VT52 terminal omu-

lation wtth cursor k*ys, tare*

49X captur* bu»»i & us*r

delnaW* linction keys.

N**ll C«4 —

C-128

Cttartpak

Croat* profMslona] quatkiy
ctiarts <hi- without pro

gramming. Entar.odil.MV*

•nd fail data. lnt*nctiw»y

bufid pi*, bar. Gn* or »c«n*r

gnph. 8«t tcalSng, letMtlng

and potitionlnc. Draw charts

8 diftsrwit tarmats. Statistical

routine* tor ewraQo, ttandwd

deviation, least tquar«s and

torecjBsting. Us* data from

Mts. Output to mo»t
C64 *39.QI

C-121 $30.«S

Now you en taem COBOL,
th* mo*t «rld*ly cs*<J

oofflffl*rda) progranmtno
InnguaQ*. on your ISO or 04.

CO6OL Compile packae*
comos coffiptat* wim tyrttu-

etwdiino *tf1or. mtsrprstsf

and tymfooik dobusgins
aids. Now *128 vmion works

«rilh 40/80 cotutm monhora
and Is quieter Own In* «4

O84 •»».••

CUI 110.98

opine *ff*c«flon. in Pascal

Extsoslw *dftor. Standard J
A W cempiltv. Oraphlcs

library. Add»d '128 Isalur**:
RAM disk: tOOX *ourea«n*

drhr* or 29OXn»o; 80M0
column. It you want Is l*am

Pascal or d*v*top softwara
using «m bs*t tod avtSatl*.
Supar Pascal is your first

cftofc*. C«4 8I9.0S

M*«l C118 II9.0S

Easytt >intwacilv«

Ing packaoa lor accurat*
gfftpnlc daslons. Omanslon-
ing tsaturaa to craaia axad
acaicd output to all major

" J prime*. |r^wtvia|

1 ********

-fit**

=

t*%m\

A

itHwm

H

*■**>

mt

N

toytoard or tlohtpan. Two t
graphto ccr*«r« tor COPYki8

from on* to A* oth^. DRAW

BOX. ARC, ELLIPSE, ate.

available. D*Rn* your own
library of symbots/obj*cts-

slora up to 104 ••parata

bjt C«4 839.98

C1JI 889.68

PPM

Comproh*nsiv* poiKoHo

fnsn*g*m*ni system (or the

04 and 128. Manog* stocks,

bonds, mutual funds, T*bl»s;

rword taxabta or non-laxabl*
dlvidvnds * Intora*) Income;

reconcile each brokerage

account cash balano* with

me VTD tranaaclkm nit;

on-lin* quote* through Dow

Jonos of Wftfft#f. Pfoduco#

y yp p

analyze a portfolio or

C64 839.98

C1J8 889.98

'r*41VVr ,zr* "-r* ^S

c

Call now for the name of the dealer nearest you.
Or order directly form Abacus using your MC, visa
or Amex card. Add $4.00 per order for shipping.
Foreign orders add $10.00 per item. Call (616)
241-5510 or write for your free catalog. 30-day
money back software guarantee. Dealers inqui
welcome-over 1500 dealers nationwide.

Aba< iimnw
J, Ml 49510

X616V241-5Q21

c

from Abacus

Abacusfa£Q21Softw AbscusQQQISoHwm AtuouBfiBsoftwan

Datrihd guito pmwia aw ltr» whmmuXimmii ran) we* We tot anryona. Cow* totidon- juku in tmk* ti•* laam bMnMm ««CAOi«i
ca*raM« qaMm, aipum anpkli BASIC TO. TMiaaliaiMtbakaad- «0 c«t«ui M >•• r«P"*«. •"- •■< mm. Cum mn*i I w^kplng your wl|m» Oaakja
3**. Miaow lawagwwalMTlO too H ccwpWi win IW) do***, mamory layout. Karul rauth* Ua. 4 draa aetMS coo- <**Ktt»>R'>«!«lwa»liia

c

Ahicall

ii to pragramha, probkra PraiaMt dotani ol progiamrnfcig Ctaaulal guloa lor anryooa knar-
aoaMk: norough aalnlpUn ol al Qakkiutmt C»y and uuiui nw) In CP/M on tti« lit. Slmpia
BASIC esmmanoi wm hundiodi d tacmkjjai on ma oparaling tirttam. ••puniMn M IHa oparallnq lyuam.
aisapto. mentor ccmmaricn: ul» Hadt. laio p<it. poin»rt. na mamoiy uuqa. CP/u ut*»r pro-
tm.moinxy* IIS*) BASC»»piour andmen nets gram, aubmi Nal(ma ilitS

TRKKS 4 TIPS FOR C-44 CoBaOlon al

aasy^a-usa laolniquaa: adrarcad grapnloa,

Impmad data Input, anhanod BASIC.

1141 REPAIR 4 MAINTENANCE

Handbook AutbH lha iM Akia hard-

wara. Indudn actniMlo and lactinlquat

ORAPWCS BOOK CM ■ baat ralaranca

ca»art ba>le and adiancad giapMea.

SprDtt. anlmailon. HK«t. Mufilcotor.

Ugh«>an. 10-graphfct. B1Q. CAO. pro-
)acu». ontt.noia. IMpp tltJS

Hal enood
, la>an. dodu. HO. raal Una.

BASC. aian. 11Spa 1I4.M

PRINTER BOOK C-«WtC-M Undar-

■land Conmodoia. Epwn-eoapaltila print-
an and 15J0 pMar. PaAad: uUWaa; gfa-

phlo dwnp: JO-plot conMMrtod UPOIOI

noUHMIna>.iMm. »JOa» *!•.•<

CASSETTE BOOK C-»4/¥IC-tO

Comprahantlva gutda; many aampla

programa. Hkgh apaad oparallng ayxiam

Ian Oa badng and Mrtig. USpp SI4.M

IOEAS FOR USE ON CM Thaaat:

auto amanaat. caVulatx. radpa Da. akx*

km. dial pkvvtar. wlndaw adMrtalng.

olran. mckidaa ktrcja. lOOpp %12M

COalPllER BOOK C t4/C-tl» A> yau

naad to know about oompllan: how Inay

work; daalgnlng and writing your own;

ganaraiing machlna eoda. W«h working

AaXMvra OamaanUr* Haadaoak

Siap«raap guk)a a daMgnhg and wrung

yaw awn •dwnwa gamaa. W» auoaatad

acmrawa gam ganarattr. tSOaa) tt*M

PECKS 4 POXES POR THI C-M

lwclw<n h-dapth aqilawanana al PEEK.

POKE. lOR. and oBiar BASK Baawanda.

laam da twida* alcka Is gal Via mau out

atyaw-M. SSOpa StaMS

OaConal Otakallaa lot aoeka

Far yavf convanianc*. tha progrtaia
camanad ki aadi al aw baaka ara a>a«-

abta an dakana to aaw you lima anktrfcg

0>»m Irom yow kayteard. Opady nana ol

SI4.Maaca

»ll.»j

C-iaaXC44a

C
P.O. Box 7219 DeptM9 Grand Rapids, Ml 49510 - Telex 709-101 - Phone (616) 241-5510
Optional dlakolloo available for al) book titles - $14.05 oach. Other books ft software also available. Call for the name of your

nearest dealer. Or order directly from ABACUS using your MC. Visa or Amex card. Add $4.00 per order for shipping. Foreign

orders add tiO.OO per book. Can now or write for your tree catalog. Dealer inquires welcome-over 1400 dealers nationwide.

