BV CRO)

The Magazine of the APPLE, KIM, PET
‘ and Other @@@@ Systems

(oo
»
3
:
™
5
§
]
x
B
o
2
x
...
]
g
@

PORT A g LINES)

TELETYPE '{y:sis::JJDE"—'
il (NTERFACE

PORT B (0 LINES|

LG Ti¥D £52R00Y — SNAWIISLS

Rockwell & Synertek

EXPAND THE 6502 WORLD

no 7 @OBB3lQY UDYEB  s1.50




NOW AT FINE
COMPUTER STORES

SPEAKEASY SOFTWARE LTD.
BOX 1220, KEMPTVILLE, ONTARIO
KOG 1JO

kkkkkkkkhkkkhkkhkkhkkhkhkkhkixkkhkkkkk

NOW AT MOST APPLE-II DEALERS !
kkkhkkhhkhkhkkhhhkhhkhkkhkhk*

kidstuff




'5 ™
wu@mo OCTOBER/NOVEMBER 1978

ISSUE NUMBER SEVEN

We're Still Number One! 4
by Robert M. Tripp

BREAKER: An Apple II Debugging Aid
by Rick Auricchio

MOS 16K RAM for the Apple II
by Allen Watson III

PET Update
by Gary Creighton

6502 Interfacing for Beginners: The Control Signals
by Marvin L. De Jong

650X Opcode Sequence Matcher
by J. S. Green

A Memory Test Program for the Commodore PET
‘by Michael McCann
MICROBES, A Suggestion, and an Apology
The MICRO Software Catalog IV
by Mike Rowe
Apple Calls and Hex-Decimal Conversion
by Marc Schwartz
6502 Bibliography - Part VI
by William R. Dial
6502 Information Resources
by William R. Dial

KIM-1 as a Digital Voltmeter
by Joseph L. Powlette and Charles T. Wright

Cassette Tape Controller
by Fred Miller

Apple II High Resolution Graphics Memory Organization
by Andrew H. Eliason

A Digital Clock Program for the AYM-1
by Chris Sullivan

Peeking at PET's BASIC
by Harvey B. Herman

KIMBASE
by Dr. Barry Tepperman

Advertiser's Index (’ (g2 ® fifm
Speakeasy Software IFC Connecticut microComputer [mu@:}d

Microcomputer Comp. Spec. 11 CGRS
Smith Business Services 26 Computer Shop Editor/Publisher
The Computerist, Inc. 48 Synertek Systems Robert M. Tripp
Computer Components BC Production Manager
Peter R. Woodbury

Business Manager

Donna M. Tripp
MICRO is published bi-monthly by Administrative Assistant
The COMPUTERIST, Inc., P.0. Box 3, So. Chelmsford, MA 01824, Susan K. Lacombe
Controlled Circulation postage paid at Chelmsford, MA 01824. Circulation
Publication Number: COTR 395770. Subscription in U.S. $6.00/6 issues. Eileen M. Enos
Entire contents copyright 1978 by The COMPUTERIST, Inc. Micro-Systems Lab

Robert 3. Gaudet
Please address all correspondence, subscriptions, and address Mailroom

changes to: MICRO, P.0. Box 3, So. Chelmsford, MA 01824. . Cf“e”l Lyn Loyd
oler

Fred Davis




COMMODORE PET HARD COPY QUTPUT USING PET ADA 1200 L BN THE FURCTLIN PLOTTED 154

|WlW YeXexlica, dex)
Y.

HEAD
-5 [
TRENOACK Sales - Cerburetors = (977 voe 1 . f . ' f
IS
[ e L] »
T 2 , [y St .
® I & TYPE C 00 00 2 .
o 1 ere 0N e .
[} I O TYPE 8 noo - 0o e .
I OPEN 6,81CHD 61L] ST NN} () 8t
19 HEM ARCSIM AND ARCCOS FUNCTIONS FOR THE COMMOMIKE PET S s xTeee s oo 4 .
78 REM “Listed on s GE TermiNet 3 M H L] g A
88 HEM "using s CeC ADA 1204 0 | ees 000 00 00 D0 OO0 XXX B .
o REN s 1 fes OO0 ONY HOD DOO HOO XXX [l .
1A8 RER OPEN OUTPUT FILE OM DEVICE #8. ! D00 (KN 000 000 (00 XXX ¥Xx 1.2 .
118 OPEN 5.8 o oe 208 DO OO OO0 DON XXX XYY XXX t.a 5 .
120 MEX F ' sas OO0 ONO ONO XXX XXX XXX XXX XXX el * .,
960 REM GET & SINE VALUE 1 000 000 OO XXX XXX XXX XXX XXX XXX et .
18 INPUT v H deg ##2 Q0N DOH XYY XXX XXX XXX XXX XXX XXX o .
328 LS L] Lare OGO 00O DO XXX XXX XXX XXX XXX XXX XXX XXX 1.d 4 .
?3‘ "5:. THE TINE OF THE ANGLE 15 $ 1 S1000 bOD 000 XXX XXX XXX XXX XXX XXX XXX XXX XXX l~; ¢ .
o N 9 T TOOD XXX XXX XXX XXX XXX XXX XXX YYX XXX XXX XXX ! *
1818 REM [F THE SIN 1S [N THE RANGE OF ~1 T0 1. TUFH COUPUTE. S XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX IXX 21t Lo
10200 [F S<i AND $r~1 GATA (5@ XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 2230 .
::-.‘: :2;':;‘?'}':;;35 IS as XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 2.4 1 .
- PR 2.5 ¢ -
(NS ASwATH(S/{(1-5¢5)".5}) 1JAN FER MAR APD MAY JUN JUL AUG SEP NOCT WOV DEC 2.6 ! .
1868 HEM THE RESULT IS IN KADIANS., CONVENT TO DEGREES. ! 3 .
1876 ASaASe) 88/ 2t .,
2WAW REM THE COSINE OF THE ANGLE IS C . . N N . .
261® REM IF THE COSIME 1S IN THE RANGE OF -1 T0 I, x X2 X3 x-P{ X525 x=.5 330 L
211t WEM AND NOT = T 8, THEN COMPUTE a ° ° . ° » 121 .
7830 Ac-omegoT Jeos 50 2500 129n00 217506.221 83983738 7.87108781 e R M
1F Ce<t AMD C>-1 THEM 287@ a0 ) 2ot | BOAPK 1919487.58 3.1822378150 18 L} 3.5 1 )
ol IR (52 22980 1375690 6841A77.28  2.65753572Es1)  12.2474487 306 1 .
oo T e e 00 avam a0enown 149304353 1.20230209E212  14.1421356 3.89999999 ¢ .
T T JucChs 13 a¢ Jsu  ozsen 15625800 341268552 aaNsTeTEN2  1oieiideey 3179 . .
i PEx i a0 mea 27000R0 405488548 1.81131 *13  17.3209a8) 1-39900999
2008 REM THE RESULT IS [N HADIANS. COWVENT To Dcnies. 14 SR8 12875000 98271422.8 227073273613 1827082969 2 avesenns | . .
2::: AC-A(]:_'IB?/ .cus ARCSIN ARCChS» PR 44p8A00 149490L4) 4.57048723E41) 20 4.19999999 | .
’Jdul ::::r:gls:” . oh 2nzsen 911294An 216427147 s.-ouvsag::-u 20.2102804 4. 29909095 1 «
. . - = PN 1 2% PR I 45240 L4170 L] 22.3826798 <19999999 | .
3020 FON N1 T0 1 3~LENESTHE(S)) 1PRINTSS, = =1 1iEXT Yon  Tomae 1883780 1065 anims 2.43727208Es 14 23 2520788 4.209990%0 | .
B AT —LENESTRIIAS)) PRINTES.® 1 tNEXT amn  deham 23 spaenan 53434208 3.94B52281Ee1a 24 40am0Ta 4 ! . .
Juad FOu Me1 TN . 45A 42250 274625009 687112834 5.85861722€eta  25.4930970 3000000 4
IN5A PRINTES, AC 00 A0mwa J430eR 847219497 ©.A449943E014 26, 4575131 4 40000090 1s
Jiea GOTH Sene 150 582540 421AT58M 1.A1T1119AE+a9 1.2418%712E1% 27.38%1279  4.90999009 | o
WEALY. $.09999009 | .

HS=232 PRINTER ADAPTER FOR THE COMMODORE PET

The CONNECTICUT mi{croCOMPUTEit ADApter model (204 {s the first in a line of peripheral adapters for the
COMMODORE PET. The CmC ACA 1240 drives an KS=~232 printer from the PET IEFE~-488 bus. The CmC ADA 127@ allows
the PET owner to ootain hard copy program listings, and to type letters, manuscripts, mailing labels, tables
of data, plctures, involces, grephs, checks, needlepoint patterns, etc., using a standard R§-232 printer.

The CmC ATA model 1204B comes assembled and tested, without power supplies, case, or RS=232 connector
for $93.5A. The CmC ADA 12@AC comes complete for $169.0A., Specify baud rate when ordering. (32@ baud is
supplied unless otherwise requested. Instructions for changing the baud rate are included.)

WORD PROCESSOR FOR THE COMMODORE PET

CONNECTICUT microCOMPUTER now has a word processor program for the COMMODORE PET. This proaram permits
composing and printina letters, flyers, advertisements, manuscripts, articles, etc., using the COMMODNKE PET
and an kS-232 printer.

Script directives include line length, left margin, centering, and skip. Edit commands allow the user to
Insert lines, delete lines, move lines, change strings, save onto cassette, load from cassette, move up, move
down, print and type.

The CmC Word Processor Proaram addresses an RS-232 printer through a CmC printer adapter.

The €mC Word Processor Program is available for $29.5@.

KS=232 TO CURKENT LOOP/TTL ADAPTER

The CmC ACApter model 40@ has two circults. The first converts an R§-232 signal to a 2 ma current loop
signal, and the second converts a 20 ma current loop signal to an HS=232 signal. With this device a
computer’s teletype port can be used to drive an RS-232 terminal, or vice versa, without modification of the
port. The CmC ADA 444 can also be paralelled to drive a teletype or [S-232 printer while still using the
computer’s reqular terminal. The CmC ADA 403 can easily be modified to become an RS-232 to TTL and TTL to
RS-232 AlApter. The CmC ADA 409 does not alter the baud rate and uses standard power supplies. The current
loop is isolated from the RS-232 signal by optoisoléetors.

The CmC ADA 4% {s the perfect partner for KIM 1{f vou want to use an R$=232 terminal instead of a
current loop teletype.

The CmC AUA 4vM4S comes with drilled, plated through solder pads and sells for $24.5@. The CmC ADA 4008
comes with barrier strips and screw terminals and sells for $29.50.

This ennouncement wes composed on a COMMODORE PET and printed on a GE
TermiNet using o CmC ALA 120UC printer adapter and the CmC Word Processor
Proaram,

P I PP RO (P AR ARCI PRI RRA ISP PR D AP PRI R (I RIS D IR D RRCD EIC PR O D PP PU (P P (PRI TP ORI PR D FRCI SN P #R D SNAI 29C ) PRAP VR P IRCD ERCPIRLIER P PRI 0P D PRD
DRI ECIE£CPH0CDRECI00EIPREIFNED AP SREI PRI OISR UD AR D #HUD SR EP AP IR D2 F (D ERCIABEI S P IR PRI M ROI RFCI TN S0P 02CP 08I VRO ERCI PR SR PTI AP AR P FHCINIEIARCI FRCD OO CD SR I 00 ¢

onty i Omscription { baud rate ! price ! total ! Mai) with ramittance or :Enrq. informstion tos
| CoC ADA 12088 (Dasic) 1 I 498,58 | i ,—[;) CONNECTICUT miCrOCoMPUTER
1 CaC ADA 1206C (compiste) t 1 4169.0 1 1 I :J] _ 150 Pacono Rodd, Rooma
| €»C Mord Pracessor Progras (cassette) 1 829.%8 1 |"“ L) Bfookﬂ f:ld, Conn. 06804
1 CmC ADA 4995 (yoider peds) | 424,59 | 1 MAME e
| CoC ADA 4208 (barrier strips) | $29.58 1| ! CIHPANY .
Subtot sl ' I ADORE 5%

Connecticut residents add 7YX sales tax ! t

Hendling and shipplng - add per order ! 43, 1 ciry

Foralgn alr sall - scd 5,83 per order t 1 STATE ne

Total inciuded with order | '

CHARGE T01V] SA IMASTER CHARGE MsC [NTERBANK NUMBER (Expiration date

Credit card numer "

SIGRATURE




With this issue we introduce a new format for

MICRO. We were dissatisfied with the quality of
the last couple of issues of MICRO, particularly
the last issue, and decided to try a different
type of printing. This new format is similar
to the old, but is on lighter paper, printed on
a web press, saddle stiched instead of side
stapled, and does not have the old MICRO border.
We have kept the features that most people said
they wanted - especially the three hole punch.
Of course, we will not know the quality of the
new printer’'s product until after this gqoes to
press. If you have any comments, let us hear
from you. .

Rick Auricchio, who wrote "An Apple II Program-
mer's Guide" in MICRO npumber 4, has provided
angther super article in "BREAKER: An Apple II
Debugging Aid". This article/program allows the
Apple user to debug his program with real break-
points which permit the user to interrupt his
program at any point, gain control, and then
continue execution. The program, written in
assembler has a lot of useful techniques and is
presented in its entirety.

Those of you planning to add more RAM to your
Apple II will find some valuable comparative
information about 16K RAMS in Allen Watson III's
article on "MOS 16K RAM for the Apple II This
info includes a table on how to decode how the
various manufacturers encode their access times.

Willijam M. Shryock Jr. presents an "Improved
Star Battle Sound Effects" program for the Apple
II based on the original article by Andrew H.
Eliason in issue number 6.

Gary A. Creighton has a number of items for the
PET under the title "PET Update'". Included are
a discussion of the RND (Random Number) Function
use, a short program for Machine Language Stor-
ing in BASIC, some rules for USR Parameter Pass-
ing, and a machine language program to Save
Mancine lLanguage and load Directly. A most use-
ful set of goodies for the PET user.

Marvin L. De Jong's series on "6502 Interfacing
for Beginners" continues with a discussion of
"The Control Signals". The article presents the
basic theoretical information, and then a pro-
gram and hardware test configuration for ex-
perimenting with the control signals.

Quite often you may find that you have two sets
of object code that are very similar, but not
identical. It would be useful to have some way
to let the computer compare the two sets of code
and display the differences. This may sound
simple, but since the addition of a single line
of code would make all subsequent lines "differ-
ent” even though they were identical except for
the slight offset, it is not so simple. IJ. S.
Green presents the solution and a program in
"6$502 Opcode Sequence Matcher'".

IN THIS ISSUE . . .

Ever have doubts about your PET's memory? Then
you will want to try "A Memory Test Program for
the Commodore Pet" by Michael J. McCann. The
program requires that the lowest 4K of memory be
working and can be used to test all other memory
in the PET.

Marc Schwartz presents some rules and ideas for
"Apple Calls and Hex-Decimal Conversion", a use-
ful tool when trying to generate the decimal
equivalents for hex codes.

Once upon a time there were hardly any articles
about 6502s at all. Now William R. Dial's "6502
Bibliography" is up to reference number 379, and
this includes many multiple references. Since
a reference of interest is of limited value if
you do not know where to find the original, a
list of "6502 Information Resources" has been
compiled by William R. Dial that tells where to
obtain the various magazines he has been using
in the bibliography and how much they cost.

Every once in a while someone will ask "What can
you do with a KIM-1 now that the PET is here?"
Joseph L. Powlette and Charles T. Wright show

how to use the "KIM-1 as a Digital Voltmeter".

An automated "Cassette Tape Controller" is the
subject of Ffred Miller's KIM article. He pre-
sents a complete hardware/software system to aid
the user who wants to control cassette tapes
from his KIM.

Andrew H. Eliason discusses the "Apple II High
Resclution Graphics Memory Organization", and
presents a few short programs that help to un-
derstand and use this feature of the Apple.

Chris Sullivan presents the first program that
he wrote for the new Synertek SYM-1, "A Digital
Clock Program for the SYM-1". The program is a
24 hour clock and has a number of SYM specific
subroutine calls and special locations which
make it a good introduction for the SYM owner.

Commodore thought they were being pretty smart
making the PEEK in BASIC incapable of PEEKing at
BASIC itself. Harvey B. Herman was even smarter
and shows how he is "Peeking at PET's BASIC".
He raises some questions about Commodore's basic
strategy.

"KIMBASE" is a major program by Dr. Barry Tep-
perman. While the purpose of the program is to
convert from almost any number system to any
other, its main value to many readers may be in
the numerous subroutines which provide support
multiplying, dividing, and other functions.




WE'RE STILL NUMBER ONE !

Robert M. Tripp, Editor

It's been a whole year since I sat down to write
"We're Number One!" for the first issue of
MICRO. Since then a lot has happened within the
microprocessor/microcomputer world, and if any-
thing, the position of the 6502 as the leader
has been strengthened.

THE 6502 MICROPROCESSOR FAMILY

There have been a couple of major changes in the
basic 6500 family of microprocessor products.
Most significant has been the emergence of
Synertek and Rockwell International as major
producers of 6500 type products. While many
companies recognized that the 6500 series of
products being developed by MOS Technology were
in many technical aspects superior to the 8080
and 6800 product lines, they were reluctant to
commit to a sole source product manufactured by
a relatively small company. Now that Synertek
and Rockwell have made major commitments to de-
velop and support the 6500 line, its growth and
acceptance should accelerate.

Rockwell and Synertek are not simply second
saurcing existing MOS Technology products, but
are undertaking a number of significant new 6500
related product developments. Rockwell has in-
troduced the R6500/1 one-chip microcomputer.
Synertek is soon to announce a 6551 ACIA., Also
in the works by Rockwell and/or Synertek are
a 6545 CRT Controller, a 6509 16 bit micro-
processor, and a number of other products. It
looks as though most development work at MOS
Technology has slowed or stopped and that most
of their efforts are devoted to supporting the
PET and KIM-1 systems.

A searing blast at the 6502 microprocessor which
was written by Jack Hemenway and appeared in EDN
was very solidly "put down" by articles by
several qualified writers which appeared in a
later issue.

THE 6502 MICROCOMPUTERS

This has been a very big year for 6502 based
systems. Most of the trade talk and magazine
articles are about the PET, TRS-80, and the
Apple II, and two-out-of-three ain't bad! The
Apple II was just becoming available a year ago
when MICRO started, -and in fact was featured on
the first MICRO cover. Since then the growth of
the Apple II has been one of the brightest suc-
cess stories of the year. In a year when many
of the original 8080 based companies found them-
selves in deep trouble, the 6502 based Apple
Computer Company flourished. A year ago it was
impossible to get a Commodore PET. They had
been demonstrated at some computer shows, but
were not yet available. Since then they have
come on strong. The "grass roots" support for
the PET seems very strong, judging from the num-
ber of small magazines that have sprung up de-
voted to the PET.

As our new years starts, there are two major new
6502 system developments. The Synertek SYM-1 is
a single board computer which is essentislly an
upgrade of the KIM-1. It has more RAM, ROM, and
1/0 than the KIM, plus a much more powerful mon-
itor program, plus a number of other features.
It is just becoming available now, and selling
for $269 with 1K RAM, is hoped to do for Syner-

MIICIRIO]

tek what the KIM-1 did for MOS Technology. The
AIM 65 is Rockwell's way of announcing its
serious entry into the 6502 world. This single
board system includes a full typewriter style
keyboard, twenty character LED display and a
twenty column printer, plus room for 4K RAM, up
to 20K ROM, and an extensive 8K monitor. This
product is sure to generate a great deal of in-
terest in the 6502 from a variety of users.
Both Synertek and Rockwell will be selling
an assembler in ROM and an 8K BASIC in ROM by
the end of the year.

In addition to these major 6502 microcomputer
systems, a number of other smaller manufacturers
have introduced 6502 based systems in the past
year. The only major drop-out during the year
was ECD's MICROMIND. Since this system was
never really delivered from production to any
customers, it's loss was probably of little sig-
nificance, except to those loyal customers who
had their money tied up for a year or so.

6502 SOF TWARE

Whereas a year ago there were only a small hand-
ful of programs available for the 6502, there
must by now be hundreds of them. Both the PET
and the Apple II have generated large markets
for 6502 based software, and many stores now
have large quantities of programs for sale.

MICRO

We have been very pleased with the gqrowth of
MICRO in its first year. The first issue was
28 pages long and went to about 450 subscribers
and stores. This issue is twice the size and
will immediately go out to about 2000 subscrib-
ers and about 1500 more copies will go to the
computer stores. A distributorship has been
established in Europe to handle the growing in-
terest over there. And, due to popular demand,
"The BEST of MICRO" will soon be published so
that new subscribers can get the information
from the first year of MICRO. Over 3000 copies
of each issue have been distributed, many as
"back issues" to new subscribers. We are also
quite proud of the quality of the articles
which have been contributed over the year. We
anticipate similar growth during the coming year
as the 6502 continues in phenomenal expansion.

Qur plans for the coming year include increasing
the size of MICRO as required to print all of
the worthwhile articles we receive. Our new
printing format will permit us some increase in
size without requiring an increase in price. If
we continue to receive more good stuff than we
can print, then we will consider becoming a
monthly publication. In order to serve the fast
growing European market, we have arranged to
have MICRO distributed by L P Enterprises in
Britain. This will help keep the cost to 6502
owners in Europe reasonable. .

Our success in the coming year depends on your
input. We can be no better than the material
submitted to us. You have done a great job so
far, so keep up the good work.

7:4

'



“)

BREAKER: AN APPLE II DEBUGGING AID

Rick Auricchio
59 Plymouth Ave.
Maplewood, NJ 07040

When debugging an Assembly-language program, one
of the easiest tools the programmer can use is
the Breakpoint. In its most basic form, the
Breakpoint consists of a hardware feature which
stops the CPU upon accessing a certain address;
a "deluxe" version might even use the Read/Write
and Sync (instruction fetch) lines to allow
stopping on a particular instruction, the load-
ing of a byte, or the storing of a byte in mem-
ory. Since software is often easier to create
than hardware (and cheaper for some of us!), a
better method might be to implement the Break-
point with software, making use of the BRK op-
code of the 6502 CPU.

A Breakpoint, in practice, is simply a BRK op-
code inserted over an existing program instruct-
ion. When the-user program's execution hits the
BRK, a trap to the Monitor (via the IRQ vector
$FFFE/FFFF) will occur. In the APPLE, the Mon-
itor saves the user program's status and regis-
ters, then prints the registers and returns con-
trol to the keyboard. The difficult part, how-
ever, comes when we wish to resume execution of
the program: the BRK must be removed and the
original instruction replaced, and the registers
must be restored prior to continuing execut-
ion. If we merely replace the original opcode,
however, the BRK will not be there should the
program run through that address again.

The answer to this problem is BREAKER: a soft-
ware routine to manage Breakpoints. What the
debugger does is quite simple: it manages the
insertion and removal of breakpoints, and it
correctly resumes a user program after hitting
a breakpoint. The original instruction will be
executed automatically when the program is res-
umed !

Is it Magic?

No, it's not magic, but a way of having the
computer remember where the breakpoints are!
If the debugger knows where the breakpoints are,
then it should also know what the original in-
struction was. Armed with that information,
managing the breakpoints is easy. Here's how
the debugger works:

During initialization, BREAKER is "hooked-in" to
the APPLE monitor via the Control-Y user com-
mand exit, and via the COUT user exit. The con-
trol-Y exit is wused to process debugger com-
mands, and the COUT exit is used to "steal con-
trol" from the Monitor when a BRK occurs.

Breakpoint information is kept in tables: the
LOCTAB is a table of 2-byte addresses--it con-
tains the address at which a breakpoint has been
placed. The ADTAB is a table of 1-byte low-
order address bytes; it is used to locate a
Break Table Entry (BTE for short). The BTE is
12 bytes long (only the first 9 are used, but 12
is a reasonably round number) and it contains
the following items:

* Original user-program instruction
* JMP back to user-program
* JMP back for relative branch targets

When adding a breakpoint, we must build the BTE
correctly, and place the user-program break add-

ress into the LOCTAB. There are eight (8)
breakpoints allowed, so that we have a 16-byte
LOCTAB, 8-byte ADTAB, and 96 bytes of BTE's.

As the breakpoint is added, the original inst-
ruction is copied to the first 3 bytes of the
BTE, and it is "padded" with NOP instructions
($EA) in case it is a 1 or 2-byte instruction.
A BRK opcode ($00) is placed into the user pro-
gram in place of the original instruction’s op-
code (other instruction bytes are not altered).
The next 3 bytes of the BTE will contain a JMP
instruction back to the next user-program inst-
ruction.

If the original instruction was a Relative
Branch, one more thing must be considered: if
we remove the relative branch to the BTE, how
will it branch correctly? This problem is sol-
ved by installing another JMP instruction into
the BTE for a relative branch--back to the Tar-
get of the branch, which is computed by adding
the original PC of the branch, +2, +offset.
This Absolute address will be placed into the
JMP at bytes 7-9 of the BTE. The offset which
was copied from the original instruction will be
changed to $04 so that it will now branch to
that second JMP instruction within the BTE; the
JMP will get us to the intended target of the
original Relative Branch.

A call to the routine "INSDS2" in the Monitor
returns the length and type of an instruction
for the "add" function. The opcode is supplied
in the AC, and LENGTH & FORMAT are set approp-
riately by the routine.

Removal of a breakpoint involves simply rest-
oring the original opcode, and clearing the
LOCTAB to free this breakpoint's BTE.

Displaying of breakpoints prints the user-prog-
ram address of a breakpoint, followed by the
address of the BTE associated with the break-
point (the BTE address is useful--its importance
will be described later).

When the breakpoint is executed, a BRK occurs
and the APPLE Monitor gets control. The monitor
will "beep" and print the user program's regis-
ters. During printing of the registers, BREAKER
will take control via the COUT exit. (Remember,
we get control on every character printed - but
it's only important when the registers are being
printed. That's when we're at a breakpoint).
While it has control, BREAKER will grab the
user-program's PC and save it (we must subtract
2 because of the action of the BRK instruction).
If no breakpoint exists at this PC (we scan LOC-~
TAB), then the Mointor is continued. If a
breakpoint does exist here, then the BTE ad-
dress is set as the "continue PC". In other
words, when we continue the user program after
the break, we will go to the BTE; the original
instruction will now be executed, and we will
branch back to the rest of the user program.

Using BREAKER

The first thing to do is to load BREAKER into
high memory. It must then be initialized via
entry at the start address. This sets up the
exits from the Monitor. After a Reset, you must
re-initialize via "yeI" to set up the COUT exit

MIBRQA®



again. Upon entry at the start address, all
breakpoints are cleared; after "YcI", they re-
main in effect.

To add a breakpoint, type: aaaaYcA (Yc is
control-Y). This will add a breakpoint at
address 'aaaa' in the user program. A 'beep!'
indicates an error; you already have a break-
point at that address. To remove a breakpoint,
type: aaaa¥YcR. This will remove the breakpoint
at address t'aaaa' and restore the original op-
code. A 'beep' means that there was none there
to start with.

Run your user-program via the Monitor's "G" com-
mand. Upon hitting a breakpoint, you will get
the registers printed, and control will go back
to the monitor as it does normally. At this
point, all regular Monitor commands are valid,
including "YcA", "YcR", and "YcD" for BREAKER.

To continue execution (after looking at stuff
maybe modifying some things), type: YeG . This
instructs BREAKER to resume execution at the BTE
(to execute the original instruction), then to
transfer control back to the user program. Do
not resume via Monitor "G" command--it won't
work properly, since the monitor knows nothing
of breakpoints. To display all breakpoints,
type: YeD. This will give a display of up to 8
breakpoints, with the address of the associated
BTE for each one.

Caveats

Some care must be taken when using BREAKER to
debug a program. First, there is the case of
BREAKER not being initialized when you run the
user program. - This isn't a problem when you
start, because you'll not be able to use the Yec
commands. But if you should hit Reset during
testing, you must re-activate via "YcI",
otherwise BREAKER won't get control on a break-
point. If you try a YeG, unpredictable things
will happen. If you know that you hit a break-
point while BREAKER was not active, you can
recover. Simply do a "YcI", and then display
the breakpoints (YcD). Resume the user-pro-
gram by issuing a Monitor "G" command to the BTE
for the breakpoint that was hit (since BREAKER
wasn't around when you hit the breakpoint, you
have to manually resume execution at the
BTE). Now all is back to normal. You can tell
if BREAKER is active by displaying 1loc-
ations $38 and $39. If not active, they will
contain $FO FD.

It's also important to note that any user pro-
gram which makes use of either the Control-Y or
COUT exits can't be debugged with BREAKER. Once
these exits are changed, BREAKER won't get con-
trol when it's supposed to.

BREAKER DEBUGGER: Routines to Handle up to 8
Breakpoints, for use in Debugging of User Code.

**x*% APPLE-~2 MONITOR EQUATES

*

B02E FORMAT EQU
BO2F LENGTH EQU
893C all ECU
893C AlH ECU
¥03E a2l EQU
Pa3F AZ2H EQU
22489 A3L EQU
¥94l A3H ECU
*
pa36 CSWL EQU
B237 CSWH EQU
*
F88E INSDS2 EQU
F944 PRNTYX EQU
FDDA PRPYTE EQU
FCED coutr ECU
FF65 RESET EQU
FF69 MON EQU

*

CBANCE 'LOWPAGE'

X'2E' INSTRUCTION FORMAT
X'2F! INSTRUCTION LENGTH
x'3c!’ WORK AREA
X'3c'
X'3E'
X'3F'
X'49'
X'al'
X'36' CoUT SWITCH WORD
X'37°
X'F8BE' CISASSEMELER
X'F949’' PRINT Y/X REGS IN HEX
X'FDDA' PRINT aC IN HEX
X'FDED' CHAR OUT
X'FF65' MONITOR RESET
X'FF69' MONITOR ENTRY

TO LCCATE

NOW SET FOR A 32K SYSTEM.

*
* ELSEWHERE IN MEMCRY. IT IS
*
*

208924870 LOFPAGE EQU X'7p" 3 PGS FEFORE END MEMORY
7L ORC LOWPACE**8 ORG QUT TO MEMORY TOP
7029 4C 36 7F  INIT JMP INITYX =>INITIALIZATION ENTRY

*

* ——— DATA AREAS --=- *

*
7023 Y F¥1 DC ) 'FINCPC' WORK BYTE 1
7004 20 F¥2 DC 2 'FINDPC' WORK BYTF 2
7005 20 PCL bC ) 'GO' PC LO
7CR6 ae PCH oC ) 'CO' PC HI

*

** SKELETON BREAK-TAELE ENTRY (BTE) **

*
7087 2¢ SKEL LC ) SKELETON BTE
7D28 EA NOP NOPS FOR PADDING
7099 EA NOP
7004 4C 290 09 JHP 0 JUMP BACK INLINE
708D 4c DC x'4ac' JUMP OPCODE FOR BRRANCHES

VI [CIRIO e

R



*

* -- LO ADDRESS OF BTE'S KEPT IN ADTAB -~ *
*

7DE 26 ADTAB DC BTE@&255 LO ADDRESS
7DOF 32 DC BTE1&255
7D10 3E DC BTE2&255
7D11 4a DC BTE3&255
7D12 56 DC BTE4&255
7D13 62 DC BTE5&255
7D14 6E DC BTE6&255
D15 7a DC BTE7&255
*
** _- LOCTAE CONTAINS ADDRESS OF USER-PROGRAM INSTRUCTION
* WHERE WE PLACED THE BREAKPOINT IN THE FIRST PLACE.
7D16 LOCTAR  ©S 2%8 SPACE FOR 16 PCH/L PAIRS
*
** —. BREAK-TABLE ENTRIES {(BTE'S) --~ *
*
ID26 BTE# DS 12 12-BYTES RESERVED
7D32 BTEL DS 12
7D3E - BTE2 DS 12
7D4a BTE3 DS 12
7D56 ETE4 DS 12
7D62 BTES DS 12
7D6E BTE6 DS 12
7D7A BTE7? DS 12 ENOUGH FOR 8 BREAKPOINTS
*

* END OF DATA AREAS

* THE REST IS ROM-ABLE.
*

L2 RS2 R RS2SR R 2222 R 2 R R R R 2 R R 2 2 R F R 2 R R R R R PR R P R R R R Y

* NAME: FINDPC
* PURPOSE: CHECK IF PC IN FW1/FW2 MATCHES ANY IN LOCTAB
* RETURNS: CARRY SET IF YES; XREG=ADTABR INDEX 4-7
* CARRY CLR IF NOT; XREC=GARBAGE
* VOLATILE:DESTROYS AC
LR R Ry Y e Y R SRR aa Y
7Ce6 a2 @F FINDPC LDXIM 15 PYTE-IVDEX TC END CF TABLE
7088 AD 44 7D FpC@dd LDA Fw2 GET FCR COMPARE
7C8F CD 16 7C CMPX LOCTAE A PCH MATCH?
TC8E D& ¢8 DNE FPCE€2 =>NO. TRY NEXT 2-PYTE ENTRY
70949 aD 83 70 LDA FWl GET PCL NOW
7D93 DC 15 7D CMPX LCCTaR-1 A PCL MATCH?
7D96 FE @6 BEC FPCY4 =>YES! WE HAVE A BREAKPOINT!
7C98 CAa FEC@2 DEX EACK UF ONE
7C99 Ca DEX AND ANOTHER
7C9a 14 EC EPL FPCd8 =>L0Q ENTIRE TABLE SCAN
709C 18 CLC =>DONE; SCaN FAILED
7C9D 6¢ RTS
*
JC9E 48 FPCP4 PHaA HOLD aC
7C9F 8a XA HALVE VALUE IN XREG
7DA¢ 4a LSRa SINCE IT'S 2-BYTE INDEX
7Dal AA TaX
7Daz2 68 FLA
7CA3 38 SEC SET 'SUCCESS!
7DA4 69 RTS

LA X RS R RS R R R R RS RRRRRRRRR2 R RRRRRRRRRRRRRAREERRRSRRERREERZERESES]

* NaAME : BREAK

* PURFCSE: HANDLE ENTRY AT ERK AND PROCESS BREAKPOINTS

* NOTE - TBIS RCUTINE GETS ENTERED ON *EVERY* 'COUT'

* CALL--IT KNOKS AFOUT BRRK RECAUSE THE MONITOR'S

* REGISTERS ARLE SETUP TC FRINT USER REG CONTENTS.

* AFTER PROCESSINC IS CCNE, IT RESTORES THE MCNITOR'S

* EECS ANC RETURNS.

IR R R Y N T ST YR
7Cab E¢ FP PREAK CPXIM X'FE' IS XREC SET FOR EXAMINE-REGS?
TCAY Ly 27 ENE ERKXX =>NC GET OUT NOW.

WIBRA® -



7£A9 C9 AP BRK®?2 CMPIM X'ag' IS5 AC SETUP CORRECTLY TOO?

7DAR D@ 23 BNE ERKXX =>NOPE. FALSE ALARM!
IDAD A5 3C LDAZ alL GET USER PCL
7DAF 38 SEC AND BACK IT UP ~
7DBY E9 82 SECIM 2 EY 2 BYTES SINCE ;
7CB2 8D #3 7D STA Fwl BRK BUMPED IT!
7DB5 A5 3D LDAZ AlF GET PCH
7CB7 E9 20 SBCIM ) DO TEE CARRY
7DR9 8D @4 7D STA FW2 AND SAVE THAT TOO
7DBC 20 86 7D JSR FINDPC A PREAKER OF OURS HERE?
7DBF 90 9B BCC BRKO4 =>NOPE. WE WON'T HAMDLE IT!
7DC1 BD @E 7D LDAX ADTAR YES; GET BTE ADDRESS THEN
7DC4 8D #5 7D STa PCL AND SET IT as THE 'GO’
7DC7 a9 7D LDAIM LOWPAGE PC FOR THE 'GO' COMMAND.
7DC9 8D @6 7D STa PCH {OUR PAGE FOR BTE'S)
*
7DCC A9 ag BRKO 4 LDAIM X'ap’ SET aC PACK FOR MONITOR
7DCE A2 FB LDXIV X'FB' AND XREG TOO
7DD 4C F? FD  BRKXX JMP X'FDFQ" =>NO. RIGHT RACK TO COUT ROUTINE!
de de de g de e de dede de de dedk dede de gk dedk ok dede de ek ke de ek dede gk k dr ok dede ok dk ok ks dede dedk s sk kg de g de ok ko ke ok ko
* k% PROCESS THE 'CO' COMMAND {RESUME USER EXECUTION) **
* COMMAND FORMAT: { * Yc G ) .
khkhkhkkhkhkhkhkhhhkhkhkhkhhkhkhkhkhkhhhhhkhhhhhhrhkhkhhkhkhhkhkhkhkhkhkAhhkhkdhhhhhkhkhkhhhhdhkhkhkk
7DD3  AD 05 7D CMDGO LDa PCL GET RESUME PCL
7D0D6 85 3C STAZ AlL AND SETUP FOR MONITOR
7DD8 AD 96 7D LDA PCH TO SIMULATE AN 'XXXX G' COMMAND
7DDE 85 3D STAZ AlH NORMALLY .
7DDD 4C B9 FE JMP X'FER9" =>SAIL INTO MONITOR'S 'GO’
Cal
% dedkd dedkde gk dede de s ok deodk dedk g g ook dede de ok de sk ok de dede ok dede gk ok e de g sk de drdk sk de sk de gk sk A de ok gk ok ok ok ok e e ke ok ok ok ke 5
*k WE GET CONTROL HERE ON TEE CONTROL-Y USER EXIT FROM THE -
* MONITOR (ON KEYINS). ALL COMMANDS ARE SCANNED HERE:
* CONTROL WILL PASS TO THE APPROPRIATE ROUTINE.
s de Jo g ded dodk de ok od g gk dodk de ded ok ke ok ok de ok ok de de ok de ok dede ok de de de de sk A Je de ok sk de e ok ok e ok ok ke ke o ok e ok ok e ok ok ok
7DE? A2 FF KEY IN LDXIM X'FF' CHAR INDEX
7DE2 E8 KEYING® INX SET NEXT CHARACTER
7DE3 BD 90 02 LDAX X'200" GET CHAR FROM KEYIN BUFFER
IDE6 C9 99 CMPIM X'99" CONTROL-Y CHARACTER?
7DES DO F8 ENE KEYIND® =>NO. KEEP SCaNNING
7DEA ES8 INX BUMP OVER CTL-Y
7DER BD @0 82 LDAX X'0200" GRAP COMMAND CHARACTER
IDEE c9 C7 CMPIM X'C7" IS IT 'G' {GO) ?
*
* 4 BRANCH-TABRLE WOULD BE
* NEATER, BRUT IT WOULD
* TAKE UP MORE CODE FOR
* THE FEW OPTIONS WE HAVE.
*
7DF 0 FO EL BEQ CMEGO =>YES.
7DF2 C9 Cl CMPIM x'cl' IS IT 'A' {aDD) ?
7DF4 Fo 18 BEQ CMDADD =>YES.
IDF6 c9 C4 CMPIM x'ca’ IS IT 'D' (DISPLAY) ?
JDF8 F@ @B BEQ XXDISP =>YES.
7DFA C9 D2 CMPIM X'D2" IS IT 'R' {(REMOVE) ?
IDFC F@ @A BEQ XXREMOVE =>YES.
7DFE ¢9 C9 CMPIM X'C9’ IS IT 'I' {(INIT) 2
7ED9 Fo 09 REQ XXINIT =>YES.
TER2 4C 65 FF  PADCMD  JMP RESET NOTHING; IGNORE IT!
*
7E05 4C A8 7E  XXDISP  JMP CMDDISP EXTENDEL PRANCH
7E08 4C @8 7F  XXREMOVE JMP CMCREMOV EXTENDED ERANCH -
7EQR 4C 4F JF  XXINIT JMP CMCINIT EXTENCED ERANCH -

VII[CIRIO Rt



a

TEQE
7EL4d
7EL2

TE14
7EL®
7E19
7E1E
TELE
7E20
7E21
7E22
7E24

7E26
7E28
TE2P
7E2E
7E38
7E33
7E36
7E37
7E38
7E39
JE3E
7E3D
7E49
7E42
7E44
TE47
7TE49
7E4A
7E4C
TE4D
TE4F
7E51
7E54
7E56
7E58
TE54

7E5F

JESL
7E5F
7E61L
TE62
7E64

TEA8
TEAA
7EAD
TEAF
JER2
JER4
7EPH
TERG6
15T8

Y
El
Fg

az2
BD
CA
PD
F¢
Ca
ca
14
39

.ad

9D
8D
ad
gD
8r
8a
4a
AA

A9

85
BD
85
ag
BS
91

14
C8
El
¢l
2¢
A9
91
A>
38

ad
11
Sl
C8
Bi
69

A2
rc
ol
EC
La
Ca
Ca
1
30

29
3E
EE

F2
BC

3E
15
¥E
3F
16
gcC

7D

¢E
4¢
67
87
40

F8

3E
49
8E
Qa
3E
2F

24
4¢

4¢
¢

2F
16
Je
15
w6

7L

7D

1D
7D

iC

7D

7C

F8

~
)

khkkkhkhkhkhkkhhhkhhkkhhkhkhkkhkhkdkhkdhkhkhkhdhhdhhdhkkikkkkkkkkdkdkkkkkkkkkkkkkk

* * PROCESS THE 'aDL' COMMAND.
* * LOCATION SPECIFIEL IN

.ACD A PREAKPOINT AT
COMMAND

* COMMAND FORMAT: { * aaaa Yc A }
Kkkkhkkkkk kR kkkkkkkkkk ke kkkk ke kkkkkkkkhkk kR kR kkkk kAR Rk kAR kK kkk kk k&

CMCALCD LCYIM ] CEECK OPCOLDE FIRST
LDATIY AZL CP AT AAAA A BRK ALREADY?
. BREQ BADCMD =>YES. ILLEGAL!
* --- SCAN LCCTABR FOFR &M AVAILAPLE RTE TC USE --- *
*
LDXIM 15 BEYTE INLCEX TO LOCTAB END
AaDCAY LDAX LOCTAFR GET A BYTE
BNE AalCCé2 =>IN USE
LDAX LOCTaAP~-1 GET HI HaALF
BEQ ACT¥4 => POTH ZERO; USE IT!
ACD@2 CEX MOVE BACK TO
DEX NEXT LQOCTAE ENTRY
BPL ADDOD ANC KEEP TRYING!
PMI EADCHD =>DONE? aLL FULL! REJECT IT.
*
ACDY¥4 LDAZ A2L GET aaaa VALUE
STAX LOCTAE-1 SAVE LO HALF
sTa SKEL+4 STUFF LO ADDR INTO BTE
LDAZ A2l GET aaaa VALUE
STax LOCTAR SaVE HI BALF
STa SKEL+5 STUFF HI ADDR INTO BTE
TXA GRABR INDEX FOR LOCTAR
LSERA MAKE ADTAB INLEX
TAX AND STUFF BaCK INTQ XREF
LDAINM LOWPAGE BRTE'S HI ALLCRESS VALUE
STAZ A3l HOLLC IN WORK AREA
LCAX ADTAF GET BTE LO ACLCR FROM ADTAE
STAZ a3k SAVE IN WORK AREA
LDYINM 7 7-PYTE MOVE FCR SKEL BTE
ACDY6 LDAY SKEL CEFT SKEL EFYTE
STATY A3L MCVE TO BTE
CEY SET NEXT
EPL ACC¢6 => MCVE ENTIRE SKELETON
INY
LDATY A2L CET CRIGINAL OPCOCE
STATY A3l INTC ETE
JSR INSLES2 INSCS2 {TO DISASSEMRLE)
LCaIV '] SET BEK OPCODE
STAalyY A2L OVER ORIGINAL CPCCLCE
LPAZ LENCTH GET INSTRUCTICN LENGTH
SEC
¥ ——- SET UP JFP IO MEXT INST. IN THE ETE --- *
*
LDYIN 4
AalCLCIY A2l AaLD TO PC FOR CESTINATION
sTaly A3L STUFF INTO ETE ’
INY
LEATY Aa3L RUN UP T'HE CARRY
ADCIM % RICHFT HERE

ddkkkodkokokKk ok ok ok ok ok ok ok ok ok ok ok ok ok ko kk ok ok ok kk A kkok ok kok Aok ok ok A sk gk ok ok ok ok ok ok ok ok ok ke ke kb ok ok

* CISELAY ALl AUTIVE DREAKPOINTS
* COMPFAND FOFMAT: (* YO L )
kkdkkkhkkhkhkkkkkhkhkhrhkhkkkkkkkhkhkkkhkkkrhhkhkkkhkkhkkbdhrhkkkkbhbhkhkkhkkkkhkhkk
CMDCISE  LOYIM 15 INDEX TO LCCTAR END
CISPRE  LLaX LOCTAF GET a FYTE

ENE ISPU4 =>IN USE

LLCAX LOCTaR-1 TRY RCTH CYTES TC FE SURE

ENE nIspd4 => CEFINITELY IN USE.
DISENXT TLCEX SET NEXT ENTRY

DEX IN LOCTAP

PEL DISPYY => FOFE TC GO

oMY CMPRET =>DCNE: EXIT TC MONITOR

IVIITIC RO I



JEBA
7EEB
TEBC
JEBF
JEC2
7JEC4
TEC6
TECT
7ECA
7ECC
TECF
7EDY
7EDL
7ED2
7ED3
7EDS
7ED8
7ELCA
7EDC
7EDF
JEE2
TEE4
7EE7
7EE9

7EEC
7EEE
7EF1
7EF3
7EFS
TEF8
7EFA
7EFD
TFB9
TJFa1l
TFd?2

1F 24
TF@5

TF28
7FdA
TF2D
TF9F
TF12
TF15
7F17

TFLla
1FLD
JF1F
7F20
TF21
TF22
TF24
TF25
TF2E

abd
8D
as
8D
24
B
4C

BED
e5
ga
dA
AA
a9
A8
9C
SC

A9
20
Al
Bl
24
Bl
24

68

AA
18

48
4C

28

16
17

16
15
3B
3A

44
ag
EC

D9

70
7D

FF

7C

7D
T

1D
7D

F9

FC

FC
FD
C
FD

FD

FD

FD

F8

F8

DISP@4 XA GET INDEX
PHA SAVE IT
LDYX LOCTAE GET SUBJECT-INST PCE
LDAX LCCTAB~1 AND ITS PCL
5TYZ X'3p! SET UP PCE/PCL FOR
5TAZ X'3a’ DISASSEMBLER. ..
TAX
JSR PRNTYX PRINT Y,X BYTES IN HEX
LEAIM X'ag? PRINT ONE
JSR cour SPACE EERE
PLA RESTORE INLCEX
PHA
LSRA CONVERT TO ALTAR TNEX
TAX
LDAIM X'BC' '<' CHARACTER
JSR cour PRINT IT
LDAIM LOWPAGE BTE HI ACDRESS
5TAZ A2H SET INCIRECT PCINTER
JSR PRBYTE PRINT EEX BRYTE
LDAX ADTAB GET BTE LC aADDR
STAZ AL SET INDIRECT PCINTER
JSR PRPYTE PRINT BTE FULL ADDRESS
LDAIM X'BE' '>' CHARACTER
JSR cour PRINT IT

*

¥ —-- DISASSEMBLE THE ORIGINAL INSTRUCTION, PICK UP

* ORIGINAL OPCODE FROM BTE, OBRICINAL ALCDRESS

* FIELD FROM USER PROGRAlM LOCATION.

*
LDAIM X'ap' PRINT ONE
JSER couT SPACE HERE
LDYIM 2 INDEX
LBAlY AL CET OPCOLE FROM PTE
JSE PREYTE PRINT OPCODE
LDAIY AL GET CPCCCE FRCM ETE
JSR INSDS2 AND CET FCRMAT/LENCIF
JSR JSRKLUGE SNEAK INTC INSCSP @ F8rL?°
PLA
Tax RESTORE LOCTAL INDEX
EPL DISPNXT => DISPLAY THE REST!

* KLUCGE ENTRY INTO SUBROUTINE
* WHICE FCRCES JSR PRIOR TO

* A PHA INSTRUCTION.
*
*

WE HAVE
TO JSR TO THIs JMP!
JSRKLUGE PBHa
JMP X'FE&r9’
* ok ok ok ok

*kkkkkkk pND OF KLUGE!

FUSH MNEMCNIC INDEX
CONTINUE WITE INSTDSPE

(22 2ZR 22 RR22 2R RRRRERaRERRREt R Rt R R R R RERRRRRERRRRRERR RS RE RS

*
*

REMOVE A BREAKPOINT AT LOCATION
{ aaaa Yo R )

COMEAND FCREAT:

aaaa

(A EZE SR SRS R RS R R RXR R ResRERRRRRSREREERRRRESERNEERRE R RS RS

CMDREMCOV LDAZ A2L
S5TA FWl
LDAZ A2
STA FW2
JSR FINCPC
BCS RENMOV@2
JMP RESET

*

REMOV#2 LDAX ADTAE
STAZ A3L
TXA
ASLA
TAX
LCAIM '/
TAY
5TAX LOCTAR
S5Tax LOCTABR+1

MIICIRIO

GET ACDCRESS LC
HOLLC IT FOR FINLPC
GET ALLCRESS EI

A PREAKPCINT EEFRE?
=>YFs
=>NO: PELL FOR YCU!

GET THFE LOCTAE ENTRY
HCLLC IT

NCw CREATE LCCTAP INDEX

CLEAR CUT THE

AFPROPRIATE
LOCTAF ENTRY
FOR TEIS FEPT



D)
ot

e

7F2E
7F2D
7F2F
JF31
7F33

TF36
7F38
7F 3B
7F3D
7F4¢
7F42
TF45
7F47
7F49
TF4C
7F4D

7F4F
7F51
7F53
7F55
7F57

Command

aaaa Ye

Ye
Ye

aaaa Yc

a9 7D LEAIM LOWPAGE BI ADCR FOR BTE

85 41 STAZ a3HE FOLLC FOR ADDRESSING

El 40 LPATIY A3L GET OPCOLDE OUT OF EIE

91 3E 8TAIY A2L AND PUT BACK INTO ORIGINaL INST
4C 69 FF JVP MON =>ALL DONE.

khkhkkhkhkkhkkkkkkhkhkhhkhkhkhhkkhkkhkkhhhkkkhkhkhkdkkkkhkkdkkhhkhkhkdkdkhdkhkhkdkdkkkhkdkhkkkkkk

* INITIALIZATION COCE. ENTERELD AT START ADDR TO INITIALIZE.
* IT CLEARS LOCTaR, SETS UP THE Yc AND 'COUT' EXITS.
*
* AFTER EVERY 'RESET', MUST RESETUP WITH * Yc I .
Kk kkkk ke kkhh kkkkkkxkkkhkhhhhhhhkrhhhkhkhhhhhhrhhh khkkhhkrhhkhk* &k kx
a9 4C INITX LDAIM Xr4c’ JMP OPCODE
8D F8 ¢3 STA X'3F8' STUFF IN YC EXIT LOC
a9 7C LbAIM KEYIN/256 KEYIN: EI ACDRESS
8D Fa 83 STA X'3Fa’ STUFF INTC JMP
A9 EP LDAIM KEYINEX'FFP' KEYIN: LO ACDRESS
8D F9 @3 STA X'3F9' STUFF INTO JMP ALDRESS
A9 ¢ LDAIM %
A2 ‘dF LDXIM i5 INDEX IC LOCTABR END
9C 16 7O INITO¢ sTax LOCTAR CLEAR IT OUT
ca CEX S0 THERE ARE
12 Fa BFL INITYE NO EREAKPCINTS
*
: -—-—-- ENTER HERE AFTER RITTING 'RESET' KEY, PLEASE =-~- *
A% a5 CMCINIT LDaIM BREAK&255 EREAK: LO ADDRESS
85 36 STalZ CSWL STUFF INTO 'COUT' EXIT HOOK
a9 70 LDAIN PREAK/256 BREAK: HI ALDDRESS
85 37 STAZ CSWH STUFF INTO 'COUT' EXIT HOOK
4C 69 FF JMP MCN INIT CONE; BaACK TO MON.
END

isti - BREAKER Program f le II
Table 1 - BREAKER Command Summary Listing 1 K e or Apple

Function Notes on how to read the assembler listing:
A edd'greifpoint at location aaaa. A few of the syntax expressions allowed by my
on't allow you to add one over time-sharing cross assembler may appear cryptic.

an already existing breakpoint.

L} 3 i .
Maximum of 8 breakpoints allowed. Here's a key to their meanings:

' h
D Display all breakpoints. 1. All HEX numbers appear as X' rather than $

expressions.

I Initialize after RESET key. Just ; " n .
sets up 'COUT' exit again without 2. The ampersand (&) means logical "AND" thus:
resetting any breakpoints. KEYIN&X'FF'

R Remove breakpoint from location resolves to the low-order 8 bits of the KEYIN
aaaa. Restores original opcode. address.

At $190 for 16K, NOBODY can beat us!

G ET Som E co RE Full instructions included.

Now there's no excuse.

F O R CONTACT
YO U R n P P L E Microproce7sﬂsowreSli:omeaojt}evnitewSpec ialist

Springfield, IL 62707
217/529-2992

MIBR®



HOS 16K RAHW FOR THE APPLE II

Allen Watson III
430 Lakeview Way
Redwood City, CA 94062

MOS 16K dynamic RAM is getting cheaper. At the Many mail-order houses do not mention device
time of this writing, one mail-order house is speeds in their ads. The best thing to do is to
offering 16K bytes of RAM (eight devices) for deal only with those suppliers who specify
$120. Apple II owners can now enhance their speeds, but for those who didn't, the table
systems for less than the Apple dealers' price. below shows the codes used by some 16K dynamic
However, there is a potential drawback to the RAM manufacturers to indicate the speeds of
purchase of your own 16K RAM chips: speed. You their devices. Good luck, and caveat emptor!

may wonder why, since the Apple's 6502 CPU is
running at only about 1 MHz, but things aren't
quite that simple.

To begin with, the Apple II continually refresh-
es its video display and dynamic RAM. It does SPEED CODES USED BY 16K DYNAMIC RAM MANUFACTURERS
this by sharing every cycle between the CPU and
the refresh circuitry, a half-cycle for each.

This means that the RAM is being accessed at a Access Time (ns)
2 MHz rate. Manufacturer Part No. 150 200 250 300
That doesn't sound too fast, with the slowest AMD 9016 -F -E D -C

16K parts rated at 300ns access time; but you

have to remember that the RAM chips are 16-pin Fairchild F16K -2 -3 -4 -5
parts by virtue of a multiplexed address bus. _ - _

There are two address-strobe signals during each Intel 2t 2 3 4
memory access cycle, and the access-time specif- MOSTEK 4116 =2 -3 -4
ication will be met only if the delay between

these strobe signals is within specified limits. Motorola MCM4116C -15 -20 -25 =30
In the Apple II this delay is 140ns, which is .

too long. Furthermore, the Apple II timing National MM5290 -2 -3 -4
doesn't allow long enough RAS precharge or row- NEC MD416 -3 -2 -1
address hold time for the slow parts. Judg-

ing by the spec sheets, 200ns parts are prefer- TI 4116 -15 -20 =25
able to 250ns parts, and 300ns parts shouldn't .

be used at all. In éy Apple, 300ns parts caused Zilog 26166 -2 -3 -h

a zero to turn into a one once in a while.

IMPROVED STAR BATTLE SOUND EFFECTS

William M. Shryock, Jr.
P.0. Box 126
Williston, ND 58801

10 POKE 0,160: POKE 1,1: POKE
2,162: POKE 3,0: POKE 4,138
: POKE 5,24: POKE 6,233: POKE
7,1: POKE 8,208: POKE 9,252
: POKE 10,141

20 POKE 11,48: POKE 12,192: POKE
13,232: POKE 14,224: POKE 15
,150: POKE 16,208: POKE 17,
242: POKE 18,136: POKE 19,208
: POKE 20,237: POKE 21,96

30 CALL -936: VTAB 12: TAB 9: PRINT
"STAR BATTLE SOUND EFFECTS"

40 SHOTS= RND (15)+1

50 LENGTH= RND (11)%10+120

60 POKE 1,SHOTS: POKE 15, LENGTH:
CALL O

70 FOR DELAY=1 TO RND (1000): NEXT
DELAY

80 GOTO 40

This version can be used in low res. programs

without having to reset HIMEM. Also it can all
be loaded from BASIC.

VI IC]R IO g



«

PET

UPBATE

Gary A. Creightaon
625 Orange Street, No. 43
New Haven, CT 06510

I am writing this article because I'm tired of
seeing the same rehash of pseudo-facts being re-
peated about the PET. If I read one more time
about the small keyboard or the RND function not
working correctly...! As you will see, the 2001
has an extremely well designed Interpreter which
can be used effectively as subroutines either
from the SYS command, or the USR command. Par-
ameter passing will be revealed as an easy oper-
ation, and returning USR with a value is just as
simple. The RND function may be substituted
with a twelve byte USR program to make it com-
pletely random and non-repeating (as it stands,
it repeats every 24084 times through) and I will
show the use of negative arguments. Unfortun-
ately, RND(0) was apparently a mis-calculation
on Microsoft*'s part. They figured that ROM
empty locations would turn out to be more random
than the end product shows. They load non-exis-
tent memory locations into the RND store area
(218-222) thus causing a resulting RND value
which fluctuates between a few different values.
When ROM is finally installed in that area
(36932) the RND(0) will have the dubious quality
of being some fixed number.

RND FUNCTION USE

The RND function may be set at any time to exec-
ute a known series of RND #'s by using a known
negative argument just before RND with a posi-
tive one. The ability to have available a known
list of random numbers is very important in a
lot of sciences.

10 R=RND{(-1)

20 FOR X=1 TO 5

30 PRINT INT(1000%*RND(1)+1),
40 NEXT X

Gives the sequence: 736, 355, 748, 166,629

Since RND(-low#) gives such a small value, use
a negative argument in the range (-1 E10 to -1
E30) it you need one repeatable RND number with
a useful value, e.g., BRND(-1 E20)= .811675238.

Concerning the true random nature of RND and
it's ability to act randomly at all times; time
must be combined with RND. This is possible
with a RANDOMIZE subroutine or faster still, re-
doing RND{(+) with a USR routine.

10000 REM (RANDOMIZE)

10010 R1=PEEK(514) : R2=PEEK(517)
10020 POKE 220, R1 : POKE 221, R2
10030 RETURN

This routine may be used at program initializa-
tion and as the program halts for an INPUT. It
will start a new sequence of RND numbers when-
ever called.

When the computer does a sequence without inter-
vention, the following USR program is suggested
which will return a truly random number quickly;
without repeating.

10 REM (TRUE RND USING USR FUNCTION)
20 POKE 134,214 : POKE 135,31 : CLR
30 FOR X=8150 TO 8165

40 READ BYTE : POKE X, BYTE

50 NEXT X

60 DATA 173,2,2,133,220,173,5,2,133,221,76
65 DATA 69,223,0,0,0

70 POKE 1, 214 : POKE 2, 31

MACHINE LANGUAGE STORING IN BASIC

When using machine language, always precede
storing by setting up BASIC's upper boundary.
This is done by:

POKE 134, ITEM : POKE 135, PAGE : CLR
e.g. POKE 134, © : POKE 135, 25 : CLR
sets upper boundary to 6400 and BASIC use will
be confined to 1024 to 6399 unless reset or
turned off.

You can use the following program for storing
decimal. Changing INDEX to 10000 to appropriate
position and typing in DATA lines in 100 to
9997.

REM ("MACHINE STORE")
REM WRITTEN BY GARY A. CREIGHTON, JULY 78
REM ( SET INDEX=ORIGIN IN LINE 10000 )

3 N —= O

15 REM FIX UPPER STRING BOUNDARY
20 GOSUB 10000

25 X=INDEX / 256

30 PAGE=INT(X)

35 ITEM=(X-PAGE)* 256

40 POKE 134, ITEM

45 POKE 135, PAGE

50 CLR

55 :

60 REM LOAD MACHINE LANGUAGE

65 GOSUB 10000 : LOC=INDEX

70 READ BYTE : IF BYTE<O THEN END
75 POKE LOC, BYTE

80 LOC=LOC+1 : GOTO 70

85 :

90 REM MACHINE LANGUAGE DATA

100 DATA

9997 DATA

9998 DATA 0,0,0,-1

9999 :

10000 INDEX=(START GF MACHINE LANGUAGE)
10010 RETURN

USR PARAMETER PASSING

The following are parameter passing rules for
the USR function and should be added to the
"MACHINE STORE" program.

0 REM ("USR(0 TO 255)™)

46 POKE 1, ITEM

48 POKE 2, PAGE

100 REM (USR INPUT 0-255; OUTPUT 0-255)
110 DATA 32,121,214 : REM JSR 54905

120 DATA (Your program using input value)

5000 DATA (Setup output value in Accum.)
5010 DATA 76,245,214 : REM JMP 55029
10000 INDEX 6400

[]g][](giﬂ;](:) 7:13



OR

0 REM ("USR(0 TO 65535)")
U6 POKE 1, ITEM
U8 POKE 2, PAGE
100 REM (USR INPUT 0-65535;0UTPUT 0-65535)
110 DATA 32,208,214 : REM JSR 54992
(Note: Check if 0-65535. RTS with:
Y and M(8)= ITEM
A and M(9)= PAGE
120 DATA (Your program using 2 byte passed
value)

DATA

5000 (Setup output vlaue ITEM in Y;
PAGE in A)
5010 DATA 132,178 : REM STYZ 178
5020 DATA 133,177 : REM STAZ 177
5030 DATA 162,144 : REM LDXIM 144
5040 DATA 56 : REM SEC
5050 DATA 76,27,219 : REM JMP 56091
(Setup output value and RTS)
0 REM ("SAVEM")
100 REM ERAM=31 (or last page of RAM on
110 DATA 32,200,0 : REM JSR 200
120 DATA 208,3 : REM BNE OVER
130 DATA 76,158,246 : REM JMP 63134
OVER 140 DATA 32,17,206 : REM JSR 52753
150 DATA 32,164,204 : REM JSR 52388
160 DATA 32,208,214 : REM JSR 54992
170 DATA 132,247 : REM SYTZ 247
180 DATA 133,248 : REM STAZ 248
190 DATA 170 : REM TAX
200 DATA 152 : REM TYA
210 DATA 208,1 : REM BNE OVR2
220 DATA 202 : REM DEX
* OVR2 230 DATA 136 : REM DEY
240 DATA 132,80 : REM STYZ 80
250 DATA 134,81 : REM 3TXZ 81
260 DATA 169,173 : REM LDAIM 173
270 DATA 133,79 : REM STAZ 179
280 DATA 169,96 : REM LDAIM 96
290 DATA 133,82 : REM STAZ 82
300 DATA 32,200,0 : REM JSR 200
310 DATA 201,44 : REM CMPIM 4y
320 DATA 208,3 : REM BNE QVR3
330 DATA 32,194,0 : REM JSR 194
QVR3 340 DATA 32,511,244 : REM JSR 62515
AGAIN 350 DATA 230,80 : REM INCZ 80
360 DATA 208,2 : REM BNE OVRY4
370 DATA 230,81 : REM INCZ 81
OVRL 380 DATA 32,79,0 : REM JSR 79
390 DATA 208,27 : REM BNE CHEND
400 DATA 160,1 : REM LDYIM 1
410 DATA 177,80 : REM LDAIY 80
420 DATA 208,21 : REM BNE CHEND
430 DATA 200 : REM INY
440 DATA 177,80 : REM LDAIY 80
450 DATA 208,16 : REM BNE CHEND
460 DATA 24 : REM CLC
470 DATA 165,80 : REM LDAZ
480 DATA 105,4 : REM ADCIM
490 DATA 13
460 DATA 24 : REM CLC
470 DATA 165,80 : REM LDAZ 890
480 DATA 105,4 : REM ADCIM &4
490 DATA 133,299 : REM STAZ 229
500 DATA 165,81 : REM LDAZ 81
510 DATA 105,0 : REM ADCIM O
520 DATA 133,230 : REM STAZ 230
530 DATA 76,177,246 : REM JMP 53153

The input parameter may be any complex express-
ion and you can of course:

input 0-255 and output 0-65535, or
input 0-65535 and output 0-255.

SAVE MACHINE LANGUAGE AND LOAD DIRECTLY

The reason for the 0,0,0 at the end of the pre-
ceding machine language programs is that the
saving routine described next SAVES machine
language until 0,0,0 or an ERROR 1is printed.
After it has been saved in this way, it may be
LOADED and VERIFIED with little effort.

Add to "MACHINE STORE"™ program (all assembly is
in decimal).

your PET)

check if : or end of line

jump 'SAVE' if SYS 8000 only
check if ',?

analyze arithmetical argument
check if 0-65535

tsave from' item

'save from' page

back up 1

initialize CHK pointer item
initialize CHK pointer page
LDA instruction in 0079

RTS instruction in 82

check if ',' before filename
move code pointer over ',!
get options for "SAVE!

add 1 to CHK pointer

look at next CHK code

check for 0,0,0

'save to' item

'save to' page
complete 'SAVE'

WIBAY .



CHEND 540 DATA 165,81 : REM
550 DATA 201,31 : REM
560 DATA 240,10 : REM
570 DATA 144,210 : REM
580 DATA 32,184,31 : REM
590 DATA 162,85 : REM
600 DATA 76,108,195 : REM
CHKNF 610 DATA 165,80 : REM
620 DATA 201,253 : REM
630 DATA 144,196 : REM
640 DATA 32,184,31 : REM
650 DATA 160,40 : REM
- 660 DATA 76,133,245 : REM
END 670 DATA 169,13 : REM
680 DATA 32,234,227 : REM
690 DATA 169,63 : REM
700 DATA 32,234,227 : REM
710 DATA 169,69 : REM
720 DATA 32,234,227 : REM
730 DATA 169,78 : REM
740 DATA 32,234,227 : REM
750 DATA 169,68 : REM
760 DATA 32,234,227 : REM
770 DATA 96 : REM

LDAZ 81

CMPIM ERAM

BEQ CHEKNF check: 'not found' if last
BCC AGAIN 1look at next if less than
JSR END
LDXIM 85
JMP 70028
LDAZ 80
CMPIM 253
BCC AGAIN again if enough room

JRS  END
LDYIM L0
JMP 62853
LDAIM 13
JSR 58346
LDAIM 63
JSR  583U46
LDAIM 69
JSR  583U46
LDAIM 78
JSR 58346
LDAIM 68
JSR 58346 "?END"
RTS

("?END) NOT FOUND ERROR"

("?END) NOT FOUND ERROR"™

780 REM (FORMAT: SYS 8000,INDEX,"FILENAME",DEVICE#,I/0 OPTION)

After typing and saving normally, type RUN when
READY. Save "SAVEM" using itself to save itself
by typing:

SYS 8000,8000, "SAVE(SYS 8000)"
when READY., REWIND TAPE #1 and type:
VERIFY "SAVE(SYS 8000)"

MACHINE LANGUAGE LOAD PROCEDURE
After SAVEing machine 1language, you have the

capability of LOADing directly if you follow
these rules.

IF OK THEN RUN 6

Loading machine language before BASIC program:

LOAD "machine language name"

NEW

A=PEEK(247) :B=PEEK(248)

POKE 134,A :POKE 135,B

POKE 1,A :POKE 2,B (only if USR, not SYS)
CLR ’

Then LOAD BASIC Program.

Loading machine language from BASIC program:

OK=-1 : PRINT "PRESS REWIND ON TAPE #1"

0

1

2 WAIT 519,4,4

3 WAIT 59411,8,8

4 WAIT 59411,8

5 LOAD "machine language name™
6 A-PEEK(247) : B=PEEK(248)
7 POKE 134,A

8 POKE 1,A

9 CLR

1

: POKE 135,B
: POKE 2,B :

: REM wait til stop if play down but not motor
: REM wait til key on cassette pushed
: REM wait til stop on cassette pushed

REM (only if USR, not SYS)

0 REM (BEGIN BASIC PROGRAM, MACHINE LANGUAGE LOADED)

VIIICIRIO NESE



THE ULTIMATE FOR PET -.

EXS100 - S100 ADAPTER

FLOPPY DISK CONTROLLER

The EXS100 is both a S100 ADAPTFR and a FLOPPY DISK CONTROLLER on a single board

The EXS100 can be used to interface the PEF* to the S100 BUS, making available the seemingly

: P . N . * :
infinite amount of S100 accessories ....... using the PET” memory expansion connector.

The EXS1CO board has a complete FLOPPY DOSK CONTROLLER on-board all set up ready to contral

up to three mini-floppy disks.

5100 ADAPTER - $ 195 =  ASSEMBLED TESTED

The EXS100 board built as a stand alone S100 BUS Adapter. (Floppy Disk Controller parts missing)
Ready to plug into any S100 mainframe to expand the PET*.

FLOPPY DISK PACKAGE-$ 695 -

The EXS100 board, cable to the PET, SA400 MINI-FLOPPY DISK DRIVE, Power Supply, and Cabinet..

A Disk System all ready to go, a disk system that can be later expanded into a full S10C Mainframe.

S100 VMIAINFRAME,DISK -$ 990 -

The EXS100 board installed in a CGRS S100 Mainframe. Complete with S100 Power Supply, and

a SALOO MINI-FLOPPY DISK DRIVE installed in the cabinet. This system is not only 2 Disk (G G n S MICRDTECH
System but a complete Si00 Mainframe ready to accept more RAM,ROM,Printer,the works P.0. Box 368
SouTHAMPTON, PA. 18966

C -
* TRADEMARK OF COMMODDRE 215) 757-0284

VIIIGIRIO

SUBSCRIPTION AND RENEWAL INFORMATION

If you are a subscriber to MICRO, then the code

following your name on the mailing label is the Name: .

number of the last issue your current subscrip-

tion covers. If your code is 07, then this is Addr: .

your last issue. MICRO will NOT send out

renewal notices. So, if your number is coming City:

up, get your subscription renewal in soon. and, .
please check your label for correct address and State: . . . . . . . . . . Zip:

notify us of any corrections or changes.

Country:
MICRO is currently published bi-monthly. The
first issue was OCT/NOV 1977. The single copy Amount: $ . . . . . . . . Start MICRO #:
price is $1.50. Subscriptions are $6.00 for six
issues in the USA. Six issue subscriptions to Send payment to:
other countries are listed below.
[Payment must be in US $.] MICRO, P.0. Box 3, S. Chelmsford, MA 01824, USA
Surface: Canada/Mexico $7.00 Your name and address will be made available to
All other countries $8.00 legitimate dealers, suppliers, and other 6502
interests so that you may be kept informed of
Air Mail: Europe See European Distributor Rates new products, current developments, and so fcrth
South America $14.00 - unless you specify that you do not wish your
Central America $12.00 name released to these outside sources.
All other countries $16.00

— WIBRA® 71



6502 INTERFACING FOR BEGINNERS;
THE CONTROL SIGNALS

Marvin L. De Jon
Dept . of Math-Physics
The School of the Ozarks
Pt. Lookout, MO 65726

By now your breadboard should look like a rat's
nest so we shall add just a few more wires. So
far you have used several decoding chips to pro-
duce device select pulses (also called chip sel-
ects, port selects, etc.) These pulses activate
a particular I/0 port, memory chip, PIA device,
interval timer or another microcomputer compon-
ent. Almost all of these components must "know"
more than that they have been addressed. They
must know if the microprocessor is going to READ
data from them or WRITE to them. The R/W con-
trol line coming from the R/W pin on the 6502
provides this information. It is at logic 1 for
a READ (typically LDA XXXX) and at logic 0 for
a WRITE (typically STA XXXX).

If you have ever tried to wrap your mind around
timing diagrams for microcomputer systems you
soon realize that system timing is also import-
ant. Suppose that a memory chip is selected by
a device select pulse. A 21L02 chip, after
being selected, must decode the lowest 10 add-
ress lines itself to decide which of its 1024
flip-flops will become the output data. This
takes time, so the data at the output pin is not
ready instantaneously. The 6502 simply waits
for a specified amount of time, and at the end
of this period it reads the information on the
data bus. If the access time of the chip is too
long, the 6502 will read garbage; otherwise it
will get valid data.

Likewise, during a WRITE cycle, the microproces-
sor brings the R/W line to logic 0, selects the
device which is to receive the data, and at the
end of a cycle it signals the divice to read the
data which the 6502 has put on the data bus.
The signal which successfully concludes both a
READ and a WRITE instruction is the so-called
phase-two clock signal symbolized by 0. . In
particular, it is the trailing edge (positive to
zero transition) of this signal which is used.

All the timing for the microcomputer is done by
the crystal oscillator on the microcomputer
board and the clock circuitry on the micropro-
cessor itself. A clock frequency of 1 MHz pro-
duces a machine cycle of 1 microsecond in dura-
tion. Near the beginning of the cycle the ad-
dress lines change to select the divice which
was addressed, and the R/W goes to logic 1 or
logic 0 depending on whether a READ or a WRITE
was requested. If a READ was requested, some
device in the system responds by putting data on
the data bus. Typically this happens during the
second half of the cycle when 0 is at logic 1.
Finally, at the end of the cycle, but before the
address lines or the R/W line have changed, Og
changes from logic 1 to logic 0, clocking the
data into the 6502. The same kinds of things
happen during a WRITE cycle, except that now the
external device uses the trailing edge of the Qg
signal to clock the data, while the 6502 puts
the data on the bus at a slightly earlier time
in the cycle. For details refer to the 6502

HARDWARE MANUAL.

The circuits you have built so far, together
with a few more chips, will demonstrate the eff-
ect of the control signals. Refer to Figure 1
of the last installment of this column (MICRO,
Issue 6, p. 30), and to Figure 1 of this issue.
You will see the LS145 and the LS138 have not
been changed too much, in fact all of the zonn-
ections to the L3145 should stay the same. The
device select pulse from the LS145 goes to G24

as before, but another signal goes to G2B in the
new Figure 1. For the moment disregard the low-
er LS138 and LS367 in Figure 1 of this issue.
The new signal to G2B of the LS138 is our WRITE
signal. It is produced by NANDING the W/W sig-
nal with 0z and it is an active-low signal. On
the KIM-1 it is called RAM-R/W and is available
on the expansion connector. Most other 6502
systems will very likely also have a RAM-R/W
signal.

Its effect in Figure 1 is to inhibit the device
select pulse from the LS138 whenever the R/W
line is high (during all READ instructions),
but to allow the device select pulse to occur
when the R/W line is low and 0, is high. Thus,
the top LS138 in Figure 1 selects output ports
only, and the device select pulse from it term-
inates on the trailing edse of the 0g, producing
a logic 0 to logic 1 transition simultaneously
(almost) with Og. This pulse is inverted by the
LS04, Consequently, a WRITE instruction pro-
duces a positive pulse at the G inputs of the
LS75 whose duration is about 1/2 microsecond and
whose trailing edge coincides with 0,.

The 74LS75 is a U4-bit bistable latch whose Q
outputs follow the D (data) inputs only when the
G inputs are at logic 1, in other words during
the device select pulse from the LS04 inverter.
The trailing edge of this pulse latches the Q
outputs to the value of the D inputs during the
device select pulse. If you had a great deal of
trouble following this, you may want to check
the reverse side of this page to make sure there
is nothing valuable on it and then destroy this
by burning or shredding! Otherwise proceed to
to the experiment below.

Connect the circuit shown in Figure 1, omitting
for the time being the lower LS138 and the
LS367. You can also omit the connection of add-
ress line A3 to G1 on the top LS138 if G1 is
connected to +5V as was indicated in the last
issue. In other words, simply add the LS04 and
the LS75 to your circuit of the last issue. The
RAM~-R/W signal must also be generated if your
6502 board does not have one. Simply use one
inverter on the LS04 to invert the R/W signal to
R/W, then NAND it with the 0 , and run the out-
put of the NAND gate to the G2B pin on the LS138.

The address of the device is 800F if the connec-
tions are made as shown in the figure. If other
pins on either the LS145 and/or the LS138 are
changed the address will be different. The
switches shown connected to the D inputs may be
implemented with a DIP switch or jumper wires.
An open switch corresponds to a logic 1 while a
closed switch is logic 0. Set the 4 switches to
any combination then load and run the following
program:

0200 8D OF 80 STA DSF.
The LEDs should indicate the state of the
switches. 1If you add the statements

0203 4C 00 02 JMP START

then you should be able to change the switches
and the LEDs will follow the switches. Try sub-
stituting an AD OF 80 (LDA DSF) for the 8D OF 80
instruction. Nothing should happen, even though
the same address is being selected, because on
LDA instruction the R/W line is high, inhibiting
the LS138 from producing a device select. Fin-

VIIICIRIO A



ally, connect the data lines D0-3 from the 6502
to the D-inputs of the LS75, making very sure
that the LS145 is de-selecting other locat-
ions. On the KIM-1 this means that pin 1 of the
LS145 is connected to pin K on the application
connector and pin 9 of the LS 145 is connected
to pin J. The appropriate pull-up resistors
must also be added. With the data lines conne-
cted run the following program:

LDAIM $04
STA DSF.

0200 A9 04
0202 8D OF 80

Play around with different numbers in LDAIM ins-
truction and explain your results. If nothing
seems to make sense, it may be that your data
lines need to be buffered, a topic we will take
up next 1issue. If your results make sense you
will have discovered that we have configured a
4-bit output port whose address is 800F. Adding
another LS75 to connect to data lines D4-D7 and
whose G connections also go to the output of the
LS04 will give an 8-bit output port. Seven
other output ports, addresses 8008 through 800E,
could be added using the other device select
signals from the LS138, LSO4 inverters, and LS75
latches.

If you want to make an input port wire the cir-

don't have much more room on your circuit board
you might want to simply reconnect the upper LS-
138 to become the lower LS138. A couple of con-
nections do the trick. Set the switches to any-
thing you like and run the program below.

KIM-1 users should see the hex equivalent of the
switch settings appear in the right-most digit
on the display. Owners of other systems can
omit the last two lines of the program, stop it,
and examine the location 00F9 to see that the
lowest four bits agree with the switch settings.
Experiment with other switch settings to make
sure that everything is operating correctly.

The completed circuit of Figure 1 gives one 4-
bit output port (provided the data lines are
connected to the D inputs of the LS 75) and one
j4-bit input port, addresses 800F and 8007 resp-
ectively. These two ports are easily expanded
(two more chips) to become 8-bit ports. Like-
wise the circuit of Figure 1 could be expanded
to give a total of eight 8-bit input ports and
eight 8-bit output ports.

Next issue we will look at a slightly different
input port, and we will look in more detail into
three-state devices and the data bus. You may

cuit for the lower LS138 in Figure 1. If you want to keep your circuit together until then.
0200 AD 07 80 START LDA DS7 Read input port data
0203 85 F9 STA DISP and store it in location QOF9.
0205 20 t{F 1F JSR SCANDS Jump to KIM display subroutine.
0208 u4C 00 02 JMP START Repeat program.
T'F.’W Tv—sv
/ 5
Ao > A
7 A L s OUTPUT PORT
2 Y7 'y |
Al B> 8 o o715
LS/38
3 AN 2|00 Qo|/6 (ﬂ{‘
A2>~ V4 Y
A3>> 6l N 3o Qs (N
+5V Y
Q § N\ élpz @zlro_ (X
/6] —Ojzé U
10 8 AN 2o @32 /;;X’
A3>A GZA \~
L3/45 5 /Z
R aIe = |
/6
c
AI5>‘\ LLAGZA 1S367
<i7 : LIy
2 Y7
INPUT FPORT
| L38/38
e e N\ 2 21> 00
SO 5 <
4
Ship .. N~ TR o,
e N é 7 1>p2
8 AN 10 7
- > > D3

Figure 1.
port interface for the 6502.

A four-bit input port and output

MIBRAG® 7.1



,‘»“-iiy:;;‘

650X DPCODE SEQUENCE MATCHER

J. S.

Green

807 Bridge Street
Bethlehem, PA 18018

The motivation for writing this program stemmed
from the fact that I have two machine code ver-
sions of the same 650X assembler (ASM65 by Wayne
Wall, dated 1 May 77 and 13 Jun 77 respectively)
but I only have a listing of the older version.
Both are just short of 4 K bytes long. I wished
to make some local changes to the newer version
and therefore needed to establish a means of
correspondence between it and the 1listing. A
disassembler is helpful here but not adequate
because of discontinuities in the two codes
which make forward references very difficult to
correlate manually.

I felt that when a program has been heavily mod-
ified, many opcode sequence segments whould rem-
ain constant even while their respective oper-
ands differ.
program that would correlate and point to par-
allel sequences of opcodes.

Several assumptions were made in order to sim-
plify the programming task. It was presumed
that the basic order of appearance of major por-
tions of the code would be the same since there
seemed to be little advantage in shuffling the
deck, as it were. Also, in order to minimize
the effect of spurious matches, it was decided
that only significant sequences need be reported
and that no portion of the code would be report-
ed as a match more than once. This position
saves the program, for example, from reporting
every possible LDA,STA opcode sequence pairing
(or even all of those of the same address mode).

Process Description

As written, the scanning process of the matching
program starts at the beginning of the two code
strings, A and B, to be examined. Both initial
positions are assumed to contian opcodes. An in-
dex or pointer to the B string is, in effect,
moved along B, from opcode to opcode, until a
match with the current A string opcode is found.
If no match is found before the B list is ex-
hausted, the A pointer is moved to the next A
opcode position while the B pointer is reset to
its previous starting point. This general proce-
dure 1s repeated until the A list is exhausted,
at which time the program terminates.

When a match is found, both pointers are moved
together along their respective lists, from
opcode to opcode, until the opcodes fail to
match each other, If the matching sequence
is significantly long the size and the start
and end of both segments is displayed. The
search for additional matching segments is res-
umed from the end of the just-reported segments
so that their opcode elements cannot be matched
more than once.

If the completed sequence is not significant, it
is not displayed and the search is resumed from
where the short sequence began, as 1if there
had been no match at all.

The definition of significance refers to the
minimum acceptable number of matching codes in a
continuous sequence. The particular values used
are left to the user. While our experience has
shown a minimum value of eight to be useful, the
actual values should reflect the length of the
code being examined and the degree to which it
has been hacked up.

The effect of a too-low significance value often
results in a fewer number of matches being rep-

Therefore, what was needed was a

orted, rather than more as one might expect.
This is because a spurious match of short segm-
ents can have the effect of masking out longer
possible matches which would use the same code
items were they still available.

Operation

To operate the opcode matching program both
lists of code must be in memory. They may be in
ROM. They need not be at their operating addr-
ess. (Indeed, if they have the same address at
least one must be somewhere else anyway). Since
the matching program reports storage, rather
than operating addresses it is useful to choose
storage addresses that have some degree of corr-
espondence to the operating addresses, e.g.,
code operating at $21E3 might be stored at
$U1E3.

Enter initial values (all in hex LO,HI) as fol-
lows:

$0000,01 Significance value
$0002,03 Start of list A
$0004,05 Start of list B
$0006,07 End of list A
$0008,09 End of list B

Only the starting address will be modified dur-
ing program execution. The program will init-
ially assume that the value at the start locat-
ion is an opcode.

To run the program enter at OPMACH. As written,
it will terminate by jumping to the monitor from
ENDQO1. The routine may be made into a subrout-
ine by placing an RTS here.

Since the program cranks the data a lot, there
will be what seem to be long pauses between out-
puts. The program requires about 2 minutes to
compare the aforementioned assemblers.

Results

Several sets of results, using significance val-
ues of $06, $08 and $0A are shown below. In ord-
er to have both versions of code resident at the
same time, it was necessary to store one ver-
sion, at address $4000.

About 64 percent of the code of the two versions
of the assembler correlate when a significance
value of 8 is used. This is a reasonable per-
centage when one considers the fact that the
non-significant, non-reported, sequences are
easily identified since they lie in the same
relative position between reported sequences.

An extensive manual comparison of the two code
sets was made. (So much for the work-saving as-
pects of the program!) No false matches were
identified when a significance value of 8 was
used.

Variations for Text Processing

Interesting variants of the program are pos-
sible. By altering or replacing the list point-
er increment routines, AINC and BINC, the nature
of the list pointer incrementation may be chang-
ed from the current conditional increment based
on opcode to some other condition or to a con-
stant such as plus one.

With a constant increment of one, the matching
program may be used to compare sequences of any

MAI8RAY ;..



textural material in a somewhat crude, one for
one fashion.

By having separate increment subroutines when
seeking to locate the start of a matching seg-
ment in contrast to the incremental routines
used when "running-out" a sequence, some fairly
powerful text processing capabilities may be ob-
tained at little additional cost. For example,
when seeking to locate matching segments in nat-
ural language text, we might wish to start with
the initial character of alphabetic strings,
i.e., words. Therefore, by incrementing past
all non-alphabetic characters to the next alpha-
betic character we can both speed up the process
and insure that our sequences start with (what
we have operationally defined as) words.

separate) within sequence increment routines to
ingore, (i.e., increment past)) any non-alphabet-
ic characters such as control characters, num-
bers, punctuation or whatever we like. Thus we
are able to obtain a far more flexible and hope-
fully more useful definition of a matching segq-
uence.

Conclusions

The general techniques illustrated here are both
effective and useful. The conditional matching
approach has not been fully explored, but it is
clear that it has interesting possibilities in
the area of text processing. In the present
application, correlating two lenghty strings of
machine code, the approach made practical what
otherwise would have been a difficult and dull
task.

Similar techniques may be employed in the (now
; **** OPCODE SEQUENCE MATCHER ***=
; VERSION 1.64. 18 AUG 78
i COPYRIGHT, 1978
H COMMERCIAL RIGHTS RESERVED
; EXCEPT AS NOTED BY

J. S. GREEN.

(215)

COMPUTER SYSTEMS
887 BRIDGE STREET

BETHLEHEM. PA
867-0924

18018

NOTE: THE BYTCNT SUBROUTINE IS FROM
H. T. GORDON IN DDJ.
(COPYRIGHT BY PEOPLE'S COMPUTER COMPANY)

#22 P.5.

.LOC S0049
; USER DEFINED VARIABLES (LO,HI)
0900 00 99 SIGNIF: .WORD ;SIGNIFICANCE
0002 vo 920 ABASE: .WORD ; START OF LIST A
#9384 v 00 BBASE: .WORD s START OF LIST B
0996 49 8o AMAX: .WORD sEND OF LIST A
poo8 v 00 BMAX: .WORD ;END OF LIST B8
H OTHER PROGRAM VARIABLES
puda 69 Ve APOINT: .WORD ;LIST A POINTER
ppOC vo 2v BPOINT: .WORD ;LIST B POINTER
0I0E 06 00 ASAVE: .WORD ;LIST A SEQUENCE START
poly ©0 60 BSAVE: .WORD ;LIST B SEQUENCE START
0812 @g 00 COUNT: .WORD ; SEQUENCE COUNTER
7 EXTERNAL SUBROUTINES (IN KIM)
.DEF START=$1C4r JMONITOR RETURN POINT
.DEF CRLF=S$1lE2F ; CARRIAGE RETURN
.DEF OUTCH=$1EA®D ;DISPLA A CHAR
.DEF PRTBYT=$1E3B ;DISPLA HEX BYTE
.DEF OUTISP=S1ESE ;DISPLA A SPACE
.LOC 50200
02080 28 2F 1E OPMACH: JSR CRLF
0283 A2 29 LDX# $29 ;SIGN + HEADER COUNT
0205 BD 4F ¥3 OPMCHl: LDAX SIGN ;DISPLAY HEADER
6208 24 AD 1E JSR ouTcH
0288 CA DEX
p24C 10 F7 BPL OpPMCHI
828E A5 9l LDA SIGNIF+1
8218 20 3B 1lE JSR PRTBYT ;DISPLAY SIGNIF HI
0213 A3 v LDA SIGNIF
#4215 26 3B 1lE JSR PRTBYT ;DISPLAY SIGNIF LO
0218 29 2F 1k JSR CRLF
0218 20 38 93 JSR BASPANT s POINTERS=2A3ES

MIBA® 7«



21lE
0220
222
¥224
8226
8228
B22A
822D
022F
231
9233
235
8237
0239
9238
023D
B23F
0249
0242
p244
246
0248
B24A
B824C
024E
0250
8252
0254
8256
2258
925A
¥25C
B25E
8268
6262
0265
2263
U26A
826C
D26E
0279
0271
8273
w275
6277
8279
p27B
827D
V289
8283
6286
0238
428B
928D
028F
2291
2293
2296
6299
829C
8290
029r
v2al
D223
02A5
02a7
22ay
82AC

0 2AF

02B1
2284
£2B7

18

g2
02

92
83
82

B3

02

a2

43
b2

g3
02
1cC

DO1l:

IF1:

THEN1:

THN1A:

DO2:

EXP21l:

EXP22;:

ENDO2:
IF2:

THENZ2:

ELS2:

ENDIF2:
ELSL:
ENDIF1:
IF3:

THEN3:

ENDIF3:
ENDOL:

LDA ABASE+1
CMP AMAX+1
BMI IFl

LDA ABASE
cMP AMAX
BMI Irl

JMP ENDO1
LDX# @

LDAX&@ APOINT
CMPX@ BPOINT

SNE ELS1
STX COUNT
STX COUNT+1
LDX# 3

LDAX ApOINT
STAX ASAVE

DEX
BPL THN1A
LDX# @

LDAX@ APOINT
CMPX@ BPOINT

BNE ENDO2
LDA APQOINT+1
CcMmp AMAX+1
BMI EXP21
LDA APOINT
CMP AMAX
BPL ENDC2
LDA BPOINT+1
CMp BMAX+1
BMI EXP22
LDA BPOINT
cMP BMAX
BPL ENDOZ2
JSR AINC
JSR BINC
INC COUNT
BNE D02

INC COUNT+1
BNE D02

NOP

LDA CCUNT+1
CMP SIGNIF+1
BMI ELS2
LDA COUNT
CMp SIGNIF
BMI ELS2
JSK REPORT
JSR PNTBAS
Jue ENDIF2
LDX# 1

JSR BASPT1
LDA BSAVE
STA BPOINT
LDA BSAVE+1
STA BPOINT+1
JSR BINC
JMp ENDIF1
JSK BINC
NOP

LDA BPOINT+1
cMmPp BMAX+1
BMI ENDIF3
LDA B8POINT
cMp BMAX
BMI ENDIF3
JSR BASPNT
JSR AINC
LDXs 1

JSR PNTBS1
JMPp DO1

JmPp START

;BR IF WHOLE JOB NOT DONE

;BR IF WHOLE JOB NOT DONE
;HERE IF WHOLE JOB DONE
; DOES CURRENT PAIR MATCH-

;BR IF NOT THE SAME
;HERE ON SAME
;CLEAR THE COUNTER

;s SAVES=POINTERS

;DO TILL NOT THE SAME

;BR IF NOT THE SAME

;BR IF LESS THAN

;BR TO ENDO

;BR IF LESS THAN

;BR TO ENDO IF LIMIT REAC
;MOVE A POINTER TO NEXT A
sMOVE B POINTER TO NEXT B

;BR ALWAYS TO TOP OF DO

HED

0pPCODE
OPCODE

;A WASTED BYTE FOR “STRUCITURE"

sBR IF NOT SIGNIF

;HERE ON SIGNIF. OUTPUT R
; POINTERS=BASES’

;APOINT=ABASE

;ANOTHER SOP TO "STRUCTUR
;BR IF NOT DOCNE

;BR IF NOT DONE

VIILIC IR IO IER

ESULT



SUBROUTINES FOLLOW

MOVE TO NEXT A OPCODE

P me e e e

02BA A2 09 INC: LDX# @
62BC ALl BA LDAXE APOINT ;GET OPCODE
02BE 20 E2 92 JSR BYTCNT ;CALCULATE SIZE
p2Cl 8aA TXA ; RESULT RETURNED IN X
g2Cc2 1§ CLC
82C3 65 dA ADC APOINT ;ADD RESULT TO POINTER
¥2C5 85 9A STA APQINT
p2C7 A> ¢B LDA APOINT+1
B2CY 69 00 ADC# @
@2CB 85 @B STA APOINT+1
62CD 69 RTS
H MOVE TO NEXT B QPCODE
D2CE A2 vd BINC: LDX# ¥
02D9 Al 6C LDAX@ BPOINT ;GET OrCOLE
0202 20 E2 82 JSR BYTCNT ;CALCULATE SIZE
9205 8a TXA ;RESULT RETURNED IN X
62ce 138 CLC
62D7 65 BC ADC BPOINT ;ADD RESULT TO POINTER
p2D9 85 8C STA BPOINT
62DB A5 ¢D LDA BPOINT+1
82DD 69 0o ADC# @
P2DF 85 @D STA BPOINT+1
@2EL1 69 RTS
H CALCULATE SIZE OF OPERAND (+1)
; BY H. T. GORDON (SEE DDJ #22. P.5S)
02E2 A2 8l BYTCNT: LDX# 1
02E4 2C EB8 §2 BIT BYTCNT+6 ;TEST BIT 3
02E7 DO 08 BNE HAFOP ;ALL X (8-F)
@2E9 C9 28 CMP% 520
@2EB F@ QE BEQ THREE ;ONLY $22
62ED 29 9F AND# S9F ;BITS 5.6 OUT
Y 2EF DY ¢B BNE TWO yALL EXCEPT (8.4.6)9
P2F1 29 15 HAFOP: AND# S$15 rRETAINS ONLY BITS ¥.2.4
P2F3 CY 61 CMpd 1
@2F5 FO @5 BEQ TWO ;X (9.B)
82F7 29 #5 AND# 5 ;BIT 4 OCT
B2F9 FO 92 BEQ ONE ;x(8,A) AND (9.A,0)0
¥2FB ES8 THREE: INX ;RESID. X {(9-F)
v2FC ES8 TWO INX
B2FD 60 ONE: RTS
; DISPLAY SIGNIFICANT SEQUENCE LIMITS
B2FE A2 21 REPORT: LDX# 1
p39® BS 12 REPT1: LDAX COUNT ;OUTPUT EXTENT OF MATCH
9302 286 3B 1lE JSR PRTBYT
9305 CA DEX
g32¢6 1d F3 BPL REPT1
H OUTPUT MULTIPLE SPACES
2308 20 31 83 JSR OoUuTsp4 ; FOUR SPACES
P30B A2 00 LDX# @
938D B5 @F REPTZ: LDAX ASAVE+l ;O00TPUT START AND
A30F 20 3B 1lE JSR PRTBYT ; END ADDR OF
9312 B5 QE LDAX ASAVE ; BOTH SEGMENTS
8314 26 3B 1lE JSR PRTBYT
w317 28 34 93 JSPR QUTSP2
631A BS5 0B LDAX APOINT+1
p31C 2¥ 3B 1lE JSR PRTBYT
g31F BS A LDAX APOINT
0321 24 3B 1lE JSR PRTBYT
p324 20 31 83 JSR OoUTspP4
6327 EB INX
0328 E8 INX
9329 E¢ @3 CPx# 3
2328 30 EO BMI REPT2
932D 20 2F 1lE JSR CRLF
83390 69 RTS

IVHIICIRIO s

~
N



8331
6334
8337
B33A

633B
933D
633F
8341
9342
0344

0345
347
345
434B
034C
¥ 34E

p34F
0350
9351
0352
9353
0354
8355
0355
357
08358
3359

635A
6358
035C
935D
02SE
035F
6360
0361
0362
0363
9364
9365
8366
0367
0368
9369
036A
6368
036C
836D
836E
036F
0370
8371
0372
0373
0374
9375
8376
9377
6378

20
20
20
60

-29

3D
290
46
49
4B
47
49
53
26
20

34 63
9E 1E
SE 1E

f3
02
0A

F9

f3
aa
62

F9

oUTSsP4:
QUTSP2

.
’

BASPNT:
BASPT1

.
’

PNTBAS:
PNTBS1:

SIGN:

HEADER:

~e

JSR 0UTSP2 ;4 SPACES

JSR ouTsP ;2 SPACES

JSR ouTsP

RTS

MOVE ABASE & BBASE TO APOINT & BPOINT

LDX# 3

LDAX ABASE

STAX APOINT

DEX

BPL BASPT1

RTS

MOVE APOINT & BPOINT TO ABASE & BBASE

LDX# 3

LDAX APOINT

STAX ABASE

DEX

BPL PNTBS1

RTS

.ASCII ' = FINGIS '

.ASCII 'oT MORF oT
8379
600¥ SIGNIF
P902 ABASE
p0¥4 BBASE
#0006 AMAX
0908 BMAX
000A APOINT
800C BPOINT
POOE ASAVE
6010 BSAVE
p912 COUNT
1C4F START
1E2F CRLF
1EA6 OUTCH
1E3B PRTBYT
1EY9E OUTSP
9290 OPMACH
9265 OPMCH1
#34F SIGN
6338 BASPNT
w21E DOl
022D IFl
92B7 ENDOl
8299 ELS1
9235 THEN1
wz3B THNI1A

.END p242 DO2
8279 ENDO2
0256 EXP21
3262 EXpP22

WSRO .

mMORF

¥2BA
V2CE
8271
8286
#2BA
¥2CE
0271
286
827D
Bb2FE
0345
0296
33D
@29C
829D
¥2B4
B2A9
0347
02E2
Q2F1
02FB
@2FC
B2FD
4369
8331
36D
8334
v35A

EZIS

AINC
BINC
IF2
ILs2
AINC
BINC
IF2
ELS2
THEN?Z2
REPORT
PNTBAS
ENDIF2
BASPT1
ENDIF1
IF3
ENDIF3
THEN3
PNTBS1
BYTCNT
HAFOP
THREE
TWO
ONE
REPT1
ourse4
REPT2
ouTse2
HEADER



Ea T T T -

SIZE FROM TO FROM TO SIGNIF = 0006
6026 2908 2852 4900 40652
gaa? 2069 2878 4893 44@A5
0006 2099 20A5 42C2 42CE

0086 2224 2234 437C  438C Note: .
000A 2237 224D 4784 479A items tagged with
0008 274E 2761 479D 47B@ an 'x' represent
2038 279D 27AC 47BB 47CA false matches.
207A 28D1 29BE 47CF 48BC

0Wovs8 29BF 29D1 48BC 48CE

8819 29DB  2A@D 48CE 4900

0B4D 2817 2AC6 492D 49DC

BQY2E 2ACB  2B33 49E1 4749

0035 2B6E 2BES 4A49 4ACH

008C 2BF2 2C04 4ACD 4ADF

6186 2CE2 2F01 4827 4D46

SIZE FROM TO FROM TO SIGNIF = 0008

9026 20080 2052 4600 4052

003D 206C 2670 4952 40D6

Vo220 26F3  213C 49D6 411F
belr 213C 2180 4122 4166

000E 2187 21A7 416D 418D
go46 21AA 224D 4198 4238B
0e87 2275 2394 4258 4377
NN 23A8 23BB 438F 43A2

9126 23C8 25E®6 43A2 45C8
g@4c 25F1 269F 45C8 4676
2a87 26Cl  27Cl 4692 4792

PE0E 27C8  27E2 479D 4787
#00C 2785 27F9 47BB 47CF
p07A 28D1 29BE 47CF 48BC
bo08 29BF 29D1 48BC 48CE
6619 25DB  2A8D 48CE 4900
094D 2A17 2AC6 492D 49DC
G02E 2ACB  2B33 49E1 4A49
2035 2B6E ZBES 4249 4ACY
909C 2BF2 2C04 4ACD 4ADF
0087 2DE5 2F01 4C2A 4D46
SIZE FROM TO FROM TO SIGNIF = 668A
P26 29090 2052 4906 4852
803D 286C 20F9 4952 40D6
D020 28Fr3 213C 49Do  411F
gelr 213C 2189 4122 4166
Y00E 2187 21a7 416D 418D
946 21AA 224D 4198 423B
4os9 2271 2394 4254 4377
8126 23Co  25Ee6 43A2 45C8
B¢4C 25F1 269F 45C8 4676
0689 268C 27C1 468D 4792
200E 27C8  27E2 479D 47B7
wauc 27E5 27F9 47BB 47CF
Bo7A 2801 2SBE 47CF 48BC
¢@1D 29Dl ZA¥D 48C4 4909
084D 2317 ZACe 492D 48DC
go2E 2ACB 2B33 49E1 4A49
4935 2B6E ZBES 4249 4ACH
d@acC 2BF2 2C04 4ACD 4ADF
Y039 2DE1  ZFol 4C26 4D4b

WIBRAY® 72



A MEKORY TEST PROGRAM FOR
THE COHMMODORE PET

Michael J. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

It would be useful and convenient to be able to 390 REM CHECK ALL FOR O EXCEPT THE ADDRESS

test PET's memory with a testing program rather BEAT WITH 255

than sending the machine back to Commodore for 400 FOR A=SA TO SP

service. Towards this end I have written a 410 IF A=AD GOTO 430

memory test program in Commodore BASIC for the 420 IF PEEK(A)<>0 THEN EE=1:GOSUB 800

PET. The program is well commented, and should 430 NEXT

be self documenting. (see listing) 440 IF AD=SP+1 THEN POKE AD,0: I=I+1: GOTO 335
450 I=0

Since the program occupies the lowest UK of 460 REM WRITE ALL 255
PET's memory, use of the program will require 470 FOR A=SA TO SP
that the lowest UK of memory be operating norm- 480 POKE A,255
ally. The amount of time required to run this 490 NEXT
program rapidly increases as the number of bytes 500 REM BEAT ONE ADDRESS WITH O
under test is increased (see Figure 1.) 505 AD=SA+I
510 POKE AD,0

Testing large blocks of memory results in more 520 POKE AD,O

rigorous testing at the expense of time. There- 530 POKE AD,OQ

fore, when using this program the user will 540 POKE AD,0

have to make a decision regarding rigor vs. 550 POKE AD,0Q

time. As a bare minimum, I would suggest test- 560 REM CHECK ALL FOR 255 EXCEPT THE ADDRESS
ing 100 bytes at a time. BEAT WITH 0

570 FOR A=SA TO SP

580 IF A=AD GOTO 600

590 IF PEEK(A)<>255 THEN EE=1:GOSUB 800

600 NEXT

610 IF AD<>SP+1 THEN I=I+1:POKE AD,255:GOTO 505
620 REM ADDRESSING TEST

In closing I would suggest that you get this
program up and running before you have a prob-
lem. It may prove difficult to get a new pro-
gram working when you have a major system prob-

lem. 630 REM WRITE CONSECUTIVE INTEGERS (0-255) IN
ALL LOCATIONS UNDER TEST
640 I=0
650 FOR A=SA TO SP
660 IF I=256 THEN I=0
670 POKE A,I
10 REM MEMORY TEST PROGRAM FOR THE COMMODORE PET 680 I=I+1
20 REM PROGRAM WILL RUN ON 8K PET 690 NEXT
30 REM BY MICHAEL J MCCANN 700 REM CHECK FOR CORRECTNESS
40 PRINT CHR$(147):EE=0:I=0 705 I1=0
50 INPUT "START ADDRESS"; SA 710 FOR A=SA TO SP
60 IF SA<4097 OR SA>65535 GOTO 50 720 IF I=256 THEN I=0
70 INPUT "STOP ADDRESS"; SP 730 IF PEEK(A)<>I THEN EE=1:GOSUB 800
80 IF ST>65535 OR SP<SA GOTO 70 740 I=I+1
90 PRINT CHR3(747):PRINT:PRINT 750 NEXT
100 PRINT TAB(5)"WORKING" 760 PRINT
105 PRINT:PRINT"FAULT IN ADDRESS:"; 770 IF EE=0 THEN PRINT" NO MEMORY PROBLEMS DE-
110 REM MEMORY ACCESS AND LOGIC CIRCUITRY TEST TECTED"
120 REM WRITE ALL 0 780 END
130 FOR A=SA TO SP 800 PRINT 4;
130 POKE A,0 810 RETURN
150 NEXT
160 REM CHECK FOR CORRECTNESS (=0)
170 FOR A=SA TO SP
180 IF PEEK(A)<>0 THEN EE=1:GOSUB 800 3.0-

190 NEXT

200 REM WRITE ALL 255

210 FOR A=SA TO SP

220 POKE A,255

230 NEXT 2.0
240 REM CHECK FOR CORRECTNESS(=255)

250 FOR A=SA TO SP

260 IF PEEK(A)<>255 THEN EE=1:GOSUB 800
270 NEXT

280 REM BEAT TESTS

290 REM WRITE ALL O

300 FOR A=SA TO SP

310 POKE A,0

320 NEXT

330 REM BEAT ONE ADDRESS WITH 255 Ie) : :
335 AD=SA+I

340 POKE AD,255 Y /100 200 300
350 POKE AD,255 BYTES TESTED

360 POKE AD,255 Figure 1. Graph of Log(Time Required) vs.
370 POKE AD,255 Number of Bytes Tested. (Time in Seccnds)

380 POKE AD,255
VII[CIRIO RS

/.0

LOG (TIME)




SMITHWARE FOR YOUR PET

TESTED, RELIABLE SOFTWARE
FROM S B S

SB7--LIFE by Dr. Frank Covitz . e e e e
Fascinating simulation of cell co]ony growth Kaleidoscopic
patterns. Written in machine language with a Basic driver.
1-2 generations per second! Two versions included:

LIFE 40*25 and LIFE 64*64. OQutstanding!

SB5--BLOCKADE . e e e e e e e e e e
A real-time spacewar game Defend the rebel stronghold
against blockade by the evil empire. Your star cruiser is
the rebels' last hope. See all the action on your screen--
your keyboard is your control panel. A real challenger!

SB4--UTILITY PACKAGE . ...
A1l the routines you need for re11ab1e tape I/O P]us a
tape dump, tape output demo, two memory dumps (Display
memory on the screen in hex and ASCII or decimal and ASCII),
a memory test, and two short demo programs. Worth its
weight in gold!

SB6--MONITOR .. e e e
3,800 bytes free for mach1ne 1anguage programs Save & Tload
absolute files, move, verify, and display a block of memory,
enter, jump to program, go-sub to subroutine. ATl in hex
format, written in Basic. A must for any serious computer
buff!

SB2--STARTREK . . .
The classic computer game of strategy and tact1cs--very
complete. Defend the Federation against the Klingon menace!
You have warp engines, long and short range sensors,
galactic records, phasers, and photon torpedoes. Battle
rating controls game's difficulty. WARNING! This game may
be addictive!

SOME OR ALL OF THESE FINE CASSETTES ARE AVAILABLE AT:
The Computer Store, Santa Monica, Califorria
Computer Components, Van Nuys, California
Advanced Computer Products, Santa Ana, California
Personal Computer Corporation, Frazier, Pennsylvania

OR SEND CHECK OR MONEY ORDER TO:
SMITH BUSINESS SERVICES
P.0. Box 1125
Reseda, CA 91335

(California residents add 6% sales tax)

Dealer Inquiries Invited

'$10.00

$ 8.00

$ 8.00

$12.00

$ 8.00



MICROBES, A SUGGESTION, AND AN .APODLOGY

MICROBES

Ah, how often it is the things in 1life which
appear so simple that cause us great anguish and
gnashing of teeth. We present here what we hope
is the last microbe in MA KIM Beeper" 4:43:

The beeper (MIcRO 5:24) stull
doesn't beep - it only clicks!
This results f&rom the EoR, of
address o10D, aPera‘l‘ing on two
identical operands except for the
first itcration in each “beep’”

This resalts in 3 Zero being
stored in PBD, i.€e, no toggling-
The low-order bt of A shoald
be set before each EoKR. Butl,
more simply, EoR PBD, STA PBD
may be replaced by INC PBD
(amd 3 NOFP’, to presevve the sranch)
The latter ch3ange is tested
and beeping in the packsround,

&jards,
12£gt\J:, Graves

Even "Apple Pi" isn't simple any more! Neil O.
Lipson of the Philadelphia Apple Users Group
writes that "The Pi article by Bob Bishop (MICRG
6:15) is missing one thing. Add HIMEM:4096."
But, that's not all! John Paladini writes that:
"The value of Pi was not computed to 1000 deci-
mal places, but rather 998. Such inaccuracies
occur when computing a series where billions of
calculations are required. My best guess is that
in order to calculate Pi to 1,000 places using
the given series one would have to compute to
1,004 places. The last two digits should read
89 not 96."

Although we made special efforts to make the
McCann article "A Simple 6502 Assembler for the
PET" error free, including careful proofing by
us and the author, a couple of microbes slipped
through. €. E. White and David Hustvedt wrote
about the following problems:

1. After entering the program from the keyboard
your must save it on tape before going through
"RUN" again. If you don't EN and ZZ are set to
zero.

2. Errors in the typed listing are:

1040 HX$+5X$ ... S/B- HX$=5X$

4030 ;MN$(1B)j;... S/B ;MN$(IB);

5020 ;TAB(27) OP S/B 3TAB(27);0P
6060 ...NULL,O,NULL,0 S/B three NULL,O's
6100 DATA CLC,1,... S/B DATA CLI,1,
6120 ..IMI,Z,... S/B ...JMPI,3,
6250 ...CPX,2,... S/B ...CPXZ,2,
14350 GOTO 14380 S/B GOTQ 14480

"\ ——— 1 50D

3. When using the "BRK" command the system out-
puts the error statement "ILLEGAL QUANTITY
ERROR IN 10020", READY.

A SUGGESTION

We finally heard from an 0SI owner. John
Sheffield writes that the BASIC Disassembler for
Apple and PET by McCann (MICRO 5:25) can work on
an 0SI Challenger IIP with only a small change:
"In each line where BY% appears (lines 10, 30,
3050) just change it to BY and everything works
fine. Change to read like this:

10 DIM MN%(ZSé),BY(ZSé),CO$(16)

30 READ MN$(E),BY(E)

delete line 100

3050 ON BY(IB) GOTO 3060, 3090, 4050
That's all that is needed. By the way that pro-
gram works on IIP's with 8K of RAM or more.”
I would be lead to believe that the BASIC Assem-
bler would work with similar modifications.

John Sheffield had a "p.s." on his letter which
said "don't let the IIP be buried under all <he
Apples and PETs". The staff of MICRO would love
to publish material about the 0SI products, if
only we had some to print! In our first year we
received only two articles about 0SI. The first
was one we "leaned on" a friend for when MICRO
was just starting and needed material. The
second was a scathing blast at 0SI from top to
bottom by an obviously disgruntled customer! We
do not publish strongly negative material on

the basis of a single input, and therefore this
article was not published. If there are O0SI
owners with something to share, MICRO will be
most happy to hear from you and print your info.

AN APOLOGY

One of the trade marks of MICRO has been qual-
ity. We have made a great effort to obtain good
articles and to present them in a high quality
publication. We must therefore apologize for
the printing quality of MICRO number 6. By
the time we got the material back from the
printer, who had done a reasonably good job on
issues number 4 and 5, it was too late to do
anything about the inferior quality of the prod-
uct except to throw out obviously bad copies.
We have gotten some letters and calls fram
readers who received incomplete or unreadeble
copies. If you have such a problem, please
notify us by mail indicating which pages were
defective, and we will promptly replace trem.

We spologize for the poor quality of issue 6.
We have changed printers starting with this
issue, and hope that the quality will be betfer.




COMPUTER

\

288 NORFOLK ST. CAMBRIDGE, MASS. 02139 )
corner of Hampshire & Narfalk St. 617-661-2670
J
f N\
NOW WE HAVE 0S|I
/ C3-S1 Challenger 1l System with
( Dual Drive Floppy Compiete with 32K RAM Memory, Dual Drive
Floppy, Serial Port, cabinets and power supplies.
$3’590'00 This Challenger Il features an eight slot heavy--
duty main frame. You add only a serial
ASCH Terminal.
C2-S2S 32K RAM Serial Challenger Il with
Dual Drive Floppy Comes complete with 32K RAM Memory, Dual
Drive Floppy Disk {500,000 characters storage),
$3’090'00 6502 processor and serial port. You add only a
. serial ASCII Terminal to be up and running.
C2-S1S Serial Challenger |l with
Smgle Drive Floppy Comes complete with 16K RAM Memory, Single
$1,990_00 Drive Floppy Disk (250,900 characters storage),
6502 processor and serial port. You need to add
only Serial ASCI| Terminal.
C2-S1V Video Challenger Il with
Smgle Drive Floppy Comes complete with 16K RAM Memory, Single
Drive Floppy Disk, 6502 processor, Challenger
$2’490'00 1IP type Video Interface and high quality key-
board. You add only a Video Monitor (or RF
generator and tv set).
— C2-8P Offers all features of the Challenger IIP plus more
room for expansion. The keyboard has a separate
C!‘a"enger 1P . case with connector cable. The roomy cabinet
i with 8 Slot Cabinet and heavy duty power supply are designed to
L handle up to eight system boards (allowing for 6
] $825'00 slots of expansion).
KIMS AND UPGRADES
C2-4P VF8 4K Memory assembled & tested. ....... 129.00
........................... 10.00
Challenger IIP for low power RAM add
me in kit form.......... i 74.50
3598-00 full set of sockets for Kit....ooovvivevivinn.... 10.00
VF8 Motherboard buffered for 4 Boards...... 65.00
Connector Assembly for KIM to VF8.......... 20.00
8K S100 Memory Board with instructions K [65.00
same but fully assembled and tested ... .... 199.00
OO CS100 Cabinet cut out for KIM......o.ooeo... .. 129.00
PprEIT 3 Connector S100 Motherboard Assembly..... 75.00
CGRS ST100 TIM Kiteeerriiiiiiiiiiiiienieneen 129.00
CGRS S100 8502 CPU Kit..ovvnevvvnvinnnenne. 179.00
BAC VISAMCNO. .. . e CGRS S100 Front Panel Kit..................... 129.00
XITEX Video Terminal Board 16X64K...... 155.00
SIGNATURE.. ... . e g M EX Video Terminal Board Assembled.. 185.00
CS100 with CGRS, Xitex, I6KRAM,TY,KB 1529.00
NAME Same but Assembled.........ovvvvvvrvueni ., 1989.00
...................... . e DS DS o BV EAGY TA- 12V TAGx6X 2. .. 75 00
PS-5 Assembled...........ooooiviiiiin 90.00
AD D RESS . Total of Order..Circle Items wanted . &..ovvvovenn...
Mass. Residents Sales Tax 5%........ S
‘ Shipping, 1%($2.00 min.)................ S
CITY ........ .. STATE......... ZIP...... Total Remittance or Charge............ S



[ —

THE MICRO SOF TWARE CATALOG: 1V

Mike Rowe
P.0. Box 3
So. Chelmsford, MA 01824

Name:

System:
Memory:
Language:

Bridge Challenger
PET or Apple II
8K PET or 16K Apple II

Not specified
Hardware: Not specified
Description: Bridge Challenger lets you and the
dummy play four person Contract Bridge against
the computer. The program will deal hands at
random or according to your criterion for high
card points, and you can save hands on cassette
and reload them for later play. You can review
tricks, rotate hands East-West, shuffle only the
defense hands, or replay hands when the cards
are known.

Copies: Not specified
Price: $14.95

Includes: Not specified
Author: Not specified

Available from:
Personal Software
P.0. Box 136
Cambridge, MA 02138
617/783-0694

Name: CURSOR - Programs for PET Computers
System: PET

Memory: 8K

Language: BASIC and Assembly Language

Hardware: Standard PET

Description: CURSOR is a cassette magazine with

proven programs written Jjust for the 8K PET.
Each month the subscriber receives a C-30 cas-
sette with five or more high quality programs
for the PET. People can't read this "magnetic
magazine", but the PET can! The CURSOR staff
includes professional programmers who design and
wWwrite many of the programs. They alsc carefully
edit programs which are purchased from individ-
ual authors.

Copies: Not specified

Price: $24 for 12 monthly issues
Includes: Cassette

Authors: Many and varied

Available from:
Ron Jeffries, Publisher
CURSOR
P.0. Box 550
Goleta, CA 93017
805/967-0905

Name: PET Schematics and PET ROM Routines
System: PET

Memory: None

Language: None

Hardware: None

Description: PET Schmatics 1s a very complete
set of accurately and painstakingly drawn schem-
atics about your PET. It includes a 24™ x 30"
CPU board, plus oversized drawings of the Video
Monitor and Tape Recorder, plus complete Parts
layout - all the things you hoped to get from
Commodore, but didn't!

PET ROM Routines are complete as-
sembly listings of all 7 ROMs, plus identified
subroutine entry points.

Copies: Not specified.
Price: PET Schematics - $34.95
PET ROM Routines - $19.95
Available from:
PET-SHACK Software House
Marketing and Research Co.
P.0. Box 966
Mishawaka, IN 46544

Name: S-C Assembler II

System: Apple II

Memory: 8K

Language: Assembly language

Hardware: Apple II, optional printer
Description: Combined text editor and assembler

carefully integrated with the Apple II ROM-based
routines. Editor inclues full Apple II screen
editing, BASIC-like line-number editing, tab
stops, and renumbering. LOAD, SAVE, and APPEND
commands for cassette storage., Standard Apple
II syntax for opcodes and address modes. Labels
(1 to 4 characters), arithmetic expressions, and
comments. English language error messages.
Monitor commands directly available within as-
sembler. Speed and suspension control cver
listing and assembly.

Copies: Just released, over 100 sold.
Price: $20.00 (Texas residents add 5% tax)
Includes: Cassette in Apple II format and

a 28 page reference manual.
Author: Bob Sander-Cederlof

Available from:
S~-C Software
P.0. Box 5537
Richardson, TX 75080

PL/65 or CSL/65

SYSTEM 65 or PDP 11

16K bytes RAM

Language: Machine language.

Hardware: Rockwell SYSTEM 65

Description: A high-level language resembling
PL/1 and ALGOL is now available to designers de-
veloping programs for the 6500 microprocessor
family using either the SYSTEM 65 development
system of the PDP 11 computer. PL/65 is consid-
erably easier to use than assembly language or
object code. The PL/65 compiler outputs source
code to the SYSTEM 65's resident assembler.
This permits enhancing or debugging at the as-
sembler level before object code is generatad.
In addition, PL/65 statements may be mixed with
assembly language instructions for timing or
code optimization.

Name :
System:
Memory:

Copies: Not specified.

Price: Not specified from Rockwell.
$500 from COMPAS.

Includes: Minifloppy diskette.

Authors: Not specified.

Available from:
Electronic Devices Division
Rockwell Internationsal
P.0. Box 3669
Anaheim, CA 92803
714/632-2321 (Leo Scanlon)
213/386-8776 (Dan Schlosky)

COMPAS - Computer Applications Corp.
413 Kellogg

P.0. Box 687

Ames, IA 50010

515/232-8181 (Michael R. Corder)

IVIICIRIO e



Name: PRO~CAL I

System: PET

Memory: Not specified.

Language: BASIC and machine language.

Hardware: Not specified.

Description: A reverse polish scientific
calculator program, ideally suited for scientif-
ic and educational applications. Supports sing-
le key execution of more than 50 forward and in-
verse arithmetic, algebraic, trigonometric and
exponential functions. It implements calcula-
tions in binary, octal, decimal, and hexidecimal
modes with single keystroke conversion between
modes and simultaneous decimal equivalen dis-
play.It also allows the recording and playback
of calculator programs on cassette tape permit-
ting the use of most calculator software already
in existance up to a limit of 255 steps.

Copies: Not specified.

Price: $26.00 domestic, $28.00 foreign.

Includes: Software on cassette and an operating
manual .

Authors: Not specified.

Available from:
Applications Research Co.
13460 Robleda Road
Los Altos Hills, CA gidg22

Name: Financial Software

System: Apple II (easily modified for PET)
Language: Applesoft II

Hardware: Apple II

Description: Sophisticated financial programs

used to aid in investment analysis. The follow-
ing programs are currently available: Black-
Scholes Option #nalysis, Security Analysis using
the Capital Asset Pricing Model, Bond Pricing I
and II, Cash Flow and Present Value Analysis I
and II, Stock Valuation, Rates of Return, Calcu-
lations and Mortgage 4nalysis.

Copies: Just released.
Price: $15.00 each or $50.00 for all 9 programs
Includes: Cassette, annotated source listings,

operating and modifying instructions,
sample runs and backgroud information.
Author: Eric Rosenfeld
Available from:
Eric Rosenfeld
70 Lancaster Road
Arlington, MA (02174

Name :

System:
Memory :
Language:
Hardware:
Description:

is

Name: MICROCHESS
Systems: PET and Apple II
Memory: PET - 8K/Apple II 16K

Language: 6502 Machine Language
Hardware: Standard PET or Apple II
Description: MICROCHESS is the culmination of

two years of chessplaying program development by
Peter Jennings, author of the famous 1K byte
chess program for the KIM-1. MICROCHESS offers
eight levels of play to suit everyone from the
beginner learning chess to the serious player.
It examines positions as many as 6 moves ahead,
and includes a chess clock for tournament play.
Every move 1is checked for legality and the
current position is display on a graphic chess-
board. You can play White or Black, set up and
play from special board positions, or even watch
the computer play against itself.

Copies: Not specified.
Price: $19.95

Includes: Not specified.
Author: Peter Jennings

Available from:
Personal Software
P.0. Box 136
Cambridge, MA 02138
617/783-0694

Name:
System:
Memory :

Apple II BASEBALL

Apple II

16K or more
Language: Integer BASIC
Hardware: Standard Apple II
Description: An interactive baseball game that
uses color graphics extensively. You can play a
7 or § inning game with a friend, (it will han-
dle extra innings), or play alone against the
computer. Has sound effects with men running
bases. Keeps track of team runs, hits, innings,
balls and strikes, outs, batter-up and uses pad-
dle input to interact with the game. Uses every
available byte of memory.

Copies: Just released.
(Dealers inquiries invited)
Price: $12.50
Includes; Game Cassette, User Bookelt with couw-

plete BASIC listing.
Authors: Pat Chirichella and Annette Nappi
Available from:

Pat Chirichella

506 Fairview Avenue

Ridgewood, NY 11237

DDT-65 Dynamic Debugging Tool
Any 6502 based system
3K RAM/1K RAM for loader
Machine Language
32 char/line terminal
DDT-65

an advanced debugger

that allows easy assembly and disassembly in

650X mnemonics.
automatic breakpoint

debuffing of code even in PROM.

Software single-stepping and
insertion/deletion

allow
DDT-65 comes in

a relocatable form on tape for loading into any
memory or for PROM programming.

Copies: 11+
Price: $25.00
Include:
cassette.
Ordering Info:

10 page manual, relocating tape

KIM format cassette - K

Kansas City at 300 baud for O0SI - O
Kansas City at 300 baud for TIM/JOLT - T

Author: Rich Challen
Available from:
Rich Challen

939 Indian Ridge Drive

Lynecnburg, VA 24502



APPLE CALLS AND HEX-DECIMAL CONVERSICN

Marc Schwartz
220 Everit Street
New Haven, CT 06511

Rich Auricchio's "Programmer's Guide to the
Apple II™ (MICRO #4, April/May 1978) is a very
useful step in getting out printed materials to
help users fully exploit the Apple's potential.
That his table of monitor routines can be used
in BASIC programming is worth noting.

Many monitor routines can be accessed in BASIC
by CALL commands addressed to the location of
the first step of the routine. If the routine
is located in hex locations 0000 to 4000, it is
necessary only to convert the hex location to
decimal and write CALL before the decimal num-
ber. Thus a routine located at hex 1E would be
accessed by the command: CALL 30, since hex 001E
= decimal 30.

If you do not have a hex-decimal conversion
table handy, you can convert larger numbers to
decimal with the help of the Apple by the fol-
lowing steps:

1. Start in BASIC (necessary for step 2)

2. Multiply the first (of four) hex digits
by Y4096, the second by 256, the third by 16 and
the fourth by one. Add the four numbers to get
the decimal equivalent. For example, to get the
decimal conversion of 03E7, with the Apple in
BASIC, press Control/C and type

>PRINT O#*4096 + 3%256 + 14%16 + 7
then press RETURN. You'll get your decimal
answer: 839. To begin a monitor routine you
wrote starting at Q3E7, merely put CALL 839 in
.your program.

If the hex location of the routine is between
CO000 and FFFF, then another method of figuring
out the corresponding decimal location must be
used.

1. Start in BASIC

2. Press the RESET button.

3. Take the hex location of the routine and
subtract if from FFFF. The Apple will help you
do this; subtract each pair of hex digits from
FF and press RETURN. The Apple will print the
answer to each subtraction for you. For example
the hex location of the routine to home cursor
and clear screen is $FC58.

* FF - FC RETURN
= 03

* FF - 58 RETURN
= A7

So, $FFFF - $FC58 = $03A7.

Now convert to decimal as above, using BASIC
(control/C) to assist you.

>PRINT 0%4096 + 3%256 + 10%16 + 7

and after pressing RETURN you will have your
answer, 935.

4. Add one to the total, here giving 936.

5. Make the new total negative, or -936.

6. That's it. Now just put a CALL in front
of the number: CALL -936.

Of course, these steps of converting hex loca-
tions to decimal are the same ones to take if
you want to access the PEEK or POKE functions of
the Apple. In all, they allow the BASIC pro-
grammer to take much fuller advantage of the
capabilities of the computer.

And while on the subject of hex-decimal conver-
sion, the Apple can help in decimal to hex con-
version as well. For example to find the hex of
a number, say 8765:

1. Start in BASIC

2. Divide the number by Y4096, then find the
remainder:

>PRINT 8765/4096,8765M0D4096 (return)
2 573

3. Repeat the process with 256 and16:
>PRINT 573/256,573M0D256 (return)

2 61
>PRINT 61/16, 61 MOD 16 (return)
3 13

...giving 2 2 3 13 or 223C.

WRITING FOR MICRO

One aof the reasans we like the 6502 is that it
seems to attract a lot of very interesting, act-
ive, enthusiastic users. We spend several hours
each week talking to people who are so excited
about what they are doing with their system that
they just have ta talk to someone. Oh, some-
times they pretend they have some "burning"
question or whant to order some small item, but
really they mostly want to tell someone about
all of the fun they are having or the discover-
ies they are making.

While we enjoy these conversations, and consider
them ane of the "Fringe benefits" of editing
MICRO, it disturbs us that many of these enthus-
iasts who are willing to spend five to ten decl-
lars on a phone call to us, are not willing to
spend a little time writing down their informa-

_ WIBRO®

tion for publication in MICRC where thousands
can share it (and they can earn a few dollars).

MICRO, in order to serve its main purpose of
presenting information -about all aspects aof the
6502 world, needs to receive information from a
wide variety of sources. To achieve a more bal-
anced content, we desparately need articles on:
industrial, educational, business, home, and
other real applications of systems; non-KIM,
-APPLE, -PET systems, homebrew and commercial;
techniques for programming, interfacing, and ex-
panding systems; and man{ other topics. Look to
your own experience. f you have anything to
share, then take the time to write it dawn. The
"Manuscript Cover Sheet" on the next page should
serve as a guide and make it a little easier to
submit your article.




MANUSCRIPT COVER SHEET

Please complete all information requested on this cover sheet.

Date Submitted:

Proposed Title: —

Author(s) Neme(s):

Mailing Address: -
(This will be published.)

Area Code: Phone: —
(This will NOT be published.)

AUTHOR'S DECLARATION OF OWNERSHIP OF MANUSCRIPT RIGHTS: This manuscript is my/our
original work and is not currently owned or being considered for publication by
another publisher and has not been previously published in whole or in part in

any other publication. I/we have written permission from the legal owner(s) to
use any illustrations, photographs, or other source material appearing in this
manuscript which is not my/our property. If required, the manuscript has been
cleared for publication by my/our employer(s). Note any exceptions to the above
(such as material has been published in a club newsletter but you still retain
ownership) here:

Signature(s): —

Date: -

Any material which you are paid for by The COMPUTERIST, whether or not it is
published in MICRO, becomes the exclusive property of The COMPUTERIST, with all
rights reserved.

A Few Suggestions

All text material will be retyped. Therefore your format does not matter as long
as it is readable. Double spaced, typed, is preferable, but not required. Any
figures should be neatly drawn to scale as they will appear in MICRO. If we have
to redraw the figures and diagrams, then we normally will pay less for that page.
Photographs should be glossy prints either the same size as the final will be or
twice the final size. We will re-assemble all programs to obtain clean listings
using the syntax we have adopted (see inside back cover - MICRO #1). Since others
will be copying your code, please try to thoroughly test it and make sure it

is as error free as possible. Submit your articles early. We will try to get a
proof back to you for final correction, but with our tight schedule this may not
always be possible. Send your manuscripts to:

Robert M. Tripp, Editor, MICRO, P.0O. Box 3, So. Chelmsford, MA 01824, U.S.A.

W=} e

« 32

~J4




361.

362.

363.

364.

366.

367.

368.

369.

' 9
FiN

6502 BIBLIOGGRAPHY
PART vI

William R. Dial
438 Roslyn Ave.
Akron, OH 44320

Bridge, Theodore E. "High Speed Cassette I/0 for the KIM-1", DDJ 3 Issue 6 No 26, Pg 24-25,

(June/July, 1978). Will load or dump at 12 times the speed of KIM-1. Supplements the
MICRO-ADE Editor-Assembler.

Baker, Robert "KIMER: A KIM-1 Timer™, Byte 3 No 7 Pg 12, (July, 1978). The program converts

the KIM-1 into a 24-hr digital clock.

Conley, David M. "Roulette on Your PET with Bells and Whistles", Personal Computing 2 No 7 Pg 22-

24 (July, 1978). How to add extras in a program for added interest.

KIM-1/6502 User Notes, Issue 11, (May, 1978)

Lewart, Cass R. "An LED Provides Visual Indication of Tape Input". An LED allows you to see
that the tape recorder is feeding proper signals to KIM.

Rehnke, E. "Hardware Comparison"™. The editor compares KIMSI vs. KIM-4 as expansion for KIM.
Rehnke, E. "Software Comparison". The editor compares the MOS Technology Assembler/Editor
.from ARESCO versus the MICRO-ADE Assembler/Disassembler/Editor from Peter Jennings,

Toronto.
Edwards, Lew "Skeet Shoot, with Sound"™. Butterfield's "Skeet Shoot" modified with the Kush-

nier's phaser sound routine, for KIM.
DeJong, Marvin "Digital Cardiotachtometer". KIM counts heartbeats per minute and displays

count while measuring next pulse period.

Rehnke, E. "Book review: 'Programming a Microcomputer: 6502'". Foster Caxton's recent book
is highly recommended.

Coppola, Vince " Loan Program in FOCAL®. FOCAL-65 is used to figure interest on a loan.

Flacco, Roy "Joystick Interface". A joystick, some hardware, are used to put the Lunar
Lander (First Book of KIM) on the face of a Scope.

Kurtz, Bob "Morse Code Reader Program". Use KIM in the hamshack.

Zuber, Jim "Interfacing the SWTPC PR-40 Printer to KIM-1". An easy way to use this low cost
printer.

Nelis, Jody "Revision to Battleship Game". Modification to correct a small defect in the
original program.

People's Computers 7 No 1 (July/Aug, 1978).

Cole, Phyllis "SPOT". Several notes and tips of interest to PET owners.

Cole, Phyllis ™"Tape Talk". Notes on problems associated with tape I/0 on the PET.

Gash, Philip "PLOT". Program plots any single-valued function y(x) on a grid.

Julin, Randall "Video Mixer". A circuit to mix the three video signals put out by the
PET's IEEE 488-bus.

Bueck/Jenkins "PETting a DIABLO". How to make PET write using a Diablo daisy wheel printer.

Harr, Robt. Jr. and Poss, Gary F. "TV Pattern Generator”, Interface Age 3 Issue 8 Pg 80-82; 160,

(Aug, 1978). Pattern generator in graphics for the Apple II monitor.

Pergonal Computing 2 No 8 (Aug, 1978).
Maloof, Darryl M. "PET Strings" (letter to Editor). Note on changing a character string

to numeric values and vice-versa.

Connors, Bob "PET Strings" (letter to Editor). More on changing character strings to
numeric values.

Bueck/Jenkins "Talking PET" (letter to the Editor). Notes on the interfacing of a Diablo
daisy wheel printer with PET through the PET ADA device.

Lasher, Dana "The Kalculating KIM-1", 73 Magazine, No 215 Pg 100-104 (Aug, 1978). Calculator

versatility for any KIM is provided by interfacing a calculator chip and a scanning routine
with KIM.

0SI-Small Systems Journal 2 Nc 2 (Mar/Apr, 1978).

Anon. "The 542 Polled Keyboard Interface™. Polled keyboards have many advantages over
standard ASCII keyboards.

Anon. "Basic and Machine Code Interfaces". This is the first in a series of articles on
BASIC and machine code.

Anon. "Using the Model 22 OKIDATA Printer". A quick and dirty way to use those special
font and scrcll commands of the Model 22 QKIDATA Printer.

MIICIRIOEAY



370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

Dr. Dobbs Journal 3 Issue 7 No 27 (Aug, 1978).

Moser, Carl "Fast Cassette Interface for the 6502". Record and load at 1600 baud.

Meyer, Bennett "“Yet Another 6502 Disassembler Fix". Changes to correct a number of errors
in the five digit codes used for deciphering the instructions in the BASIC language
disassembler published earlier in DDJ 3 No 1.

Anon. "Apple Users Can Access Dow Jones Information Service". With a telephone link-up,
Apple II users can dial Dow Jones Information Service.

Kilobaud Issue 21 (Sept, 1978).

Wells, Ralph "Trouble Shooters' Corner". Another chapter in the saga of the compatibility
of the Apple II with a VIA/PIA. See EDN May 20,1978; MICRO Issue 5, Pg 18, June/July,
1978.

Tenny, Ralph "Troubleshooters' Guide". Useful suggestions for those tackling repair and
interfacing problems.

Young, George "Do-It-All Expansion Board for KIM". How to make an expansion board, expan-
sion power supply, new enclosure, etc., for your KIM-1,

Ketchum, Don "KIM Organ®". Play tunes directly from the KIM keyboard.

Grina, James "Super Cheap 2708 Programmer”. An easy-to-build PROM programmer driven by

the KIM-1.

Conway, John "Glitches Can Turn Your Simple Interface Task into a Nightmare". Difficulties
in using an Apple II with a PIA in an I/0 interface, apparently caused by a clock signal
arriving a little early.

Notley, M. Garth "Plugging the KIM-2 Gap". Byte 3 No 9 Pg 123 (Sept, 1978). How to map the
KIM-1 address range of Q400 to 13FF into a KIM-2 address range of 1000 to 1FFF.

Turner, Bill and Warren, Carl "How to Load Floppy ROM No 5", Interface Age 3 No 9 Pg 60-61
(Sept, 1978). Side No 1 is in Apple II format at 1200 baud, "The Automated Dress Pattern”.

Smith, Wm. V.R. III "The Automated Dress Pattern for the Apple II". Interface Age 3 No 9
Pg 76-81 (Sept, 1978). A McCalls pattern is the basis for the program and accompanying
Floppy ROM.

MICRO Issue 6 (Aug/Sept, 1978).
Husbands, Charles R. "Design of a PET/TTY Interface”. Describes the hardware interface and

software to use the ASR 33 Teletype as a printing facility for the PET.

Faraday, Michael "Shaping Up Your Apple". Information on using Apple II's High Resolution
Graphics.

Eliason, Andrew H. "Apple II Starwars Theme”. Disassembler listing of theme from Star Wars.

Bishop, Robert J. fApple PI". How to calculate PI to 1000 places on your Apple II.

McCann, Michael J. ™A Simple 6502 Assembler for the PET". Learn to use Machine language
with this assembler.

Rowe, Mike "The Micro Software Catalog: III". Software listing for 6502 systems.

Gaspar, Albert YA Debugging Aid for the KIM-1". A program designed to assist the user in
debugging and manipulating programs.

Dedong, Marvin L. "6502 Interfacing for Beginners: Address Decoding II". Good tutorial

article.

Suitor, Richard F. "Brown and White and Colored All Over". Discussion of the colors in the
Apple and their relation to each other and the color numbers.

Witt, James R. "Programming a Micro-Computer: 6502 by Caxton Foster". More accolades for

this fine book.
Merritt, Cal E. "PET Composite Video Qutput". How to get video output for additional

monitors.
Quosig, Karl E. "Power from the PET". How to tap the unregulated 8v and regulate to 5v.

Suitor, Richard F. "Apple Integer BASIC Subroutine Pack and Load". Loading assembly

language programs with a BASIC program.
Creighton, Gary A. "A Partial List of PET Scratch Pad Memory”. Tabulation of a number of

important addresses.

Corbett, C. "A Mighty MICROMITE". Personal Computer World 1 No 4 Pg 12 (Aug, 1978). Descriptive
article on the KIM-1 for the European and British readers.

Coll, John and Sweeten, Charles "Colour is an Apple II". Personal Computing World 1 No 4 Pg
50-55 {(Aug, 1978). Description of the Apple II.

North, Steve "PET Cassettes from Peninsula School". <Creative Computing 4 No 5 Pg 68 (Sept/Oct,
1978). A number of programs written in PILOT, a language designed for CAI dialog applica-
tions. This requires a program to interpret PILOT in Basic.



6502 INFORMATION RESOURCES

William R. Dial
438 Raslyn Ave.
Akron, OH 44320

Did you ever wonder just what magazines were the BYTE

richest sources of information on the 6502 $12.00 per year
microprocessor, 6502-based microcomputers, acc- . :

essory hardwaré and software? For several,years Byte Publicatjons, Inc.

this writer has been assembling a bibliography 70 Main St.

6502 references related to hobbv computers and Peterborough, NH 03458
small business systems (see MICRO No's 1, 3,

4, 5, and 6). A review of the number of times DR. DOBB'S JOURNAL

various magazines are cited in the bibliography $12.00 per year (10 issues)
gives a rough measure of the coverage of these People's Computer Co.
magazines of 6502 related subjects. Even after Box E

such a fequency chart is compiled, an accurate

comparison is difficult. Some of the magazines 1263 E1 Camino Real

have been published longer than others. Some Menlo Park, CA 94025
periodicals have been discontinued, others have
been merged with continuing publications. Some ON-LINE

give a lot of information in the form of ads,
others are devoted mostly to authored articles. D. H. Beetle
Regardless of the basis of the tabulation of N

references, however, some publications are 24695 Santa Cruz Hwy
clearly more useful sources of information on Los Gatos, CA 95030
the 6502 than others.

$3.75 per year (18 issues)

PEOPLE'S COMPUTERS (Formerly PCC)

The accompanying list of magazines has been $8.00 per year (6 issues)
compiled from the bibliograghy. %f 2Fe top gf People's Computer Co.
the list are several publications which special- .

ize in 6502-related psubjects. These include giiBEEl Camino Real
this publication, MICRO, as well as the KIM-1

/6502 USER NOTES. Also in this category 1is Menlc Park, CA 94025
OHIO SCIENTIFIC'S SMALL SYSTEMS JOURNAL, a

publication which covers hardware and software INTERFACE AGE

for the Ohio Scientific 6502-based computers. $14.00 per year

KILOBAUD, BYTE and DR. DOBB'S JOURNAL all give McPheters, Wolfe & Jones
good coverage on the 6502 as well as other 16704 Marquardt Ave.

microprocessors. KILOBAUD has more hardware and

constructional articles than most computer mag- Cerritos, CA 90701

azines., ON-LINE is devoted mainly to new pro-

duct announcements and has very frequent refer- POPULAR ELECTRONICS
ences to 6502 related items. Following these $12.00 per year

come a group of magazines with somewhat less Popular Electronics
frequent references to the 6502. Finally toward One Park Ave.

the end of the list are those magazines with New York, NY 10016

only occasional or trivial references to the
6502. An attempt has been made to give up-to-
date addresses and subscription rates for the PERSONAL COMPUTING (Formerly MICROTREK)
magazines cited. $14.00 per year
Benwill Publishing Corp.
1050 Commonwealth Ave.
Boston, MA 02215

MICRO

$6.00 per 6 issues 73 MAGAZINE
MICRO $15.00 per year
P.0. Box 3 73, Inc.
S. Chelmsford, MA 01824 Peterborough, NH

KIM-1/6502 USER NOTES CREATIVE COMPUTING

- $15.00 per year
$5'g8igegegn;zsues Creative Computing

P.0. Box 33077 P.O.‘Box 789-M
Royalton, OH 44133 Morristown, NJ 07960

SSSC INTERFACE

(Write for information)
Southern California Computer Soc.
1702 Ashland
Santa Monica, CA 90405

OHIO SCIENTIFIC--SMALL SYSTEMS JOURNAL
$6.00 per year (6 issues)

Ohio Scientific

1333 S. Chillicothe Rd.

Aurora, OH 44202

KILOBAUD EDN (Electronic Design News)
$15.00 per year $25.00 per year
Kilobaud Magazine (Write for subscription info)
Peterborough, NH 03458 Cahners Publishing Co.
270 St Paul St.
Denver, CO 80206



RADIO ELECTRONICS

$8.75 per year
Gernsback Publications, Inc.
200 Park Ave., South
New York, NY 10003

QST

$12.00 per year
American Radio Relay League
225 Main St.
Newington, CT 06111

IEEE Computer

(Write for subscription info)
IEEE
345 E. 47th St.
New York, NY 10017

ELECTRONICS

$14.00 per year
Electronics
McGraw Hill Bldg.
1221 Ave. of Americas
New York, NY 10020

POLYPHONY

$4.00 per year
PAIA Electroniecs, Inc.
1020 W. Wilshire Blvd.
Oklahoma City, OK 73116

CALCULATORS, COMPUTERS
$12.00 per year (7 issues)
Dynax
P.0. Box 310
Menlo Park, CA 94025

COMPUTER WORLD

COMPUTER MUSIC JOURNAL
$14.00 per year (6 issues)
People's Computer Co.

Box E
1010 Doyle St.
Menlo Park, CA 94025

POPULAR COMPUTING
$18.00 per year
Popular Computing
Box 272
Calabasas, CA 91302

MINI-MICRO SYSTEMS

$18.00 per year
Modern Data Service
5 Kane Industrial Drive
Hudson, MA 01749

DIGITAL DESIGN

$20.00 per year

(Write for subscription info)
Benwill Publishing Corp.
1050 Commonwealth Ave.
Boston, MA 02215

ELECTRONIC DESIGN

(26 issues per year)

(Write for subscription info)
Hayden Publishing Co., Inc
50 Essex St.
Rochelle Park, NJ 07662

HAM RADIO

$12.00 per year
Communications Technology
Greenville, NH 0Q30u8

$12.00 per year (trade weekly)
(Write for subscription info)
Computer World
797 Washington St.
Newton, MA 02160

Editor's Note: In addition to the magazines
regularly covered by the 6502 Bibliography, the
following magazines may also be of interest to
various 6502 readers:

PET GAZETTE THE PAPER

Free bi-monthly (Contributions Accepted) $15.00 per year (10 issues)
Microcomputer Resource Center The PAPER
1929 Northport Drive, Room 6 P.0. Box 43

Madison, WI 53704 Audubon, PA 19407

PET USER NOTES

$5.00 per year (6 or more issues)
PET User Group
P.0. Box 371
Montgomeryville, PA 18936

Robert Purser's REFERENCE LIST
OF COMPUTER CASSETTES

Nov 1978 $2.00/Feb 1979 $4.00
Robert Purser
P.0. Box 466
El Dorado, CA 95623

CALL A.P.P.L.E

$10.00 per year (includes dues)
Apple Puget Sound Program Library Exchar
6708 39th Ave. 3W
Seattle, WA 98136

THE SOFTWARE EXCHANGE

$5.00 per year (6 issues)
The Software Exchange
P.0. Box 55056
Valencia, CA 91355

YRR 7" P o~ ~



KIK-1 AS A DIGITAL VOLTHETER

Joseph L. Powlette and Charles T. Wright
Hall of Science, Moravian College
Bethlehem, PA 18018

Several programs have been described in the lit-
erature which turn a KIM-1 microcomputer into a
direct reading frequency counter. In "A Simple
Frequency Counter Using the KIM-1" by Charles
Husbands (MICRO, No. 3, Pp. 29-32, Feb/Mar,1978)
and in "Here's a Way to Turn KIM Into a Freq-
uency Counter" by Joe Laughter (KIM User's Note
Issue 3, Jan, 1977), good use is made of KIM-1's
interval timers and decimal mode to produce a
useful laboratory instrument. A simple change
in hardware will allow these same programs to
serve as the basis of a direct reading digital
voltmeter. This article describes an inexpen-
sive voltage-to-frequency converter (VFC) cir-
cuit which is compatible with these programs and
also describes some software modifications which
will allow Husbands' program to operate down to
low frequency (10 HZ) values.

Hardware Configuration

The VFC circuit is shown in Figure 1. The 4151
chip is manufactured by Raytheon and is avail-
able from Active Electronic Sales Corp., P.O.
Box 1035, Framingham, MA 01701 for $5.00 or from
Jameco Electronics, 1021 Howard Street, San
Carlos, CA 94070 for $5.95. The circuit param-
eters given in Figure 1 have been modified from
the values suggested by the manufacturer in
order to match the pulse requirement for the KIM
IRQ signal. The frequency of the output pulse
is proportional to the input voltage and the 1Ka
(multiturn) trimpot is used to adjust the full-
scale conversion so that 10 volts corresponds to
a frequency of 10 KHz. It Is not necessary to
calibrate the KIM-1 as a frequency meter since
any variation in its timing can be compensated
for by the trimpot. A known potential is con-
nected to the VFC input and the trimpot adjust-
ed until the KIM readout agrees with the known
voltage value. The linearity of the VFC is
better than 1% down to 10 mv (linearity of 0.05%
can be achieved in a "precision mode" which is
described in the Raytheon literature). The
circuit will not respond to negative voltages
and protection of the chip is provided by the
1N914 diode. If negative voltage readings are
also required, the input to the VFC can be pre-

ceded by an absolute value circuit (see IC OP-
AMP cookbook by Jung, p. 193, Sams Pub.).

To operate the system using Laughter's software
the following connections should be made: 1)
the output (pin 3) of the VFC to the PBQO input
of KIM (pin 9 on the application connector) and
2) PB7 on the KIM to IRQ on the KIM (A-15 to E-
b). Execution of the program should cause the
voltage to flash on the KIM display in one sec-
ond intervals.

The software described in Husbands' article will
not operate below 500 Hz. This limit is caused
by the fact that the contents of the interval
timer are read to determine if the 100 millisec-
ond interval has elapsed and since the interval
counter continues to count (at a 1T rate) after
the interval has timed out, there are times when
the contents of the interval timer are again
positive. If the interrupt should sample during
this time, the branch on minus instruction will
not recognize that the interval has elapsed.
This problem will manifest itself as a fluctuat-
ing value in the display and is most likely to
occur at low frequencies. One solution 1is to
establish the interval timer in the interrupt
mode and then allow the program to arbitrate the
interrupt, i.e., to determine whether the inter-
rupt was due to the input pulse or the expira-
tion of the 100 millisecond interval timer. The
necessary changes to Husbands' program are given
in Figure 2. The hardware connections are: 1)
output of the VFC (pin 3) to the KIM IRQ (pin 4
on the KIM expansion connector), and 2) PB7 on
the KIM to IRQ on the KIM (A-15 to E-U4). The
modified program starts at 0004 with a clear
interrupt instruction. Locations 17FE and 17FF
should contain 21 00 and 17FA and 17FB should
have values 00 10 (or 00 1C).

+ 12V
Voitage input | 8 l r_-.TO PIN
t IK TRIM POT
O to+i0V I00K [N9i4 3.8K ©
2 /
.0l yt ey |+
iI? 1 415| +5v =
= | VFC
G . 5K
6 3
frequency
= 100 output
e 5 i
4 __-t]
6.8K: -
I0.00SBM =
+i2v T
Figure 1. Voltage-to-Frequency Converter (VFC)
circuit.

MNIBRY 7



Additional Comments

The program modifications above will also extend
Husbands' frequency counter circuit down to 10
Hz (corresponding to 1 input interrupt in 100
milliseconds). Since the 74121 monostable mul-
tivibrator does not have an open collector
output, PB7 should not be connected (along with
the 74121 output) directly to the KIM IRQ. Two
solutions are:

1. Leave PB7 unconnected. The expir-
ation of the 100 millisecond clock will
be recognized on the next input interrupt
after the timer has timed out. The int-
erval timer will not interrupt the micro-
processor, however,

2. (Connect PBY to one input of a two input
AND gate and the output of the monostable
to the second input. The output of the
AND gate should be connected to the KIM
IRQ. The expiration of the 100 millisec-
ond interval will now also interrupt the
processor and will result in a faster
response to a change in frequency values
(from high to very low) as well as a more
accurate low frequency count.

The authors would like to thank Charles Husbands
for taking the time to answer our questions and
for pointing out the article by Laughter.

ORG $ 0004

oood 58 CLI clear interrupt flag
0014 8D OF 17 STA
0024 AD 07 17 LDA

003C 8D OF 17 STA

Figure 2.
end the low frequency range to 10 Hz.

clock in interrupt mode
read interrupt flag bit 7

clock in interrupt mode

Changes in Husbands' program to ext-

MICRC is published for a number of reasons. DOne
very important reason is to provide a means for
the distribution of information about 6502 re-
lated products. Our advertising rates are very
low in relation to our circulation and special-
ized audience, and we welcome your money, but
that is not what we want to discuss here. MICRO
offers several ways for you to get good public-
ity - FREE 1 It will take a little work on your
part, but the price is right. There are three
regular ways to get coverage in MICRC: the soft-
ware catalog, the hardware catalog, and the list
of 6502 related companies.

THE MICRO SOFTWARE CATALOG

Appearing regularly since issue number 4, the
software catalog provides a brief, standardized,
description of currently available 6502 soft-
ware. We were a bit surprized to find that the
software catalog was one of the most often men-
tioned articles in the recent MICRD Reader feed-
back. Ta participate in this catalaog, you must
follow a few simple rules:

1. The program must be currently available,
not '"under development'.

2. You must provide the write-up following
the standard format which is:

Name of program:

6502 system(s) it works on:

Memory required:

Language used (Assembler, BASIC,...):
Hardware required:

Descriptiaon of program:

Number of caopies in circulation:
Price:

Includes: {Cassette, Source listings,...)
Authar:

Available from:

THE MICRO HARDWARE CATALOG

In issue number 6 we printed a call for hardware
information for a Hardware Catalog. The formats
of the material we received was so varied, that
we have decided to impose a farmat for the sake
of » m~re useful presentation of the material.
To participate in this catalog, you must follow
these rules:

HELPING MICRD HELP YOU

1. The product must be currently available,
either in stock or within fpur weeks
delivery on new arders. Some units must
have already been successfully delivered.

2. You must provide the write-up following
the standard format which is:

Name of product:

6502 systems it works with:

Other hardware required:

Power requirements:

Description of product:

Number of units delivered to date:
Price:

Includes: (Manuals, Cables,...)
Develaped by:

Available from:

A 1ot of material that has been received for the
Catalogs has not been in a useable format. We
are not trying to make it difficult for you to
submit your material. We are trying to make it
easy for the readers to understand your product.
We do not understand your product as well as you
do and can not therefore do as good a write-up
as you can. And, we don't have any more time
than you do! So, please submit your stuff in
the requested format and we will print it.

6502 RELATED COMPANIES

In issue number 1 we printed a list of companies
that we were aware of which praduced products of
interest to the 6502 world. It is time to up-
date the list. If you feel that your company
should be on the list, then send in the follow-
ing information as soon as possible:

Name of company:

Address:

Telephone: (Optional)

Person to contact: {Opticnal)

Brief list of 6502 products: (Maximum of
five typed lincs, please)

While the Software and Hardware Catalogs will be
appearing regularly in every issue, this list of
6502 Related Companies will only appear once, in
issue number 8, the Dcc/Jan issue. Therefore,
send your information in as soon as possible.




CASSETTE TAPE CONTROLLER

Fred Miller
7 Templar Way
Parsippany, NJ 07054

The ideal tape storage facility for micro-sys-
tems would be one in which the micro has comp-
lete control of all tape movement and play/
record functions without "operator intervention"
e.g. pushing buttons. Unfortunately most of us
have budgets which only allow use of lower cost
audio cassette units. Short of massive mechan-
ical rebuilding, these units can only be extern-
ally controlled with a motor on/off function
after the "operator" has set the proper record/
play keys. All too often we goof and press the
wrong button, have to move cassettes from one
unit to another, or simply forget to set up the
units at the right time.

The Cassette Tape Controller (CTC) described
below offers a reasonably inexpensive capabil-
ity as a compromise in the provision of automat-
ic tape control for a KIM-1 system. CTC is a
combination of a seven-IC hardware board and
supporting software routines. It was developed
to control two Pioneer Centrex KD-12 cassette
units. The concept could be extended to more
than two units or perhaps other models.

A summary of the functions provided are:

(1) Provide software-driven capability to start
and stop a specific tape recorder by opening/
closing the "remote control"™ circuit of the re-
corder (normally controlled by a switch on an
external microphone).

(2) Provide software-driven capability to route
the input (record) or output (playback) signals
as appropriate.

(3) Provide override manual controls (toggles)
to also accomplish (1) and (2), above.

(4) Light panel indicators (LEDs) associated
with the play or record functions selected for
each cassette unit as set by software or manual
controls.

(5) Sense whether the selected tape recorder is
set to play or record, or neither.

(6) Sense the position of auxiliary toggles for
setting software options, ete., (option
switches.

(7) Light indicators (LEDs) asscciated with the
auxiliary toggles for operator communications.

(8) Provide an audible "beep" under software
control.

CTC General Description

The Cassette Tape Controller is a hardware/soft-
ware facility to assist in the operation and use
of audio cassette tape recorders for data read/
write functions. The hardware provides the int-
erface from a KIM-1 to two Pioneer Centrex KD-12
tape recorders. Besides the cassette input and
output lines from KIM-1 four other lines (bit
ports) are required for software control of the
hardware.

The software and hardware control the recorder's
motor circuits and determine if the appropriate
manual keys on the recorder are set correctly.
The software can provide alternative action
(alert the operator or try another unit) in the
case of improperly set keys.

The specific software illustrated below is writ-
ten to "search" for a unit which is set in eith-
a "read" (playback) or "write" (record) mode.

If none is found in the desired mode, an audible
tone is sounded and the search is continued.
The visible indication of each of the "read" or
"write™ LEDs blinking along with the audible
tone provides the operator with a quick clue as
to the erroneous settings. If the appropriate
tapes are "mounted" the operator simply depress-
es the "requested" cassette unit key. Subse-
quent references by the software would locate
the preset unit without communicating to the
operator.

Additional facilities are built into the CTC
hardware/software at little extra cost. These
include the separately accessible audible tone
and two option toggles with accompanying panel
indicator LEDs. The toggles can be used for set-
ting options selected by the operator and test-
ed by the software. The associated indicators
can also be used for some optional communication
purposes. A third switch (momentary toggle or
pushbutton) is used as a "break" command for
software testing. A layout of the related hard-
ware control panel is shown in Fig. 1.

READ WRITE

© O O O

UNIT | UNIT 2

CASSETTE TAPE CONTROLLER

b4

OPTION A & BREAK

O O

Figure 1.

Suggested Panel Layout
for Cassette Tape Controller

Hardware Description

A key to the logic of CTC is the ability to sen-
se actual cassette unit key settings. By sens-
ing voltage levels at two externally accessible
points in the KD-12 circuitry it is possible to
determine one of the following states:

(1) unit set for read (playback)
or fast forward or rewind

(2) unit set for write (record)
(3) no keys depressed

The circuit shown in Fig. 2 uses two ICs to ad-
dress a function, one to enable and the other to
sense results of enabling. This logic is fur-
ther described in the comments accompanying the
software source listing. Four non-critical DPDT
relays are used to allocate signals and contrcl

M”]@Q@ 7:39



motor circuits. The additional circuits, (1)
pulse an audible tone generator, (2) light LED
indicators, or, (3) sense toggle switch posit-
ions all depending upon addressed functions.

Three bits (PB 0-2) from KIM-1 Applications Port
B are used to address the functions. Another
bit line (PB 3) of the same port is used to feed
status back to KIM-1.

The KD-12 units are operated from external batt-
ery power (continually trickle-charged) to pro-
vide the most stable unit operation. HYPERTAPE
speeds are extremely reliable in this configur-~
ation.

Software Description

The controlling software consists of a series of
routines which are accessible from user programs,
The software shown in Fig. 3 is designed to
"seek out" a cassette unit which is set for a
given function, e.g., read. A brief study of the
routines will show how this can be replaced or
amended to select only a given cassette unit for
a specific function. The additional routines
are provided for "testing" the optional toggle
switches, etc. Many of the routines are useful
for other than tape cassette control, e.g.,
a JSR to BELL provides an audible "beep".

Conclusion

The hardware and software described have been
working very satisfactorily on the author's
system for well over a year. The CTC software
(along with tape and record I/0 routines based
on the HYPERTAPE routines) have been committed
to EPROM (2708). Access to this capability is
easy and provides convenient operation of tape

file processing from user software programmed in
any language used on the KIM-1 micro (BASIC,
Assembler, HELP, etc.). Although the operator
still must press the keys on the cassette units,
the CTC system can save many a "rerun” or clob-
bered files due to careless operations.

Author's KIM Based System

KIsn AUX
AUDIO  PUT
oUT  #L 1 #41
‘s 5 M) @ 3.
= o0 L E
PHONE 533?5 G
w1 1t
‘5 7402 7400 Ao —O—=»
oP ' S
_oxsis Il 19| O
= — B o — T il
e 2 74151 ) o o-® 5
K +25
| PO —— g —ae cs jDO—EDO-@ o
M paoe—>0—>04 K3 T
oo oo o1
=5 .5M '
R PBZ N W’Tﬁ_ —_—— T O
T +5 A B co é L Lo oY
B w0 L 74145 03 S . . o
A |2 3.4 oI = ON RO,
> c 200 @
/;3: 3 J%Wv-@-j #2 PLAY
o ~ELR : SAA—(P—217 =0
) #{ P 4 )23’\/\,—@__4’& LAY v
- //:ua N ﬁt e AKJN\_ € 2 T
—— & OBIDIN  SPEAER
o Q: L£0S s ! WO amor
L ST
{3 (A-u‘ﬁzr _ Figure 2.
ULLESS OTuEAuioE
s o Cassette Tape Controller (CTC)

TONE - SOUALET ol VIV

Circuit Diagram

RANIICID 1IN



) ) 6

0C10:
00z0:
0030:
ocacC:
00%0:
0C60:
0070:
00&0:
0C90:
O1CC:
Cl10:
0120
0130:
0140:
0l £0:
0160:
ID=C2

0010:
CcCez0:s
003G:
Q040
CCEQ:
CC6C:
0070C:
0C80:
009G
0100:
011G
01z0:
0120:
clac:
Cl150C:
Cl60:
0170:
0l&0:
0190:
ozCC:
Cz10:
0220:
1D=C2

OCl1C:
cGec:
0030C:
0040:
0CEO0:
CCEC:
0070:
0C20:
CO%C:
0100:
Cl10:
gl1eQ:
013¢C:
0140
cree:
CleC:
0170:
GlE€QC:

6zC0

0z00
gezeo
0200
c200

0z00
0201
0203
ceoe
0208
C204A
caor
C2CF
tzle

aNeNeoleNoNoNa
MMM MDD MDD D
N DA RN e —
D RMLOOW

L&
£9
20
FC
£9
zC
FO
20
CO

ec
4C

gt
EL
ce
AL
29
ce
eC

€E A9

OO0

N
NN

oot

NN NN

DWW
Mg w

OO 0o

8L
20

AS
gL
EL
eC

02
B
ccC
Cy4
1B
05
2B

EC

[A)

M o
(@]

EF
oe
ac
cz
OF
EF

cC
G2
ac

o7
c3
G2z

17
oz
17

Cz

17
17

KXFTAFP ORG $0200

3 K o ok 2 ok o 3 ok 3 ok S 3 ok Kk K kK K K
* *
* C4SSETTE TAFE =x
* COMNTRCLLEF (CTC) =%
* EY F.MILLER *
k3 *
3 3k 3k K oK ok 3 % kK ok ok k 3k ¢ K 3k K Xk K
*xk KIM & ZERO TAGE
FPEL *
FELL *
TFFCT =x
INIT *

31702
$1703
$OCETF
$1E8C

FPATALMETEFS *xx

*xxx TAPE CASSETTE REAL FOUTINES **xx

RLTAFE CLL
LLAINM %02
JER TPTEST
BEQ CrEaL
LLAIM §04
JE&E TFTEST
BEQ CEEAL
JEL EELL
ENE RLTAFE

CREAL NOF

TEST FOR UNIT#I
FCOER FEAD?

FEEALY

es s YES

eseNO» UNIT#Z FEALY?

L ..YES

es o0y SOUND SIGNAL ANL

TEY AGAIN.

« EOUTINE FOP FEALING TAFE

» GOES HEEREL

JEE

RLEXIT J¥F

CTLOFF
INIT

* K A

TFTEET STA TEICT
STE FEL
JSFE LELAY
LL& FEL
ANLIM $CF
CvxF TFFCT
rTS

EELL LLAeIM $CC
STA FEL
JSE LELAY

CTLOFF LIALM 207
STA FBLL
ST4A FtL

—Ta

WiIBR® 7.4

TUFN OFF CASSETTE MOTOF
ANL RETUEN VIA KIM INIT

CASSETTE SUFFOFT RTINS **x

SAVE UNIT/FCT
FOFT E CONTLOL LATA
ALLCY RELAY SETTLE
CK EITS C-2 = TO
OFIGINAL UNIT/FCT
MEANS UNIT

EQUAL RERLY

ZEFO FCT ESET
T

< TONE
VA4IT, EESE

S
& EXIT
EITE C-2

TO O/F

SET TO FCT#7 (OFF)



0190:
0200:
0210:
0220:
0230:
0z240:
0250
0260:
0270:
0280:
0290:
0300:
0310:
0320:
IC=04

0010:
0020:
0030:
0040:
0Cc SO0
CC60:
0070:
0080:
009C:
0100:
Cl10:
0l120:
0130:
0140:
0150:
0160:
0170:
0l1860:
0190:
0z200:
0z21C:
02z0:
ID=0¢

0010:
0020:
QC0G0:
0040:
0GS0:
0060:
0070:
CO8C:
009 GC:
0100:
0110:
Gl120:
0130:
0140:
IT=

023C
023E
024!

0244
C246

0247
GC24a
0Z4E
024E
0250
ges2
€283

0254
02558
0257
0254
o2scC
025E
0zél

0263
0zé66

0268

0269
026C

C26F
0271

0273
0z27¢%
0276
6279
U27A
027L
027t
gzgo

0281

A9
gL
eC
10
60

20
18
AD
29
Lo
38
€0

o8
A9
20
FO
A9
c0
FC
o
jol0]

20
4C

A9
cc

AS
48
=]
€8
20
18
Lo
38
4C

FF
07 17
07 17
FB

33 02

oz 17
o8
01

01
1B 02
ocC
03
lE 02
cs
25 g2
EC

33 Cc2
g&C 1E

33 02

lE G2

01

33 02

LELAY LLAIM S$FF
STA $1707 SET TIMER TO 1/4 SEC
EIT £1707
BPL LELAY +0C°S
RTS

BEKCK JSFE CTLOFF ENSUFRE GFF

cLC
LL& FBL
&NLIM $08 BIT 2 HIGH MEANS NO EFK
BNE EKEXIT
SEC
BKEXIT ETS NO CARFY MEANS NC EEK

*x*%x CASSETTE VRITE EOUTINE =*xx*

WHTAFE CLD
LLAIM %01 TEST FOR UNIT#1 EREALY
JSPR TPTEST FOF WVEITE?
BEEG CYEITL es.YES
LILAIM 303 eeeli0, TEST UNIT#E2
J SR TETEST
BEG CWREITE «««YLES
J EF EELL «eeNO, SOUNL SICGN&L ANLD
BNE VRTAPE AGAIN

CVRITE NGP

« CASSETTE WEITE FOUTINE
« GOES EERL

JSE CTLOFF TUXN OFF MOTGES
JMP INIT &NL BETUFRN VIA KIM

xxk AL TeSW TEST & LIGHT *x*x

TETEVA LEAIM $CGé6 SET FOE ALT.SV #1
ENE TSTEVE +C¢Z
TSTEVE LI&IM $CS SET FOT LLT.SV #&
FEA SAVE COLE
JSE CTLOFF INITL FORTS
FLA BETRIEVE COLE
JEE TETEST ANL TEST &V
CLC
BEE TETX IF ROT E&UAL
SEC MEANS SV IS NOT SET

TETX JMF CTLOFF CATEY MEANS U 'ON!

MIBR® 7.4

TRY



APPLE Il HIGH RESOLUTION GRAPHICS
MEMORY ORGANIZATION

Andrew H. Eliason
28 Charles Lane
Falmauth, MA 02540

One of the most interesting, though neglected,
features fo the Apple II computer is its ability
to plot on the television screen in a high res-
olution mode. In this mode, the computer can
plot lines, points and shapes on the TV display
area 1in greater detail than is possible in the
color graphics mode (GR) which has a resolution
of 40 x 48 maximum.

In the high resolution (HIRES) mode, the compu~
ter can plot to any point within a display area
280 points wide and 192 points high. While this
resolution may not seem impressive to those who
have used plotters and displays capable of plot-
ting hundreds of units per inch, it is nonethe-
less capable of producing a very complex graphic
presentation. This may be easily visualized by
considering that a full screen display of 24
lines of Y40 characters is "plotted" at the same
resolution. An excellent example of the HIRES
capability is ineluded in current Apple II ad-
vertisements.

Why, then, has reletively little software app-
eared that uses the HIRES features? One of the
reasons may be that little information has been
available regarding the structure and placement
of words in memory which are interpreted by HI-
RES hardware. Information essential to the user
who wishes to augment the Apple HIRES routines
with his own, or to explore the plotting possib-
ilities directly from BASIC. In a fit of cur-
iosity and Apple-insomnia, I have PEEKed and
POKEd around in the HIRES memory area. The fol-
lowing is a summary of my findings. Happy plot-
ting!

Each page of HIRES Graphics Memory contains 8192
bytes. Seven bits of each byte are used to ind-
icate a single screen position per bit in a ma-
trix of 280H x 192V. The eighth bit of each
byte is not used in HIRES and the last eight
bytes of every 128 are not used.

The bits in each byte and the bytes in each
group are plotted in ascending order in the fol-
lowing manner. First consider the first two
bytes of page 1. (Page 2 is available only in
machines with at least 24K).

BYTE | 8192 i 8193 \
SCREEN

POSITION 0 12 3 456789 10 1112 13
BIT 0123456012 3 & 5 6
WevaevVaGV[GVG Vv G V]G
(Bit 7 not used) i 7

V = VIOLET

G = GREEN

MIBR®

Figure 1 represents the screen position and res-
pective bit & word positions for the first 14
plot positions of the first horizontal line. 1If
the bit is set to 1 then the color within the
block will be plotted at the position indicated.
If the bit 1s zero, tnen black will be plotted
at the indicated position. It can be seen that
even bits in even bytes plot violet, even bits

in odd bytes plot green and vice versa. Thus
all even horizontal positions plot violet and
all odd horizontal politions plot green. To

plot a single white point, one must plot the
next higher or lower horizontal position along
with the point, so that the additive color prod-
uced is white. This is also true when plotting
single vertical lines.

The memory organization for HIRES is, for design
and programming considerations, as follows:

Starting at the first word, the first 40 bytes
(0-39) represent the top line of the screen (40
bytes x 7 bits = 280). The next 40 bytes, how-
ever, represent the 65th line (i.e., vertical
position 64). The next U0 bytes represent the
line at position 128 and the next 8 bytes are
ignored. The next group of 128 bytes represent
three lines at positions 8, 72 and 136, the next
group at positions 16, 80 and 142, and so on un-
til 1024 bytes have been used. The next 1024
bytes represent the line starting at vertical
position 1 (second line down) in the same man-
ner. Eight groups of 1024 represent the entire
screen. The following simple porgram provides a
good graphic presentation as an aid to under-
standing the above description. Note that there
is no need to load the HIRES machine language
routines with this program. Set HIMEM:8191
before you type in the program.

100 REM SET HIMEM:31%1

110 REM HIRES GRAPHICS LEARNING AID

120 POKE -16304,0: REM SET GRAPHICS MODE
130 POKE -16297,0: REM SET HIRES MODE

140 REM CLEAR PAGE - TAKES 20 SECONDS

150 FOR I=8192 TO 16383: POKE I,0: NEXT I
160 INPUT "ENTER BYTE (1 to 127)", BYTE

170 POKE -16302,0: REM CLEAR MIXED GRAPHICS
180 FOR J=8192 TO 16383: REM ADDRESS'

190 POKE J,BYTE: REM DEPOSIT BYTE IN ADDRESS
200 NEXT J

210 POKE -16301,0: REM SET MIXED GRAPHICS
220 GOTO 160

999 END

An understanding of the above, along with the
following equations will allow you to supplement

the HIRES graphias routines for memory efficient
programming of such things as: target games, 3D
plot with hidden line supression and 3D rota-
tion, simulation of the low resolution C=SCRN
(X,¥) function, ete. Also, you may want to do
some clever programming to put Flags, etc., in
the unused 8128 bits and 512 bytes of memory!

"



HI RES Graphics Equations and Algorithms

Where:

FB = ADDRESS OF FIRST BYTE OF PAGE.
PAGE1 = 8192 PAGE 2 = 16384

LH = HORIZONTAL PLOT CQORDINATE. O TO 279

LV = VERTICAL PLOT COORDINATE. 0 TO 191

BV = ADDRESS OF FIRST BYTE IN THE LINE OF
40

BY = ADDRESS OF THE BYTE WITHIN THE LINE
AT BV

BI = VALUE OF THE BIT WITHIN THE BYTE

WHICH CORRESPONDS TO THE EXACT POINT
TO BE PLOTTED.

Given: FB,LH,LV
BV = LV MOD 8 * 1024 + (LV/8) MOD 8 * 128
+ (LN/6Y) * 40 + FB
LH/7 + BV
2°(LH MOD 7)

BY
BI

To Plot a Point (Without HIRES Plot Routine):

LH = X MOD 280 : LV = Y MOD 192 (OR)

LV = 192-Y MOD 192
FB = 8192
BY = LV MOD 8 * 1024 + (LV/8) MOD 8 # 128 +
(LV/64) * 4o + FB
BY = LH/7 + BV
BI = 2"(LH MOD 7)
WO = PEEK (BY)

IF (WO/BI) MOD 2 THEN (LINE NUMBER + 2)
POKE BY, BI + WO

RETURN
To Remove a Point, Substitute:

IF (WO/BI) MOD 2 = 0 THEN (LINE NUMBER + 2)
POKE BY, WO-BI

To Test a Point for Validity, the Statement:

"IF (WO/BI) MOD 2" IS TRUE FOR A PLOTTED POINT
AND FALSE (=0) FOR A NON PLOTTED POINT.

RIVERSIDE ELECTRONIC DESIGN'S KEM AND MVN-1024:

A USER'S EVALUATION

Marvin L. De Jong
Dept . of Math-Physics
The School of the Ozarks
Pt. Lookout, MD 65726

The price and availability of a variety of
memory and application boards for the S 100 bus
will make many KIM-t1 owners think about expand-
ind their systems to be compatible with this
bus. The KIM Expansion Module (KEM) does the
trick. In addition, one of the most attractive
I/0 modes is the keyboard/video monitor team.
Riverside's MVM-1024, which interfaces neatly
with the KEM, provides all the necessary cir-
cuitry to provide a 16 line by 64 character dis-
play on a video monitor. Programs which give
the user a variety of display functions (homing
the cursor, backspace, erase-a-line, etc.) and
allow the user to communicate with the computer
by way of the keyboard are also available from
Riverside. Finally, all of the hardware and
software is well documented in a series of
application notes.

Space does not allow a complete description of
all of the packages mentioned above., The reader
should obtain the application notes and descrip-
tions from Riverside 1if he 1s contemplating ex-
pansion. Summarily, the KEM buffers all of the
address and data lines from the KIM-1, separat-
ing the latter into IN and OUT busses as requir-
ed by the S 100; provides the necessary memory-
mapped I/0 ports for the keyboard, cursor, and
video display; provides the logic for the S 100
signals; and provides four locations for the 1K
2708 EPROMs, in which may be stored display/
monitor programs, PROM programmer software, or
your favorite games.

WA =)e)

The KEM does all of this without affecting any
of the I/0 ports on the KiM-1. That is, PAD and
PBD may still be accessed from a connector on
the XKEM. The MVM-1024 contains its own memory
and does not use any of the memory on the KIM-1.
ASCII from the keybocard is loaded from address
13F8. To display a character, ASCII code for
the character is stored in location 13FB. The
cursor is controlled by the contents of two
locations, 13F9 which contains a six bit word
which determines the location of the character
in a line, and 13FA which contains a four bit
word which determines the line being used. Of
course, the display/monitor programs do all of
the necessary loading (LDA) and storing (STA)
for you, but it 1s particularly easy to write
short programs or subroutines which read the
keyboard and/or output data on the video monitor

The danger in writing an equipment evaluation
like this is in making it so concise that it is
Greek to everyone except the hardened computer
addict. So, I will conclude by saying that I
was very satisfied with the performance of the
Riverside hardware and software. 1 particularly
liked their use of premium components such as LS
TTL, the fact that the KIM-1 I/0 ports are still
available for applications, the keyboard polling
software which allows the user to use NMI or
IRQ interrupts for applications and the 4K of
PROM space. Also, it is much easier to enter
and de-bug programs with the display/monitor
software. My only criticism is that it is not
easy to lay out the system in a small package
form.

744

']




A DIGITAL CLOCX PROGRAM FOR THE SYM-1

Chris Sullivan
9 Galsworthy Place
Bucklands Beach
Aukland, New Zealand

The SYM-1 is a one board hobbyist computer
similiar to the KIM but with a number of
additional features. Since buying the SYM-1
I have had a great deal of fun playing a-
round with both the software and hardware
sides of it. The SYM-1 monitor, Supermon, is an
incredible monitor in 4K ROM, some of it's sub-
routines are called by the following program.

This program started off as a lesson in
familiarity with the 6502 instruction set and
using the Supermon subroutines to advantage,
but the present version has been modified many
times in order to increase the clock accuracy
and, as my knowledge of the 6502 instruction set
grows, increase coding efficiency. To use it
one should start execution at :200. Then enter
an "A" or "P" (Shift ASCII 5 0) to signify AM
or PM. Then enter the hours (two digits), the
program then outputs a space to separate the
hours from the minutes. Finally enter 2
digits to signify the minutes, the program will
then increment the minutes by 1, and begin the
clock sequence. This slight quirk makes it
easier to set the clock using another clock, set
up the "A"™ or "P", hours and first digit of the
minutes, then enter the last digit of the
minutes as the seconds counter of your setting
clock reaches 0.

There is another slight quirk in that the clock
counts "All 59", "A12 00", “A12 01", ....,
"A12 59", "PO1 QO","PO1 01" ..... This simpli-
fies the programming and means that 12:30 near
midday is in fact, 12:30 AM according to this
clock! However this is not 1likely to confuse
many people.

After setting up the initial time, the program
adds 1 to the minutes and then carries on any
carry into the hours, possibly changing "A" to
npt or vice versa. This section of the program
could be made more efficient with full exploita-

SYM-1 ELECTRONIC CLOCK

tion of the 6502 instruction set. The last sec-
tion in the program is a 1 minute delay. I have
rewritten this section many times in a search
for an accurate 1 minute delay. The first part
is a double loop which also scans the clock dis-
play, this loop takes about 59.8 seconds. The
second part is a double loop to "tweak" the de-
lay up to 60 seconds and consists of 2 delays
using the onboard 6532 timer. This timer is in-
itialised in 1 of 4 memory locations, specifying
11024, 64, 28, or &1 timing, e.g., the location
to write to if one wants 1024 timing is AM17.
This location thus initialised is counted down
in the 6532. The program reads this value until
it becomes negative, at which time the delay is
over.

Some improvements to the program could be made,
for example better coding in the increment min-
utes section. One could also add an alarm fea-
ture, possibly using the on board beeper. The
The section to update the time by one minute
could be used as a part of a background real
time clock, being called by a once-a-minute
hardware interupt generated by an on board 6522
timer chip. Once a minute, processing would be
interupted for 100 cycles or so in order to up-
date the real time clock. Such clocks have many
uses, one of which is to ensure that certain
number-crunching programs don't get tied down
in big loops.

This improved version occupies less RAM by using
jumps to INBYTE rather than INCHAR and messy bit
manipulations. The delay routine has been
improved to use the on board 6532 timer, and
also give greater resolution and hence greater
timing accuracy.

Editor's Note: This program is present primar-
ily for its value in showing how to access the
SYM's monitor for some of the routines. It is
not an "optimal" program for a 24 hour clock,
but should be a good starting point for owners
of SYMs who wish to write similar programs.

BY CHRIS SULLIVAN AUGUST 27, 1978

ORG  $0200
SPACE * $0020 ASCII SPACE
ACCESS * $8B86
INCHAR * $8A1B
INBYTE * $81D9
QUTCHR * $84a47
QUTBYT * $82FA
0200 20 86 8B BEGIN JSR  ACCESS
0203 20 1B 8A JSR INCHAR GET A OR P
0206 85 00 STAZ $00
0208 18 CLC
0209 20 D9 81 JSR  INBYTE GET HOURS
020C 85 01 STAZ $01
020E A9 20 LDAIM SPACE SPACE CHARACTER
0210 20 47 84 JSR  OQUTCHR OUTPUT A SPACE
0213 20 D9 81 JSR  INBYTE GET MINUTES
0216 85 02 STAZ $02
0218 F8 SED SET DECIMAL MODE FOR REMAINDER OF PROGRAM

MIICIRIO]

7:45



0219
0214
021C
021E
0220
0221
0223
0225

0228
0224
022C
022D
022F
0231
0233
0234
0236
0238

023B
023D
023F
0241

0243
0245
0247
0249

oz2uc
024E

0250
0252
0255
0257
025A
025C
025F
0261
0264
0265
0267
0269
026B
026E
026F
0271
0272
0274
0276
0278
027B
027E
0280
0281
0283
0284

02
01
02

60
03
50

00
02

01
01
01

13
03
50

01

01

00
50
07
50
00
50
41
00

00
a7
01

20
u7

FA

co
7D
01
u7

F8

F3
02
4D
17
06
FB

F3

19

02

02

02

8A
82
8A
82

8a

Al
Al

02

HAVING SET THE INITIAL TIME (LESS 1 MINUTE)
UPDATE THE TIME:

TIMLOP CLC
LDAZ
ADCIM
STAZ
SEC
SBCIM
BEQ
JMP
TIMEX LDAIM
STAZ
CLC
LDAZ
ADCIM
STAZ
SEC
SBCIM
BEQ
JMP
TIMEY LDAIM
STAZ
LDAZ
EORIM
BEQ
LDAIM
STAZ
JMP
LDAIM
STAZ

TIMEZ

NORSET LDAZ
JSR
LDAZ
JSR
LDAIM
JSR
LDAZ
JSR
CLD
LDXIM
LDYIM
LDAIM
JSR
DEY
BNE
DEX
BNE
LDXIM
LDAIM
STA
LDA
BPL
DEX
BNE
SED
JMP

WAITA
WAITB

WAITC

WAITD

$02
$01
$02

$60
TIMEX
NORSET

$00
$02

$01
$01
$01

$13
TIMEY
NORSET

$01
$01
$00
$50
TIMEZ
$50
$00
NORSET
$41
$00

$00
OUTCHR
$01
OUTBYT
SPACE
OUTCHR
$02
OUTBYT

$CO
$7D
$01
OUTCHR

WAITB

WAITA
$02
$4D
$A41T
$A406
WAITD

WAITC

TIMLOP

GET MINUTES
INCREMENT
TEST IF NEW HOUR

IF NOT A NEW HOUR

SET MINUTES TO 00

INCR HOURS

TEST HOURS = 13
YES, SET HOURS TO 1
GET A OR P

ASCII P

IS 00 = ASCII P?
NO, THEN SET 00 TO P

YES, THEN SET 00 TO A

GET AORP

GET HOURS

GET MINUTES

CLEAR DECIMAL MODE

SETUP FOR ALMOST 60 SEC WAIT
COUNTER

NON-DISPLAYING CHARACTER
REFRESH DISPLAY

LOW ORDER COUNTER
HIGH ORDER COUNTER

TWEAK TIME UP TO 60 SECONDS

DIVIDE BY 1024 TIMER
REGISTER OF 6532

VERIFY from 0200 thru 0286 is 356F.

The following subroutines called form part of
the SYM-1's SUPERMON monitor:

ACCESS
system RAM,

Enables the user program to write to
i.e. the RAM contained on the 6532.

It is necessary to call ACCESS before calling
most of the other system subroutines.

INCHAR

Get one ASCII charcter from the input

device (here the hex keypad) and return with it

in the A register.

INBYTE

Get two ASCII characters from the input

device, using INCHAR and pack into a single byte

in the A register.

MI[CIRIO]

OUTCHR Output the ASCII data in the A register
to the output device (here the six digit LED
display).

OUTBYT Convert the byte in the A register into
two ASCII characters and output these to the
output device.

Location AY17 is used to initialise the 6532
timer to count down from the value stored in
A417, with a divide by 1024 cycles. Thus the
timer register on the 6532 is decremented by one
every 1024 clock cycles. The timer register
sits at location A406, and the time is consider-
ed to be "up" when the value at A406 becomes
negative.

7:46



PEEKING AT

PET*S BASIC

Harvey B. Herman
Chemistry Department, U. of N. Carolina
Greensboro, NC 27412

Commodore, for reasons best known to them, has
seen fit to prevent users from PEEKing at PET's
ROM located, 8K BASIC. If you try to run a pro-
gram that says, PRINT PEEK (49152), the answer
returned will be zero instead of the actual ins-
truction or data in decimal. Disassemblers
written in BASIC will therefore not work prop-
erly if they use the PEEK command and try to
disassemble 8K BASIC (decimal locations 49152 to
57520). I was curious to see how the PET's 8K
BASIC was implemented and decided to write a ma-
chine language program which circumvents the re-
striction.

A listing of the above program which I have cal-
led MEMPEEK follows. It 1is decimal 22 bytes
long, relocatable, and can be stored into any
convenient area of memory. I have chosen to use
the area devoted to the second cassette buf-
fer starting at hex 33A. As long as the second
cassette is not used the program should remain
inviolate until the PET is turned off. Storing
the program in memory is trivial if a machine
language monitor 1is available. OQOtherwise con-
vert the hex values to decimal and manually poke
the values into memory. As of this writing,
Commodore's free, long-awaited, TIM-like monitor
has not arrived but I continue to hope.

MEMPEEK utilizes the user function (USR) which
Jjumps to the location stored in memory locations
1 and 2. If MEMPEEK is stored in the second
cassette buffer (hex 33A) initialize locations
1 and 2 to decimal 58 and 3 respectively. MEM-
PEEK was written so that the user function re-
turns the decimal value of the instruction given
by its argument (address). For example, if you
want to peek at an address less than decimal
32768 (not part of the BASIC ROMs) use in your
program Y=USR (address), where address is the
location of interest and the value of Y is set
to the instruction at that address. Since the
argument of the user function is limited to
+32767, use address -65536 for addresses larger
than 32768. Thus to look at locations in the
BASIC ROMs (all above 32768 and where MEMPEEK is
particularly useful) use Y=USR (address -65536).
It is not possible to look at location 32768
(the start of the screen memory) with this pro-
gram but this should prove no handicap as PEEK
could be used.

MEMPEEK takes advantage of two subroutines in
the PET operating system. The first (located at
hex DOA7) takes the argument (address) in the
floating point accumulator (conveniently placed
there by the user function) and converts it into
a two byte integer stored at hex B3 and BY.
Since I choose to use an indirect indexed instr-
uction to find the desired instruction the order
of the two bytes at hex B3 (MSB) and B4 (LSB)
need to be reversed. The second subroutine at
hex D278 converts a 2 byte integer representing
the instruction from the accumulator (MSB) and
the Y register (LSB) to floating point form and
stores it in the floating point accumulator.
This value, the instruction, is returned to
BASIC as the result of the user function.

The program, MEMPEEK, is fairly simple but would
be unnessary if the arbitrary restriction on
PEEKing at BASIC was removed. The restriction
makes no sense to me as even a relatively inex-
perienced machine language programmer (myself)
was able to get around it. This type of program
would of course not be difficult for competitors
of Commodore to write. I wrote this program for
the fun of it, to try to understand how BASIC
works and in the hope others will find it use-
ful. Furthermore, I hope I can discourage other
manufacturers like Commodore from trying to keep
hobbyists from a real understanding of their
software by arbitrary restrictions.

MEMPEEK Program

0334 1 %=$33A

033A 20A7DO 2 JSR $DOA7 ; convert to integer
033D A6B3 3 LDX $B3 ; interchange -

033F ALBY 4 DY $BY ; $B3 and $B4

0341 86BY 5 STX $B4

0343 84B3 5 STY $B3

0345 A200 7 LDX #0 ; initialize index
0347 A1B3 8 LDA ($B3,X); find instruction
0349 A8 9 TAY

0344 A900 10 LDA #0

034C 2078D2 11 JSR $D278 ; convert to floating
034F 60 12 RTS ; return to BASIC
0350 13 END

MICRO GOES TO EUROPE

In order to better serve the European
6502 market, MICRO has selected L.P.
Enterprises tao be its sole distributor
in Britain and Europe. All sales to
dealers and all new subscriptions will
be handled by L.P. Enterprises. This
will result is significantly lower cost
of MICRO. The prices of MICRC will be:

VIIIICIRIO]

Single Copy Retail: approx. $2.00
Six Copy Subscription: $10.00

For subscription or dealer information,
please contact:

L.P. Enterprises
213 Kingston Road, Ilford
fssex, IGl 1PJ England

7:47



ROCKWELL AIM 65 LOW-COST MICROCOMPUTER

AVAILABLE LATE OCTOBER FROM

L |
$375.00



sl |

RN, T

KIMBASE

Dr. Barry Tepperman
25 St. Mary St., No. 411
Toronto, Ontariac M4Y 1R2
Canada

KIMBASE is an application program written in the
6502 microprocessor machine language, designed
to make use of the monitor subroutines and mem-
ory configuration of the KIM-t microcomputer,
for conversion of unsigned integers from one
base to another. The input integer (designated
NUMBER is to be no greater than 6 digits in len-
gth; large 6-digit integers may cause overflow
in the multiplication subroutines with consequ-
ent errors in conversion. The base to be con-
verted from (designated BASE1) and to be con-
verted to (BASE2) are each in the range from 02y
to 10y4; the lower limit is set by mathematical

reality and the upper by the limited enumer- .

ation available from the KIM-1 keypad.

The program is started by placing NUMBER, lowest
order byte last, in page zero UC-4E, BASE1 (exp-
ressed in hexadecimal) in U4A, and BASE2 (also in
hexadecimal) in 4B. The program starts at 0200,
and will light up the KIM~1 LED display with
either an error message (according to an error
flag stored in zero page 02, called ERROR), or
a result display with the input data and a final
result up to 18ydigits in length (RESULT stored
in 03-0E) in successive segments in a format
to be discussed below, or a combination of both
displays, in an endless loop until the RS key is
pressed.

Program Function

After initialization of data workspace, several
tests of input data validity are conducted.
KIMBASE recognizes four error states:

a) NUMBER will remain same after conversion
(i.e. NUMBER=00000x where x is less than either
base). KIMBASE sets ERROR=01, RESULT=NUMBER,
and shows both error and result displays.

b) Either or both bases are outside the permis-
sable limits of 02-10y . KIMBASE resets bases
under 02 to equal 02 and bases exceeding 10 to
equal 104, and executes program to display res-
ult without an error display.

¢) BASE1=BASE2. KIMBASE sets ERROR=02,
RESULT=NUMBER, and shows error and result dis-
plays.

d) NUMBER enumeration is impermissable, as one
or more digits =BASE1 (e.g., attempting NUM-
BER=1C352A with BASE1=05). KIMBASE sets ERROR=
03, shows error display, and aborts further exe-
cution.

Note that error states "a" and "c", above, are
not mutually exclusive, and that KIMBASE sets
the error flag ERROR and goes to the appropriate
response routine after only one positive test.
Errors are displayed as a continuous flashing
LED readout "ErrorY" where Y=ERROR.

KIMBASE - MAIN PROGRAM LISTING

FhAkARAAXAXAAAY this section initializes

CLD 4209
LDX $#48 g1

2ERO1 LDA s#gp 23
STA ARRAY,X 25
DEX 27
BNE ZERO1 28
LDA S#gF ga
STA MASKI] gc
LDA S#Fg gE
STA MASK2

VIIICIRIO

Following the test routines, if BASE1£10y, KIM-
BASE converts NUMBER into its hexadecimal equiv-
alent by successive generation of powers of
BASE1, multiplication of the appropriate power
by the individual digits of NUMBER (remapped by
masking and shifting into array N), and suc-
cessive addition of all the hexadecimal prod-
ucts. This intermediate result is placed in
array HEXCON. A successive loop algorithm was
used for multiplication rather than a shift-and-
binary-add algorithm for economy of coding.

HEXCON = 2 N(Y) * Basg1(y-1)
y=1-6 10

This calculation is bypassed and NUMBER entered
directly into HEXCON if BASE1=10y.

After the conversion to hexadecimal, if BASE2=
10y, KIMBASE sets RESULT=HEXCON and the result
display is initiated. If BASE2#10y, HEXCON is
converted into BASE2 by the common successive
division procedure by BASE2 with mapping of rem-
ainders through an intermediate array into
RUSULT.

Results are displayed on the KIM-1 6-digit dis-
play as successive 1-second displays of NUMBER,
BASE1 and BASE2, and RESULT divided into 6-digit
segments, in the format:

NNNNNN (NUMBER 1-NUMBER3)
IIbbOO (II=BASE1; 00=BASE2)
RRRRRR (RESULT1-RESULT3)
RRRRRR (RESULT4-RESULT6)
RRRRRR (RESULT7-RRSULT9)
RRRRRR (RESULTA-RESULTC)

which loops endlessly. Where ERROR=01 or 02,
the error message precedes the result display,
and loops endlessly in the display.

All intermediate arrays and products have been
retained in the zero page data workspace to fac-
ilitate any debugging or further elaboration of
the program that other users may find necessary.

Users of non-KIM 6502-based microcomputers may
implement KIMBASE easily with appropriate relo-
cation of program and workspace (if necessary)
and replacement of the display subroutines
(SHOWER-TIMER1, SHORES-TIMER2) with appropriate
machine-dependant output routines (or by BRK in-
structions with manual interrogation of the ap-
propriate arrays to determine output).

data workspace and constants #***#attix#

D8 select binary mode

A2 48 set workspace byte counter
A9 g9

95 g1 zero common workspace

CA decrement counter

D@ F9 if #¢ loop back

A9 gF

85 gr set MASKI=@gF

A9 Fg

85 1g set MASK2=F(g
7:49



LDA $#P5 12 A9 @5

STA PWR 14 85 @9 set PWR=g5
LDX SH#FF 16 A2 FF
TXS 18 94 set stack pointer=FF

dhrkgkkttARAtA* this section tests input data Validity dhktAd AR At AR A A AR AR

TSTINR LDA s#gd 19 A9 @9 TEST - ERROR STATE "a"
CMP NUMBERI 1B c5 4C NUMBER1=09?
BNE TSTI1BS ip Dg 14 no? go to next test
CMP NUMBER?2 1F C5 4D NUMBER2=00?
BNE TSTI1BS 21 Dg 14 no? go to next test
LDA NUMBER3 23 A5 4F
CMP BASE2 25 C5 4B NUMBER3€ BASE2?
BCC CORRI1 27 99 @3 yes? go to correction routine
JMP TSTI1BS 29 4C 33 @2 go to next test
CORR1 LDA $#gl 2¢c a9 g1
STA ERROR 2F 85 @2 set ERROR={@1
JMP CORR3A 39 4C 5A @2 and jump to CORR3A
TST1BS LDX S#g2 33 A2 @2 TEST - ERROR STATE "b”
TST1B2 LDA BASE,X 35 B5 49
CMP $#g@2 37 c9 @2 BASE(X) €92?
BCC CORR2A 39 99 @B yes? go to correction routine
CMP s#11 3B c9 11 BASE(X)> 11?
BCC RESETI1 3D 94 ¢B no? bypass correction
CORR2B LDA S#1gd 3F A9 1¢
STA BASE,X 41 95 49 otherwise set BASE(X)=18
JMP RESETI1 43 4C 4A @2 and bypass next correction
CORR2A LpA s#g2 46 A9 @2
STA BASE,X 48 95 49 set BASE(X)=¢2
RESET1 DEX 4A CA decrement loop counter
BNE TST1B2 4B D@ ES8 and go back if #¢
TST2BS LDA BASE2 4D A5 4B TEST - ERROR STATE "c"
CMP BASEl 4F C5 4A BASE2=BASE1?
BEQ CORR3 51 Fg g3 yes? go to correction routine
JMP TST3BS ) 53 4C 6A (2 otherwise bypass
CORR3 LDA S$#g2 56 A9 @2
STA ERROR 58 85 @2 set ERROR=@2
CORR3A LDX S$#d3 54 A2 93
LDY s#gC 5c Ag gc¢C
CORR3R LDA NUMBER,X 5E B5 4B read NUMBER
STA RESULT,Y 60 99 @2 @@ 1into RESULT
DEY 63 88 decrement counters
DEX 64 ca ... ceseea e
BNE CORR38 65 Dg F7 and loop until complete
JSR SHOWER 67 2¢d A¢ @9 display error message
TST3BS LDA BASE1l ga6Aa A5 4A
CMP $#1g 6C c9 1¢ BASE1=1g?
BCC TST2NR 6E 99 gcC no? go to next test
LDX $#d3 70 A2 g3
HExMAP LDA NUMBER,X 72 B5 4B yes? read NUMBER
STA HEXCON,X 74 95 25 into HEXCON
DEX 76 CA
BNE HEXMAP 77 Dg F9 for all 3 bytes
JMP HEX1 79 4c 1F @3 and bypass hex conversion
TST2NR LDA BASEl 7C A5 4A TEST - ERROR STATE "d"
STA BSTRI1 7E 85 11 store BASElL
ASL ASL 8¢ @A QA
ASIL ASL 82 ga ga and left shift 4 bits
STA BSTR2 84 85 12 to store BSTR2=(1¢*BASEl)
LDY $#@2 86 A9 @2.
TLP2 LDX S#@3 88 a2 g3
TLP1 LDA NUMBER,X 8A B5 4B isolate each digit NUMBER(X)
AND MASK,Y 8C 39 @gE ¢@ by masking
CMP BSTR,Y 8F D9 19 @9 and compare with BSTR
BCC TRESET 92 97 g3 if less, reset loop
JMP CORR4 94 4c A¢ P2 otherwise impermissable - correct
TRESET DEX g7 CA decrement counter NUMBER
BNE TLP1 98 Dg Fg and repeat for corresponding digits
DEY SA 88 decrement counter BSTR/MASK
BNE TLP2 9B Dg EB and repeat for remaining digits
JMP REMAP 9D 4C A7 @2 go to REMAP
CORR4 LDA $#93 ag a9 g3
STA ERROR A2 85 g2 set ERROR={3
- JSR SHOWER A4 2 Ag ¢g¢ and display error message

MI[IE)@ 2.8



AAAAAAAARAR RN this section remaps NUMBER for

REMAP
REMAP1

MASKS1

REMAP2

%2k gk b 2k ok ok 2k 2k ok ok ok oF 2k ot

HEXCNV
LPI1PWR

RESETZ2

RESET3

RESET4

RESETS

RESET6

o2k 3k ok 2k ok ok b ok ok gk b b ok o

HEX1

LDX
LDA
STA
STA
DEX
BNE
LDX
LSR
LSR
LSR
LSR
LDA
AND
STA
DEX
BNE
LDY
LDX
LDA
STA
INY
LDA
STA
INY
DEX
BNE

LDY

JSR
LDA
CcMP
BEQ
BCC
STA
TYA
PHA
JSR
PLA
TAY
cLc
LDX
LDA
ADC
STA
DEX
BNE
DEY
BEQ
DEC
LDA
cMP
BEQ
BCS
LDA
STA
LDA
STA
STA
LDA
STA
LDA
CMP
BEQ
BCC

LDA
CcMP
BCC
LDY
LDX

$H93
NUMBER, X
NHI, X
NLO,X

REMAP]
SH#E3

NHI,X
NHI,X
NHI,X
NHI, X
NILO,X
MASK]
NLO,X

MASKS1
sH#o1
SHE3
NLO,X
N,Y

NHI, X
N,Y

REMAP2

a7 A2 ¢3
a9 B5 4B

AB 95 12

AD 95 15

AF ca

BJ oy F7

B2 A2 g3

B4 56 12

B6 56 12

B8 56 12

BA 56 12

BC 85 15

BE 25 gF

cg 95 15

c2 ca

c3 Dd EF

cs Ag g1

c7 A2 93

c9 B5 15

CB 99 18 gg
CE cs

CF B5 12

D1 99 18 gg
D4 c8

D5 ca

D6 g FI

conversion to hex *he*tttdtttittt

load NUMBER
into NHI
and into NLO

loop until done
right shift

NHI
4 bits

isolate right digit NLO

loop until done

store NLO into N
alternately

with NHI
and in inverse order

loop until done

this section converts N into hexadecimal #*#*#kkitkdkkhttdttttntttttts

sHge
PWRGEN
N,Y
SH#g1
RESET3
RESETS
MULTP

MULT

SH#@3

MULTC ,X
HEXCON , X
HEXCON ,X

RESET4

HEX1
PWR
PWR
s#o1
RESET6
LPIPWR
N,Y
MULTC3
s#ep
MULTC1
MULTCZ
BASE1
MULTP
PWR
sS#ol1
RESETZ
RESET3

g2p8 ag ge

DA 290 69 gp

DD B9 18 gg

EQ co g1

E2 Fg 9B

E4 99 15

E6 85 1IF

E8 98

£9 48

EA 290 8¢ @9

ED 68

EE a8

EF 18

Fg a2 g3

F2 B5 IF

Fd 75 25

Fé6 95 25

F8 ca

F9 og F7

FB 88

FC Fg 21

FE c6 g9
a399 A5 gg

92 c9 g1

24 Fg @2

g6 B§ D2

g8 B9 18 g9

gB 85 22

@D A9 g¢

gF 85 2¢

11 §5 21

13 A5 4A

15 §5 1IF

17 a5 gg

19 c9 g1

1B Fd CB

) 99 Do

for six places
generate powers of BASEIL

N(Y)=@g1?

if equal, go to RESET3

if less, go to RESETS

set MULTP=N(Y)

put index Y into accumulator
and push onto stack

multiply power by N(Y)

pull accumulator from stack
and restore to Y

add new product
to intermediate product
and store as intermediate product

loop until done

for next place

i1f counter=@ bypass

reduce power to be generated

PWR=g1?
yes? go to RESET6

greater? loop back to new conversion

set MULTC=N(Y)

set MULTP=BASEI

PWR=g1?
yes? go to RESET2
less? go to RESET3

this section produces result from HEXCON when BASE2=1( ###tkxtitittt

BASE2
S#1g
2ERO2
s#oc
S#03

1F A5 4B
21 c9 1¢
23 9¢ 19
25 Ag gc

»7 MISAD .-

BASE2=107?
no? go to ZEROZ2



HEX?2 LDA HEXCON,X
STA RESULT,Y
DEY
DEX
BNE HEX2
JSR SHORES

rAEAEAARARAARAAR this section divides HEXCON

ZERO2 STA DIVIS
LDX $#03
LPiprvy LDA HEXCON,X
STA DIVD,X
DEX
BNE LPIDIV
LDy $#18
LP2DIV JSR DIVIDE
LDA RDR
STA RSTOR,Y
LDX $s#@g2
TSTIQ0 LDA QUO,X
CMP  $#d1
BCS RESET7
DEX
BNE TSTIQO
LDA QUO3
CMP DIVIS
BCC ENDDIV
RESET7 LDX S$#03
RST7A LDA QUO,X
STA DIVD,X
LDA $#gg
STA QUO,X
DEX
BNE RST7A
STA RDR
DEY
BEQ ENDV2
JMP LP2DIV
ENDDIV DEY
LDA QUO3
STA RSTOR,Y

rAEXAXAAXARKAR% this section maps RSTOR

ENDV2 LDY S#gC
LDX $#18
CcIC

REMAP3 DEX
LDA RSTOR,X
ASL ASL
ASL ASL
INX
ADC RSTOR,X
STA RESULT,Y
DEY
DEX
DEX
BNE REMAP3
JSR SHORES

1. PWRGEN

29
2B
2E
2F
39
32

@335

37
39
3B
3D
3E
49
42
45
47
4A
4c
4E
59
52
53
55
57
59
5B
5D
5F
61
63
65
66
68
6A
6B
6D
79
71
73

76
78
7A
7B
7C
7E
8¢
82
83
85
88
89
8A
8B
8D

B5
99
88
CA
o7
29

85
A2
B5
95
ca
og
Ag
29
a5
99
A2
B5
c9
By
cA
Dg
a5
c5
99
A2
B5
95
A9
95
cA
og
85
88
Fg
4C
88
a5
99

25 store HEXCON

@22 g9 into RESULT

F7 Ioop until done

97 @3 and display result

by BASE2 for crude conversion ***#kikikis*

2C set DIVIS=BASE2

g3

25 load HEXCON

28 into DIVD

F9 loop until done

18 for lBH places

g g1 executée division

39 load RDR

39 g9 into RSTOR

g2

2c

g1 QUO(1 or 2)§¢1?

79 yes? go to RESET7

F7 loop until done

2F

2C QUO3=DIVIS?

15 less? go to ENDDIV

23

2C load QUO

28 into DIVD

a9

2c zero QUO

F5 loop until done

39 zero RDR
decrement place counter

g9 if = go to ENDV2

42 g3 otherwise back to divide routine
decrement place counter

2F load QUO3

3¢ g9 into next RSTOR slot

into RESULT for final result **arkdtkhkkhsktks

Ag
a2
18
ca
B5
ga
ga
E8
75
99
88
ca
ca
og
2¢

gc

18

30 left shift alternate bytes
77 RSTOR 4 bytes

FA e

39 add to next byte RSTOR
42 gg and store as RESULT

EE loop until done

99 @3 and display result

R b . . s . . . .
Subroutine to generate a by successive iterations of multiplication subroutine MULT
with resetting of counters and intermediate products; allows unsigned binary or
decimal arithmetic in 6502 instruction set; maximum result memory allocated laH bits.

Requires: subroutines: MULT

data arrays: BASEI
PWR
DPWRS
MULTP
MULTC

g089-9998

g94A
g009
9991
gaiF

go29-gg22

Inapplicable to PWR=@¢,01; calling program must test and bypass.

VI[CIRIO EA?!



Aot RN, 1

PWRGEN LDA FWR 72069 A5 g¢ load power

} STA PWRS 62 85 g1 store in counter

: DEC PWRS 64 c6 g1 decrement counter
LDA BASE1 66 A5 4A

‘ STA MULTP 68 85 IF set multiplier=base

(53 i STA MULTC3 64 85 22 set multiplicand=base

! LDA $#g9p 6C A9 g9

; STA MULTCI1 6E 85 2¢ zero 2 high-order bytes

: STA MULTC2 74 85 21 of multiplicand

3 TYA 72 98 transfer index Y to accumulator

| PHA 73 48 and onto stack

; MULTCL JSR MULT 74 24 84 @9 jump to MULT

| DEC PWRS 77 c6 g1 decrement counter

I BNE MULTCL 79 Dg F9 if #@ return to MULTCL

! PLA 7B 68 pull accumulator from stack

‘ TAY 7C A8 and restore to index Y
RTS 7D &g return to main program

2. MULT

Subroutine multiplies 24-bit number (MULTC) by 8-bit number (MULTP) to
yield 24-bit final product (MULTC) by successive iterations of nested
addition dloops. Intermediate product storage in MIDPRO. Allows unsigned
decimal or binary operation in 65@¢2 instruction set.

Requires : data arrays : MULTP gg1F
MULTC gogz2g-9gg22
MIDPRO ga23-g@g25

Inapplicable to MULTP less than (¢2; calling program to test and bypass

MULT LDY MULTP gd8p A4 1F loop counter=multiplier
DEY 82 88 decrement loop counter
LDX S#g3 83 AZ g3 set byte counter in loop
! REDIST LDA MULTC,X 85 BS 1IF set Intermediate register
‘ STA MIDPRO,X 87 95 22 =multiplier
DEX 89 Ca for each byte in array
BNE REDIST 84 Dg F9 loop until Xx=¢
ADLP2 LDX S#g3 8¢C Az g3 set byte counter in loop
CLC 8E 18 clear carry
ADLPI1 LDA MULTC,X 8F BS 1F add multiplicand
ADC MIDPRO,X 91 75 22 to Intermediate product
STA MULTC,X 93 95 1F store as new multiplicand
DEX 95 CA for each byte in array
BNE ADLP1 96 Dg F7 loop until XxX=¢
DEY 98 88 decrement loop counter
BNE ADLP2 99 Dg F1 another loop 1f Y#¢
RTS 9B 6g return to main program

3. DIVIDE

| Subroutine to divide 24-bit dividend (DIVD) by 8-bit divisor (DIVIS) to

| yield 24-bit quotient (QUO) and 8-bit remainder (RDR) by successive shift

‘ and subtraction processes; unsigned binary arithmetic only in 6502 instruction
set. Intermediate quotient storage in QUO. Requires initialization of RDR
and array QUO to ¢ by calling program, DIVIS#{g.

Requires : data arrays : DIVD 2329-222B
DIVIS gaac
QUo #P2D-3P2F
RDR g3 30
DIVIDE LDX S#19 g1 19 A2 19 load shift counter
‘' LOOP1 ASIL RDR 12 ge 3¢ left shift remainder
@ ‘ ASL QUO3 14 g 2F left shift quotient LSB
LOOP1A BCS HIQUOI 16 Bg 28 go to Incrementing routine
if carry set
I ASL QUO2 18 g6 2E left shift gquotient mid-byte
B HIQUOZ2 1A Bg 2F go to Iincrementing routine
i1f carry set
ASL QUO1 2D left shift quotient MSB

MI8RA® .



LOOP2

LOOP3

LOOP4

HIQUOI1

HIQUO2

HIORDI

HIORDZ

INCR

FINIS

CLC
ASL
BCS

ASL
BCS

ASL
BCS

DEX
BEQ
SEC
LDA
SBC
BMI
STA
ASL
ASL
INC
JMP
ASL
INC
BCS

ASL
JMP
ASL
INC
JMP
ASL
INC
BCS

ASL
JMP
ASL
INC
JMP
INC
JMP
LSR
RTS

DIVD3
HIORD1

DIVD2
HIORD2

DIVD1
INCR

FINIS

RDR
DIVIS
LOOP]
RDR
RDR
QUo3
oU03
LOOP1A
QuUo?2
QUO2
HIQUO2

QuUo1l
LOOP2
Quol
ouol
LOOP2
DIVD2
DIVD2
HIORD?2

DIVDI1
LOOP3
DIVDI
DIVDI
LOOP3
RDR

LOOP4
RDR

4. SHOWER & TIMERI

1E
1F
21

23
25

29

2B
2C
2E
2F
31
33
35
37
39
3B
3D
49
42
44

46
48
4B
4D
4F
52
54
56

58
5a
215D
SF
61
64
66
69
6B

18
g6
By

g6
By

g6
By

ca
Fg
38
AL5
E5

85
g6
76
E6
4c
76
E6.
Bg

g6
4C
46
E6
4C
g6
E6
BY

ge

4cC
26
E6
4c
E6
4cC
46
6g

2B
2F

2A
36

29
39

3B

39
2c
DD
39
39
2F
2F
16 g1
2E
2E

g5

2D
1E ¢1
2D
2D
1E g1
24
2a

25

29
26 g1
29
29
29 @1
3¢
2B ¢1
3¢

clear carry
left shift dividend LSB
go to incrementing routine
if carry set
left shift dividend mid-byte
go to Incrementing routine
if carry set
left shift dividend MSB
go to incrementing routine
i1f carry set
decrement shift counter
jump to end if X=¢
set carry
from current remainder
subtract divisor
back to LOOP1 if negative
store difference as remainder
left shift remainder
left shift quotient LSB
increment quotient LSB
and go back to LOOPIA
left shift quotient mid-byte
and increment 1t
go to further incrementing
Iroutine if carry
left shift quotient MSB
and back to LOOP2 (if C=¢)
left shift quotient MSB
increment quotient MSB
and back to LOOP2
left shift dividend mid-~byte
Iincrement dividend mid-byte
go to further incrementing
routine 1if carry
left shift dividend MSB
and back to LOOP3 (if C=¢)
left shift dividend MSB
increment dividend MSB
and back to LOOP3
increment remainder
and back to LOOP4
right shift remainder to end
return to main program

Subroutines to generate error message for display on the KIM-1 6-digit LED readout
by successive lighting of appropriate segments of the individual digits using a
message lookup table.

SHOWER requires:

SHOWER

DISP2

DISP1

LDA
STA
LDA
STA
LDY
LDX
5TY
LDA
573
JSR
INY

subroutines:

: data arrays:

SH7F
SADD
SH#IE
SBDD
SHP8
S#@S5
SBD
MSGERR, X
SAD
TIMER]

SADD
SBDD
SAD
SBD
ERROR
MSGERR
MSGNUM

9929
az
a5
a7
A
AC
AE
Bl
B3
B6
B9

TIMERI
SHORES

@PIDE-PPES

timing loop for display
result display for ERROR=p1 or g2

monitor storage for readout

set output directional vector A=7F

set output directional vector B=1E

set digit selection counter
set loop counter

select digit

select segments

2399 -93CF
1741
1743
1749
1742
o902
29D5-39DA
#9DB-@3@DD
A9 7F
§p 41 17
a9 1E
8D 43 17
a¢ 98
a2 g5
sc 42 17
B5 D5
80 4p 17
20 DE g¢¢
c8

to be 1lit (from lookup table)

and jump to timing loop

select next digit



INY BA c8

DEX BB CA decrement loop counter

BNE DISP1 BC Dg F¢ if #4 loop again

LDA $#12 BE A9 12

STA SBD cg 8D 42 17 for sixth digit

LDX ERROR Cc3 A6 @2 set index to error flag

LDA MSGNUM,X Cc5 B5 DA and select segments

STA SAD c7 8D 4¢ 17 to be lit (from lookup table)
JSR TIMERI CA 2¢ DE @9 and jump to timing loop
LDA ERROR CcD A5 2

CMP S#g3 CF ce g3 if ERROR=(3

BEQ DISP2 D1 Fg D7 loop same display again

JMP SHORES D3 4c 9¢ 93 otherwise jump to show result

lookup tables:

2906 Dd Dc Dgd D¢ F9 MSGERR
@9DB 8 DB CF MSGNUM

TIMER] requires: interval timer location 1797

TIMER1 LDA SH#FF @@DE A9 FF set timer for approximately

STA 1797 Eg 8p @7 17 200 milliseconds per digit
DELAY1 NoOP E3 EA do nothing but light segments
BIT 1747 E4 2c @7 17 time up?
BPL DELAYI1 E7 g Fa no? keep 1lit
RTS E9 60 yes? back to SHOWER for next digit

5. SHORES & TIMER2

Subroutines to generate result display on the KIM-1 6-digit LED readout by loading
appropriate data into array DISP for display by KIM monitor subroutine SCANDS.

SHORES requires: subroutines: TIMER2 @3Dg-@3ES timing loop for display
SHOWER PPAg-39D5 error display for ERROR=@1 or ¢2
: data arrays: ERROR ga92
RESULT 9003-3d9E
BASE 904A-gp48B
NUMBER PP4C-gad4E
DISP @IF9-@PFFA monitor storage for readout:
dgr9 INH
gPFA POINTL
gPgFB POINTH
SHORES LDY $#g1 @39¢ A7 g1 set index for DISP
LDX $S#g3 92 A2 @3 set index for NUMBER
LOADN1 LDA NUMBER,X 94 B5 4B put NUMBER into DISP
STA DISP,Y 96 99 F8 g¢
INY 99 c8 increment DISP index
DEX 9A CA decrement NUMBER index
BNE LOADNI 9B Dg F7 loop until DISP is full
JSR TIMER2 9D 2¢ D¢ @3 and jump to timing/display loop
LDA BASEI Ag A5 4A load BASEl
STA POINTH A2 85 FB Iinto two highest digits
LDA $#BB A4 A9 BB load BB
STA POINTL A6 85 FA into two middle digits
LDA BASE2 A8 A5 4B load BASEZ2
STA INH AA 85 F9 into two lowest digits
JSR TIMER2 AC 20 bpg @3 and jump to timing/display loop
LDX s#p1 AF a2 g1 set index for RESULT
LOADN3 Lpy S5#g3 Bl Ag 93 set index for DISP
LOADN2 LDA RESULT,X B3 B5 @2 put RESULT (3 bytes at a time)
STA DISP,Y B5 99 F8 g¢ into DISP
INX B8 ES8 increment RESULT index
DEY B9 88 decrement DISP index
BNE LOADN2 BA Dg F7 loop until DISP is full
TXA BC 84 put RESULT index into accumulator

Eﬂ][][ES[;](:) 7:55



PHA BD 48
JSR TIMER2 BE 20
PLA CclI 68
TAX c2 AA
CPx S#¢gD c3 EQ gD
BCC LOADN3 c5 94 EA
LDA ERROR Cc7 A5 @2
CMP S#00 c9 c9 ¢g¢
BEQ SHORES CB F@ C3
JMP SHOWER CD 4c  A¢

TIMER2 requires: subroutines: SCANDS 1IFIF
data arrays: CTLP 2049

interval timer location 1707

Dg @3

and push onto stack

now jump to timing/display loop
pull accumulator from stack

and put in RESULT index X
is X>gC?
if not, loop back to load DISP
if yes, does ERROR=0@?

if yes, loop again for whoie display
a9 otherwise show error

monitor display subroutine

TIMER2 LDA S#@5 73D@ a9 g5
STA CTLP D2 35 49 set loop counter
DSPN2 LDA S#FF 73D4 A9 FF set timer for maximum run
STA 17¢97 D6 8p @7 17
DSPN1 JSR SCANDS D9 2¢ 1F 1F and call display subroutine
BIT 1737 c 2c @7 17 time up?
BPL DSPNI1 DF 1g F8 no? maintain display
DEC CTLP El c6 49 decrement loop counter
BNE DSPN2 E3 Dg EF if #@, reset timer and maintain display
RTS ES5 60 otherwise back to SHORES for next entry
"THE BEST OF MICRO VOLUME 1™ ADYERTISING IN MICROD

Even though we had extra copies of MICRO printed
we could not keep up with the demand for back
issues. We have run out of all back issues and
all copies of "All of MICRO Volume 1". Since a
lot of people who are just finding out about
MICRO or sre just getting into the 6502 world
still want the information which was contained
in the first year of MICRO, we have decided to
print "The BEST of MICRO Volume 1".

This will contain most of the articles but none
of the advertising. A few articles which were
topical and are now out-of-date will be dropped
and all known microbes will be corrected back in
the original articles. The book will be
organized by subject. Aside from these minor
changes, the content will be identical to that
of MICRO numbers 1 through 6. If you already
have them, you will not profit by getting the
new edition. If you do not have them, then this
will be the only way to get the information.

"The BEST of MICRO Volume 1" will be available
about the first of November. It will be about
160 page long in an 8 by 11 format, soft cover.
The price will be $6.00 (plus $1.00 postage US)

Send your Check or Money Order to:
The BEST of MICRO

P.0. Box 3
So. Chelmsford, MA 01824

It doesn't COST to advertise in MICRO, it PAYS!

MICRO 1is currently printing 10,000 copies for
distribution. 3000+ will go immediately to sub-
scribers and dealers. The remainder will go to
new subscribers and to replenish dealer stock
throughout the coming year - so you get a lot of
coverage for your dollar, into a readership that
is eager to know about 6502 oriented products.

DEADLINES for Issue Number 8 - December/January

Ad Reservation by 6 November

Ad Copy by 13 November
The rates are very reasonable for the coverage:
Quarter Page (&4 x 5) $50.00
Half Page (8 x 5) $75.00
Full Page (8 x 10) $125.00
10% discount on six consecutive insertions.

Send Ad copy to:
MICRO, P.0. Box 3, So. Chelmsford, MA 01824
or call for info or Ad reservation:

617/256-3649

MICIRIORE?



_ SYM-1.
o Finally, adependable microcomputer board.

In performance. In quality. [n availability. OEMs, educa- * 28 double-function keypad with audio response.

tors, engineers, hobbyists, students, industrial users: * 4K byte ROM resident SUPERMON monitor includ-
Our Versatile Interface Module, SYM-1, is a fully- ing over 30 standard monitor functions and user
assembled, tested and warranted microcomputer board expandable.

that’s a true single-board computer, complete with * Three ROM/EPROM expansion sockets for u s 1o
keyboard and display. All you do is provide a +5V 24K bytes total program size.

power supply and SYM-1 gives you the rest—and that * 1K bytes 2114 static RAM, expandable to - buie:
includes fast delivery and superior quality. on-board and more off-board.

Key features include: * 50 1/0 lines expandable to 70.

» Hardware compatibility with KIM-1 (MOS Technol- ° Sipgle +5V power requirements. -
ogu) products. * Priced attractively in single unit quantities: .z -

* Standard interfaces include audio cassette with without keybgard/ display, with OEM disc=
remote control; both 8 butes/second (KIM) and 185 larger quantities.
bytes/second (SYM-1) cassette formats; TTY and g
RS232: system expansion bus; TV/KB expansion Synertek Systems

board interface: four [; O buffers; and an oscilloscope o
single-line display,. Corporatlon.

150-160 S.Wolfe Road. Sunnyvale, California 9408~
(408) 988-5690.

To place your order now, contact vour local area distributor or dealer.

OEM Distributors Technico Technico Ancrona
| Kierulff Electronics General Radio Columbia. Maryland Culver City. Calitoime
) Sterling Electronics (Seartle only) Western Microtechnology Computerland General Radic
e Zeus Components Future Electronics Mayfield Heights, Ohio Camden, New Jz1so
i Centurv/Bell Alliance Electronics RNB Enterprises Advanced Co Foed
' Lionex Arrow Electronics King of Prussia, Pennsylvania Santa Ana, Calif

Computer Shop
Personal Computer Deaiers Cambridge. Massachusetis
h n Computer Exchanae




6502 SYSTEM SPECIALS

SYSTEMS*
Apple Il 16K RAM $1195% « Commodore PET 8K RAM 5795% « Commodore KIM | $175%
Synertek VIM $269% « Microproducts super KIM 539509
*Delivery on most systems is usually stock to 2 weeks. Call or write for specific information.

CLASSES AND WORKSHOPS

All classes and workshops listed here are free of charge but have limited enroliment. Preference will be given to
regular CCl customers in the event of an overflow crowd.

WORKSHOPS: Call for details.
KIM—2nd Saturday of the Month « PET—3rd Saturday of the Month
APPLE—A4th Saturday of the Month

CLASSES: Apple Topics

We offer a series of free classes on Apple Il to aquaint owners with some of the unigue features and capabilities
of their system. Topics covered are Apple Sounds, Low Res. Graphics, Hi Res. Graphics, Disk Basics, and How to Use
Your Reference Material. Sessions are held every Thursday Night at 7:00 p.m.

SOFTWARE HARDWARE

We now have a complete software catalog. APPLE Il HARDWARE:
APPLE: Programmable Printer interface (Parallell
appletalker* $15.95 on board eprom printer driver, full handshake logic, driver pragram for
Bomber* 995 Centronics, Axiom, T.I, SWTPC PR-40, and others assembled & tested $80.00
A 10.00 = Power Control Interface (From T W .C. Products)
5.00 Up to 16 channels of A.C. control per card. Controlled from BASIC. Each
995 channel capable of 12 amps at 110V, Optically isolated from A.C. line. A.C
10.00 loads are switched via a low D.C. voltage on a ribbon cable (cable
ale] 10.00 inciuded). Complete system equipped far 4 A C. circuits
ﬂ'n Iu 10.00 Kit 595.00
products Assembler—Tape 19.95 Assembled $135.00
Micropro ||t cts Assembler—Disk 24.95 Additional 4 circuit A.C. Power Modules
RAM T 7.50 Kit $35.00
ROM IF-‘L'T 7.50 Assembled 555.00
Apple Music 15.00 5 o
e Instant Library 39.95 *, Joystick With 3 awitchies

£s plus softape membershipy Great for Apple Games like Star Wars. Includes trimmers to calibrate for
J s Al s 5 ot > o

full deflection S35.00
System 125.00 * Upper & Lower Case Board
50.00 Now you can display both upper and lower case characters on your video
20.00 with the Apple II. Includes assembled circuit board and sample
50.00 software 54995
EXCANG e J,S 31 Apple Disk It* $595.00
HE (=] 2
6 proarams on one disk) « Applesoft ROM Card* $200.00
*Programs by Bob Bishop * Heuristics Speechiab 5139.00
PET: « Apple High Speed Serial Interface* $180.00
Finance $9.95 « Apple Communications Card* $180.00
”[,hl '3‘:\8 « Apple Prototyping Board 524,95
;’f‘“ o daci = 00 * We are assuming that these (tems will be availabie from stock by the time
Rlack fa b this is published
Life 3 ud
Star War 0t PET HARDWARE
Star Trek 500 Beeper 524 95
b 2K forc r ted sounds 529,95
Read/Write Memaory 10.00 » Petunia—for computer generated sour i
GCalaxy Games 995 » Video Buffer—to put your pets pictures on a television set or
Off The wall/ Target Pong 9.95 manitor 52995
Ma ge 14.95 « Joystick—with four switches, speaker, and volume control 549 95
DIELRlanAgRRIQTvLTY 14.95 «  PR-80 Printer—with cable for pet and printer driver software
Basic BASIC 14.95 Software Kit : $300.00
Pet System Monitor 19.95 x 4
. f c y + Bl Assembled $425.00
Point & Figure Stock Market Plot 7.50 i -
TNT Game Pack -1 10.00 » Centronics P-1 Microprinter—with cable and software for pet  5520.00
TNT Game Pack -2 10.00 Commodore Hardcopy Printer—(available November ?) $695.00

WHY SHOULD YOU BUY FROM US?
Because we can help you solve your problems and answer your questions. We don't claim to know
everything, but we try to help our customers to the full extent of our resources.

COMPUTER COMPONENTS OF ORANGE COUNTY

6791 Westminster Ave., Westminster, CA 92683 714-898-8330

Hours: Tues-Fri 11:00 AM to 8:00 PM—Sat 10:00 AM to 6:00 PM (Closed Sun, Mon)
Master Charge, Visa, B of A are accepted. No COD. Allow 2 weeks for personal check to clear.
Add $1.50 for handling and postage. For computer systems please add $10.00 for shipping, handling and
insurance. California residents add 6% Sales Tax.






