OMMODORE
MAGAZINE

VOL 2
ISSUE 4

*x 6845 CRTC
CONTROLLER

* CBM COMPILERS

REGISTERED FOR POSTING AS A PUBLICATION: CATEGORY B

(

and individual users are encouraged.

rates can be supplied on request.
All copy and advertising should be addressed to:

The Editor,
COMMODORE MAGAZINE,
P.0. BOX 336, ARTARMON

The objective of this magazine is to disseminate information to all users of Commodore com-
puter products. This magazine contains a variety of information collected from other Com-
modore publications, and generated locally. Contributions from all Commodore User Groups,

Advertising space is restricted and allocated on a first-come, first-served basis. Advertising

N.S.W. 2064
AUSTRALIA
ISSUE No. COPY/ADV DEADLINE PUBLICATION DATE
1 February 18th March 6th
2 April 1st April 17th
3 May 13th May 29th
4 June 17th July 3rd
5 July 29th August 14th
6 September 9th September 25th
7 October 14th October 30th
8 November 25th December 4th
Y </
Production & Mervyn Beamish Graphics Pty. Ltd Printer: Liberty Print
ypesetting: 82 Alexander Street, Crows Nest 108 Chandos Street, Crows Nest
2065 2067
Phone 439 1827 Phone 43 4398
SUBSCRIPTIONS
f B
Annual Subscription Single Copy
Postage paid within Australia $A30.00 $A5.00
Overseas Postage Paid $A38.00 $A6.00

dore Dealer, or from:

COMMODORE MAGAZINE,
P.O. BOX 336, ARTARMON,
N.S.W. 2064,

AUSTRALIA.

Vol 1 1981
Vol2 1982

Typeset and assembled off Commodore Wordcraft disks

-

Subscriptions to COMMODORE MAGAZINE can be obtained from your authorised Commo-

J

PLEASE NOTE: To provide a good information service to Commodore users, we will regularly mention equipment,
software and services offered by companies and individuals not directly related to Commodore. In doing so, we are not

making recommendations, and cannot be responsible for the validity and accuracy of any statements made.

EDITOR’S DESK ...

The middle of the year races by and
unfortunately the publication date of
Issue 4 suffered. We appologise for
this delay and are trying to get all the
future publications back on schedule.

Commodore has been hectic with
activity in the month of August, due to
the participation at a number of shows
throughout the country.

The biggest for Commodore was at
the Data 82 show held at Centerpoint
in Sydney, where Commodore with 10
stands full of product, made a big
impression on the many thousands of
visitors who came to see the many
computers available.

The National Computer Conference
in Hobart at the end of August was
certainly the highlight of the ‘computer
year with many overseas vistors
attending. The Commodore presence
was again highlighted with a stand
showing the vast range of product and
the flexibility in configuration.

There are many brands of computer
now available on the market, but the
suppliers such as Commodore still
dominate with a vast range of both
hardware and software than can be
configured to suit most applications
and budget.

If you would like further information
onwhatis available from Commodore,
read the Commodore News on page 2
for details on how to obtain the
newspaper published by Commodore.

< R

table of contents

Vorums X I1SSvE 4

Page Contents

2 Commodore News

4 Letters to the Editor

5 Review-VIC 20 Programmers
Reference Guide

6 Computers join the Work Force

7 Everything you wanted to know about
the Commodore range of products-
and asked!

12 A little VIC Music

14 6845 CRTC Controller

15 The Kernal

17 Compilers-What/Where

19 VIC Loader for CBM & PET
Computers

20 VIC Magician

24 Window Text

26 BASIC Plotter

27 The SUPERPET

30 Using the Commodore Printer

32 VIC Operating System Maps

36 VIC Kernal Entry Points

25 Wolerno Micvro Soflisare

next issue:

VIC Memory Block Maps

Commodore’s Range of Disk Drives

VIC Programming Aids

Fast Forward Load/SAve on VIC Datasette

list of Advertisers

B.S Microcomp inside Cover
Compute CBM Systems Back Cover
C.W. Electronics Page 31
Mervyn Beamish Graphics Page 31
Micropro Design Page 31
Pittwater Computer Sales Page 18

The Microcomputer House Page 16

Vol.2 Issue 4 Commodore Magazine 1

|

g

Py B 1
s
‘;‘.th

REFERENCE
~ GUIDE

i

c* camenodore

VIC 20 PROGRAMMERS
REFERENCE GUIDE AVAILABLE

This valuable publication is now
available from your Commodore
Dealer. The recommended retail price
is $22.00.

A review of this publication is on
page 5 of this issue.

¥ rroGRAMMERS B

COMMODORE NEWS

C: COMMODORE Corgy

- I3
DTO :

COMMODORE pojse
P REPLACE AppLg

New computer

PET CLEANING KITS NOW
AVAILABLE

A new product recently announced,
is the PETKIT cleaning system for the
Commodore range of computers.

The kit is supplied in a compact,
durable, vacuum-formed book specially
designed to contain the items
required for basic maintenance of a

Vol.2 Issue 4 Commodore Magazine 2

Commodore microcomputer system.

The products included in the kit
include;

SAFECLENE
— a tape-drive cleaning fluid with
a safe solvent to clean all
delicate surfaces such as tape
heads.

FOAMCLENE
- an anti-static foam cleanser
which lifts grease, dust and dirt
from keyboards, plastic cases
and covers and all surfaces
including fabrics.
SAFEWIPES
- pads that are soft, lint-free,
absorbant and excellent for
cleaning all delicate external
surfaces.
SAFECLENS
— anti-static screen wipes specially
designed to clean VDU screens,
reducing the risk of errors and eye
strain caused by imperfect visual
display.
SAFECLOTHS
- spun-bonded cleaning cloths
that may be required for a
stronger, more uniform wiping
material.

FLOPPICLENE
- flexible diskette and disk head
cleaners. These are recommen-
ded for cleaning all Commodore
floppy disk units. A special
jacket takes a cleaning pad
which is inserted into the drive,
eliminatiang the risk of head
recontamination and abrasion.
To ensure maximum reliability of
your Commodore system, and to
ensure your investment is always
clean and presentable, ask your
Commodore Dealer for more informa-
tion on the PETkit products.

AID4U UPDATE

The AID4U which was reviewed in
issue 2 Volume 2 of the Commodore
Magazine is now available for both the
4000 and the 8000 series computers.

The chip contains an updated
version of both the programmers tool
kit, BASIC Aid and as such offers a
whole range of editing and program
development commands. In total the
AlID4U EPROM adds 26 commandsto
the basic machine.

This chip is now available for $55.00
retail; which is a fair price considering
the number of commands the
package contains. Remember, as the
chip is able to‘sit’ in either spare ROM
socket please order the desired
version $9000 or $A000 as well as
machine model.

For details call:-
Yarralumla Software
141 Bailey Place
Yarralumla NSW 2600
Ph (062) 82 1379

NEW VISICALC PACKAGE

A new VISICALC package that has
recently been introduced, contains
the correct programs for all 32K plus
Commodore computers.

The package is supplied with two
diskettes, CBM 4040 and CBM 8050
format. The starter program will
determine which program to load to
suit the host computer.

The manual supplied is a detailed
training and reference guide to using
the powerful VISICALC program.

COMMODORE ACCOUNTING
MANUALS

These manuals have been profess
ional written in abound book format to
give a detailed training and reference
guide to the Commodore Accounting
System.

Volume 1 contains detail on the
Commodore Debtors and Stock
System, and Volume 2 details the
Creditors and General Ledger System.

Each manual contains detailed
flowcharting showing how to implement
these accounting packages into an
office environment with the necessary
control and audit documentation.

Detail has been provided to enable
these manuals to be used as a class
set in the instruction of computerised
accounting systems and gives worked
examples of acompany’s trading over
a twelve month period.

Further details can be provided by
your Commodore Dealer.

COMMODORE COURIER

This excellent 20 page newspaper
has been published by Commodore
Australia to give you all the latest
information on Commodore products
and pricing.

It is a summary with specifications

of all products currently available, with
reviews on products from suppliers
other than Commodore.

If you would like a free copy of this
newspaper, please contact your
Commodore Dealer or write to
Commodore Information Center.

PO BOY 08, ARTARMON, N8W. 2nd

PH. 0 €0 6296

SUMMER i

COMMODORE POISED TO

New computer
announced

Cspspenpeitons meantly Snnunced & new
S % i e of
Laswrsmapdon

astmenaiivm 10 e werding Whe features
uh codons, gh resclution graphics sad
senirad, a8 8t & meslintic price.

o o 8 ol By S Bt S SO

o i Sy B s SN SN O, S
s SR o s
arwnd N o W) Sy
ey 5 o NUPRBIE S4B 0k et viee W
i of sk s SR W dwebes. dw
Comamon % WAl B Comewokeesd ol s
e R %

enten

EPLACE APPLE]

. CAPACITY

HARD DISKDRIVES . .
INCREASE STORAGE :

e bt dek wei S w e CRNEORS
G g The o e
s e B

Vol.2 Issue 4 Commodore Magazine 3

LETTERS TO
THE EDITOR

Dear Sir,

I am writing with bouquets, brick-bats and a query.
Firstly the good news:

; As a new micro user (though not new to computing) | am very impressed at the existence of a publicatiom such as
Commodore Magazine”. This magazine is an essential link between the manufacturer and! the end user; providing new
feature/product update, hints and tips, general information and sharing of ideas. Commodore Magazine obviously achieves
this, and | congratulate you - keep up the good work!

However, | cannot understand, what appears to be, a lack of attention to the checking and proof-reading of material
publishad. | have only received Issues 1 and 2 (Vol. 2), but both contain glaring examples of missimg (or wrongly’ placed)
Taragraphs and incomplete program listings. It was good to see that you reprinted and completed the “grappling. with
graphics” article - | hope you will do the same for the “PET POKEing” program listing. (“The pageing'routine at line 200Qis
handy and could be used to good effect in other programs” — if only we could read it in fulll)

My query relates to back issues; | would like to receive all Vol. 1 back issues — what will this cost me.

Yours sincerely,
John Morter.

Thank you foryour letter. We appologise for the errors in laying out the magazine. Thatisthe human element of the
magazine production, as all the keyboard entry and typesetting is done by computer.

We will republish Tony Ellis’ program PET POKEing with a complete listing in a future issue of the magazine.

Alt back issues from Volume 1 are available except for Issue 1. These can be ordered as a subscription for one year
($A30.00) or as single issues ($5.00 each). An index of the contents of Volume 1 was published in Volume 2 Issue 2.
The BEST OF PET Book is supplied in lieu of Volume 1 Issue 1.

Dear Sir,

In Volume 2 Issue 2 there is an error in the code for OLD ROM PETS on page 35 of the CASSETTE MERGE article. Second
line of code at the bottom of centre column should be: POKE 525,1 : POKE 527,13..

There are also three errors in Dr Greg Perry’s programs on pages 27 & 28. Also in Gregory Yob's article on page 25, but no
doubt you print them as received.

InVol. 1, Issue 2 on page 4 the answer to the first question states thata PEEK(65532) will return a zero for BASIC 1.0.1get 56,
but for location 5000. | get zero. | have seen this location used for some programs.

In Vol. 1, Issue 1 you repinted a BASIC 2.0 RAM/ROM MAP from Jim Butterfield. Do you have one for BASIC 1.0?

Inthe same issue on page 19 in Butterfield's Cross-Reference program he states that CHR$(0) is a null string. This is not true
for BASIC 1.0 because | get LEN(CHR$(0)) = 1. | find it difficult reading a CHR$(0), ‘@’, from tape using GET#1, A$.

Apart from the minor printing errors | think that the magazine sofar has done it's job in disseminating information. | would like
to see more articles on machine-code programming. The articles on the IEEE BUS | found interesting.

| have built a joystick interface and a programmable sound generator and rhythm box. | converted the COMPUTED GOTO,
Vol. 1, Issue 2 page 20, to BASIC 1.0 which tock some time as | had to build up part of the BASIC 1.0 RAM/ROM MAP.

Yours faithfully,
William Sands.

Thank you for your comments. We will not be publishing a memory map of BASIC 1.0 but this is available in the
BEST of PET book available from all Commodore Dealers at a recommended price of $20.00. The product code is
512010. A complimentary copy has been sent to you.

Vol.2 Issue 4 Commodore Magazine 4

BOOK REVIEW

We present here an objective review of one of Commodore’s
many publications, by a freelance expert in the field.

VIC 20 Programmer's Reference Guide

by Robert Baker

Reprinted with permission from Microcomputing, June 1982

As mentioned in early announcements, the
book is divided into four sections: Basic Program-
ming, Programming Tips, Machine Language
and Input/Output.

A short applications guide is really a bit of subtle
advertising for various VIC accessories and
programs, but it does give a nice list of ideas on
ways to use the system. Besides the normal
reading material, the book has a number of use-
ful charts and tables in the appendices. For hard-
ware enthusiasts, there's even a full schematic
of the VIC 20 inside the back cover.

The first part of the book describes the
various commands and operations of VIC BASIC
in detail. It's a handy yet thorough reterence for
VIC BASIC, but does not attempt to teach you how
to actually program. Each entry in the BASIC
vocabulary guide explains how the instruction
is used and includes simple examples to help
clarify matters. You'll even find information on
how to abbreviate most of the commands to save
typing time or to cram more commands into
each program line. The sections on numbers,
variables and operators should be especially
helpful to newcomers in the world of computers.

The second portion of the book covers var-
ious programming tips for writing your own BASIC
program. About one-third of this section covers
cursor controls and program editing, using the
GET statement, and simple discussions of various
ways to save memory within the programs. The
remaining two-thirds covers
the use of graphics and sound,
with a good deal of informa-
tion packed into those 20-
some pages. There's a nice
description of the program-
mable characters and how
you can even use them for
high resolution or multi-color
graphics. Several sample pro-
grams are included at the end
to help illustrate the techniques
covered, including the mixing
of sound and graphics.

The third part of the book
is an introduction to machine

language programming and the internal work-
ings of the machine. It attempts to provide
information for all levels of users, but is primarily
for the more advanced programmers. It starts
out with an overall functional description of the
VIC 20 to give you an idea of the way the VIC
20 processes programs within the system. The
system overview contains a block diagram of the
system as well as the internal 6502 microprocessor
itself. Simple memory maps are included along
with a discussion of how a BASIC program is
stored in memory. All this information should be
useful to some degree to just about any VIC user.

The last part of the book covers input and
output to the VIC system. There's a complete
description of the User Port, the Serial Bus and
the VIC Expansion Port. There's a big write-up
on the RS-232 interface, but a few important
details are omitted. In particular, a previous
section of the book refers you to this section for
the valid secondary addresses when OPENing
the RS-232 channel, but the information is just not
there. It would have been really nice if there
were some information on actually connecting
RS-232 devices to the VIC for those unfamiliar with
the RS-232 handshake lines. Brief information is
also included in this last section on using a
joystick, paddles or a light pen with the VIC.
There's even a short section on the VIC graphic
printer and how it's used.

There are a number of charts, maps and
tables in the appendices, and most are very
useful and handy references. However, novice
programmers might need more help than what's
presented in Appendix [when converting pro-
grams to VIC 20 BASIC from other systems. The
authors only touch the surface with the infor-
mation they present, but it should be useful. Don't
forget, there's also a full VIC 20 schematic and
a complete index as well.

As a whole, the book is very well done and
probably the best ['ve seen from Commodore.
It provides information of value for users at all
levels of experience. As its name suggests the
book is a reference guide for programmers. It
will not teach you how to program, but it will
provide a wealth of information in one handy
source that is just not available elsewhere.

Vol.2 Issue 4 Commodore Magazine 5

COMPUTERS JOIN THE
WORK FORCE

Article prepared by Jenni Gyffyn, of Gippsland Computer Business Services — Phone (051) 52 5939

Most people involvedin business—whether managers oremployees
- find that there are two parts to their work activities. One is the
actual service theyare providing, and the otheris the paperwork and
decisions to be made regarding that service they are giving to their
customers. Itis in that second part of a business that computers are

helping out increasingly.

Small transport and parcel delivery
companies can use a Transport
System to take care of their delivery
docket details, customer, depot and
sub-contractors’ files, money owing
and statements, and monthly income
reports.

BENEFITS:
— more time can be devoted to
managing the business and
attending to the needs of the
clients. ‘
Dairy farmers and vets have a Dairy
Herd Management program that will
keep records of calving and heat
dates, number of times mated,
production and disease reports on
both a herd and individual cow basis.

BENEFITS:
— increased veterinary input
into the dairy farm management
with greater returns to the vet.
— aids the farmer in keeping
complete records and predicting
management requirements.

Car dealers throughout Australia
use a Finance and Insurance system.
Finance deals, finance/cash and
finance/lease comparisons, quotes
and so forth are instantly calculated
from the computer.

BENEFITS:

— easier to provide the customer

with financial assistance.

— paperwork is reduced which

leaves time for the salesman to

see more clients.

— increased finance deals

which increases the salesman’s

and dealership’s commissions.

Many businesses use VISICALC, a

powerful planning and forcasting
program. It eliminates those hours of
using a calculator, pencil and rubber,
and allows the boss to say “What if |
take on an extra employee?” or “How
would the business benefit if I..”.

Vol2 Issue 4 Commodore Magazine 6

BENEFITS:
— budget planning, calculations
and forecasting can be done in
seconds, and the boss can play
with many ideas involving money.

Public accountants, as well as
making personal contact with their
clients, have an awful lot of “hack-
work” involving shunting figures
around, coding and preparing reports.
A Public Accountants package run on
their computer will carry out all the
time-consuming tasks, as well as
many other functions. To avoid
detailing these, particularly as most of
it would make sense only to a qualified
accountant, the benefits can be
summed up as saving time for the
accountant so he can spend more
time seeing his clients and becoming
more in touch with their business and
its future, accuracy of figures and
reports become easier to produce,
and the client ends up paying less for
this specialised service.

Nearly any business has the
monthly task of dealing with Accounts
Payable and Accounts Receivable.
Stock control is another universal
piece of house-keeping. As a business
grows, extra staff are frequently hired
to cope with these accounting
functions. An alternative is to have
your own computer sitting on a table
in your office keeping track of all the
money owed to you, printing statements,
aging reports, reminder letters, customer
lists, stock levels and re-order reports,
profit/loss reports, who you owe
money to, cash forecasting (so you
know how much you pay each month
to keep within trading times), and all
those other jobs that create paper
warfare each week/fortnight/ month.

It is an interesting fact that not only
can a business keep accurate and
immediate control of what is on the

shelves, where the money is going to
and where the money is coming from,
but the monthly lease on a computer
costs far less than an employee’s
monthly wage. The abovementioned
systems cost between $2,500 (small
car dealer's system) to about $12,000
(Public Accounting system). If you
look at the more expensive computer
as costing about $535 a month to
lease you see how feasible this
solution can be.

This is not to say that staff should be
reduced, but it does mean that
existing staff can be employed in
direct production without the frustra-
tion of them being diverted into
paperwork -let's face it, paperwork
can kill a business! Production
doesn’t

Another alternative is to hire a
computer bureau to handle those
functions that can be dealt with
externally to the business: That is,
debtors, creditors, profit and loss
reports etc.

A number of microcomputers,
including the Commodore Business
Machines, provide all the above
services.

EVERYTHING YOU ALWAYS

WANTED TO KNOW ABOUT
COMMODORE COMPUTERS *

* And Asked!

PET 2000/4000 SERIES

G i

Q: Can the memory of the
4000 series computers be
expanded beyond 32K?

A: The memory of the 4000
series computers can be expan-
ded provided the machine has a
universal board and 32K RAM.
The 64K expansion board will
provide 96K of RAM.

Q: Where can a conversion kit
for the keyboard of the
original PET 2001 computer
be found?

A: The original flat keyboard of
the 2001 series can be converted
to a regular typewriter keypad
by using keyboard interfaces

manufactured by Skyles Electric
Works of Mountain View, Califonia.

Q: How can | tell which set of
ROMs my PET 2001 computer
has?

A: Upon power-up, the BASIC
message that appears on the
screen will indicate which set of
ROMs the PET 2001 has. If a “*”
sign appears, it is original BASIC
1.0 machine. If a “#” sign
appears, it is a BASIC 2.0 or
higher machine.

Q: How many cassette record-
ers can be connected to the
4016 computer?

A: The 4016 has two cassette
ports, which enables you to
connect two cassette recorders
at one time.

5.

7 G

Q: Can WordPro 4 be used
with the PET 2001 computer?

A: No, the PET 2001 is a 40-
column machineand WordProis
designed to work with an 80-
column machine. However,
WordPro 1, 2, and 3 are all 40-
column versions and can be
used with the PET 2001
computer.

Q: Which disk drive is recom-
mended for use with the PET
2001 computer?

A: All Commodore disk drives
work equally well with the PET
2001. Customers should choose
the one that fills their storage
requirements and budget.

Q: With respect to the PET
2001 computer and the 2040
disk drive, how can a record
be deleted?

A: To delete a record on file,
create a new file (possibly with
the same name) and write all of
the records to it — with the
exception of the one to be
deleted - then scratch the
original file.

Q: Can RS232C devices be
connected to the computer?
A:Yes.Thereareafew |IEEE to
RS232C conversion interfaces
available. Your Commodore
Dealer will be able to advise the
best to suit your application.

Vol.2 Issue 4 Commodore Magazine 7

CBM 8000 SERIES

1.

Q: What languages are avail-
able for the 80327

A: The 8032 is capable of
executing FORTH, PASCAL,
LISP, COMAL, and PILOT, as
well as Microsoft BASIC and
6502 Assembler. with the 64K
Memory Expansion Board, the
8032 is capable of executing
UCSD PASCAL.

Q: What is a memory map?

A: Amemory map is a list of all
the specialized memory add-
resses in the PET/CBM/VIC
computers. A separate map is
required for each version of

3.

BASIC. These have been pub-
lished in recent copies of the
Commodore Magazine.

Q: Can the 8032 interface
with a TV monitor?

A: The 8032 can interface
with a monitor, but a high-
resolution monitor (16 MHz or
greater band width) is
Q: Can files made in 6502
mode be read in 6809 mode
and vice versa?

A: Yes, with software transla-
tion, files made in 6502 mode
can be read in 6809 mode and
vice versa. The translation
needed for 6502 mode is PET

ASCIl, and the translation
needed for 6809 mode is
U.S.ASCII.

Q: Where is the cursor
address stored in the 80327

A: One the 8032, the column
position of the cursor is decimal
address 198. The row position is
decimal address 216.

Q: How can three portions of
one program be merged
together when using the 8032
and the 8050 disk drive?

A: Programs such as the
“Programmers Toolkit” allow
merging of programs. Commando
Chip and its merge command
can be used, or programs can be
merged with machine language
programming.

Q: How is “pi”’ accessed on
the 80327

A: To access “pi” on the 8032,
PRINT a CHR$(255) while in the
graphics mode. If you are in
upper case/graphics mode,
POKE 32768,94 and this will put
a “pi” in the upperleft corner of
the screen.

Q: How fast does the 8032
transfer data to the 8050 disk
drive?

A: The rate of the IEEE bus is
approximately 9 kilobytes per
second.

Q: Can the character format
be changed on the 80327

A: The character set may be
changed by programming your
own EPROM in place of the
character generator ROM.

B
RS
¥

Vol 2 lssue 4 Commodore Magazine 8

SuperPET

1.

Q: When using the modem
with the SuperPET, why do
characters sometimes seem
to be echoed back onto the
screen?

A:The built-in communicat-
ions program on the SuperPET
prints the characters on the
screen as they are keyed in from
the keyboard. If the host
computeris setto echo, thenthe
received character will be a
duplicate, causing the screen to
display each character twice.
Almost every host computer can
be made to not echo. That
command depends on the host
computer being used.

2.

Q: Does the SuperPET have
double precision?

A: Double precision implies
twice the normal number of
digits of accuracy. The SuperPET
allows for nine digits of accuracy
for all operations, which is better
than single precision on other
systems.

Q: Is there a compiler being
developed for the SuperPET?

A: At this time, compilers are
being developed for all the
SuperPET languages written by
Waterloo.

Q: What pins are required to
connect a modem to the
SuperPET?

A: Pins 2, 3,5,6,7,8,and 20
are required to connect a
modem to the SuperPET. A
straight-through 25 pin RS232
modem cable works very well
and is inexpensive.

Q: How can the screen be
cleared from within the pro-
gram on the SuperPET?

A: The screen cannot be
cleared from within the program.

However, an alternative is to
print 25 blank lines, which will
cause the text to scroll off the
screen.

Q: Is all of the RAM accessible
for programming on the
SuperPET?

A: Assembler Language
programs can access all 96K of
RAM in the computer. The
higher level languages load the
interpreter into upper 64K of
RAM and leave the lower 32K of
RAM for programming.

Q: What type of communica-
tion signal does the SuperPET
send?

A: The SuperPET will receive
and transmit a standard RS232
signal at 300 to 9600 baud over
the built-in RS232 port. Of
course, the SuperPET still has
the IEEE port and the User port.

Q: What ASCIlI is used with the
6809 and the 6502 micro-
processors?

A: the 6809 microprocessor
utilizes standard ASCII (American
Standard Code for Information

10.

Interchange), while the 6502
microprocessor uses a variation
called PET ASCII.

Q: How much memory is
available for programming in
the various SuperPET lan-
guages?

A: All the SuperPET interpreters
(except APL) leave approximately
30 kilobytes available for pro-
gramming. APL provides a
workspace of approximately
28K Using 6809 or 6502
Assembler programs, the entire
96K is available.

Q: What functions will the
COBOL language interpreter
include?

A: The Waterloo microCOBOL
is a subset of ANSI-1974
Standard COBOL. All of the
Level 1 features including the
NUCLEUS, SEQUENTIAL 1/0,
RELATIVE 1/O, and TABLE-
HANDLING are supported. Cert-
ain features of Level 2 are also
supported including the PER-
FORM, STRING, UNSTRING,
and INSPECT verbs.

VIC 20 PERSONAL
COMPUTER

g -

Q: Is there a Modem for the
VIC-20 computer?

A: Yes. If you wait for the
review in the Commodore
Magazine, we will provide all
the details.

Q: How is bit mapping
accomplished on the VIC 20?
A: Bit mapping is accomplished
by putting consecutive characters
on the screen, then re-program-
ming the dots of the characters.
This conceptis elaborated in the
Programmer’s Reference Guide.
Q: How are “xy” graphics
plotted on the VIC 20?

A: To plot low-resolution
graphics, use the cursor control
characters imbedded in PRINT

4.

statements. For high-resolution
plotting, the VIC Super Expander
cartridge is recommended.

Q: How is the clock displayed
on the VIC 20?

A: To display the clock on the
VIC 20, PRINT TI$ by PRINTing
TI$=“033000". This means 3:30
and no seconds.

Q: Is PASCAL available forthe
VIC 20?

A: PASCAL is available for the
VIC20 but has not been
released in this part of the world
as yet.

Q: Is there a way to determine
how much memory is left in
the VIC after RUNning a
program?

A: You can determine how
much memory is left after

RUNnNing a program by typing:
PRINT FRE(0)

Q: Do the various application
software cartridges reduce
the amount of RAM available?

A: The Programmer's Aid and
VICMON Machine Languages
Monitor cartridges do not reduce
the amount of RAM accessible
to BASIC. The VIC 20 Super
Expander adds 3 kilobytes to
RAM.

Q: What telecommunication
networks work with the VIC 207

A: The VICModem allows the
VIC to access such networks as
The Source, Compusery, Micronet,
Dow Jones, and the New York
Times, and locally The Australian
Beginning.

Vol2 Issue 4 Commodore Magazine 9

9.

10.

Q: How many digits does the
VIC floating point have?

A: The floating point variable
routines in the VIC have nine
significant digits for the mantissa,
and the exponentin the range of
-38 to +37.

Q: What is the difference in
the voltage levels of the VIC’s
RS232 and standard RS2327?

A: The VIC voltages are at TTL
level (O to 5 volts), while the
RS232 standard is -12 to +12
volts. In addition, the signal

1hle;

levels from the VIC are inverted
from the standard RS232.

Q: Is it possible to hook a
standard audio cassette recor
der to the VIC 20?

A: No. A VIC Datassette is
necessary due to the special
recording method used to
obtain the high reliability. You
can use standard audio cassettes.
For best results use a short tape
(C10 or C15), but do not use
chromium dioxide tapes as
these cut the high frequencies

12.

13.

which is required to store the
data.

Q: What version of BASIC is
used in the VIC 20?

A: The VIC-20 uses PET
BASIC 2.0.
Q: How can | obtain VIC
schematics and VIC memory
maps?

A: These are contained in the
VIC-20 Programmers Reference
Guide which is now available
from your Commodore Dealer.

DISK DRIVES

1

Q: Is it possible to use hard-
sectored diskettes with the
4040 disk drive?

A: Yes, it is possible to use
hard-sectored diskettes with a
4040 disk drive because it has
no sector-hole detect sensor.
The 4040 disk drive ignores the
sector holes in the diskette so
any kind will work.

Q: How can relative files be
copied from a 4040 to an
8050 disk drive?

A: To copy relative files from a
4040 to an 8050 disk drive, the
side sector blocks have to be
copied. This can be done with
the “Copy All’ program which is
on the diskette supplied with all
drives.

Vol lasue 4 Commodore Magazine 10

3.

PET/CBM

Q: Can several
computers be connected to a
disk drive?

A: Although it is not
recommended, it is possible to
cable together more than one
computer to a disk drive. Be
careful to have only one
computer accesses the disk
drive at any one moment,
otherwise the system may
crash. One way to prevent this
problem is to use the MUPET,
which is sold by Canadian Micro
Distributors of Milton, Ontario, or
with a networking system such
as the Hydra. Another way is to
use the REGENT, which is
available in Australia. This device
allows connection of up to
sixteen computers to one drive

and it works especially well in a
school environment.

Q: Can more than one disk
drive be connected to a
computer?

A: Up to eight disk drive units
can be connected to a single
computer. It is possible to set
the unit address on each drive
as a device number between “8”
and “15”. This can be done
under program control or as a
hardware modification.

Q: Where can an explanation
of random, sequential, and
relative files be found?

A: For a detailed explanation
of these files, refer to the
PET/CBM Personal Computer
Guide (Second Edition). This
book is available from your
authorized Commodore Dealer.
Q: Is it necessary to load the
DOS into the disk drive?

A: The DOS (Disk Operating
System) is included in ROM on
the main logic board of the disk
drive. Therefore, it is not
necessary to load the DOS - the
drive is ready when it is powered
on.

PRINTERS

j I

Q: Do Commodore printers
require a unique type of
paper?

A: Most Commodore printers
are capable of using ordinary
bond paper. Paper for all
printers is available from author-
ized Commodore Dealers.

Q: Can legal-size paper be
used with 8023 printer?

A: Standard 11" x 177
computer paper can be used
with 8023 printer.

Q: Can the 4022 printer
handle mixed formatted data?

A: The 4022 printer can
handle both numeric and alpha
characters.

Q: What printers are compa-
tible with the 80327

A: All Commodore printers are
compatible with the 8032. By
using a PET to serial interface,
some ASCII printers will also
work.

Q: Where can necessary

supplies for printers be
obtained?
A: Most authorized Commodore

dealers stock ribbons, paper,
and other supplies for use with
Commodore printer.

6.

Commodore Tractor Printer 4022

Commodore Tractor Printer 8023P

Q: Does Commodore manu-
facture interfaces to allow the
use of non-Commodore
printers?

A: There are vendors that
manufacture interfaces to allow
the use of some non-Commodore
peripherals. However,
Commodore peripherals do not
require interfaces for use with
Commodore computers.

Q: How can a program be
listed upper/lower case on
the 8023 printer?

A: Set the printer to
upper/lower case by issuing this
sequence of commands:

OPEN 14,7

PRINT#1

CLOSE!

The printer will now print in
upper/lower case.

Q: What are the misprints in
the 4022 printer manual?

A: On page 27, the last line in
the example should read:
PRINT#8, CHR$(20).

On page 31, the second line in

the first example should read:
PRINT# 6, CHR$(195)

This value will produce one line
perinch. The proper value to use
for six lines per inch is 36.

Q: Can the printer be made to
print a certain number of lines
per page?

A: This technique is called
“paging” and can be utilized on
the 4022 and the 8023 printers.
The command to turn this
feature on is:

OPEN 14

PRINT#1, CHR$(147)

This command sets the number
of lines per page to 66. To set a
different number of lines per
page, for example, 40, follow the
first command with:

OPEN 24,3

PRINT#2, CHR$(40)

The number in the parenthesis
indicates the number of lines
per page desired. To turn paging
off, type:

PRINT#1, CHR$(19).

Vol.2 Issue 4 Commodore Magazine 11

A Little
VIC Music

(Editor’s note: We've intentionclly left out
the title of this well-known little tune to add
an element of mystery and surprise to your
endeavors. Forgive us, Jim.)

The following program plays music on
the VIC. The music is listenable, and the
program is worth looking at, too.

You'll note that the three voices of VIC
are different. Voice three is sharper, and is
better for carrying the tune. Voice one is
the softest.

Hope you don't mind my breaking up
the listing with comments.

90 REM: VIC MUSIC/JIM BUTTERFIELD/DECEMBER 81
This tells you who to blame

100 DIM A (8)
Makes room for eight voices. How come? We only have three voices on the VIC and
four "lines” in the song. Watch for the trick.

110 POKE 36878, 15
Set the volume to maximum.

120 FORA =5TO O STEP —1
Here's our main loop. We're going to play the tune six times.

130 T=TI+S

140 IF TI ¢ T GOTO 140
This waits for time "'s” before allowing the program to continue. The time is measured
in “jiffies”: units of 1/60 second.

150 READ S, A(A+0),A(A+ 1), A(A+2).AA+ 3)
Here comes the song data. It's taken from the DATA statements near the end of this
program. We're reading the data into the table cleverly:; this way, each voice “comes
in" at the proper time.

160 POKE 36874, A(3): POKE 36875, A(4): POKE 36876, A(5)
Play the music! This puts the notes into the VICs playing electronics.

170 IF S¢ >0 GOTO 130
If there’s no more music to play, variable S will become zero (from the data statement
at line 1120) We may want to do it again, though.

180 RESTORE: NEXT A
RESTORE takes us back to the start of the data statements (line 1000) so that we can
play it again if we wish. NEXT A takes us back for the six repeats.

Vol 2 lssue 4 Commodore Magazine 12

w
’

A mystery tune
from VIC expert
Jim Butterfield,

190 POKE 36878, O0: end
Turn down the volume and quit. The END
statement isn't really needed here, but
it's good practice.

The rest of the program is our DATA
statements containing the music. It's set
up with a timing value followed by the
four “parts”. By careful reading of the
program, you may be able to work out
how the different voices come in during
the repeats (hint: the key to the trick is in
lines 150 and 160).

1000 DATA 10, 195, 207, 215, 195
1010 DATA 10, 195, 207, 219, 195
1020 DATA 10, 201, 209, 215, 175
1030 DATA 10, 201, 209, 209, 175
1040 DATA 20, 207, 215, 207, 195

1070 DATA 10, 195, 207, 219, 195
1080 DATA 10, 201, 209, 215, 175
1090 DATA 10, 201, 209, 209, 175
1100 DATA 20, 207, 215, 207, 195

1060 DATA 10, 195, 207, 215, 195 1120 DATA0,0.0,0.0

It's not very big, but it's interesting to see how the coding comes together. Check
Appendix F of your VIC-20 Friendly Computer Guide and you'll see how to set up the notes.
Write your own music. If you like programming you might want to try your hand at writing
a program which allows DATA statements to be written in easier form. For example,
line 1000 might be written as DATA 10,CE.G.C . . . but your program will need to be smart
enough to catch the letters and translate them into the appropriate numbers.

Music doesn’t have to stand by itself, of course. You could add it as an extra touch to
games and animations. Looking at it the other way, you could add to the music—how
about a “bouncing ball” program that lets you sing along with VIC?

You can get some nice effects from the VIC, although you'll never quite achieve
orchestra quality sound. I can recall showing a group of users some simple music coding
on the VIC. At one point, I played a simple rendition of "Dixie”, and noticed a listener
who had tears in his eyes. I was touched. I asked him, “Are you a Southerner?”

“No,” he replied. "I'm a musician.”

I guess you can't win ‘em all. §3

Vol.2 Issue 4 Commodore Magazine 13

Features of
the 6845 Video Controller

y
Jim Holtom
Control Microsystems

All Commodore machines that have 12” monitors
(8032, fat 4032, 8096, and SuperPET) employ a device
known as the 6845 video controller to generate the video
signals. Some come with a 6545, which is the same as the
6845.

The chip has 18 programmable registers that are
accessed through 2 memory locations at $E880 and
$E881 (59520 and 59521). To read or write a register, the
number of the register (0-17) is stored in 59520 and that
register can then be accessed through 59521. This
method saves considerably on address space.

The device is used to control such functions as character
height, cursor size, horizontal position, vertical resolu-
tion, etc. Here is a summary of the registers and their
functions:

R0—Horizontal Total Register. Horizontal frequency
equalling the total of displayed plus non-
displayed “character time units” minus 1.

R1—Horizontal Displayed Register. Number of dis-
played characters per horizontal line.

R2—Horizontal Sync Position. Controls horizontal
positioning.

R3—Horizontal Sync Width. Four bits which control
the width of the horizontal sync pulse.

R4—Vertical Total. The vertical frequency is con-
trolled by R4 and R5.

R6— Vertical Displayed. Number of displayed charac-
ter rows on the video.

R7—Vertical Sync Position. Controls vertical position-
ing.

R8—Interlace Mode. 2 bits which determine whether
interlaced or non-interlaced mode is employed.

R9—Maximum Scan Line Address. Five bits determin-
ing the number of scan lines per character row
including spaces.

R10—Cursor Start. Seven bits for cursor start scan line
and blink rate.

R11—Cursor End. Five bits for cursor end scan line.

R12—Start Address. R12 and R13 control the first
address put out as a refresh address after vertical
blanking. R12 is the low 8 bits and R13 is the hi 6
bits of the address.

R14—Cursor Register. This 14 bit register stores the cur-

Vol2 Issue 4 Commodore Magazine 14

sor location. R14 is the 8 low and R15 is the 6 hi
bits.

R16—Light Pen. Fourteen bits of R16 and R17 store the
contents of the Address Register when the light
pen strobe goes high.

All registers are write only with the exception of R14,
R15, R16 and R17. This means the registers 0-13 can
only be POKEd. PEEKing these registers will return
invalid results.

Interesting Effects

In the early days, it was possible to blank the screen of
the 2001 PET. This was useful for visual effects. BASIC
2 machines omitted this capability which was unfortu-
nate. Now it’s possible again! The following program
demonstrates screen blanking for 12” monitor
machines:

10 FOR J=1TO 2000 : PRINT "*"; : NEXT :
REM FILL SCRN
20 POKE 59520, 1 : REM HORIZ DISPLAY REG
30 POKE 59521, 0 : REM NO WIDTH =
NO DISPLAY
40 FOR J=1TO 2000 : NEXT : REM DELAY
50 POKE 59521, 40 : REM VIDEO BACK ON

Notice that the register offset (59520) need not be set
again to access the same register as before. Default dis-
play width for 40 and 80 columns screens is "40”.

The horizontal and vertical positioning of the display
area can be altered by POKEing different values into R2
and R7. R2 default is 41 and R7 default is 29.

The number of displayable character columns may be
modified by POKEing different values into R1. R1
default is 40. Likewise, the number of displayable char-
acter rows can be changed using R6. R6 default is 25.

The machine makes use of the controller for things like
windowing, and text/graphic modes. Several other
effects could certainly be achieved for use in games and
other applications. The combinations and permutations
are virtually endless!

NOTE:

A word of caution. Uneducated experimentation with
the 6845/6545 can potentially crash the computer. The
effects involving the registers discussed are all safe to
play with but other registers should be left alone unless
you know what you’re doing. ¢ *

&
4

The first impression was the EPROM
is too good to be true. The points that
first struck me was that all the routines
are accessed via a string command
and then the string is acted upon by
activating the EPROM routines using
the SYS command, thus making it
compatible with the DTL Compiled
BASIC systems. The chip provides the
whole set of interactive routines that
any programmer would ever want to
include into a program. What was
more, the documentation let you
know what the EPROM could do, with
examples included for every command,
making things much easier to
understand.

To satisfy my ‘need to know
feelings, the first thing | did was to
compile the demo program supplied
with the chip. To my surprise it worked,
and very well too. The only routine
which will not go with the DTL BASIC
compiler is the overlay routine. This is
not important as the compiler takes
care of this type of thing on its own,
and so the KERNAL routine would not
need to be used in any case.

The one and only bug | found in the
chip was it's inability to detect any
syntax errors. Syntax errors either
resulted in the chip using incorrect or
default values, or just sitting in the
middle of the CPU doing nothing.

The data input routines are very
complex in that they are very flexible
and cover every conceivable instance
where data is required by the
program. Basically there are two types
of input available; those that paint the
screen in reverse field thus showing
the length of the input required, and
those which leave the screen as it is.
Again this is all that is required. Within
this framework of the commands (I’ or
‘R’ -indicating reverse input) there are
a number of parameters that need to
be given, including the length of the
field required and position on screen.

THE KERNEL.

by Garry Mason

If | was to give my award of 1982 for the ‘best idea since sliced
bread’, then I’'m sure that the ‘KERNAL’ from Gippsland Computer
Services would be in the top three. This package is a number of very
versatile routines which have been ‘burnt’into an EPROM. Itis not a
Toolkit, but a set of data entry and very useful sort and interactive
routines. But, very importantly, it is designed to be used at run time.

The way in which the command
works is as follows:

G$="I[format/[col:[row]:[type]:[length)”:sys40960

The variable G$ is used to
communicate with the chip, telling it
which command you want it to use.
The BASIC jinterpreter takes the string
and inserts it into the correct place in
memory. The the ‘SYS40960’ hands
over to the KERNAL which takes the
command out of the string and off it
goes. Once the result has been
obtained, the results are put into the
variables 1$, r1, r2, r3 and r4. The
parameters for the above command
indicate the following:

|

- indicates the command — INPUT.
[format]

- this indicates how you want the
information handed back

n = normal mode.

j = justify field, trailing blanks or cash
format for numerics.

o = pad with leading zeros.

[col]

- this tells the routine where on the
screen interms of columns and rows it
should put the input.

[type]

- this indicates what type of
characters are allowed to be inputted
from the keyboard.

0 = all alpha/numeric characters.

1 = only numeric and decimal point,
etc.

2 = all uppercase and numerics.

3 = only the first character to be
forced into uppercase, rest all alpha
numeric characters.

4 = date format in which all input is
converted to the DD-MMM-YY format.

As you can see everything hasbeen
thought of, including the RUN/STOP
key — which does not operate while
the KERNAL has control. This means
that any of the usual methods of
disabling the RUN/STOP key still
apply, for program protection.

The formatforallthe commandsare
handled in the sme way, that is, by
using G$ to communicate the
command. This means that it is
possible to write a program that can
build up a command by using the
string handling commands LEFTS,
RIGHTS$, MID$ and concatenate. This
is the way in which cursor positioning
is done. The following example will
flash an error message contained in
DS$ in a position found in the
variables X and Y.

G$="C"+STR$(X)+"“+STR$(Y):SYS4096:G$="E"+DS$

The “C” command stands for cursor
locate. While the “E” command means
flash error message at cursor position.
Another type of printing routine is the
prompt command “P” which is used to
display a prompt before using the data
entry routines.

These types of routines form the
basis of any interactive program, they

Vol.2 Issue 4 Commodore Magazine 15

are easy to use, fast and don’t take up
any extra memory space. This is a
saving on both development time
incurred at the time of writing and at
run time, when the boot module and
all the other extra codes needed to
use machine code programs are
loaded into RAM.

There are three other commands
that interested me a great deal and
these were the “N” or newly pack a
variable, “U” unpack avariable and the
disk fast get or “D”. The disk read is a
very remarkable utility, it's function is
to read from a specified channel
number a set amount of characters.
This routine can be used to read the
disk directory for example. This is
what the demo program did - what
speed, it was able to list on the screen
the directory faster than the BASIC
40 disk commands CATALOG or
DIRECTORY, which was a surprise.

The “N” and “U” commands are
used for taking a number of strings of
unfixed length and adding them
togetherinaset manner. Forexample,
we could use the “N” command to
pack four variables of unfixed length
into one string of forty characters long,
thus adding together the first chara-
cters of each of the four strings. If one

Every
PET needs
a FRIEND...

of the strings is less than ten
characters long the “N” command will
pad out the rest of the string to make it
ten characters long. The “U” or
unpack command does the same in
reverse.

There are two main uses of this type
of routine, either as a form of printer
formatting when not using a CBM
printer or for writing and unpacking a
relative file record. This then provides
a quick and straight forward way of
using realtive files to the full. As the
BASIC INPUT# statement can only
read in 80 characters, the disk read
utility comes into its own.

Sorting file keys or other types of
data can be a very lengthly procedure
in BASIC which usually means that a
complicated machine code routine is
generally used. The sort command
used in the KERNAL is both flexible
and fast, giving the emphasis on
speed. This routine employs the Shell
-Metzner technique which very basic-
ally compares elements half the array
apart and the elements a quarter of
the array apart and so on. This is
compared to the normal ‘ripple’ or
‘bubble’ sorts, which sequentially
compares it's way through an array.

This could work perfectly as an

index method in conjunction with the
“N”, “U” and “D” commands. But |
suppose someone has already thought
of that.

So in conclusion a great little chip,
worth the money just for the sort. The
only thing that made me mad was it's
inability to recover from syntax errors.

The recommended price of the
KERNEL is $98.00 and further
detailes can be obtained from;
GIPPSLAND COMPUTERS,

167 Princess Highway,
BAIRNSDALE 3875
ph (051) 525.939

INSTRUCTION SET.
CURSOR LOCATOR :
g$="c[coll:[row]”:sysy
DISK READ
g$="d[chan#]:[# chars]”:sysy
FLASH
g%$="e[message]”:sysy
FIND STRING IN ARRAY
g$="f[array]:[skip chars]:[start#]:

[# search/:[string/:sysy
reply r2—match pos r3-# found r4—#
compares till larger

continued on page 18

Introducing a new series of programs that are ‘FRIENDLY’ to the user and
represent outstanding value for money. . . .
and there will be more ‘FRIENDS’ coming

FRIEND 1 - Word Processor

An on-line ROM chip for 8, 16, and 32K machines. This Word Processor program has
been written by professionals specially for The Microcomputer House.
The program can be used with or without a printer and will be available shortly in

disk and tape versions as well.
WP CHIP $85
DISK $70
TAPE $60

FRIEND 2 - Mailing List

This is a dual disk based system for the 4000 series microcomputers. It caters for
2,100 records per data disk and offers sort and select facilities. It will also be available
shortly for single disk systems.

MAILING LIST $85

FRIEND 3 - Data Handler

This is a ROM chip containing a machine language routine which allows the program-
mer to control screen input. ® Alpha Field Entry®Numeric Field Entry®Date Entry
®Disk Fastget ® Field Reverse ® Field Flash. Each of these functions have different
options. FRIEND 3 is a derivative of our security ROM used by all our packages.
4000 series and 8000 series $85 each.

All programs come with a complete instruction manual.

DEMONSTRATION STOCK AVAILABLE AT NEVER TO BE REPEATED PRICES
JUST PHONE OR CALL IN

The Microcomputer
ahy House Piy. Lid.

1ST FLOOR, 133 REGENT STREET
CHIPPENDALE N.S.W.2008. PHONE (02) G99 6769

Mail Orders

Bankcard
Welcome

G
{

Vol.2 Issue 4 Commodore Magazine 16

COMPILER COMMENTS

By Jim Butterfield

| don’t want to become involved in the Great Debate about
compilers. On the other hand, it’s almost irresistable to drive in and
add a few footnotes. You'll find no product reviews here. Just a little

talk about what’s involved.

For BASIC?

Some languages were designed for
compilers. In fact, the compiler was
designed first, and whatever it turned
out you had to type in ended up as the
language. FORTRAN started more or
less this way. To put compilers in
perspective, we can do a little
historical work.

Once, long ago, there were no
interactive computers. You punched
up a deck of cards and if you were
lucky an operator would run them
sometime that week Most of the
results came back saying something
like SYNTAX ERROR (does that
sound familiar?). There was no pointin
having an interpreter language; you
wouldn’t be there to watch it happen.
We had FORTRAN and COBOL and
others.

The first FORTRANS, for example,
were tricky. If you used a variable
called DIGIT, it would turn out to be a
floating-point number; on the other
hand a variable called NUMBER
would be a fixed-point. Heaven help
you if you typed TOTAL=TOTAL+1;
you'd get a ?MIXED MODE error
notice and have to recode TOTAL=
TOTAL+1.0 to fix it. To input or output
you needed to give more than the
command: an extra line called
FORMAT was needed, written in
advanced gibberish. Honest.

Many of these problems have been
corrected over the years — you did
know that there was more than one
FORTRAN, didn’t you? - but style
remains. The programmers have to
adapt to the machine, and interactive
is still an alien concept.

And Now, BASIC...

Along came BASIC. It's a loose
language: you don’t have to dimension
some arrays; strings wander all over,;
sometimes you can have FOR and
NEXT items that don’t match (bad
practice, but it can be done) ..and
interactive users love it.

What's the problem? Some things
are not clearly defined by BASIC. Let's
look at a few of them.

Strings may be the worst thing that
a compiler has to deal with. BASIC
doesn’t tell the compiler how big any
string is likely to be — ever. INPUT X$
gives no hint as to the size of string X$.
The poor compiler has a grim choice:
allow maximum space for all strings
and waste a lot of memory; or bounce
the strings around as they change.
The first alternative costs you
program size; you write this little
program that says DIM A$(1000) and
the compiler immediately reports
OUT OF MEMORY since it tries to
allocate 255000 bytes for the array.
The second alternative costs you
time; no matter what you call it, some
sort of garbage collection will have to
take place. And then people complain
beause they expect compilers to
produce fast fast code.

At a first glance we think that the
whole object of compiling is to get
speed. But we don't give the compiler
enough information towork up areally
fast program. It's obvious that FOR
J=1TO 10 can run faster if we treat J
as an integer. Unfortunately, we're not
allowed to code FOR J% so the
compiler will have to figure it out for
itself. And what will it do with FOR J=A
TO B? Until Ais computed, we cannot
know if it's integer or not.

It's obvious to us. We wrote the
program. But the dumb compiler can’t
read our minds; and BASIC doesn’t
give enough explicit information to do
the job.

One last example. It's one of the
annoying things about BASIC that we
sometimes have to code things like
GET#1, X$: IF X$="THEN X$=CHR(0)
mostly to cover failings in BASIC itself.
If | were hand-coding into machine
language, | could replace the whole
thing with one instruction, because |
know that Machine Language doesn’t
have the “fault” that's in BASIC. But a

poor compiler can’'t know that. It sees
the GET instruction and codes it
...and it must add to the coding to
generate the BASIC “fault” if it wants
to be compatible. Then it must
proceed to the IF statement and work
through the coding to fix that same
fault.

The Choices.

The compiler design has a choice.
He can code for 99% compatibility,
tracking everything that BASIC does
quite exactly (including the faults). In
doing so, he'll create a package in

.which almost anything will compile

successfully. But, the compiled machine
langauge will be doing most of the
things that BASIC does, and won’t be
much faster than BASIC.

Onthe other hand, the designercan
ask the user to make changes to this
program before compilation that will
help the process. He may also have
things that compile from BASIC in a
non-standard manner. He may make
arbitrary decisions on BASIC structures
- all for LOOP variables will be fixed-
point, for example. And the compiler
may question the wuser during
compilation: How large is string M$
likely to be? Can J be fixed-point? The
user has to work harder, but the end
product runs faster.

Either way, the compiled program is
not likely to be smaller in size than its
BASIC source. It's difficult to code 100
IF JXS5THENPRINTYJ 1S”;J in less
than the 19 bytes that BASIC uses.
And good compilers add extra
arithmetic — fixed-point addition, for
example — that takes up overhead
space.

Why Compile?

Its your choice. If you have a
program that runs for five hours, you
will probably be delighted with a paltry
four-to-one compiler speedup. If you
want protection against listing, a

Vol.2 Issue 4 Commodore Magazine 17

compiler will do a good job of instant
confusion.

Don’t lose perspective. A program
that spends most of its time waiting for
an operator or for a printer won't
speed up much under compilation.

Machine Language Programmers
will be happy to know that they are not
yet obsolete. Compilers can do a
useful job. But until they get the brains
equivalent of a human’'s judgment,
they won't replace hand coding.

Ed Note:

One compiler that is available
from your Commodore Dealer is
the DTL BASIC compiler that is
compatabile with almost all BASIC
code and increases execution
speed by up to 4 times.

continued from page 16

CLOCK HANDLER

[arrayNJ*
[dit from incl[to excl:[line # to
run/:[overlay name]”:sysy

MONEY FORMAT
NUMERIC STRING

o

22 CARTER RD., BROOKVALE (02) 939 6760

g$="m:[source variable]:[new len]
:sysy
NEWLY PACK VARIABLES TO I$
g$="ni:[tot len]:[varl]:[len 1]....:[varN]
len 1]”:sysy
PRINT PROMPT
g$="p[coll:[row]:[message]”:sysy
INPUT WITH REVERSE SCREEN
G$="r[format][coll:[row]:[type]:

5 Pittwater Computer ——\

NOW AVAILABLE.....

The Electronic Cash Book on both the 4000 Series
and the 8000 Series Commodore Computers.

This programme is designed to exactly emulate the
hand-written Cash Book but has the added features of
keeping a running bank balance; automatic deductions of
periodical payments -full details of these are kept on
file; reconciliation with the bank statements and a
printed list of unreconciled cheques.

It has full budgetry figures; automatic searches via
cheque number, payee or amount; also full reporting
functions with transaction listings, dissection summaries,
and detailed dissection listings. Depending upon the
version, there is up to 39 incoming dissections and 59
out going dissections.

We also advise that the 8000 Series will flow directly
into the IMS/COMMODORE General Ledger, thus
making it the ideal package for small businesses.

The retail price is $400.00 plus tax, where applicable.
Please contact your

@mputer Sales

local dealer

[length] "sysy
SORT STRING ARRAY
G$="s[array name]:[skip chars]:[
start #]:[# sort]”"sysy
TRUNCATE BLANKS
g$="t[var name/":sysy
UNPACK INTO VARIABLES
G$=“u[source var]:[tot len/:[varl]:
[len 1]...[varN]:[len 1]”sysy

Pittwater

>

or

Vol.2 Issue 4 Commodore Magazine 18

LOADING A VIC PROGRAM ON
THE CBM RANGE.

by Garry Mason

On all CBM computers, BASIC text is stored from the Hexadecimal
address 0400 and moves down to 7FFF Hex. This space is known as
the BASIC working area and is reserved for the storage of BASIC
variables, string storage and the actual storage of line numbers
(BASIC text). Anumber of pointers are used to calculate where each
of these various sections of memory are located for use by the

BASIC interpreter.

The main points to these regions are as follows:-
BASIC 3.0 BASIC 4.0 VIC 20 Description

122-123 40-41 43-44 Pointer: Start of Basic Memory.

124-125 42-43 45-46 Pointer: End of Basic, start of
variables.

126-127 44-45 47-48 variables: End of variables, start
of arrays.

128-129 46-47 49-50 variables : End of arrays.

At power on and under normal
program execution, the start of BASIC
on the Commodore microcomputers
or CBM’s is always preset to 0401
Hex, (1025 decimal). This does not
change in most cases as it is not used.
The most noticeable exception is
where text is moved down in memory
to make way for machine code
subroutines. The start of BASIC
pointer is then moved down, thus
providing a protected area for the
machine code routine. This is done so
that the BASIC interpreter does not
over write the subroutine.

The VIC 20 has the same structure
including all of the above pointers
which are used inthe same way as the
CBM range. The VIC has a different
memory map compared to those of
the other CBM and PET range of
microcomputers. This was done
mainly to make it considerably easier
for the user to expand and then use
the extra facilities of sound, colour
and that of programmable characters
offered by the VIC 20. This means that
depending on the available memory
or the number of different expansion
units the start of BASIC pointer will
begin at a different location.

The VIC without any extra memory
will start recording BASIC text at
address 1001 hex, leaving the
statutory 00 byte at 1000 Hex. This

means that if we take a program that
was recorded using this configuration
either on cassette or on a disk, the
program will load into the same
section of memory. To the CBM and
PET range this does not meet it's
criteria for a BASIC program, as the
first three bytes after 0400 (it's start of
BASIC pointer) are still 00 bytes and
have not been over written by the
incoming program.

To correct this situation we need
only move the present start of BASIC
pointer to locate at the start of our
program at 1001 Hex. This can be
done by POKEing the high byte value
for this pointer to 10 Hex. or 16
decimal as in:-

POKE 41,16:CLR

This rectifies only the high byte
pointer. The low byte of this address
still contains a 01 byte which we still
require tobe 01, soitis not neccesary
for any change to be done to this part
of the address. As our program should
have been LOADed over the first
three 00 bytes the remaining one 00
byte needs to be POKEed in position
just before the start of BASIC (1000
Hex.). This is also simple:-

POKE 4096,0

On the VIC the start of BASIC can
be in one of three locations:- 0400 (as
on CBM's) 1000 or 1200. The reason

for this movement is that the screen
will move also into one of two
locations, this is to provide the longest
possible continuous section for
BASIC text or user memory.

With 3K RAM pack in place, BASIC
starts at 0400, thus being the same as
on the CBM range there is no
correction required.

With expansion memory starting at
2000 Hex, either by using 8K or 16K
RAM packs or a mixture of the two
cartridges, BASIC starts at 1200 Hex.
and the memory mapped screen also
moves to 1000 Hex. For which the
correction is:-

POKE 4608,0 : POKE 41,18 : CLR

Using the VIC by itself, BASIC text is
stored from 1000 Hex. onwards. The
correction for this situation is:-

POKE 4096, 0 : POKE 41,16 : CLR

Vol.2 I1ssue 4 Commodore Magazine 19

ViC=20

The friendly computer

! 1
f
////M

—

The VIC Magician

Using Those Mysterious
Programmable Function Keys

Michael S. Tomczyk
Product Marketing Manager

Everyone always asks how the VIC-20’s programmable
function keys work (The function keys are those large
yeilow keys on the right side of the VIC-20 keyboard).

Special function keys were added to your VIC to let you
take advantage of ‘“one-key” programming features
normally found on much more sophisticated (and
expensive) office computers. It doesn’t take much effort
to program these keys and that’s what the following
lesson shows you.

When you first got your VIC-20, you were probably
surprised that nothing happened when you pressed the
function keys. That’s because the function keys are pro-
grammable, meaning you have to program them to do
something before they work.

Vol.2 Issue 4 Commodore Magazine 20

Before getting into the programming part, let’s take a
closer look at the keys, themselves.

To begin with, the function keys are num-
bered 1 through 8. The odd-numbered keys
1, 3, 5, and 7 are obtained by simply typing
those keys, and the even-numbered keys 2, 4,
6 and 8 are obtained by holding down the
SHIFT key and then typing the appropriate
key. This lets you use four keys to get 8 sepa-
rate functions.

L0

Now, here’s an important point . . . each key
has a special NUMBER which you must use
when programming that key. This number is
called the CHR$ NUMBER. All of the VIC’s
keys have CHR$ numbers, which are listed
in the ASCII AND CHRS$ CODES table on
page 146 of your VIC user’s guide (or page
273 of the VIC PROGRAMMER'’S REFER-
ENCE GUIDE).

CHRS$ CODES FOR FUNCTION KEYS
FUNCTION CHRS$
KEY NUMBER CODE

f1 CHRS (133)

£2 CHRS (137)

f3 CHRS (134)

f4 CHRS (138)

£5 CHRS (135)

f6 CHRS (139)

£7 CHRS (136)

f8 CHRS (140)

Note that the CHR$ numbers are not in exact order . . .
the odd numbered keys are numbered 133-136 and the
even numbered keys (which you must SHIFT to use) are
numbered 137-140.

Using the GET Statement—“Hit any Key”

Before we explain how everything works, let’s write a
short program using a function key, to show you how it
works. The first thing we do is TELL THE VIC TO
LOOK AT THE KEYBOARD. This instructs the VIC to
check the keyboard to see if you have pressed a key. The
BASIC command for this is:

10 GET K$:IF K$ = " " THEN GOTO 10

This is called a “GET Statement” and is usually placed
as a single line in your program. If you include this line
all by itself in your program, the VIC will look for ANY
KEY to be hit. So let’s write a short program which tells
the user to “HIT ANY KEY TO BEGIN.” Enter this

-

w
[N
The friendly computer

program, type the word RUN and hit the RETURN key:

10 PRINT” HIT ANY KEY TO BEGIN":PRINT
20 GET KS$:IF K$ = ""THENGOTO20
30 PRINT” u m PROGRAM BEGINS.”

-t

(BEGINNERS: be sure to hit the RETURN key at the
end of each line to enter it.)

THIS MEANS HOLD DOWN THE SHIFT KEY AND TYPE
THE CLR/IHOME KEY ;

s A

EANS HOLD DOWN CTRL AND TYPE RVS ON

o
THIS
KEY
See how it works? Now let’s go one step farther. After
we BEGIN our program, we may want to make the pro-
gram WAIT until the user is ready to continue. This
technique is often used in educational programs when
you want to give a student time to study something on
the screen before moving on. Hold down the RUN/
STOP key and hit the RESTORE key to “exit” your
program. Now type these additional lines (the VIC auto-
matically adds them to the program above, which is still
in VIC’s memory):

40 PRlNT"u WAIT HERE.”:PRINT:PRINT"HIT
ANY KEY TO CONTINUE.”:PRINT

50 GETKS:IFKS = ""THENGOTO50

60 PRINT"u m PROGRAM CONTINUES.”

Note that this program now uses the same GET state-
ment in two different places to check the keyboard to
see if a key has been pressed. You can insert line 20
almost anywhere to make the VIC wait until a key is
pressed . . . but if you do this in the middle of a pro-
gram, don’t forget to PRINT a little message telling the
user to “hit any key to continue.”

Now let’s take a closer look at how the GET statement
lets us check the keyboard . . . and program our func-
tion keys.

More Information About the GET Statement

As already explained, the GET K$ line tells the VIC to
check the keyboard to see if a key has been pressed.,
There are three important things to remember about
using this line in your program. First . . . notice how we
used the string variable K$ in lines 20 and 50 above?
Although we used K$ as our variable (K for “Key”), you
can use any legal string variable, such as A$, KKS$,
B1$, etc. in this line. For example, you could use: 50
GETRRS:IFRRS = ""THENGOTOS50.

The second thing to remember is that the GET state-
ment line always GOES BACK TO ITSELF. In other
words, if you put this line at line 100, the last part of the
line would read . . . THEN GOTO 100. This makes the
VIC keep checking over and over again until a key is

actually pressed. So the GET statement includes a
GOTO to its own line number.

Finally, don’t attach any other BASIC commands on
the same line as your GET statement. For example,
don’t put a colon and add more BASIC commands to
lines 20 or 50 above.

Programming a Function Key

Now let’s make a function key do something—how
about amending our program above so that it only
begins if you type function key 1, and only continues if
you type function key 3. . .

We’ll use the SAME PROGRAM we used above and
simply modify two lines and add a few extra lines to tell
the VIC to accept ONLY DESIGNATED FUNCTION
KEYS instead of “any key.” To begin, type the word
LIST and hit RETURN. This displays your program.
Now modify your program by changing or adding the
elements shown in BOLDFACE in the finished program
below (If you need help editing program lines, see pg. 74
of the VIC-20 PROGRAMMER’S REFERENCE
GUIDE, “Editing Lines.”)

10 PRINT " HIT THE F1 KEY TO BEGIN":PRINT

20 GET K$:IF K$ = ""THENGOTO20

25 IFK$¢) CHR$(133)THENGOTO20

30 PRINT” PROGRAM BEGINS

40 PRINT” WAIT HERE.”PRINT:PRINT”HIT F5
KEY TO CONTINUE.”:PRINT

50 GETKS$:IFK$ = ""THENGOTOS0

55 [FK$ = CHRS (135 THENGOTO60

56 GOT.

60 PRIN% [i] PROGRAM CONTINUES.”

LINE 25: Line 25 teils the VIC: “If you check the key-
board and find any other key but the F1 key being
pressed, GOTO line 20 and check again. The ¢) sign
means less or greater than (or you might interpret this as
“not equal to”) ... in this case, the program treats
CHRS (133) as the number 133.

With this example, your “real” BASIC program would
start at line 30. Naturally, you can alter (increase) the
line numbers after line 30 to give yourself more room if
you’re inserting a longer BASIC program here.

CHRS$ (133) is the CHRS$ number for the F1 function
key, and IF K$=CHRS (133) means “IF F1 IS BEING
PRESSED.” You can designate a different key by
changing the CHR$ number (see chart above). For
example, CHRS (139) changes the key to F7.

LINE 26: This is IMPORTANT! In line 25 we told the
VIC to GOTO line 30 if you press the F1 key . . . but we
didn’t tell the VIC what to do if we DON’t press the F1
key. Sq what happens is this . . . the program will “fall
through” the IF . .. THEN statement in line 25 and

Vol.2 Issue 4 Commodore Magazine 21

KEEP GOING if we don’t do something to stop it. The
solution is to include the GOTO in line 26 which tells the
VIC to GOTO line 10 and keep PRINTing that opening
message until the F1 key is pressed. This is important
because if you experiment with function keys you may
find your program “falling through” the IF . . . THEN
line and RUNning “wild.” The answer is to insert a
GOTO after the IF . . . THEN statement, which keeps
the program going back to the prompt message until the
proper key is pressed.

LINES 55-56: These lines are the same as Lines 25-26.
Line 55 is the IF . . . THEN statement which designates
the F5 key to be pressed and Line 56 keeps the program
“looping back” to the message in line 40 until the F5 key
is pressed.

Programming Function Keys to Perform Functions

So far, we’ve used function keys to 1) start your BASIC
program, and 2) continue a BASIC program in prog-
ress. Both of these techniques used the function keys to
add some nice cosmetic touches to your BASIC pro-
gramming, but they really didn’t show you how to use
the VIC’s func;ion keys to perform “real” functions, so
that’s what we’re going to show you next.

Type the word NEW and hit RETURN to erase your
previous program, and type in the following program.
This is a VIC SPEAKER DEMONSTRATION which
lets you type any NOTE VALUE and hear it played on
any of the VIC’s four internal “speakers.” Function key
1 plays the note you entered on Speaker 1 (the lowest
tone speaker), function key 2 plays the note on Speaker
2, and so on. Speaker 4 is the “white noise” or “sound
effects” speaker.

10 PRINT” E4 SOUND DEMO” :PRINT:
POKE36878,15:S1 = 36874:

§2 = 36875:83 = 36976:54 = 36877

20 PRINT"L4 "

30 PRINT”F1 PLAYS SPEAKER 1”:PRINT

40 PRINT”F2 PLAYS SPEAKER 2":PRINT

50 PRINT"F3 PLAYS SPEAKER 3":PRINT

60 PRINT"F4 PLAYS SPEAKER 4" :PRINT

70 PRINT"F5 LETS YOU ENTER A NEW NOTE
NUMBER":PRINT

100 PRINT"INPUT A NOTE NUMBER BETWEEN

128 AND 255”:INPUTA

120 GETMS:IFMS$ = ""THENGOTO0120

130 IFM$ = CHRS (133)THENX = S1:GOTO500

140 IFMS$ = CHRS (137)THENX = $2:GOTO0500

150 IFM$ = CHRS (134)THENX = $3:GOTO500

160 IFMS$ = CHRS (138)THENX = S4:GOTO500

170 IFMS$ = CHRS (135 THENGOTO10

180 GOTO 120

500 FORT”1T0200:POKEX ,A:NEXTT:POKEX,0:
GOTO120

Vol.2 Issue 4 Commodore Magazine 22

Type RUN and hit RETURN.

Now, this little program is just one example of how you
can assign different function keys to perform different
functions. In this case, we followed some of the general
rules we’ve already established, and introduced a couple
of new programming techniques. Let’s examine the pro-
gram, line by line.

LINE 10: contains our “opening message.” We also
took advantage of the extra space on the line to turn the
volume to its highest level (POKE36878,15) and
assigned some easy-to-remember variables to each of
our four speakers, S1, S2, S3 and S4. Obviously, it’s
easier to type S1 than 36874, and it also saves memory.

LINE 20 is a blank line.

LINES 30-70 provide instructions for using the pro-
gram.

LINE 100 is a special INPUT instruction which asks
for a NOTE VALUE to be entered into the com-
puter. The INPUT statement assigns the value A to
whatever number was typed in by the user.

LINE 120 is our GET statement to check the key-
board.

LINES 130-160 are IF . . . THEN statements which
match the messages in lines 30-60. Notice that we
could have written EACH LINE like this:

IFM$ = CHRS (133)THENFORT = 1TO200:
POKES1,A:NEXTT:POKES1,0:GOTO120.
Instead, we wrote a more efficient program which
put a “GENERALIZED SOUND ROUTINE” on
line 500 so all we have to do in lines 130-160 is
define X as the proper speaker and GOTO line 500
to execute the mote, then jump back (GOTO) to
line 120 to check the keyboard again.

LINE 170 tells the VIC to go back to the beginning of
the program and ask for another note value if the user
types F5.

LINE 180 tells the VIC to go back and check the key-
board.

LINE 200 contains a time delay loop which specifies
how long the note is played when you press the function
key (try changing the number 200 to something else).
POKE X,A means to POKE the speaker defined as X in
lines 130-160 with the note defined as A by the INPUT
statement in line 100. In other words, if you entered the
number 201 and pressed function key 1, the VIC
responds by playing the “D” note from its middle
octave. (see your user’s manual for note values)

For More Advanced Programmers

There is ANOTHER way to check the keyboard to see
which KEY is being held down, using the command
PRINT PEEK (197) or PRINT PEEK (203). You can

- 3
The friendly computer gl - >
= < '

Y

‘y.

PEEK into either of these special memory locations to
find out which KEY is being held down. Note that by
KEY we mean the physical key being held down, NOT
THE SYMBOL. In other words, F1 and F2 are inter-
preted as being THE SAME KEY because we are detect-
ing the physical key is being mechanically held down.
The values for the function keys are given below (a com-
plete chart of values for all keys is given on page 179
of the VIC-20 PROGRAMMER’S REFERENCE
GUIDE).

VIC VALUE RETURNED

KEY WHEN YOU PEEK (197) or PEEK (203)
no key 64

f1/f2 39

f3/f4 47

f5/f6 55

£7/17 63

How to use this technique will be covered in a future
VIC MAGICIAN, but the general principle involves
PEEKing to see if a key is being held down and if the
value returned matches the value of a specific key, you
make your program perform a specific action. For
example, you might write a music program which tells
the VIC to play certain notes when certain keys are
being held down, and to stop playing those notes when
the keys are released. Here’s a short program to start
you off . . . when you RUN this program, it will play a
note when you hit the f1/f2 key. If you get the PEEK
values for ALL the keys from the PROGRAMMER’S
REFERENCE GUIDE, and match them to the proper
note values from the TABLE OF MUSICAL NOTES,
you can write your own “VIC PIANO!”
10 POKE 36878,15:51 =36874:S2 = 36875:S3 = 36876
20 IFPEEK (197) = 39THENFORT = 1TO50:
POKES1,200:NEXTT:POKES1,0
30 IFPEEK (197) = 4TTHENFORT = 1TO50:
POKES2,200:NEXTT:POKES1,0
40 IFPEEK (197) = 55THENFORT = 1TO50:
POKES3,200:NEXTT:POKES1,0
30 GOTO20

The key elements in Line 10 are turning on the volume
and defining the “speakers” as S1, S2 and S3. In lines
20-40 we PEEK (197) to see what key is being held
down, then insert a time delay loop (1t050) to specify
how long each note is held down, then POKE a note
value into the speaker we want, then we turn OFF the
speaker (otherwise it would keep playing). Change the
number 50 to a higher or lower number to increase or
decrease the duration each note is played.

Summary
This introduction to the VIC’s programmable function
keys is only a beginning. You can probably design pro-

grams which do much more than those described here
. . . for example, you could make the function keys
stand for different colors, and instead of POKEing note
values, designate special keys to POKE different
COLOR COMBINATIONS using the SCREEN AND
BORDER COLOR chart in your user’s guide.

You could specify each function key to perform a differ-
ent complex calculation by combining the function keys
with DEF FN statements. You might want to INPUT a
series of numbers and perform several multi-step calcu-
lations which you can execute simply by pressing the
function keys.

You might match the function keys to program SUB-
ROUTINES which allow the user to access different
portions of a long complex program, so he can jump
from a main program into a smaller subroutine, and
then come back to the main program . . . all by pressing
one or two function keys.

Finally . . . you may have already discovered that pro-
grammability isn’t limited to the VIC’s function keys. In
fact, ALL the VIC’s alphanumeric and graphic keys are
programmable, using the techniques described here in
combination with the CHRS values for each key. To
program a key to perform a special function, simply use
that key’s CHRS value just like the function key values
described here.

If you develop an imaginative application for the VIC’s
special function keys, drop a letter to THE VIC MAGI-
CIAN in care of our magazine and we’ll share your dis-
coveries with the rest of the “VIC world.” Enjoy! C

Two COMMODORE cartridge products which offer
built-in function key programming include the
SUPEREXPANDER cartridge and the PROGRAM-
MER’S AID CARTRIDGE. Both cartridges let you
redefine the preprogrammed function keys by typing
“KEY” and hitting RETURN. See your Commodore
Dealer for more information.

Vol.2 Issue 4 Commodore Magazine 23

HARK WHAT TEXT THROUGH

YONDER WINDOW BREAKS

By Dirk Williams.

The CBM 8032 certainly has it’s fair share of features. Among these
is the facility to define the ‘scrolling window’ of the screen. What this
means is that you can set aside a box on the screen in which normal
screen activity (i.e. printing, clearing, scrolling, etc) can occur. The
rest of the screen (that which is outside the window) remains
immune to normal scrolling, clearing activity. You could for example,
have a permanent border or simply 'protect’ a section of the screen
from alteration. When you print, the characters will appearin the box
—and will scroll off the top of the box (notinto the protected screen) if
scrolling occurs. A clear screen command will clear only the window,
thus leaving the ‘protected’ portion unchanged.

There are two control characters that
allow us to allocate this window - one
for the top and lefthand borders and
another for the bottom and righthand
borders. The borders are set when the
appropriate characters are printed in
the desired locations on the screen.
Note, however, that the borders can
not be seen.

top and left borders — CHR$(15)
bottom and right borders — CHR$(143)

how the borders work:
Fig. 1

CHR$(15)
printed here

x.

protected \\

window
(usable screen)

the top (

&

CHRS(143)
printed here

window

i

\\p;ot\e::téd :

the bottom (b)

U

CHR$(143)

CHR$(15)
1 /

/

v

e

™ "protected -

window [\\

both (simultaneously) ()

Vol.2 Issue 4 Commodore Magazine 24

?

e
' |

i

Al

/
d/

‘LI

The border should be set from
within a Program (although borders
still operate in immediate mode once
set). They may be cancelled from
either immediate mode or from within
a program by simply pressing HOME
two times, then CLR screen — or by
printing these control codes (ie.
PRINT “/HOME key 2 times] [SHIFT
CLR/HOME key]”. You may cancel,
set, move the size of the screen
window at any time from within a
program — but you must cancel any
existing windows first. You don’t have
to set both borders, in fact you could
create a window such as that in FIG.
1(a) and (b) — by only setting one of the
characters.

In order to setthe borders, you must
position the cursor ‘above’ the screen
location you wish to constitute one of
the window corners (as shown in
FIGURES 1). For example, if you
wished to define a window 4 columns
across and two rows from the sides of
the actual screen. Remember that
anything you have outside the
window when it is set, will be
‘preserved - so get rid of any garbage
first.

SETTING THE TOP
10 PRINT“/homeJ[2 csr dj[4 csr right;CHR$(15)

Column
Row

-
N
w
»

.80

N S

» /;.J/N -l
///f/
ﬁ ,

777,
7

window

\
character printed here

SETTING THE BOTTOM
20 PRINT/home/":FORX 1t022:PRINT"/csr dry";:NEXT
30 FORX=1to7:PRINT"[csr right/":NEXT:PRINTCHR$(193)

Column

Row 77787980

W

1234.

hWN -

window

23

2R

character printed here

This is a small trick when combining
the two borders to create a ‘suspended
box. When the top border is set (this
should be done last) — the home
command sends the cursor to the
corner of the box, not the screen. Thus
if we were to set this first, we would
have to take into account how far
down the top border is when moving
the cursor down to set the bottom.
Thus if we set the bottom first, our
cursor can be returned to the normal
home position and moved down as
normal to set the top.

COMBINED BORDERS (WINDOW)
10 PRINT“/home]J[2 csr dn][4 csr right]”;CHR$(15)

20 PRINT[home/";:FORX=1t022:PRINT"/csr dry";:NEXT
30 FORX=1to7:PRINT"[csr right/";NEXT:PRINTCHR$(193)

Row Column
1234. 77787980
3 %75 L0 S
2
3
4
window
23
24 2 rows
25 | i G S oo R
S—A
4 columns

Try one of the above programs and
when you return to immediate mode,
move the cursor around and see what
effect the window has.

WATERLOO MICRO SOFTWARE
DESCRIPTION

An extensive software package has
been developed to satisfy many of the
educational requirements at the
University of Waterloo. This portable
software is particularly suited to
microcomputers, but identical versions
will be available on medium and large-
scale computing facilities. Thus a user
is not limited by the capacity of the
micro; the identical progam will run
without modification on larger and
faster equipment.

The package consists of interpreters
for various languages, an editor, an
operating system (supervisor) and an
assembly language development
system.

a) Language interpreters are in-
cluded for four (4) programming
language dialects known as:

Waterloo microBASIC
Waterloo microPASCAL
Waterloo microFORTRAN
and Waterloo microAPL

These language interpreters have
been designed specifically for educa-
tional use in the teaching of computer
programming. The design of the
interpreters features good error
diagnosis and debugging capabilities
which are useful in educational and
other program-development environ-
ments.

Waterloo microBASIC includes
ANS Minimal BASIC, with a minor
exception, and several extensions
such as structured progamming
control, long names for variables and
other program entities, character-
string manipulation, callable procedures
and multi-line functions, sequential
and relative file capabilities, integer
artihmetic, debugging facilities, and
convenient program entry and editing
facilities.

Waterloo microPASCAL is an exten-
sive implementation of Pascal,
corresponding very closely to draft
proposals being produced by the
International Standards Organisation
(ISO) Pascal committee. The ISO draft
language is a refinement of the
language defined by Wirth, varying
only in minor aspects. Thisimplement-
ation includes sophisticated features

such as text file support, pointer
variables, and multi-dimensional arrays.
A significant feature of Waterloo
microPASCAL is its powerful interactive
debugging facility.

Waterloo microFORTRAN is a
special dialect designed for teaching
purposes. It has many of the
characteristics and much of the
flavour of normal FORTRAN, but
varies significantly from established
standards for that language. This
language processor has many of the
important characteristics of the
WATFIV-S compiler which is widely
used on IBM computers, plus some
features from the new FORTRAN-77
definition. Examples of language
features supported are FORMAT,
subroutines and functions, multi-
dimensional arrays, extended character-
string manipulation, structured pro-
gramming control and file input/output.
In addition, the interpreter provides a
powerful interactive debugging facility.

Waterloo MicroAPL is intended to
be a complete and faithful implement-
ation of IBM/ACM standard for APL
with respect to the syntax and
semantics of APL statements, operators
and primitive functions, input and
output forms, and defined functions.
System commands, system variables
and system functions are those
consistent with a single user environ-
ment. There are no significant design
limitations on the rank or shape of
arrays or the length of names. The
shared varible processor is omitted.
Extensions include system functions
supporting files of APL arrays. APL
equivalents of the BASIC features
PEEK, POKE and SYS are included.

b) A text editor known as Waterloo
microEDITOR, is suitable for creating
and maintaining both program source
and data files. It is a traditional line-
orientated text editor with powerful
text searching and substitution comm-
ands including global change. Full-
screen support and special function
keys allow text to be altered, inserted
and deleted on the screen without
entering commands. Facilities for
repeating and editing previously
issued commands further enhance

the useability of this editor.

c) File-orientated Assembler and
Linker programs, known as the
Waterloo 6809 Assemblerand Linker,
are included which support develop-
ment of general-purpose Motorola
6809 machine-language programs.
The Assembler supports syntax and
directives for Motorola 6809 assembly
language and includes powerful
macro capabilities. In addition, the
Assembler supports pseudo opcodes
for structured programming control,
long names (labels) for meaningful
identification of program segments
and data, and the ability to include
definitions from separate files. The
Assembler produces both a listing
and a relocatable object file.

The linker allows the combination of
an arbitrary number of relocatable
object files to produce an absolute

continued on page 35

Vol.2 Issue 4 Commodore Magazine 25

PROGRAMMER'’S TIPS

BASIC Plotter

by

Paul Higginbottom

This program will plot random lines using the “quarter-
square” graphics characters. Although it’s a program in
itself, it could easily be made into a subroutine.

The program has been set up for 80 column screens (line
9040). Notice “LL” (Line Length) is multiplied by 2 in
lines 2020 & 2030? Since the quarter squares use up half
a character space in the “x” direction, an 80 column
screen can have up to 160 “half-characters” horizon-
tally. Similarly, on 25 lines there can be up to 50 half
characters vertically (“y” direction). For 40 column
screens you’ll need to change LL to 40; the second
parameter remains the same since both have 25 lines.

Line 2000 clears the window (if one set), the screen, and
sets graphics mode (no gap between lines). If you like,
substitute CHR$(142) with ‘esc-rvs-N’ and stick it inside
the quotes.

2000 PRINT”[HM HM CLR]"CHR$(142)

2010 GOSUB 9000

2020 X1 =INT(RND(TI)*LL*2) :
Y1 =INT(RND(TI)*50)

2030 X2 =INT(RND(TD*LL*2) :
Y2 =INT(RND(TI)*50)

2040 GOSUB 3000 : Y1=Y2: X1=X2: GOTO 2030

3000 REM khkkhkkhkhkhdkk PLOT A LINE khkkhkhkhkhkhkdd

3010DX=X2-X1:DY=Y2-Y1:X=X1:Y=Y1

3020 L=SQR(DX*DX+DY*DY) : IF L=0 THEN

3040

3030 XI=DX/L: YI=DY/L

3040 GOSUB 8000 : IF (ABS(X2 — X){ = ABS(XI))
AND (ABS(Y2 - Y){ = ABS(YI)) THEN RETURN

3050 X=X+XI: Y=Y+ YI: GOTO 3040

8000 REM khkkhkhkhkhkddk PLOT x’ Y dhkkkhkkhkhd

8010 TX =INT(X + IR):TY =INT(Y +IR)
:SQ=AM(TX AND AM, TY AND AM)

8020 P=BS + TX/DV —INT(TY/DV)*LL : POKE P,
C((PEEK(P))OR SQ) : RETURN

9000 REM khkkkhkhkhkkkdk SETUP khkkkhkdkhhkk

9010 DIM C(15), I(255), AM(1,1)

9020 FORI=0TO 15 : READ C(I) : I(C(I)) =1 : NEXT

9030 FORI=0TO1: FORJ=0TO1:
AM(@J,D) = + 1)*411 : NEXTJ,I

9040 LL =80 : BS=32768 +24*LL : DV=2: AM=1:
IR=.5

9050 DATA 32, 123, 108, 98, 126, 97, 127, 252, 124,
255, 225, 254, 226, 236, 251, 160

9060 RETURN

Vol.2 Issue 4 Commodore Magazine 26

The subroutine at 9000 sets up an array with the 16 pos-
sible combinations of the quarter squares. BS is the base
address or the POKE address of the bottom left corner
of the screen.

All plotting efforts are performed by the two subrou-
tines at 3000 & 8000. Subroutine 3000 plots a line from
x1,y1 to x2,y2 by plotting several points (sub 8000). At
the same time, subroutine 8000 must determine if there
is already a point in a character space. If there is, the
POKE information must not interfere with existing
points. Lines 200X are used for plot criteria generation.
The above merely plots random lines. For something
more meaningful, try substituting with these:

2020X1=0:Y1=1

2025 FOR X2=0TO 159

2030 Y2 =EXP (X2/31.4)

2040 GOSUB 3000 : Y1=Y2: X1=X2 : NEXT : END

2020 N=6:C=3.1415926/160 : X1=0:Y1=25
2025 FOR X2=0TO 159

2030 Y2=25 + 24 *SIN(X2*N *C)

2040 GOSUB 3000 : Y1=Y2: X1=X2 : NEXT : END

2020 N=8:C=3.1415926/160 : X1=0:Y1=50:
DC=100

2025 FOR X2=0TO 159

2030 Y2=25 + 24 * COS(X2 *N * C) * EXP(— X/DC)

2040 GOSUB 3000 : Y1=Y2: X1=X2 : NEXT : END

The first plots an exponential curve. Notice the Y origin
is set to 1 rather than 0. This accounts for a slight inac-
curacy as the plotter draws horizontal lines using the top
“half-character” rather than the bottom half-character.
This could be changed by modifying the character table
at 9050.

The second draws a SINE curve starting half way up the
screen (Y1=25). The variable N represents the number
of half cycles displayed (N=6 will draw 3 complete
cycles).

The last one is a decaying COSINE wave, origin at top-
left (Y1=50). For higher decay rates, use lower values
in DC.

Finally, with little effort you could use the plotter rou-
tine to draw axes for your functions. €=

The SuperPET 9000 is an extension of Commodore’s 8032
computer to include a second processor (Motorola 6809) which
runs (pseudo-) 16-bit code. Provided for the 6809 is the Waterloo
Software Package which includes 6809 Assembler, good editing
(and debugging) facilities and higher level languages such as
BASIC, FORTRAN, Pascal, and APL. An overview of this hybrid
6502/6809 system is given. We make:-

1) general comments about the Waterloo Software (especially

with regard to Pascal), and

2) suggestions for future developments/improvements.

1. INTRODUCTION

A short time ago, when considering
using a first generation microcomputer,
a worthy question for those who had
ready access to larger facilities was:-
‘But, what can you do with it? -
Building one’s own system could have
been interesting.. Certainly micros
were good for:--

0. game playing;

1. providing a cheap introduction
to computers for those who
would not otherwise have ready
access;

2. providing ready made packages
(e.g. for businessmen, etc) such
as wordprocessing, VISICALC,
small .data base management
systems (eg OZZ and THE
MANAGER);

3. for interfacing to experiments
and as controllers, recorders
(especially the PET with it's
|IEEE-488 bus).

Now, the 16-bit code provided by
Waterloo provides excellent editing/

language facilities. Editing is numeric
keypad style- similar to (although not
quite as many features as) that on
Digitafs VT-100 terminals. Languages
include versions of Assembler, BASIC,
FORTRAN, Pascal, and APL (with
COBOL and Ada in the pipeline)
designed for structured programming.
We have now reached a transition
phase whereby the software develop-
ment activities are at least as good as
those that we would expect on many
larger machines.

Impressions in this report have
been gained from a SUPERPET being
used in farming applications in New
Zealand.

HARDWARE AND
CONSEQUENCES

The innovation Commodore have
made with the SUPERPET is the
inlcusion of a pseudo 16-bit MC6809
based system. The Motorola 6809 has
been described as “the most powerful
of 8-bit processors” (really an 8/16 bit
hybrid -internally it is 16-bit), and can

SuperPET

by Richard Black,
PO BOX 702

CANBERRA 2601
ph (062)49-4692

be regarded as the choice for those
who want to get into structured
programming. In the hardware line
other manufacturers (e.g. Hitachi,
Tandy) are following suit in adopting
the 6809-bit processor, but thisisafar
cry from a software package that has
undergone nearly three years of
extensive university testing and
development.

Now we have:-

a) (Near) compatibility with software
on larger machines (which to a
large degree is 16-bit code) e.g.
the IBM 370 and PDP-11/45
series.

b) With the inclusion of the
Commodore 8032 system, we
retain compatibility with software
already developed.

Certainly the 6809 solution seems

a good stepping stone— one wonders
when they will introduce a true 16-bit
processor (Gowans, 1981; Toong and
Gupta, 1981), for example:-

a) Motorola 68000 (which has an
addressing space of 64M cf.

Vol.2 Issue 4 Commodore Magazine 27

64K for 8-bit machines without
bank-switching, and can be
thought of as having the power
of aPDP-11/45 on asingle chip),

b) their own — at one stage it was

3.1

3.2

romoured (Gowans, 1981) that
‘... Commodore chip production
subsidiaries MOS Technology

and Frontier Semiconductor will 4

bring out a machine of their own
that might — just might — run
6502 code as well as 16-bit.’
Note that although 16-bit pro-
cessors have superior memory
addressing capabilities, speed
and instruction sets, one has to
have the software and support
chips to take advantage of these.
For example, benchmarks
(although these need to be
interpreted with caution) do not
show a significant increase in
speed (cf. 8-bit machines) of the
BASIC for the IBM Personal
Computer (the 16-bit processor
is Intef's 8088 — a series
introduced two years before the
68000 with a direct memory
addressing capability of 1M (not
that IBM make full use of this) -
really an improved version of the
8-bit 8080-although note that
Intel with its 432 - programmed
in Ada - already has 32-bit
processors.

EDITING
6502:CBM BASIC

Editing/debugging can be signif-
icantly enhanced by the POWER
programmers utility package
(Professional Software Ltd)

6809:Waterloo microEDITOR

Program development is con-
siderably facilitated by ‘keypad-
style’ editing (cf. Digital's VT-100
terminals). Arrow keys allow the
positioning of the (screen)
cursoranywhere in the file being
edited. All essential features for
fast editing are then obtained by
pushing e.g. a single (‘shifted)
key on the numeric keypad - -
eg.

- insert/delete line(s), character(s)
— command/screen mode.

In command mode one can e.g.
change (c/string1/string2/) or
search (string) selected/all
occurences of strings; etc
Put/get (p/g) allow disk files to
be created and recovered.
Blocks of text can be moved

Vol.2 Issue 4 Commodore Magazine 28

4.2

from one place to anotherby e.g.
‘10,15 p temp’ (puts lines 10 to
15 into a disk file called ‘temp’);
'g temp’ (gets the lines back
again when the sreen cursor has
been positioned in the place
that they are required).

LANGUAGES

6502

As well as the Commodore
BASIC 4.0 supplied in ROM one
can obtain:-

1. COMAL - simple structured
language;

2. PETSPEED BASIC compiler
(from Oxford Computer Sys-
tems (Software) — who claim
that compiled programs run
‘at up to 30 times the speed of
theirinterpreted equivalentin
PET BASIC; and who also
supply COMPILED INTEGER
BASIC which runs at 'up to
150 times the speed of PET
BASIC);

3.DTL BASIC Compiler

4. TCL Pascal (compiled);

5. USCD Pacsal

6. FORTRAN

7. LISP (See Commodore Ency-
clopedia of Software).

If one decides to go in for the 8-
bit disk operating system CP/M
via Softbox (Small Systems
Engineering Ltd), then a large
range is available including
ALGOL, C, muLISP, COBOL,
PL/1 and the symbolic/semi-
numeric processors muSIMP
and muMATH for computer
algebra).

6809

With the aim of providing
‘...good primitives for structured
programming...’, Waterloo
Computing Systems (at the
University of Waterloo) have
produced a software package
which includes (along with good
editing and debugging facilities)
6809 Assembler and interpreters
for the higher level languages
BASIC, FORTRAN, Pascal and
APL, with COBOL AND Ada to
come.

4.2.1 Waterloo microBASIC

This is a superset of the usual
BASIC which is designed for
structured programming and
includes:- indentation, long ident-

ifiers, procedures (eg
‘FindChangOfSign’ is more
meaningful than ‘GOSUB’ 900’).
Control words include e.g. endo,
endif, quitif, etc. Waterloo are to
be congratulated on the job that
they have done here, and it is to
be hoped that all microcomputers
will have a language similar to
this or COMAL (as a minimum) in
ROM.

4.2.2 Waterloo microFORTRAN

This is a variant of FORTRAN-77
‘_.designed for educational and
research environments..

4.2.3 Waterloo microAPL

This is a complete implement-
ation of the IBM/ACM standard
for APL

4.2.4 Waterloo microPascal

This implementation of Pascal is
fairly close to the proposed ISO
standard, although it does omit
two features, which | hope will
be included in future versions:-

a) Passing of functions and
procedures as parameters —
e.g. In numerical analysis one
commonly wants to carry out
the same procedure on
different functions - for
example:-

program passing-functions-
as parameters;
var

zero-of-g, zero-of-k real;
procedure newton(function f(
x: real): real; xtrial: real; var
xzero: real);

begin

< find xzero such that
f(xzero)=0 >

end < newton gt

< Declaration of functions g
and k go here >

begin
<Find zeroes of g and K>
newton(g,3.8, zero-of-g);
newton(k, 2.1, zero-of-k)
end.

FIGURE 1

(Note that the above declar-
ation (Fig. 1) of f (Addyman,
1981) required in the ISO
proposal, avoids the passing
of functions with the incorrect

number or type of parameters;
although this could be achieved
by ‘function f(real): reaf; as in
DEC-10 Pascal. The original
Jensen and Wirth definition
merely required ‘function f:
reaf, which could have lead to
run-time rather than syntax
errors. Maybe the previous
lack of standardisation led
Waterloo to delay implement-
ation of this feature for the
sake of portability.)

b) Upper and lower case identi-
fiers:

The one obvious difference
between the Waterloo micro-
Editor and the editor for
microPascal is that the latter
converts all upper case
letters typed into the original
file to lower case (except
for those enclosed by inverted
commas e.g. ‘A’). The manual
mentions that the interpreter
treats cases as equivalent i.e.
A=a, and indeed readability,
the above-mentioned conver-
sation is unnecessary. As a
mitigating factor, it should be
mentioned that Waterloo do
allow the underscore character
as a word separator within
identifiers - i.e. file-of-integer
is allowed, whereas
FileOfinteger gets converted
to fileofinteger.

In summary, it would be nice to
be able to say, e.g. procedure
FindChangeOfSign(function f(
xreal):real;
xmin, xmaxreal;
var xChangeMin,
xChangeMax: real);

Apart from the above all other
standard features are implem-
ented (except for two minor
details — pac and unpack,).
Extensions are the following:-

a) Peek and poke are allowed.
b) As well as having the standard

forms of ‘reset and ‘rewrite’,
these have been extended to
include e.g.

reset(disk-file-name, pascal-
file)

where file-name is of type
‘packed array [1..16] of char
(and may also include the disk

drive and device number, if the
default is not used).

To testify the ease of software
developement using the editor
and Pascal debugger — during
my first weekend using the
machine, programs developed
included a text-processor, and
music-player. | proceed to
comment on these.

PROGRAMMING EXAMPLES
A) Wordprocessing:

As a start one could use the
microEDITOR - this is a big leap

forward from the typewriter, and
sufficient for many—i.e. one can enter
text as fast as one can type, and
manipulate it in the ways described in
section 3. But, if one wants to add the
various ‘trendy features such as
automatic justification then:-

i

There are available a number of
good packages (written in
machine-code, and thus relatively
fast), or

i) One can write one’s own—avery

good programming exercise
exemplifying character manipul-
ation. Ideally one would like to
be able to write a program in a
higher level language (with
clarity being paramount), yet
have it run reasonably fast. The
microPascal program developed
(an extension of that described
inref. 3) converted afile (entered
using the microEditor) into a
word-processed (justified, filled,
paragraphed etc) at arate of 2-3
lines per minute - for my
purposes this was quite satis-
factory in that if left overnight it
would produce over 30 pages of
formatted text

It is appropriate to mention here
that TCL Pascal for the 6502
does have a number of points ih
its favour (although the
microEditoris not available for it)

Passing of functions/procedures
as parameters, and mixed upper/
lower case identifiers are allowed

It is compiled rather than
interpreted - thus, after the
initial compilation, one has an
object-code program which will
run faster. For example, if the
above text-processor ran ten
times faster, then a speed of one
page per minute would be quite

respectable.

B) MUSIC: - a frivolous example:

The 4000/8000/9000 series
contain a small speaker which
can be programmed for various
sound effects.

. My eleven-year old sister has

gained much amusement from a
Pascal program in computer-
music composition. Ideally one
would like to define a function
‘time’ which peeks the appropriate
memory location to find the time
(e.g. in jiffies) thus providing a
more accurate timer (for length
of notes) than my crude while
loop.

. CONCLUSIONS

When considering what comput-
ing facilities to use, ease of
software development is para-
mount, and the SUPERPET
scores better than many main-
frame systems. For smaller jobs
this system should satisfy many
of the needs of those in
educational and research environ-
ments (especially in the teaching
of undergraduate Computer
Science). For larger jobs the
SUPERPET can be used as an
intelligent terminal for some
host system.

On the hardware side, we have
the convenience and economic
sense of the concept of more
than one processor—compatibility
with 6502 software is retained,
while the 6809 provides a good
stepping stone to the software
of 16-bit mainframes, and 16-bit
processors such as the 68000
(which contains the CPU power
of a PDP-11/45 on a single chip).

In this dynamic world of micro-
processing, one can always wait
for bigger and better systems
but there is a transition stage
when the average person can
really start doing things, and that
occurs here with a (pseudo) 16-
bit based system.

for references see page 35

Vol.2 Issue 4 Commodore Magazine 29

USING THE COMMODORE

By Jim Butterfield.

When you are producing output, it's good to make it neat. The
computer is there to help its human readers, and the more you can
do to improve the information, the better job you’ll be doing.

Printing in Columns

Beginners often arrange values in
columns by using the screen tabulation
functions: putting a comma into the
PRINT statement, or using the TAB
function. These methods work, but
they have a pitfall: they won’t behave
properly if the output goes to other
devices. The problem is that the
computer always knows exactly
where the screen cursor is, but it
never knows on what column the
external devices are located. It
doesn’t even try to keep track; so a
TAB or a comma directed to the
printer or other device won't behave
properly.

Its my feeling that almost
everything that goes the screen can
be usefully directed to the printer, or
written to a disk file with a view to
transferring to the pririter later. Once
you have a report looking nice on the
screen, you don't want to reprogram
to get it looking nice in print. So... stay
away from TAB and commas - there’s
a better way.

Redirecting Output

While 'm on the subject of
switching output from the screen to
the printer, I'd like to share a little
coding trick with you. Most programmers
know that you can direct output to a
printer by performing an OPEN to
device number 4 (the printer) and then
using PRINT#.. That's fine for a
finished program, but you can waste a
lot of paper while you're checking out
a program if you do everything to the
printer.

Here's a trick We can OPEN to
device number 3 (the screen) and
PRINT# to the screen, checking our
program and fixing it up. When it's
ready to go, all we need to do is to
change the OPEN statement so that it
names device number 4, and output
goes to the printer. We save time and
paper. Let’s try it: we code:

100 OPEN 1,3
110 FORJ=1TO 10
120 PRINT#1,J;SQR(J)

Vol 2 Issue 4 Commodore Magazine 30

130 NEXTJ
140 CLOSE 1

When we run this program, output is
delivered to the screen. If everything
looks good, we can change line 100 to
OPEN 1,4 ._.and output is redirected.

Its not really a trick; it's good
coding. We could allow the user to
specify what output he wanted by
coding something like:

100 INPUT’DEVICE NUMBER”;N
:OPEN 1,N so that the user could type
in 3 or4 to select the type of output he
wants.

Neatness Counts

If ’'m sternly discouraging TAB and
comma, how canyou arrange thingsin
columns? A few simple answers, but
first some ground rules. The best way
to arrange stuff in columns is to make
sure that each “field” is always the
same length; that way, each item will
be printed neatly in the same place
across the page.

How can we rechop two numbers
as different as 3 and -32768 so that
they occupy the same space? Forthat
matter, how can we take twonames as
BUTTERFIELD and NG and make
them the same length?

Let's take the names first. These
“strings” could be neatly chopped
down to afixed length by means of the
LEFT$(function ..if they were long
enough. For example, we could slice
out the first eight characters of string
X$ with LEFT$(X$,8); but it won’t work
if X$ is less than eight characters long
in the first place. So — pay attention —
we must first pad out the name by
adding spaces to the end. Sticking
extra characters onto the end of a
string is called “concatenation” -
pronounced with emphasis on the cat
—and is done with a plus sign. If we had
a short name like M and wanted to
tack eight spaces on the end, we’'d do
it by writing “M“+” " which
would create a new string nine
characters long. A name like
BUTTERFIELD treated the same way
would end up nineteen characters

PRINTER

long, but this doesn’t matter. we're
going to chop them both down to the
same length with LEFT$(.

Let’s put it all together. If the name
is held in variable N$, we code PRINT
LEFT$(N$+“ ”8); with a semicolon
at the end. First we concatenate,
adding the spaces; then we chop (or
“truncate”), cutting to a fixed length;
finally we print. Both long and short
names will be printed as exactly eight
characters; the next thing we print will
be neatly lined up behind it We might
want to make the field more than eight
characters long, since a splendid
name like BUTTERFIELD would end
up chopped to BUTTERFI - if we do
increase the length we must remember
to add more spaces, of course.

The above procedure is called Left
Justification, since the strings are
lined up neatly on the left with spaces
filling out on the right hand side. We
can go the other way and produce
Right Justification with a small
adjustment: try PRINT RIGHTS$(“ =
+N$,6); and you'll see how the left
side fills with spaces and names line
up on the right. This is the kind of
alignment you will want with numbers;
we'll deal with that in a moment.
Remember that if you don't allow
enough space you'll end up with
chopped-off names like TERFIELD,
and there’s no justification for that...

If the numbers you are using are
integers, you'll usually want to line
them up with right justification. Once
again, thisis easy todo once you know
the function that changes numbers to
strings. If your value is held in variable
X, we can change it to a string with
STR$(X); now we can do the right
justification with PRINT RIGHTS$(“ .
+STR$(X),6); everything will work out
neatly. Study this statement and see
how X builds up into a neatly furnished
string of length six.

If your numbers contain fractional
values, you may want to try to line up
the decimal points. That's much more
challenging. Perhaps you'd like to try
your hand at it We'll tackle it here
another time.

MicroPro Design Pty.Ltd.

Specialising in the sales & support of
the Commodore PET/CBM Microcomputers,
peripherals and interfaces, including:

® IEEE488-RS232 COMMUNICATIONS

® RS232/CENTRONICS PRINTER INTERFACE

® EPROM PROGRAMMER
® WORD PROCESSOR PRINTER INTERFACE

For full details and prices call or write:

-,
i
B

.E] _G:l PHOTOTYPESETTING

* Phototypesetting from text disks and/or
cassettes generated from Commodore
microcomputers.

* Complete art studio facilities

% Reports, software manuals, advertising,
etc. etc.

(02) 439 1827

MERVYN BEAMISH GRAPHICS
82 Alexander St. CROWS NEST, NSW 2065

ViC=20

40/80 COLUMN
CARTRIDGE

8o (NPUT N,
l O ;g:‘! 3

flo FOR T=GToN STEP Y
220 AF= RGHT I " Caspey

205/6 Clarke St Postal: P.O. Box 153
CROWS NEST NORTH SYDNEY
Ph:(02) 438 1220 NSW 2060

Jow N, Comtler Norld,

i ot bt T T T LI e v G

'+

STRE(T),6)
223 M= iNTCSQR(TY) : N = SOR(T)-M:
e;:msu-rs'}” W e STRE(M),3)
224 D}

v Ak m% T;br:ef;?:(?.':;i?,*
% 40/80 Column Display (not colour) 23- o S $sefacfing
% Vic and CBM Graphics st A
% Load all PET/CBM Programmes
% All Cursor control Upper and Lower Case
% Switchable from basic without losing programme
% No alterations to Vic required
% No external power supply required
% Works together with 32k Basic Vic computer

ELECTRONICS

416 LOGAN RD. (Pacific Hwy.) STONES CORNER,
BRISBANE. TEL: (07) 397 0808, 397 0888. P.O. Box 274
SUNNYBANK QLD. 4109 TELEX AA40811

Vol.2 Issue 4 Commodore Magazine 31

BASIC & OPERATING SYSTEM

NAME:

C000-C045
C046-C073
C074-C091
C092-C192
C193-C2A9
C38A-C3B7
C3B8-C3FA
C3FB-C407
C408-C434
C435
C474-C482
C483-C532
C533-C55F
C560-C57B
C57C-C612
C613-C641
c642
Cb60-C68D
C68E-C69B
C69C-C741
C742-C7EC
C7eD-C81G
C81D-C82B
CB2C-C856
C857-C870
C871-C882
C883-C89F
C8A0-CAD1
C8D2-C8EA
C8EB-C905
C906-C908
C909-C927
C928-C93A
C93B-C94A
C94B-C96A
C96B-C94A
C9A5-CA1C
CA1D-CA2B
CA2C-CA7F
CA80-CA85
CA86-CA99
CA9A-CB1D
CB1E-CB3A
CB3B-CB4C
CB4D-CB7A
CB7B-CBA4
CBA5-CBBE
CBBF-CBF8
CBF9-CCO05
CC06-CCFB
CCFC-CD1D
CD1E-CD77
CD78-CDSD
CD9E-CEFO
CEF1-CEF6
CEF7-CEF9
CEFA-CEFC
CEFD-CFO7
CF08-CFOC
CFOD-CF13
CF14-CFA6

VARIABLES .. VIC

FUNCTION:

Action addresses for primary keywords
Action addresses for functions

Hierarchy and action addresses for operators
Table of BASIC keywords

BASIC messages, mostly error messages
Search stack for FOR or GOSUB activity
Open up space in memory

Test: stack too deep?

Check available memory

Send canned error message, then:

Print Ready

Handle new BASIC line from keyboard
Rebuild chaining of BASIC lines in memory
Receive line from keyboard

Change keywords to BASIC tokens

Search BASIC for given BASIC line number
Perform NEW, then:

Perform CLR

Reset BAS!C execution to start-of-program
Perform LIST

Perform FOR

Execute BASIC statement

Perform Restore

Perform STOP and END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN, and perhaps:

Perform DATA, i.e., skip rest of statement
Scan for next BASIC statement

Scan for next BASIC line

Perform IF, and perhaps:

Perform REM, i.e., skip rest of line

Perform ON

Get fixed-point number from BASIC
Perform LET

Add ASCII digit to accumulator No. 1
Continue to perform LET

Perform PRINT #

Perform CMD

Perform Print

Print string from memory

Print single format character (space, cursor-right?)
Handle bad input data

Perform GET

Perform INPUT No.

Perform INPUT

Prompt and receive input

Perform READ; common routines used by INPUT and GET
Messages: EXTRA IGNORED, REDO FORM START
Perform NEXT

Check data type, print TYPE MISMATCH
Input & evaluate any expression (numeric or string)
Evaluate expession within parentheses)
Check right parenthesis)

Check left parenthesis(

Check for comma

Print SYNTAX ERROR and exit -
Set up function for future evaluation
search for variable name

Vol.2 Issue 4 Commodore Magazine 32

NAME:

CFA7-CFES
CFE6-CFE8
CFE®-DO15
D016-DO7D
DO7E-DO8A
DO8E-D112
D113-D11C
D11D-D193
D194-D1A4
D1A5-D1A9
D1AA-D1DO
D1D1-D34B
D34C-D37C
D37D-D390
D391-D39D
D39E-D3AS
D3A6-D3B2
D3B3-D3EO
D3E1-D3F3
D3F4-D464
D465-D474
D475-D486
D487-D4F3
D4F4-D525
D526-D5BC
D5BD-D605
D606-D63C
D63D-D679
D67A-D6A2
D6A3-DEDA
D6DB-D6EB
D6EC-D6FF
D700-D72B
D72C-D72C
D737-F760
D761-D77B
D77C-D781
D782-D78A
D78B-D79A.
D79B-D7AC
D7AD-D7EA:
D7EB-D7F&
D7F7-D80C
D80D-D823
D824-D82C
D82D-D848
D849-D84ifF
D850-D8
D861-DoM6
D947-DI7D
D97E-D@82
D983-D9BB
D9BC-DYES
D9EA-DA2F
DA30~DAS8
DA59-DA8B
DA8C-DAB6
DAB7-DAD3
DAD4-DAE1
DAE2-DAF8
DAF9-DAFD
DAFE-DBO6
DBO7-DB11
DB12-DBA1
DBA2-DBC6
DBC7-DBFB
DBFC-DCOB

FUNCTION:

Identity and set up function references
Perform OR

Perform AND

Perform comparisons, string or numeric
Perform DIM

Search for variable location in memory
Check if ASCII character is alphabetic
Create new BASIC variable

Array pointer subroutine

32768 in floating binary

Evaluate expression for positive integer
Find or create array

Computer array subscript size

Perform FRE then:

Convert fixed point to floating point
Perform POS

Check if direct command, print ILLEGAL DIRECT

Perform DEF

Check FNx syntax

Evaluate FNx

perform STR$

Calculate string vector

Svan and set up string

Subroutine to build string vector
Garbage collection subroutine

Check for most eligible string collection
Collect a string

Perform a string concatenation

Build string into memory

Discard unwanted string

Clean the descriptor stack

Perform CHR$

Perform LEFTS$

Perform RIGHTS$

Perform MID$

Pull string function parameters from stack
Perform LEN

Move from string=mode to numeric:made
Perform ASG

Input byte parameter

Perform VAL

Get two parameters for POKE or WAIT
Convert floating, point ot fixed poimtt
Perform PEEK.

Perform POKE

Perform WAIT

Add 0.5 to accumulator No. 1

Perform subtraction

Perform additiomn

Complement accumulator Na. 1

Print OVERFLOW and exit
Multiply-a-byte subroutine

Function censtants: 1, SQR(5), SQR(2),-00.5. etc

Perform LQG

Perform muultiplication

Multiply-arbit subroutine

Load accumulator No. 2 from memory

Test and adjust accumuikators No. 1 and No. 2

Handle over and underfiow

Multiply by 10

10 in floating binary

Divide by 10

Perform divide-into

Perform divide-by

Load accumulator No. 1 from memory
Store accumulator No. 1 into memory

Copy accumulator No. 2 into accumulator No. 1

Vol.2 Issue 4 Commodore Magazine 33

NAME:

DCOC-DC1A
DC1B-DC2A
DC2B-DC38
DC39-DC57
DC58-DC5A
DC5B-DC9A
DC9B-DCCB
DCCC-DCF2
DCF3-DD7D
DD7E-DDB2
DDB3-DDCH1
DDC2
DDCD-DDDC
DDDD-DF10
DE11 DF70
DF71-DF77
DF78-DFB3
DFB4-DFBE
DFBF-DFEC
DFED-EO3F
EO040-E089
EO8A-E093
E094-EOF5
EOF6-E260
E261-E267
E268-E2BO
E2B1-E2DC
E2DD-E30A
E30B-E33A
E33B-E377
E378-E386
E387-E3A3
E3A4-E428
E429-E44E
E44F-E47B
E47C-E4FF

E500-E504
E505-E509
ES0A-E517
E518-E580
ES581-E586
ES87-E5B4
ESB5-E5C2
ESC3-ES5CE
ES5CF-E64E
E64F-E741
E742-E8E7
ESE8-EBF9
E8FA-E9Q11
E912-E928
E929-E974
E975-EAAOQ
EAA1-EB1D
EBIE-EC45
EC46-EE13
EE14-EEBF
EECO-EEC4
EECS-EECD
EECE-EEE3
EEE4-EEF5
EEF6-EFO3
EFO4-EF18
EF19-EFA2
EFA3-EFED
EFEE-FO35

FUNCTION:

Copy accumulator No. 1 into accumulator No. 2
Round off accumulator No. 1

Computer SGN value of accumulator No. 1
Perform SGN

Perform ABS

Compare accumulator No. 1 to memory
Convert floating-point to fixed-point

Perform INT

Convert string to floating-point

Get new ASCII digit

String conversion constants: 99999999,999999999 IE+9
Print IN, followed by:

Print BASIC line number

Convert number or TI$ to ASCI|

Constants for numeric conversion

Perform SQR

Perform power function

Perform negation

Constants for string evaluation

Perform EXP

Function series evaluations subroutines
Manipulation constants for RND

Perform RND

Kernal patch routines (See Appendix 6 for listings)
Perform COS

Perform SIN

Perform TAN

Constants for trig evaluation pi/2,2No.pi,.25, etc
Perform ATN

Constants for ATN series evaluation

Initialise RAM vectors

Subroutine to be moved to zero page ($70 to $87)
Initialise BASIC system

Messages: BYTES FREE,****CBM BASIC V2****
Vector initialisation

Unused space

KERNAL ROUTINES

Return address of 6522

Return max rows and columns of screen
Read/plot cursor position

Initialise 1/0

Home function

Move cursor to current line index pointer
Panic NMI entry (Restore key)

Initialise 6560 VIC chip

Remove character from queue

Input a line until carriage return

Print routine

Check for decrement in line index pointer
Check for increment in line index pointer
Check colour

Table to convert from screen code to KASCII
Screen scroll routines

IRQ routines, put char o screen and update time, generate 1/0

General keyboard scan

Keyboard matrix tables

Command serial bus device to listen
Send secondary address after listen
Release attention after listen

Talk on second address

Buffered output to serial bus

Send untalk command on serial bus
Send unlisten command on serial bus
Input a byte from serial bus

NMI continue routine

Transmit byte

Vol.2 Issue 4 Commodore Magazine 34

NAME: FUNCTION:

FO36-F173 NMI routine to collect data into bytes (RS-232)
F174-F1E1 Kernal messages

F1E2-F1F4 Print message to screen
F1F5-F20D Get character from channel
F20E-F279 Input character from channel
F27A-F2C6 Output character to channel
F2C7-F308 Open channel for input
F309-F349 Open channel for output
F34A-F3EE Close logical file

F3EF-F3F2 Close all logical files
F3F3-F409 Clear channels

F40A-F541 Open function

F542-F674 Load RAM function (from cassette or bus devices)
F675-F733 Save function

F734-F76F Time function

F770-F77D Test stop key

F77E-F7AE Error handler

F7AF-F889 Find and read tape header
F88A-F98D Cassette control routines
F98E-FABC Tape read routines
FABD-FBE9 Byte handler for cassette read
FBEA-FD21 Tape write routines
FD22-FEQO System power up initialisation
FE91-FEAS8 Memory check routines
FEA9-FF5B NMI handler

FF5C-FF71 Baud rate tables

FF72-FF85 IRQ handler

FF85-FFFF Kernal jump vector addresses

Waterloo Micro Software Description continued from page 25

loadable and executable progam file.
Since it is disk-orientated, the Linker
is capable of building programs which
are larger than the RAM workspace
available. The Linker supports the
building of progams in segments or
banks for operation in bank-switched
RAM memory, as well as supporting
the building of programs for operational
in normal RAM memory.

d) The Waterloo microSUPERVISOR
is an operating system designed for
single-user microcomputer environ-
ments. Itincludes Monitor, Library and
Serial Line Communications support
as described below.

A Monitor progam is included which
supports the loading of Linker-
produced program files into bank-

switched RAM memory or normal
RAM memory. The Monitor also
provides facilities which are useful for
debugging machine-language pro-
grams. These include commands to
display and alter RAM memory and
6809 microprocessor register, utilizing
full-screen features for ease of use. In
addition, a Monitor command permits
disassembly of Motorola 6809 micro-
processor instructions into assembly-
language mnemonic form.

A Library of functions and proced-
ures is included for general use by
other programs included in the
Package. The Library includes support
functions for input/output operations
to the keyboard, screen and peripheral
devices. Other elements of the Library

provide floating- point arithmetic,
fundamental trigonometric functions,
and several general-purpose utility
functions.

A Serial Line Setup program is
included which permits the selection
of programmable characteristics, such
as baud rate, of RS-232 serial lines. In
addition, this program includes sup-
port for establishing communication
with a host computer, through a serial
line, for the purpose of accessing its
files and peripheral devices.

A Cobol interpreter is currently
nearing completion at Waterloo and
will be available in the very nearfuture.
When details become available
Commodore will immediately pass
them on to the Users of the SP 9000.

SuperPET continued from page 29

REFERENCES:

1. AM. Addyman, “A Draft Proposal for
Pascal’, Pascal News 18 (May 1980)
2. M. Brown, “ADA-the way ahead”, Pacific
Computer Weekly, (May 14-20, 1982) p. 8
3. W. Findlay and D. Watt, ‘Pascal: An
Introduction to Methodical Programming’,
2 ed, Pitman (1981)
4. Gowans, ‘Do you need 16 bits?,

Microcomputer Printout (Dec. 1981) p. 64
5. C.AR.Hoare, The Emperor's Old Clothes’,
Communications ACM 24 (Feb. 1981) p. 75
6. ' COMPUTER), IEEE (June 1981)
7. K Jensen and N. Wirth, ‘Pascal User
Manual and Report, 2 ed, Springer-Verlag
(1978)
8. ‘Microcomputer Printout’, (Dec. 1981)
9. A Osborne and C.S. Donahue, ‘PET/CBM
Personal Computer Guide', 2 ed, OSBORNE/
McGraw Hill, Berkeley (1980)

10. H.D. Toong and A Gupta, ‘An
architectural Comparison of Contemporary
16-bit Microprocessors', [EEE MICRO (May
1981) p. 26

11. P. Wegner, ‘Self-Assessment Procedure
VIII, Communications ACM 24 (Oct. 1981)
p. 64

12. G. Wiliams, ‘A closer look at the IBM
Personal Computer,Byte (JAn. 1982) p. 37

Vol.2 Issue 4 Commodore Magazine 35

THE KERNAL ON THE VIC 20.

Essentially, the KERNAL is a standardized JUMP TABLE to the input,
output, and memory management routines in the operating system.
The locations of each routine in ROM might change as the system is
upgraded, but the KERNAL entry points will not alter, only the jump
table changed to match. If your machine language routines should
see the system ROM routines through the KERNAL. The KERNAL is
the operating system of the VIC computer. All input, output and
memory management is controlled by the KERNAL.

A good question at this point is why
use the jump table at all? The jump
table is used so that if the KERNAL or
BASIC is changed, your machine
language programs will still work. In
future operating systems the routines
may be moved in memory ..but the
jump table will still work correctly!

To use the KERNAL jump table, first

you set up the parameters that the
KERNAL routine needs to work Then
JSR to the proper place in the
KERNAL jump table. After performing
its function, the KERNAL transfers
control back to your machine language
program. Depending on which KERNAL
routine you are using, certain registers
may pass parameters back to your

USER CALLABLE KERNAL ROUTINES

NAME ADDRESS
HEX - DECIMAL
ACPTR $FFA 65445
CHKIN $FFC6 65478
CHKOUT $FFC9 65481
CHRIN $FFCF 65487
CHROUT $FFD2 65490
ClouT $FFA8 65448
CLALL $FFE7 65511
CLOSE $FFC3 65475
CLRCHN $FFCC 65484
GETIN $FFE8 65512
IOBASE $FFF3 65523
LISTEN $FFB1 65457
LOAD $FFD5 65493
MEMBOT $FFO9C 65436
MEMTOP $FF99 65433
OPEN $FFCO 65472
PLOT $FFFO 65520
RDTIM $FFDE 65502
READST $FFB7 65436
RESTOR $FF87 65415
SAVE $FFD8 65496
SCNKEY $FF9F 65439
SCREEN $FFED 65517
SECOND $FF93 65427
SETLFS $FFBA 65466
SETMSG $FF90 65424
SETNAM $FFBD 65469
SETTIM $FFDB 65499
SETTMO $FFA2 65442
STOP $FFE1 65505
TALK $FFB4 65433
TKSA $FF96 65430
UDTIM $FFEA 65514
UNTLK $FFAB 65451
VECTOR $FF84 65412

Vol.2 Issue 4 Commodore Magazine 36

FUNCTION

Input byte from serial port
Open channel for input
Open channel for output
Input character from channel
Output character to channel

Output byte to serial port

Close all files

Close logical file

Close input and output channel
Get character from keyboard queue

Returns base address of I/0O device
Command Serial IEEE device to listen
Load RAM frorm device

Read/set bottom of memory

Read/set top of memory

Open logical file

READ/SET X,Y cursor position
Read real time clock

Read 1I/0O status word

Restore old I/O vectors

Save RAM to device

Scan keyboard

Return XY organisation of screen
Transmit secondary command
Set logical, first, second address

Control KERNAL messages
Set file name information
Set real time clock

Set timeout on serial bus
Check stop key

Command Serial IEEE device to talk
Send secondary after talk
Increment real time clock
Command serial bus to UNTALK
Read/set vectored 1/0

program. The particular registers for
each KERNAL routine may be found
in the individual descriptions of
KERNAL subroutines.

That's all there is in using the
KERNAL - these three steps :-
1. Set up
2. Call the routine
3. Error handling

Further details on the Kernal routines
can be found in either,;

THE VIC REVEALED
by Nick Hampshire
VIC-20 PROGRAMMERS
REFERENCE GUIDE

both available from your
Commodore Dealer.

MAKE THE MOST OF YOUR
COMMODORE

HIGH-RESOLUTION | RS232 TEST SET
GRAPHICS

The RS232 TESTSET is a small hand held
t device that connects inline with the interface
cable, the terminal or the modem and monitors
the line signals. The TESTSET passes all 25
lines through and so can be left connected
without affecting communications. It is
completely portable as no batteries are required
since power us derived from the interface
signals. Each indicator circuit is current limited
to meet the requirements of the RS232

Interface Standard. Also the voltage range for

included dax}d (;onta.ms I{nan); c;‘xtl.ra B‘:SIC activating the bright LED display corresponds
FOR AII08 ROF S owing Loy peRilng SUADERE cuh ihis standard and thereby reduces

etc. The Grap.hlcs Hardware does not affect troubleshooting to a “GO-NOGO” problem
normal operation of the Commodore.

Now you can give your PET/CBM a High-
Resolution Graphics capability with the MTU
Graphics Hardware and Software Package.
The Hardware is easily installed and the new
graphics board provides five EXTRA ROM
Sockets and 8k RAM MEMORY EXPAN-
SION which can be used for program or data
storage when graphics are not required. A
powerful graphics Software Package is

instead of trying to measure active signals to

determine voltage levels. One 2-pin and one 3-
Available on all PET/CBM - pin jumper are included.

BASIC 1, 2, 3, or 4.

PRINTOUT VIC COMPUTING

Don’t forget your PRINTOUT Magazine| For all VIC 20 owners, this sister to
Subscription - for Commodore PET/CBM | PRINTOUT is a must. 6 issues p.a. incl.
Lovers 12 issues p.a. from Jan. ’82 incl. postage | postage from Jan. ’82 - $25.00 p.a.

- $50.00 p.a.

PROGRAMMERS TOOLKIT ROMS

These ROMs plug into spare sockets in your PET/CBMs and give the user additional commands
such as TRACE, single STEP, FIND, RE-NUMBER, AUTO line numbering, DUMP variable
contents, APPEND, and DELETE multiple lines. Also available are the DISK-O-PRO Tool-kits
which gives all the extra DOS 2.0 commands to DOS 1.0 users as well as commands like PRINT
USING, SCROLL and disk program MERGE -25 commands in all. The COMMAND-O provides
DISK-O-PRO commands for BASIC 4.0 users.

The Programmers Toolkit for BASIC 1.0/2.0/3.0/4.0 users.
DISK-O-PRO Toolkit for BASIC 2.0/3.0 users.
COMMAND-O Toolkit for BASIC 4.0 users.

B.S. MICROCOMP
Tel: (03) 614 1433 IEIE []"EI PTY. LIMITOECI:)?
614-1551 4th & 3rd Floors,

561 Bourke Street,
Melbourne, 3000.

Telex: AA 30333. MICROCOMPUTER SYSTEMS DESIGNERS

S

e et SRS] — e
| T S
; [—— e >
e = / _/ R

THAT JOINS ALL OFFICE FUNCTIONS

Sl WES - ——e TS . — -

! M —t—t

\\ @ —— ‘L
- e
= \JL

t it all together
with the Silicon

STORING AND RETRIEVING INFORMATION — CREATING, EDITING AND PRINTING OF TEXT
~ MATHEMATICAL CALCULATION — COMMUNICATING INFORMATION LONG DISTANCE.

Silicon Office is the first database management System for Commodore CBM Microcomputers whereby up to six files
open and accessed simultaneously during a run. It is alsr the first system which permits intercommunication with 5 levels.
: i : : : e : AR h 2 prob
machines and user. The Silicon Office turns the CBM 8032 into a secretarial work station capable of emulating any appligeess - s
2817

e that the

package the user cares to think of.
Now one program which is continuously and completely resident in the memory of the CBM is capable of performi

functions required to run a small business or office. This can mean anything from Accounting and Stock Control to &t

Processing, Statistical analysis, mailing lists and information filing — all at once, if necessary. Combine filing cabinets, leg wish foru

typewniter and calculator in your office into one efficient unit.
The Silicon Office package comprises of three integrated elements: a sophisticated word processor, a flexible da
management system and an option for inter computer communications — all in one memory resident program.

THIS BUSINESS PACKAGE IS NOW AVAILABLE AND WILL COMPRISE:

8023 DOT MATRIX/PSEUDO PRINTER eCOMMODORE CBM 8032 COMPUTER
#8050 DISC DRIVE UNIT 64K ADD-ON MEMORY BOARD (TOTAL 96K RAM)
e THE SILICON OFFICE PROGRAM MASTER DISC ©TWO SECTIONAL A4 MANUALS

This package is available from:

retires as a

e year -nd

ompute. CBMSYSTEMS

© 525 5022

5 PRESIDENT AVE., CARINGBAH

