JUNE 1991 D’I:VIS fg
7749 29) 2777
04 (44 4 448 44 &

\-Dlé ‘USER-

POWER TOOLS

Power Tools
[.D.0.5. V2
MONSTERS

FRANTIC

P S

— P e — — —
London 081-882 4942 Cheshunt 0992 25323 Peterborough 0733 49696 London W1 071 935 2547
FULL RANGE OF AMIGA, ST, SEGA, 64, SPEC, AMSTRAD, PC, PCW, 2600, XL/XE, BBC

A

GAULDRON It FRESFD 4% STREETSPORTS INTERNATIONAL SOCCER CBM 499
MUNSTERS ALTERNATIVE 499 EPYX 499 VENOMSTRIKES BACK GREMLIN 299
NAM MINDSCAPE 7.9 Soace smnoN GARY LINEKARS SUPERSKILLS | 339
SLOTCARRACER _ MINDSCAPE 499 OBLWON _ EPYX 799 STARCROSS 499
'BEYOND THE DARK CASTLE EPYX 499 SUSPENDED con' 499
MINDSCAPE 4.9 SSMMER GHALLENGE DEADLINE ceM 499
INDOORSOCCER MINDSCAPE 4.99 MINDSCAPE ~ 499 PARADROID HEWSON 299
INAL ASSAULT 499 WINTERCHALLENGE MINDSCAPE 499 MURDEROFFMIAMI CRL 499
EPYX 690 TRANSFORMERS _ MEDIAGENC 499 UPPERISCOPE SUB LoGIC 995
SPYVSPY Il EPYX 499 CHAMPIONSHIP BASEBALL R NDSLAM 4.9
'SPORTS A RONI EPYX 499 MEDIAGENIC 499 SUPER SCRAMBLE SMULATOR 499
SPORTS NEWS BASEBALL EPYX 599 LEATHER GODDESSES OF PHOBOS GLIDER CRL 499
DEATH SWORD EPYX 99 MEDIAGENIC 499 PERGULES SLAYER OF THE
IMPOSSIBLE MISSION v oF HoRUS LOGOTRON ™ 399 DAVINED GREMLIN 299
THE GAME LOGOTRON 3.9 povGNOSIS 499
SUMMER EDITION EPYX 69 FOOTBALLMANAGER PRISM 499 ExoLon HEWSO! 299
4°4 OFF ROADRACING _ EPYX 499 ADDICTABALL ALLIGATA 399 SHIRLY MULDOWNEYS TOP FuEL
EET SPORTS FOOTBA EPYX . 499 FOOTBALL MANAGER2 CHALLENGE S GOl 499
CALIFORNIA GAMES EPYX 499 CONSTRUCTIONKIT PRISM 895 BLASTEROIDS MAGEWORKS 399
WORLD GAMES EPYX 499 NORTHSTAR GREMLIN 299
SOUND STUDIO BALLISTIX PSYGNOSIS 499
HOME RECORDING STUDIO 495 NINJA HAMPSTER CRL 399
GEDS ING GEO WRITE GRAPHICS OPERATING URA GREMLIN 499
SYSTEM WITH WORD PROCESSO 9.95 APACHE STRIKE ACTIVISION 499
'SOUND EXPANDER FM SOUND. VooULE 85 PAZZAZ com 498
ASSEMBLER DEVELOPER o3 SCRAMBLE SPIRITS. DSLAM 599
PROGRAMMERS UTILITIES DEJAVU Mi 699
L0GO v ss 0 SOKO BAN P 499
PPROGRAMMERS TOOL BOX MukDER BY THE DOZEN. 8BS 7.99
INTRO TO BASIC PART 2 i RALAX CEAN 499
PACK OF ACES 49 N INFILTRATOR 1 MINDSCAPE 599
TERNATIONAL KARATE, SouLDERfeeH THEFLINTSTONES ~ GRANDSLAM 499
EX MS PACMAN
BESTQF ELF 4.9 THUNDER CHOPPER SuB LOGIC
BOME JAGK. FRANK BRUNOS BOXING DSCAPE
SPACE HARRIER, AIRWOLF e GRANDSLAM
USE 299 YERRYS B\G 'ADVENTURE
FiaHTNIGHT osmum
‘GOLDEN OLO 699 BLOODWYCH Y
SIATHLON, 'MOONSWEEPER, LAWN TENNIS - FIGHTING SOCCER 'ACTIVISION 499
LERY, SLALOM, INTRUDER, SQUASH NAVY SEAL CosMI 799
K0 BOXNG ETC ETG ETC ETC. INTRIQUE MIRRORSOFT 699
SLAM 499 BATALLION COMMANDER .
FIST, RAMBO, UCHI Wm« BOP N WRESTLE THE THREE STOOGES ~ MIRRORSOFT 599

PERSONAL MONEY MA!

BUY:
EITHER AT

N14 6PH PE11TN ~ EN88LF

Tel: 0992 25323
POSTAGE AND PACKING: 1-3 ITEMS 75P, 4 OR MORE £1.00

CONTENTS

O OGO e

Volume 4 Number 8 JUNE 1991

ON THE DISK

N THE MAGAZINE

WELCOME
Instructions and Editors comment 4

COUNTDOWN
Watch those blocks disappear whilst loading 5

POWER TOOLS

BASICS OF BASIC
A suite of 6 utilities for the serious programmer 6

The series is well underway for Basic beginners 14
1.D.05. V2

TECHNO-INFO
Our Interactive Disk Operating System updated 20

The problems keep on coming, we keep on answering28
FRANTIC

ADVENTURE HELPLINE
Blast everything that moves in this shoot 'em up. 42

The final part of assistance for Astrodus Affair 34
MONSTERS
b BASIC MACHINE LANGUAGE TECHNIQUES
Buy, Sell and do Battle with your own Monster 46 Our regular series for beginners to Machine Code 36
FILE COPIER

COMPUTER INTELLIGENCE

CDU's very own simple file copy program Does it really existt? 2

BASIC DEMO PROGRAM

PROGRAM PLAN
A demonstration program to go with our series

Sensible planning makes programming a dream 48
TECHNO CHALLENGE
One solution from the last Techno Challenge

Commodore Disk User is a monthly magazine published on the 3rd Friday of every month. Alphavite Publications Limited, 20, Potters
Lane, Kiln Farm, Milton Keynes, MK11 3HE. Telephone: (0908) 569819 FAX: (0908) 260229. For advertising ring (0908) 569819
Opinions expressed in teviews are the opinions of the reviewers and not necessarily those of the magazine, While every efiortis made
tothoroughly check programs published we cannot be held responsible for any errors that do occur.

The contents o this publication including all articles, designs, drawings and programs and all copyright and other intellectual property
rights therein belong o Alphavite Publications Limited. Al ights conferred by the law of copyright and other intellectual property
fights and by virtue of ntemational copyright conventions are specificaly reserved to Alphavite Publications Limited and any
reproduction requies the prior writien consent of the company
©1991 ISSN 0953-0614

INSTRUCTIONS

Welcome to another edition of your favourite magazine
for the Co4. This month we bring you a couple of games
to keep you amused, and a few more serious
programming tools.

The first of the Games is MONSTERS, this is a strategy
type buy and sell game. The idea being to work your way
up to owning the top dog. The second, FRANTIC, is a
great shoot 'em up.

For the more serious ser, we have an excellent suite of
programs called POWER TOOLS. These utilities are all
you need to create really professional programs. It
includes such things as; A Linker, Autorunner, Compactor,
Picture Convertor and Text Writer.

We have given you an update to an earlier CDU program
called IDOS, which stands for Interactive Disk Operating
System. This program will make the handling of your disk
drive a lot easier.

That just about sums it all up. Hope you enjoy the issue.

DISK INSTRUCTIONS

Although we do everything possible to ensure that CDU
is compatible with all C64 and C128 computers, one
point we must make clear is this. The use of “Fast
Loaders’, ‘Cartridges’ or alternative operating systems
such as ‘Dolphin DOS', may not guarantee that your disk
will function properly. If you experience problems and
you have one of the above, then we suggest you disable
them and use the computer under normal, standard
conditions. Getting the programs up and running should
not present you with any difficulties, simply put your disk
in the drive and enter the command.

LOAD”MENU",8,1

Once the disk menu has loaded you will be able to start
any of the programs simply be selecting the desired one
from the list. It is possible for some programs to alter the
computers memory so that you will not be able to LOAD
programs from the menu correctly until you reset the
machine. We therefore suggest that you turn your
computer off and then on again, before loading each
program.

HOW TO COPY CDU FILES

You are welcome to make as many of your own copies of
CDU programs as you want, as long as you do not pass

them on to other people, or worse, sell them for profit.
For people who want to make legitimate copies, we have
provided a very simple machine code file copier. To use
it, simply select the item FILE COPIER from the main
menu. Instructions are presented on screen.

DISK FAILURE

If for any reason the disk with your copy of CDU will not
work on your system then please carefully re-read the
operating instructions in the magazine. If you still
experience problems then:

Within eight weeks of publication date disks are replaced
ree.

Aiter eight weeks a replacement disk can be supplied
from STANLEY PRECISION DATA SYSTEMS LTD for a
service charge of £1.00. Return the faulty disk with a
cheque or postal order made out to STANLEY PRECISION
DATA SYSTEMS LTD and clearly state the issue of CDU
that you require. No documentation will be supplied.

Please use appropriate packaging, cardboard stiffener at
least, when returning disk. Do not send back your
magazine, only the disk please.

NOTE: Do not send your disks back to the above address
if its a program that does not appear to work. Only if the
DISK is faulty. Program faults should be sent to: BUG
FINDERS, CDU, Aiphavite Publications Lid, Unit 20,
Potters Lane, Kiln Farm, Milton Keynes, MKI11 3HF.
Thank you.

>

ON THE DISK

Blank screens and time uncertainty on loading are now a thing of the past
PETER WEIGHILL

One annoyance with loading programs is the fact that you
have only a rough estimation of how long it will take
before loading is complete. | have always felt that a
number counting down on screen, (as in all those earlier
NOVALOAD programs), would reduce this annoyance as
at least you can see where it s in the loading procedure. It
also gives you something to watch. Having something to
watch is normally achieved by loading another small
program before the main one. Because of the reasons
described above, | have designed “COUNTDOWN".
Using the procedure outlined below, COUNTDOWN is
saved together with your original program, into one
complete file, adding only 5 - 6 blocks to the original
length of your program. The new program will run
automatically upon completion of loading.

WHAT’S IT ALL ABOUT

With COUNTDOWN installed as part of your program,
you should have a screen display 5 seconds after
LOADING appears on the screen no matter how big your
program is. The screen display you obtain can be
customised by yourself to display any information you
want. Eg. Instructions about the program being loaded.
The only limitation to your imagination is that it must fit
into a space 6 x 40 characters and be in one colour.

Suppose you have a file called “PROGRAM”. This is what
you should do to use the countdown with it.

1. LOAD"COUNTDOWN",8,1

When COUNTDOWN has loaded, the screen will show
some brief instructions, and will have “ready.” at the
bottom of the screen.

2. LOAD"PROGRAM”,8

The program should start at $0801 and should also start in
basic. (The maximum program length allowed is 137
blocks.)

3. If you wish o edit the “design area’ then you should
type SYS49500 and press return. You should now draw
your design, using lower case characters only, inside the
white outline. Once complete and to your satisfaction,
move the cursor 10 the top of the screen and press return
on the 5Y549610 (already printed on the screen) to store
the design in memory. NOTE: The design area can only
be in one colour.

4. You may load/save a design screen to disk. On the 3rd
line from the top of the screen just type;
SYS51200”FILENAME”, 8,1 to save.

or
SYS51222"FILENAME”,8,1 to load.

5. To save your new program, you should type:
SYS49152”"NEW PROGRAM” a,1,b,¢,d

Where: a = disk drive number
= border/background colour

¢ = colour of countdown area (top)

d = colour of design area (bottom)

NOTE: ¢ or d should not be the same as b.

6. You should then test out the program by typing
LOAD"NEW PROGRAM”,8,1

During loading of any program save using
COUNTDOWN the following message should appear at
the top of the screen.

** TO GO UNTIL LOADING COMPLETE

A number should appear where the asterisks are and it
should start to countdown to zero while the program
continues to load. At zero the program will have loaded
and will automatically run. The design area should also
appear on the screen about three quarters of the way
down it.

HOW COUNTDOWN WORKS

The new program starts to load at $0231. During the
loading, the interrupt vector is changed to $0231
(Normally SEA31). When an interrupt occurs, the code at
$0231 clears the screen, alters the screen colours and
changes the interrupt to $02a7. NOTE The countdown
will not work properly with some turbo-load cartridges
installed as they disable interrupts when loading. The
program will still run normally but the countdown will not
be shown while loading. Interrupt $02a7 fills the screen
with colours and waits until the screen has been loaded.
Then changes interrupt to $0503 (in screen memory)
Interrupt $0503 begins countdown. This program uses the
value stored in $AF (175) by the operating system to work
out the value placed on the screen during the countdown.
The operating system uses SAF and SAE to remember
where to place the next byte of the program being loaded
from disk.

Once loading is complete, the Operating System normally
jumps to the location stored in $0326-0327 (CHROUT) to
display the READY message but the value in $0326-0327
has been changed to $0334. $0334 restores O/S vectors
and runs basic program. If you want to see how the
countdown works you should look at $c231-c800 when
COUNTDOWN is in memory. These memory positions
(8c231-c800) are the same as $0231-0800 described
above.

ON THE DISK

The absolute, ulti

progr

utility for C64 users

NM156

POWER TOOLS is a set of six utility programs for
the Commodore 64, it is ideally suited to
beginners in either MACHINE CODE or BASIC
programming, but can also be used by practically
anyone who has some familiarity with the
operation of their computer.
The main objective when creating POWER TOOLS
was to produce a disk which would contain and
allow easy access to a wide range of small but
powerful utilities, thus reducing precious
development time and the need for endless disk
searches. The six utilities POWER TOOLS

ive you a head start in this respect, but more
importantly they provide you with a foundation
ich you can build your own personal

on wl
toolkit.

INSTALLATION

To load one of the tools:-

Insert the CDU disk, or copy all the POWER TOOL
modules onto your own POWER TOOLS disk. Then enter
the following commands:

LOAD"MENU" 8,1 or if you have made up your own
POWER TOOLS disk, LOAD “Power Tools”,8 (press
RETURN) then type RUN (press RETURN)

A menu will then be displayed and you can select the
required tool by pressing a key from 1-6, for example to
load SCROLL WRITER simply press key 6.

To reduce loading time it is possible to load a tool
without using the menu,for example you can load the
LINKER straight into memory by entering:-

LOAD”01-linker “,8 (press RETURN) then type RUN
(press RETURN)

INTRODUCTION

For the machine code programmer there is a PROGRAM
LINKER, COMPACTER, SCRAMBLER and AUTOBOOT
MAKER. Basic programmers can also make use of the
AUTOBOOT MAKER, if you are an artist then the
PICTURE CONVERTER could be a handy little program.

Finally, on a less serious level, anyone with or without
programming ability can use SCROLL WRITER to create
smooth vertical

scrolling messages.

IMPORTANT NOTES

Any numerical value which is prefixed with a dollar sign
($) means the value is in hexadecimal notation. All
input/output operations are to disk (Device 8.). The
author of this software does not accept any liability for
any event arising from the use of these programs.

LINKER

This utility is used to join a multi-part machine code

program into one file that can be loaded and run from

As a simple example of how the Linker operates, imagine
you have just written a game which ends up being split
into various files such as Sprite data, Character sets
Music etc. The Linker would load and store each part
sequentially in memory, when all the parts have been
loaded you give the Linker the start address of the game,
it would then put a small machine code routine before all
the parts and save everything as one file. When this file is
loaded and run from basic, the machine code transfers
each part 1o its true location then finally jumps to the
start address of the game.

There are of course many alternative ways to load and
run a machine code program but they each have certain
drawbacks. For example, a small Basic program could be
written which would load each part then a SYS
command given to start the program, but amongst other
things it would not look very professional and would
definitely be slow at loading. Cartridge owners could
load and start the program via a monitor, and then use a
freezer system to stop the program on the title screen and
save it as a single file but this way is prone to errors as
memory can easily become corrupted, and even if the
cartridge has excellent inbuilt compaction routines you
will nearly always end up with a very large file,

especially compared to using a Linker, so
are!

You will find then that a Linker is definitely the safest way
to convert a multi-part program into a single load and run
file. Note: Although the Linker was primarily designed for
multi-part programs there is nothing to stop you using it
to convert a single part program into a load and run file.

USING THE LINKER
When the Linker has loaded you will see four options

which are all accessed by pressing one of the function
keys:-

F1 - INFORMATION

This option simply displays a few helpful facts about this
version of the Linker.

F3 - EDIT MESSAGE

During the process in which the parts of a linked
program are transferred back to their original locations, a
message of up to 26 characters can be displayed in the
top line of the screen. This allows you to customise the
Linker to a certain extent, by printing your own message
such as the name of the Demo group you are in, or
whatever. The message will only stay on the screeri until
all the parts have been transferred, so for small programs
you can always blank the message out by filling it with
spaces. To view the current message without changing it
simply press F3, then RUNSTOP, to change it, type in
your new message then press RETURN.

F5 - LINK FILES

This is where you will select the files to be linked, up to
16 files can be loaded giving a maximum program length
of 63194 bytes or 249 disk blocks.

Each part must load into memory from 512-65535
(50200-SFFFF), but once your program is running you are
free to use all the memory. As you can imagine this
makes the Linker very powerful in that it can use
practically all the memory, 5o you should not have any
problems regarding program size.

ON THE DISK

Okay, first of all make sure all the parts to be linked are
on the disk in the drive, and that you have a disk
available with enough space to hold the final linked
program, you can approximately calculate how many
disk blocks it will need by adding together each parts
disk block usage and adding an extra 2 blocks for a final
result.

Each program filename will be displayed on the screen,
o include the file for linking press Y for yes or to see the
next filename press N for no, if all the parts have been
selected then you can skip the rest of the directory by
pressing RETURN.

You will now be asked to enter a value (2 digit Hex) for
location 1 (as most of you should know this is the
input/output register which controls the memory
configuration) which is important if your program
happens to start under a ROM. You will now be asked to
enter the actual start address (4 digit hex), then finally a
filename for the linked program.

You can abandon any input by pressing the RUNSTOP
key which will return you to the title screen

The Linker will now load and sort each of the selected
parts and then ask you to insert a Destination disk to save
the linked program on, after which it will exit by resetting
the computer via the Basic cold start routine at 64738
(SFCE2).

You can now load up the linked program by using a
normal load command from Basic:-

LOAD"filename”,8 (press RETURN) then type RUN (press
RETURN)

Make sure that you check the linked program is fully
working correctly before deleting any of the parts.

F7 - DIRECTORY

This option displays the disk directory of the current disk
(device 8).
COMPACTOR

This utility can be used to reduce the size of machine
code programs, thus saving disk space and loading time,
however since it employs an elementary method of data
compression it will be more effective on programs
containing graphics data such as hires/text screens,
character sets, and sprite data.

To compact a program is a simple process of loading it
into the Compactor and saving the end result, which can
then be loaded and run from Basic. If your program is
split into parts you must first join it together as one file by
using the Linker which is provided with Power Tools.

Any memory in the range 512-65535 (S0200-SFFFF) can
be used by your program, and although it is impossible to
give the exact size of the largest file that can be loaded

ON THE DISK

(this is because compression takes place while loading) it
should be able to handle most of your programs with
ease.

However,if a file is to large then loading will be
abandoned and you will receive the message:- Error: File
To Long and then returned to the title screen

USING THE COMPACTOR

When the Compactor has loaded you will see the title
screen and two windows, one named Source and the
other Destination

First type in the filename of the program you want to
compact (Source) and press RETURN,next type in the
new filename you want to give the compacted program
(Destination) and press RETURN.

You will now be asked to enter a value (2 digit Hex) for
location 1 (which is the input/output register used to
setup different memory configurations) this will be
important if your program starts under a ROM. On most
occasions you will probably use a value such as $37 to
set the default memory map, with Basic and Kernal
ROMs switched in

Finally you will be asked for the start address (4 digit
Hex) of the program, now insert the disk containing the
program to be compacted and press the Spacebar, after
loading and compression has finished insert a disk to
save the compacted program on and press the
SPACEBAR. You can now load the compacted version
with a normal load command:

LOAD"filename” 8 (press RETURN) then type RUN (press
RETURN)

Please check that it is fully working correctly before
deleting the original program.

On certain files you may end up with a larger version
even after compaction (st the directory and compare
each versions disk block count o see) if o it would be
wise to stick with the original version

If you are compacting a program which has been
previously linked using the linker provided with power
tools then you should use the following values:-

$37
50813

Location $01
Start Addres:

Two other options are available on the title screen they

are:-

F1 - INFORMATH

Will display some notes about this version of the
compactor
F7 - DIRECTORY
Will display the current disk directory (device 8) onto the
screen.

COMPRESSION METHOD
The Compactor uses a well known method of data

compression called Run Length Encoding, which works
on repeated numbers

If we consider a simple example on the numbers
$03,$03,$03,503,503,503 these could be more
efficiently encoded into the following:- $A0,$06,503
where the number $AO is used as a marker for
decompression, and the number $06 is a count of how
many times the next number $03 appears. This can be
more clearly defined by using an expression such as:
Marker,Count,Number), note, the marker SAO could

decompression routine would not be able to distinguish
between normal and compressed numbers. As you can
see our original six numbers have been reduced to just
three which is a saving of 50%

AUTOBOOT MAKER

To add that professional touch to your programs, why not
make them auto-load and run? This is exactly what
Autoboot Maker will allow you to do for either Basic or
machine code programs.

There are many uses for this type of utility, for instance,
an autoboot could be the first link in a chain for loading
Various parts such as a hires title screen or even a
fastloader.

A couple of points to remember are that the created
autoboot file must be saved onto the same disk as the
program you want it to auto-load and it must be reloaded
by using a forced load command similar to the
following:-

LOAD"autoboot”,8,1 (press RETURN) then type RUN
(press RETURN)

Note the extra comma and one from a normal load
command, these make sure the file is loaded back into
the memory from which it was saved. Okay, when the
Autoboot Maker has loaded you will see four options
accessed by pressing a function key,

oRIE S

TH
AU
col
vo!
ME
F o
AL
T0
Us
<P

zm

F1 - INFORMATION

This option simply displays a few facts about this version
of the Autoboot Maker.

F3 - AUTO BASIC

Select this option to create an autoboot file for a Basic
program, or any program which is started with an SYS
command from Basic. You will first be prompted for the
filename of the Basic program, make sure you enter this
exactly as it appears in the directory, if the filename
contains any reverse or graphic characters you will have
1o rename it

You will now be prompted to enter a filename for the
autoboot file,and then you can enter a message of up to
40 charactersthis will be displayed in the top line of the
screen while the autoboot file loads your program. If you
do not want a message then just press the RETURN key,
finally you will be told to insert the Destination disk
(containing the Basic program) then press the Spacebar,
and voila the autoboot file will be saved and you will be
returned to the title screen.

F5 - AUTO M/CODE

This option must be selected if you want to create an

ON THE DISK

autoboot file that will load and start a machine code
program by jumping to its start address.

First you will be prompted to enter the filename of the
machine code program, make sure it is entered exactly as
it appears in the directory

Next enter a value for location 1 (2 digit Hex) so that the
memory will be configured correctly for the jump to the
start of the program. Next enter the actual start address (4
digit Hex) and then the filename for the autoboot file,and
last but not least you can enter a message of up 1o 40
characters that will be displayed in the top line of the
screen when the autoboot file has been loaded.

Finally insert the disk containing the machine code

program and press the Spacebar to save the autoboot file,
that’s it!

F7 - DIRECTORY

Pressing 7 will display the directory of the current di
(device 8.)

HOW THE AUTOBOOT WORKS

The autoboot file loads into memory at 790 ($0316)
which is the Break Interrupt vector, this vector and all the
system vectors from 792-818 ($0318-$0332) are set to
their default address’s except for the Chrout vector at 806
($0326) which is pointed to the start of the autoboot
code,this has the effect of automatically starting the
autoboot without control passing back to Basic

The first thing the autoboot code does is to reset the
Chrout vector to its default address at 61898 (SF1CA),
next it sets the screen & border colours and displays the
message on the screen, then it loads the program using
the normal kernal load routine. Finally if the program is
Basic it is started with an absolute jump to the ROM
routine at 42926 (SA7AE) or if the program is machine
code will set location 1 and do an absolute jump to the
start address

SCRAMBLER

This utility should help protect your programs, it will not
stop the experienced hacker, however it will confuse
others enough to prevent them from tampering with your
ode.

All programs to be scrambled must originally load at
2049 ($0801) so machine code users should first put their
programs through the Linker provided with POWER
TOOLS, or a similar utility

ON THE DISK

The Scrambler can load programs up to a maximum
length of approx 237 disk blocks which should be
adequate for most of your programs,however if you
exceed this then the loading will be abandoned and the
message - (Error:File Too Long) will be displayed and you
will be returned to the ttle screen.

USING THE SCRAMBLER

When the Scrambler has loaded you will see the title
screen and two windows, one named Source and the
other Destination

First of all type in the filename of the program to be
scrambled (Source) and press RETURN, next type in the
new filename you want to give the program after it has
been scrambled (Destination). Okay now enter any value
(as a 2 digit Hex number) between S01-SFF to be used as
a scramble code.

Finally, insert the disk containing the program to be
scrambled and press the Spacebar, after it has been
loaded, insert a disk to save the new scrambled program
onto and again press the Spacebar to save and complete
the process. You should now load up the scrambled
version and check it is fully working just like the original

There are two other options available on the title screen
which are:

F1 - INFORMATION

Simply displays a few helpiul facts about this version of
the Scrambler

F7 - DIRECTORY

Will display the disk directory of the current disk (device
8)

SCRAMBLING METHOD

The method used to scramble the file is very simple, if
you are a machine code programmer then you have no
doubt come across the instruction EOR (Exclusive-Or)
which can be used to invert any bits in a byte. So if we
were (0 exclusive-or a byte twice using the same value
then we would end up with the original byte. Hence the
Scrambler just uses the scramble code to exclusive-or the
whole file which is then saved, when the program is Run
a small machine code routine exclusive-or's the file again
using the same scramble code thus returning it to its
original state. Note, you can achieve added protection by
scrambling a program more than once, but each
scramble will increase the programs size.

PICTURE CONVERTER

Picture Converter is a small but powerful utility which
will convert multicolour hires screens between six of the
best available art packages on the Commodore 64. If for
example you have in the past been using Koala Painter
and then recently purchased the Advanced Art Studio
you will have no doubt discovered it is impossible to
foad a picture done with Koala into the Art Studio and
vice versa. If you have come across this annoying
problem then fear no more because Picture Converter
will allow you to do this and is very easy to use,
Conversions can be carried out between the following art
packages:-

ADVANCED ART STUDIO

ARTIST 64

BLAZING PADDLES

THE IMAGE SYSTEM

KOALA PAINTER

VIDCOM 64

USING PICTURE CONVERTER

When the Converter has loaded you will see two

10

windows titled Source and Destination, inside both
windows are the names of the aforementioned art
packages. Use the F5 & F7 keys to highlight the
conversion you require, then press RETURN. For
example if you wanted to convert Koala picture into
Blazing Paddles format, you would simply locate Koala
Painter in the Source window and Blazing Paddles in the
Destination window

You will now be prompted to enter the filename of the
Source picture to load, and then the converted
Destination picture, it is important that these are entered
correctly, and to help in this there is an option to display
the disk directory by pressing F1

As you will probably know, each art package has its own
special set of characters included with the pictures
filename (e.g. Blazing Paddles uses the prefix PL.) one of
the reasons for this is to help distinguish pictures from
other files, in any case you can rest assured that these are
taken care of and you need only enter the filename
exactly as you did when saving the picture from the
relevant art package. Note, there is one exception to this
for Koala Painter pictures you must also enter the letter
which appears after the word PIC, then a space and then
the filename, if you are not sure about this then listing the
directory by pressing F1 should help.

After entering the filenames just follow the on screen
instructions and the picture will be loaded, converted,
and saved in the new format

%

HRDEO=Trnm

=OOFO=Trnm
=N

IOCZIMNO==C

1L
E
D
T
T
]
D
K
K
[1]

DO=M OIOMM

I
1]
A
N
s
E
A
s
S5
F

b

SCROLL WRITER

Scroll Writer will allow you to create a stand alone demo
which includes a smooth vertical scrolling message and
optional background music. It can be used for a variety
of applications, at the simplest level you could
communicate via the computer to other Commodore
users, or if you are fortunate to own a shop, you might
use Scroll Writer to advertise your latest products and
prices. Even though Scroll Writer is very easy to use, to
get the best results requires you to have a basic

1

ON THE DISK

knowledge of Commodore 64 character graphics, so it
may be useful to purchase a good reference book, you
could even try your local library and save the expense.

USING SCROLL WRITER

When Scroll Writer has loaded you will see the main
menu containing 10 options, to select an option simply
press the corresponding key to the left of the option
name.

E - EDIT/VIEW TEXT

Selecting this option takes you to the text editor, which is
used to type the scrolling message. You will see a
window, the right side of the window is the

editing area (you should see a flashing cursor) while the
left displays most of the editing keys and their function,
The cursor keys are used to move around the editing
window and you can scroll text into view by moving the
cursor to the top or bottom of the window. To help locate
your position in the text the current cursor line number
(1) and column (C) are displayed at the top of the editing
window. You may be wondering why you are only
allowed 20 character per line, well, if you realise that
there can be up to 40 characters on a line of a normal
screen, and that the message will be scrolled using a font
which is 2 characters wide, we calculate 40/2
There is a maximum of 200 lines for text this means you
have 4000 characters which should be adequate for most
applications

2

The editing keys provide the following functions:-

HOME Moves the cursor to line 1, the first line of text
memory.

CLR Moves the cursor to line 200, the last line of text
memory.

F7 Displays the next page of text, unless you are on

he last page.
Displays the previous page of text, unless you are
on the first page.

RETURN Positions the cursor at the start of the next line

5

INST Inserts a space at the current cursor position.

DEL Deletes the character to the left of the cursor.

F3 Toggle wordwrap feature.

8 Aligns the current line to the left, so that text
starts in column 1.

F6 Centres the text on the current line.

F2 Erases all the text.

You can also change the text colour, just like in Basic
(e.g. pressing®TRL and 2 sets the text colour to white). It
is also possible to centre or left align all the text in one
80, to do this simply move the cursor to line 200 (press
CLR) then press either F6 or F8 respectively. One feature
not yet mentioned is wordwrap, although anyone who
uses a good word processor regularly should need no
introduction to wordwrap, a short explanation follows for
everyone else. The idea behind wordwrap is to stop

ON THE DISK

words being split over lines, the editor does this
automatically for you by quickly copying a split word
onto the start of the next line and advancing the cursor
{0 its correct position, this enables you to carry on typing
without the need to watch for the end of the line. There
is of course a bit more to it than that, so if you have not
quite grasped the operation then just try typing a long
word near the end of a line and watch what happens.
You can switch the wordwrap feature on or off by
pressing F3,when it is on you will see (ww) displayed
between the current line and column numbers. Be very
careful when editing your text using the left align,
centre, insert and delete functions because wordwrap
only operates while your typing, so it is very easy 10
mess up the format of your text. One key not yet
explained is the left arrow key (at top left of keyboard)
which is a very important character in the text as it
signifies the end of the scrolling message (all further
characters will be ignored) and causes the scroll to
wraparound. So if you do not want the message to be
repeated do not include any left arrow characters in the
text

To return to the main menu just press RUN STOP, any
text will remain in memory for further editing

S - SAVE TEXT

This option will save all the text memory, just enter a
filename and press RETURN. It can be very useful if you
have some unfinished text that you wish to continue at a
later date.

L - LOAD TEXT

Use this option to load any text which has been
previously saved using the ‘Save Text option, just enter
the filename and press RETURN. Caution must be taken
as any text currently in memory will be erased

F - FONT/COLOURS

This option displays the 2x2 font that will be used to
scroll the message, you can also change the colours,
select from 1 of 4 inbuilt fonts and set various
parameters. In the top half of the screen you will see the
font, while the bottom half shows the options and
current settings. All the colours and options can be
changed by pressing the corresponding key on the left
0 exit back to the main menu just press RUN STOP.

The current colours are displayed along with their
corresponding colour code, most of these should be self
explanatory, the other options however will need a few
more details.

The option ‘B - Blank Lines' allows you to force a blank
line between each line of the text during the scroll, this
was included because some fonts can look rather untidy
and unreadable when printed close together.

The option ‘S - Scroll Speed sets the speed of the scroll,
where 1 is the fastest, a setting of 2 was thought to be
the most reasonable for reading the message, although

the other speeds are there if you need them. If you press
key ‘C" to change the font then the names of 4 fonts will
appear in the options window. When you select one of
these the font will appear in the top half of the screen, as
it is impossible to describe here what each font looks
like, just select each one to see them all.

Note, when you make a selection, multicolour will be
automatically set to the correct mode for that font
however for font B make sure that the NORMAL
COLOUR is between 8-15 as it is a multicolour font

T - TEST SCROLL

Once you have entered a message, selected a font and
defined the settings you can use this option to see what
the final scroll will look like.

To return to the main menu at anytime, just press the
SPACEBAR.

oz

orn
POA A |

T

E
El
n
e
F
Fi
Fi
¥
E
P

Wha
= R
o L _ o

C - CREATE DEMO

This is the main option as it allows you to save out your
scrolling message (as seen using Test Scroll) as a separate
program which can be loaded and run from Basic

You will first be asked if you want to include any music
with your demo, if you cannot program in machine code
and have no knowledge of music then you should press
the ‘N’ key for no (or alternatively read the DISK
EXTRAS section of this manual) in whic h case you will
be asked for a filename and your demo will be saved to
disk. It will take up 33 disk blocks and can be loaded
using the command:-

LOADfilename” 8 (press RETURN) then type RUN
(press RETURN)

Pressing the SPACEBAR during the demo will take you
back to Basic

If you want to include a piece of music with your demo
then the following restrictions must be adhered tc

Tz t

The music must be in one file and playable under an
IRQ Interrupt routine being called every frame (1/50th
second). Also important is the fact that the music will
not be played from within Scroll Writer but will be
loaded and saved with your demo, this allows a greater
range of memory in which your music can exist. The
only memory that should not be used is from 1024-
10239

(50400-527FF) but all of zero page and memory from
10240-65535 ($2800-$FFFF) is free for your music.
Okay, once the music has been loaded you will be
asked to enter the start address (4 digit Hex) of a routine
to INITIALISE the music (this could do things like set the
volume or tune number etc..) If you do not need to
initialise the music then you must use the alternative
address $0907 (or any RTS instruction.) Next you will
be asked for the MUSIC PLAY address (4 digit Hex) that
will be called under interrupt to play the music. Finally,
enter a filename and the complete demo will be saved.

Make sure you save any text if you are creating a demo
with music, just as a precaution in case you make a
mistake and the demo does not work.

N - LOAD NEW FONT

This option lets you load and use your own fonts in Scroll
Writer, all fonts are 2x2 characters in size and must be
designed in the following format:-

Character A - Screen Codes

001 065
129193 g

Where 001 is the top left of character A in the font.

D - DISK DIRECTORY

Select this option to display the disk directory of the
current disk (device 8

@ - DISK COMMAND

Lets you send a disk command or just read the disk status
by pressing RETURN

Example of a valid command:-

S:DEMO

Scratches the file called DEMO. Consult your disk drive
manual for further commands.

1- INFORMATION

This option will display a few pages of helpful facts about
this version of Scroll Writer.

ON THE DISK

DISK EXTRAS
On the CDU disk you will find two extra programs
called:-

SAMPLE FONT
SAMPLE MUSIC

Both of these are for use with Scroll Writer, the sample
font file, if you have not already guessed, is an extra font
that can be loaded into Scroll Writer using the LOAD
NEW FONT option.

This font is an exact copy of the upper case character set
in the Commodore 64,except it has been enlarged to a
2x2 size. If you do load this font then remember to select
the FONT/COLOURS option to see the font, set
multicolour to NO, and select some suitable colours.

If you have a character editor or similar utility then you
could use the sample font as a base for designing your
own fonts.

The ‘Sample Music’ file contains 3 tunes that can be used
when you create a demo from Scroll Writer. Before you
use the music, you might like to listen to it first, which
you can do from Basic by entering the following:-

LOAD"sample music”,8,1 (press RETURN) then type SYS
52800 (press RETURN) now select a tune by entering:-

POKE 52882, TUNE NO (1-3)
You can change to any other tune while the current one
is playing simply by POKEing 52882 with the new tune

number. If you listen to tune 1 you should find it is the
title tune from POWER TOOLS.

To include the music in a demo you must use the
following address's:-

INITIALISE MUSIC

Tune 1 = $CE94

Tune 2 = SCE9A

Tune 3 = SCEAO

All 3 tunes use the same music play routine:-

MUSIC PLAY
Tune 1,2,3 = $CEBO

“That just about wraps everything up, | would just like to
say that | hope you enjoy using POWER TOOLS as much
as | had in developing it. Look out for more NM156
programmes coming your way.

13

PROGRAMMING

ASICS OF BAS

BASICS OF BASIC

|
e

Last month we touched very briefly on
the keyword GET. This will return a
character value of the last key pressed
by a user. Let us examine this command
in somewhat more detail and discover
exactly how we can use it to our best
advantage. Remember, last month, 1 told
you how GET returns ‘a single character
ASCIl string, and that a NULL string, <
445 represents no key having been
depressed. We can use the null string to
create a loop which will, in effect, keep
testing for a key input, then, once we
have a key input we can act directly
upon this.

USING GET

The following line sets up our key check and continues
looping until a key has been struck

10 GET AS:IF A$ = THEN 10

we could have used any string variable we desired here
| chose, purely arbitrarily, AS. The IF..THEN decision
tests AS and until it contains something other than a null
string it will continue to execute line 10. Whilst AS =

is considered to be true, but as soon AS holds a
character value other than null then the truth of the
THEN statement becomes false and so execution will
NOT carry out the ...THEN part of the decision
argument, but pass on to the next instruction which will
be on the following line.

Once A$ does hold a string value we are at liberty to do
several things with this information. We can test it
ainst other characters and act upon the result, or we
can change the character value into a numeric value
which corresponds to its ASCII value (see page 146 of
the Commodore User Manual). Let us examine a few

ag;

S ———————
The tutorials for the beginner in Basic continue

|

|

By John Simpson |

examples:

E.GA

10 GET AS$:IF A$ = ““ THEN 10

20 IF A$ = “Y” THEN 50

30 IF A$ <> “N” THEN 10

40 PRINT “RESULT OF GET ‘NO'".”:END

50 PRINT “RESULT OF GET ‘YES'.":END

E.G.2

10 GET A$:IF A$ = ““ THEN 10

20 IF A$ = “1” THEN 100

30 IF A$ = “2” THEN 200

40 IF A$ = “3” THEN 300

50 GOTO 10

100 PRINT “MENU ITEM #1”

110 END

200 PRINT “MENU ITEM #2”

210 END

300 PRINT “MENU ITEM #3”

310 END

The YES/NO situation often occurs within programs and

ning the user response is
Line 20 tests AS to see if it
equals the *Y’ key and if it does branches to a part of the
program where this response is dealt with. In the above
example it simply directs program control to line 50 and
prints the result of the ke input. Line 30 deals next with
Rny other key on the keyboard except ‘N'and " (we
Know that ‘Y” has not been pressed otherwise we would
ot have reached line 30). S0 here we test A$ to find out
if it does NOT equal ‘N If the result s true, i.e. it does
ot equal ‘N’ the program is simply diverted back to line
10 to await another key press. If the result is false and
A$ does equal ‘N’ then, the same as line 10, the ... THEN
part of the statement is not executed and control drops
through to 40 which prints the response to the key press.
You will note that both line 40 and 50 terminate the

a simple way of obtair
demonstrated in E.G.1

14

program.

The program example E.G.2 is a typical situation where a
menu item is being looked for. In this program it
assumes there is a menu with three items in it. To go to
each menu option requires the user to input the menu
number, either 1, 2, or 3. The important point of this
program is line 50 which directs control back to line 10,
To reach line 50 means that each IF...THEN decision
statement was false and the numerals 1, 2, and 3 have
not been struck.

By using logical methods such as these two examples
you are able o restrict the user response to exactly the
key or keys you desire, ignoring any others.

Now let us look at a further example where by requesting
the user to strike any numerical key to activate an option
or a menu item we can tighten up our code and make it
more efficient.

10 GET A$: A = VAL(AS)

20 IF A <1 OR A> 4 THEN 10

30 ON A GOTO 100,200,300,400
100 PRINT 010

200 PRINT 0TO 10

300 PRINT A: GOTO 10

400 PRINT A: GOTO 10

In this simple example | have introduced another two
keywords, together with a new programming technique.
Let us examine this more closely.

Line 10 - the first statement on the line is the standard
GET statement, but the second statement deviates from
testing for a null string as we did before. Here we have
assigned a number variable, A to equal the value of AS.
Now the key word VAL will return a numeric VALue of
AS 50 long as AS is a numerical key in the range 1 to 9
every other key will return a zero.

Line 20 - here we have set up an IF...THEN decision
statement. If the value held in A is less that 1 or is greater
than 6 then the wrong key has been pressed so the
program will go back to the GET statement of line 10.

LINE 30 - this line introduces a new keyword and a
different programming method. Instead of having several
lines of separate IF...THEN statements (in this program
four, 1 - 4) we can reduce this to just one line using the
ON command. The ON keyword takes the value of a
numerical variable from 1 upwards (you cannot use ON
0). I the above program segment I chose to place the
VALue of AS into the variable A. So, if the user presses
the ‘1" key then the program will jump to line 100, ‘2" to
line 200, and so on where it simply prints the value of A,
the key you pressed, it then goes back to line ten for
another test. You can easily see the advantage of using
the ON command when there are a number of IF...THEN
statements to be executed as we might find in a menu
which uses the numerical keys for option selection.

We will be looking further into the On statement later
when we start creating more substantial programs.

15

PROGRAMMING

Finally, for now, we can also use the GET keyword to
input multiple character strings where the use of the
return key determines the string end.

10 GET AS: IF A$ = ““ THEN 10
20 IF A$ = CHR$(13) THEN 60
30 N$ = N$ + A$

40 PRINT AS$;

50 GOTO 10

60 PRINT CHRS$(13)N$

Line 20 - this line tests to find out if the return key has
been pressed and if it has then execution unconditionally
jumps to line 60. CHR$(13) = RETURN.

Line 30 - just the same as the addition of numbers, we
can also add together strings. Here NS starts off as a null
string and each time a character is returned to AS during
the get statement it is added to NS.

Line 40 - this simply echoes to the screen the last input
held in AS, so that we can actually see our keypress.
Note the use of the semicolon to stop the newline after
each teration of the print statement.

Line 50 - reverts execution back to line 10 for the next
return of A$ from the user.

Line 60 - will first perform a carriage return then print the
content of N$. We had to use a RETURN here to break
the semicolon instruction of line 40 which held the
multiple characters from A$ together on one line.

GENERATING RANDOM NUMBERS

The keyword for the random function is RND(A), where
Ais a the argument of RND. This will return a floating
point random number from 0.0 to 1.0.

Try this short program to test the effects of RND.

10 PRINT RND(1)

20X =X+ 1:1FX <10 THEN 10
RUN
320315719

593751252
550784886
10234395862
363281548
894533694
1105469763
632815719
761720359
320312619

READY.

This s useful if you want to simulate a tossed coin, for
example. Any number equal to or below 0.5 represents a
‘head” and any number above 0.5 could represent a ‘ail’,

|
|
|

PROGRAMMING

although this will be bias towards a head! However, if
you required to simulate the fall of dice, then things are
Zomewhat trickier. We need a method in which we can
obtain whole integers, and not only that but integers
which are either up to certain values, or between two
values.

If you try a larger value in the RND (<argument>) not
much seems to change. If you choose an argument
which is a minus number, i.e. -1 then the randomness
seems to be fixed. However, if you multiply RND(1) with
a number you will then obtain numbers greater than
0.9999999.

10 PRINT 6 * RND(1)
20X =X+ 1:1FX<10 THEN 10
RUN

3.0726354
2.78308138
5.20487632
0782542169
67820895
4.6730914
1.98361003
22367779
5.933305737
1.88376328

READY.

Looking at the number before the decimal point, they
are:

3,2,5,0,3,41,0,5,1 5
The members of the set are (0,1,2,3,4,5)

But if we are simulating dice then we need (1,2,3,4,5,6).
Okay, simply add 1 to the numbers and we have
simulated a dice throw. If we wanted a use a pack of
cards we would need to multiply by 52. So, our RND(1)
function can now be stated thus:

6*RND(1)+1 or 52*RND(1)+1 or 100*RND(1)+1.

The next stage is to get rid of the decimal point and the
numbers which follow it until we arrive at an integer
number.

THE INT FUNCTION.

The effect in INT(X) is to return the whole (or integer) part
of the number X. The effect of the INT keyword is to
leave off the fractional part. If the expression is negative
any fractional part causes the next lowest negative
integer to be returned.

INT(5,63981
INT(3.2)
INT(1)

INT(-2.467) =-3

With the INT(n) keyword we can generate whole
numbers. Let us now look at the required random
function:

INT(6*RND(1)+1) or INT(52*RND(1)+1)

However, just to confuse you a little bit more, the C64
basic will not accept this syntax, we need to keep the
same form of ‘template’ but change the syntax slightly,
namely:

INT(RND(1)*6)+1 or INT(RND(1)*52)+1

Great, now we can generate random numbers between 1
and n. How do we obtain a random number between,
say 0 and 50, or between 100 and 2007

Here are some examples of the RND function together
with their correct syntax:

10 X=RND(1) : REM THIS RETURNS A
FLOATING POINT NUMBER BETWEEN 0.0
AND 1.0

10 PRINT INT(RND(0)*100) :REM THIS
RETURNS RANDOM INTEGERS FROM 0 TO
99

10 X=INT(RND(1)*6)+INT(RND(1)*6)+2 :REM
SIMULATES THROWING TWO DICE

10 X=INT(RND(1)*1000)+1 : REM RETURNS
RANDOM INTEGERS FROM 1 TO 1000

10 X=INT(RND(1)*150)+100 : REM RETURNS
RANDOM INTEGERS FROM 100 TO 249

10 X=INT(RND(1)*(U-L))+L : REM RETURNS
RANDOM INTEGER NUMBERS BETWEEN
UPPER (U) AND LOWER (L) LIMITS

Why not write a simple print program and use the above
random examples to get the feel of them.

STRINGS A SLIGHT RETURN

Now is the time to get back to ‘strings’ and to develop
our knowledge of them together with enhanced methods
of ‘string’ manipulation.

CUTTING STRINGS

We discovered earlier in the series that a ‘string’ is a
group of characters enclosed within quotation marks.
For example - “this is a string”, and it consists of 16
characters. It is possible for us to cut up the string into

S

multiple parts, and isolating separate characters or groups
of characters from within the string. There are three
basic commands for doing thus and they are:

LEFTS, RIGHTS, and MID$

Let us look a little more closely at LEFTS.

10 X$ = “CUTTING”
20 PRINT LEFT$(X$,3)
RUN

cut

READY.

Here you can see that we have cut out the first three
characters from the left side of XS, namely CUT(ting).
Now we can take out the right side characters, THUS:

10 X$ = “CUTTING”
20 PRINT RIGHT$(XS,4)
RUN

TING

READY.

A program can tell a story better than a thousand words!
10 REM *** CUTTING UP STRINGS ***

20 X$ = “ABCDEFGH”
30 PRINTTAB(10)"1234567890"
TO 8

40 FORC = 1

50 PRINT C TAB(10) LEFT$(X$,C)

60 NEXT C

RUN -
1234567890

1

2 AB

3 ABC

4 ABCD

5 ABCDE

6 ABCDEF

7 ABCDEFG

8 ABCDEFGH

READY.

In this program we have set up X$, printed a scale (line
30), and set up a FOR...NEXT loop of eight iterations.
Within the loop at line 50 we have instructed the
computer o print a vertical scale using the loop counter
(€), and to perform a tabulated print under our horizontal
scale of the leftside of X$ offset by the loop counter C.
Just glancing at the printed output tells the story!

If we now change line 50 to this:
50 PRINT C TAB(10) RIGHT$(X$,C)
then the print out on RUN is:

1234567890

PROGRAMMING

H

GJ

FGH

EFGH
DEFGH
CDEFGH
BCDEFGH
ABCDEFGH

BuN M s W=

We can readily see that RIGHTS has ‘chopped up’ up the
string in the reverse order to LEFTS.

In these examples we have used LEFTS and RIGHTS to
cut sections off either end of a string. However, we may
require a section from the middle of a string, for example
MM in a string of DDMMYY (day,month,year). MID$
solves this problem for us.

MIDS(PL)
1 Length of sub string from Position (P).
Position within the string to extract from.

10 X$ = “COMMODORE”

20 PRINT MID$(XS,5,3)

30 PRINT MID$(XS$,6,4)
N

oDo
DORE

READY.

10 REM *** CUTTING UP STRINGS ***
20 X$ = “ABCDEFGH”

30 PRINTTAB(10)”1234567890"
40FORC=1TO 8

50 PRINT C TAB(10) MIDS$(XS,C,2)

60 NEXT C

RUN

1234567890

AB

ENGUEWN =

READY.

You will see that the final iteration of the loop has only
printed “H”. What has occurred is that the computer has
terminated with a ‘null’ string in the final position.

HOW LONG IS THE STRING?

In the above example programs we have known the
length of the string on each occasion, however, in the
real' world of computing this is not always the case. We

17

|
|

PROGRANMMING

require a method to determine how long a string is, and
happily just such a keyword exists. Good old, LEN.

10 INPUT “ENTER A CHARACTER STRING”;A$
20PRINT“[CD]THESTRING,“AS$",
I1S”LEN(A$)”CHARACTERS LONG”

RUN

ENTER A CHARACTER STRING? JOHN SIMPSON

THE STRING JOHN SIMPSON 15 12 CHARACTERS
LONG

READY.

Notice that when the LENgth of the string was computed
it included the space between JOHN and SIMPSON.

ANOTHER VALUE

We can also find the ASCII value of the first character of
a string by using the keyword ASC(<string>). ~Here are
some examples.

10 A$ = “A”

20 PRINT ASC(AS$)
UN

65

READY.

10 A$ = “ZOLTAN”
20 PRINT ASC(AS)
RUN

90

READY.
o alternatively to find the ASCII value of a character:

PRINT ASC(“Z”) <CR>
90

READY.

which, if you do not have a copy of the ASCII character
set, will allow you to create one of your own!

CALLING ALL SUBROUTINES

A subroutine is a section of often used code. For
example you might want to update a display every few
seconds and so you would place the code to do the
update somewhere within your program and the last
keyword, or command, of that particular block of code
would be, RETURN. But you need to ‘call’ that block of
code, and this is done by using the statement, GOSUB
followed by the particular line number the block starts
from. What this means, basically, is, GO TO A

SUBROUTINE AND SAVE THE RETURN ADDRESS.

Once execution of the block of code, or more
commonly, the subroutine has reached the instruction
RETURN then the program will revert back to the
instruction which follows the original GOSUB.

Here is a graphic example of just what takes place, lines
40 and 50 represent further lines of code:

10 INPUT A

20 INPUT B

30 GOSUB 100 >———
PR |
|ea0] |
I |

I
e
{0

I 1> 100 PRINT “A'
| 10PRINTAB
| 120 RETURN ->——
| [

<

TIME FOR TIME

In this last section for this month lessons, we shall
explore the 64s built in clock, and finish with the
construction of a small program which will display a
real-time digital clock. In constructing the digital clock
we will use input commands, string commands,
formating commands and the use of subroutines. But
first let's take a look at accessing the clock itself.

Within the murky depths of the C64 lies a jiffy’ clock, or,
more technically a hardware interval timer (actually a
quartz timer is used). When you power-up the system
this timer is set to zero (initialised). Each tick of the timer
takes place every 1/50th of a second. If you type this
line in direct mode:

PRINT INT(T1/50)”SECONDS SINCE POWER UP”
<CR>

You will be informed of how many seconds have passed
since you switched on the machine. A little thought and
you can change the seconds into hours, minutes, and
seconds.

The keyword here is T for Time.

STRINGING OUT TIME

The TI$ timer looks and works just the same as a real
clock so long as the computer is powered-on. The ‘jffy”
Clock is exploited to update the value of TIS. TIS is a
string of six numeric characters in the form HHMMSS
hours, minutes, and seconds. The useful thing about TIS

18

is that we can assign the string with a starting point
similar to the way in which we might set a digital time
piece. It does have a drawback (what doesn't?), and that
is that it loses accuracy after tape input/output (still, we
are all disk users aren't we?)

Let us look at an example of the TIS function:

10 TI$ = “000000”
20 PRINT TI$
30 GOTO 20

1f you type in and run this example you will see that the
ight-most digits are updated every second. If you watch
for long enough you will see that when the two right-
most digits reach 60, the follo second they will
revert to 00 and the mid-two digits will change to 01.
Keep on watching and when 60 minutes go by the two.
left-most digits will show the hours updated. If you watch
for twenty-four hours then everything will reset back to
000000. After the twenty-four hours vigil you can hit the
RUNJ/STOP key and stop the program!

We could, of course change line ten to this,
“235955", and watch for only five or six seconds.

TI$ =

Okay then, to finish here is our project: Create a digital
time display.

There are several aspects to think about when we
commence with developing a program from scratch and
it is best to outline what it is that we desire the program
to achieve. Basically this will become a problem
crunching exercise. By that | mean we start off with a
problem and slowly break the problem down into
smaller sub-problems which will eventually become the
commands of the program.

So, first let us define the problem: Display a real-time
digital clock where the user can set the time. Make the
clock a 12 hour clock rather than 24, and allow the user
to set an alarm.

From this we can now commence to create an
“algorithm’ - the basis of the program.

et up screen/background colours, and

request if alarm required

if no goto 6

. initialise alarm and time

print necessary screen graphics for clock
execute main computing loop

execute alarm if on and time

From our first outline we can see that the program will
break down into several separate sections, or routines.
For example most of the routines will only be executed
once. This will be when the user actually sets the time
and sets the alarm.

S0 let s look in more detail at 2 to 5. We can see that if
the user wishes to set an alarm, then we will require two

PROGRANMMING

sets of time input. A) to set the time, and B) to set the
alarm. Therefore one set of input routines will suffice for
both operations, but we must be able to separate them to
serve two separate tasks. Also, we can note that the user
has the option to either set the alarm or not. Taking this
point further then, means we need a variable to use as an
indicator whether the alarm is on or off. From this we
can expand our algorithm.

initialise ALarm = 0 (0
put if am or pm? AMS
input hour? H$
input minute? M$
input second? §$
store results in TI$
set alarm? yes/no
8. if yes then Alarm
results in ALS

9. print necessary screen graphics for clock
10. execute main computing loop

11. execute alarm if on and time

1. set up screen/background colours, and
1)

1: do 3,4,5, store

Looking at number 9 we can see that we do not need o
enlarge upon this. When we tackle this sub-problem it
will be a matter of deciding what graphic we require.

However 10 is the main computing loop and we will
need to break this down further. First we will need to cut
the TI$ into three sections, HHMMSS, and once done we
will need to test HH to determine when it reaches 13 the
moment it does we must test AMS$ and reverse it, in other
words if it is PM change to AM and if AM change to PM.
Next we must test AL if is not zero then we know the
alarm is switched on so we must make a comparison
between TI$ (the real time) and ALS (the alarm time) If
they are equal then activate an alarm system, if not
ignore it. Of course once the alarm is activated we will
need a method for the user to deactivate it. So, once
again we can expand our algorithm.

SET UP AND INITIALISE
1. set o screen/backgmund colours, and initialise
0 (off)

ALarm
2
3

nput if am or pm? AM$
i e
input minute? M$.
input second? 5§

6. store results in TIS

SET ALARM

7. setalarm? yes/no

8. if yes then ALarm = 1 : go to subroutine (3,4,5) on

return store results in AL$
PRINT INITIAL CLOCK DISPLAY
9. print necessary screen graphics for clock
MAIN COMPUTING LOOP
10, if LEFTS(TI$,2) = “13” then go to am/pm change,
subroutine (17)
H1$ = LEFTS(TIS,2
RIGHTS(TI$,2)
12. print the strings to the screen graphic clock
13. if AL=1 then compare TI$ and ALS if yes AL =2 so
80 10 subroutine (16)
14. if AL=2 then switch off alarm yes/no; if yes AL = 0

1$ = MID$(TI$,3,2): S1$ =

19

PROGRANMMING

15. continue executing main computing loop - jump to
(10)

EXECUTE ALARM

16. execute alarm - return to (14)

SWITCH AM/PM

17. do am/pm change; return to (11)

Now you can see how the program is slowly forming and
the large problem - create and display a digital clock - is
being broken down into more manageable bite sized
chunks.

The next stage is to start converting our algorithm into
program code. Now it just so happens that | prepared a
program earlier!

On this months disk is a program BB.EG#1. If you loa
into your machine, then we can run through the listin
together - however, if you feel you would like to develop
your own program, please do 0.

R =

THE DIGITAL CLOCK PROGRAM
Line 10 Our pokes to screen and border colour.

Line 20 this redirects program control to line 200, but
saves its return address, which will be line 30, Let's go to
line 200

Line 200 here we get the user to input whether it is
morning or afternoon, and store the result into AMS.
Note the decisional IF...THEN which ensures the user
does not input more than two characters. Can you add to
this and ensure that the user must irfput two characters?

line 210 | have concentated the RVS ON embedded
character with the users input, so that later during print
out the AM/PM wil be reversed.

Line 220 - 240 these lines input the time in hours (h$),
minutes (M$) and seconds (SS). Again we have a length
trap ensuring no more than two characters.

Line 250 is the end of the subroutine and control will
jump back to line 30

Line 30 here we concentate the H$,MS, and S$ into Ti$
which immediately starts the clock going.

Line 40 another subroutine call to line 300, saving return
to line 50.

Line 300 a simple print statement, “do you want the
alarm on?” Y or N

Line 310 -330 the ‘guts’ of the GET statement.
Line 340 “N” was pressed so return with the variable AL
0

line 350 “Y” so we call subroutine at line 220 which is
the input routine called earlier omitting the AM/PM part

of it.

Line 360 here we concentate H$, MS, and S$ into ALS
and set AL = 1 (alarm on)

Line 370 returns to line 50.

Line 50 One more subroutine call to line 500 which
simply print a tabulated output to the screen - the clock’s
box!

Line 100 This is the start of the main processing loop
which ends at line 180 where it is directed back to line
100. This particular line is testing if the hours part of TIS
has reached 13 and if it has, we don't want a 24 hour
clock so we call the subroutine at 400 which will reverse
the AM/PM display. Look at lines 400 to 430

Line 110 130 we split the HHMMSS of TIS into separate
parts H1$, M1$ and S1§

Line 140 We can now print these strings into the clock’s
box

Line 150 this is an interesting line the first part IF AL
THEN - IF AL = 0 then AL is false and so the rest of the
line is NOT executed. If AL is NOT zero, then it s true
and so the next IF..THEN is executed, which simply
compares TI$ with ALS. In other words is it time to
sound the alarm? If they are equal then AL is
incremented to 2

Line 160 tests if AL equals 2 and if it does it calls the
subroutine at line 450. If we look at line 450/460 we see
that border is poked with the value held in X, and then X
is incremented. A test on X keeps it between 0 and 15. A
loop was not employed here otherwise things elsewhere
would slow down whilst the loop was executed. So, just
one colour increment and end the routine with a return
to line 170.

Line 170 another GET key statement. Notice the
F...THEN tests to find a string which contains a character.
I it is a null string no further action is taken otherwise AL
is made to equal to zero, in other words the alarm is
switched off. The final part of the line sets the border
colour to black just in case the alarm was turned off
during another colour in the cycle.

Line 180 transfers control back to 100 to continue with
the main loop.

And there you have it. | suggest you study the listing
until you are sure you understand it thoroughly. | used
the border colour changes for the alarm because we
haven't yet dealt with soundfx - that is to come quite
soon,

Well, that’s it for this issue, but more exciting
programming is coming your way next month. We shall
be looking at HIGH SCORES and how to keep them in
order, how 1o sort tables and very much more.

Until then, happy programming..

20

ON THE DISK

CDU’s Interactive Disk Operating System gets an uplift
RICHARD DAY

dabbled in machine code disk programming at all, so |

How many DOS programs have even published in recent
years, | can name at least three that have been published
in this magazine alone. All of them claim to allow the
user to use his/her disk drive to its absolute limit. Well,
I've produced ANOTHER DOS program! Before you turn
away, just read on, you'll probably find that this one is
very different. For a start, the whole system is accessed
through an editor (much like a monitor), BUT, all the
commands are available through Basic. The editor also
accessible from Basic AND from pressing ONE key only!
Secondly, the editor recognizes any number (up to four)
of drives and allows any one to be selected easily. If
you're still not impressed, then try this, there is in excess
of 66 commands recognized (not bad eh?).

Other features include the ability to:-

A) Print a text file to the screen

B) Write a text file to disk

©) Hex dump a file to screen

D) Hex code a file to disk

©) Disassemble a file to screen;

F) Assemble a file to disk

G) List a Basic program to screen,
H) Write a Basic program to disk

1) Change the name of a disk

) Recover scratched files;

K) Lock/unlock filels) (including wildcards!)
1) Change the load address of a fle;
M) Define up to 16 function keys;

and many more!

WHY A DOS PROGRAM?
The original program was written to simulate (emulate?)
the ADFS commands on the BBC which are simple to say
the least. To delete a file on ADFS you only need type:-
*DELETE <filename>

10 do the same on the trusty C64, the following
command-essay must be type
OPEN15,8,15,”S0:filename”:CLOSE15
1 ask you, which is the simplest?

The other reason | wrote this DOS program was for a bit
of a challenge, before writing this program | had not

dived straight in....To complete the challenge, I tried to
emulate the Amiga’s CLI (which was it’s original name).
Why did | call it IDOS? That's easy:- | considered that the
program was to be used from Basic and immediate mode
s0 it had to be interactive, hence the name INTERACTIVE
DISK OPERATING SYSTEM.

THE COMMANDS

I better stop babbling on or I lose half the readership (that
would leave about 7 people reading this). IDOS can be
accessed by pressing one key only, that being the
RESTORE key. Once this is pressed, you are into the
IDOS interpreter and commands can be entered by
typing them in and pressing return. If the RUN/STOP key
is held down while the RESTORE key is pressed then a
normal warm start occurs. In the following, the word in
capitals is the command and the rest are the parameters.

<addr> dictates an hex address (eg C000, 0801 etc.), this
can be up to 4 characters in length.

Hlenamasy Sl Bparerever this may be up to 16
chars long, do not include @0 . as this is
handled automatically. Wildcards can be et o
filename is given, * is used. Any spaces in filenames
must be replaced by shifted-spaces (CHR$(160) as a
space is recognized as a parameter separator (any
shifted-spaces found will be converted to normal spaces
when the filename is extracted from the command),
however, a filename can be enclosed in quotes (either *
or), this means that normal spaces can be used in the

{'and | donate optional parameters, these may be entered
or left out. It is important to note that if the interpreter
(IDOS's) is expecting a parameter and it finds one, it will
use regardless of whether that the parameter is the
correct one (eg an <addr> may be used as filename or
vice versa, for dummy <addr>'s use 0).

Each command can be abbreviated, this is usually the
first wo letters then a period (full stop). Commands can
contain a wildcard (the character ?), this particular letter
is ignored, eg 7ELP can be used for HELP or CZT can be
used for CAT.

If you are unsure of the syntax of a command, type HELP
and a list of the commands along with their syntaxes will
be printed

VT st oRltshold eseribeithe maili operation of
the program. After each disk operation, the error status of
the disk is read and printed eg 00, OK,00,00). A prefix is
used, the first number is the number of the current drive

21

[
{
|

ON THE DISK

being used, these are numbered 0 to 3 (see later). The
second number (after the hyphen) is the device that you
are using.

If at any time there is an error in the disk communication
then IDOS beeps and flashes the screen.So 3-9:00,
OK,00,00 means that drive 3 has been defined as device
9 (see later for how to do this) and the error channel is
clear (ok). Any display routine (such as DUMP or DISS)
can be frozen by any of the CTRL/SHIFT/COMMODORE
keys and can be stopped by RUN/STOP.Whenever IDOS
is accessed (either by the RESTORE key or the main SYS
call) then it finds any available drives and enables them
for use (50 if you have 4 drives connected, you can use
each one). What it actually does is to look through the
drive table (ie the devices assigned to each drive number)
and checks to see if that device is connected, if it is then
it will read the error channel and print it. Once all the
devices have been tested, IDOS automatically selects the
device which has the lowest drive number.

NOTE that ‘device’ refers to a disk drive whereas
“drive’ refers to a particular device, a particular
device number being assigned to a particular
drive number. To find which device is assigned to
which drive type DEVICE <return>.

COMMAND EXPLANATIONS

LOAD <filename> {<addr>} (N}
(abbreviation:L.)

Loads the prg file <filename> into memory from <addr>
on (if no <addr> or 0 is given, then the header address of
the file is used as the start address). If the program is
loaded into Basic memory (ie if the <addr> given is the
start of Basic or no <addr> is given, or 0 is used) then the
end of Basic is set at the end address of the load (ie if the
file loaded is Basic then it is ready to run, as the normal
load. But if the file loaded is code or binary then the
Basic memory is left untouched, unlike the normal load).

This command does not use the kernal load file routine,
instead, it uses it's own, which shows how many blocks
have been loaded as the load proceeds. It also shows the
start and end address of the load,

If the optional N is present then the file will be loaded
using the normal Kernal Load routine. (this is
automatically done if any part of the file which is loaded
overlaps IDOS).

Examples:LOAD PACMAN
LOAD ‘ZAPPER 24’ C000
LOAD “KILLER’ N

VERIFY <filename> {<addr>}
(abbr:Vv.)

This verifies a file in accordance with LOAD (same
parameters and syntax).

This again, does not use the keral routine and actually
counts the number of mismatched bytes (and shows this
automatically at the end). Every 256 mismatched bytes
IDOS will beep and flash the screen.

Example:VERIFY ZAPPER

SAVE <filename> {L} (<addr>} {<addr>} {<addr>}
(abbr:S.)

This saves a section of memory with name <filename>
from <addr> (or Basic start address if not given or 0) to
<addr> (or Basic end address if not given or 0) with
header address <addr> (or 1st <addr> if not given or 0)
with <addr>s respective. Phew!This means you can save
the memory from $C000 to SCFFF to disk so it will load
in at say, $5000 (very useful when using sprite data or
graphics memory).

IDOS automatically prefixes the filename with @0: for
the save hence automatically using the save and replace
facility of the disk drive. There is a lot of worry in
Commodore circles about the safety of this facility so you
can switch it off using the REPLACEOFF command and
50 IDOS will prefix the filename with 0: instead.

The optional L is a flag to signify the locking of the saved
file, if this is present then the file is automatically locked
once saved.

Examples:SAVE IDOS L 7000 9FFF
SAVE MONITOR €000 CFFF
SAVE ‘ROCKET’ L
SAVE SPRITEDATA 4000 4FFF 2000

APPEND <filename> (<addr>}
(abbr:A.)

This uses the load routine to append the named file on to
end of the current Basic program. The <addr> is ignored.

Example:APPEND RENUM.ROUT

EXEC <filename> (<addr>} {<addr>}
RUN <filename> {<addr>} {<addr>}
BOOT <filename> (<addr>} {<addr>}
(abbrs:E.,R.,B.)

This loads and executes a file. The filename and first
<addr> are as for LOAD. The second <addr> is an
optional execution address (for machine code programs
only). If this is not present then the file is run either as a
Basic program (as the Basic RUN command) or called as
a machine code program from the load address.

This means that typing BOOT <return> will load and run
the first program on the disk whether it is Basic or
machine code (very clever).

It is important to note that IDOS automatically switches
off the function keys before executing the program, so
that if your program interferes with the memory that
IDOS occupies then the machine won't crash.

Examples:BOOT TURBO
C SAVER

COMMAND <command>
(abbr:C.)

22

—p—

This executes a normal
RO:PROG1=PROG).

DOS command (eg

Example:COMMAND RO:ZAPPER1=ZAPPER

CAT {<filename> [<filename>
DIR {<filename> [<filename>
(abbrs:CA.,D.)

Bl

These two commands, surprisingly, read the disk’s
directory, the <filename>’s are optional masks ie CAT
G will show entries of only PRG files, CAT IDOS
show the entry for IDOS only, CAT ID* will show all
entries whose filenames begin with “ID". If more than one
filename is used, then if the filename fuliils either mask
then it is printed, eg CAT IDOS PROGT PROG2 will list
any entries for IDOS or PROG1 or PROG2.

Example:CAT IDOS* HIRES*

DUMP <filename> [<addr>]
PRINT <filename>

TYPE <filename>

LIST <filename> (<linenumber>}
DISS <filename> {<addr>)
(abbrs:DU.,P.,T.,LI.,DIS.)

These commands display a file (any type) in a number of
ways:-

DUMP shows a hex and ascii dump of the file, the
<addr> is optional and is from where the dump starts (ie
if a file would load in at C000 and C300 is used as the
<addr> then the first $300 (=768) bytes are ignored).

PRINT prints a file (10 the screen), thi§ routine prints only
printable characters.

TYPE is the same as PRINT but prints all characters,

LIST displays a file as a Basic program (ie lists it), the
optional linenumber is where the list is to commence (as
with the <addr> in the DUMP command).

DISS interprets the file as a machine code program and
disassembles it, the display shows the address, the bytes
as hex, ascii then as 6502 mnemonics.

Examples:DUMP IDOS
DISS ‘ROMB0 CODE’
TYPE “ID.TEXT'

LIST ORRERY
DISS IDOS 8000

WRITE <filename> (L} {<ft>} {<addr>]
CODE <filename> (L} {<ft>) (<addr>}

ASSEM <filename> (L} (<ft>} (<addr>]

PROGRAM <filename> (L} [<ft>} (<linenumber>
{<step>}}

(abbrs:W.,COD.,AS.,PRO.)

These four commands allow a file to written to the disk in
a number of forms (they are actually the direct opposite
of the previous commands). The optional L if present,

ON THE DISK

will lock the file once you have finished entering it. The
<ft> is the filetype of the file and is optional, this may be
P.S, U or D (PRG, SEQ, USR or DEL, yes, you can have a
file which shows up as DEL on the directory and can be
used). If no <ft> is given then the default is PRG. The
<addr> is the start address which is where the file will
load back. This <addr> is the first thing that is written to
the disk, if no <addr> is given, then no address is written
to the disk.

WRITE writes a text file to disk (NOT necessarily a SEQ
file). Type in up to 40 chars of text then press return,
continue this until you've finished, then press RUN/STOP,
the file will be closed and you will be returned to the
normal interpreter. During the typing in stages, there is
1o prompt printed, only a cursor.

Example:WRITE TEXTFILE S

CODE writes a file to disk from lines of hex data, the
address will be printed and then you must type the data
in (there may be as many bytes as you like up to two
lines of data), to enter ascii use * then the ascii chars, all
the text from then on until a space is met is taken as
being ascil. This means you cannot enter a space as ascii,
you have to use hex 20 (=32 in decimal - the ascii of
space). To end entry, press return on a line with only an
address on.

Example:CODE SPRITEDATA L 4000
Then IDOS will prompt with:-

4000

Then type in the hex numbers:-

4000 20 50 40 23 4F ‘HA 20 ‘HA

When finished, press return on a address:-
432F (press return now)

ASSEM writes a fill to disk from lines of 6502 assembly,
the address is printed then you must type in a mnemonic
then any operand, then press return. Numbers (addresses
or bytes like in JSR $2000 or LDA #$20) can be entered
as hex (using $), decimal (no prefix), ascii (using *, only
applicable to byte operands) or binary (using %). To end
entry, press return on a line with only an address, as
CODE. Data can be entered using BYT (bytes) or WOR
(words).

Example:ASSEM CODE L C000

€000 LDA #0

€002 STA $D020
€005 LDA 53265
C008 AND #%11110111
COOA STA 53265
C00D LDA #$20
COOF LDY #$C0O
CO11 JMP $ABIE
Co14 BYT

147,50D,$0D,"HI, THIS IS A

23

ON THE DISK

DEMO!",50D,$0D,0
C02D WOR $C020,SABIE
€031 (press return now to end)

NOTEDOS automatically calculates and prints the next
address

PROGRAM writes a file to disk as a Basic program, the
<linenumber> is the first linenumber of the program, the
step is the step for the linenumbers, the default for both
of these is 10. The linenumber is printed up then a line of
Basic must be entered (normal rules apply, Basic
abbreviations can be used), the return must be pressed.
Then the step is added to the previous linenumber and
this is used as the next linenumber (incidentally, the
current linenumber can be changed at any time during
entry by going to the start of the line and entering a new
linenumber) . To end entry, press return on a line with
only a linenumber.

Example:PROGRAM ‘HEX CALCULATOR'

10 POKE53280,10 :POKE53281,2 :2”(CLR} {CTRL-7)"
20 INPUT"[DOWNJENTER HEX NUMBER”;HS
30 GOSUB100:2"[DOWN]$"H$"="DC:GOTO20

40 (at this point, type 100 over 40)
100 DC=0:FORI=1TOLEN(H$):A$=MID$
(HS,1,1:A=ASC(AS)-4B:A=A+7*(A>9)

110 DC=DC*16+A:NEXT:RETURN
120 (press return now 1o end)

SIZE <filename>
(abbr: S1.)

This shows the size of any file antl where it would
normally load into memory, it is essentially the same as
LOAD but does not enter the bytes into memory.
Example:SIZE IDOS.SOR’

RENAME <newname> <oldname>
(abbr:RE.)

This renames a file from <oldname> to <newname>, just
like the RO: DOS command.

Examples:RENAME IDOSL IDOS
RENAME ‘ROM80 PROG’ ‘ROMB80 PROG

> <oldname> [<add

v

(abbr:COP.)

This copies the file <oldname> onto the same disk with
name <newnames. Any <addname>s are appended onto
the end of the new file.

Examples:COPY ‘BACKUP’ ‘PROG’
COPY IDOSB IDOS
COPY TEXT TEXT1 TEXT2 TEXT3

COMPACT
VALIDATE

(abbrs:COMP.,VA.)

This validates the disk (as VO).

DELETE <filename> {<filename>..
SCRATCH <filename> [<filename>.
ERASE <filename> {<filename>...}
(abbrs:DE.,SC. ER.)

These commands delete a file from the disk (as S0:) and
allows you to delete any number of files, using wildcards
or any number of filenames as long as the length of the
command does not exceed 40 chars (1 line).

Example:DELETE IDOS

REMOVE <filename>
(abbr:REM.)

This command automatically unlocks a file then deletes
it.

DISKNAME <diskname> (<ID>]
(abbr:DISK.|

This command changes the name and id of the current
disk, <disknames is a name of up to 16 chars (any spaces
must be shifted-spaces, as in a filename).

Example:DISKNAME ‘ASSEMBLER?

NEW <diskname> (<id>}
FORMAT <diskname> {<id>}
(abbrs:N.,F.)

These commands format the current disk (as NO:), if no
<id> is specified then the name of the disk is changed to
<diskname> and the disk cleared of all files (this is unlike
formatting because it does not construct the tracks and
sectors as does the format when <id> is specified).
NOTE:There is NO ‘Are you sure (Y/N)’ message as a
safety net, once return is pressed the process is
unstoppable.

Example:FORMAT ASSEMBLERS A8

INIT
(abbr:l.)

This initialises the current disk (as 10). This routine is only
useful to check to see if there is a disk in the drive (an
error will occur if there isn't).

DERR
ERROR
(abbrs:DER.,ERR.)

These commands read and print the disk status, like
OPEN15,8,15 :INPUT#15,ER ERS, TR,SE :CLOSE15
:PRINT ER;ER$;TR;SE. Since this is automatically done at
the end of each disk operation, these routines are only
present for convenience. (Though they can be used in
Basic programs to save bother).

24

PROTECT <filename>
LOCK <filename>
(abbrs:PROT.,LOC.)

These commands protect a file from erasure, a protected
file cannot be erased at all, unless it is unlocked or the
program is resaved. Any protected files show up with a
“less-than’ (<) sign immediately after it's filetype in the
directory. Wildcards can be used in the filename and so
more than one file can be locked in one go.

Example:LOCK IDOS*
UNPROTECT <filename>
UNLOCK <filename>
(abbrs:U.,UNL.)

These commands reverse the previous commands and
make files erasable.

Example:UNLOCK IDOS

RECOVER <filename> (L}
(abbr:REC.)

{<it>}

This command recovers the directory entry for a file
hence recovering the file after deleting. However, the
sectors are not re-allocated, there you should validate the
disk after this commandl

The default <ft> is PRG so if this is not present the file
will be marked as PRG. The optional L is for the
automatic locking facility as with the SAVE command

Example:RECOVER UNDELETER L«

DESTROY <filename>
(abbr:DES.)

This command wipes over the entry for a filename in the
directory, hence effectively deleting the file. However,
the program is still on the disk and the sectors are still
marked as used, therefore you should validate the disk
afterwards. This command is only of use if the normal
delete command will not work.

ADDRESS <filename> {<addr>}
(abbr:AD.)

This command changes the load address of a file (the first

wo bytes of the file) to that of <addr> (Basic address if
not present).

Example:ADDRESS SPRITEDATA 6000

DRIVE <drive>
(abbr:DR.)

This sets the current device to that set for the specified
<drive> in the device table (see below). <drive> is
numbered from 0 to 3, any other will give an error.

Example:DRIVE 2

ON THE DISK

DEVICE <drive> <device> (<drive> <drive>...}
(abbr:DEV.)

This sets the device for a particular drive number. The
command prints up the available devices from the
current table along with there respective drive numbers.

Examples: DEVICE
DEVICE08192103 11
DEVICE09 1 8

This command is useful if you have two drives, of which
one is a 1541 and the other is, say, an Excelerator drive
(what happened to them anyway?). The 1541 requires
major surgery to alter it’s device number, but the
Excelerator has DIP switches which make this a doddle.
Therefore, normally, the 1541 would be device 8 and the
Excelerator device 9. This means that any other DOS
program would use the 1541 as default. However, with
IDOS, you can set up so drive 0 is device 9 (the
Excelerator) and drive 1 is device 8 (the 1541) with
DEVICE 0 9 1 8. Now, IDOS will select the device with
the lowest DRIVE NUMBER, which in this case is device
9, the Excelerator. So IDOS would default to the
Excelerator, which makes life a lot easier!

HEX <decnum>

(abbr:H.)

This prints up the hexadecimal equivalent of <decnums,
range 0 - 65535 (useful for working out addresses for
<addr>s).

Example:HEX 64738
would give:- =SFCE2

DEC <hexnum>
(abbr:DEC)

This prints up the decimal equivalent of <hexnum>
(range O - FFFF).
Example:DEC C342
would give:-

=49986

CALL <addr>
(abbr:CAL.)

This calls a machine code routine stating at <addr>
(similar to SYS but uses a hex address and stays within
Example:CALL C342

RESET
(abbr:RES.)

This command reset the computer (as SYS 64738).

BASIC {<addr>}
(abbr:BA.)

25

ON THE DISK

This command sets the start of Basic to <addr> and
reset Basic pointers, if no <addr> is specified then the
command just reset the pointers (as NEW - the Basic
command).

Example:BASIC 200COLOUR <bord-col> <scrn-col>
<text-c
(abbr:COL.)

This command sets the colours for use in IDOS,
whenever IDOS is entered then the current colours will
change to these specified. Each is a number and ranges
from 0 to 15 (decimal)

Example:COLOUR 6 15 6

PROMPT <prompt-text>
(abbr:PROM.)

This sets the text which is printed before each
command is entered (the prompt), any amount of text
(up to 80 chars) can be used. If a carriage return is
required, use the left-arrow (top left of the keyboard).

Example:PROMPT ENTER COMMAND

FKEY [<key-no> <m><f-text><m>}
(abbr:FK.)

This defines the text for one of the 16 possible function
key definitions, <key-no> ranges from 1 to 16, the <m>
is a marker character, this marks the start and the end
of the definition but is not included in the definition,
this allows spaces to be entered into definitions. If
returns are required in the definition, again use the
LEFT-ARROW. If FKEY is entered on it’s own then the
definitions of all the function keys are printed along
with the key combination to achieve that definition.
Examples: FKEY 1 ‘CAT (left-arrow)’
FKEY 3 ‘LOAD *

The function keys are defined as follows:-

KEY 1 {F1):'CAT (left-arrow)’

KEY 2 (SH+F1):'REPEAT’

KEY 3 {F3):'LOAD *

KEY 4 [SH+F3):FKEY

KEY 5 (F5):'SAVE *

KEY 6 {SH+F5):'HELP (left-arrow)’
KEY 7 [F7}'BOOT *

KEY 8 (SH+F7):'QUIT (left-arrow)’
KEY 9 {CM+F11:/TYPE

KEY10 [CT+F1}"WRITE

KEY11 (CM+F3):'DUMP

KEY12 {CT+F3):"CODE *

KEY13 'DISS

KEY14 (CT+F5):’ASSEM

KEY15 ST

KEY16 ROGRAM *
NOTE:SH means SHIFT, CM means

COMMODORE KEY and CT means CTRL.

FUNC <key-no>
(abbr:FU.)

This command executes the function key definition
<key-no> without the need o press the keys.

KEYON

KEYOFF

ERRON

ERROFF

READON

READOFF

REPLACEON

REPLACEOFF

(abbrs:K. KEYOF.,ERRON, ERROF.,REA.,
READOF. REP.,REPLACEOF.)

This commands switch on or off a particular
‘parameter’ of IDO!

KEY governs the function keys,

ERR governs the printing of the error status of the disk
after a disk operation,

READ governs the reading of the start address of a file
when using the DUMP, PRINT, TYPE, DISS etc I
READOFF has been executed then when the file is read
then it's start address is 0000 and the first two bytes
(which would be the start address) are treated as part of
the program (displayed as so).

REPLACE governs the save & replace feature when
saving (ie the using of @0:filename).

REPEAT
(abbr:REPE.)

This command repeats the last command
executed.

EXIT

QuIT

(abbrs:EX.,Q.)

These command allow you to leave IDOS and return to
Basic, the function keys being left in there state (ie on if
they were on and off it they were off).

HELP

(abbr:HEL)

This displays all the commands along with their
syntaxes, the display can be paused by
CBM/SHIFT/CTRL and stopped by RUN/STOP.

KILL
(abbr

)

This kills IDOS: it switches off the f-keys, leaves IDOS
and makes it impossible to_re-enter IDOS through the
use of the RESTORE key. IDOS can be still accessed by
the SYS, which re-enables IDOS to be accessed by the
RESTORE key.

26

ON THE DISK

PHEW!! That's all the commands, quite a few isn't
there? You will notice that some commands do the
same thing as others, this is just for convenience, it
may be easier to remember ERASE rather than
SCRATCH or CAT instead of DIR

THE SYS COMMANDS
1 thought now | would explain the SYS commands:-

SY$32777,”<command>...” - this executes the

command in the quotes eg;

YS32777,”DELETE PROG1” - will delete ‘Progl1’ from
the disk and display the disk status.

SYS32777,A$ - is perfectly legal and in this case the
text contained within variable A$ will be treated as the
command

So a program could be written like this:

INPUT"COMMAND";A$
20 5Y$32777,A$:GOTO10

would imitate the IDOS interpreter

780 and SYS528672 enter IDOS (like pressing the
RESTORE ko)
5532783 enables IDOS to be accessed by the
RESTORE key

SYS32786 disables access by RESTORE
Location 700 always holds the device currently in use,
whereas location 701 holds the error number of the last

disk operation (0=OK)

That’s it there’s no more!

SAVER PROGRAM

Included on the disk is a program
called ‘Saver’, this allows you to save
your disk w

n the drive and then press a key,
D05 i} L & OtaatiEaIly. saved:and

locked on that disk. Have a look at the
program, you’ll see how nice and
ordered it looks. Using IDOS from
Basic means that programs can be
streamlined and deuphcrahlc, Well, 1
must sign off now, | hope you find
IDOS as useful as | did.

TIMEWORKS SOFTWARE SALE

.
RRP

PARTNER 128 Gcesory pck i) 995
PARTN essory pack cartrdge) 5095
SWIFTC ALC 138 et wih Soevay) €95
with Sideways) 2995

WORDWRITER 128 (word processor with spel checker) ~ 69.95
WORDWRITER §/ 64 (word processor with spell checker) 39,95
SIDEWAYS 64128 (Sideways pint utilty) 95

TALORRE PR

The Musician (3 diferent programs to compose and play music
The Artist (3 programs to create multcolour graphics,print your artwork on most
popular printrs,design spr

Disk Drive Manager (load your programs up 0 § times faster, add new disk
commands, backup your disks)

The Entertainer (3 fast action arcad
The Entertainer 2 (3 challenging srae
The Entertainer 3 3 fst-paced action
The Edcaor mprov s yping sl sl nd improve you
numericskils by playing gam
The Educator (s it aged 5-10. A crasing way 0ear 0l e
time,spell and use the traffic g
Electronic Cheque Book (org
ransactions

The Home Banker (5 progr
The Home Manager (Wordprocessor, Database, Calculator and Memo Pad)
ValueCale (Spreadshee) (very limited stock)

nise, classify and record your chequebook

ams to help with personal finance)

DTBS, 18 Norwich Avenue, Rochdale, Lancs. OL11 S1Z
Tel: 0706 5
Send SAE for descriptive list
Note: DT Books and Software (DTES) i thenew trading name o Adamsaf.

4304

STRATEGY
ADVENTURE

C64 disks only
HSEAR
AN
BUREA CRAZYC128 PAGER STRIE
HTCHRERS GUDE. PHANTASEN
LEATHER GOOOESS
INTERSTEL
BRE
LucAsFILM
ZHRNCKRACKBY
MICROLEAGUE
WCAOLEAGUE .
MACAOLEAGUE OOTBALL WAFGAVE CONSTR S€T
WACAOLEAGUE WRESTLNG.
suBLOGIC
ssi FUGHT SWAATORN
SOMSSONCRUSH NGHTMSSONPHGALL
BATTLES OFMAPOLEON

BUCKROGERS
CHWPIONS OF KAV
e aieso0s

TECARIUM
ORAGON WORD

wizano
SUPERSTAR CE HOGKEY

LT oA

SARDS TALE 1, U
AZURE B, D

iy oo
B oot o
o it g LK g £ o, O o e
CINTRONICS LTD.
16 Connaught Street,
London W2 2AG

LETTERS

It's TECHNO-INFO time again and this month there are
plenty of letters to keep you busy. | hope that many of
you, and in particular the people who wrote the letters,
will find my replies both informative and useful. The
regular UPDATE section is here as well, this time letting
you know how to correct a rounding error in the CHEQUE
BOOK program by PETER WEIGHILL. Of course it is now
June and we are all ready for a new Techno-Info
Challenge (o be set. In case you missed the March issue,
this is a brand new (or at least it was in March!) quarterly
feature of Techno-Info that will allow you to play about to
your heart’s content at trying to program whatever | sk of
you. All Challenges will be in BASIC so no machine code
knowledge is required. There are details of this month's
Challenge after the letters, together with details of last
time’s winning entries! So then, let us get on with the
proceedings.

TAPE TO DISK

Dear CDU,

I have recently purchased a disk drive for my Commodore
64 and | would like to know if there is a way of converting
material on tape onto disk. | would also like to know of a
suitable database, so that I can catalogue my collection of
football programs.

S.Miller, Scunthorpe.

Dear Mr.Miller,
From your letter, | presume that you mean commercial
software. The way to convert non-commercial material to
disk is to just load it from tape and then enter
SAVE”progname”,8. However, for games and the like, it is
2 matter of purchasing a backup cartridge (such as Action
Replay from DATEL or Super Snapshot from FSSL). There
is a lot of controversy regarding the use of these but it is
the only way that you will do it. It is a simple matter of
loading your game from tape, pressing a button on this
plug:in box of tricks, and then entering a suitable filename
for the disk version. When it comes to databases, there are
lots that you can choose from. If you want a very
advanced database you can expect to pay around £40.
Ones like this, such as SUPERBASE, can be obtained from
a company called FSSL. Théir catalogue was published in
the March 1991 issue of CDU and their address can be

Our resident guru,
JASON FINCH, answers
more of your perplexing
problems

found elsewhere i this section. However, you could buy
a back issue of this magazine, one in which a database
was published of course. That will be a great deal cheaper
and they should all cover your needs. Look in the back
issues section of one of the magazines and see what
program seems to suit your needs.

SERVICE MANUALS

Dear CDU,

Thanks very much for the assistance with my problem
with quotients and remainders. There is no doubt in my
mind that your explanation on the method of finding them
should be included in every Commaodore Systems Guide! |
have read the section they include on the INT function
again and there is nary a word about moving the bits of
the formula around as you did. In a recent issue of CDU
you mentioned a leaflet on degunging a keyboard on a
Cb4. 1 have two C128s and | do not suppose that either of
them will get into the state the leaflet talks about but |
would like to get the top off both of them sometime to
blow out the accumulated dust and whatever. | am told
that you have to undo the screws in the base and press in
the sides of the lower part to clear the plastic clips. I have
not tried it but it sounds reasonable. It is a pity that there is
not a book | can purchase - similar o a car service manual
~that demonstrates to a novice like me the way to dust out
my computers, disk-drives and printers! Thanks once
again for your precise explanations.

Eric Frost, West Sussex.

Dear Eric,

1'am glad that you found my explanations clear and
useful. The way to get into the C128 is exactly as you
have been told - unscrew five little screws and release the
cover from a couple of clips. However, when it comes to
service manuals, I'm afraid that you are wrong. There are
in fact such publications around which you will be glad to
hear are now available to the general public. They tend to
cover the more technical side of things, but Commodore
Service Manuals for most Commodore equipment can be
purchased from FSSL. The address is Masons Ryde,
Defford Road, Pershore, Worcestershire, WR10 1AZ and
the number is 0386-553153. They should be able to
provide you with what you want.

28

GRAPHICS CONVERTER

Dear CD!

ol b grateful if you could advise me of any routine,
PD or commercial program that would enable me to
convert a multicolour screen (eg. Koala) to a high
resolution screen (eg. Doodle) and save the converted file
1o disk. There are plenty of PD multicolour screen files
available and I would like to convert them for use in
GEOS. Howe , | first need them to be converted to Hi-
Res format before | can convert them to GEOS. | should be
grateful of any help that you are able to give. | am sure that
this information will be of use to many readers interested
in graphics packages and GEOS. There is a converter
routine in ICON FACTORY but | find that this does not do
a very good conversion. Keep up the good work with

DU.

CDU.
Michael Pearson, Stratford-upon-Avon.

Dear Michael,
Unfortunately the conversion obtained from Icon Factory
is probably going to be the best that you will achieve. |
know of plenty of excellent packages that do the
conversion well from Hi-Res to multicolour but not the
other way around. You see, in multicolour mode you can
have four colours in each “square” on the screen, but with
high resolution you can only have two, one foreground
and one bacl . Therefore it is hard to convert the
pictures. A decision has to be taken as to which of the four
colours are most important and can be used to best effect
in the high resolution picture. If it was possible to make a
high resolution picture look as good as a multicolour one,
er loosing the resolution given by Hi-
Res. Therefore, the converter that you already have is the
only one that | could recommend.

VIEWS ON PIRACY

Dear CDU,

1 would like to put forward my views on what | know is a
very controversial subject; that of backup cartridges and
their use for pirating software. All adverts for these
cartridges say “XXX does not authorise the use of this
product for copying copyright material”. Some, however,
say “freeze and reload programs at super fast spee
would like to hear from any owner of a backup cartridge
who has not used it to hack a game or program even for
their own use with a turbo-loader (it is illegal to copy
programs even for your own use). Will there ever be any
law passed to control the supply of these piracy-
encouraging utilties? Piracy leads to high software prices
because authors allow for about five pirate copies per
game, 5o they set the price five times higher. So when you
next copy your friend's latest game, pause and think about
the high prices that you are contributing towards
PTLenfestey, Guernsey.

Dear Mr.Lenfestey,

Thanks for your Iener Techno-Info is here to allow readers
to say what they think - not only to help with your
problems, remember. | agree that most people will have
used such devices for the “wrong” purpose but so long as

LETTERS

the cartridges have other features, and not only the facility
to copy software, then they cannot be banned. In a
previous reply in this section | have told someone to use a
copier to transfer their games from lape to dlsk |
personally, don't think that i is fair to make sor
Stk versian o el ama whnthetiheve a(ready bougm
the tape version when they didn’t have a drive. Also, |
think that piracy and high prices cause a vicious circle to
created. Piracy leads to higher prices, yes, but higher
prices lead to yet more piracy. And so the process
continues. | am not saying that | condone piracy, | am just
saying some simple facts. Put it like ths, if there was a fully
featured word-processor on sale for fifty pounds, and
someone wanted one but couldn't pay that much they
would illegally make a copy from a friend’s perhaps. If that
same word-processor was available for a tenner, that
wouldn't happen would it. This ties in with your quote
about making packages five times more expensive. But
having said a few controversial things in one paragraph
(which are my views and not necessarily those of the
magazine or other Editors) | will end by asking a couple of
questions myself: How come there are budget games for
only £1.99, and how many of them are illegally copledz
The answer to the last question is very few because people
don’t mind paying two quid as opﬁosed 1o ten. If anyone
wants to continue this “debate” then please feel free to
write to the Techno-Info address with your views.

HARD DRIVES

Dear CDU,

1 am wri see if you can tell me where | can get a
hard disk drive for the Commodore 64. I know it is
possible because I have seen mention of it in the Gateway
package which is available from FSSL. You published its
catalogue in March. Also can you tell me how much it will
cost and how to configure it

R.S.Pope, Bath.

Dear Mr.P

Although the hard drives weren’t mentioned in the
catalogue in CDU, the company that you mention, FSSL,
will also be able to supply you with a hard drive. They are
probably the only place in Britain from where you could
obtain such advanced hardware. At the time of typing this,
the price is £499.95 for a 20 Megal CMD HD series
hard drive (to give it the full titlel), and for a 40 Megabyte
one you can expect to pay about two hundred pounds
more. However, before ordering, if in fact you do still want
one!, | would recommend that you telephone the sales
department on 0386-553153 to check availability and
prices. | presume that details on configuration and
connecting it to the computer will be given to you when

y one.

RE-ALIGNMENT FOR YOU

Dear CDU,

I have two 1541 disk drives, one of which is a good deal
older than the other. Programs saved on disks which have
been formatted on one drive will not load on the other.

29

LETTERS

Most commercial software will not load on the older drive.
Can you explain this please and suggest how it may be
Corrected? - i such a thing s possible.

APForrest, Merseyside.

Dear Mr.Forrest,

My diagnosis of the symptoms is that your older drive
needs realigning. Over a period of time, like many other
things, the moving parts tend to go out of line. With a disk
drive, the “head” and everything else that controls the
reading and writing of information become very gradually
misaligned. The good old Datasette units are similar. The
older drive formats disks wrongly and saves them
incorrectly in comparison to other drives. That is why
nothing saved on the older drive will load on the new
drive. Also, the drive cannot read the commercial software
properly and that is why that won't load. But the problem
can be corrected - at a small cost. You can buy a DRIVE
ALIGNMENT package from FSSL (address under reply to
SERVICE MANUALS above) which will cost £24.95 plus
£1.45 p&p. It consists of an easy to understand manual
together with some software. This software, it is claimed,
will load when nothing else will. The package includes a
drive speed test to make sure that the drive head is rotating
at the correct speed of about 300rpm. For a run-down on
what is wrong and how to correct it, buy the package.
However, you'll probably find that your programs sav

the mis-aligned drive will never be able to be loaded again
once the drive is correctly aligned. If you are worried
about this, load each program in and then just save it onto
a different disk in the newer drive.

C128 + 1551 DD

Dear CDU,

Would you please help me with this problem. | am trying
to use my 1551 disk drive (ex. plus/4) with my new
(second hand!) C128. The connector is different to the
socket. Is there an adaptor available? Wil it work anyway
and if not what disk drive should | get?

David Joberns, Essex.

Dear David, E

I must confess that | am not sure! | am not familiar with the
1551 drive or the lead that is usually used to connect it to
a Plus/4. | would suggest that you telephone the technical
department of a company called Meedmore in Merseyside
on 051-521-2202 who should be able to help with this
particular type of problem. If it is possible to connect the
two pieces of hardware then they will know how. As to
whether the drive would work, if you managed to connect
everything up then there is no foreseeable reason for it not
10 be possible to save programs to disk and to load them
back again. However, because of the presumably different
DOS types between the 1551 and a 1541 compatible it is
unlikely that the majority of commercial software would
work on the 1551. | would therefore recommend that
instead of trying to connect the 1551 which could cause
incompatibility problems, you should buy a 1541
compatible drive. These can be obtained from most good
computer stores that stock Commodore 64 equipment.
Such drives are the 1541 (with various suffixes such as -Il

and -0), the Oceanic drive and the 1571. The latter is in
fact the drive that is “meant” for a C128. | hope that | have
been of some help 10 you.

INTERFACES

Dear CDU,

Thank you for a very interesting and useful magazine, |
haven't missed one from the start. Keep up the good work.
The reason | am writing is that | was given a PET computer
a few weeks ago, with it an 8250 disk drive. | do believe
that this drive can be connected to a C64 using an IEEE488
interface. | would be very grateful if you could tell me
where | can purchase this interface or if any reader might
have one for sale. | would like to be able to connect this
drive to the 64 for the extra storage it offers.

C.).Thomas, Bristol.

Dear Mr.Thomas,

The interface that you mention should be available from
Meedmore Distribution in Merseyside. They stock a huge
range of such accessories and various leads and
connectors. The place is a warehouse and not a shop and
most ordering is done through the post. | suggest that you
give them a call on 051-521-2202 to check the stock code
and price. If you do eventually get the drive hooked up to
the 64 then | presume that you are aware that commercial
software designed for the 1541 disk drive will not work
with the 8250.

CONFIGURATION PROBS

Dear CDU,

| read in January’s issue about the problem that David
Medland had with not being able to use the print option
on the OCP Advanced Art Studio. 1 also have the same
problem. No matter which way | configure the program |
get the reply “Error during print - Device not present”. |
have tried every possible solution to it with no joy and |
would be very grateful if you could help. | have a
Commodore MPS1230 printer.

Paul Stanton, The British Forces.

Dear Paul,

David's problem was solved by just entering the basic
standard responses to the configuring questions. Your
problem sounds a little different. “Device not present”
makes me think that the problem is the hardware and not
necessarily the software, The printer may be set as device
five or something, or there may be a daisychaining
problem. Enter the following line in BSIC: OPEN 4,4:
PRINT#4,"TEST": CLOSE 4. If the printer does nothing then
the device number needs changing | would think, unless
re is something more serious wrong with the printer. If
that line did work then you must make sure that the OCP
program knows that your printer is a serial one and device
humber four. If all that seems fine then | suggest you g0
through the configuration program step-by-step with the
‘manual at your side and thoroughly check that each input
is correct.

30

AN ODD BUG

Dear CDU,

Over the past four years that | have had my 64C | have
become increasingly aware of a bug, which I think is in
one of the computer’s internal chips. The problem is not a
terribly great one, but it is very annoying. It only seems to
crop up when | am using my games software; which | tend
10 use 75% of the time at the moment; and depending on
which game | am using determines how the program is
affected by the bug. For instance if | have an arcade type
game running such as Bruce Lee, Beach Head II, Turbo
Outrun, etc. by US Gold, the bug seems to affect the
cumulative element in the scoring of the game. When the
tens, hundreds and thousands column is required to zero
itself and advance the next column forward one, it seems
incapable of achieving this. However, in games such as TV
Sports Football and Sentinel, the bug completely destroys
gameplay. As the bug recurs throughout my software
Collection | could only assume it is a hardware problem,
and having only upgraded to disk in the last year, | came to
the conclusion that the problem must be with the
computer itself. So | recently purchased the C64 DOCTOR
from FSSL and tested the internal chips, but they all passed
the tests. So in desperation | am writing to you to see if
anyone you know can advise me on what | should do, as |
don't want to send my computer off 1o be repaired if it is
something that nobody knows how to rectify.

Mark Fletcher, Glasgow.

Dear Mark,
This certainly is a very odd bug and | would agree with
you that it must lie wiz the computer itself. It is unlikely to
be the fact that all your games are corrupted in some way,
but have you tried any of them on a different system? |
have never heard of the problem before but | would
suggest that to get it sorted out you are going to have to
send it re. | can't say that someone is going to
know exactly what the fault is but there are a number of
ways to narrow it down. It is not likely to be anything to do
with the input/output chips, the sound chip, probably not
the video interface chip and so on. I would lﬁink that the
problem lies deeper, perhaps in the actual ROM or maybe
ere is some error in the circuitry. | should think that you
would be best off sending the computer for a sort of “all
inclusive and paid for” repair. For example you could
telephone OASIS Computer Services on 0722-335061.
a repair service for Commodore 64s with a one
week turnaround costing thirty pounds. Perhaps offer to
send them a couple of your games just to show them what
s happening. They would possibly be able to sort it out or
point you in another direction to a company that can
repair your machine completely. | hope that | have started
you on the right track at least.

FOREIGN 1571

Dear CDU,

I have a C128 with 1541 and 1571 purchased abroad
(120V). 1 have a problem with the little used 1571 which
since new has always been extremely noisy, especially
with 128 disks. Of late, with 128 autoload disks, the

31

LETTERS

system locks up after it has display “BOOTING ...
Sometimes it also enters the monitor automatically. When |
attempt 1o boot manually the following is displayed “73
CBM DOS V3.0 1571 0” - a DOS mismatch!! The system
boots up normally using a 128 CP/M System Disk! Now
the problem becomes curiouser and curiouser. Using disks
on the 64 mode the system operates normally with the
following exceptions. Firstly, a CDU disk cannot be loaded
using the standard LOAD"MENU",8,1 and secondly, the
directory cannot be obtained in the 64 mode but by
employing 128 mode only. CDU disks can be loaded only
by using the format LOAD"*",8,1. | have closely read the
User's Guide to the Commodore 1571 drive and | feel |
must have overlooked something. | have continually
checked all the earth connections in the system but | have
been frustrated in trying to overcome the problem. As | am
an OAP | haven't got much spare cash to have my 1571
checked out by any of the advertisers in the magazine and
I feel that there cannot be much wrong with the drive as |
rarely use it. Could you possibly help me or, at least, give
me some advice? Is there a publication and/or a disk
specifically for setting up a 1571¢ At the present time | will
just carry on with the painiully slow but dependable 15411
| remain very puzzled and frustrated.

W.H.Mercer, Co.Durham.

Dear Mr.Mercer,
First of all | think we can rule out alignment problems. If
there was something wrong with the disk drive, one would
expect it to be consistent in both 64 and 128 mode. The
fault is most likely to be the power supply. You say that itis
a “foreign” 1571 and uses the 120V supply of another
country. | ume that you have the correct adaptor to
convert the voltages, but do you have a piece of
equipment that takes into account the probable difference
in frequency of the mains in this country to that in the
country for which the drive was i 7 1 suggest that
first of all you check that both the correct voltage and the
correct frequency of supply is getting to the drive. If

ing is fine then the only thing that | can suggest is
that you try and find the cheapest source of repair I'm
afraid. Alternatively you could purchase a Service Manual
from FSSL. They cost around twenty pounds for the 1571
but I'm not sure how much one would help you. Pm,ﬁ'
if you don't really use the drive a lot, you could consider
selling it to somebody at a reduced cost, telling them of
course that it needs looking at. When operated in 64
mode, the 1571 is exactly the same speed as the 1541 -
only in 128 mode does it come into its own. Sorry | can't
point the fault at anything more specific.

SMOOTH SCROLLING

Dear CDU,

1 have been buying CDU for about eighteen months now
and think that it is very worthwhile. I treated the idea of
Techno-Info with some scepticism at first after | had seen
the advice pages in other magazines. But now | read the
section every month and wouldn't be without some of the
advice and tips that you have given. Thanks! I'm even
wiiting 1o it myself now - and it is because | am planning,
on writing a game for the C64 and would like to include a

LETTERS

smooth scrolling map. The basic idea is that there is a
town or other landscape around which the player must
travel. By using raster interrupts | can quite easily get the
screen to scroll up, down, left and right. But 1 have two
problems. The biggest comes with the vertical scrolling.
Because the score and status panel is at the top of the
screen, the scrolling starts about five lines down. With the
horizontal scrolling it is easy to make the screen 38
columns and thereby cover up the area where the
characters appear. And vertically | can shrink the screen to
24 rows bt this does not cater for my needs at having the
vertical scroll start five lines down. How can | get rid of the
flicking? Is there a routine to “confuse” the rasters or
something as | have tried for ages and think | must be
overlooking something simple. The second problem is that
| want to make the game so that the map can be scrolled
in more than just four or eight directions. It would be nice
to be able to say that it features 360 degree’ scrolling. But
how exactly is the effect achieved? | would be ever so
grateful of any assistance that you could provide.
ED.Lyons, Liverpool

Dear Mr.Lyons,

I must firstly thank you for your kind comments about
CDU and Techno-Info. It mﬁ‘; is great to know that the
work is appreciated and | hope you continue to find it
useful. The secret behind overcoming your first problem is
the humble little sprite. If you make one sprite definition
into a solid block and expand it horizontally, this can then
be duplicated seven times across the screen - end to end -
and placed at the correct vertical position. This produces a
bar of sprites which will appear above the “flicker” and
conceal the characters as they appear and disappear. To
make it seem that nothing is there, make the sprites the
same colour as the background. As to how to achieve the
effect of 360 degree scrolling, it is all a matter of how
many pixels are scrolled vertically, each time you scroll
one pixel horizontally or vice versa. If you have some sort
of vehicle or person that can be ‘rotated’ and you have,
say, sixteen different positions and therefore directions for
this thing, then you simply change the number of pixels
scrolled horizontally and vertically. For straight up you
scroll two up and none to the sides, for right you scroll two
1o the right and none up or down. For northeast, you scroll
two up and two right, and here it comes; for somewhere
between the two you would scroll two up and one right, or
three up and two right. For just below east you would
scroll two fight and one down or something. You would
proceed to two right and two down for SE, one right and
two down for SSE and two down and none to the sides for
S, then for SSW do one left and two down and so on
and so forth, With a bit of luck you can get on with writing
the game now!

UPDATE

This month’s update concerns the CHEQUE BOOK
ORGANISER program by PETER WEIGHILL OF BOURNE
that appeared recently in CDU. He has very kindly sent a
list of lines to change/add to the program that will enhance
it for you. One of them cures the problem that a few
people experienced where the balance read something

like 12.3399999 instead of 12.34. This is actually a
rounding bug in the computer itself and NOT in the
program. You can see the rounding error by just entering
the simple line: PRINT 7.89-7.42 from BASIC. So here
goes with the changes:

LOAD"CHEQUE BOOK2, then LIST 11050 and change
the *10020” at the end of the line to “11020". Then add
the following lines: 11041 IF AS=",” OR A$=":" THEN
11020, and 15001 BA=BA*100+.5, and 15002
BA=INT(BA)/100. Then SAVE"@0:CHEQUE BOOK2” 8. If
you want to enter details for PAY INS like you can for PAY
OUTS then enter these lines before saving the program
back to disk: 120 REM, 132 PRINT:PRINT”INPUT
DESCRIPTION:”:GOSUB11000, and 134 CQ$(NO)=BS.

Thanks for those changes, Peter. You should find that the
program is even better than before now, so make the
changes before you forget.

THE TECHNO-INFO CHALLENGE

In March | presented you with a program that could reel
off the 2261 prime numbers between 3 and 19997
inclusive in about 355 seconds. The question was this:
Can anyone do better? Well | am pleased to say that | had
a great response and many people spotted the places
where the program could be made to run faster, and in
some cases, a fot faster. The overall winner, though, was
PAUL GANDER OF GOSPORT who managed to alter the
algorithm a bit and generally get the program to run faster.
His version calculated all of the prime numbers in less
than 228 seconds - cutting the time by over 35%. You will
find his program on this issue’s disk filed as “PRIMES
WINNER". Hopefully Paul will have received his prize of
ten blank disks by now. This month’s prize may be the
same, although | may make it something different. After
all, variety is the spice of lifel The top five entries were
received from the following:

aul Gander of Gosport
83: Neil Barton of Cheshire

3. wi
4. with 278.42: las m
5. with 290.38: Richard Smedley of Suttor

Thanks also to everyone else who participated in the
Challenge. Please try again this time - you may be the
winner!

THIS MONTH’S CHALLENGE

This time the Techno-Info Challenge doesn't rely so much
on your mathematical skills, rather your programming
talents. | would like you to design a version of that old
favourite, NOUGHTS AND CROSSES (or Tic-Tac-Toe). It
must allow the user to compete against the computer in an
effort to be the winner, with a row of three crosses in any
of the acceptable directions. Of course that would be
relatively simple and on this month’s disk you will find

32

such a program, filed as “DUMB OXO”. It is called
“DUMB” because it can't think for itself. The computer’s
move is entirely random and you may find it difficult to
actually get the computer to win! What | want you to do is
write from scratch an “intelligent’ Noughts and Crosses
game that will be unbeatable. The computer must NEVER
lose (well, it must be over 90% successful!). It is fine if the
computer draws with the player or wins, but if it loses t0o
much of time you will have to think again about the
programming! It's not that difficult and I'm not after
straight copies of solutions that have appeared in
publications in the past. Oh, by the way - the computer is
not allowed to pause when it is “thinking” for more than
ten seconds. Do you think you could do it? Have a go
anyway and you could steal the limelight. The winner will
be declared in the September 1991 issue and the prize
will g to the person who can write such a game, and of
course - to put you under even more pressure - that
winner will be the person who provides the SHORTEST
successful program, and by shortest | mean the fewest
lines, not the least number of BASIC bytes. Please do have
a look at my program on the disk and base yours on that
one if you like (the method for checking if someone has
won can be vastly improvedy), but be sure to make it so
that your version doesn't allow the player to win. | will be
playing each entry 50 times over the weeks and any
where the computer wins (with me trying desperately to
beat it of course!) more than 45 times out of those 50 will
be eligible for the prize. Then it just comes down to who

LETTERS

wrote the shortest version. By the way, no cheating by
using extended BASICs or crunching programs that allow
extra long lines.

Please send you entries to the normal CDU Techno-Info
address (given at the end) but clearly mark your envelope
with the word CHALLENGE. Final judging will be done on
30th June 1991. 1f you can, please send a disk or tape with
your entry on. | guarantee that all will be returned within
about a week. Best of luck to you all!

THAT'S IT!

Unfortunately that is all we have space for this month, but
if you have any programming or hardware queries then
please don't hesitate to wite to us for assistance. Don't
forget to keep sending those tips in either, and be sure to
have a go at the Challenge if you feel up 10 it. Remember,
entries by the end of June please. The address for your
queries, tips or entries s as follows:

CDU TECHNO-INFO,
11 Cook Close,
Brownsover,

Rughy,
Warwickshire,
CV21 1IN

G.
See you all again in July.

We've gone mad and

Subscribe now . . .
fad < And Save £9 |
OR KICK YOURSELF FOR THE REST OF THE YEAR . ..
Commodore Disk User’s next twelve issues

‘ price of £30%if you live in the U.K. We will even post it to you

* Rates refer to subscriptions sent post free to UK addresses. Overseas rates on request.

are offering you the opporlunily of receiving
or the staégeringly low
ree as well.

‘ r N NN BN BN BN BB BN BN BN B B e ..
‘ Don’t Please commence my subscription to Commodore Disk User with the ... oL i ssue.
‘ Ienclose acl rdler for £. ble to ALPHAVITE PUBLICATIONS LTD. I
‘ or debit £.... from my Access/Visa Card No:
Delay 1 vaion EEHCENNEREREEEEE]

Name. I

Respond :

Post code

e B

SELECT SUBSCRIPTIONS LTD, 5 RIVER PARK ESTATE, BERKHAMSTEAD, HERTS HP4 TML. OFFER ENDS JUNE 26th1991

3———----——

ADVENTURING

ADVENTURE HELPLINE

JASON FINCH concludes his hel

Twelve months ago CDU started (he
Adventure Helpline series and today still
going strong thankfully. Another series sees
its first anniversary! Anyway, this month we
will conclude the detailed help of THE
ASTRODUS AFFAIR. Hopefully you will
notice the map of the craft that I have
provided here for you this month. It should
just give that extra bit of help to show you
where you are heading. If you have any
further problems relating to this adventure
or perhaps you have missed an earlier article
which gave details of solving the problem
that you are having difficulties with then
please write to me at ASTRODUS HELP, 11
Cook Close, Rugby, Warwickshire, CV21
ING. I'll then do what I can to sort out the
problem for you. This months dose of help
will guide you to the fuses, thus enabling you
to repair the damaged drive and set off into
space, having completed the adventure. Let’s
get on with it then.

ANOTHER DRYGAR

The fuses are contained within a safe in location
23. Upon entering that room you will be devoured
by a hungry drygar unless you are carrying a laser
gun. The initial problem is that the laser is out of
reach in the supplies room but this should have
been solved by the fact that the SLOFT grabs it
carlier and then discards it on the floor. You can
then pick it up from location 21, make your way
to cargo bay one, location 23, and fire the laser at
the drygar

THE DETAILS

From where we left off last month, location 4, you
should go NORTH, then NORTH again, DOWN
the stairs, WEST, SOUTH, DOWN to the bottom
level, and then WEST. You should then be able to
just GET the LASER. Then go EAST, SOUTH and
SOUTH. FIRE the LASER to kill the drygar.

p with CDU’s ASTRODUS AFFAIR

THE SAFE AND FUSES

Now you are free to open the safe by entering the
correct combination. If you read GONTRA’s log
book then you will have noted the entry
“COMBS3468279". You are told that this has been
scribbled out and so is not completely readable. |
will tell you that the combination is actually eight
numbers long. Think about the ‘S’ in “COMBS”
When you have opened the safe, veme\e the fuses
and make your way to the engine room, location
10. Change the fuse and then return to the middle
level and the control room. Press the two buttons
that you have previously been unable to press and
ou are away! Home and dry. If you want to do
that little bit on your own then please skip the
next section because I'm about to spoil the fun!!

EXACTLY HOW

Here’s exactly what should be done. The
combination is entered by inputting TYPE
53468279. The letter ‘S’ in the log book was in
fact the number ‘5'. Now you can GET the FUSE
Go NORTH, NORTH, UP, NORTH, EAST, UP, then
SOUTH, SOUTH and SOUTH again to reach the
engine room. Then CHANGE the FUSE and return
to the control room by going NORTH, NORTH,
NORTH, DOWN, WEST to cross-section A, WEST
again, and WEST once more. Finally, enter the
control room to the SOUTH. Now PRESS XX2V
and PRESS ZA7Q. The fuse is repaired, the
generator is on, the craft is stable and so you are
free to zoom off - “The Universe is yours for the
taking

THAT’S IT

Well there isn't really a lot more to
detailed solution - you should now
complete the adventure without
difficulty. Now we have finished with THE
ASTRODUS AFFAIR and so in August we will be
free to move onto something else. I shall hopefully

add to the
be able to
too much

34

ADVENTURING

THE
ASTRODUS

PROGRANMMING

i

jiit

Part 3 of our introduction to Machine Code gets underway
) Simpson.

Last Month saw us safely through addition, subtraction and
multiplication. I hope, with the use of either the trace
program, or using the ‘hand” trace method you are now
fully conversant with multiplication. This was designed to
help you understand such a typical program in complete
detail (extremely important when learning how to
program) and to help make you familiar with how routines
can be constructed and execute

MORE MULTIPLICATION

By now you should have familiarised yourself with an
understanding of how the shifts work. These are a fast and
reliable method of both multiplication and division so long
as the multiplicand or divisor is in powers of two, (2, 4, 8,
16, etc). Let's examine an example:

Program Segment:

100 LDX #2
110 LOOP

120 ASL VALUE
130 DEX

140 BNE LOOP

150 ; *** REST OF PROGRAM

In this program segment we need to multiply the variable
data byte called VALUE by 4. So in Line 100 we set the X
index to 2 and in Line 130 and 140 we shall decrement
the X and branch back to LOOP until X = zero - in this
case two iterations of the loop. The first iteration of the
loop will, at Line 130, shift all the bits of the VALUE byte
one place to the left, in effect multiplying its value by two.
On the next, and final, iteration we repeat the procedure
which multiplies by two the new version of VALUE byte
once again - thus VALUE has effectively been multiplied
by four.

You can see from this that by changing the value of the X
index we can multiply, by repeated shifts, the variable
VALUE by either 4,8,16,32,64,128. However, this can lead
10 a problem because the numerical quantity held in
VALUE may overflow after repeated shifting so we must
have a method whereby we can easily push the overflow
into a further byte. We do this by using the ROL
instruction. As the ASL instruction shifts a bit into the carry,
then the ROL instruction rotates this bit into another data
byte. The following is a short program which wil illustrate
this:

100 *=$C000
105

10 LDX #4

120 LOOP

130 ASL VALUE
140 ROL VALUE+1
150 DEX

160 BNE LOOP
170 BRK

180 VALUE BYT 128,0
190 END

If you assemble the program, then enter the monitor and
check the two data bytes located at $CO0C they should be
180 00 (Low byte = 128 ($80) and High byte = $00). Now
if you run the program, (G C000), and again check the two
data bytes at SCOOC they will now register as 00 08. In
other words the High byte is 08 and the low byte is 00.
‘The value being 2048 (S0800 in hex), which s the result
of 128 times 16.

Finally when you have multiplication by an odd number,
such as three it is a simple procedure to perform without
using the complicated multiply routines which, on the
whole, do tend to slow processor execution time. For
example:

TIMES 3

10 LDA POINTER ; LOAD VALUE TO BE
MULTIPLIED * 3 INT Ac

20 ASL A MULTIPLY * 2

30 CLC CLEAR THE CARRY READY FOR

ADDITION

40 ADC POINTER ; ADD THE ORIGINAL VALUE OF

POINTER

100 STA POINTER ; STORE THE WHOLE RESULT
ACK TO POINTER

TIMES 6 - Insert after 40 above

50 ASL A

And so on. Experiment with this idea and you will
discover that many multiplications can be performed very
rapidly with simple shifts and adds - but then, that is the
whole basis of the more complicated multiplication

routines.
DIVISION

Using the shifts for division is more or less the same as

36

multiplication except now we use LSR and ROR to shift
the bits in bytes from left to right.
As an example let us divide 300 by 4:

100
105;
10
110 LOOP

130 LSR VALUE+1

*=$C000
LDX #2 TWO ITERATIONS =

THE H\(‘H BYTE OF 300 (1°256

140 ROR VALUE THF I()VV BYTE OF 300 (300-
= 44 (52,

150 DEX

160 BNELOOP

180 VALUE BYT 44,1 ; (300 - $012C)
Run this program and after checking the data bytes at
$C00C the result held will be :00 4B or 75 in decimal.

Something more complicated, such as divide 427 by 41
will require more thought to construct a fast and efficient
routine, analogous to the multiplication routines of last
month. The divisor is successively subtracted from the
high order bits of the dividend, and after each subtraction,
the result is used rather than the initial dividend and the

value of the quotient is incremented by ‘1’ each time.
Eventually the result will become negative so we must
restore the partial result by adding back the divisor. At this
time the quotient must be decremented by ‘1’. Quotient
and dividend will be shifted to the left by one bit position
and the algorithm is then repeat

I'm going 1o let you experiment with this method and, by
comparison with multiplication, come up with a decent
routine to perform binary division. Just remember that it is
analogous to multiplication.

LOGICAL OPERATIONS

Another class of instructions which the ALU can execute is
aset of logical instructions, which include:

AND OR (ORA) and exclusive OR (EOR)
We shall be discussing these a litle further on.

We can include, in addition, the shift operations which we
have just been discussing, and the instruction which
allows us to make a comparison, namely CMP.

First a look at CMP.
Often we need the program to look at a variable data byte
and compare it with a value. As an example we may be
utilising memory location $C4 (196) to discover which key
the user is pressing at any given time. In Basic we might
write a subroutine such as:
100 K=PEEK(196)
4 THEN RETURN : REM NOKEY

NF=1 :REM FUNCTION KEY 1
THEN F=3 : REM FUNCTION KEY 3
1THEC=0 : REM CURSER UPDOWN KEY

37

PROGRAMMING

In Machine Language the same routine could be
developed by exploiting the CMP instruction, thus:

100 LDA196 ; CONTENTS OF LOCATION 196
110 CMP#64 ; VALUE IF NO KEY PRESSED

BNE SKIP1 ; NOT EQUAL TO 64, THEREFORE
KEY IS PRESSED SO SKIP

130 RTS ;1S 64 SO RETURN FROM THIS

SUBROUTINE

140 SKIP1

150 CMP#4 ; VALUE OF F1 KEY

160 BNE SKIP2 ; NOT PRESSED SO SKIP TO NEXT
EST

170 LDA #1 ; WAS PRESSED SO LOAD THE Ac

WITH 1

180 STAFUNC ; AND STORE AT DATA BYTE FUNC
190 RTS ;THEN RETURN

200 SKIP2

210 CMP#5 ;VALUE OF F3 KEY

Etc., etc
Anather example of comparison:

100 LDA#100

110 CMP DATABYTE
120 BEQ NEWPOS

130

140 NEWPOS

150 REST OF PROGRAM

But what is i, exactly, that i taking place here?

When the processor is instructed to make a comparison it
will compare the bits of the Ac with the value of the byte it
is making the comparison with. For example if we load the
accumulator with the content of memory location 196 and
the user has not hit a key then the bit pattern will be
‘01000000. Our first test was to compare this with the
value 64, the bit pattern being ‘01000000". because the
ccomparison of bits equalled each other then the ALU will

(1) the ‘Z’ bit (flag) in the Status Register (SR). If the
comparison of bits had not matched then the Z flag would
have been cleared (0). The next instruction test the Z flag -
BNE (Z flag = 0) or BEQ (Z flag =1), and branches or not
accordingly. And so it is we pass through a series of
comparisons until we hit jackpot!

SUBROUTINES

A block of instruction which have been given a name by
the programmer are the basis for the subroutine concept.
Unless the block of instructions is going to be used
repeatedly there would be very little point in using a
subroutine call and return instruction - this would simply
waste valuable processor time. Although | am stating the
obvious the advantage of subroutine calls is that the
programmer need only write the block of instructions once
and then use it repeatedly thus saving memory space and
simplifying program design.

The instruction which calls the subroutine is JSR (Jump to
Subroutine) and when the program execution reaches the

PROGRANMMING

end of the subroutine it reads the instruction RTS (ReTurn
from Subroutine). However, it must know where to return
to. It does this by placing (or pushing) the memory
location of the next instruction after JSR onto the Stack,
and when it reaches RTS, it then withdraws (or pulls) the
address from the stack and places this into the program
counter. Remember from earlier how | told you that the
program counter always keeps tabs on the actual memory
address of the program instructions as they are executed.
The PC is always pointing to the next instruction to be
executed. The processor uses the PC to know where it is
at, and so when an RTS is encountered the PC is made to
point back to where it was when the JSR was executed.
Most of the programs we have developed and are going to
develop during this series would usually be written as
subroutines. For example the multiplication routine would
be a subroutine which would be called from different parts
of the program, or many time from within a main
programming loop. It is therefore convenient to define a
subroutine whose name would be relevant to its action, in
this case MULT. At the end of the routine we would
emplace an RTS instruction (Line 210 in the multiplication
routine of last month)

Finally, other great advantage of structuring portions of a
program into identifiable subroutines is they can be
debugged independently, have a mnemonic name, such as
MULT, and can be saved independently forming a
comprehensive library. Thus, when you come to starting
another project you will already have a great bulk of the
programming detail complete before you even start!
Library routines can consists of such programs as
multiplication, division, add and subtract routines, sprite
manipulations, joystick manipulations, text printing
routines, scrolling effects, Interrupt algorithms, and etc.,
the list is almost endless.

BACK TO LOGICAL OPERATIONS

The classic logical operations are the AND ORA and EOR.
Let's look at each of these and clarify them more fully.

TRUTH TABLES

Each logical operation is characterised by a truth table
which expresses the logical value of the result in function
of the inputs.

LOGICAL AND

You will notice that the AND operation will return a ‘1" if
both operands are ‘1”. In fact the operation is
characterised by the fact that any other output will retum a
zero. We use this feature mainly to clear bit positions in a
byte, and it is commonly referred to as “masking”. For
example you might need to mask out the four left-most
bits, or high nibble, of a byte, and this could be achieved
by ANDing the byte with the bit pattern - ‘00001111’

38

LDADATA ; DATA CONTAINS 10101101
AND #%00001111 ; the use of #% is used to represent a
binary number.

The result of this would be to leave the Ac with the value
‘00001101

LDADATA ; DATA CONTAINS ‘10101101
AND #%10000001

Result ‘10000001

LDADATA ; DATA CONTAINS ‘10101101
AND #%01111110

Result ‘00101100

If you wanted 1o alter the content of data then the next
instruction would simply be STA DATA. One common use
of this method, for example, is when Sprites need to be
turned off

INCLUSIVE OR

The inclusive OR operation s characterised by the fact that
iff any one of the operands is a ‘1", then the result is to set
any bit in a byte to ‘1", The converse of the AND operation
and this is used when we wish to turn bits on.

LDADATA ; ‘10101101
ORA #%11110000

Result in Ac “11111101" - in other words we have turned
on bits ‘4’ and ‘6'. This operation can be used to tum
sprites on.

EXCLUSIVE OR

EOR stands for “Exclusive OR”. This differs from the
“Inclusive OR”, which | have just described, in only one
respect - the result is ‘1” only when one, AND ONLY ONE,
o the inputs is equal to “1”. I both inputs are equal to ‘1"
then the result is ‘0",

The EOR is used for comparison tests. If any bit is
different, the “exclusive OR” of the two bytes will be non-
zero. As well as this the EOR is used to compliment a byte
Since there is no compliment instruction. We do this by
performing an EOR of a byte using all bits set. For
example:

LDA WORD
EOR #%11111111

S WORD =“10101010'

Result in Ac ‘01010101” - the one’s compliment
AN EXAMINATION OF BRANCHES

So far we have been dealing pretty exclusively with only
wwo conditional branch instructions, namely BEQ and
BNE. I've already explained that the result of a compare
will either set or clear the ‘2" flag of the status register (SR).
Now we shall look at other instructions which can cause a
conditional branch.By conditional branch | mean a branch

S ik PN

to another segment of the program conditional upon a
certain test being performed and the branch resulting upon
the condition of that test. Unconditional branches are JMP
and JSR. No test is required and both instruction require a
sixteen bit memory address to jump to.

Testing is almost exclusively performed upon certain flags
of the Status Register. Let's look at these again:

| BREAK
| OVERFLOW SIGN
(NEGATIVE)

Tests are carried out on the Z, C, N, and V flags. We have
discussed the Z flag which is set if the result of a compare
is equal <BEQ> and clear if the result is not equal <BNE>.
We have also seen, when we used the shift instructions,
the C flag in use to detect the state of a bit shifted into the
Carry <BCC> or <BCS>. We also use the Carry flag to
detect the result of an addition or subtraction in that
should the value of a byte increase or decrease beyond the
byte parameters (0-255) then the C_Flag is set (addition) or
cleared (subtraction). Again we use this information to
conduct a branch, as in the following examples.

G LDA MEMADDRESS ; PLACE THE CONTENT OF
MEMADDRESS INTO Ac
CLC ; CLEAR THE CARRY BIT READY FOR
ADDITION ,
ADC #$28 ; ADD THE VALUE OF 40 TO THE A
STAMEMADDRESS ; PLACE IT BACK INTO
MEMADDRESS
BCC SKIP ; CHECK THE CARRY FOR AN
OVERFLOW, IF NO JUMP TO SKIP
INC MEMADDRESS+1 ; IF IT IS ADD 1 TO HIGH
BYTE OF MEMADDRESS
SKIP
Rest of Program...

EG.2 LDA MEMADDRESS ; PLACE THE CONTENT OF
MEMADDRESS INTO Ac

SEC ; SET THE CARRY BIT READY FOR
SUBTRACTION
SBC #3828 ; SUBTRACT 40 FROM THE Ac

BCS SKIP ; CHECK CARRY FOR UNDERFLOW,
IF NO JUMP TO SKIP
DEC MEMADDRESS+1 ; IF IT IS SUBTRACT 1
FROMHIGH BYTE OF MEMADDRESS
SKIP
Rest OF Program

The “N' flag s set whenever the result is negative in two's

compliment (this is signed arithmetic - see article

“Numbers and Bytes’, CDU Oct.90/Jan.91). In practise the

‘N’ flag is identical t0 bit ‘7" of a result, It is set or cleared

by all data transfers and processing instructions, This

means we can very conveniently, and rapidly test bit 7 of

the Ac, X and Y registers by referring to this flag. The two

PROGRAMMING

branch instructions which use this test are BPL (Branch if
result PLus), and BMI (Branch if result Minus). We can
exploit this, for example, during loop sequences of our
programs.

LDX #39
LOOP

LDA TMP
{@ien

ADC #2

STA TMP.

DEX

BPLLOOP
Here we will obtain 40 iterations of the loop. Each
iteration of the loop will decrement the X register until it
reaches zero where on the next iteration it will flip the
register to 255, thus setting the ‘N’ flag, and making the
truth in the branch (BPL) false and executing no more
branches. Because the N_flag is set/cleared dependent
upon the 7th bit, it follows, when using this bit to
determine if a countdown has dropped below zero, that
the start value of the count must be lower than 128 ($80).
This flag also gives us a useful 3-way switch. A byte can be
set to either 0, 1, or 255. An example of this in use is to
use a byte to reflect the state of a joystick direction. DY = Y
direction of joystick. If DY = 0 then no action if DY = 255
then LEFT else RIGHT.

BEQ RETURN
BMI LEFT
RIGHT

RTS
LEFT
RETURN

RTS

Finally the “V’ flag, or overflow. When we are dealing
with signed arithmetic bit 7 is used to indicate either a
positive (bit clear), or negative (bit set), number. This
gives us a numerical range within a byte of -127 to
+128. When we perform math on bytes, we need to
detect when the value overflows the range, much the
same as we use the ‘C’ flag. Now, however, we use bit
6 to indicate that the result of the addition or
subtraction of two’s compliment numbers might be
incorrect because of an overflow from bit 6 to bit 7,
i.e., the sign bit. This technique is fully explained in
the before mentioned articles, Numbers and Bytes.
During the normal course of programming it is a
branch that is not often used.

ADDRESSING TECHNIQUES

It is now time to switch our attention to a general theory of
addressing techniques which have been developed in
order to retrieve data.

89

PROGRAMMING

Because the 6510 has no 16-bit registers, apart from the
program counter, it is necessary for us, as programmers, to
understand the various addressing modes available, and in
particular the use of the X and Y index registers. At first
sight some of the retrieval methods might seem complex -
but, like all things - it can only get easier with practise!

1. IMPLIED ADDRESSING - This is where a single byte
instruction, such as TAX, operates upon an internal register.
It doesn't require the address of the operand on which it
operates. Rather, its opcode specifies one or more internal
registers. as an example, TAX transiers the contents of the
accumulator into the X index register.

Instructions which operate exclusively inside the 6510 are

CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED,

SEI, TAX, TAY, TSX, TXA, TYA.

and - BRK, PHA, PHP, PLA, PLP, RTI, RTS are instructions
which require memory access.

2. IMMEDIATE ADDRESSING - As you now know, the
6510 has only 8-bit working registers (the program counter
(PC) is not a working register), and so all immediate
addressing s limited to 8-bit constants. This means that all
instruction are two bytes in length. The first byte is the
opcode, and the second byte will contain the data. An
example of this could be ADC #25 - The Opcode and first
byte is ADC and the second byte contains the literal value
of 25 to be added to the Ac.” LDA #255 First byte and
Opcode is LDA and the second byte is the numerical value
of 255 to be contained in the Ac.

Instruction using this mode are: ADC, AND, CMP, CPX,
CPY, EOR, LDA, LDX, LDY, ORA, SBC

3. ABSOLUTE ADDRESSING - Here three bytes are
required. The first byte is the opcode, and the next two
bytes make up the 16-bit address specifying where the
operand is located. LDA $2000 specifically tells the
processor to copy the data contained in address $2000
and deposit it into the Ac. By now I'm sure you are aware
that the two bytes following the opcode are in High/low
byte order - this means that the three bytes, shown in hex,
occupy memory thus:

$C000 A9 <instruction mnemonic - opcode>

$C001 00 <low byte of 16-bit address>

$C002 20 <high byte of 16-bit address>

Absolute Instructions are: ADC, AND, ASL, BIT, CMP,
CPX, CPY, DEC, EOR, INC, JUMP, JSR, LDA, LDX, LDY,
LSR, ORA, ROL, ROR, SBC, STA, STX, STY.

4. ZERO-PAGE ADDRESSING - In this mode, which is in
essence the same as Absolute, only two bytes are required.
The first, as usual, is for the opcode and the second is an
eight-bit address. The first 256 memory locations, as you
can see, are contained within a single byte (00-FF). Now
this offers us with very significant speed advantages as well
as shorter code and it should be used wherever possible.
However, this does require very careful memory
management by the programmer. Viewed generally, the
first 256 locations can be seen as a set of working registers
for the 6510, and any instruction will execute on these 256
“registers’ in just three clock cycles. This space, because of
its limited size, should therefore be reserved for essential

data which requires high-speed retrieval. The system itself
makes extensive use of zero-page, especially for the Basic
Interpreter. We will come back to the zero-page concept
shortly.

Zero-page instructions are the same as absolute with the
exception of JMP and JSR.

5. RELATIVE ADDRESSING - This method uses two bytes,
the first of these is a form of jump instruction and the
second specifies the displacement and sign. To differentiate
from the normal jump instruction, these are labele
‘branches’, and always use the Relative Addressing mode
(plus other sub-modes such as Indexed and Indirect -
discussed shortly). The timing of these instructions is
flexible depending on certain criteria - for example, when
a test fails and no branch occurs then only two cycles take
place but if the test is successful then three cycles will
occur, however, if the branch crosses a page boundary
then a further cycle is added bringing the total to four.
Usually we are not too concerned about this but if the
branch is a part of an exact or critical timing loop then
caution must be exercised.

The displacement of the branch is +128 bytes forward
from the instruction or -127 bytes backwards. Let's
examine a couple of examples to show this more fully:

EG.1 .. BYTECOUNT OF DISPLACEMENT
BEQ SKIP ($05)
LDA #1
STA $4000
SKIP

, 0
02,03, 04

EG2 00
LOOP.
ADC #40 B
STA$1234X FC FD, FE
INX
BNE LOOP ($FA)

Instructions which implement Relative Addressing are the
branch instructions which test flags within the Status
Register (SR): BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS.

6. INDEXED ADDRESSING - As you know the 6510 is
equipped with two index registers, the X and the Y.
However, these registers are limited to 8-bits thus the 6510
only supplies us with a limited capability of indexed
addressing. What actually takes place is that the index is
added to the address field of an instruction: STA $1234,X
which means STA $1234 + whatever the value of X might
be.

LDX #2
LOOP
1

XA
STA 1234,X
DEX
BPLLOOP
Result at end of loop Location $1234 = $00

Location $1235 = $01
Location $1236 = 502
A

X Index = $FF
Frequently one or the other of the index registers is used as

40

a counter in order (0 access elements from a table of data.
Usually most tables are less than 256 bytes long and so
problems do not occur. If the table is longer than 256
bytes then an alternative indexing algorithm must be used
which will increment the high byte of the table address
once the Index flips back to zero.

The indexed addressing mode can also be used with the
zero-page addressng mode, .., with an 8-bit adcress

eld.

il fecucons whih may use this mode are: (With
X ADC, AND, ASL, CMP, DE IR, INC, LDA,
LSR, ORA, ROL, ROR, ‘SBC, 'ﬁfr\ (With Y index)
AND, CMP, EOR, LDA, LDX, ORA, SBC, STA.

LL
ADC,

7. ABSOLUTE INDIRECT - There is only one instruction
in this mode, namely JMP. An indirect jump transfers
program flow control 0 a new address. It isn't used that
much by programmers due to a ‘bug’ in the 6502’ series
chips. If the indirect jump address s located on a page
boundary - for example S40FF - program flow will be
transferred to an erroneous address. How does it work?
Suppose that the first two bytes of zero page contain the
value 34 80 and you used the instruction JMP ($0000) this
would have the same affect as using JMP $8034. This
instruction is useful when a table of addresses (such as the
three vectors at the top of memory) exist in a block. For
example the reset vector at $SFFFC and $FFFD can be
called by JMP (SFFFC). Or, if you use your monitor to
look at the ROM load routine situated from $F49E you will
see at $F4A2 the instruction JMP ($0330), now by
checking the vector address at $0330 and $0331 you will
find the byte values of $A5 and $F4, or address $F4A5
which is the next address after the indirect JMP instruction.
Can you figure out why the program is constructed like
this?

8. INDIRECT INDEXED - In this mode the content of the
Y Index register is added to the zéro page address to
retrieve the final 16-bit address. An example of this is
LDA ($00),Y. This means that the accumulator is loaded
from the address of the consecutive zero-page bytes offset
by the value of the Y index. Let's look at a more detailed
example. We really need to understand this concept
thoroughly in order 1o create successful programs 1o shift
Jarge quantities of data.

90 CLEAR

LDY #0
LDA #4
STY $FB

STA (SFB),Y

INY
BNE LOOP
INC ($FC)
LDA S$FC
CMP #8
BNE LOOP

RTS

“In lines 100 to 130 we have loaded two zero-page
address, namely SFB and $FC with the values of 0 and 4
respectively. What this means is that we have loaded the
screen's base address $0400 into high/low order zero-page

41

PROGRANMMING

bytes. Using the monitor to view locations $FB and $FC
we would see:

M:; 00FB 00 04 00 00 00 00 00 00

Line 140 labels our branch as LOOP.

Line 150 now loads the accumulator with the value of 32
which is the ASCII representation of a space.

Line 160 stores the value held by the accumulator into the
16-bit address in SFB/FC (00 40) which is $0400 offset by
the value of Y. We know that at the start of the loop Y was
equal to zero from line 100. So we store 32, or a space, at
the top left comer of the screen $0400 + 0 (Y)

Line 170 and 180 increments the Y register and tests to
find out if it has counted through 256 iterations and
arrived back at zero - if not then we branch back to loop
and deposit another space on the screen (0400 + Y). If Y
has flipped back to zero then the program drops through
10 line 190.

Line 190 increments the zero-page location, and the high
byte of our screen base address, $FC. If we didn't do this
then when the program branches back to loop it would
proceed to deposit a space back at $0400 which we don't
want, so by incrementing the high byte it will now deposit
spaces from $0500 + Y. Pretty obvious, eh!

Line 200 loads the Ac with the value currently held in
$FC.

Line 210 compares this with 8. We must stop the loop
once the screen is full of space characters otherwise it
would continue filling memory locations in our
programming area ($0800 onwards) with 325 - this could
be disastrous!

If you want you can change the space character at line
150 for any other to fill the screen with

This is not the best solution for filling the screen with any
particular character because with this routine we filled
TKbyte of RAM with a character. The screen area is only
1000 bytes long, and 1Kbyte is 1024 bytes. Those extra
24 bytes just happen to be where the sprite image pointers
are located. So, if we are using sprites in our program then
we must take this into account when using a screenfill
foutine.

However, | hope that this example demonstrates the use of
Indirect Indexed Addressing. Permissible instructions are:
ADC, AND, CMP, EOR, LDA, ORA, SBC, STA.

9. INDEXED INDIRECT - LDA ($00,X) This mode adds
the content of the X index to the zero page address to give
a final 16-bit address. Suppose the first four bytes in zero-
page are 37 64 8B 42 and that X index contains the value
of ‘2. Then LDA ($00,X) would be the same as LDA
$428B. This instruction is very useful when zero-page
contains a table of pointers. We shall deal with this at a
later date.

Instructions used with Indexed Indirect are
CMP, EOR, LDA, ORA, SBC, STA.

ADC, AND,

FINALE FOR THIS MONTH

Well, that's it for this month - next time we will move
deeper into the programming pond when we start to
create actual and worthwhile routines which can be saved
into a subroutine library.

ON THE DISK

FRANTIC

As they say in the Royal Navy, if it moves - Blast It, if
it doesn’t - Salute It

ROY FIELDING

FRANTIC is one of those good old each level has two stages. The first
fashioned Blast everything that stage is where battle against the
moves type of games. You are in enemy fighters takes place, and stage
control of your trusty space fighter two brings you in confrontation with
and you must battle your way the Alien.

through wave after wave of enemy

forces. Plug your joystick into Port 2 and let
battle commence.

The game consists of four levels, and

CoOMPU T E R

IN‘TELLIGE;NC'E\

[Aspects of Computer Intelligence explored STEVEN BURGESS]

A computer in its raw form cannot really do a great deal in the ideal world we have sufficient information to
in the nature of intelligence. In actual fact it can do come to or answer it. We think, say, of CAT and
nothing. It is vastly stupid, in this respect. immediately MAMMAL and FOUR LEGS enter our head
In order to implement a form of artificial intelligence on ~ So if the question was DOES A CAT HAVE FOUR LEGS?
a computer we must first establish how real intelligence ~ we could answer YES. But if the question DOES A CAT
works. How WE come to conclusions. HAVE TWO LEGS? were posed, what do we do then?
This article and its program concentrates only on the Our mind has in it MAMMAL and FOUR LEGS and we
factual type of intelligence and not on compromisial ~scan through that and do not come across TWO legs.
decision making. Thus anything that the computer can Why do we not answer | DON'T KNOW?

tell you is based entirely on what it knows. If it not sure -

it does not have enough information or none whatsoever

- an answer will not be given, it will simply report | MUTUAL EXCLUSIVITY
DON'T KNOW.

We all know that we would answer NO to this question

and may even further it by adding A CAT HAS FOUR

HOW DO WE DO IT LEGS. This is because A CAT HAS FOUR LEGS and a

CAT HAS TWO LEGS are mutually exclusive responses.

When we have to make a decision or answer a question, A cat cannot have only two legs and only four legs at the

42

same time. It must have one or the other. So if our
memory tells us that a cat has FOUR LEGS we can
assume that a cat does not have TWO LEGS. If of course
the question was a trick question then we would have to
think again. A cat which has four legs most definitely
does have two legs. It has two sets of two legs, in fact.
But we, as humans with many sensory perceptions, can
usually tell if the question is going to be a trick question -
and if we can't we get the answer wrong unless we are
unbearably pedantic when we will be looking for these
potential tricks in questions which may not be intended
as tricky.

Even by that simplistic answer we can see that the
concept of intelligence, even on a fundamental level, can
be a very complex one indeed. Not so much for us, but
for a computer and a computer programming it can seem
almost an unscalable mountain.

ON A COMPUTER

To implement artificial intelligence on a computer we
must have an intelligence base. We must have a memory
which has information stored in it. Let us take the animal
facts example further.

We could have a two dimensional array storing the
subject and attributes which that subject has. So we
could store:

A$(0,0)="CAT":a$(0,1)="MAMMAL":a$(0,2)="FOUR
LEGS”

and printing out the contents of record 0 would display
all the information on cats:

aCATisa
MAMMAL which has
FOUR LEGS

S0 when the user asked DOES A CAT HAVE FOUR LEGS
the computer would scan through the first field of each
record until it matched CAT then it would scan through
the other fields until it matched FOUR LEGS and if it
matched it, which it would, it would reply YES. But, if we
asked DOES A CAT HAVE TWO LEGS the computer
would match for CAT then try to match for TWO LEGS
but it would never be able to match so it would reply |
DON'T KNOW. It could not reply NO because it doesn't
know the nature of the data stored and cannot tell if
TWO LEGS and FOUR LEGS are mutually exclusive.
Unlike us, the computer cannot tell from how the
question is asked if it is to be a trick question and even if
it could the data isn’t quantified so it doesn't know that
TWO is less than FOUR so it could not answer the trick
question. It would claim ignorance.

We could field typify each field so that there was a
specific field for number of legs, a specific field for
animal type etc so the record would be like this:

RECORD 0

43

FEATURE

ANIMAL : CAT
TYPE : MAMMAL
LEGS : FOUR

So when the question DOES A CAT HAVE TWO LEGS
the computer could answer NO because it now knows
that the animal has FOUR LEGS, because it is aware of
the nature of the data.

This causes problems when we wish to enter a bird into
the knowledge base:

RECORD 1

ANIMAL : BUDGIE
TYPE : BIRD
LEGS :TWO

If asked DOES A BUDGIE FLY the computer would be
incapable of telling us because it has no data on ability to
fly. It would say I DON'T KNOW. You may say that the
computer could take the fact that the animal is a bird and
deduce from this. that the animal could fly. In this case
the computer would reply YES. Let us enter another bird:

RECORD 2
ANIMAL : EMU

TYPE : BIRD
LEGS :TWO

CAN AN EMU FLY? Well of course it can, would herald
the computer, it's a bird, isn't itZ | think you see the
problem.

Here it would be necessary to add another field to the
record : CAN FLY? This is okay, but when we begin to
add animals with more peculiarities it is going to be
necessary to add more and more fields to make their
entry more comprehensive and questions more
answerable. If not the computer is going to be making
generalisations based on other entries - “Of course a
dolphin is a pet - it’s a mammal isn’t it?” and so on.

THE ANSWER MY FRIEND

..is blowing in the trees. The answer is blowing in the
trees.

I don't propose delving to deeply into the structure of
trees, there have been articles written already to do that,
lets just say that trees provide the ideal data structure for
our non-compromisial intelligence base. From now on in
1 will call it a deterministic intelligence base - a) because
it is easier and b) | don't actually think non-compromisial
is a word.

Trees operate on a top down structure and branch out
rather like... well rather like trees, really, except upside
down. You start at the top where there is a question. If the
answer is YES you branch to the left, if it is NO you
branch to the right. This method of data storage is much
more desirable because data gets sorted automatically
into groups. The problem is the data cannot be typified

FEATURE

50 the computer will not know when terms are mutually
exclusive. Consider this diagram
HEHHHHBURN
MAMMAL?
Y ##H#HpaaE N
#

#
e D i
CAT # #BUDGIE
A B

If the animal is a mammal then it will be stored on the
left hand side, if it isn't it will be stored on the right hand
side. You can split these up further and further so you
could have a great many different branches - one for
mammals with four legs, one for birds, reptiles and so on.
You could go on forever and ever. The article CONCEPTS
OF DATA STORAGE IN BASIC PROGRAMMING also
wiitten by me had a fun program which stored animals in
a tree. You have to think of an animal and the computer
will ask you questions about it and then guess what
animal you were thinking about. This is deterministic
reasoning

The problem with that program was that you could not
interrogate the computer, it had to interrogate you. A
much more versatile and less tiresome method of finding
things out would be if you could interrogate the
computer with questions like IS A CAT A MAMMAL. This
would have to be made into a more easily
understandable sentence for the computer - unless we
programmed a parser, but a syntax such as
CAT.MAMMAL? to which the computer would reply YES
or TRUE, would probably be acceptable. But what would
we have to do to be able to do this?

The animal facts program - which is reproduced on this
months disk for your perusal - is a top down structure.
You can only go from the top down. S0 you can only go
from question o answer. For the above to work we need
10 be able to go from answer to question. So if the answer
is CAT the computer should be able to tell us that a CAT
is a MAMMAL by back-tracking through the tree.

But binary trees (see article mentioned earlier) by
definition are top down. To combat this problem we have
to use a different type of tree. We have to use a tree
which has pointers which point 1o the element before.
When this has been done we simply have to search
through the entire knowledge base sequentially and then
backtrack checking appropriate data and making
decisions dependent upon the question asked. Consider
this simplistic tree.

1 MAMMAL?
Y exite N

2 FOURLEGS? 3 BIRD
Yoo N

So if we asked the question 1S A DOLPHIN A MAMMAL?
The computer would search through the entire array until
it found DOLPHIN then it would backtrack to the
element from which dolphin came. It would see that the
No pointer takes it back to dolphin so it would know that
a dolphin doesn’t have four legs. It would backirack
again and see that the LEG question came from the YES
pointer so it could then answer YES to the question. YES
a dolphin is a MAMMAL. If you asked it DOES A
DOLPHIN HAVE FOUR LEGS? It would answer NO
because it would be able to see that DOLPHIN came
from the NO pointer of the FOUR LEGS? question. The
same is true of IS A BIRD A MAMMAL? The computer
would find bird in its list and backirack to the question
before. It would see that bird came from the NO pointer
and answer NO - a BIRD is not a MAMMAL.

“The pointer system for a binary tree involved the use of
two pointers - one for YES one for NO. The pointer
system for this traversable tree needs three pointers. One
for YES, one for NO and one to indicate where the node
is connected to. So the stored list for the above tree
would be:

n NAME YESp NOp FROMp
1 MAMMAL 2 3 -1
2 FOURLEGS 4 5 1
3 BIRD e
4 CAT SliieeYpiga
5 DOLPHIN -1 -1 2
When YES and NO are both -1 it means it is a terminal
node - there is nothing else after it. When FROM is -1 it
means that the beginning of the table has been reached.
Whenever | am programming knowledge bases | am
usually at a loss as to what to store in them. The animal
examples are fine and are great fun for children, but they
don’t really serve any purpose. You could store
information about famous people in them, | suppose, but
this still would provide only for fun use. One place
where these deterministic systems are often used is in the
car maintenance field and in chemistry, but | am clueless
about both of these subjects. So, for the purposes of this
article and its program | decided to do it on famous and
historical people. The database is not really huge, but it
serves as an example. You can ask questions like was
Hitler Mad? and is Forsyth funny? For some reason
beyond my comprehension the computer has a very evil
stance and tends to make fun of everybody. | can't think
why.

HOW TO USE IT.

When the program has loaded, it takes less than half a
minute, you can load in the dema file by selecting option
4 and then typing CELEBS as the filename.

Y S, 1...ADD TO INTELLIGENCE BASE
s 2...INTERROGATE
DETAIL
4 CAT 5 DOLPHIN bl 2
44

5...SAVE

6...END

This program is an extension to the animal facts program
as it allows you to interrogate the base with questions. It
does not test for mutual exclusivity and it is essential to
get the spelling of all words absolutely correct and add a
question mark to questions.

Option one should only be used to create databases of
your own invention. You cannot add to existing complete
bases as the pointers are not changed and any base
which you add will be standalone and inaccessible.

When you choose option one you will be asked the
following questions:

ENTER CONTENTS?
ENTER TRUTH POINTER?
ENTER FALSE POINTER?
ENTER BACKTRACK?

for contents you must enter either a question or an
answer. I it is an answer you must enter -1 and -1 for the
T & F pointers. For the backtrack you must, in all cases,
enter the element which accesses this element. If you are
on the first element enter -1

You can probably see from this that it is necessary to
design your knowledge base first. You will need a large
piece of plain paper and a pencil in order to do it. You
simply design it in a tree like structure and number each
element sequentially.

If you enter a question you must enter the elements to
which control will go if the answer is TRUE and if the
answer is FALSE - these are entered in the TRUTH and
FALSE pointers respectively.

INTERROGATE

To interrogate the knowledge base you simply
have to type in a question which the
computer will try to answer. The question
must be simplified and must be composed of
SUBJECT.QUESTION?

So to ask IS FORSYTH FUNNY you would
type:

FORSYTH.FUNNY?

to which the computer would reply NO. It
isn't necessary for questions/answers to be
one word providing they question and answer
are separated by a . It certainly makes it
easier if they are kept as simple as possible,
however.

If the computer has insufficient information
to answer you it will reply | DON'T KNOW.

FEATURE

DETAILS

This option allows you to see what a person is. So typing
FORSYTH would list:

FORSYTH IS

TOUPEE?
NOT FUNNY?
NOT MAD?
MAN?

you should ignore the question marks. The above means
Forsyth is not funny, has a toupee, is not mad and is a
man.

Well that is it, I'm afraid. | hope you find the programme
fun to use and you may even find a use for it. Goodbye:

DIAGRAM 1.0

here is a list of people contained in the knowledge base:

HITLER (Adolph)
KINNOCK (Neil)
HOLNESS (Bob)
FORSYTH (Bruce)
CHARLES (Prince)
MAJOR (John)
SHARPE (Tom)
ARCHER (Jeffrey)
WOODHOUSE (Pelham Grenville)
FRY (Stephen)

LAURIE (Hugh)
WOOD (Victoria)
THATCHER (Margaret)
CURRIE (Edwina)
FRENCH (Dawn)
SAUNDERS (Jennifer)
QUEEN (The)

and the questions

MAN?
MAD?
WELSH?
FUNNY?
TOUPEE?
NOVELIST?
RUDE?
ROYAL?

TALL?

PRIME MINISTER?
WOMAN?

IN GOVERNMENT?
WAS PRIME MINISTER?

FAT?
SINGER?

45

ON THE DISK

MONSTERS!

Buying Stocks and Shares was never like this

DARREN COOK

Monsters! is an easy to use fantasy
strategy game in which you can buy,
sell and improve MONSTERS to fight
with other MONSTERS for cash
prizes. The aim of the game is to take
control of the TWELFTH MONSTER,
usually named CYBILL, and earn over
2000 credits so that you can retire.

BY Darren Gook

LLL errzons can Be rexrormEs By

THE_Four runcTIon Kevs' o

70 FrO 7O THE

A rurlr:‘rxnu can'Be
DISFLAVE

e srace Bar
ScenE 7o
SeSE aven®

e e T FacE THES WELL

INSTRUCTIONS:

CHOSEN THIS WILL & BE

pressen TC
BE

FKEYS MAKE IT EASY

The game has been set out in such a way that it should
be easy o grasp for beginners and experts alike. All
options can be performed using the FUNCTION keys or
the SPACE BAR. When a function key must be chosen,
“CHOOSE:” will be displayed. When the SPACE BAR
should be depressed to proceed onto the next page of
text “SPACE:” will be displayed.
You begin the game with 100 credits. The PURCHASE
(ONSTER menu will be displayed. This is because you
need a MONSTER before you can use any of the other
options. All options can be selected from the MAIN
ENU.

ezl
NEXT Pack OF TEXT.WHER

OPTIONS AVAILABLE

F1 - PURCHASE MONSTER

There are 12 different MONSTERS each with their own
different traits or characteristics. The higher the traits of
a MONSTER, the better fighter the MONSTER will be.
You can purchase any MONSTER which you can afford
but you must have at least 1 credit to play the game.
Therefore, you cannot purchase JOYTRICK on your first
turn.

F2 - IMPROVE
MONSTER

You can increase any of your
MONSTER's traits for 10 credits. The
value of your MONSTER increases by
5 for every additional trait. You can
reset your MONSTER's traits to what
they were when you entered the
IMPROVE MONSTER menu. You are
refunded the difference of the present
cost of the MONSTER and the original
cost of the MONSTER.

46

PURCHASE MONSTER.
IMPROUE MONSTER.

PURCHASE WEAPONS.
RENAME MONSTER.
SELL MONSTER.
SUMMARY OF MDNS‘IER.
FIGHT MONSTI

START HGRIN

F3 - PURCHASE WEAPONS

To increase your MONSTERS fighting potential, you are
entitled to purchase different weapons. You are allowed
up to eight weapons, but only one can be used in a fight.
For more powerful weapons your MONSTER needs o
have certain traits to use the weapon properly. Without
these traits or the correct cash you cannot purchase the
weapon. The weapons are categorised into four different
types. PHYSICAL CONTACT WEAPONS, PROJECTILE
WEAPONS, PHYSICAL IMPROVEMENT WEAPONS and
MIND WEAPONS. Certain types of weapons work better
on different MONSTERS. Please note; K.Duster is short for
Knuckle-Duster, Gs Milk is short for Girafe’s Milk and
B.8 Food is short for Body-Building Food.

F4 - RENAME MONSTER

You may, if you wish to, alter the original name of your
MONSTER. This name will stay the same throughout the
game, even if you sell your MONSTER.

F5 - SELL MONSTER

If you want to change your MONSTER for
some reason, then you must first sell your
MONSTER. Your MONSTER will be sold for it's
present value and any weapons which you
might also own will also be sold for a
percentage of their original value. The traits of
your sold MONSTER will remain the same
once they are sold but it’s value will go up, or
down, like in all buy and sell situations.

F6 - SUMMARY OF
MONSTER

ON THE DISK

F7 - FIGHT MONSTER

Using this option, your MONSTER will be able to fight
other MONSTERS, there are four stages;

1) Choose the weapon you wish your
MONSTER to use in the fight. If you do not
own any weapons, then your MONSTER will
just use it’s body.

2) Choose an opponent. If you fight the
MONSTERs which have higher traits, then
if you win, you will earn more money.

3) You are then offered the chance for your
MONSTER to be re-vitalised. When you
purchase a MONSTER it is only at 90%
ealt

4) Finally, you are offered a defence for your
MONSTER. This s tly reduces the risk
ot 1bosiigib AN ESHEC FathEN expessivaNThe
stronger the opponent compared to your
MONSTER, the more expensive the defence
is.

When the fighting sequence commences, you will see
your MONSTER on the leit part of the screen and it's
opponent on the right. The health values of both
MONSTERs are displayed at the top of the screen. As
each MONSTERs’ health decreases so will it. If your
MONSTER wins the fight then it's heaith will be re-
vitalised and you will receive a cash prize. However, if
your MONSTER loses it will be taken away from you by
the doctors, it will be resurrected and put on the market
for a higher price, leaving you with no MONSTER.

F8 - START AGAIN

you are doing rather badly then you might wish to start
(\p,mn Your will be queeried before starting again

CREDITS:

NAME: COST:
SEWAGE

GVBILL

A summary of your MONSTER will be
displayed, " including; current value of
MONSTER, trait levels, battles won and
weapons owned.

CURSOR _UP
FURgHﬁSE MONSTER

FEATURE

We look at DIY PROGRAMMING

and in particular a DATABASE J

Steven Burgess

It's very nice, once a month, to be able to buy CDU and
have access to top quality programs without having to
type them in or write them ourselves. Nobody could
deny it. Is the most beautiful concept in the world. But
occasionally it is nice to write ones own program. To
unleash the creativity inside each and every one of us.

But when we get down to it we sit at our desks, look
at the screen, stick out our tongues, vomit and burn
down the house. Ever happen to you? Eh? (Oh well it
must just be me then...)

Anyway, you know what | mean. The ideas just aren't
a flowing. Everything you think of seems to have been
done so many times. And, of course, it has.

But here help is at hand. In this occasional series I will
be presenting program plans for the popular program
forms for you to go away and program. Then you will
have a good program which you can say you have
written and which, maybe, you could customise to your
own requirements. This month | start with that old
cowboy, the DATABASE.

People usually groan and then commit suicide when
someone says the word database. “Oh my good golly
gumdrops,” they groan, plunging a carving knife into
their chest, “another database.” But | promise you that
they really aren't as dull as they appear everytime you
look at them. With a little thought your database can
become an exciting database or even, dare | say, a
database.

With a little thought the database can hecome
interesting. Even useful. And heaven itself to use.

THE PLAN

So here follows the plan for the ideal database. When
writing your own you may, of course, deviate from this
plan to include bits you need or get rid of bits you don't.
That's the beauty of the system.

Before you start you must decide upon the user
interface which you are going to use. There are
numerous which can be used alone or combined.

There is the menu system which is very easy to use for
the beginner as all the options currently available are
laid out if front of him and all he has to do is press a key.

There is the command line method which, because of
its unnecessary complexity, is very little used. The basic
idea is that, from a command line, the user enters

48

commands to carry out options which may have been on
a menu. For example he may type

SEARCH: (3:STEVEN)

which may have searched through the file looking at
field 3 for the data STEVEN, and so on.

And there is the windows environment. This often
incorporates the use of a mouse which, just as often, is
not wise as a mouse usually jams up certain keys on the
keyboard. And when you are typing data in with the
keyboard, it is a bit of a pain having to pull out the
mouse and then plug it back in to select an option. But
still, windows offer the most attractive method of
interfacing. They are clean and uncluttered and very
satisfying to use.

Personally | would opt for windows and menus - each
time you call a window you are presented with a menu
the options from which are selected by pressing a key
rather than clicking a mouse.

Of course, some of you may not be able to program
windows as it is necessary to save the screen each time
one is called. | would not be able to do it were it not for
LASER BASIC which is most obliging with regard to
saving text screens into memory. S0, for those of you
who cannot do this, the best choice is probably menus.

It is a good idea, rather than having every option on
one menu, to have the options put into special menus
which contain other related options. You could have a
DISK menu. a PRINTER menu a SEARCH menu and so
on. But before you can allocate options to menus you
must have options o allocate.

WHAT'’S IN?

There are certain options which are absolutely essential.
These are listed thus:

CREATE DATABASE : This is where the fields are
entered and the number of records required is entered or
calculated. Then the database is dimensioned in RAM or
is stored as an empty relative file on disk

ADD RECORDS : This option allows the entry of
records which can be stored sequentially or by a

calculated mapping function (these will be discussed
later). The data, again, is either placed in RAM (in an
array) or on disk at the appropriate position.

AMEND RECORDS : Errors always occur so it is vital
to have a way of rectifying them
allow for the amendment of any of the fields (which may
cause problems with mapped databases).

This option should

DELETE RECORDS : If Mr Smith dies or moves to the
moon then his subscription must be cancelled. He must
be deleted from the database. Again, this may cause
problems with mapping functions

SORT : Perfectionists amongst you will want your
database in a nice ordered list. The sort option will do
this. Mapped databases cannot accommodate a sort. And
with disk based although they can
accommodate it, a sort may be impractical

databases

SEARCH : This is where you can find out how many in
your database wear disposable wigs or plastic trusses
The search option is an essential part of any database
They cause no problems with mapped databases
(hurraht)... well just a minor one (discussed later). They
can take ages with disk based bases.

SAVE : You must be able to save your database,
otherwise what is the point? Saving is usually automatic
with disk based databases: With mapped databases either
the entire database must be saved - with all the gaps - or
the database must be compressed - which takes some
time

LOAD : What is the use of saving it if you can't load it
at a later date? Mapped bases need to be decompressed
during loading.

PRINT : Although this option is not really essential
most people like to have it there. It's useful to be able to
print out records for, say, mailing lists and what not

Include all of those options and you will have a
database which nobody could really raise their nose at. It
has all the elements required for a simple data storage
and retrieval system. What more could you want?

Well you could want a great deal more, that's what

However, before | tell you what more you could have,
1 will ease your minds about mapping functions,

From the above list of functions you would imagine
that mapping functions are simply more bother than they
are worth. You can’t sort them, you have problems
deleting from them and amending them, you need 1o
compress and decompress them etc etc

But what, | hear you cry, is a mapping function?

FEATURE

MAPPING FUNCTIONS

A mapping function is an equation whose result returns
the location into which a piece of data should be put. At
the simplest level, this equation: loc=data

where loc is the location and data is the entered data. Of
course in this instance the value of data would have to be
within strict limits and it would have to be numeric. So if
you entered HELLO, you would get an error. If you
entered 1, then the data, 1, would be stored in location 1
of the database. If you entered 9 then the number 9
would be stored in location 9 and so on

In practice the equations are rather more complicated,
as you might imagine. It is necessary for the equation to
equate alphanumeric data rather than just numeric data.
So you would have to devise an equation which read,
perhaps, the ASCII values of the data or whatever. Then
the data is stored at the location determined by the result
of the equation.

50 with a database you would perform the calculation
on a key field - which must be chosen and then is set
permanently. This would determine where the data
would be put. Then, when searching, the key field only
needs to be entered, the same equation is performed so
the same result is obtained and the computer knows
immediately where to look for the piece of information,
rather than having to search through the entire database.
The problem is encountered when the user doesn't know
what’s in the key field. If the key field is not entered then
the mapping function will not operate properly so it will
become necessary to search through the entire database -
just as if it were an ordinary database.

These functions are very nice to-use and give the
impression of a superfast program, whereas it is the
method used that is fast. They are not, however, terribly
nice to program. A common occurrence is a clash -
where two pieces of different data share the same result
when calculated. So they need to share the same location
in the arra

The solution o this problem is to set up two segments
to the array. One called the mapped table, the other the
overflow table. The equation should only return values
which fit into the mapped table. So if the mapped table
runs from records 1 1o 50, the equation should only
return values from 1 to 50. then whenever any clashes
occur, the extra data is stored in the overflow table and
called by pointers. This method of data storage is also
called HASH TABLE storage and is expanded upon in a
previous magazine article called HASHING IT in the FEB
“90) issue of CDU. For C128 owners there was a database
program which used mapping functions in the JULY ‘90
issue of CDU called HASHBASE 128.

The inability to sort and difficulty with amendment
and deletion are all drawbacks to the use of mapping
functions, but they are incredibly fast for data retrieval
and would probably be useful if you need to have
immediate access to your data - in a shop for example, if
you are asked about your stocks of something you need
only enter the product and then immediately have details
on screen.

SPACE HAS ONCE AGAIN BEATEN US I'M AFRAID. WE WILL HAVE TO CONTINUE THIS ARTICLE IN THE
NEXT ISSUE OF CDU - DUE OUT ON 21st JUNE

Lineage: 58p per word. (+VAT)
50 plus VAT per ntimetre

A8 advertsementsin this section must be prepaid.

0908 569819

oDUCL

ONLY POOLS AND HORSES

THE DEDICATED PD LIBRARY- Every program written by a mathematician who has spent many
IN OUR SECOND YEAR OF SUPPLYING 64 PD, WE STILL CONTINUE To__ | | years in the betting irdustry. Programs that utiise the tried and
s e S trusted methods of the professional, not pie in the sky theories
SHOW OFF JUST Wi 4 e that fal to pass the test of time.
SR MU BLEXORS, BOSS, VECTORS, PLOTTERS, SUses, ovap s, || FOOTBALL BOXFORM Wrten by afomer pools expertfor
DYPP'S & MANY MORE COMPLEX ROUTINES! Littlowoods. The program hs forecast over 50% more draws than
MAN OEMOS ARE S0 INPRESSIVE, THEY WOULON'T EVEN 10O ouT
IR EAGH ONE 16 GREATED BY THE WORLDS. | | would bo expected by chance.
25T B0, CROUPS & 8 PO RAMMED TO AIGH STANDATOWITH | | Home in order of mesit and
(GREAT GRAPHICS & ORIGINAL | IC ALSO INCLUDED. WE ALSO HAVE
AN EXCELLENT COLLECTION GF XHE BEST PD UTILITIES, MANY OF Y \. Merit tables show at a gl
WHICH ARE BETTER THAN COUMERCIALLY FELEASED ONES: THEY || foy tadt oall
INCLUDE GRAPHICS, SFX 8 ITORS, D}SA(XJPERS g e
ERS, LETTER & Y, MORE. WE EVEN included in the price.
A FEW PROGRAMMES THAT WILL LET AOOM'PLETE NOVICE CREAYE A
| 506 6% THE GN ALLUTILIIES ARE O WIGH QUATTY S REALLE || POOLS PLANNER by the same author. Fulldetals given of 369
EV€D IF ch ENJOY A QUICK GAME OR TWO
AN LOOK O FURPHER! WE TAVE A RANGE. CFTIESEREDEAES| | casl entered block perms ranging from 9 to 73960 ines and
O e A A BN S BADING SUiShLieAoF || from 12to 56 selections. All are accepted by the pools firms
84D, BUT WE ALBO OFFER FREE BX \:-)ﬂm JSSISTANGE SHOULD ANY and are checked in seconds by your computer.

FORA COPY OF OUR AT TSNS At SAE TO T Foutownc || RACING BOXFORM Course characteristcs (it n o the program)
0S.

(ol i Yl

s well s the form of the horses are considered to speedily produce an
2 caLiows BOFTIAE order of meritfor each race. Designed for flexibilty allowing users to
amend the program if they wish. Price stillincludes the highly

UBERY
B\RMINGNAM B45 9TG ‘acclaimed HANDI CAP WINNER - more than 1000-winners every year -
over 25% of them at 5/1 or better. Order two or more and receive FREE

aprogram Sogood

CLASSIFIED COUPON Prices (Tape) £15.95 each. £25.95 any two. £35.95 aII
AALL CLASSIFIED ADVERTISEMENTS MUST BE PRE-PAID. three. For discs please add £2. per program.
‘THERE ARE NO REIMBURSEMENTS FOR CANCELLATIONS. i T T - 5

DU CLASSIFIED DEPARTMENT, ALPHAVITE Advertised for Six years in the sporting and computing press.
PUBLICATIONS, BOXoft CLEVER.. GET THE BEST

20 POTTERS LANE, KILN FARM, MILTON KEYNES, MK11 3HF.
RATES:Linaage 53p po word (+VAT) Sai-dispiay: £11.50 +VAT porsingle BOXOFT (CDU), 65 Allans Meadow,
olumn cm minimum size 2em. Series discounts availabl ‘Neston, South Wirral L64 95Q
1 enciose my ChequerPostal Orde or © for sertons Chaue/ P0./Access/Visa Tel:051-336-2668
e byl 0 Aphavio Pcatrs.

T T EASE DEBIT
[TT My

'ACCESSIVISA
CARD NO:
1520 PRINTER PLOTTER
£45 0.N.0 Tel: 0418875054 oty :5“ £30. inc.
EXP. DATE: o Three month wairanty, 1 week turnrounnd
s FOR INSERTION: wes
06114 501....81175
= WORTHING S Poweru 200
e COMPUTERS Colcasne
Post Cod - w
: Tel: 0903 210861 =
Daytime Tel No.: = osas compuren services
% Rdgeway Road,
Satoury, Wishe: 501 380
Tor 0722 335081
Stockists of alargo
COMMODORE 647128
range of ‘SOFTWARE LIBRARY
16 Bit SO"WﬂrE and Lite Memborship 7 Day Hire
Peripherals. \pdates | ¥Tapos From 150
L ot
HOME WORKERS WANTED T o Ao Dk
[] DS AE 0 FOR FREE GATALOGUE SAE O
Sgature: D FTARE LIBRATY
QFORSALE SOFTWARE (JSPECIALOFFERS (L OTHER 27 WooDsiDE pLAGE 14 CHIPENDALE COURT, BELFAST, 8710
GLASGOW G37aL.

,fnz Pg Manuaj -
'Mned Goog
dbook” ccr
Jan 90

CcOoMI
RETAILERS

6K
1-\'s\DE

ystem

operating)

I R G

s FOUTR CARTRIDGE you can ok

AUTO HARDCAT RENUMBER e i you o progra

Ao ISCn venry <

o haeon g e o ;

S Rl & S

e Mo [N g

R O) T powgRNON ~ .

S L

pan e il i s 4o

oo e ST e
I T B e onve sty rowes ot
b ey Rt A -

PR i J e

ocnr e Eler s s o oy

ke S W w e e i

sow0 o o e
oisc Seral Bus o UserPon. T

Tel: 091 490 1975 and 490 1919 Fax 091 490 1918
88 BEWICK ROAD 10, ™, ccevVisa welcome - Cheques or P/O payable to BDL
GATESHEAD Price: £17.30 incl. VAT,

UK orders add 120 ponpack soal . (1850 incl. VAT
TYNE AND WEAR Europe orders add € add £3.50

E8 1RS Scandinavian M; ade enquiries to: Bhiab Elekeronik, Box 216, Norrealje 76123,
SWEDEN, Tel - 6 176 16435 Fa. 176 18401
Bitcon Devices Ltd ENGLAND TRADE AND EXPORT ENQUIRIES WELCOME

Get the most out of your Amiga by adding:

[“The Complete Colour Solution”
The Worlds ultimate creative leisure product for your
Amiga. Capture dynamic high resolution images into
your Amiga in less than one second.

images can now be grabbed from either colour
video camera, home VCR or in fact any still video
source. The traditional method of holding three
colour filters in front of your video camera is certainly
a thing of the past. Because Vidi splits the RGB
colours electronically there are no focussing or
movement problems experienced by some of our
slower competitors. Lighting is also less of an issue
as light is not being shut out by lens filters. Put all
this together with an already proven Vidi-
Amiga/VidiChrome combination and achieve what
is probably the most consistant and accurate high
quality 4096 colour images ever seen on the Amiga.

The colour solution is fully compatible with all
i A3000.

No additional RAM is required to get up and running.

You will see from independant review
comments that we are undoubtedly their frst choice
and that was before the complete solution was
launched. If you have just purchased your Amiga
and are not sure what to buy next, then just read

‘send for

amiga arvu..., 08 ,,:’;’bm

you 'ﬂomax' V"”munlh.

& by for ygu nnn.,.‘Z:
mig

*Actual uvetouched digiised screenshat®

® Grab mono images from any video
rce
® Capture colour images from any still
video source
® Digitise up to 16 mono frames on a
meg Amig:
Animate 16 shade images at different

.
speeds.

@ Create windows in both mono & colour.

© Cut & Paste areas from one frame to

® Hardvare and sotwars beghindes &
rol.
o Ghoicoor capture resolutions standard

ey o o ik 4t g’

Limited

