JANUARY 1991 £2.75

119 m/"?/;?l/’/i
A v Al A

)@ GHARACT SR EDITOR

5 = ts Made Easy

000000000000

PRINTE ACE SERVICES TO
EXVAT INC VAT BUSINESS

LC10 and LC10-C Superb

value printers! 120CPS ‘Ace Computers are ableto advise ther business customers

draft, 30CPS NLQ Multiple ove the o range of computer e, Our senices

fonts £30 £15095 incude anlysing he poblem and recommending
computer soluions; suppyng computr systems ncluding

LC10 COLOUR The above

il equipment and programmes; nstalatn of equipment
P and aining.
""”"‘I““W' plus e We ofe arange offnancingfcies-vriten
full colour 190 218,50 details on request - and our maintenance contracts
g guarantee nextday senice roughout the county
opoupniee COMPUTERS naberyou e competsg for e i e
raft, ! vp e g oising sstems, ACE ill be most pleased o

(CallourCustomer Lisson Deskatthenearest

E“s 0p, or on our Bristol number.
ec\k\.kg\i\:mm Fon AL 0R0ER KR

ZEANDSOR sT\C contol ystems to st from one o eigh shops. These
'““‘: N “::3 2 NGHDISKS. Fax: 0272 231455 systems can revolutionise your work load and substantially
.aa S HOME COMPUTERS. reduce the costs of naning stock.

AND EQUIPMENT um RS Qur comprehensive service includes programme
.mu\mnn 246! 15 WC 2399 T St Bdnin
EXVAT

me CALL SPECIAL MESSAGE
L‘M
RPN 0272 6633 17 | 70 RETLERS
.\,“mm 'ACE are able to supply EPOS and computerised stock

moﬂmcaﬂnnmmzl ymn needs; supply and installaton of
equipment and trai
el o1t s Financig' iam\mzs are avlable - witen detas on
87 Clty Road, request - and our maintenance conlracts quarantee next
3 day service.
Tel: 0222 483069/471600 Prices wil surprise you! Call oumearest shop or our

P AN ASON |C 5%.,%:&;:&‘,1%:; ?ﬁ : :nosrl;\ﬂ sme« and ask fo the Customer Liaison Desk for
el
LS witars,, | FRANCHISE
e INCVAT Tol: 0034 419040 SERVlCES

Outstading v 120 CPS oo oe Computrs ave aighyscoess rancise

draft 24 CPS NLQ. Friction and Tel: 0793 512073/4 ‘operation. If you are nterested in opening your own
ractor feed. £129 14835 s comuter shop, please callus and ask for a copy of the
P10 T Franchise Bochute.

1920PS drat 3 CPSNLO 080 £18400 Tel: 0424 422929 WE HAVE A NUMBER OF SHOPS READY TO START IN

KKP-1124 24 pin 92 Upper Parfament Sreet BRISTOL ANDNOTTINGHAM
192CPS raft 33 CPSNLQ 240 21600 "rmﬁmn PH”.lPS MONlT
|KOS PRINTE! 0 sumbn Rt ST

Tel: 0985 846131 7502 Mono

EXVAT INCVAT Leads included 78

P
8833 ol
SERCLLT ETY R “sﬁ!;&,ﬂﬂ!nﬁﬁ.ﬁm. Lsss e ST B Arigongtte ©228 28675

T R B INCLUDE FREE [
$L-1350 NJS:EO £640 NEXT nAY D'SKS mﬁﬂg)s{lmﬂ
BP-5500 £1169.56 £1345.00

28179

FOR £9.5

within mainland Great Brtan

WOk €

Volume 4 Number 3 JANUARY 1991

ON THE DISK

2X2 CHARACTER EDITOR
Design large fonts with ease

ENCRYPTION
Password and program encryption examined

SECURE
Another for battling the would be hackers

KA43/5 OPEN SYSTEM
Expand your C64's operating system

KANGAROO KORNER
Three more routines from Oz to help the novice

32 SPRITES
The world of sprites opened up

DISPLAY.ASM
This months program for Multitasking C128

TERMINUS
One of those demos we all wish we could program

Publisher: Hasnain Wal

Technical Editor:

Designer.

Distribution:

SW16 4DH. Tel:081 679 1899. Fax: 081 679 890
Gibbons Barford P

‘ommodore
0 Milton Keynes, MK11 3HF

Seymour Press Distribution
Ltd. Winsor House, 1270 London Road, Norbury, London

WELCOME
Instructions and Editors comment

TECHNO-INFO
Regular readers problem page

SORTING
Sort routines examined in laymans terms

ADVENTURE WRITING
6 Series for budding adventure programmers

NUMBER BYTES
7 A beginners guide to computer maths

ROLE PLAYING GAMES
g Our Design your own RPG series

ADVENTURES IN 'C'
9 More about this fascinating language

ADVENTURE HELPLINE
12 Our monthly dose of help for adventurers

CBMPC/LINK
22 Anew C64-PC hook up gets reviewed

PROBLEM SOLVING
42 Getit right when you do your programming

MULTITASKING C128
This absorbing topic is nearing the end

Subscription Rates

v
Europe
Middle East
Far East l 0
Rest of World ~ £39.70 or $69.00
Airmail rates on request

CONTENTS

N THE MAGAZINE

23

25

29

42

Contact: Select Subscriptions. Tel: (0442) 876661

1SN 095

SNAPSHOT v5

Wel it may havetaken fe years o ard work and
five powerful versions, each one breaking new
ground, but Super Snapshot has become the best
cartridge in the world. The list below details the
main features of uper Snapshot5; fyouneeda
littlemore persuasion ook backto CDUssue 19,
you'llbe impressed

Sotake a ook at th red bor you've got plugged
in,andifour specfication knockitfor ixor you
don't own a cartridge then don't just sit there, buy
Super Snapshotv5 today!

FEATURES:

» Allfeatures available at the press of a button

D Works with all 64 c) and 128 (D) computers

» Compatibl with 1700/1764/1750 REU'S
i into file

"COMPUTER

SOFTWAR

mEmEEEEESRmEmEnan:

TP T

T
T

ANIMATION
STATION

Unleash your creativty with Animation Station,
powerful utlty for generatingal Kinds of
graphics on your Commodore 64 or 128, Built-n, |-
predrawn pictures give you 2 head start on your
creations, Automatic generation ofcircles, ovals, |-
squares, boes, straight ines, typography and

> SanT fsarnd s 5 sarnthe 54,
1571 & 1581. Speeds of up to 25 faster when
using Turbo 25 - even faster than Replay
2 Super DOS Wedge
> GAME MASTER menu with sprite killer,
infntive lives generator and joystick port

> ngummme function Keys

» Sprite Moni

> Exclusive (hm:ter Set Moritor

» Exclusive Sound Sample Monitor

2 Exclsive Boot sector support

» 300/120012400 Terniral program
(40180 column)

> SUPER DISK SNAPSHOT - our new super
ibbler

» SCREEN-COPY now loadsor saves n more
formats and dumpsin COLOUR o STARLC10C
printers and n 16 grey scales

» Inproved ul featured ML moritorthat DOES
NOT CORRUPT MEMORY. Interupt, examine
and resume any runing program

» Drive Mon

P BASIC PLUS with 15 new BASIC commands

P FILE MANAGEMENT SYSTEM - scratch,
unscratch, rename or adjust skew. Includes
our 1 or 2 driv file copier with partition
support for the 1581

» Fast disk copier, 1 or 2 drives

» OUR FILE COPIER, DISK COPIERS and
NIBBLER MAKE FULL USE OF THE REU'S

» Sequential file reader

» Utiy disk

» Pl 150- Kracker Jax parameters

ONLY £34. 95

self-contained, electronic drafting room, Combine |-+
type and graphic on the screen, draw n many

to your printer. Koala Compatible. Package

H CARTRIDGE

PORT EXTENDER
CABLE

F{ Areyou cramped for space behind your computer?

Isithard toreachyour artridge porttoplug-inor
swap cartridges?This handy cable i te soution.
The Cartrdge Port Extender Cable connects to

the cartridge port inthe back ofthe computer and

1 lts you plug in your catridge t its other end.

Since the cable is flexible, you can locate the
cartridgeupto 11" awayfor easier access. Notfor
REU'.

ONLY £19.95

includes design touch pad, pencil and graphics

TR

software. Ideal for GEOS users.

T T T
AP
IRANNENEEERE SR EE AR

T I

Digtize video images from your VCR, laser disk,
BWor colourcamera, offthe ir or cable V. New
version 3.0 oftware eatures fullre-display with
multi-capture mode, men select printing,
expanded colourizing features, save to disk and
much more. The hargiare i 1o lrger than an

T T T

A i
iRRAARARRRRRRRRRI

B Prices include VAT & UK.
delvery, Overseas orders
send advertised price plus £2.50 for Airm
Please send cheque, Postal Order or Credit Card
detals VISUACCESS orders accepted by ‘phone
Masons Ryde,
Defford Road,
Pershore, Worcs.
WR10 1AZ.

Tel: (0386) 553153
Technical Suppor
Tel: (0386) R

H with which you can do allthis

HONLY £29.95

HOME VIDEO
PRODUCER 64
Nothing can make home videos 5o special. Add
title, text, and even bilant graphicsto your
favourite home videos with ease and the help of
the Home Video Producer. You have the choice of
10 typefaces, 75 large fll-colour graphics and
ready made segments, but the most appealing.
aspect o the Home Video Producer is the ease

C64 SLIMLINE
UPGRADE CASE
Make your older C64 look ke a newer model! All
youneedisascrewdriverand about 15 minutesto
ransfer your C64 inides to this new case.
Complete nstructions included.

ONLY £12.95

H File Cal, Chart, Terminal, Graphic, Music,

[GEOS 64 V2.0

l{GEOS

APPLICATIONS

GEOSCAN ART
This special type of GEOS art has been created

using The HandyScanner 64, Pictures re scamed [
at 400 dp from magazines, books and papersto [

create the first geoSCAN ART Collection entitled
The Brtsh Countryside and i packed full with
Eagles, Owls and Butterfiis.

ONLY £6.95
GEODIRECTORY

Acompretensive bok sing al avilable GEOS

ided nt setionscoverng Paint, Wrte,Spel

Animation, Games and many more.

ONLY £6.95
GEOTRO N X

A professional PCB designer uilzing the GEOS
environment. Five double sided disks supply
geoPublish with pre-designed components,
sockets, edge connectors and layout gids in
Photo Scraps. Using the Photo Manzger and
‘geaPublish th circit i designed and printe.

ONLY £39.95

£29.95

INSTRUCTIONS

MERRY CHRISTMAS and HAPPY NEW YEAR

It doesn’t seem possible does it? Why, only a few
months ago, or so it seems, I was wishing all of you
MERRY CHRISTMAS and HAPPY NEW YEAR. So once
again, | echo those words of last year. I sincerely hope
that each and everyone of you has the kind of festive
season that they are hoping for.

This last twelve months has seen a lot of changes in
this world, and even more at the CDU offices. A lot of
them you are all aware of (but there are just as many
that you aren't). One of those changes you will notice
on this months disk. FOR THIS ISSUE ONLY, you will
have to load the menu with the command LOAD"CDU
MENU”,8,1 and not the normal LOAD”MENU",8,1.
This is because of the way one of the programs has been
programmed on the disk.

On the disk is a program called TERMINUS. This
program is in fact one of those DEMOs that I am
constantly being asked to publish. HOWEVER, this one
is decidedly different to all the normal demos you see.
Enjoy!!

1 will finish now by saying once again, a very big
thank you for your past interest and support of the
magazine. Have a really great Christmas. See you all in
the new year. Paul Eves (El Groupo!!).

DISK INSTRUCTIONS

Although we do everything possible to ensure that
CDU is compatible with all C64 and C128 computers,
one point we must make clear is this. The use of ‘Fast
Loaders’, ‘Cartridges’ or alternative operating systems
such as ‘Dolphin DOS', may not guarantee that your disk
will function properly. If you experience problems and
you have one of the above, then we suggest you disable
them and use the computer under normal, standard
conditions. Getting the programs up and running should
not present you with any difficulties, simply put your disk
in the drive and enter the commang

LOAD”CDU MENU",8,1

Once the disk menu has loaded you will be able to start
any of the programs simply be selecting the desired one
from the list. It is possible for some programs to alter the
computers memory so that you will not be able to LOAD
programs from the menu correctly until you reset the
machine. We therefore suggest that you turn your
computer off and then on again, before loading each
program.

HOW TO COPY CDU FILES

You are welcome to make as many of your own copies of

CDU programs as you want, as long as you do not pass
them on to other people, or worse, sell them for profit.
For people who want to make legitimate copies, we have
provided a very simple machine code file copier. To use
it, simply select the item FILE COPIER from the main
menu. Instructions are presented on screen.

DISK FAILURE

If for any reason the disk with your copy of CDU will not
work on your system then please carefully re-read the
operating instructions in the magazine. If you still
experience problems then:

1. If you are a subscriber, return it to:
Select Subscriptions Ltd
5, River Park Estate
Berkhamsted
Herts

HP4 THL
Telephone; 0442 876661

2. 1f you bought it from a newsagents,
then return it to:
CDU Replacements
Interceptor Group
Mercury House
Calleva Park
Aldermaston
Berks
RG7 4QW
Telephone; 0734 817421

Within eight weeks of publication date disks are
replaced free.

After eight weeks a replacement disk can be supplied
from INTERCEPTOR GROUP for a service charge of
£1.00. Return the faulty disk with a cheque or postal
order made out to INTERCEPTOR GROUP and clearly
state the issue of CDU that you require. No
documentation will be supplied.

Please use appropriate packaging, cardboard stiffener
at least, when returning disk. Do not send back your
magazine, only the disk please.

NOTE: Do not send
s if its a pr
Only if the DISK i

ks back to the
m that does n
m fault

our di above

addre bear to we
hould be sent
to: BUG FINDE
Unit 20, Pottes

Thank yor

ON THE DISK

2 by 2 CHARACTER EDITOR

Make large fonts, 2 characters wide by 2 characters deep with ease.

ROBERT TROUGHTON

This new character editor is specifically designed for
making large fonts that are 2 characters wide and 2
characters deep. It is sual for the fonts to be stored in the
format as llustrated below;

chr+$00
chr+$80

chr+$40
chr+$C0O

S0 for the letter ‘A’ (poke code = $01) we would put on
screen the following format;

$01
$81

$41
$C1

USES OF THE UTILITY

Originally the utility was writien specifically for making
character sets to be used in demos. This version feature no
facilities for making hires (single colour) character sets, but
that s because | will be writing a totally different editor for
hires fonts shortly. Other than demos, the editor can also
be used for many other projects...Text Pages, Games, Score
Tables, Title Screens to name but a few.

WHAT IT CAN DO

This editor features 2 UNIQUE features, a ‘Pattern Filler”
and a ‘1*1 Character Expander’, integrated into the font
editor. Al the usual commands are catered for also.
Joystick or Cursor control, scroll character in 4 directions,
flip character left, right, top or bottom, reverse character,
clear character, copy character, swap colours and of
course all the necessary disk functions.

THE PATTERN FILLER

The best way to learn how to use this facility s to practice.
If you have designed a whole ‘blank-filled” character set
(see next paragraph) ALWAYS save it disk, if you make a
mistake in your patterns, you can then reload the set and
fix your problem.

A blank-filled character set is one which, quite
obviously, has no fill pattern on it. There are 4 pattern
designs, each of these will replace the colours in you
“blank-flled character set. The 1t patter design replaces
the black (ie; colour 0), the 2nd replaces colour 1, the 3rd
replaces colour 2 and the 4th pattern will replace colour 3
Its usual to leave the 1st pattern blank, so press the +’
key to skip it.

By using the pattern filler, you can create lots more
character sets which look very different from each other,
but all using the same base. Just change the patterns and
re-fill the ‘blank-filled” character set! DO NOT try filling an
already filled character set because the result will be very
strange.

MAIN EDITOR
KEY CONTROLS (or use JOYSTICK in port 2 to control

Set bit
Clear bit
Select colours

01,23
SHIFT 1,2,3 Alter colours

UDLR Scroll (4 directions)

XY flip left to right, top to bottom

CTRLR Reverse current character

CBMR Reverse whole character set

CBMC Clear whole character set

CLR Clear current character

(o Copy character

s Swap colours

[} Disk menu

F5 Pattern fill menu

DISK MENU

L Load character set

S Save character set

Z Load 1*1 character set
+expand 0 22

D Directory

F: Pattern fill menu

F7 Main Editor

PATTERN FILL MENU
L Load fill patterns

save fill patterns

Edit fill patterns

Directory

Pattern fill character set

Disk menu

Main editor

omw»

NOTE: Edit fill patterns has only some of the functions
from the main editor.

As with most utilities of this kind, the best way of
learning is to practice and experiment to your hearts
content

ON THE DISK

ULTIMATE PASSWORD
PROTECTION

Another program protection routine gets a viewing for all and sundry to enjoy

ROBERT TROUGHTON

Imagine that you have a program that you don’t want
anybody else to use. What do you do to prevent them from
accessing it? Simple - you add a ‘password’ check to the
front of the program.

In this short article | intend to reveal a form of password
protection that even the most hardened hacker would have
trouble in cracking! (In fact, it would be very near to
impossible to crack!)

Encryption such as that will not be enough to protect a
program from prying eyes. What you really need is a way of
mixing ‘password protection’ and “encryption’ into one.

PASSWORD ENCRYPTION

The problem with the password-protection described above
was that the pass- word actually had to be stored
in memory. However complex your program

PASSWORDS

Everybody must know what a password is, but how can they
be used? The most simple form of password-protection
would look something like this BASIC listing:

10 INPUT “ENTER PASSWORD";A$

20 IFA$ <> “KIPPERMAN” THEN NEW

30 PRINT “PASSWORD ACCEPTED”

40 . rest of program
It wouldn't take much effort (from anybody) to ‘crack’ the
password from that program! Even by writing the above
program in Machine Codle, the program would still be very
easy to be broken into!

ENCRYPTION

Encryption is a way of making code look RANDOM. Take
the code below (machine code listed as hex):-

+A9 00 8D 20 DO 8D 21 DO 8D 86 02 20 44 E5 60
If you disassemble that, you will get the following:-

#$00

A simple way of encrypting that would be to EOR it all with
SFF. This would alter the code to look like this:-

+ 56 FF 72 DF 2F 72 DE 2F 72 79 FD DF BB 1A 9F

If you were to disassemble that, you would end up with a lot
of JUNK! (So it is therefore a simple form of encryption).

may be (using hidden 6502 opcodes, code-structures, or
whatever kind of advanced programming), if the password s
stored in memory - IT CAN BE FOUND! The same
(obviously) applies if the password is hidden on disk, in the
drives RAM, or whatever! So...What on earth can we
possibly do to get past storing the password in memory?22

Simple...imagine the password ‘GRUMPY". The ASCII
equivalent to this is:

:47 5255 4D 50 59

We could use these values as ENCRYPTION CODES. We
would EOR the first byte of a program with $47, 2nd byte
with $52, 3rd_byte with $55, etc... The 7th byte would
obviously be EOR'ed by $47 (restarting the series).

Al that now needs to be done is to add a short ‘header” to
the encrypted program which asks for a password, and uses
the ASCII values of the password as DECRYPTION CODES
(used in EXACTLY the same way as encryption codes, using
the EOR command again!). If the correct password is
entered (GRUMPY), then the program will be decrypted
back to it's original form. If the wrong password was
entered, then the program will be converted to JUNK, and
the computer will most likely crash!

I have provided a small (and very simple) utility which can
be used to encrypt BASIC programs. To password-protect a
program, just follow these simple procedures:-

1. Load the “ENCRYPTER.SYS” file (,8,1).

2. Load the program to be encrypted.

3. 5YS49152.

4. Enter the password you wish to use - max.16 chars.
5. Wait while the program s encrypted.

6. Save out the resulting program as a BASIC file.

ENDING NOTE: If you Password-Encrypt a program, make
sure you remember what the password is!l - If you destroy
the original file and forget what the password was, you can
consider your program ‘lost’ forever!!!

ON THE DISK

SECURE

Protection, Passwords, Encryption - all are valuable tools for the programmer. SAKIB KHOKHAR presents his
version

How often have we all said, “I wish | could protect my
Basic program from prying eyes” or “If only | could make
things difficult for people to see my codeing?” Well now
you can. In the past CDU has published various
programs for doing just such a thing. However, like all
magazines, new readers and programmers are coming
along every day. Therefore, at the risk of going over old
ground I give you my version of “SECURE”

SIMPLICITY ITSELF

To protect a program couldn't be easier. LOAD the program
named “SECURE” from the CDU disk, or copy it onto your
utilties disk first. Next LOAD your BASIC program and type
5Y549152. Your program will now be protected. Should
you want to LIST your program, the message;

10 SYS2090:PROTECTED BY SAKIB KHOKHAR
is displayed.

Before you try to protect your Basic program, make sure
it has the line number zero (0). | suggest you use the
following lines or something similar as the first two lines
of your program;

0 REM
1 POKE774,226:POKE775,252

The second line, line number 1 is NOT essential, but will
give some added protection. The two POKES in line
number 1 will perform a system reset is someone should
use the LIST command. Once you have protected your
program with SYS49152 you can SAVE the program in
the normal manner. Once you re-load and RUN your
now protected Basic program, the RUN/STOP key is
disabled and the RESTORE key will perform a system
reset.

That, as they say, is all there is (o it.

C64 AMIGA C128
SPECTAL |
CoaDISK DRIVE] >
‘oRive, stntine caseavp OFFER!

EXTERNAL POWER SUPPLY. o
FAST ACCESS OF SOFTWARE
WITHOUT PROBLEM

PLUS EIVE ERE

AMES
NIGHT BREED.
AN

e DIS i
AN o T oscy bR o
ROTNOR j COMPATIBLE WITH THE 1 s
Nt P it
i EAvoRsins N
T VS 0
NEW [AMIGA A500 SCREEN GEMS] 5700
i o

SELLING COMPUTER WITH STEREO SOUND, ARCADE GRAPHICS AND

STUNNING COLOUR. THE SCREEN GEMS PACK INCLUDES 4 GREAT

GAMES: DAYS OF THUNDER® NIGHT BREED® BACK TO THE FUTURE
20 SHADOW BEAST 20 DELUXE PAINT 2

357 DISK DRIVE, MOUSE AND TV MODULATOR ARE AL}

[C64 PRINTERS €64 COMPUTER
NIGHT MOVIES

COMMODORE MPS1230
1507

INCLUSIVE|

SRS . INCLUDES Code COMPUTER

CITZEN 120D+ €900 | T\ CASSETTE. 2 JOYSTICKS §
Cam a0 GREAT GAMES GEE DISK DRI

Cea oL e PLUS INTRO AUDIO TAPE

LIMITED

PUBLICATIONS

EDITORIAL ASSISTANT

YC Magazine is looking for a young, enthusiastic
games fanatic to become a YOP Editorial Assistant

The ideal applicant should have basic writing
skills, would enjoy being wacky at shows, and
must, above all else, enjoy playing computer
games

f you feel you could better the country’s top
C64 title, apply in writing to Rik Henderson ~ The
Editor.

CLASSIFIED SALES EXECUTIVE
An excellent opportunity has arisen for a classified
sales executive with at least 6 months experience
to handle classified sales across 3 Commodore
titles and 2 health magazines.

The position, based in Milton Keynes, offers an
attractive wesme with competitive salary and
commission package.

lease apply in writing to The Advertisement
Manager

Lan,

0 P Kiln Farm,
3HF. Telephon

(0908) 56

jiton Keynes MK11
19 Fax: (09

ON THE DISK

KARE AANESTAD

An unusual and useful external operating system for your C64

KA43/5 opens up the operating system of your
Commodore 64. It gives you comprehensive internal
commands and opens up for external commands. The
internal commands are as you would expect, readily
executable. The external commands are automatically
loaded from the disk drive before they are executed.

ALL ABOUT KA43/5

KA43/5 is a relocatable machine code (MC) utility. It will
highly enhance the cooperation between your computer
and any Epson (or IBM) compatible printer. The printer
can either be connected to the CBM Serial port or to the
User port. In the latter case the User port will act as a
Standard Parallel Centronics port and the only hard-ware.
required is a simple straight through cable. Any
character, even user defined characters can be printed
with high'speed. Text and high resolution (Hires) graphics
can be intermixed in the same document. KA43/5 goes.
further and is highly valuable even without a printer as it
eases and extends the use of the disk drive. New external
commands can easily be added at any time by the user
himself.

KA43/5 can safely be used as an utility for other
programs, even other utilities. KA43 wedges itself into the
other programs and should therefore, if possible, be the
last one to be initiated. All KA43/5 commands can be
used both in direct and program mode except after an IF
THEN command.

Load and run KA43/5. Choose between Serial and
Centronics printer and locate the MC-utility preferably at
top of Basic RAM! If you choose this location, the
program will lower the necessary pointers to protect
itself. If in doubt go for the default values. Turn on any
printer. You can now use OPEN 4,4 and PRINT#4 or
CMD 4:LIST as normal.

COMMANDS FOR PRINTER

CHARACTER TYPE FOR THE PRINTER (key in and
press <RETURNS):

(LEFT ARROW)CO CBM or your own defined characters
printed exactly asused on the screen. The control codes
you can use are CHRS(18) and CHR$(146) for RVS

ON/OFF, CHRS(14) and CHR$(15) for Expand ON/OFF,
CHRS$(21) or CTRL U for toggling Underline ON/OFF,
CHRS$(8) for reduced linespacing (24/216") and CHR$(7)
or CTRL G for Hires (parameters as preset by the (LEFT
ARROW)Gm,h,I command)) intermixed with
your text.

(LEFT ARROW)CO,x As above, except printer bit map.
density changed to x (default 76) for both text and Hires.
Consult your printer manual. Try 76+128 if you have a
Serial printer set for PET ASCIl and not Standard ASCII (if
s0 also use (LEFT ARROW)C3 when not in (LEFT
ARROW)CO mode)).

(LEFT ARROW)C1 Standard printer characters,
upper/lower set as on screen (default). You can use your
printers control codes.

(LEFT ARROW)C2 Standard printer characters with
forced ASCII conversion. To be used when you will
ensure character conversion from PET ASCII to Standard
\SCII.

(LEFT ARROW)C3 Standard printer characters, emulation
mode i.e. no character conversion.

>

The value chosen will remain intact until you alter it or
switch the computer off. Secondary address of the OPEN
statement for device 4, the printer, have no effect. Listing
of a program may require that you use (LEFT
ARROW)CO. All Commodore control codes will then be
printed.

The Character type mode will be disabled by
warmstarting the computer (e.g hit RUN/STOP and
RESTORE). Usually this will not disable the wedge. It is
therefore easier to press: (LEFT ARROW)C1<RETURN>
than to make a SYS call to restart.

SCREEN DUMPS

(LEFT ARROW)G Graphic dump of high-resolution
screen. Can also be used for Multi-color, but you loose
the colours. Keep RUN/STOP pressed to stop printing.
(LEFT ARROW)Gm As above with left margin set to m.
Default is 0. :

(LEFT ARROW)Gm,h As above, bit-map screen from
location 256°h (i.e.h=high byte). Any value can be used
Most used values are 32,64,96 (default), 160 and 224.
(LEFT ARROW)Gm,h L Gives number of graphic lines to
be printed. Default is 25. This command sets the

ON THE DISK

parameters and returns without printing.

(LEFT ARROW)K Copy of text screen. You will get an
exact copy as KA43/5 automatically seeks for the screen
location and chr. set. Keep RUN /STOP pressed to stop
printing.

(LEFT ARROW)Km As above with left margin set to m.
Default is 0.

(LEFT ARROWJKm,1 As above with the one to denote
reduced linespacing (24/216”)

(LEFT ARROW)BO"T” Banner dump to screen of Text
enclosed in quotation marks or string variable.

(LEFT ARROW)B1"T” As above to printer.

(LEFT ARROW)! Sets interrupt controlled screen dumps
ON (does not work for Serial printers). KA43/5
automatically seeks the screen, it be text or Hires. Use
CTRL K for printer copy. Disable with RUN/STOP
RESTORE. The command will normally not work on
protected programs or programs which disables the
RUN/STOP and/or RESTORE keys.

IaromosNooTar A

Duwsz

DISK COMMANDS

(LEFT ARROW)D Directory is shown on the screen
without erasing any Basic program. STOP the listing with
the Space key.

(LEFT ARROWJE Any disk Error status is shown, i.e. disk
status channel.

(LEFT ARROW)Ed Change the disk device numbers of
KA43/5 commands. d to_be a figure from 8 to 11

(LEFT ARROW)E"C” Disk command, see your disk
manual. Neither OPEN nor CLOSE are required. E.g
“C"="RO:BETTER=GOOD" which renames the program
from “GOOD” to “BETTER”.

MC-SAVE & ADD COMMANDS

(LEFT ARROW IM<Startadr.>,<End adr.+1>,"Name”,<d>,1
MC-save , d=1 for cassette and d=8 for disk. Load with
LOAD Name d1

Remember to reset the Basic pointers after a MC load
with NEW<RETURN:.

(LEFT ARROW)A<Adr> Additional command. <Adr.> is
the SYS call address and must be a figure. Later SYS calls

to the same address are made with (LEFT
ARROW)A<RETURN> only. E.g. (LEFT ARROW)A49152
<RETURN>,

(LEFT ARROW)A Automatically seeks for an installed
machine code monitor. List from the monitor to the
printer with : OPEN 4,4:CMD 4:(LEFT ARROW)A
<RETURN>

EXTERNAL COMMANDS

(LEFT ARROW)X"NAME" External command which will
load a machine code program and jump to the first
address loaded. The command will substitute
LOAD"NAME",8,1 and the SYS number, with no Basic
pointers altered. Thus the command will have the same
effect as if already in memory. To recall an already
loaded and executed command just press (LEFT
ARROW)X <RETURN>.

Parameters can be passed. Eg.
ARROW)X”"AUTO”,10,10 <RETURN>,
ARROW)X,10,10 <RETURN>. KA43/5 will protect itself
from being overwritien by an External Command with an
OUT OF MEMORY error and it will deny to load a Basic
program starting at normal 2049.

(LEFT

LOCATIONS FOR KA43/5

The best location of KA43/5 OPEN SYSTEM is usually at
top of Basic RAM. This area is most often not used by
any other program. A draw-back is that this may
unnecessary reduce the space available for Basic
programs. The length of KA43/5 is 2555 bytes. You may
alternatively locate KA43/5 in ML-RAM somewhere from
49152 to 53248. If location 49152 is interfering with
other programs, you can choose 50693 (=53248-2555).
By locating KA43/5 at top of Basic RAM, the program
will protect itself by lowering the pointers of Basic RAM
top (=PEEK(55)+256*PEEK(56). Start address (<Adr.>)
will then be equal to this new RAM top (normally
38405).

You may save the ML part by help of (LEFT ARROWM if
you want. SYS<Adr.> (o start up the program when it is
foaded (and the computer is reset by NEW <RETURN>)
If you at the same time want the program to protect itself
from Basic i.e. lower the Basic top then SYS<Adr.+7>

Be sure your printer supplies its own linefeed after
carriage return (i.e. after RETURN or CHR$(13) is
received). Try to avoid using file no. 125 to 127 as they
may be used by KA43/5.

When (LEFT ARROW)CO, (LEFT ARROW)G, (LEFT
ARROWJK or (LEFT ARROWJB are in operation, KA43/5
uses the first 2k of the RAM under the character ROM as
a temporary store. This area is hardly used by any other
program.

KA43/5 will work with most programs without difficulty,

but some programs may use all available RAM and then
wipe it out. Lets look at some programs:

KA19/2E BASIC :Locate KA43/5 at top of Basic RAM
D-BASE KA9 :Locate KA43/5 at top of Basic RAI
SPEEDSCRIPT 3.x :Locate KA43/5 at :Ub% Load

10

Speedscript. POKE 2481,197. RUN SpeedScript

0S WEDGE:by Commodore does not like the (LEFT
ARROW). To change this to e.g. * (=SHIFT 7),
POKE<Adr.+104>,39 where <Adr.> s start-address of
KA43/5. All KAJ%/G commands are then to be
preceeded by * e.g
SIMONS BASICnsert he cartridge. Locate KA43/5 at top
of Basic RAM.

SOME POKE's can help you to customise KA43/5 to
your needs:

POKE<Adr.+1776>,x - x is number of lines (LEFT
ARROW)K will dump to the printer (25 by default).
POKE<Adr.+2217>,x - Where x is ASCII value of printing
character used by (LEFT ARROW)B (64 by default).
POKE<Adr.+904>,x - x is Control code used for
underline (21 by default). POKE<Ar.+908>,128 - For
overline instead of underline.

POKE<Ar.+1736>,x - Value of reduced linespacing is
/216" (24 by default). Disable this facility with
POKE<Adr.+1705>,96.

POKE<Adr.+2026>,2 - CBM K instead of CTRL K for
Interrupt kopi (copy) to printer.

POKE<Adr.+2033>,36 - And the printing starts with only
atouch on the CTRL (or CBM) key.
POKE<Adr.+1711>,234 - Five bytes at your choice, from
<Adr.+1729> to <Adr.+1733> will be sent to the printer
before the (LEFT ARROW)G, (LEFT ARROW)K and (LEFT
ARROW)B1 commands and when using CHR$(8) and
CHRS(7) in (LEFT ARROW)CO mode (i.e. commands
reducing the line spacing). The user port at the rear left
side of the CBM64 can be hooked to a Centronics printer
with a standard parallel cable. The same cable can also
be used for Easy-Script, VizaWrite, Final cartridge etc..
The cable can be wired as follows:

CBMuserport: A B CDEFHJKLMN

Centr. DB-36 :

2711234 66 7 8.9 119

You should always connect/disconnect the printer cable
at the computer end when it is not connected to the
printer, and disconnect the power cord of the printer
when connecting the cable to the computer. This
precaution will save wear on the IC (U2, type 6526)
connected to the User port.

KA43/5 OPEN SYSTEM introduces a new concept for
your CBM 64. You can now let the computer grow as
you expand your library of external commands. Examples
of external commands are:

(LEFT ARROW)X”DELETE”,100-300

(LEFT ARROW)X"RENUMBER”,100,10,400-600
(Renumber the old lines 400 to 600)

(LEFT ARROW)X"OLD"”

EXTERNAL COMMANDS FOR OPEN
SYSTEM KA43/5

All commands have the syntax:
<left arrow>X"COMMAND"’ EXPRESSION"

ON THE DISK

where <EXPRESSION> is mandamry
and ‘EXPRESSION’ is optional

Afer a command i loaded, a recal can be made with
only :<left arrow>X’ parameter

Eg. : <l.amow>X"AUTO",100,10
and later : <l.arow>X,100,10

EXTERNAL COMMANDS

"APPEND”,"NAME"",D’

Where D=1 for tape and 8 for disk.

"AUTO” <line start> step’

Auto linenumbering. Cursor down to an empty line and

press <RETURN> to disable.

“BIG CHARACTERS”

Prints double height characters to the text screen. This is

achieved with the same text on two adjacent lines, the

second time with RVS on. Use NORSK or another foreign

font to configure the computer for RAM based characters
efore you enter this command.

"DATA AUTO” <line start>’ step’

as AUTO with DATA written automatically after the

linenumber.

"DELETE”,'lineno’-'lineno’

deletes all lines between given numbers.

VEASY LIST”

prints CBM control codes as readable mnemonics.

Repeat <l.arrow>X to turn off EASY LIST mode.

“FILE-READER”,"FILE"",D’

Reads files, both SEQ and PRG, from disk to device D

where 3 is screen (default) 4 to 7 are printers and 2 is

RS232C (OPEN file 125 before sehdmg to

RS232C,eg.:OPEN 125,2,3,CHR$(8)+CHR$(1) for 1200

baud. POKE<Adr.+341>,2 if you use KA43/5 as this will

let the the conversion from PET ASCII to Standard ASCII

take effect on the RS232C channel. Use <l.arrow>C2). M

is mode, 0 for only printable letters (all control codes off,

default) while 1 gives all letters (transparent). LOCK the

screen with SHIFT, and STOP with F7.

“FIND”,‘start lineno’:<hunt>

ON THE DISK

Hunts expressions in a BASIC program. If you are hunting
for reserved Basic words, they must be enclosed in single
apostrophes (i.e. SHIFT 7).

"FUNCTION KEYS”

Finish key definition with left arrow for automatic
‘RETURN’. RUN/STOP RESTORE for reset. Start up
without redefining: POKE788,14: E7

7HELP KA43/5"

Help menu

”KLOKKE”’ hour:min:sec’ WATCH

”KLOKKE” B to disable (blank), but the watch keeps
going. Only “KLOKKE to turn on display again. You
should disable before SAVE'ing. Both hour, min and sec
must be set!

Dumps text screen to printer using the character font of
the printer

"MERGE”,"NAVN",<D>

Only for disk with D from 8 (normal disk no.) to 15. The
merged file from

the disk overwrites any lines in memory with the same
number.

"NORSK”

Foreign character set (others are also available on the
system disk). The screen address is 52224 (=204*256),
and the character set lies under the KERNAL. You can
print out the character set with <l.arrow>G27,224.
hoLp”

Resets a lost BASIC program
“RENUMBER” start”,step’” line

line

Use line-line when you only want part of a Basic
program (i.e. only old lines between numbers given)
renumbered.

"VARIABLE DUMP”

Shows the variables and their values when a Basic
program has been run.

It is good practice only to use one
EXTERNAL COMMAND at a time.

Remember that <l.arrow>X jumps to
last program loaded. Keeping to this
habit you will never need to remember
the start address, and you avoid to
overlap programs and
NORSK and KLOKKE

lock-ups
(i.e. foreign
character sets and watch) can both be
in RAM at the same time. None of
these will interfere with any of the
other EXTERNAL commands.

OLD, DELETE, APPEND and MERGE will not

BASIC program with a machine-code tail (eg

loader). RENUMBER may yroblems with some Basic
densions. All commands are independent of KA4

be used with their SYS<address

ave

The Second

The second half of our useful routines from ‘Down
Under” gets an airing ELAINE FOSTER.

We started this series of useful routines with an extensive
look at making your ‘freezed games’ behave better,
overcoming some of the pitfalls encountered when using
‘freeze cartridges'. On this months disk you will find the
DYN KB BOOT program which we missed last month
Also on this months disk, along with the up and running
programs we talk about in this article, are the
SOURCECODE files appertaining to each of them. You
can examine these sourcecode files with Your
Commodore’s “SPEEDY ASSEMBLER” or any assembler
that is compatible. Alternatively, you can load the
Machine Code and then examine it using a Machine
Code Monitor.

We will be looking at the following routines in this

months issue;
PERMANENT HEADER - An easy way of displaying a

12

Segment

message constantly on the top of the screen.

UNIVERSAL VERIFIER - A simple method of skirting the
restrictions imposed by the VERIFY command

CUSTOM BASIC - A bit of fun that allows you to play
around with Basic keywords.

The remaining 2 routines; SPACE INSERTER and LOAD
ADDER will be covered in next months issue of the
magazine. Until then, may | wish all of the readers in
BRITAIN and the rest of the world a very happy
CHRISTMAS and a prosperous NEW YEAR.

PERMANENT IRQ HEADER

This is a Machine Code program which puts a message at
the top of the display screen, and it stays there even
when the screen scrols. It is nice for a scrolling database
o directory, or even an ordinary Basic listing. As the list
scrolls, the message flickers to draw your atiention to it

The Basic loader is on the disk as “PERM IRQ.LDR”.
Load it and list it now, to understand the following
explanation.

The program includes several REM's which allow you
to change the colour or message of the text, which in
this case must be exactly 40 characters long (including
spaces). You may use your own message in lines 70-
110, but notice that it is in screen code, not ASCII. The
program only takes 106 bytes at location 900 in the
tape buffer. The Sourcecode may be used to place it
where ever there i room for 106 bytes.

Referring to the Sourcecode, the IRQ normally scans
the keyboard 60 times per second, and the vector
(IRQVEC) at $0315/0315 points to the routine at SEA31
which does this. It “updates the software clock and
STOP key check, blinks the cursor, maintains the tape
interlock and reads the keyboard” (Mapping the
Commodore 64, Compute! books). In this case the
IRQVEC is changed (lines 200-260) to point to our
routine at “MSG” (lines 280-370), which then continues
to SEA31 as before. The result is that “MSG” runs every
1/60 sec and prints the message scanned by line 320,
from the TEXT (lines 460-550). It does this by POKEing
screen code characters into the screen memory (lines
330-350), and the colour into the colour memory. Line
340 ensures that a blank line follows the message line.
Line 380 continues to the original IRQ vector
destination, which was saved in lines 150-180.

The trouble with this is that the letters appear in lower
case only. If you PRINTCHR(14) you may use upper and
lower case text, but the message then contains graphics!
So, if you want to print upper and lower case, use lines
400-430 instead of lines 460-550; this works because
the text is now in normal ASCII characters. SYS900.
starts the header, and you must SYS992 to turn it off (see
lines 560-600).

IRQ rerouting is a very powerful technique, and can
be used for many other applications too, eg scanning to
see whether a certain key is pressed, and if so, imposing
some extra command. In our case the “PERMANENT
HEADER” can remind you how to stop a scroll, pause
it, or whatever you wish. This is useful when there is a
long scrolling, and you have forgotten the original
instructions!

UNIVERSAL VERIFIER
(By ELAINE FOSTER and LEO GUNTHER)

The VERIFY command only works for program files, but
what can you do to verify SEQUENTIAL or USER files?
This problem arose recently for one of us: “Is that file
on the backup disk the revised one or not?” - The
answer was “UNIVERIFY/BASIC”. The working part of
which was;

180 OPEN2,8,2,”(sourcename), (filetype) R”

185 OPEN3,8,3,(destination name) (filetype),R”
190 GET#2,AS:PRINT”.”:IFSTTHEN220

200 GET#3,B$:0NSTGOTO220:IFA$=BSTHEN190
210 PRINT”(down)..VERIFY
ERROR”:CLOSE2:CLOSE3:END

220 CLOSE2:CLOSE3:PRINT”(down)..OK”:END

ON THE DISK

File 2 is opened in line 180, and file 3 in 185. A byte is
taken from the source file in 190, and compared with
the destination file in 200. If they are the same it goes
back for another byte until either an inequality occurs
or the end of the file (ST=64), and the appropriate
message is printed for each.

This worked very well but was very slow. The
Machine Code version in “UNIVERIFY/ML” more than
doubled the speed of operation and made it
unnecessary to specify a filetype. The first part of the
program is in Basic, for convenience, but the speed-
dependent part is in Machine Code following it
(invisibly). If you only want results, simply put
UNIVERIFY into your “must” utilities and use it freely;
full instructions are included on the screen. If you want
to know how it works and to learn something new
about Machine Code, read on.

The Machine Code version turned out to be
considerably more difficult than a simple translation of
the Basic lines. After opening files with SA of 2 and 3
one would expect that the following routine would get

the bytes and compare them;

If the two bytes are equal it recycles to get another one
from the source. If they are different it falls through to
the next routine which prints “VERIFY ERROR!” and
closes both files in the usual way (CLOSE and
CLRCHN). If the bytes are the same to the very end the
BNE after the Source READST goes to an “OK!”
message, and then closes etc. The destination READST
is slightly different, because if the destination file ends
before the source one they are obviously different and
the error message is appropriate. With a rather more
detailed error trapping system this worked well as long
as the two files (with different name) were on the SAME
disk. But when the files were on two different drives it
hung up after a cycle or two, and NOTHING could be
done to solve it with GETIN. It worked in Basic with 2
drives but not in Machine Code. Hours and hours were
spent on this, but without avail; if you have an idea
why, please let CDU know!!

13!

PROBLEM SOLVED

agaziries havi
ive ‘Ba?vc 24 B&ﬁh st

ity
veqors. Thxs one is ﬁrﬁw 3 :
M

I, »
bugs of sam’:'»?re.os 5:;.:&)

own taste M you |
*]). The idea s'not

«%@“wg ansfer method is used.

computer articles, it takes 37 seconds, which seems
forever. Lines 100-130 are much faster, using Basic's
own mass-transfer routine at 41919 ($A3BF), which it
uses often to move code. Without the REM’s it only
takes 2 lines, and even in Basic it is 37 times fz

This means that it can be put onto the front end of anv
grdinary Basic program where you want the advapia

CUSTOM BASIC, with very little

FINALLY

APPLICATIONS

iII then have the new prompt unl
added advantage is that when ther@
error me<sage, the “2” at the beginning is replaced by

ON THE DISK

OTHER ROM CHANGES...?

Let your imagination be your guide for other
modifications to Basic, but do not expect that they will
always work. Would it be interesting to change the
STATEMENT TABLES which are located from 40972 to
41373 (SAOOC-$A19D)? You could then make the
machine respond to your own version of Basic, example
using po (NOT pO) instead of POKE, but it does not
work: it insisted on consulting ROM, not RAM. On the
other hand it was possible to change the ASCII text of
Basic Error Messages, from 41374 to 41767 ($A19E-
$A327). You could for instance, change “SYNTAX” to
“SILLY” or even “SEXY”, but there seems little practical
use for that, although in line 910 “SYNTAX” has been
changed to “WORD? if you do not like the former. The
simplest way to make any tentative changes is to use a
Machine Code Monitor to change the RAM after
transferring the ROM to RAM, exit the Monitor and test
the result. If you like it then you can build it into your
own CUSTOM BASIC by POKESs.

OTHER IDEAS

It seemed as though it could be useful to build the
“SYSTEM” test into LET, otherwise useless?, to tell you
the line number when LET was used. It worked, but
inserting the necessary JMP $BDC2 at $A9AS5 also ruined
every defined variable. It seems that when you enter N=2
(or etc) it actually goes to the LET routine, which seems
not to be so useless after all.

A friend suggested changing the cold-start message
from **** COMMODORE 64 BASIC V2 **** to your own
choice. That message is located from $E45F to $E4AB,
and is printed from ROM when Basic is initialised at
Power ON (or Reset). But although you could put your
own message into the RAM underneath that, if you
wanted to print it you would have to turn off the HIROM
at $E000- at location 1. This could be done by
POKE1,52. Try that, and will see why not; it hangs up.
The reason is that when you turn off HIROM with a
POKE you turn off the ability of the system to understand
the POKE, and it goes crazy! You can do it in Machine
Code, but when Basic is initialised it always reads from
ROM anyhow, so nothing would be done. Too bad. Enter
5YS558260 to show this.

So, experiment, but do not be surprised if you have
difficulty. If you succeed, let CDU share in your
knowledge.

RAM CHANGES
Try adding this to CUSTOM BASIC;
660 POKE56341,40:POKE650,128
The first POKE speeds up the cursor blink to a more
useful rate (default is 64) the second one allows all keys
to repeat, also useful. Within a program these show up in

INPUT statements, but they are still there when you list
the program, and are convenient when debugging.

USING MACHINE CODE

C.BASIC LDR on the disk does all of the above rather
faster (nearly instantly) by using Machine Code. The
REM's show where you can make changes. It includes
the modifications 1-5 of CUSTOM BASIC. This is a Basic
loader, and when it is run it will put the Machine Code at
location 820, and SYS820 activates it. If for some reason
the program crashes reactivate again either by SYS820 or
POKET,54 (but RESET will destroy 820)

This loader may be made part of a program, but it does
occupy 471 bytes (omitting REM's). Lines 100-610 of
CUSTOM BASIC require only 208 bytes when d-remmed,
which is actually smaller, and it is easy merely to include
(a d-remmed) CUSTOM BASIC in your program (lines
100-610). On the other hand, the actual Machine Code
of the loader take only 71 bytes. If you save it to disk as
Machine Code and then reload it by your main program,
it will not take any room in the Basic area, and of course
it will run much faster.

The Machine Code routine does not take any room
from Basic, but as it stands it cannot be moved to another
region. The Sourcecode is included on the disk. Listing 1
below shows how to save the Machine Code to disk,
Jisting 2 shows how to load it into your main program.

LISTING 1
(Saving the MC to disk)

To save to disk, delete the SYS from C.BASIC LDR (line
200), and add the following lines;

290 PRINT”[down] SAVE TO DISK? ":WAIT198,1:
GETAS$:IFA$<>"Y"THEN320

300 OPEN1,8,1,"BASICMOD(820)":PRINT#1,
CHR$(52)CHR$(3);

310 FORN=820TOB90:PRINT#1,CHRS(PEEK(N));:
NEXT:CLOSE1

320 SYS820:END

LISTING 2

(Loading MC from Disk)

To load that saved program into an ordinary Basic one,
use something like the following;

1 IFPEEK(820)<>169THENLOAD”BASICMOD(820)",8,1
2 5Y5820: REM Rest of program follows

This should preceed most of the Basic program, and must
definitely preceed any DIM statements.

{*} - Useful referances;

MAPPING THE COMMODORE 64 BY SHELDON
LEEMON (COMPUTE BOOKS)

THE ANATOMY OF THE COMMODORE 64 BY
MICHAEL ANGERHAUSEN ét al (ABACUS PRESS)

That concludes this months offering. Next month we will
give you the final two routines, namely,
LOAD ADDER and SPACE INSERTER..

16

MY COMMENT

Before | start sifting through this month’s mailbag 1
would like to wish each and every one of you a happy
CHRISTMAS and NEW YEAR. If by the time you read
this it has all passed, then I hope you had a good time.
Secondly, | thank Mr L.J.TODD OF HENLOW,
BEDFORDSHIRE for forwarding to us an original copy
of the HOME ENTERTAINMENT CENTRE, free of
charge, which | immediately passed on to MR WRIGHT
OF SHROPSHIRE who expressed an interest in a
computer version of the game of Bridge. It is very
pleasing when such results are obtained.

FINDING THE 1581

Dear CDU,

I'am currently looking for the Commodore 1581 three-
and-a-half inch disk drive, with no success. I read in your
article on Adventure Writing that you have a 1581, so I'm
asking if you know where I can buy one, as nobody in
Stevenage appears to have heard of it! | also required
help finding a copy of the game “MISSION OMEGA”, a
review of which was printed a few months ago, but as yet
I cannot find it anywhere. Please help me locate a copy
of this game, as | liked the sound of it

MARC BANGS, STEVENAGE.

Dear Marc,

1 obtained my 1581 drive from FSSL and | am quite sure
that they still stock them. There address for the purpose
is FSSL, Masons Ryde, Defford Road, Pershore,
Worcestershire, WR10 1AZ. The drive costs around two
hundred and fifty pounds but I would telephone them
first on 0386-553153 to check details. With regards to
your second point, all I can do is ask if any of the
teaders has ever seen such a game in their local
computer store, or alternatively if an owner of a
computer store would like to write, | would be pleased
0 pass on the address of the store to Marc.

LETTERS

A letter, a letter, my
kingdom for a letter -
“JASON FINCH” circa 1990

BORDER SPRITES

Dear CDU,

Could you please tell me the secret to obtaining sprites
the upper and lower borders. Also | read in an article of
yours that there are only six key bytes used to get sprites
in the side borders. What are they and how do |
incorporate them in a program? | understand the
concepts of raster-scan interrupts and have a working
knowledge of assembly language.

ANDREW BROWN, HULL.

Dear Andrew,

You correctly identify that raster-scan interrupts are
important. You must first set a latch at $F9 to carry out
the instructions LDA #§13, STA $DO11. This would
usually “shrink” the screen vertically but done at the
right place it will help to get rid of the border. You then
need to set another latch at about $32 to carry out the
instructions LDA #$1B, STA $D011. This then puts the
screen back to the right length. Having carried out those
simple instructions at the two specified addresses,
ending of course with a JMP $EA31 or something
similar, you should be able to get sprites in the upper
and lower borders. Getting them in the left and right
borders is far less complicated in terms of code used,
but it is far more complex in actual reality because
extremely precise timings are required - down to the
very cycle. The six key bytes are given by the
instructions DEC $D016, followed immediately by INC
$D016. Done at the right instant this will open up a one
pixel deep “hole” in the side borders. This must be
repeated however many times you require with a
sufficient time delay in between. Bear in mind that
displaying the sprites will extend that delay anyway so
you need to experiment with the sprites displayed
where you want them. It is impossible to say exactly
what the timings you require will be because it depends
on a number of things. I suggest that you have a look at
some of the programs that have been published in CDU
to see how the programmers have got the sprites in the
left and right borders there - but don’t hack out any
code byte for byte and use it in your own programs
remember. | hope that information will at least set you
on your way.

17

LETTERS

MEMORY SCANNER

Dear CDU,

Please could you help - | am unable to get the desired
results with the “MEMORY SCANNER” utility. So far
whenever | have tried to use it | finish up with a screen
showing the “MEMORY SCANNER” program being read
but not the adventure. Any help or advice you can give
would be greatly appreciated.

ROBERT MARSH-HOBBS, NORTHAMPTON.

Dear Robert,

When you run the program the screen will fill with a
number of symbols as the value in the top left is
incremented. When the screen is full, the number

will be 840. You then must press one of the function
keys as shown in the top section of the display. To
continue reading the memory you should press F1. The
characters on the screen will then be overprinted with
new ones and the value should increment from 840 to
1680, when again you must press F1 to continue. You
must keep pressing F1 each time the counter stops, next
at 2520, then 3360, then 4200 and so on. There may
also be some misunderstanding regarding the
adventure. You did not specify anything further about
the adventure - there is no example adventure in the
memory though when you run the program for the first
time. You must find one yourself that you possess and
load it first. Then you should be able to view it by
pressing F1 at the appropriate times.

LETTER MAKER

Dear CDU,

I am having a problem with “LETTER MAKER". My
problem is how to get the text in colour. At the moment
all I am getting is black and white lettering. Can you
please explain. When | press the letter “D” for Directory,
I/ get the disk title and then some filenames all in white,
but after this it tells you to press a key for the menu. But
what is puzzling me is the letters are then in colour. But
when I press any ke for the menu I am back to the black
screen and white lettering. | hope that you can help me
solve this problem

JAMES MCNALLY, KRIKINTILLOCH.

Dear James,
It is not possible to display the text for your letters in
different colours due to the way that the utility has been
programmed. The characters, you will have noticed, are
all the same colour, and that s in fact colour number
fifteen - light grey. You can if you wish alter this colour so
that all the writing is displayed in, say, green or light blue
or something, but it is not possible for different words or
lines to be in different colours. To alter the general text
colour simply load the program and type POKE10462,n
fore running it, where ‘n’ represents a number between
0and 15 corresponding to your desired colour. Therefore

if you wanted all text to be displayed in yellow then ‘Z‘c;u
would load the program, enter POKE10462,7 and then
type RUN. | hope | have been of some assistance.

DRIVE DEVICE

Dear CDU,

When I very recently purchased my system second-hand
| was lucky to be given a 1571, 1581 and MPS801
printer as well. Unfortunately neither the printer nor the
two drives had any manuals. The 1571 drive (used
mainly in 1541 mode) is st to device eight and | have
the 1581 as device nine. Sometimes it is preferable to
switch the device numbers, thus giving me the three-and-
a-half inch 1581 drive device number eight and the 1571
number nine. However, this is very tedious flicking
switches each time. The person who sold it all to me
showed me the switches on the backs of the drives, but |
now understand that there is also a software method for
changing the device numbers but, as | said, | do not have
the drive manuals, and besides, if the 1581 was made
device eight how would | access the 1571 to make it
device nine, as then there would be two device eights?
Please shed some light on this subject for me.

DAREN POOLE, LEEDS.

Dear Daren,

There is indeed an alternative method for changing the
device numbers of the drives and it is referred to as
“softwiring” the drives. The trick is to incorporate
another device number - device ten. You change the
1571 from device eight to ten, then the 1581 from nine
to eight, and finally the 1571 from ten to nine. You are
then left with the drives having opposite device
numbers, with no errors being generated due to two
drives having the same number during the proceedings.
The method for changing the device number is OPEN
15,0d,15, “U0>"+ CHR$(nd): CLOSE 15 where ‘od’ and
“nd" are the values for the old device number and new
device number respectively. To show you exactly how
to do what you want | have written a short program that
has been included on this issue’s disk, filed as TECHNO
PROB. Run the program once to switch the drives
around and then again to switch them back.

PET PROBLEMS

Dear CDU,

1 think your magazine is better than most, catering for the
more serious computer user, which is what | want to
become. | think your letters page or TECHNO-INFO is
excellent - please do not change your helpful attitude, as
this feature alone will want me to go on buying your
publication. What | want in a magazine is one which will
provide me with answers to problems that | encounter
when trying to use my computer for more practical uses
than playing games. | have an 8050 dual drive as well as
a 1541 and an 8032P printer. | have bought an IEEE

18

interface to enable me to use the disk drive and the
printer but most programs wouldn’t load with the
interface connected. | have now bought a different IEEE
interface and program will now load, but the print
utilities that | have still won't run. In all | have spent
about one hundred pounds on trying to get the printer to
work with commercial software. What is the point of me
mentioning this? Well, these are the sort of problems |
hope can be answered by magazines such as yours.

BRIAN COLLEY, BRISTOL.

Dear Brian,

Thank you very much for all your kind comments about
CDU and TECHNO-INFO. It is nice to know that the
work is appreciated. From your letter | gather that you
have never been able to use the printer with your print
utilities and so | am wondering whether you have
checked that the printer is device number four. You may
have used it from BASIC as a different device number,
but I don't know as you didn't supply those details, It is
essential that the printer is device number four and you
can check this by entering the line OPEN4,4:
PRINT#4,"TEST": CLOSE 4. I this prints then there can't
really be any reason that | can see for your utilities not
to work, providing they don't require complicated
things like the printing of graphics. It may be that the
commands required by the printer are different to those
given nowadays by commercial software. For example
the code to enter bit image mode may be completely
different - | do not hide the fact that | am not fully
familiar with the old PET printers and drives, although |
do know that the drives are not 100% compatible. I am
therefore surprised that you can even get recent
software to load on the drive due to the protection that
many software houses now use that are designed to only
operate with the 1541 and compatibles. I confess that |
am not entirely sure what you can do further in the way
of the printer because you haven't supplied me with any
technical details or the programs that it won't work
with. As | say, though, check the device number and the
commands that it requires to see whether it is entirely
compatible.

PASCAL

Dear CDU,

Please could you print in your magazine a request for a
version of PASCAL on disk for the Commodore 64
because | am studying A-Level Computing and that is the
language that we use. Thanks and well done on a great
magazine.
NEIL MARSHALL, HEREFORD.

Dear Neil,

Your wish is my command - if anyone has a copy of
such a programming language for sale, or anyone
knows of where such a thing could be obtained, please
send all relevant details to the TECHNO INFO
headquarters - address at the end - so that | may pass
them on to Neil.

LETTERS

PRINT DRIVERS

Dear CDU,
I read with interest how helpul you are in answering
queries in CDU. | am hoping you can solve my problem.
For many years | have had the excellent OCP
ADVANCED ART STUDIO, yet | have never been able to
use the print option. As you may know you must
configure the program to your printer. In despair | have
tried everything with no success. My printer is the
Commodore MPS1250. It can use either seven, eight or
nine pins for dot graphics. I have tried every variation |
can think of, yet I cannot get the program to print the
pictures. The program always locks up. With GEOPAINT
I have no trouble using the MPS801 print driver. | have
used the MPS801 configuration with the OCP but still no
£0.) have written to Commodore - as usual, no reply.
Also to the distributors of ADVANCED ART STUDIO -
again no reply. You are my last hope. Can you supply me
with the information to configure the program correctly? |
would be most grateful if you could help.

DAVID MEDLAND, CHESHIRE.

Dear David,

| can safely assure you that if you go through the
configuration process simply pressing RETURN when
presented with each question then the resulting file will
be correctly configured to the MP$801 and you will be
able to print. You must have done something wrong in
the past when configuring the driver that was too small
to notice. Unless your printer is faulty | can definitely
say that reconfiguring the program will work - just go
through every option very slowly and check and
recheck before pressing RETURN that your finger hasn't
slipped and hit some other key by accident. I wish you
luck with the new driver. If that still doesn't work then
your program may be corrupted. If that is the case then
please feel free to rewrite telling me what happened.

MEMORY EXPANSION

Dear CDU,

1 am very interested in a memory expansion for my 64.
Do you know of such a system? And if so, could you
point me in the right direction. Basically I'm after faster
everything (with icons as well if possible).

JIM MORRIS, THE BRITISH FORCES.

Dear Jim,

There is a very worthwhile system available for the 64
that gives you the use of icons to operate such things as
word-processors, a spreadsheet, graphics package,
desktop publishing package and many other such
utilities. The software system is called GEOS, short for
Graphic Environment Operating System and is available
in the UK exclusively from FSSL. You should write to

LETTERS

them at the address which | gave in my first reply saying
that you wish to purchase GEOS and the 1750 Clone, a
very good memory expansion that speeds things up
quite a bit, or a similar RAM Expansion Unit (REU). |
should think that the company will be only too pleased
o forward their latest GEOS Catalogue to you.

HARDWARE HASSLES

Dear CDU,

There is a problem that | cannot solve, and that is: | have
a 1541 disk drive (working great) and a 1550C printer
(also working great) but one will not work at all with the
other switched on at the same time. Consequently | have
to keep switching off and on all the time and I cannot
print a directory. Please can someone more
knowledgeable than myself come to the rescuel! | own a
64 (circa 84), a 1541 () and a new 1550C printer, and
also a POWER CARTRIDGE which is a great help in,
amongst other things, renumbering,

GERRY SMITH, CHESHIRE.

Dear Gerry,

The only thing that | could suggest is that you check
thoroughly the serial connections between the
computer, the drive and the printer. Try first hooking the
computer to the drive and then connecting the drive to
the printer, and then try hooking the computer to the
printer and then the printer to the drive. This will check
to see whether there is some sort of daisychaining
problem. Are you sure that the extra cable that you use
when both are connected isn't damaged? If everything
still doesn’t work, try disconnecting the POWER
CARTRIDGE. Then add the drive and printer in that
order and check, then disconnect everything and hook
them the other way around and check. Try just the drive
on its own but with the two different leads. There is no
reason why the two shouldn't work together unless of
course there is some problem with the connections
inside the printer or the drive, thus preventing a chain
through either the printer or the drive to the other
peripheral. All these things need to be checked out. Its
not really a problem that can be pinpointed to any one
thing I'm afraid.

MICRO MUD

Dear CDU,

I recently purchased a role playing adventure game
“MICRO MUD”. Unfortunately it was evident that
someone had tried to copy the disk and it had erased
itself. | was lucky enough to get my money back. The
problem is that although | have made exhaustive
enquiries | have not been able to trace the publishers or
the producers - VIRGIN GAMES LTD and MOSAIC

PUBLISHING LTD. Do you know of these companies or
where | can obtain a copy of this intriguing game? Maybe
one of your readers has one for sale. Can you help me

please?
L.J.BRITTAIN, KENT.

Dear Mr.Brittain,

Unfortunately | do not have the address of either
company and | am unaware of a company from which
you could purchase the game. As you said, pethaps a
reader has a copy for sale. If 5o, | would be only too
pleased to pass on any relevant information that |
receive 1o you. So if any of you readers do know the
address of either company or have a copy of the game,
could you please let me know.

EDITORS BIT!! - VIRGIN GAMES LTD can be found at:
2/4 Vernon Yard, 119 Portobello Road, London W11
20x

ASSEMBLERS

Dear CDU,
Id like to ask a few questions regarding assemblers. |
have one at present but it does not have any functions
like line numbering and labels and the such. It just allows
assembling and disassembling of code. | would like to
know where | can obtain a copy of an assembler that
allows line numbers (ie. 10 LDA #$00, 20 STA...),
supports labelling (.START LDA $xxxx, CMP $xxxx, BNE
TART), allows names to be defined for numbers
(BMPAGE=5$0400, LDA #$00, STA BMPAGE), and allows
data to be entered in decimal form (LDA #27 instead of
LDA #$1B). Please send me any details that are relevant
for the 64
MOHAMMED SAYED, LANCASHIRE.

Dear Mohammed,

What you have got is actually termed ‘a machine
language monitor”. It only allows the basic sort of
entering of code that converts itself instantly to
numbers | would imagine from what you have said. An
assembler is something totally different whereby you
enter the code just like a BASIC program but with each
command on a separate line. You then issue a
command and then the assembler reads the program
and analyses it in usually wo or three passes, whereby
on the third pass the program is converted to machine
code. An excellent assembler was published in CDU a
little while ago, called the 6510+ Assembler. It was
published in Volume 2, Number 4. To get hold of a
copy of that disk I would write to Alphavite requesting
a copy of a magazine beyond that available from Select
Subscriptions.

20

h the letters section complet

Worksop, Notts
command. In his letter

obviously here there are layout restrictions.

take it away Mr.Baker:

Do you find that a comma or semi-colon are often
extra ignored” by the 642 To this, input strings are
very prone. The question mark too, to some, can be a
bore! POKE 19,1 and it will disappear, POKE 19,0 to
reset - you must restore. POKE 631
ill appear, then input text to your hearts
gth restricted) take care! Not
necessary to close with quotes at the end. For tidynessa TNG
d here and there. So this little routine, to

and quotes
content, not t0o long (le

PRINT is neec
you, | recommend:

e now move to this
months tip. It comes to you from Mr.E.H.Baker from
and concerns the

is laid out like a poem, but

34: POKE 198,0

“TEXT “A$
BASIC INPUT

yway,

40 PRINT A$

That little routine

can enter commas
without anything beir
off this month's mailbag selection and so if you have
would like to hav
you have any programming/software related problem
please do not hesitate to write to CDU Techno Info, 11
Cook Close, Brownsover, Rugby, Warwickshire, CV21

S0 until next month, enjoy yourself!

anything to say

10 POKE 19,1:

LETTERS

POKE 631,34: POKE 198,1: INPUT

20 PRINT: POKE 19,0
30 PRINT CHR$(147)

| indeed do as Mr.Baker says - you
or colons or whatever you like
chopped offt That nicely rounds

a tip published, or

NOW IS THE TIME

TO CATCH UP ON ISSUES YOU HAVE MISSED

VOL 3 No. 12 OCT'90

ROLL! EM An example of using
ray

COLOUR MAT(N A short utility for

the C128,

SPREAD-ED - The third in the 'ED

series
RASTEREDITOR - Put those raster
Tessons to good use.

ADDRESS BOOK - A somewhat
unusual address base.

SUPERSORT 64/128 - Sorts have
never been easier.

SPRITE EDITOR 128 - Another utility
for C128 users.

‘GRAPH-ED - The last in the 'ED

series.
BACKGAMMON - That popular
board game gets an airing.

ues of CDU are available at £

VOL 4 No. 1 NOV'90

WAR AT SEA - CDU version of
battleships.

FULL DISK JACKET - Easy disk sleeve
printouts.

NEAGOX - Blast everything that

moves.
NUMDEF - A Basic game to test your
reflexes.

MEMORY SCANNER - Look through
memory the easy way.

MONEY 64 - Budget planning for the
90's.

XINOUT - An alternative input
routine.

CALENDAR C128 - No more buying
calendars with this utility.

GOMOKU - A nice va
popular board game GO.

Please allow 28 days for delivery.

ue, which includes postage and packing.
All orders should be sent to:- Select Subscriptions Ltd, 5, River Park Estate, Berkhamsted, Herts, HP4 THL.

VOL 4 No.2 DEC'90
LLS. (The German Program) - A
language tutorial.

SCREEN DESIGN CORRECTION - An
update to this excellent utiity.

BETTER BACKUP - Help for users of
n Replay Cartridge.

MACHINE CODE GEMS - A few very
useful machine code routines.

MULTI-TASKING C128 - The
assembler files for this series.

Please note that these are not the
only back issues available to you. You
can get back issues back to issue 1.
(November/December 1987).

ON THE DISK

31 PRI

ONTHE Cod

We present a neat utility that enables the use of 32 Sprites on the C64 written by MARTIN PIPER

Your trusty Commodore 64 was in fact the first computer
to have hardware sprites, and had far superior graphics
and sound than any other home computer at the time
that it was launched.

SPRITE MIGHT

Sprites are the most versatile objects to move, they don’t
rub out any background and are generally a joy to use.
For most programs the standard eight sprites are great to
use but for games you may want an assortment of aliens
buzzing around, filling the screen. Obviously eight
sprites will not fill the screen, it is for this reason that |
have written this routine.

The most versatile multiple routine for the Commodore
64. This program is not another “infamous 64 sprite
extravaganza”, see the “Commodore 64 programmers ref

32 SPRITE INFORMATION

The program that is on this months disk, “32 SPRITES”,
will allow up to 32 sprites to be positioned, expanded,
coloured and prioritised etc completely independently of
each other. As an optional extra sunroof, you can even
put these into the top and bottom borders. When using
more than eight sprites the program also cures the
vertical wrapround that is sometimes experienced in the

Although each sprite is able to be controlled
individually, you must remember that there are in fact up.
to 4 strips of eight sprites. When using 16 sprites there is
one division vertically and 2 strips, with 24 sprites there
are 2 divisions and 3 strips, finally, with 32 sprites there

sions and 4 strips. With the routine running at
full capacity there are 5 raster interrupts going on. Itis
quite amazing how the humble 64 can cope. These
divisions are invisible but woe betide any sprite that
decides to stray beyond the divisions as the data for the
next lot will mingle with others and produce a noticeable
quirk. There are two general rules that must be adhered
t;

1. The divisions must not be less than 32 pixels and the
lowest ‘Y position for any sprite must not be less than
30, or the divisions will flicker.

2. 7o position the sprites and change them you have to

DO YOU WANT DECIMAL OR HEX NUMBERS?(D/H>
THE LOCATIONS

ROTHES 48 V40 T VIO,
]
S e —

POKE into memory locations like the video chip location;

€000-C700 (49152-50944) Are used by the routine.

C400-C41F (50176-50207) Are the ‘X' positions for
each sprite (0-31)

C420-C43F (50208-50239) Are the ‘Y’ positions for
each sprite (0-31).

C460-C47F (50240-50271) Are the colours for each
sprite (0-31).

C480-C49F (50272-50335) Are the sprite pointers for
each sprite (0-31).
(this decides what the sprites look like).

C4A0-C4BF (50336-50367) Are the volumes for the
control register (0-31).

(See explanation below.)

To start the routine off $Y549316 or J]MP $C0A4 and to
update the sprite display SYS50688 or JMP $C600.

CONTROL REGISTER

The control register is a mixture of MSB, SPRITE DATA
PRIORITY, EXPANSION and MULTICOLOUR selection.
Bit 7 in each register controls the MSB of each sprite, a 1
will position the sprite into MSB area and a 0 will place it
into normal screen area. Bits 6 and 5 are expansion of
each sprite in X and Y direction. So a 64 will expand the
sprite in the X direction and a 32 will set the sprite in the
Y direction. Bit 4 controls sprite data priority and a 16
will set the sprite behind the background. Bit 3 will set

22

ON THE DISK

the sprite into multicolour
mode. Bits 2 to 0 are unused.
Bit values can be added so that
if you wanted a sprite in the
MSB, behind the background
and in multicolour mode you
would have 128+16+8 which
equals 152, similarly a sprite
expanded in the X and Y
directions would be 32+64
which is 96.

T
N
P
S
P

OEmmuz ®ToOT

BORDER CONTROL

To turn off the top and bottom
borders you must change $C370
(50083) to 1, to change the borders back to normal
change the 1 to a 0. Also, to change the mess that
appears at the bottom, change location $3FFF (16383) to
0, changing this 0 to any other number will make blank
horizontal lines appear in the borders

THE TECHNICAL BITS

To speed up the sprite update and animation, the routine
at $C600 (50688) can be bypassed. What the routine
actually does is to sort out the sprites positions and swap
large amounts of data into order, from the lowest to the

highest sprite number. It has to do this so that the sprite
display routine can print all the sprites. After the sort does
its job it stores the values for each sprite into $C000-
$COA3 (49152-49315). Quite simple so far isn't it? Now
for the hard part...Locations $C000-SCO9F (49152-
49311) are an exact image of $C400-$C49F (50176-
50335) except all the data for each sprite is in order. The
sort routine also updates the divisions so $COA0-SCOA3
(49312-49315) are the raster positions for each division
and must also be in order from the lowest to the highest

Ifa 0 is in one of the division pointers then the division
will be missed out completely and will go to the next
one.

SORTING DATA

Sort-routines are things that ALL programmers will use at some time in their
career. There are various different forms of sorts, and in this article we will try to cover the more popular ones!

ROBERT TROUGHTON

There isn't much difference between sorting numerics and
alpha-numerics, but | want to make this as easy to
understand as | can, so it will be best to start with numbers!
(which would you rather sort into order... a long list of
numbers, or a long list of words??2). Later, if time permits, |
will provide an article on sorting Alphanumerics,

SORTING NUMBERS

1 will provide you with a few algorithms, and examples of
what each one will do with a table of numbers, and will
leave you to program the routines into the C64 yourself - in
Basic, Machine Code, or whatever language you prefer to
use!

Note that Left-Elements are all the numbers to the left of
the present-number being checked, and the Right-Elements
are those to the right...

THE INSERTION SORT

This is definitely the simplest form of sort-algorithm there is,
buts far from being the fastest!

1) Start with the 2nd number.

2) Compare it with all the Left-Elements, and place in
correct position.

3) Move onto next number until the last number is
reached.

As an example, we will take the following list of numbers
(which will be used to demonstrate all the algorithms in this
article)

50 24 36 62 12 48 9 80 71

23

PROGRANMMING

0.24
(50 is compared with 24. 24<50, 50 24 in 1st position. (of 2)
24.503
(36is comp red with 14 and 50. 24<36<50 50 36 in 2nd
ion. (of

po:
24.36.50.62
(24<36<50<62 50 62 is kept in 4th position. (of 4)
24.36.50.62.12

(12<24<36<50<62 50 12 in 1st position. (of 5)
12.24.36.50.62.48

(12<24<36<48<50<62 50 48 in 4th position. (of 6)
12.24.36.48.50.62.9

(9<12<24<36<48<50<62 50 9 in 1t position. (of 7)
9.12.24.36.48.50.62.80

(80 in 8th position. (of 8)
9.12.24.36.48.50.62.80.71

(62<71<80 50 71 in Bth position. (of 9)
9.12.24.36.48.50.62.71.80

(no more numbers, so list is sorted!)

BUBBLE SORT

This sort is very commonly used, but like all sorts, it has it’s
problems.

The name bubble derives from the way that each number
will float towards the correct place one position at a time. If
you have a list of 25 numbers and the greatest is at the front
01 the list, the number will have to be moved 24 times!

Start with the frst 2 numbers, and compare them.

z) If the 1st number is greater than the second, a swap
is necessary. Make a note somehow that a swap was

rformed.

3) Move along the list one place (ie. 2nd and 3rd
numbers, 3rd and 4th etc.) until there are no more
pairs to check

4) If a swap was performed at any point in the ‘pass’
then repeat from stage 1. If no swap took place, the list
must be in the correct order.

50.24

(24<50 s0 swap performed).
245036

(36<50 s0 swap performed).
2436 50.62

(5062 50 no swap needed).
243650 62.12

(12<62 50 swap performed).
243650 12 62.48

(48<62 50 swap performed).
243650 1248 62.9

(9<62 50 swap performed).
243650 12 48 9 62.80
(62<80 50 no swap).
2436501248962 80.71
71 el e needed. End of lst reached, 2nd pass necessary).
24.

124<3e 50 10 swap).
243650
(36<50 50 no swap).
2436 50.12
(12<50 50 swap performed).
And 0 on until the list s sorted (this will be known by
e swaps will be performed in the ‘final pass)

SHELL SORT

Unlike the Bubble Sort, this one can move data by greater

distances, and hence will probably take less time!

1) Choose an integer to determine the number of
positions between which comparisons will be made.
(eg. if you choose 6, on the Tst pass, the 2nd number
will be compared with the 8th).

Start with the 1st number, and compare it with the

respective number (eg.7th if a displacement of 6 was

chosen). Make a swap if necessary.

Move onto the next number, and continue until the

end of the list is reached.

Divide the ‘displacement by 2, keeping it as an

ineger, and if it is greater than 1 then repeat from stage
When the displacement is less than 1, the list will be

suned!

=]

=

TAKING A DISPLACEMENT OF6

(9<50 50 swap performed).
(24<80 s0 no swap needed).
(36<71 50 no swap needed).

Listis now:
9243662 1248508071

DIVIDING DISPLACEMENT BY 2... INT(6/2) =
62 no swap.

st is now:-
912 36 50 24 48 62 80 71

Repeat for INT(3/2) = 2, INT(2/2) = 1, and then the list will
be sorted because INT(1/2) < 1. (The C64 rounds DOWN
{truncates)).

QUICK SORT

1) Start with 2 pointers (AB) at either end of the list (or
sublist, see later).

2) Compare the 2 numbers defined by the pointers. If a
swap is necessary, then do so and increment A by 1. If
no swap is necessary, decrement B by 1.

3) Repeat stage 2 until the 2 pointers coincide.

Note that at this point, all numbers in the Left-Sublist are less
than the number at position of pointers, and all numbers in
the Right-Sublist are greater.

4) You may now either sort each sublist, or split the
sublists into further smaller sublists (which you may
wish to do if you have a lot of data to be sorted).

Note that quick-sorts are not meant for sorting a list into the
correct order, only for providing shorter sub-ists, which can
each be sorted (using one of the previously defined sublists)
in a much shorter amount of time.

1 hope that this small article will shed some light onto the
much hated subject of sorting numbers!...| will leave Sorting
alphanumeric data till another time.

24

Adventure writer supremo JASON FINCH
continues his tutorial for all you budding
writers

Initially | must give you a humungous apology for not
presenting you with the programs last month that |
promised. This was due to a number of technical
problems but rest assured that they are here this month
for you - on the disk as AW-MODULES and AW-
MODULES.MC. This month’s instalment is quite short in
comparison to the other ones that | have given you, and
that is because the topic we are discussing this month is.
“PARSING”. That is, | am going to attempt to give you an
in-depth look at how a parser, or command analysing
system, works so that in the future you will be ready to
program your own, or accept the one that | shall be
giving you at some later date. Suffice it to say that the
subject can become very complicated and | do not wish
to blind you with too many complex details all at once.
Settle down with a cup of tea and this article in front of
you and then continue.

ONCE UPON A TIME.

First of all let us assume that you have entered the
following line and then we can see how the parser and
program may analyse it:

“Open the cupboard, examine the shelves, take the large
candle and put it on the table then go east”

This is about the most complicated form of sentence that
you are likely to come across and before we start we
need to assign a few words to the computer’s vocabulary.
Each one of these is then given a number. So we have
nouns: CANDLE 1, CUPBOARD 4, SHELVES 12, TABLE

25

ADVENTURING

6, IT 127. And some verbs: EAST 3, EXAMINE 7, OPEN
8, PUT 16, TAKE 10. And to round things off, some
adverbs, adjectives and/or linking words: ON 1, LARGE
<.

Hopefully you appreciate the fact that you must
program the computer in such a way that it has an in-
built databank of as many words as you think necessary.
Do not try to cram the entirity of the Oxford dictionary
into the memory as it just isn't essential. As a matter of
fact, about two hundred words is all you need. That may
sound a lot at the moment but in a large adventure it is
nothing, believe me! Now each word is given a number
as shown above, so that the computer can easily
remember which word it has just read from your
comman

BREAKING IT DOWN

The first thing to do with the sentence is to split it into its
component parts - the separate commands. For example,
the parser (that is the posh name for the bit of the
program that breaks down your command and checks
out how to react to what you have typed) could
recognise “.” and “,” and “1" and “and” and “then” as
being characters or words that split up the sentence
naturally. The line would then break down to five
commands as shown below:

1. Open the cupboard ()

2. Examine the shelves ()

3. Take the large candle (and)
4. Put it on the table (then)
5. Go east

Each of those separate commands is scanned for verbs,
linking words and nouns in that order. Any that are found

ADVENTURING

have their number stored. Zeros represent non-
recognised or non-present words

1. OPEN the CUPBOARD - Verb: 8, Link: 0, Nounl: 4,
N

n2: 0

2. EXAMINE the SHELVES - Verb: 7, Link: 0, Noun1: 12,
Noun2: 0

3. TAKE the LARGE CANDLE - Verb: 10, Link: 3, Noun1:
1, Noun2: 0

4. PUT IT ON the TABLE - Verb: 16, Link: 1, Noun1: 127,
Noun2: 6

5. Go EAST - Verb: 3, Link: 0, Noun1: 0, Noun2: 0

Then all occurrences of the noun 127 (“it”, “them”,
etc.) are replaced by the last value held in Noun1 before
that. The information for the commands then becomes:

1.V:8, L0, N1:4, N2:0

5.V:3, L:0, N1:0, N2:0

These can either be done all in one go with the
numbers stored in a large table, or you can chop off each
command in turn, analyse it and then chop off the next
bit from what is left. In my opinion the former is better
and although neither are particularly simple to program,
the former is probably slightly easier. Whichever method
you choose you will need to keep a record of how many
commands are still to be processed. The next input
prompt is displayed when this reaches zero. If using the
first of the two above methods you must reserve a large
enough area of memory for the storage of information. A
convenient maximum length of the input command line
is no more than 256 characters. This gives a possible 128
one letter commands which require four bytes each - a
total of 512 bytes is required for the storage table.

RESERVING MEMORY

You will also need to reserve quite a large chunk of
memory for the vocabulary of the computer. This is
absolutely vital. Unless the computer knows what the
player is saying, it can't do anything. The information for
the words can be stored as set out below which allows
for a maximum of 128 different verbs, 128 link words,
and 128 nouns. For each one you should give as many
synonyms as possible. For example - get, take and carry
would all be classed as the same verb. The words can be
stored as ASCII values below 128. Immediately
following the word is then a value of over 128 which
represents, with 128 subtracted, the verb, link or noun
number that pertains to that particular word. With our
previous example, the word “table” whose noun number
is six would be stored as 84, 65, 66, 76, 69, 134.

Of course that method only refers to one method of
storing the words and you can either choose to create
your own method and to write your own parser, whether
it be in BASIC or machine language, or to use mine
replacing the vocabulary with whatever you wish. |
doubt whether you will need a parser that accepts more
complex commands unless you want the ALL, EXCEPT,

26

EVERYTHING options that allow for commands like
“Take everything except the sword and put all on the
table.” You could, in that situation, have “everything”
and “all” defined as nouns and “except” as a link word,
5o long as another link, such as an adjective, is not
needed.

A LESSON IN GRAMMAR

Now to the different types of verb. Transitive verbs
require an object or noun. For example: CATCH the
ball, OPEN the door, KILL the guard, are all examples of
transitive verbs in use. LOOK, HELP, EAST are all non-
transitive. It is usually best to group the transitive verbs
together because then you only need a simple check in
the program to see whether a noun should have been
typed. For example: IF V<10 THEN.... Various other
checks need to be considered when writing the parser -
what happens, for instance, if the command “Light the
light” is given. As it stands, the parser would simply
assign the second “light” as a verb because they are
checked first. You must ensure that if a verb is read and
one has already been assigned, then check the nouns
instead. In this way, the number for the verb “light”
would be stored and when “light” was encountered
again the computer would have to think ‘well I've
already had a verb so perhaps it is a noun’. Of course
your humble 64 hasn't got a brain as such (ahh!) so you
have to program it to respond in such a manner. And
don't forget you must assign the noun as Noun2 if one
has already been assigned. If three or more are found
then simply ignore all but the first two - why not?

There may be some nonsense inputs like “Get drop
the lamp” that some strange person may enter to see
what happens. Using the previous method, unless
“drop” was defined as a noun, although I can't see why
you should ever do that, the parser would ignore it and
the resultant command would be interpreted as “get
lamp”. Although my parser would allow this, you could
include a check so that if two verbs were encountered
and the second wasn’t a noun either, then respond with
a “Sorry, what are you going on about?” statement.

These few words have just touched upon the concept
of parsing and hopefully you can see how complex your
parser could become. However, you can keep it to a
bare minimum and just let it accept the verb-noun
input. This is quite easy in BASIC - just write a routine
to split the input into separate words and then check to
see what is what. Also on this issue’s disk is a BASIC
parser that does that. You can expand on it if you like - |
have kept it very simple, nowhere near as complex as
the faster machine code one.

That concludes this month’s dose of information. Just
remember that the computer needs a vocab list and
needs to split up the command that the player enters in
order that the adventure program may be able to
interpret the commands into something sensible. This is
undoubtedly the most complex and possibly interesting
parts of the adventure programming and so if you
decide to embark on a parser, | wish you the best of
luck. Next time we meet will be March, so until then -
pleasant parsing!!!

PROGRANMMING

UMBERS Ano BYTES

Signs, complements and confusion make up this month's tutorial.

JOHN SIMPSON

With eight bits - or a byte, it is possible to represent the
numbers 00000000 to 11111111, or 0 to 255. Almost
immediately we will observe that there are two major
obstacles to overcome here. The first being that we can
only represent positive numbers, and the second that the
magnitude of the number is limited to 255.

SIGNED BINARY

We use the leftmost bit of the binary number, here bit 7,
to indicate whether the number is either positive or
negative. If the bit is clear, ie 0 then the number is
positive, and if the bit is sef ie 1 then the number is

negative.

eg. 00000001 +1
10000001 -1
00001111 = +15
10001111 -15
01111111 +127
1 -127

We can see that we have now reduced the magnitude of
the byte to 127. The eight bits, or byte, now only register
from 127, to +127

If we require larger numbers, then we must add more
bits. For example, if we use two bytes, a sixteen bit
word, we increase the magnitude to 64k unsigned, or -
32k to +32k signed (remember from the earlier
discussion a k, or kilobyte = 1,024). If this magnitude is
still too small for the requirement, then we can use three

ytes or more as necessary.

If we wish to use large floating point numbers then we
must use a correspondingly large amount of bytes. This
is why Basic, and other languages only provide limited
precision

JUST FOR CONFUSION

Let us perform an addition in signed binary by adding
together “-5” and “+7"

(+7) 00000111
+(-5) _+10000101
(+2) 10001100, or -12

Obviously the decimal result is correct but the binary
result is incorrect. A true result should be: “00000010".

Clearly, binary addition of signed numbers does not
appear to work. The computer must not just represent
information, but must also perform arithmetic upon it.

The solution to this problem is to use a method called
“two's complement”. However, there is an intermediate
stage called, “one’s complement”.

ONE’S COMPLEMENT

In one’s complement, all positive numbers are
represented in their ‘true’ binary form, but negative
numbers are obtained by transforming every bit into its
opposite:

eg +3 is represented by 00000011
- 3is represented by 11111100

another example:

+2 - 00000010
-2-11111101 - one’s complement

As a test we shall add “-4” and “+6".

(-4) 11111011 - one’s complement
+(+6) + 00000110
=(+2)(1) 00000001
where (1) indicates a carry. Of course the correct result

should have been “+2”, or “00000010".
Another test:

(-3) 11111100 - one’s complement
+(2) 411111101 - one’s complement

=(-5)(1) 00000007
Again the result is incorrect, it should have been “-5”, or
“11111010

We must use a further representation to ‘correct’ the
result. This is where “two’s complement” evolves.

TWO’S COMPLEMENT

In two’s complement positive numbers are still
represented as usual in signed binary, the same as one’s

27

PROGRANMMING

complement, however the difference in the
representation of negative numbers s first to complement
each bit, as we did in one’s complement, but then we

numbers are to large. Essentially it is an internal carry
from bit 6 to bit 7 (the sign bit).

further add one to transform the number into two's THE CARRY
complement.
(128) 10000000
eg. +3 in signed binary 00000011 +(129) +10000001
- 3 (+3's one’s complement) 11111100 =(257)(1) 00000001
add 1 for two's 00000001

thus two's complement of +3 is 11111101

Let us now try an addition:

(+3) 00000011
+(+5) _+00000101
=(+8) 00001000

which is correct.
sign number

Now for subtraction (which, of course, is done by
addition).

Remember the leftmost bit tells us the

(+3) 00000011
+(:5) +11111011 - two's of +5
=(+2) 11110

Let us identify the result by computing the two's
complement.

One’s complement of 11111110is 00000001

add one for two's 00000001

Therefore the two's complement is 00000010,
or“+2"

Our result of 11111110 represents “-2". It is correct.
let us subtract “+4” and “-3" (the subtraction is
performed by adding the two’s complement of “+3".

(+4) 00000100
+(:3) _+ 11111101 - two's complement
=(+1)(1) 00000001 (1) represents the carry.

We can ignore the carry bit (1), and see that the result is
correct. In two's complement it is possible to add or
subtract signed numbers regardless of the sign using the
usual rules of binary addition, the result always comes
out correct, including the sign.

Two's is the most c
representation to use for microprocessors. On more
complex processors the one’s complement may be used
but it does require special circuitry to “correct the result”,
but this does significantly speed up the processing time.

The following examples will serve to demonstrate the
rules of two’s complement, however, here “C” will
denote a possible carry (or borrow). This can be
considered as bit eight of the result. “V” will be used to
denote a two’s complement overflow. This is where the
sign of the result is ‘accidently’ changed because the

where (1) indicates a carry or “C".

The result of this demonstration requires another, extra,
bit, the eighth bit. Internally the microprocessor
(C64/128) uses registers which are only eight bits wide (a
byte), so when storing a result only bits 0to7 are
preserved. The carry, therefore, will require special
attention, and is detected using special instructions.
Processing the carry means either storing it somewhere,
usually in another byte (the hi byte), ignoring it
completely, or deciding, if the largest authorized result is
11111111 (255), that it is an error.

THE OVERFLOW

Some examples of Overflow situations during signed
addition

bit 6.
bit 7.

(+64) 01000000
+(+65) + 01000001
=(-127) 10000001
An internal carry has occurred from bit 6 1o 7 - this is an
overflow, and, “by accident”, the result is now negative.
This situation must be detected so that it may be
corrected.

1) 1mmn
461+

2) (1) 1o

Here an overflow carry has occurred from bit 6 to 7, and
a carry from bit 7 into “C” (the carry). The “C” should be
ignored, and because the internal carry from bit 6 to 7
did not change the sign bit, then the result s correct.

(-64) 11000000
+(-65) + 10111111
=(+127)(1)01111111

In this situation there has been an internal carry from bit
6107, but the result s incorrect because bit 7 has been
changed, an overflow has been indicated.

The carry and the overflow indicators are called
“flags”, and a register known as the Status Register is put
aside for the use of these, and other “flags"”. "Each bit of
the register denoting a particular flag.

When there is a carry from bit 6 to 7 the “V” flag will

28

become set, and the “C” flag when there is a carry from
bit 7. Overflow indicates that the result of the addition of
signed numbers requires more bits than are available.

MORE EXAMPLES

positive - positive positive - positive

with overflow

00000110 (+6) oI (+127)
+00001000 _(+8) +00000001 _ (+1)
=10000000

=00001110 (+14) (-128)
V=0 7

Invalid an overflow has
occurred.

(CORRECT) (ERROR)

positive - negative
(result positive)

positive - negative
(result negative)

00000100 (+4)
#1110 (-2

00000010 (+2)
411111100 (-4)

=00000010 (+2) =110 (-2)
:C:

1=0:C=

:C=1
(disregard)

(CORRECT) (CORRECT)

PROGRANMMING

negative - negative negative - negative

(with overflow)
10000001~ (-127)

+11000010 _ (-62)

1111110
+11111100

EA

=11111010 (-6) =01000011 (-67)
V=0:C=1 V=1:C=1
(disregard)
(CORRECT) (ERROR) - An overflow
has occurred,

by adding two large negative numbers together. The
result would - be -189,which is too large to fit into eight
bits.

BACK TO MAGNITUDE

If we want to represent larger numbers we will need to
use several bytes, and in order to efficiently perform
arithmetic operations it is good practice to fix the number
of bytes we intend to use. This is called a fixed
magnitude.

I have, so far restricted the adding of numbers to one
byte because the 64/128 operates primarily on eight bits
at a time. Because this restricts us to a range of -127 to
+127, then clearly this is insufficient for most
applications.

Next month we will continue with looking at how we
can use MULTIPLE PRECISION to increase our range.
Until then, keep experimenting.

DESIGNING A ROLE
PLAYING GAME

Fight the good fight by GORDON HAMLETT.

Last month, | examined various ways of designing your
characters for RPGs. Although you can have a lot of fun
with this aspect of your program, once the character has
been designed, this part of the program is largely
redundant.

INTO COMBAT

There is one element of RPGs though on which the
quality of of your game will stand or fall; COMBAT. Any
adventurer worth his salt knows that the only way to
fame and glory, not to mention the treasure, is to start off
killing a few GOBLINS and then working your way up to
DRAGONS and DEMONS. If combat is not for you, then
stick to traditional adventures.

The scope for your own combat system is enormous.
You can include as much detail as you want ranging from
the fairly simplistic (BARD'S TALE), through the middle

ground (ULTIMA) all the way to the advanced system of a
game like DUNGEONS AND DRAGONS. It is this last
system that we will be concentrating on. When you
realise what can be involved, then you can make the
appropriate decision as to what to leave out.

DANGEROUS ENCOUNTERS

The first thing to decide is whether an encounter must
necessarily result in a battle. The answer is probably yes
at the lower end of the market but as games become
more sophisticated, you may wish to introduce the
element of running away, talking to, trading with or
simply bribing whoever is standing in front of you.
Nevertheless, for the purposes of this article, we shall
assume that the encounter is a hostile one.

The first decision to be made is to work out who gets
the first blow in. If the battle is the result of a well

29

STRATEGY

planned ambush, then there is no problem, you give the
ambushing side one free hit all round and then take it
from there.

Otherwise, you have to decide on first strike on either
a team or individual basis. Factors affecting this might
include a character’s dexterity or a special item bein
used such as boots of speed. Traditionally, ELVES have
quicker reactions than HUMANS etc, and so are less
likely to be surprised. It should be perfectly possible for
two opponents 1o strike at exactly the same time and for
the results of both their blows to be taken into account.

GET IN FIRST

The concept of first strike really is important. For
example, in SSI's DUNGEONS AND DRAGONS series, a
magic user cannot cast a spell that particular round if he
has been hit so if you can guarantee to attack first and
toss a fireball into the arena, then obviously you are at a
huge advantage.

If you have ever played CHESS, you will soon realise
that it doesn't matter if you have some powerful pieces if
they are in no position to press home their attack. The
ability to manoeuvre in order to gain a tactical advantage
adds considerably to any combat system.

Again, consider the three most popular commercially
available games. In BARD'S TALE, you cannot move at
all. The party is limited to advancing as a group. In
ULTIMA, a separate combat screen is displayed and
characters can either move or attack when it is their turn.
In DUNGEONS AND DRAGONS, each character has a
movement allowance which is determined by the weight
being carried and the character’s strength. The player can
move round the battlefield and attack as he sees fit.

Obviously, this last system offers huge amounts of
variety and scope for the player. A strong fighter can
move over to protect an injured friend or a weak magic
user. You can also make good use of the terrain; using a
wall or tree to protect your back. You can also make
intelligent decisions as to where to concentrate your
attacks better (eg; attempt to reach the enemy spell
casters as quickly as possible).

BATTLE EQUIPMENT

Once you have an opponent in front, the actual process
of fighting one another can begin. There will be a
percentage chance of successfully scoring a telling blow
on your adversary. This will normally be calculated as a
basic chance, modified by the armour your opponent is
wearing (armour here is a general term; it is more than
likely to be a thick, leathery hide on a troll or the scaly
skin of a dragon.) This chance to hit might be further
modified by special items or characteristics. For example,
a magic sword should (unless it is cursed) give a better
chance of hitting than a normal model (it will cause more
damage too) Similarly, a very strong character might be
able to exert a blow of such ferocity that it breaks
through the enemy’s shield or whatever. Remember
though that the opposite should apply for very weak
characters.

You do not have to be standing in front of an opponent
in order to be able to hit him. Long weapons such as
spears might enable you to attack over the head of a

colleague. Then there are all the various missiles; arrows,
crossbow bolts, boulders, slings, daggers, hand axes and
50 on. With these weapons, you will need to determine a
maximum range together and then work out if an
opponent is in line of sight on the battlefield.

Some weapons, eg flaming oil and magic spells such
as fireballs might affect an area rather than an individual.
Remember that everybody within that area is ‘attacked’,
even if it includes a member of your own party.

DAMAGE POINTS

A successful hit will result in your opponent suffering
damage. This is invariably measured in hit points. When

someone’s hit points are reduced to zero, then that
character is deemed to have died. Damage is usually a
random figure within a range specified for each weapon.
Thus a long sword might cause 1-10 points of damage
whereas a dagger might only cause 1-4. Again, these
figures might be modified by magical weapons so that a
“+1' long sword would cause 2-11 damage points (1-10

).

+,

Again, damage can be affected by strength. Some
damage depends as well on the skill of the person
inflicting it. This usually applies to spells. A magic bolt
might cause 1-3 points of damage per level of spell
caster. This means that a novice starting out on an
adventure would only cause 1-3 points. By the time he
was a twelfth level magician though, the same spell
would cause 12-36 points of damage.

MORE COMPLEX ROUTINES

That is more or less the main part of a combat system
explained. What is written above, applies equally to the
monsters attacking your party. The battle is divided up
into a number of rounds or turns, with one round
consisting of every person involved in the battle having
one chance to do something. First strike is then
determined all over again as the next round begins and
50 on until the battle is won, hopefully by your side.

There are a couple of odds and ends to be cleared up
before moving on. Should any person turn and run away
whilst the battle is in progress, any opponent that he
passes directly in front of gets the chance of a free swipe.
Additionally, this extra hit is aimed at the back. As well
as being considerably easier to hit, all armour class
bonuses due to shields and dexterity etc are no longer
valid.

INVISIBILITY

Invisible creatures give themselves away as soon as they
attack. You might decide that they are still difficult to hit,
but at least you know where they are. CLERICS can
usually call on their various gods to help them if they are
in combat against evil spirits, usually called the undead;
skeletons, vampires and so on. Allow one attempt per
combat per cleric to see if you can dispel these evil
spirits. Remember, a battle does not consist solely of
moving and hitting. Characters might wish to do
something else; shout a word of surrender, quaff a potion,
change weapons, use a magical item and so on.

30

AERIAL COMBAT

Finally, aerial combat. As it is almost impossible to depict
a 3D battle on a 2D monitor, my suggestion is, forget it.
Remember at all times, you are the ultimate creator as far
as these games go. If something doesn't fit into your story,
then leave it out and use the idea elsewhere. You do not
have to explain your theories to anybody else or argue
with someone who wants to use a PEGASUS instead of a
horse. You are the boss.

GAINING IDEAS

If you are interested in looking into the ideas behind
combat or any other systems more deeply, then | would
strongly recommend that you take a look at the
DUNGEONMASTER'S GUIDE AND PLAYER'S manual,
both published by TSR. Although they refer exclusively to
the ADVANCED DUNGEONS AND DRAGONS
SYSTEM, they are well thought out and go into much
greater detail than | can. You won't agree with everything
that they include by a long stretch but you will get a lot
of ideas. Remember though, you are trying to devise your
own original system, not copy somebody else’s.

Once the battle is won, it is time to give out the
rewards. Experience points and treasure are what every
adventurer strives for and if there is one area likely to
unbalance your game quicker than anything else, it is the
allocation of loot.

KEEPING INTEREST ALIVE

To start with, you have got to keep the player interested.
There is no point having a vicious and dangerous battle
against a couple of minor demons if the only reward is a
few experience points and a couple of gold pieces each.
The players are not going to come back for more. But,
equally importantly, do not fall into the temptation of
giving too much away too quickly. If you acquire a +6
sword of giant slaying after your first encounter with a
party of GOBLINS, what are you going to give them
when they defeat the aforementioned giant?

FEASIBILITY

Consider too the nature of the treasure. It is alright for
DRAGONS to sit on their large horde of gold because
that is what dragons do. But if a GOBLIN captain has a
+1 suit of armour, the chances are that he is going to
wear it, not hide it away in a locked chest. A creature of
very low intelligence such as a giant worm that wanders
around dungeons sucking up debris is going to be full of
precisely that, debris. There might be the odd worthwhile
article somewhere in the slime of its gizzard but then
again, there might not be.

If you decide that defeating a group of TROLLS is
going to produce treasure worth 500 gold pieces, it
certainly won't be in the form of a single piece of
jewellery. Do you carry all your worldly goods around
when you go out shopping? Of course you don't so why
should you expect a raiding party of KOBOLDS to do

31

STRATEGY

likewise. Now, if you catch them in their lair, then that is
a different matter. But now, the treasure is likely to be
hidden, o trapped, or both. Intelligent monsters will
know what their stuff is worth and make best possible use
ofit.

IN CONCLUSION

The last thing | wish to say about combat is to consider
its frequency. You will have various planned encounters
inside your set scenarios; castles, dungeons or whatever.
It should be possible to ensure that the player tackles the
scenarios in the right order so that the strength of the
monsters will be about what you want it to be. But there
are also random encounters as the party travels about
and there is nothing worse than a group of monsters that
is so strong that it wipes out your party at a stroke.
Similarly, if you have a strong party, then repeated battles
against monsters that you can kill without thinking,
quickly leads to boredom. Ideally, a group of monsters
should be about equal or up to ten per cent stronger than
your party so that there is a real sense of achievement
when you defeat them. Look for variety. Always prefer a
few interesting scenarios to a lot of routine ones. If you
have a sophisticated combat system, then fine, make full
use of it. If it is more simplistic, look towards other areas
of the game to keep your players coming back.

Next month | will look at that interesting aspect, MAGIC.

CDU
BACK ISSUES

Back numbers of Commodore
isk User are avaliable
from:-

SELECT SUBSCRIPTIONS

5 RIVER PARK ESTATE
BEHﬁIEAMSSTED

HP4 1HL
TEL (0442) 876661
Price:- £3.25 INC Post + Packaging

CHEQUES PAYABLE TO
ALPHAVITE PUBLICATIONS LTD

PROGRANMMING

FURTHER A.P&’.NTURES IN

We are nearing the end of this excellent series on programming in ‘C’ by JOHN SIMPSON. This month we look at
ARGUMENTS and STRUCTURES

So far in this series we have covered a lot of the basic rules
and procedures that go into making ‘C’ the excellent
language that it is. These last two instalments should finish
by giving you enough knowledge to go out and write some
really good software.

COMMANDLINE ARGUMENTS

It would be useful if we were able to pass some parameters
to the program itself from the operating system. For
instance if we had a program called COPY, which copied
one file into another file, or some other device, such as a
printer, then we could enter a command line argument
such as:

COPY FILE-1 FILE-2, or COPY FILE-1 PRINTER

This example illustrates a simple application of a technique
whereby a much larger number of additional commands
could be added to the operating system structure.

Well C does provide a sophisticated method of dealing
with such a situation by means of two arguments which
can be passed to function main() at commencement of
execution.

By convention the two arguments are called ‘ARGC’, and
‘ARGV". Here ARGC is an integer which will contain the
number of command line arguments, and ARGV is a
pointer to an array of character strings which are the
arguments in question.

Here are some examples of values held by argc and argv:

COMMAND LINE - “test prog 1”

age -

argv(0] - test

argy[1] - prog

argvl2] - 1

COMMAND LINE - “copy filel printer”
arge 3

argv[0] copy

argy(1] file-1

argv(2] - printer

arg[0] is the name by which the program is invoked, an so

arge is always at least 1. In our examples argc was 3, so

argyl1] is the first real argument, and the last is argv(argc-1]

(in the examples argv(2]). Should argc equal 1, then there

are no command line arguments after the program name.
Here is a small program to illustrate further:

/* Command lines */
#include <stdio.h>
main(arge,argy)

rgc

t
char =argyll;

printf(“The value held in arge is %d\n",argc);
whilel—arge>0)
printf(“%s%c”,*+-+argy,(arge>1)2' “\n');

The first line of the program simply prints out the value held
in arge. Note, too, the method of declaring an array which
is not dimensioned “ [] “, this means that the array is of
undetermined length.

The while loop is controlled by the statement:

while(—arge>0)

This decrements arge, and as long as it is greater than zero
will execute the body of the loop. This means that when
arge is zero, the name of the program, it will terminate
because there are no more arguments to print.

Let's break down the next line:

Prnt(“%s%c”, *++argy,(arge>1)?’ “\n');

*4sargy, - deliver the contents of the address pointed to
by argv+1 and increment argv to same. The reason for
prefix_ increment is we are not interested in printing the
program name.
(arge>1)? “"\n’); - This illustrates the subtle use of the
operators (7:), they replace the if..else. In other words
arge is greater than 1 then a space * * is printed, and if not
(else) then a newline “\n" is printed.

The effect is to print out the arguments of the command
line, with spaces separating each argument and the whole
ending with a new line.

STRUCTURES

A structure is a group of data types combined s a single

82,

item. This allows the data to be grouped for easier
manipulation under a single name.

Probably the most traditional example | could use is a
‘payroll” record. We can tie together a set of attributes, such
as: name, address, insurance number, salary, etc and tag
this 10 an ‘employee’. Some of these attributes could, in
turn, be structures themselves, a name or an address, for
example, consists of several components.

Complicated data can be more efficiently organized by
using a structure, particularly in large programs, because
instead of using separate entities a group of related
variables can be treated as a single unit

BASICS of STRUCTURE

Lets start by using an example. A date consists of multiple
parts: day/monthyear - perhaps day of the year and name
of the month. This will give us five variables, and they can
all be grouped into a single structure:

struct date |

int day;

int month;

int year;

int year_day;

char month_namel4];
k

The declaration of a structure uses the keyword, struct. An
optional name, or tag as it is sometimes called, may follow,
as within this example where | used the tag name, date.
The variables mentioned in the structure are usually called
structure members.

‘The right brace which terminated the list of the members.
of the structure may be followed by a list of variables:

struct { ... | x,,z;
is the same a:
intxyz
in the sense that each statement declares x,y,z to be
variables of the named type and will allocate storage space
for them.

A structure declaration which is not followed by a list of
variables does not allocate storage space, but will describe
the shape, or template, of the structure which can then be
filled later.

We could, after the terminating right brace, and in front of
the semicolon, initialize the structure by defining a variable
here, such as ¢ which is a structure of type date. By
omitting the variable at this point then we can define it later
with a line such as:

struct date ¢;
We could also, if we wished, declare other variables for
example:

struct date c,d,e;
which means that c,d,and e are all variables of the structure
type, date.

struct date dee;
will define a variable dee which is a structure of type, date.

PROGRAMMING

We can also initialize an external or static structure by
following its definition with a list of initialisers:
struct date person = { 11,12,1938, “Dec” };
When we wish to refer to a member of a particular
structure we use a construction of the expression in the
form:

STRUCTURE-NAME.MEMBER
Here the structure member operator “.” will connect the
structure name and the member name. To set leap_year
from structure dee of the type date, a line of code could be
thus:

leap._year = dee.year %4
&& dee.year %100 1
11 dee.year %400

orto check the month name:

if (stremp (dee.year_day, “Dec”) ==0)...
We can also nest structures, and the payroll example we
looked at earlier might actually look like this:

struct employee |
char name[name_sizel;
char address[address_size
char post_code(8];
long ni_number;
double salary;
struct date birth_date;
struct date hire_date;

In our employee structure we have two dates. If we
declare:

struct employee emp;
n

emp.birth_date.month
will refer to the month of birth, as:
emp.hire_date.year
will refer to the year the employee was hired. Note that the
structure member “." associates left to right.

Older versions of C did not allow for the transfer of data
from one structure to another. However now if it was
necessary to transfer data between two variables of the
same structure type, say a and b, then the transfer is simply
b=a: We can also pass structure names to functions:

record(date)

FUNCTIONS AND STRUCTURES

We can pass the component members of a structure
separately, or pass a pointer to the whole thing. The first
alternative can be shown in the following exampl

First we need to demonstrate a small function which
will set the day of the year from the month and the day.
This example presumes the tables required have been
declared and initialised elsewhere.

33

PROGRAMMING

day_of_year(yearmonth,day)
int year, month, day;

inti, leap;

leap = year %4
&& year %100 1=0
11 year %400 == 0;

month; ++) [
lay_tab[leapl[il;

return(day);

Now we can pass individual members:

dee.yeardate =
day_of_year(dee.year,dee.month,dee.day);
and the other alternative to pass a pointer, using our sub-
structure hiredate above, and rewritten day_of_year, we can
use:
hire_date.yearday = day of year(&hire_date);
The function day_of_year now requires modification
because its argument is now a pointer from hire_date rather
than a list of variables as was the original function earlier.

/* set day of year from month and day */
day_of_year(ptrdate)

struct date *ptrdate

{

inti,day,leap;
day = ptrdate->day;
trdate->year%d == 0 &&
pirdate->year%100 1= 0 ||
ptrdate->year%400
for(i=1; i<ptrdate->month; \++Pl
day += day_tablleapl[il;

leap

return(day);

Let us look at this in detail. The declaration

struct date *ptrdate;
tells us that we have a structure type named date, and that a
pointer * *ptrdate * points to it. The operator * -> * refers to
a particular member of the structure. Therefore ptrdate-
>year is pointing to the year variable of the structure date.
This could also have been written as: (*ptrdate).year

ARRAYS OF STRUCTURES
It is also valid to have arrays of structures, which are
extremely useful for handling blocks of related data.
Let's examine a small program:

struct records{
char name[20];
int day;
char month(3];
int year;

2

struct record lists()=(
“Jenni Phillips”,6,Jul”,1970,
“Malcolm Mclean”,23,"Dec”,1956,
“John Oldbuddy”,11,"Dec”,1821”,
“Mary Lamb,31,"Feb”,1872,
“Jack Homer"12,"Mar",1761

intxy
main)

21
prmtﬂ”Wh\Lh record do you wish to view?\n");
printf (“(Type Q to quit) “);
x=getchar();
Qk

if (x) break;

—x;
iftx>=5) {
printi(“*** ERROR. VALUE INCORRECT\n");
continue;

printi(“%%s\n’lists[x].name);
printi(“%d\nlsts[x].day);
print(“%s\n” lists[x].month;
printi(“9d\n”listslx].year);

}

}

As can be seen, we have created a character array to
contain the names of the persons to be held in the record,
as well as their date of birth. We have declared an array of
structures using the statement:
struct record lists[]

We then have the lists of names, day, month, year. The
order of the data elements is important, it must match the
structure member that it corresponds with. The number of
array elements is automatically calculated from this list.

The function main() allows the user to access the array
and print the relevant data contained onto the screen. The
method of accessing each member of the list is shown
wnhm lhe printf() output statements. Namely:

her] striict

n
Itis also possible, and practical, to “nest” structures, or
even arrays of structures, For example:

struct address(
char street[20];
char town([20];
char telephone[9];
¥

struct employeel
char name(20];
char job[20];
char dobl8];

k
struct generalf
struct member now;

34

struct address here;
int workno;
int salary;

details[3] = {
“M. Thatch”,"Janitor”,”06/10/23","10 Down
St”,"London”,007,52000,
“H. Husbnd”,"Sampler”,"07/08/21","10 Down
Sty "London ,008,28000,
Worker”,"Nurse”,"26/10/68”,"10 New
Street”,’ "Bedford" ,009,8500,

“/ Rest of Program.... */

Accessing the information contained in the records would
be similar to that outlined earlier demonstrating arrays of
structures. You must consider the nature of “structured”
structures. If you consider the structure array as a series of
boxes (pigeon-holes), then you must, logically, go to the
correct bo, or array element, where inside is contained the
data items. This consists of (in the above example)
structure detail as well as two other boxes, namely,
structure address, and structure employee. These two
further boxes can then be opened to access the data which
they will contain.

As you can see, structures are a most powerful
programming tool which C capitalizes upon. Memory
dependent, a vast network of interlinked and nested arrays
and structures can be formed to give fast and accurate data
retrieval.

UNIONS

Obijects of different types and sizes may be held, at
different times, within a variable called a UNION. These.
provide us with a way in which we are able to manipulate
different kinds of data within a single storage area.

Suppose that some constants may be INT’S, FLOAT'S or
even character pointers. The value of a particular constant
must be stored within a variable of the correct type, yet it is
more convenient for the management of tables if the value
occupies the same amount of storage and in the same place
regardless of its type. Here lies the purpose of the UNION.
It will provide a single variable which is able to hold any
one of several types. The syntax is based upon structures:

union valuef
intintval;
float floval;
char *pirval;
Junionval;

In this example we have a variable, UNIONVAL, which
will hold the largest of the three types. Anyone of these
types can be assigned to UNIONVAL and can then be used
within expressions (that is, so long as this is consistent -
namely that the type retrieved is the type most recently
stored).

PROGRAMMING

The syntax for accessing the members of the union is the
same as for structures, namely:

union-name.union-member
union-pointer->union-member

Let us examine an illustration. We have a variable
UNIONTYPE which we are going to use to keep track of
the current type we have stored in UNIONVAL (It is up to
the programmer to keep track of the current type in the
union):

if (uniontype == int)
printf(“%d\n”, umonva\ intval);

else if (uniontype
printf(“%%f\n”, umonval.ﬂaval ;

else if (uniontype == string)
printf(“%s\n”, unionval.ptrval);

g

else
printi(“*** BAD TYPE %d IN UNIONVAL\n”,
uniontype);

Unions are allowed within structures and arrays as well as
vice versa, and the notation is identical to that of nested
structures.

struct {
char *name;
int dob;
int uniontype;
union {
int intval;
float floval;
char *ptrval;
} unionval;
{ symboltab[NUMSYM];

here the variable INTVAL is referred to by:
symboltablil.unionval.intval
and the first character of the string PTRVAL would be:

*symboltablil.unionval.ptrval

TO CONCLUDE

Next issue we shall be examining INPUT and OUTPUT.
These facilities are not part of the C language, and I have
not emphasized them in my presentation of C thus far.
However, real programs do interact with their environment
in more complicated ways than shown so far, therefore,
next issue we shall be looking at the “standard 1O library”,
a set of functions designed to provide a standard
input/output system for C programs.
Until then, bye...

85

ADVENTURING

o A\t

HELP

LINE

JASON FINCH begins his second series of hints and tips for all those
Adventure buffs

Hello, good evening, and welcome to another edition
of Adventure Helpline. We are now in stage two of the
proceedings, having finished dealing with TONY
ROME's epic adventure KRON last month. This month
marks the dawn of a new quest - the quest to
successfully inform you of how to complete another
excellent adventure published by CDU in June of last
year. The adventure this time round, then, is THE
ASTRODUS AFFAIR written by MARK TURNER. You will
have had plenty of time to play about with it and a few
of you may have given up if you couldn’t solve the
problems. For those people I shall, hopefully, inject new
life into the adventure. For others of you who are still
trying to find the missing link in your adventuring, |
shall give what advice I can although | won't fully reveal
the step-by-step guide to completing The ASTRODUS
AFFAIR for a couple of months yet.

LET US BEGIN

1 approached KRON by first giving a general guide and
then a much more detailed one. This time around I shall
firstly set out the room descriptions and give each one a
number that I shall then refer to for the rest of the time.
that this adventure is covered. There are twenty-four
locations altogether in the adventure and I shall cover
fifteen this month, and then the remaining ones together
with a bit of vocabulary next month. In the first two
articles there won't really be a lot of information to hel

you solve the thing - it will just lay down the foundations
and inform you of the exits that are available to you.

Those given in brackets are only available when certain
conditions are satisfied, such as whether or not you have
a key to a door, whilst all the other exits are always
available. You may find that yet more are available but
they will be discussed at a later date. So without further
fuss, let us get on with the proceedings...

LOCATIONS,

LOCATIONS,
LOCATIONS

1

You're in a damaged, dank room, with most of the walls,
and the exit south, smeared with blackness. A
dishevelled generator sits in the corner.

X UTH 2

2

This is the far end of a grey corridor leading off to the

36

south. A door leads north and a murky stairwell
downwards.
EXITS: NORTH 1, SOUTH 3, DOWN 17 (next month!)

3

The corridor continues along here from north to south,
its metallic floor inclining.
EXITS: NORTH 2, (SOUTH 4)

4

This is the far end of the grey corridor. A large door
leads east, a room lies to the south, and the corridor
continues nortl
EXITS: NORTI

he door is open/closed.
SOUTH 10, (EAST 5)

5

You're standing on a tiny platform within the
stabalisation chamber, projecting from the wall over a
large drop to the floor below. The cylindrical metallic
chamber has only two exits; the one currently to your
west, and another at floor level.

EXITS: WEST 4, (DOWN 6)

You're at the floor of the stabalisation chamber. The
floor itself consists of alternating concentric circles of
gold and silver, with a small silver centre. A closed door
10 the west has a badly damaged alpha-numeric keypad
beside it.

EXIT: (UP 5)

7

You're at the crew’s mess. Various tables, stools and
foods are strewn about, whilst in one corner a body
quietly decomposes. The only exit is to the south.

EXIT: SOUTH 11

8

This is the corner of a lengthy corridor leading from
south to east. Although it seems safe, you have a strange
feeling here...

EXITS: SOUTH 12, CRAWL 9

This is the late Captain Gontra’s luxurious quarters.
Chairs, desks, filing cabinets, etc line the walls, whilst a
plush carpet covers the floor. A security beam guards
the only door, west.

EXITS: CRAWL 8, (ENTER 13)

ADVENTURING

10

This is the engine room of the Astrodus. Although
simplistic, the drive itself is extremely powerful. A
passage leads north.

EXIT: NORTH 4

11

This s the crew’s area, with numerous doors leading to
the tiny, functional rooms, all of which have been
ruthlessly pillaged. EXITS lead north and east.

EXITS: NORTH 7, EAST 12

12

You're at a spacious lounge. Extremely comfortable
glomuchairs fill the room, and doors lead off to the
north, west and south. A small silver disc is set into the

floor.
EXITS: NORTH 8, SOUTH 16, WEST 11

13

Although dark and gloomy, you can just make out the
features of this carefully hidden room. The hole is the
sole exit.

EXIT: OUT 9

14
(Start)

You're at the Bridge of the Astrodus, or what remains of
it. Debris and ruined machinery betray an ugly battle,
Captain Gontra being one of the many casualties. Doors
lead south and east. A drawer is set into one console.
EXITS: SOUTH 18, (EAST 15)

15

You're in a plain, compact corridor leading directly west
to east. A small silver disc i set into the floor.
EXITS: EAST 16, WEST 14

Well that, I’'m afraid, wraps up this
month’s instalment. As | have already
said, next month we will look at the
remaining locations in this same brief
format with a bit of Y.
After that | shall start to provide you
with some information that should help
you to complete this excellent
adventure. See you all again next month.
Have a happy holiday!

37

REVIEW

CBM/PC-LINK

Atlong last, a bit of kit to enable you to hook up your C64 peripherals to PC hardware

BONES

Over the last year or so, there has been a substantial
increase in the purchase of IBM and Compatible PCs -
most especially with the advent of the cheaper Amstrads,
Commodores, as well as the many ‘unheard of before’
makes, etc. This is truly great for all of us enthusiasts and
small businesses, but with it has come some ‘real’
problems. For example, how to transfer all the
accumulated dataffiles/programs/etc from the old
faithfulls - C64/128, Plus/4, and VIC-20 - over to the
newly purchased PC. Not only that, but how many of us
have now got CBM peripherals, such as printers and disk
drives which function mainly as dust gatherers! Or, to
put things another way, let us say that you, our faithful
reader of CDU, are seriously considering a new addition
to your equipment - namely a (and didn't you guess the
next word?) PC. Well, no longer do you have to wor

about buying a new printer, whilst trying to sell your old
CBM one... No longer do you need to worry about your
disk collection which is all in CBM Format... All this has
now been taken care of in one fair swoop! Yes, your
Commodore printer will be easily re-adapted to use with
the PC (and still, of course, with your CBM computer).

DONT JUST BIN THINGS

All those text files, and data files you may have, are now
a problem no longer - easily transferable onto your new
and ultra-expensive IBM (12

“Well”, you might be asking,”how come? What do |
need? Where can | get one?” And, most importantly,
“how much do | need to fork out?”

First of all, what you need is called a CBMPC-LINK,
and from where, or rather whom, you can obtain such a
prize is:

'YORK ELECTRONIC RESEARCH
THE PADDOCKS

JOCKEY LANE

HUNTINGTON

Y03 NE
Telephone: York (0904) 610722

And the PRICE? A nicely affordable £34.50 which
includes VAT and postage.

Judging from the address of York Electronic Research
you might think this is a bit of a gamble - let me hastily

assure you that one could not get any further from the
truth!l!

WHO ARE YER

Who are YER (you can easily work out the abbrevs.)?
Maybe many of you out there in CDULand will
remember them. " From 1986 up until 1989 they
marketed their own Commodore 64 products, which
included programming tools, Viewdata software, as well
as their own RS232 interface. This new product from
YER may seem unusual and interesting, but given their
previous track record with C64 involvement it does
fogically follow on from their development efforts -
especially considering their main work is PC
development.

MONEY WELL SPENT

S0, what will you get for your hard eamed thirty-four and

a half quid? Well, apart from the result of years of
develupmem skills, you will receive a CBM-PC cable
which consists of a 6-pin DIN plug, suitable for CBM
devices, and a 25-way D connector suitable for
connecting to the PC, and each joined together with
about six feet of multicore. With this comes the driver
software on disk - when you order you will need to tell
the guys and gals at YER whether you want a 5.25", or a
3.5" disk.

Care needs to be taken when connecting the cable
between the PC and the peripheral. You must be sure to
identify the correct port, most PCs have at least one
parallel and one serial interface - this is not CBM serial,
but RS232. You must identify the parallel port
However, it must be said, it is tricky to go wrong because
the serial port is male orientated, and the 25-way D
connector on your cable is also male orientated.

The driver software will allow CBM printers to be
accessed as standard PC devices, like LPT1 and PRN. All
DOS and BIOS printer facilities are fully supported, with
the full ASCII character set being available on all printers,
and Epson graphic emulation for some CBM dot matrix
printers.

The file transfer utility will read data directly from off
CBM disk drives. Files can be selected for viewing and
transfer from the disk's directory which is listed in a

38

scrollable menu. The utility supports Text, Binary, and
Basic files, and batch copying will run unattended.

GETTING UNDER WAY

When you insert your CBMPC disk in drive <A> and
enter, at the DOS prompt, SETUP, the installation utility
will run. This will tell you how many parallel ports you
have, and will display the main menu. Here you can test
the cable which comes with the package, test the printer
and disk drive, deal with the first time installation, and
set up - or remove the printer driver.

When you select FIRST-TIME INSTALLATION from the
menu options you are asked for a target drive and a
subdirectory. This is where CBMPC will be installed on
your hard disk.

As | said earlier, the printer drivers support the full ASCII
character set:

1"#$%8&/()*+,-./0123456789:;<=>2
@ABCDEFGHIJKLMNOPQRSTUVWXYZ{ }
“abedefghijkimnopgrstuvwxyz
(plus the UK currency symbol:)

The textmode of the basic CBM printers stops at that.
However, other printers do have additional facilities such
as bold, underlining, and graphics:

MPS and VIC dot-matrix
Brother HR10C

DPS 1101

Star NL/LC-10

Citizen 120

The industry standard
dot matrix graphic
code defined

used by
the CBM printers,
MPS 801/803 and VIC
1525, but the YER Epson
driver will translate Epson codes into
CBM graphics. Illustration.1 demonstrates
a sample output of Epson graphics. This was
generated using Xerox Ventura Publisher, and printed on
a Commodore MPS 801 using MPSEPSON program.

CBM-2-PC FILE TRANSFER
PROGRAM

Once you've got this program running, the screen shows

REVIEW

a directory listing in the familiar CBM format, with file
size in blocks, and PRG/SEQ extensions. The top line of
the screen shows the disk name and ID, whilst along the
bottom line is a list of ‘function key” options - which does
include my favourite <HELP>!

You are able to tag highlighted files - or untag them if
necessary, ready for batch transfer. As you tag them, a
display next to the file will state -pending=, and after a
successful transfer this will change to the familiar CBM -
"00,0K,00,00"=.

There are also many advanced features incorporated,
such as changing file types, performing PET ASCIl to real
ASCII, exact copying of binary which can be displayed in
hex-dump format, the detokenising of PRG files into text
files suitable for PC BASICS which can then be loaded
into GW-BASIC and modified to run on the PC, there is
also conversion of PET screen codes to ASCIl. CBM
1541 disk drives will also read old PET 2040/3040/4040
disk formats, which means PET wordcraft word processor

files can easily be converted.
You are also able to copy the
currently highlighted file into a
temporary buffer from where it
can then be displayed onto the
screen, and finally you are able
to copy, with less
sophistication it must
e admitted, files
from the PC to a
CBM disk drive.

Example of results that can
be achieved.

CBMPC-LINK REFERENCE
MANUAL

With the cable and the software comes the user’s
reference manual. Fifteen A4 pages complete with all the
instructions needed, as well as information, advice and
examples which cover every aspect of this unique,
unusual, interesting, and desirable package - definitely a
must for those people with CBM and PC equipment at
their disposal.

| could have spent another dozen or so pages
celebrating this neat utility that will surely prove to be a
bonus for many people, but the editor in all his wisdom,
said, “hold on there bald eagle, there are other things to
g0 in the magazine you know, Rave!”

“All right then,” | softly acquiescent. “However, | must
finally say, congratulations to YER for introducing the
CBMPC-LINK.”

39

FEATURE

PROBLEM
OLVING

We have had in the past various articles on using your mind. Ths s a short article by STEVEN BURGESS on the
benefits of forethought and structure, with regards to programmis

If you have just had a superb idea for a computer
program and have been sitting staring blank faced at a
blank screen then switch off the computer and continue
reading.

FIRST STEPS

The very first step in solving a problem is actually having
a problem to solve. Have you had an idea for a superb
program? If not then go away and do anything except
rack your brains to think of a superb idea. The one sure
way of clearing your mind of anything in the nature of a
superb program idea is to actually try to think of one.
Have a game of chess, have a sleep, a bath, watch some
T.V, play some computer games, but don't try to think of
an idea for a program.

Another important factor is your ability to solve the
problem. Thinking out the problem will make the solving
of it easier but you must be able to solve even the easiest
of problems. If you are unable to program then this
article is not, I'm afraid, for you.

So, once you have discovered what your problem is
then you have reached the mid point of solving it.

But you must not think of solving the program in terms
of commands and routines. First of all you must discover
if the problem you wish to solve is feasible.

FEASIBILITY

Feasibility simply means: can the language you will be
using undertake your program efficiently? ls the program

wish to write worth writing in the language you
have?

If, for example, you had a sudden brainwave (whilst
playing trivial pursuit) that you could write a
wordprocessor, but you only knew BASIC, then would it
be worth doing it? Even if you compiled the program
using your ‘up to 40 times faster’ compiler would the
program be sufficiently fast enough?

This particular problem is rather hard to gauge and
would probably involve the use of compiler tests - small
programs of your own creation which perform scaled
down versions of functions which you wish to include.
Screen updating is important with a wordprocessor, so
you could write a small program to dump a section of

memory, which could be the text, to the screen. If this
takes ages when compiled then a wordprocessor is a
definite no-no.

Another thing to consider is the need for graphics. A
word-processor would not require them. A DTP package,
on the other hand, would. Using unextended 64 BASIC
to write a DTP package would require a great deal of
staying power and patience on the parts of both
programmer and u

So, to execute a feasrbvhty study you mu<t look at your
problem and what features it will ne to be successful.
Then you must look at your compuler i S
capable of carrying out or providing these features
speedily and, more importantly, without sending you
insane in the process. Then you must look at yourself.
Have you got the mental stamina to finish what you will
start? Is your mind logical enough to figure out any
equations or programming constructions which will
make the program run more smoothly? If the answer the

last question is no then, although you may finish the
program, it will probably end up inordinately large and
complicated. Not only will it be impossible to read by
anybody else, but you will probably find that you can't
read it either and this is a tremendous problem if any
small error shows its head.

So, then, the personal requisites for successfully and
efficiently solving your problem, apart from an ability to
program, are 1) A logical mind, 2) Patience, 3) Able to
see dead ends and go onto another track. 4) Staying

power.

Unfortunately not all of us have these qualities in great
abundance. However, with a bit of work and a wish to
improve, we can adopt them and make good use of
them. So when you get an urge to give your keyboard a
battering, think again and make a few notes. When you
are tearing out your hair because of an untraceable error,
save the program and have a rest and then go through it
again with a fresh eye. When you find yourself getting
bored because you are writing a particularly long bit of
code which isn't going to do a great deal, think of what
the program will be like whe it i finished, watch some
L or read a book and then attack the program again.

Basically it's all a matter of not pushing yourself too
hard. The more you work that faster your level of
concentration plummets to the base line.

40

FEATURE BOXES

Once you have thought of the program as a whole, you
must think about the individual bits and bobs that make
up the program.

Write a list of the features you will require. It need not
be ordered into order of execution, you may always think
of something essential later on - just add it to the list.

Don't think about how you are going (o actually code
these separate elements of the program. Just write down a
word, an identifier, and proceed onto the
next.

Once you have compiled a list
which you think contains
everything you can go onto the
next stage of development. It

oesn’t matter if you have
inadvertently omitted something.
You've not committed anything
to computer memory, so you can
add things and remove things
later if necessary.

The next stage of development
is to actually order these single
elements into a flow of the
program. Note this is not a detailed
flowchart. It is just a diagram
showing the order in which features
of the program are to be executed.
Itis a good idea to separate these by
boxes - feature boxes.

If you remember something
you missed earlier when
compiling your feature box
diagram then just stick it in in
the appropriate place. If you
have a menu which, say, eight
other features are accessed
from then have eight lines
coming from the menu box
going to the respective boxes.

Always remember that this
diagram IS showing the flow of the
program. And it is a good idea to keep
this'in mind. Start at the top of a large
sheet of paper and work your way down.
Features from the same menu should all be on the same
plain.

SUB-FEATURE BOXING

Once you have reached this stage you can begin to SUB-
FEATURE BOX. You must think about each of the feature
boxes you have created and try to split them down
further. You need not actually write this down - just think
about it, although it is a good idea to make rough notes.
en you can see if there are any parts of the feature
that, when coded, could be used by other features. Such
as printing text in the middle of the screen. If this is used
in several features then it is a good idea to set this up as a
sub-subroutine. Or if there is a lot of disk access in the
program then you could have a sub-subroutine wi

FEATURE

gets the filename, or reads a specified block into the
buffer or whatever.

Then you can draw another feature box diagram. This
one with the sub-subroutines not connected to the main
construction. Draw the boxes like before and, whenever
You come actoss a feature box which makes use of one
or other of the sub-subroutines, then write the name of
that sub-subroutine in the box with the feature name,
preferably in another colour.

Once you have this fully done, it will occupy a lot of
paper, you can, at last, get down to the programming of

your program. You can program any part
of the program in any order, and it is
often better to do it backwards as
this gives different
\ perspective on the subject.

DEBUGGING

Having written your program
and tested it and found errors
in it then it is a good idea to
debug it. Good, because if you
don't then you'll never be able to
7/ use your program ever again
Debugging is made particularly
casier when you have programmed
in the style mentioned above. You simply
have to take listings of the routine
where the error is reported then
listings of any sub-subroutines
called by that error and then
follow the code through, thinking,
in your head, what is going on.
h make appropriate
corrections. Printing out has the
advantage of only printing the
pertinent parts. You are not
confused with miles and miles of
program scrolling before your
eyes.

STRUCTURED
PROGRAMMING

If you have always fainted at the
words STRUCTURED PROGRAM-

MING and found the thought of actually doing
it daunting, then don’t. Following the method of
preparation set out above, structure, in your final
program, is practically automatic. You have split the
program into simple parts and that, 'm afraid, is as far as
structure extends on the 64,

One point is you must never jump out of a routine.
Always leave it in the correct fashion (RTS or RETURN)
this keeps the stack in good order and makes everyone
happy.

SO GET ON WITH IT!

I'm afraid that there is little more | can say on this subject
that would not involve writing your program for you. So,
quite simply, get on with it.

41

PROGRANMMING

TITASK!

MODULES,PROGRAMS and TASKS

DAVID KELSEY

We provide a breakdown of all the modules necessary to
implement our multitasking concept

Last month we gave you the background needed for
implementing MULTITASKING on the C128. We also
provided all the “ASM” modules needed to RUN such a
system. On this months disk is the program needed to
“DISPLAY” these “ASM" files so that you can see what is
going on. Insert the disk into the drive and type
RUN"Display.bas”, this will load and run Display.obj if it
is not loaded. You can then view or print out each of the
files as necessary. Please note., if VIEWING the files, you
can only do this in 80 column mode, the PRINT mode
allows for 40 or 80 columns. The “UP KEY” moves up
through the code. The “DOWN KEY” moves down
through the code. The “LEFT ARROW” exits the current
file and the “P” key will print the file. (S key to stop).

STOR.ASM

The module named “STOR.ASM” is the first of the
modules we talked about. Refer to last months text to
refresh your memory.

FINAL NOTES ON LAST MONTHS
TEXT

This implementation is a simple method, however very
simple there are some problems that can occur with the
implementation.

A) What happens when storage is freed and there is no
free space left in the table even after cleanup ?

B) Memory fragmentation. Suppose that the only free
storage is

$5000-$5100 and $8000-$8200. Now we want to use
some storage of lengtl

$0250. Even though there is the storage, because it isn't
continuous (ie fragmented) the storage isn't available.

A SOLUTION TO (A) COULD BE AS
FOLLOWS:

Instead of defining a static table, every time a new entry
is to be placed in the table, find some storage and build
the entry. Then using links you could chain the entry
onto the other entries. A search can be done of this
chained table in the usual manner. This would be the first
maodification to the system, but it is a re-write of the
entire table logic and the logic would be complicated.
The cleanup code in the above module is a simple
attempt to try to deal with this problem.

(b) is more of a problem. There are again two ways
around this. Blocks of storage could be moved 1o try to
concatenate these blocks of storage. However to do this
would require the moving of large blocks of memory and
if any of this is code, then it would have to be relocated
(ie all absolute addresses would have to be converted).
This could take quite some time to do and the delay
would be noticed. Another solution is to ‘page out' the
code.

PAGING OUT

This is a complicated idea and is based on the fact that
whenever a program s running, only one instruction is
ever being executed and only one memory location,
apart from the instruction, is ever needed. The rest of
memory is redundent. So whole blocks of memory could
be placed on disk until required. The code could then be
loaded in when required anywhere and control could be
transfered. This could introduce programs which were
fragmented all over memory, but could still run. This
concept is very complicated to implement and won't be
discussed any further.

PROGRAM TABLE

The other table that the system maintains is the program
table. For any program that is loaded and run, certain
information is kept. Some of it is for the use by the
operating system and some is helpful for display so that a
person can interrogate the operating system to find out
information about the programs running.

INTERRUPT INFORMATION

When a program is interrupted by the operating system to
run another program, all the information that the

42

processor uses to run a program has to be saved.When it
is time to return to that program, this saved information
can be brought back and the program continues as
though nothing has happened

The processor information required to be saved is as
follows:-

A - Accumulator

X - Index register X

Y - Index register Y

SR - Status register

As this is put onto the stack, all that has to be done to
save stack information is to move the stack and place the
STACK POINTER in the program table.

As described earlier in this series, the special abilities of
the MMU to move the location of the stack and page
zero are used. So for each program its associated page 0
and page 1 areas are stored so that they can be pointed
to when the program is returned to to be executed.

The final information stored in the table is the program
name and where it i stored in memory (the start and end
address). When a program is removed you need to know
what areas of memory are freed up.

So the final layout of the table is below.

PROGRAMMING

are required.

ATE

This module defines the page zero layout. It is best to
define the all page zero definitions at the start of the
assembler code. This is because the assembler, when it
comes 1o a label, will automatically allocate 2 memory
locations if it isn't defined. (his is a problem if you define
it later to be a page 0 location). Commonly used values
are also defined as equates and special memory locations
are also defined here. Check module named “EQUATE
VI.1.ASM”

CCOMMON

These routines are called by many other modules and so
are called common. There are no other special
connections between the routines.

READNAME

This routine is used by all the command processing
modules encountered later. It will pull the program name
entered on the command line off and store it in a
memory block.

CONVRAM
This routine converts the BANK value which | have
defined in the program table 10 a useable configuration

FLAG | PRG STRT | END | 2ERO | 2zERO | ONE | ONE | PRIORITY | STACK
| | ADDR | ADDR | RAM | PAGE | RAM | PAGE POINTER
il 16 | 2 2 1 1 1 1 1 1
NUMBER OF BYTES

(There is an extra field in the table called PRIORITY. It
isn't used at present but is explained in the expansion
section later i this series).

I routines that are used on the table are :-
alises the program table

LOCNAME - locates the table entry which has the
program name specified.

LOCFREE - locate a free entry i the table.

It should be noted that this table isn't maintained very
centrally. Other routines actually modify this table. These

that can then be stored in the configuration register.
Check out module named “COMMON.ASM”.

INIT

This routine sets up the 2 tables which are used by the
operating system. It does other initialisation procedures
which will be described ater. It sets up the memory
configuration that is required as well and also displays a
message 1o say that the system is ready. The memory
configuration consists of RAM, I/O + common storage. The
memory map that is setup during INIT is as follows -

just provide some basic functions on the table. Check the
module named TAB.ASM at this point.

FINAL NOTES ON THE ABOVE.

Again, the table can fill up. Therefore there is a limitation
of the number of programs that can be run. The number
can be increased by increasing the size of the program
table definitions in the assembler code. A way to make
the number of programs running unlimited (limited only
by the amount of storage) is to use the chaining method
described for the storage table previously.

OTHER MODULES
Before going into the 2 main sections of this operating
system | want to describe some of the other modules that

COPIED BY OP SYS

$FFOO
LOADER CODE
.
o REGTTER ———
+o000 | L0 REGISTERS] o REGISTER
rhee
Fnee
<10 [OFSTEGO0E
$1000
0500, COMMON SCREEN
10400 coumon
lcommon rourives| conmon
40200
S0100 | SYSTEM PAGE 1|
40000 L_SYSTEM PAGE 0]
am 0 a1

43

PROGRANMMING

With the lower 4k looking like :-

$0000 - $00FF Operating System page 0
$0100 - $01FF Operating System page 1
$0200 - $02A1 Keyboard buffer

$02A2 - $02FF LDAFAR etc routines
$0300 - $0313 Unused

$0314 - $0319 IRQ, NMI and BRK vectors
$031A - $0333 Load/save/serial vectors
$0334 - SO3FF Unused

$0400 - S07FF Screen

$0800 - SOFFF Unused

(the unused areas can be used for Operating system
routines which can be called by applications. See
expansion section later). Check module named
“INITASM

MESS

This is a centralised message routine that makes it easy to
add a new message to be displayed. To add a message,
enter the message and define a label to it. Then put the
label in the label st at the top of the messages. Look at
“MESS.ASM”

SCREEN
This routine provides a very simple screen driver for the
operating system. As this operating system is to provide
all control over the 1/O. The operating system requires
control over a screen to display messages and allow
communication to the user. It relies on the screen being
defined at location $0400 and works by having a cursor
location pointing to the next place on the screen where
the next character will go. Examine “SCREEN.ASM”

IRQ ROUTINE

This is the main routine. This routine is the one which
actually swops programs around making it appear as
though ‘several programs are running. This routine has 2
main parts. The standard IRQ routine which is generated
by a raster interrupt. The other is when the 8502
command BRK is encountered. this is a type of IRQ
interrupt and must be catered for.

IRQ

When an interrupt occurs, The operating system is
entered. The first thing that must be done is to set up the
correct page zero and page 1 for the operating system.
The required information about the program running
must be saved. All that is required is to save the stack
pointer in the program table. Pointing to the system stack
when entering the operating system saves the 8502
registers as the interrupt routine has placed them on the
stack. A new program must then be located. Once this
has been done, then the routine must simulate a return
from interrupt back to this program. This can be done by
pointing to the new program’s stack and pulling the stack
pointer off the program table. On the return from
interrupt the information is pulled off this stack and so we
get the last saved information of that program going into
the CPU registers. If only one program is running, then

no other program has to be located. So this routine
should just automatically return to the program running.
The IRQ routine only checks to see if it is a raster
interrupt. If it isn't then no action is taken. In he fullness
of time, all the possible different IRQ’s that can be
generated need to be processed. This is discussed in the
expansion chapter.

BRK

As an initial solution if a BRK is encountered, the
program is terminated and removed from storage (ie
storage is freed). All that is done is the program table
entry is removed and the storage used by that program is
freed. Another program is then located and it is returned
10 as though a normal interrupt has occurred

PROBLEMS WHEN BRK
ENCOUNTERED

There are several situations to consider here regarding
what to do when a BRK is encountered and a certain
number of programs are running. If only 1 program is
running, and it encounters a BRK then what happens?
The processor must return to some sort of code after the
interrupt is completed. Therefore we return to a looping
program that is encountered when the operating system
is first initialised.

LOOPING PROGRAM

This logic is found in the alisation code (INIT). It is
just a loop consisting of one instruction JMP. When the
system is first initialised and no programs are running,
there is nothing to execute. As the CPU cannot be put
into any sort of wait status and must be doing something,
all that it does is loop. When programs are started and
terminated by the system, if the number of programs drop
from 1 to 0, the CPU must execute something, so the
operatin system st rtums o this looping program unt
anew program is executed. Look at “IRQ.A!

THE COMMAND INTERFACE

There needs to be a way to load programs in and control
their operating so some sort of command interface was
devised. The need was that you should be able to
request access to the operating system at any time. As
NMI can never be suppressed this seemed to be the best
way to access the system. So whenever the RESTORE key
is pressed, the operating system prompts for a command.
NMI module does just that, it prompts for a
command then decides whether the command is valid
and if it is, passes the control to the appropriate module.
The NMI routine Sets the interrupt flag which effectively
stops all other programs from running. It could be
possible to have both the operating system processing
commands while all other programs were running, but at
present there are some problems with that, so it isn't
done.
The code is the interface that processes the input from
the user. The actual routines that process the commands

a4

are in separate modules, these will be discussed later.
Note that the first cheat is in here. | use the C128
operating system to poll the keyboard.

Note that on interruption that certain information about
page 0 and page 1 and the stack pointer are saved. This
is because we are now in the operating system, we need
to switch over to the operating system stack and page 0.
It is quicker to just record this information rather than
pull it off the table. Checkout “NMIASM”.

COMMAND MODULES

Described here are the commands that can be processed
and the relevant modules;

DISPLAY - To execute this command, type
is self explanatory. (DISPASM).

The code

CLEAR - This routine just clears the operating system
screen. To execute, type ‘C’. It uses the clear screen
feature of the screen module. (CLEAR.ASM).

PROGSTOP

The routine provides 2 commands. One is the Suspend
and the other is quiesce. Suspend stops a program from
executing, but leaves it in memory so that the program
can be restarted up. Quiesce stops the program and
removes it from memory. This memory s freed up and
can be used for other purposes.

S prgname - to suspend a program
Q prgname - to quiesce a program

Some problems were encountered however on the first
attempt to code this. What would happen if we
interrupted a program and then tried to suspend ir quiesce
it 2 There is no problem in suspending or quiescing a
program which isn't currently using the CPU, all that has
0 be done is set the flag in the table appropriately and if
quiescing it then the memory must be released via the free
storage routine. If we have to stop the program that is
running then when the return from the NMI routine is
executed, it cannot return to the program that has just
been stopped. This means that you have to locate another
program to return to, make it appear as though that one
had been interrupted by the NMI routine and return to it.
If you suspend or quiesce the final program, then we must
return to the looping program which was first executed at
the end of initialisation. (PROGSTOP.ASM).

RUN

This starts a program which has just been loaded or
restarts a program which has been suspended. Again a
problem occurs when you try to run the very first
program. On return of the NMI interrupt you have to
return to the program you have just specified to run. This
is done by fooling the NMI routine into returning to that
program by changing the information he has saved about
the program he has interrupted. To use the command,
type: R prgname. (RUN.ASM).

LOAD
This proved to be a real problem. In order for the

PROGRAMMING

operating system to find and allocate space for a program
0 be loaded, it has to know the length of the program.
The execute address of this program must also be given to
the operating system. The normal load and save routines
in the C128 operating system don’t use this kind of
information, so some madifications need to take place.

NEW SAVE ROUTINE

This routine MUST be used to save a machine code
program which is to be used in the operating system. It
saves the start address, end address+1 and current
execute address which you specifiy when saving the
program. Giving the end address effectively defines the
length of the program. Giving the execution address
defines firstly where execution will start and where code
begins for the relocation routine.

USING THE NEW SAVE ROUTINE

The program has to be loaded into memory first, away
from the new save code, which is placed at $1300. To
initiate the code, type SYS DEC(“1300”) in BASIC. To
use, first place the execution address in location $fa and
$fb. Then to save, use the machine code monitor save
command as normal. For example :-

program at $3000 - $32A3, RAM 0. Execution at $3122

type S “program”,8,03000,032A3
Refer to (SAVEASM).

BACK TO THE LOADER

1 would have liked to design my own loading routine, but
10 do this properly allowing for application routines to
also access the serial port would require a lot of work. |
decided to cheat again and nick some of the code from
the C128 operating system. To design a proper DOS for
the new system will be quite a task and is part of future
expansion. The C128 code had to be modified, so the
whole of ROM from $e000-5ff00 is copied into memory
to allow easy modification of the load kernal routine. The
first modification to the loader is to read in the end
address and execution address from the information on
disk. This means that the length of the code can then be
determined and a suitable section of storage for the
placing of the information can be located. The kernal
load routine resets the interrupt flag. If it does that the
operating system will start swopping the programs and
the system will crash. The parts of code that do this have
to be removed. Finally certain kernal calls have to be
removed as they serve no use and could cause problems.

The modifications are done at initialisation time and all
mods are stored in a-patch tablé. To use the load routine,
type: L prgname

There is logic in the code to specify a priority. This isn't
used and the priority idea will be given in the expansion
section later in the article.

The loader loads the program into memory and sets up

45

PROGRAMMING

the program table entry as well as locates areas for page
0 and page 1 for the program. Please note that Page 0
and Page 1 for a program can be anywhere in memory.
They don't have to be close to the program or even in the
same RAM block. (“LOAD.ASM").

RELOCATION ROUTINE

A program can be coded in any part of memory. To allow
for 2 programs running that might have been coded so
that they overlap in storage | decided to code a
relocation routine. The first problem is how to decide
what is code and what is data. A relocation routine could
mistake data for code and change information that you
don't want to change. The format of the program should
be as follows :-

locations used by prg
Code

When you specify the execute address, the routine
assumes that from that address to the end of the program
is all program code and o data. This should be true and
is discussed further in the programming restrictions
section.

The main problem with this routine is after processing
one assembler instruction, how many bytes do you move
forward from that instruction to get to the next one. Also,
it must recognise which instruction is followed by an
absolute address. Once an absolute address has been
found, it is then checked to see if this address is within
the program block and thus needs to be changed to fit
into the new address that the program has actually been
placed at. The problem is still, how do you recognise the
“length’ of each instruction. The first way is to just have a
table of every single instruction and assign the number of
bytes that that assembler instruction is. For example LDA
$4000,x is a 3 byte instruction, and INX is a 1 byte
instruction. There is however a relationship between the
length of a machine code command and the byte value
associated with that command.

1 Byte commands

ASLA OA LSRA 4A RTI 40 TXA B8A
BRK 00 NOP EA RTS 60 TXS 9A
CLC 18 PHA 48 SEC 38 TYA 98
CLD D8 PHP 08 SED F8 INX E8
CLl 58 PLA 68 SEI 78 INY C8
CLV B8 PLP 28 TAX AA
DEX CA ROLA 2A TAY A8
DEY 88 RORA 6A TSX BA

Notice that there is a
commands apart

from 3 have the last 4 bits either 8 (1000) or A (1010).

If you look at the 2 byte commands and 3 byte
commands in a

similar manner you will be able to see patterns for these

pattern here. All 1 byte

well.
Summarized below are the results :-

X8, AA, 00, 40, 60 - implies 1 byte

XC, xD, xE - implies 3 bytes

x9 and 1st 4 bits define an odd number, eg 59 (ie 4th bit
is set) implies 3 bytes. All others are regarded as 2 byte
commands.

Armed with this information the code is then as in
“RELOC.ASM".

BRINGING THE MODULES
TOGETHER

That's all the code needed, the only thing now is to
assemble them all and put them together. Here is the
module order that | used to assemble all the code. In the
Lazy Grenius assembler, this file is the one that is
assembled, the other bits of code are pulled in off disk to
be assembled at the appropriate time.

ORG $1300
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE
#INCLUDE

“EQUATE.ASM”
“INITASM”
“COMMON.ASM"
“TAB.ASM”
“STOR.ASM”
“IRQ.ASM”
“CMD1.ASM”
“LOAD.ASM”
“DISP.ASM”
“RUN.ASM"
“RELOC.ASM”
“MESS.ASM"”
“SCREEN.ASM”
“CLEAR.ASM”

CODING APPLICATIONS UNDER
THIS OPERATING SYSTEM

Although | tried, some limitations have to be placed on
coding when writing applications to run under the
operating system. These are not guidelines, but rules. If

ese rules are not followed, you are liable to crash the
computer or design a program that won't work.

RULE 1: You cannot use the configuration registers. (ie
you cannot use addresses $D500-$D504 $FFO0-$FFO4

RULE 2: Do not try to use any of the ROM routines. They
won't work. o

RULE 3: Code design. To make sure that code relocation
is effective there are certain ways in which code should
be designed. This will be described in a minute.

46

RULE 4: Use the 1/O registers at your own risk.
Remember that several programs could access them at
the same time causing chaos.

RULE 5: Using interrupts is dangerous. It may be
possible to trap them yourself by changing the interrupt
vectors at locations $0310-$0317 (as normal) but you
MUST return to the operating system routines. You
could still crash the system.

RULE 6: Be wary about using SEI and CLI. If you SEI,
you stop the operating system swapping programs.
Really they shouldnt be used in application programs,
only operating system routines.

RULE 7: All non-zero page locations must be contained
within the code block loaded (ie a program which
could be starting at $2000 - $23FE should have all its
memory locations that it uses placed within that
memory block). If you don't, you could affect other
used storage locations which the operating system has
allocated to another program.

RULE 8: Same as the 1/O registers, be careful about
using locations 0 and 1

RULE 9: You cannot use coding routines such as ‘LDA
#<ADDRESS' or set up address tables using assembler
mneumonics such as ‘DW (define word). The relocator
won't cope with this.

CODE STRUCTURE

For the relocation code to be able to decipher which is
code and which is just data so that it doesn't try to
relocate data that it mistakes for code, there has to be
some rule to follow:-

You must put all data areas at the top of the program.
You can define the execute address and this is where
the relocator will start relocating the code. Therefore it
won't touch the data at the top of the program before
the execute address.

CODING EXPANSIONS TO THE
OPERATING SYSTEM

There are 2 points to consider here. One is the
expansion of the code such as adding new information
to the tables and the second is to provide executable
routines that can be called by applications.

EXPANSIONS TO THE OPERATING SYSTEM

Possible expansions are to the program table by adding
extra entries in the table, or by providing new
commands to the operating system or by updating a
module. There is no special programming techniques
required here and just experience in assembler is
require

PROGRAMMING

ROUTINES FOR APPLICATIONS

There is a hell of a lot of work here. Expansion here
could be to provide facilities to control the access of /O.
Examples will be given in the expansion section later.
The most important consideration here is the concept of
RE-ENTRANCY. What happens if you call a routine and
during the run of this routine the program is
interrupted to run another program. The next program to
e run then calls the same routine. (This routine is an
operating system function). Calling this routine would
change some memory location which it uses. When we
return to the first program that was interrupted, it would
return to this common routine to find that the values that
it had set have now been changed. Unexpected results
would occur. It isn't possible to provide copies of these
routines to all applications that may call them so how
n we get around this problem What you need to do is
for each different application that calls an operating
system routine, have a different block of work locations.
The way larger systems do this is by getting a block of
free storage on entry to the routine. This free storage stays
unique 1o the register is only ever used to point to this
block. The block then gets used to store information
while the routine is processed. An interrupt now occurs.
The routine is temporarily interrupted. Another part of
software then calls the same routine. On entry a block of
free storage is got. It is different to the first block got by
the 1st caller to this routine because the area has been
flagged as used. The register now points to these memory
locations and so the routine is working with a different
piece of storage and doesn’t corrupt the 1st callers
storage. As registers are saved at interruption time, the 1st
caller hasn't lost its register that contains the pointer to
it's block of storage. When the routine finally completes,
it frees up the storage that it has used.
What this looks like is that one routine has blocks of
storage allocated to it when called. It could have several
blocks defined to it, each unique to the caller of the
routine. This is basically simulating an individual copy of
the routine to each caller. Only this way a share copy of
fixed information is kept and a unique block for all
changing memory is assigned to each caller. This method
also copes with the fact that you don’t know how man:
calls are going to be make to the routine that will run
concurrently.

How can this concept be used on a C128? The problem
is that you cannot use registers to point to memory
locations. (Index registers are of no use as a register must
point to the whole address for it to reference). There are
1o 8502 commands that provide something like:-

LD R10,(R11) - load Register 10 with the contents of the
address pointed to by register 11.

The way round this is to remember the PAGE 0. Because
of the facility to move PAGE 0, each application has its
own PAGE 0 (and PAGE 1). So this provides the separate
block of memory. When entry is made into a common
routine for one application, the address $40 for that
application will be different to the contents of $40 for

47

PROGRANMMING

another application as they are effectively 2 different
locations. This means that a common routine can
absolutely reference a location, but it will be different for
éach application.

If you don't have enough storage in page 0, you could
use the GET STORE routine to get a block of storage, then
indirectly address this block using page0 pointers. Make
sure you select the RAM block that the operating system
is in. You could use any RAM block but then you would
have to address the memory locations within the routine
via LDAFAR and STAFAR, described in the MMU article,
which could unnecessarily complicate things. Usually
though, Page 0 and Page 1 would provide sufficient
storage for all purposes. For any operating system
routine, you will need to document which page0
locations are used so as to not conflict with other
operating system routines as well as the calling
application.

To code these routines requires a special way. The call
will be in common memory and the code in common
memory has to have the following code

1. Store the current RAM configuration (in page 0)
2. Set the RAM configuration to operating system one
3. JSR to code

4. Reset RAM configuration to the saved value

5.RTS

OTHER PROGRAMMING
TECHNIQUES

SEl and CLI can be used to temporarily stop the operating
system switching programs. This could be used to
produce code that actually completes before another
program is switched to. This means some code doesn't
have to be re-entrant. Be careful using this technique.
You could stop the whole system or slow other programs
down significantly.

EXAMPLES

1 have done a couple of examples to show the use of this
system. The first is an operating system routine which
converts a hexadecimal value into 2 screen characters. Also
provided is the code in common storage to call the routine.

The 2 applications which | have provided are very
similar. They poll the two TOO clocks and display them on
the screen.

RE-ENTRANT CODE

This is the code that converts the hex number to screen
characters.

* Here is the example definition of an operating system
routine which can be called by any application and is thus
re-entrant this code must be loaded before the operating
system is initialised. Here is the conversion code.

+
ORG $2F00 ;Well out of way of operating system
KERNALT EQU *

LSR
JSR CONV2
STA VAL1
LDA VAL2
JSR CONV2
STA VAL2
RTS
CONV2 EQU *
CMP #$10
BCS AF

cLc
ADC #48
RTS

AF EQU*
SEC

SBC #9
RTS

COMMAND CODE

This code is to provide all applications the access of the
above operating system routine.

*Here is the example definition of an operating system
routine which can be called by any application and is
thus re-entrant this code must be loaded before the
operating system is initialised. First define the jump to the
code.

KERNALT = $2F00

“Below is an area to save the configuration. It must be in
page zero as this code is also re-entrant.

SAVE1 = $FF
ORG $0800
PHA

LDA $FF00
STA SAVE1

LDA #$3E ;Operating system config
STA $FF00

PLA

JSR KERNAL1

PHA

LDA SAVE1

STA $FF00 ;Return to orig config
PLA

RTS

48

EXPANSION

Operating systems take many man hours of work to
develop. They usually start off with a basic system that
works and this is built on.

There are 2 different types of expansion. One is to
develop the operating system and provide more facilities
such as 1/O control and software fdacilities such as
program to program communication. Other expansions
such as more operating system commands can also be
considered. The other path is to develop applications o
run under this operating system

Both these udeas will be considered in turn outlining the
approach.

EXPANSIONS TO THE OPERATING
SYSTEM

There are so many different ways in which the system

could be expanded and improved. | willlist only a few:
TABLE IMPROVEMENTS

As described earlier in this series on storage and program

tables, the table control is very simple and limits the
system and how many storage entries exist. It would be

PROGRAMMING

application. The application request input again via the
operating system calls. No other application should get
the information.This could be achieved by doing
something like:-

Application
do until return pressed

get input via operating system
end

operating system input routine

Poll keyboard
if key pressed then

find out my program name

am | currently being displayed ?
if yes then return keyboard poll
end

You can locate which is the current program by looking
in the system page 0 at area ‘CURRENT". A flag in the
program table could indicate that this is the current one
being displayed. You could even have a separate pointer
o say which program is currently being displayed, and
compare that with ‘CURRENT’,

1/0 CONTROL

better to chain table entries to effectively remove the

Provision is required to control all the remaining /O
limitations.

that is avialable. This should deal with the all the /O
registers within the /O block. There are 2 ways in which
this could be done. For each program, give them a set of
shadow registers for all the 1/O. when the program is
given CPU time, place all the /O information into the
registers, When the program stops, copy all the
information out again. to be used for next time.
Obviously this idea cannot be used if you want to use
real timers and get the correct time. (this idea could be
used on sprites etc). This is called ‘sharing resources’.
Another idea is to dedicate a specific register to an
application. Only that application can use that /O
register. This means that you get the real time, but you

USER INTERFACING

My idea for this would be to define a screen area of 1K
for each application that is run. The application can
decide whether to use the screen or not. The
maintenance of the screen would be via operating system
calls eg

X = X position
Y = Y position

A = character

Call the routine to place this on application screen. Via
the operating system, you can select which screen is
displayed. A JUMP’ key will switch the screens. This
would be easy by just pointing the VIC II chip to the
appropriate screen. For Colour however, you would have
to swop the information into the appropriate area for
colour. If an application was being displayed then you
would have to'update the usual screen area. The colour
area used by the application and the colour RAM seen by
VIC 1. (ie $D800 - $DBFF) would also have to be
updated. The operating system should also have it’s own
control screen. As for input, all user controlled input
media such as keyboard and joystick should work as
follows :-

Which ever application is currently being displayed (ie
seen by VIC), then all user input is directed to that

49

cannot use that register anywhere else. This is called
“dedicating resources’

THAT CONCLUDES THIS MONTHS
MONSTROUS TUTORIAL. NEXT MONTH WE
COME TO THE END OF THE SERIES. WE WILL
BE DISCUSSING VARIOUS THINGS SUCH AS

AS; PROGRAM TO PROGRAM
COMMUNICATIONS, INTERRUPTS , 80

COLUMN SUPPORT , TRACING AND
DIAGNOSTICS AND A FEW OTHER GOODIES.
| HOPE YOU ARE MANAGING TO STAY THE
COURSE, AND AT THE SAME TIME LEARNING
SOMETHING NEW ON THIS FASCINATING

UBJECT.

Lincage: 59 po word. (<VAT)
a AT

Fing for nformation on seres bookings/discourts.
Al advertisements n this section must be propaid.

rate card (available on request)
Make cheques payable to Alphavite Publications Ltd.

‘Send your requirements to

CLASSIFIED DEPARTMENT

ALPHAVITE PUBLICATIONS LTD., 20 POTTERS LANE, KILN FARM, MILTON

KEYNES, MK11 3HF.

(0908) 569819

subject

ONLY POOLS AND HORSES

FOOTBALL BOXFORM £14.95 cass £17.95 disk
Not a gimmicky plaything but a genuine statistical analysis of
footballform the sole objective of which is to improve the chances
of winning on the pools or fixed odds. Written by a pools expert
the program has forecast over 50% more draws than would
be expected by chance. Homes, aways & draws are shown in
order of merit and true odds given for every match. Merit tables
show at a glance the teams curtently in form and those having a
lean spell. Separate AUSTRALIAN POOLS program included in the
price.

RACING BOXFORM & HANDICAP WINNER
5 cass £17.95 disk

Two programmes !or (he price of one. Boxform weighs up a race by
considering the many facets of form. Easily amended to suit the
user's ideas. HANDICAP WINNER shows the value for money bets.
Over 1000 winners every year and ON DERBY DAY 1990 THE
PROGRAM GAVE THE WINNERS OF 7 OUT OF 9 HANDICAPS. 20/1
10/1 7/1 11/2 4/1 4/1 6/4. PROBABLY THE BEST DAY'S RESULTS
EVER ACHIEVED, WITH OR WITHOUT A COMPUTER.

SPECIAL OFFER: Al the above for £24.95 (disks £2.95) plus a
FREE program to work out almost any bet. So good its used by
bookies.

Why ices? BOXoft getthe BEST.
Aavertised o ive years n the sporting and conpter press.
s BOXOFT (CDU), 8 Aare Wendon,

L.m.

South Wirral, L64 95Q
Chequ&lP.O.IMussNisa Tel: 051-336-
2668 (24 hrs)

Alphavite

EDITORIAL ASSISTANT

YC Magazine is looking for a young, enthusiastic
games fanatic to become a YOP Editorial Assistant.

The ideal applicant should have basic writing
skills, would enjoy being wacky at shows, and
must, above all else, enjoy playing computer
games.

If you feel you could better the country’s top
C64 title, apply in writing to Rik Henderson ~ The
Editor.

CLASSIFIED SALES EXECUTIVE
An excellent opportunity has arisen for a classified
sales executive with at least 6 months experience
to handle classified sales across 3 Commodore
titles and 2 health magazines.

The position, based in Milton Keynes, offers an
attractive lifestyle with competitive salary and
commission package.

Please apply in writing to The Advertisement
Manager.

Lineage: 53p per word. (+VAT)

I enclose my cheque/postal order for £ for
(Delete as necess:

o ortinat o 2o
Al classfied advertsement

SEND TO GDU GLASSIFIED DEPARTMENT, ALPHAVITE PUBLICATIONS, 20 POTTERS LANE, KILN FARM, MILTON KEVNES, MK11 3H.

insertions, made payable to Alphavite Publications.

o pre-paid

PLEASE DEBIT MY ACCESSVISACARDNO: [| | | |

02 2 T

EXP. DATE.
£ FOR INSERTIONS

Name

Address

Daytime Tel No Signature
Ororsale Dsorware Qispecacorrers (O RepaRs

Postcode
Date

2 HARDWARE 0 pisks.

“Money well
&

TS
operating S/

,//74 =

A poweriul BASICoolkit (dditonsl

s FOWER CATTRIOGE you can

spen!
YC/CDU

T'rssrsn
ovs
100, ooo so:.n ::;

s s, 202203) s

St s rsere s

H NL ¥ Commands. e ot
Lo ok e osd T beor i L
DSAVE MERGE DEVICE & '“ KUP i

send
commna Aty 1 our

BUL

Bitcon Devices Ltd

HARBCO o screens no oy on Seris

88 BEWICK ROAD

MoNITOR

Tels 091 490 1975 and 490 1919 Fax 091 490 1918
To order: Access/Visa welcome - Cheques or P/O payable to BDL

Price: £16.99 incl. VAT.

UK orders add €120 postipack toal. (1819 ncl. VAT.

i endaie o: Bhiab Eletronik, Box 216, Norrtalje 76123,

SWEDEN.Tek 46 176 1805 Fox 176 18401
TRADE AND EXPORT ENQUIRIES WELCOME

VIDEO
COLOUR 5
SPLITTER /¢ £69.95

;?‘“‘/ g Inc Vat

Actual Digitised
colour screen - shots

V| d = is an electronic filter which takes a colour video sig-
nal and separates it into the three primary colours (Red, Green and Blue) allowing
each to be digitised.

Ideal for use with Vidi-Chrome & Frame Grabber or Digi-View Gold (By Newtek).

For use with colour Digitisers replacing conventional Filter sets

Our Vidi - Chrome switches Vidi - RGB automatically grabbing full
colour pictures in less than one second!

i Timited
% Digitise full colour images direct from

All these home VCR (must have perfect freeze frame) e

pictures are Digitise- outstanding colour pictures S ::d

actual direct from Canon’s new Still Video Camera ‘me”gﬁ; ;

unretouched ’ (an example shown on cover) St

screen-shots e

illustrating the Manual switching

sequence of for maximum flexibility.

creating afull

colour image Wt:u‘!y cf)\'/“,p:\f‘g‘e‘ q Tel: 0506-414631

using Vidi RGB, e VIoN SO Fax: 0506-414634

Vidi-Chrome

il VA e

