
e as s sem e r
Yves Han

Here's a truly amazing machine lan
guage assembler for the 64 and 128 (in
64 mode). "Fast Assembler" supports
multiple statement lines, labels, und
macro-like "include" files. It can as
semble to memory or to disk. IfIIritten
very compactly, i t occuptes only
about 2600 bytes, leaving the rest of
memory for your source code. It also
adds to the BASIC editor several nefo
features useful to both BASIC und
machine lunguage programmers.

in BASIC.

Symbolic label-based assemblers
are the most convenient way to
write machine language (ML) pro
grams. The instructions are entered
as source code and later assembled
into object code (the actual ML pro
gram — the numbers in memory).
And rather than using memory lo
cations, you can name routines
with meaningful labels. It's as i f
you could enter GOSUB JOYSTICK

Saving Memory Sy Using
The SASIC Editor
You write your ML programs for
"The Fast Assembler" (FA) with the
64's BASIC editor. You save to tape
or disk as you would a BASIC pro
gram, and listing it to a printer is
exactly the same as listing BASIC.

The FA is an extension of the
BASIC interpreter especially de
signed for writing programs in ma
chine language. Writing it as a
BASIC extension kept the program

short (under 2600 bytes) because
many subroutines of the BASIC in
terpreter could be used. Some mod
ifications have been made to BASIC
to make writing programs easier.
To do this, the BASIC ROM had to
be copied to ifs matching RAM,

Even if you don't wr ite pro
grams in machine language, you
can still use the assembler because
of the new features added to BASIC
and the extra BASIC commands.
The assembler will execute a BASIC
program just like normal BASIC
wouM.

To start up FA, first load it as if
it were a BASIC program (don't use
a secondary address of 1, just type
LOAD "Fast Assembler",8. Then
type RUN. The enabling SYS is
built into the first line of the pro
gram. The screen will clear, and a
message will appear at the top of
the screen, indicating FA has been
enabled. You can now start pro
grammmg — ln BASIC or machine
language.

BASIC Modifications
And Enhancernenh
The following changes have been
made to the BASIC interpreter:

• Structured listings. Spaces

first character on the line are not
deleted. This makes it possible to
mdent lines and make listings easi
er to read.

• List pause. You can freeze a
listing by holding down the SHIFT

key or pressing SHIFT-LOCK. List
ing can be continued by releasing
the SHIFT key.

adecimal/binary numbers. In
arithmetic expressions, you can use
hexadecimal and binary numbers.
Hexadecimal numbers should be
preceded by "$" and binary num
bers by "%". You can also use a
character preceded by a s i ng le
quote ("A is the same as ASC("A'")).
You can also use this to f ind the
value of a BASIC token. For ex
ample, PRINT 'END will print the
value 128, which is the BASIC code
for END. If you put a space be
tween the quote and the character,
the ASCII value of the space will be
taken instead of the character.

commands or mnemonics: LAND is

~ Variable and function
names. The rules for variable and
function names have been changed
a little bit Instead of the fust two„
the first eight characters are recog
nized. FA recognizes NUMBER1
and NUMBER2 as separate vari
ables, while ordinary BASIC would
consider them the same variable
(NU). Variables may contain but
not be equal to BASIC/assembler

a legitimate variable name, even
though i t contains the keyword
AND. But variable labels starting
with TI or ST (reserved keywords)
are not automatically set to zero the
first time you use them. An excep
tion to the eight character names is
that only the first two characters of

ASCH translations and hex

between the line number and the

44 Best of COMPUTEI and Gazette

array variables are sigxu6cant.
~ Keywords. Because variable

and function names may contain
keywords, FA has to be able to
decide whether a keyword is a key
woxd or part of a variable ox func
tion name. SQ the assembler
xecogmzes a keywoxd if its fol
lowed by a space ox nonalphabetic
character. For example, in PRINT
"GK' * the keyword P~ wil l b e
recognized as a PRINT command,
b ut in A S="GK":PRINTAS, the
keyword PRINT is recognized as
p art o f t h e va r i able n a me
PRINTAS. You would have to in
sert a space (PRINT AS) if you
wanted to print the variable AS.

~ REM and DATA. Capital let
ters in REM and DATA hnes are
listed as capital letters and not as
tokenized BASIC keywords. For ex
ample I0 rem As lists as lt is en
tered and not as 10 rem ahlpeek as
normal BASIC would do.

New SASIC Commands
AUTO step @Nile
This command turns automatic line
numbering on and defines the step
value between the line numbers. To
enter AUTO xnode, type AUTO fol
lowed by the step value and press
RETURN. Then enter a line with a
line number. The next line number
pxmts automatically. To 18av8 auto
mode, move the cursor to an empty
line and press RETURN. To turn
automatic hne numbexing off alto
gether, enter AUTO only.

to delete part of a program. Turn
automa68 line numbering on with a
step value of one. Type the nuxnbex
of the 6rst line you want to delete
and pxess RE~ . Ke ep pressing
RETURN until you' ve reached the
end of the section you want to de
lete. Instead of pressing RETURN
again and again, you can enter
POKE H0,128 and hold RETURN
down until you' ve reached the last
line tO be exa98d.

OLD
If you accidentally type NEW, you
can restore your program with this
command. It can also be used if
you' ve installed a reset button. If
you' ve assembled a program and
are testing it sometimes your com
puter locks up. Use the reset button

the assembler and type OLD to re
store the source program. If your
program has not destroyed the as
sembler or the source pxogram, ev
erything will be there.

SemlcoIoxl (IJ
This has the same funchon as the
REM statement. It need not be sep
arated with a colon from the pre
ceding command. For example:

You can also use this command

10 X=9XEM SET X TG ZERO

is the same as
10 X 0@ET X TO ZERQ

The semicolon in the commands
P~ an d I N PUT is not treated as
a REM statement but as a separator.

Uslnl Labels As Variables
Ancl Addresses
Label names follow the same xules
as vaxiable names. They can be
used in arithmetic expressions hke
normal variables. You can de6ne a
label in two mays:

You can place the label name
just before the command to which
you want to refer. If more com
xnands are on the same line, you
must separate the label from the
commands with a colon.

Gr you can label the current
program c o u n ter: LASE L
NAME =~. The asterisk (') is a spe
cial variable which gives the value
of the program counter. The
counter is the address where the
XleXt inShuCtion Or datlun wil l b8'
placed. You can only read the vari
able '. You cannot assign a value to
it with the statement ' = expr.

Here's an example of using la
bels to mark routines in a program
(don't type this in„ it's only a frag
ment of a program):
99 JSR DISPLAVI; JUMP TG LASELED

SUSROUTlb% g.lNE 99I
99 LDA 9FF: SNE SKIPIT; CONDI

TIONAL SRANCH AHEAD TG
SKIPIT

90 SKIPIT: LDX 44: STA 99009,X: RTS;
TARGET OF SRANCH IN 90

90 DISPLAVI =» * THIS LASELS ~
~E NT PR G~ CO~ R

100;
110 LDA @SS: JSR 9FFD2: RTS

Remember that in th e h nes
above, the semicolon marks the be
ginning of a comment which, like a
REM, is ignored by FA. The tech
nique in line 90 is valuable if you

ment becomes zero.

you may be adding some
code at the beginning of the rou
tine. As hsted, the subroutine called
DISPLAYI starl3 with LDA 4 65,
but later you could go in and add
some lines between 90 and 110.

Three Passes Yo Assemble
Three passes axe xexluired to assem
ble source code (what you write)
into Object code (an executable ML
program that the computer can fol
low). But FA doesn't do it by itself.
You have to insert a loop that re
p8ats thre8 t imes w i t h B A SIC
commands:
19 FGR PASS 1 TG 3

. IInserl Ioerce eodeI

90 NEXT PASS:END

assembler takes the ASCII value of

If you use an invalid addless
ing mode such as LSR (expr),y
you'll see ILLEGAL ADDRESSING
MGDE ERROR. Mnemonics can
only be used in program mode
that is, in a program you execute
with RUN. If you enter a mnemonic
in direct mode, you' ll see ILLEGAL
DIRECT ERROR.

Addressing, the argument can be
an actual number or an arithmetic
expression with a value in the range
0-255. Gr you can substitute a
shing expression, in which case the

the 6rst character as the argument.
If the shing length is zero, the argu

Assembler Commands
Assembler comnands which write
data to the output device can only
be used in program mode, other
wise you' ll get ILLEGAL DIRECT
ERROR. All assembler commands
must be induded in every pass.
ORG address,NIQde,device,grume
This command must be used, at the
start of each pass. It does several
things. First, i t sets the o r ig in
(GRG), the memory address for the
ber g of t h e ML program, It
assigns an hutial value to the pro
gram counter. It also sets the as
sembler mode, which should be
zero on the 6rst two passes and one
on the third and last. GRG also sets
the output device andi 6lename (if
necessary).

Not all arguments are neces
sary. Also permitted are:

Also note that for Immediate

and then enter SYS 4408 to restart

Bast Of CQMPUKI and Gazeffe 45

GRG
GRG address
GRG address, mode

Default values for the argu

except that valu'es of arithmetic ex
pressions must be positive Rmd less
than 65536. The value wil l be
placed in two bytes in low/high
format.

INCLUDE NRNxe,demce
This co~and assembles a Ale
from disk amd inserts the resuibng
object code into memory or the out
put device. The Ale must be a nor
mal PRG Ale and may not contain
BASIC commands which cause a
branch to axlothe1' llfle ol' stop the
program. Also net permitted are the
BASIC commands DEF, RETURN,
CLR, NEW, and the assexnbler
commands SEND and INCLUDE.

The Ale is opened with a logi
cal Ale number of mne. The Ale is
closed when the end of the Ale is
reached. The name is the Alename
you' re including, and the device
number can be 8-11 (use 8 if you
have a single drive). If you have
only one disk drive and you assem
ble to disk, the Ale(s) for the com
mand INCLUDE must be on the
same disk to which you assemble.

All variables and labels arw
globnl, which means you can pass
parametexs to INCLUDE fi les so
they can work like macro-instruc
Aons. Let's say you' re writing a pro
gram that needs to access several
different disk Ales, and there are
several points in the program that
use the Kermai routules SETLI:S,
SETNAM, and OPEN. You could
write the source code that performs
these Kermai caHS amd save it to chsk
umder the program name "OPEN"
to be used later. Then, in the main
program, use INCLUDE "OPEN"
,8. When the source code is com
piled, the series of commands from
the OPEN Ale are automaticaHy in
serted in the proper place in the
object code.

SEND Sffxxxgezpf
The command SEND may be used
only if the object program is written
to disk. It's used to link object code
tO a BASIC program. Strirxgnyr
must contain a BASIC hne with line
number. If you forget the line num
ber, you'H get MISSING LINE
NUMBER ERROR. If you want to
send more than one line, yeu must
use SEND for each line, amd you
have to send the lines in the right
order. You must send the lines

ments are:
address 451,52 (5C00N
nlode 0
device 0 and no name

If you use a mnemonic or as
sembler command before you' ve
used the command ORG, you' ll see
UNDEF'D LOCATION COUNTER
ERROR,

The address assigns a value to
the program counter. UsuaHy, you
use more than one pass to assexmble
the source program. Only during
tlhe last pass shoulld the object code
be written to memory or to the out
put device. Mode teHs the assem
bler when the last pass is reached.
Zero means it's not the last pass, so
no object code should be produced,
and there's no range checking for
arguments and no checking for too
large branches.

Om the Anal pass, you should
set the mode to one, which signals
the last pass, when object code is
written to the output device.

PinaHy, you set the device
number of the output device and a
stri n expression which contains
the Alename if the object code is not
written to memory. Zero means the
output device is memory. Be careful
not to write to memory locahons
where the assembler is placed
($9801-$121B) or where the BASIC
interpreter is placed, (SA900
$B~

A device number in the range
8-11 means the output device is a
disk chive. If xmode is equal to one,
the assembler wiH open a PRG Ale
wilth the name specified in the argu
Ixlexlt ILRQIe. The logical file number
wHI be eight.

SYTK ezpfessioxx,expressioxx,...
This coxmmand writes numbers Or
characters to memory or the select
ed output device. It can have one or
more arithmetic OI' stmng expres
sions separated by commas. Arith
Inetlc expfess10118 mlust give a
positive value less than 256. The
value will be placed in one byte.
Each character of a string expres
sion wiH be placed in one byte.

WORD expression, expression,...
This has the same function as BYTE

'%ASS PASS

PASS 1 0 48165
P ASS 2 45165 4% 6 6
P ASS 5 48166 4% 6 $

100 PGR PASS=1 TG 5:P~

110 GRG $C000
120 1P PAS~5 ~ GPG 5CN0,1
130 START: LDX 40
140 LGGPI LDA TEXTS'RINT TEXT,
150 IEQ EX1T
160 ISR SFFD2
170 1NX
180 INE LQGP
150 EXIT: RTS
200~ ~
210 TEXT: SYTE '"E~ X . E 1" 0
220 NEXT PASS:END

before the actual object code is writ
ten to disk. The address in the ORG
command must be the start of
BASIC RAM (2049).

UN SEND
If you load a program which con
sists of both BASIC amd ML, the
interpreter ihas to know where the
BASIC part ends. UNBEND places
a maxk which the computer recog
nizes as the end of the BASIC pari.

Example Froglama

Limes 1M amd 129 show how
to use the comunand ORG. In every
pass, hne 110 sets mode 0. But im
pass three, line 120 sets mode 1.
The object cede will start at 49152
(hexadecimal SC000). Line 200
prints the current value of the loca
tion counter (').

You can assemble the program
with the command RUN. The pro
gram w111 gave the fol lowxng
output:

The Arst column is the pass
number. The second column is the
value of the label ~ in t h e in
struction LDA TEXT,X in line 140.
The third column is the value the
label should have when the source
code 18 RsselILbled YQLI cRxl see that
only in pass three are these values
equal to each other. This is because
the assembler defaults to zero-page
addressing. In pass one, TEXT has a
value less than 256 so zero-page
addressing is assumed. This means
a twe-Ecarteiflstructiom instead of
three. The value assigned to TEXT
will be too Iow, as you can see in
pass one. In pass two, this value,
which is too low, wil l be used in
assembling line 140. The assembler
decides not to use zero-page ad
dfe881ng, so TEXT 18 assigned the
correct value. Im pass three, the cer

rect value replaces the previously
incorrect values during assembly.

5; EXAMPLE PROGRAM 2
6g
10 PRINT CHRS(14))
11 DEF FN H(X)-WTN/ S)
12 DEF FN LIX) X-256iFN H()0
20 PRINT:PRWT" Loader maker"
39 PRWTd'RWT" Enter the name of the

program that
40 PRINT" has (o be loaded by the

loader."
50 INPUT" >" NAMES
60 PRWTd-'RWT" Enter the aame ef the

loader."
70 INPUT");N$
90 ~ :PRW T " En(er the address to

execute the"
90 PRINT" program."
100 ~ " w"; A DDRESS JLDDRESS=

105 „
110 FOR PASS~I TO 3
115 1
129 ORG 2949
130 IF PASS-3 THEN ORG 2049,IA,NS
135;
140 SEND "10 SYS+STRQLOADER)
150 UNSKND
lss;
160 LQADKSL LDA 4)siTAX:LDY @I
170 JSR SFFSA
180 LDX 4FN L(NAME)
190 LDY ()FN HWAME)
200 LDA O'LEN(NAMES)
210 JSR SFFBD
220 I.DA O'FN H(ADDRESS):

230 LDA (9FN L(ADDRESS):

249 LDA CQ:JMP ISSDS
250 NAME: E YTK NAMES
255;
260 NEXT PASS:CLOSE 8:END

and 106 permit you to enter the
parameters for the object program
when the source program is assem
bled. In this way you can make
different object programs with one
source program.

Another advantage of writing
the assembler as a SASIC extension
is that you can assemble a pxogram
to the top of memory. Use the fol
lowing construction to do this:

ADDRESS-I

PHA

PHA

MODE

(56)+4)

Source code

900 NEXT PASS
919 IF MODE=I THEN KND
920 ADDRESS TOPOFMEM i

'930 MODE 1:GOTO 139

199 POKE 56,PEEK(S6) — 4:CLR
'I19 TOPQFMEM PEEK(SS)+2%~(PEEK

120 ADDRESS 94CQDE 1
130 FOR PASS 1 TO 3
149 ORG ADDRESS
158 IF PASS= 3 T1IEN ORG ADDRESS,

tion counter remains at zero. Mode

In this program, the source
code goes through six passes. Dur
ing the first three passes the loca

6 is used so the object program will
not be written to the output device.
The length of the program is calcu
lated and subtracted from TOPOF
MEM. This address is used in the
second three passes to assemble to
the top of memory. MODE is set to
one so the assembler will wxite the
object code to the output device
during the sixth pass (actually pass
three of the second time around).
Line 100 is used to reserve 1K at the
top of memory for the object

Source code

FmSTPRO GRAM
10 PASS=PASS+1:IF PASS 4 THEN

END
20 ORG ADDRESS
39 IF PASS 3 THEN QRG ADDRESS,I

The above example program
shows how to use the commands
SEND and UNSEND to write a pro
gram that includes a SYS within a
SASIC line.

iBustrates how to load another pro
gram from an ML proyam. Note
that the lines up to 160 are SASIC;
they prepare the variables and de
fmed hmctions for use in the source
code. If you assemble the program
with the command RUN, you' ll get
a program that can load another ML
proyam from disk and execute it.
The object code will be written to
disk.

SEND writes a SASK line to the
output device by which you can
ll.oad and run the program as if it
were a normal SASIC proyam.
Line 150 marks the end of the
SASIC part of the object code.

The INPUTs in hnes 50, 70,

90 LOAD"SECQNDPRQGRAM"g
SECONDPRQ GRAM

. Source code

90 LOAD''FIRSTPROGRAM",8

ples. You'd have to insert your own
source code as indicated. To chain
programs, you would load and exe
cute the first program. It controls
the number of passes and loads the
xiext program. The next prograxn

, loads the following progiam and so
on until the last program, which
must load the first again. O

Another possibility is chaining
the prograxns, but then, you can' t
u se a FOR-NEXT loop fo r t h e
passes. You must use another way
to define the passes. For example:

COMMODORE
AUTHORIZED

SERVICE

The main routine at 166-256

In line 140, the command

11 FOR PASS~I TO 3
21 ORG ADDRESS
30 IF PASS 3 THEN QRG ADDRESS,I

. Part 1 of source code

90 INCLUDE "PART 2"4
100 WCLUDK "PART 3",8
111 NEXT PASS:KND

program.

large Progrclms
If your source program won't fit
into memory, you can split your
program and use the command IN
CLUDE. For example:

The labels and variables used
m the INCLUDE files will be global
variables, which means you can use
them in arithmetic expressions ev
exywhere in the program.

POWER SUPPLY (C64)
C44 REPAIR
1541f1571 ALIGNMENT
1541 REPAIR g ALIGNMENT
C-128 REPAIR
1571 REPAIR
POWER SUPPLY (C-128)
EXTENDED WARRANTY

Atd $1() for APO, FPO, AIR

SOCOACI 3©glrC®
Engineering

Free Return Fresh(- Cerrtinentef VS

Save C'Qo Charge eelid Check or
Nof)ey Order. ffrunAase Order Aeesp(ace

Note that these are just exam

2864 Mercantile Drive
Rancho Cordova, CA 9567O

(9'16) 435-3725

