
GRAFIX SAMPLER

An Intro to Commodore 64 Graphics

• Arcadc critters, custom text fonts
• Electronic schematic, music notation
• Point and line plotting
• 3-D object rotation
• Sprite graphics
• Over 20K of fun!

9
M ID W EST
M ICRO assoc iates

64 GRAFIX SAMPLER

for the COMMODORE 64
by Dr. Jim Rothwell

COMMODORE 64 is a trademark of
Commodore Business Machines, Inc.

CONTENTS:

1. Character D e m o2
2. Point and Line P l o t t i n g....... 2

3. 3-D D e m o 3

4. Sprite D e m o 4

5. M/L Draw D e m o8

6. Loading Instructions........... 9

7. Warranty and Care of T a pes..10

These routines are offered for your enjoyment

and as a point of departure for exploring the exciting
graphics potential of your '64. Most examples are

written in BASIC for easy examination and interac

tion. Also, a machine language routine is included to
better display the true speed of the '64 and to

provide skilled programmers with an application tool

they can extract.
Best of luck with your '64 !

1. Character Demo
This demo contains a variety of techniques which

display the 64's ability to use alternate character

sets. The bit-pattern for these characters is stored
in a table beginning at memory location 8192. A tech

nique was used to chain together the character table

as part of the BASIC program for loading directly into

memory. Line 100 POKES locations 45 and 46 to restore

the actual end of the BASIC program; POKES to 56 and

52 protect the table.
Note: The subroutine at 420 switches to the alter

nate character set. The subroutine at 480 switches to

the standard set.

Several display techniques are used in this demo

to give you an idea of the wide range of possibil

ities. “Arcade Characters’" are POKEd to the screen,
with a corresponding POKE made to the Color Table for

each character. This straightforward method is also

used for "Custom Character S ets”. "Hi-Rez Grafix"
employs PRINT statements, with each statement u t iliz

ing the specific locations in the character set which

are defined as electronic symbols. Note that it takes
several character locations combined to display one

part, such as a transistor or resistor. Truly m o d u l

ar components! "Music Notation" uses PRINT statements
again, but this time the characters are defined as

string variables. See if you can tell which pieces

are which notes!

2. Point and Line Plotting

Each routine is identified in the LISTing. Special

mention should be made of the machine language program

which is POKEd to memory [lines 1340 to 1430]. This
clears the Hi-Rez screen and also sets it up for a

specific color. This M/L routine is used in lines

1270 to 1290. Note: the screen color is POKEd into
location 2 before the routine is called. See what

happens with various values.
Incidentally, the program will execute faster w i t h

out all the Remarks and extra line numbers with

colors. These help the for-matting of the LISTing but

also slow down the execution a bit (or is it byte?).
You may remove them if you wish.

2.

3. 3-D Demo
This demo consists of 4 essential routines which

are used by each of the 3-D demos# These common parts

are:
1)SCREEN CLR and SETUP: lines 1230-1250

2)POINT PLOT: lines 1180-1200; this routine is

also called by Line Plot.
3)LINE PLOT: lines 1140-1170 plot all the points

between the end-points.
4)3-D ROTATION: lines 1000-1110. Reads a set of

three points (X,Y,Z-axis) and transforms them

according to these variables: XR=X rotation; YR=Y

rotation; ZR=Z rotation.
The X-axis is viewed as running left-and-right (as

in a normal graph); the Y-axis is up and down; and the

Z-axis represents near and far (or the axis p erpendic

ular to the face of the screen).

For simplicity, 30 different positions of rotation

are allowed (12 degrees each) around each axis. Thus,
the variables XR, YR, and ZR can range from 0 to 29.

For each example, the X,Y,and Z points are stored on

separate lines. The X-points are read first, then
the Y-points, and finally the Z-points. For conven

ience, each object is defined symmetrically around an

arbitrary center (0,0,0), so that points to the left
of center, below center, or "behind center are

negative, while points to the right of center, above

center, or in "front" of center are positive. Points

for each set are listed in o r d e r :(X,Y,Z).

0 , +2 , 0

3.

Note that as each v iew is drawn, it is placed to

the right of the previous display. The routines have a
built-in offset w hi ch places each consecutive example
to the right of the previous one.

4. Sprite Demo

Sprites are much like portable drawing pads which

can be designed, colored, and moved around the screen

in a variety of ways. This demo guides you through a

simple implementation of sprite graphics in BASIC.

REMarks are abundant for identifying essential para

meters .

The various sprite registers are set in lines 40-

140: X is the horizontal position on the screen; Y is
the vertical position on the screen.

The PLANE is represented by Sprite 0a (with prop)

and 0b (without prop). The two versions are alternated
to give the propeller an appearance of motion. Sprite

1 is the CLOUD; Sprite 2 is the BOAT.

The plane and cloud are shown in double-size mode.
Experiment with the double-size mode by changing the

POKE values in lines 110 and 120. To compute the POKE

value, total the corresponding bit values for each

sprite you wish to m ake double-size using the byte

diagram below. (Zero bits will result in normal-size

sprites.)

Sprite 7 6 5 4 3 2 1 0 TOTAL

(all sprites jl281 6 4 1 32| 1 6 1 8| 4[2\ l| = 255

double-size) _____________ , , , ,_____
(sprites 2] B\ g| e\ 0l g[4| $\ l|= 5
and 0 only

double-size)

Then POKE the value in the X or Y EXPAND register:

110 POKE R+23,5 (Sprites 2 and 0

double-size in the

X, or horizontal,

direction)

The sprite colors are set in line 130. The value

4.

POKEd is one less than the number shown on the color

key. For example, RED is key number 3, so the POKE

value for RED is 3-1, or 2. Change the plane to red

by: POKE Cl,2
The data is tranferred from the data statements to

the sprite tables in line 150. Lines 200-250 print the

sea and island. Their colors are determined by control

characters embedded at the beginning of the print

statements in line 190 and 210. Use the CTRL+color

key, while in the quote mode, to change these colors.
All three sprites are enabled by poking the v a r i a

ble EH with the value of 7, computed in the same m a n

ner as the double-size mode shown previously (total

the bit values: 4+2+l=7).
The PROGRAM LOOP, lines 300-370, moves the plane

across the screen at the relative speed F (F was set
by your input in line 160). Notice in line 320 that F

is used as the STEP increment— the plane moves faster

by jumping m o r e dots between printing.

To control the slower movement of Sprites 1 and 2,

the variable W is decremented from 20 to 0 as the

program loop is executed. When W=5 the boat moves one

dot to the right. W hen W=0 the cloud moves one dot to

the left.
The “toggling" of the plane is controlled in line

360. By changing the value POKEd in 2040, Sprite SS is

made to alternate between adjacent areas in the sprite

table.

table

value address
POKE 2040^;— >128 = 8192 Sprite 0a

^ 1 2 9 = 8256 Sprite 0b

POKE 2041 — — >130 = 83 20 Sprite 1

POKE 2042 —— >131 = 8384 Sprite 2

If you stare at the landscape long enough while

the program runs, peculiar things may begin to hap

pen...flying boats, syntax errors, etc. Like a late-

night programmer, this program doesn't know w h e n to

quit! Using the counting method of variable W, see if

you can insert a successful test to end this program

before the boat gets airborn.

5.

SPRITE DEMO

10 R=13*4096:REM VIDEO CHIP
20 EN=R+21:POKEEN,0;REM SPRITES DISABLED
30 PRINT"^«traMHD<W CBM 64 SPRITE DEMO"
40 REM**********SET SPRITE VALUES*******
50 X0=R+0: X= 1:POKEX0,1:REM PLANE X COORDINATE
60 V0=R+1:V“150:POKEY0,Y:REM PLANE V COORDINATE
70 Xl=R+2:J=200:POKEX1,J:REM CLOUD X
30 V1=R+3:K=90:POKEV1,K ;REM CLOUD V
90 X2=sR+4: A-1: P0KEX2, fl: REM BOAT X
100 Y2=R+5:B=230:P0KEV2,E:REM BOAT V
110 P0KER+23,3:REM EXPAND X
120 P0KER+29,7:REM EXPAND V
130 Cl=R+39:POKECl,7:C2=R+40:POKEC2,l:C3=R+41:POKEC3,2:REM SPRITE COLORS
140 POKE 2040,123 :POKE2041, 130:POKE2042,131:REM SPR ADDRESS POINTERS,BEGIN S192
130 FORX=0TO253:RERDD:POKES192+X,D:NEXT:REM FILL SPRITE TABLES
160 INPUT"H*MS CHOOSE SPEED <1-5)";F
170 REM
180 REM*****PRINT BACKGROUND************
190 PRINT'Tk F1=UP F3=RANDOM F5=D0WN"
200 PR I NT" -ai/V'VNBs--—"
210 pr i nt " ,

230 pp. i nt " •,

250 ;: print "a"
260 REM******SET PROGRAM VALUES********
270 POKE650,123:Z=128:W=4: A=1: POKE2039,253 '• P0KE56310,1: L=R+16
280 POKEEN,7 :REM SPRITES ENABLED
290 REM
300 REM********PROGRAM LOOP*************
310 F0RM=9T01:POKEEN,6:POKEL,M :POKEX0,0:POKEEN,7

320 FORX=1T0255STEPF:POKEX0,X •P0KEV8,V :REM X,V COORD'S
330 OETC*: V«=V+<C*=CHR*(133»-<Ci=CHR*<l35)): IFC*=CHR*<134>THENV«V-<RND<l>*4-2)
340 W-W-l = IFW=0THENJ=J+1*<J>1)-254*CJ=1):POKEX1,J 'W=20
350 IFW=5THENA=fl+l+255*<fl>254):P0KEX2,A
360 Z=Z-1* <Z=123)+1* <Z=129 >:POKE2040,Z
370 NEXT;B=B-1:P0KEV2,B :NEXTM:G0T0310
380 REM
390 REM*******SPRITE DATA*************
400 REM
410 REM***SPRITE 0fi,PLANE W/PROP******
420 DATA0,255,0,112,36,16,113,255,203,127,255,203
430 DATA127,255,20S,0,36,16,0,255,0,0,0,0
440 DATA0,0,0,0,0,0,0,0,0,0,0,0
450 DATA0,0,0,0,0,0,0,0,0,0,0,0
460 DRTA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
470 REM***SPRITE 0B, PLANE NO PROP****
480 DRTA0,255,0,112,36,0,113,255,192,127,255,203
490 DATA127,255,192,0,36,0,0,255,0,0,0,0
500 DATR0,0,0,0,0,0,0,0,0,0,0,0
510 DATA0,0,0,0,0,0,0,0,0,0,0,0
520 DATA0,0,0,0,0,0J0,0,0,0,0,0,0,0,0,0
530 REM#*****SPR I TE 1, CLOIJD***********
540 DATA0,60,0,0,126,0,0,255,16,1,255,184
550DATA3,255,252,19,255,252,127,255,254,255,255,255
560 DATA255,255,254,127,255,252,15,255,128,7,15,0
570 DATA0,0,0,0,0,0,0,0,0,0,0,0
580 DATA0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0
590 REM******SPRITE 2, BOAT************
600 DATA0,8,0,0,8,0,0,44,0,0,110,0
610 DRTA0,239,0,0,0,0,0,255,123,5,127,0
620 DATR0,0,0,0,0,0,0,0,0,0,0,0
630 DATR0,0,0,0,0,0,0,0,0,0,0,0
640 DATA0, 0,0J0,0,0,0,0,0,0,0,0,0,0,0.. 0

5. M/L Draw Demo
Each of the previous examples has used BASIC line

drawing routines, which are slow, as a learning tool.

This example contains a moderately fast M/L drawing

routine called in lines 210-290. This routine is a

"patch-up" from other routines and is not optimized

for speed in any way. However, by writing your own

BASIC routines to call it, you may be able to realize
some of the potential of the '64 Hi-Rez mode. Note

that locations 45 and 46 are POKEd in line 100, along

with 52 and 56, to protect the M/L program and the
BIT-mapped display screen [setup at 8192]. The BIT-

mapped screen occupies a full 8K of BYTES: 8192 to

16383.
Note that there is a mode byte set in line 220.

Mode 0 = complement (flip) the line; Mode 1 = draw

the line; Mode 2 = undraw the line. The complement

function leaves the tiny "butterfly" shape behind

after each screen, because some portions of the line

were "flipped" an even number of times [flip once,

it's off; flip again, it's back on].

Finally, note that line 130 sets the screen color,

skipping two colors which wouldn't show a trace
against the background color. Notice particularly the

effect of color values greater than 15.

6. Loading Instructions

1. Turn the '64 OFF to clear and reset machine.

2. Connect the Datasette.

3. Turn power ON, insert cassette and rewind fully.

4. LOAD the desired program by typing (using u n
shifted keys) the load command and program name

(which will appear in uppercase), such as:

LOAD “3-D DEMO"

5. Press the RETURN key, then press PLAY on the
Datasette.

6. The '64 screen w ill blank for a few moments,

then reappear with the name of the first program

module, “Character D e m o”. Now, press the Space Bar,

which will either LOAD the module if it is the one

you asked for, or will advance the Datasette to the

next module. The screen will blank again.

If the first modu le is being loaded, the screen

will reappear with the cursor and the comment

“REA D Y”. When “READY” appears, type RUN and press
the RETURN key.

If you are loading the 2nd, 3rd, 4th, or 5th

module, each time you press the Space Bar, the D ata

sette will advance and find the next module, notify

you of its name, and proceed when you hit the Space
Bar again.

These steps are repeated as m any times as

necessary to reach the module you desire and LOAD

it. When the screen announces “READY”, type R UN and

press the RETURN key.

7. If you get a LOAD ERROR, rewind the tape, shut off

the '64 momentarily, then repeat Steps 4 through 6.

7. Warranty and Care of Tapes

If you do not get a good load from this or any
other tape not made on your system, chances are your

unit needs cleaning or alignment. However, if other
programs load and you still experience difficulty
with our tape, the trouble might be in the tape.

Midwest Micro programs are recorded on high-

quality materials using exacting professional stand
ards and the finest high-speed commercial equipment.

Yet, strange things can happen to a tape on its way

to you.
If you receive a faulty tape, simply return it

along with your name and address and a brief

description of the trouble. We'll send a new tape

promptly, free of charge. Our Warranty is limited to

replacement of the program. No other liability is
expressed or implied.

If you accidentally damage the tape (for example:

erasing it, stepping on it, melt-down, etc.) we will

replace it for a small handling charge. Send the
original tape, your name and address, and $5.00 to:

Midwest Micro Associates

P.O. Box 6148
Kansas City, MO 64110

For your protection, the program is recorded on
both sides of the tape. We also recommend that you

make a back-up copy of the tape and put it in a safe

place. DANGER AREAS include:
magnetic fields (such as stereo equipment, loud

speakers, '64 power transformers, motors, etc.)

heat (such as radiators, heat ducts, window sills,
enclosed automobiles, etc.)

NOTES

(' ' / O S ? *>■

/, C h M P $ - 6 / ^ ^

PP-t! £. Oc.-^.?o ^ S —y o /

£ . StL. P R 4 Id b t s v o }'/*> - JS ~ ^

, V'/ 3PX>€*10 / o / _) / iox//p>
\ 2 . , 6 2 - f t o ^ t s

NOTES

12-

