
Graphics BASIC
An In h an ced BASIC

• y Ron Gilbert and Tom McFarlane
Unlock the full potential of your com-
jputor w|h over 100 additional English-
finauage commands. Now beginning
arogrnmmers can create complex graph-
f|oi, aijilmatiort. and music without being
i t mni;hlne language programming
export,

Graphics BASIC
By

Ron Gilbert and Tom McFarlane

COPYRIGHT NOTICE

i i'iiy iliiM l h im I>v lliim nn I nulm>i>md Software Corporation. All
titilil.......himvniI N il |nni nl lliln i>iil>ll< atlon m ay be reproduced in
win In i mi I wilhmil llm |ii|< ii w ilttnn (iiumlssion of H.E.S.
I l i in iilliin i/o il i 11|>yliiu "i iMtnninllllng of thin copyrighted software
i mi iiuy inm lliiiii In nlilM ly piohlbltnd

a IIIh nigh wo iiiiil'n nvciry attempt to verify the a cc u ra c y of this
iluiiiim ont, wo i nnnot a ssu m e an y liability for errors or om issions.
No W Hiianty or other guarantee can be given a s to the a cc u ra c y or
suitability of this software for a particular purpose, nor can we be
liable for an y lo ss or d am ag e arising from the u se of the sam e.

The software contained in this package was designed to work on
the computer system designated on the package. H.E.S. is unable
to guarantee that this product will work properly on systems that
include other parts. Compatibility is determined by the companies
that manufacture computer hardware and peripherals, not by H.E.S.

GRAPHICS BASIC is a TM of Human Engineered Software.
Commodore 64 is a registered TM of Commodore.

CONTENTS

Introduction 1-4
How to Use this Manual 1
Getting Started 1
First Impressions 2
Loading the Demo Programs 2
A Few Commands and Concepts 3

Tutorial 5-17
Graphics 5-11

Color 6
Drawing Lines 7
Drawing Circles 8
Filling in an Object 9
Plotting Dots 9
Printing Text 10
Printing Graphics 10
Printing a Program Listing 10
Saving a Program 11

Sprites 11-14
Using the Sprite Editor 11
Putting Sprites into a Program 13

Making Sound 15-17
Automated Sound 16

Reference Section 19-99
Command Summary 20-25
High Resolution and Multicolor Graphics
Sprites 45
Sound 66
Input/Output Commands 74
Programming Aids 79
Text Commands 89

Appendices 101-111
A: Error Messages 101
B: Demo Programs 102
C: Memory Map 103
D: Cautions 108
E: Color Chart 109
F: Musical Note Table 110
G: Diskette Information 111

Index 112

INTRODUCTION" — —
Graphics BASIC gives you and your Commodore 64 a powerful
extended BASIC. You have over 100 new commands and features
combining incredible power and flexib ility with simplicity and
readability. Graphics BASIC complements the existing BASIC in your
Commodore 64 to support its sound and graphic capabilities as well
as many other features. These extended commands cover several
areas: sprites, sound, high-resolution and multicolor graphics,
programming aids, and input/output management.
NOTE: If you write a program in Graphics BASIC, you must have
Graphics BASIC loaded into your Commodore in order for the program
to run.

How To Use This Manual_______________________
The Graphics BASIC manual consists of two sections: a tutorial and a
command reference.
The tutorial section demonstrates some of the special features of
Graphics BASIC. The tutorial section is written for programmers
already fam iliar with BASIC, however beginners will absorb some
programming concepts by following the examples and studying the
demo programs on the disk.
The reference section is divided by category (such as sprites,
programming aids, and sound) and the commands are listed
alphabetically w ithin each category.
You can explore the features of Graphics BASIC in the tutorial, the
reference section, and the demo programs. You can run the demo
programs, list them, modify a line, change a number or word, and run
the program again to see the effect of your changes.

Getting Started_______________________________
What you need to use Graphics BASIC

• Commodore 64
• Commodore 1541 disk drive
• Graphics BASIC disk
• formatted disk fo r program storage
• monitor or TV, preferably color
• VIC 1525 or Gemini printers, optional

Loading Graphics BASIC
1. Turn on the disk drive, the TV or monitor, and the Commodore 64.
2. Insert the Graphics BASIC disk into the disk drive with the label

facing up and entering the drive last.
3. Type: LOAD“ *” ,8 and press RETURN.
4. At the ready prompt, type RUN and press RETURN.
5. When you are finished for the day, remove the Graphics BASIC or

program storage disk from the drive before turning off the drive
and computer.

1

First Impressions
Once Graphics BASIC is loaded Into you i < i mi| mini 11 <>• it ■ 11 ■ < w I mo
screen appears:

--- -------- ----------- .

• “ ‘ G R A P H IC S B A S IC V I . O T ““

C O P Y R IG H T 1 9 8 3 H E 8

BY R O N G IL B E R T A N D T O M M C FA M I A N I

R EA DY.

V ___ /

You have approximately 20K of memory remaining to create programs
using Graphics BASIC.

Note: Some older models of the Commodore 64 may cause flickering
of the screen.

Loading the Demo Programs_____________________
The Graphics BASIC disk includes several demo programs which show
the features and functions of various commands. You can load the
demos, list the programs, and make changes. You can then run the
demos again and watch the results of your changes.

The DRIVING DEMO shows Graphics BASIC’s sprite animation
capabilities. To load the DRIVING DEMO, type:

LOAD“ DRIVING DEMO”,8 and press RETURN.
To run the demo, type RUN and press RETURN. A yellow car cruising
down a country road should appear on the screen.
To list the program, first press the RUN/STOP key to stop tho program.
Then type TEXT and press RETURN. Type LIST to display the
program listing.
Note: If you prefer to work with the program listing without trees and
clouds floating by, press f4 (shift and f3) and press R! IIJMN I his
turns the sprites off.

Using the CRSR movement keys, change some of tho vuluos or colors.
For example, in lines 250 to 320, you can altor tho npnnd ot the
various sprites. Negative or positive numbers dotonnlno tho direction
the sprite will move. Press RETURN after ouch chnnuo In outer It.
Type RUN again to see the differences your < linnuo * hnvn made.

2

Several demo programs are included and a complete list appears on
page 102. Also, the command reference includes names of demo
programs which illustrate the command being described. Load some
other demos and learn Graphics BASIC by experimenting, or go on to
the tutorial.

A Few Commands and Concepts to Know__________
Graphics BASIC operates in three screen modes: text, hires (high
resolution), and multi (multicolor). In text mode, you list and edit your
programs. In hires or multi mode, you display graphics or run
programs. You can switch easily from one mode to another by typing
one of three commands:
TEXT switches from a hires or multi screen to text
HIRES switches from a text or multi screen to high resolution screen
MULTI switches from a text or hires screen to a multicolor screen
These three modes are discussed in detail in the tutorial section. In
addition, Graphics BASIC allows you to split a screen into two parts.
You can have text on one part of the screen and graphics on another.
For example, the command TEXT FROM 20 will display text on the
bottom part of the screen.
RESET
The command RESET sets all the graphics, sprites, and sound
functions to normal and puts the screen into TEXT mode. You could
use RESET at the beginning of a program to clear the screen and
ensure that previous values and settings will not interfere in the
running of the program. You can use the RESET command in a
program line, or before you run a program. RESET also comes in
handy when you find yourself in a hopeless mess. RESET will NOT
destroy the program in memory.
The commands NEW and LIST work as in standard BASIC. Typing
NEW destroys the program in memory. Typing LIST prints the current
program in memory on the screen if you are in TEXT mode.
All of the commands in Graphics BASIC work in direct mode, (typing
them directly w ithout line numbers) and most work in program mode
(with line numbers).

Function Keys
The function keys in Graphics BASIC have been designed to simplify
and speed up your programming. The list below shows what each
function key has been programmed to perform:

KEY CO M M A ND PERFO RM ED KEY COMMAND PERFORMED

f1 RUN <RETURN> f5 DIR <RETURN>
f2 BACKGROUND f6 KEY LIST
f3 LIST <RETURN> f7 TEXT <RETURN>
f4 SPRITE OFF f8 DISK

3

Each of the commands will hn pwiformwil whwti y n immmu lli<>
corresponding key il no program In ninhlim lit k. i. iiiimm v "ti i tin
change the actions the function knyn (inilmm (him Hi.......mtnnnd
reference for KEY, KEY LOAD, Kl Y 8 AVI M V (IN tttnl I-1 Y ()FF.)

4

GRAPHICS BASIC TUTORIAL
The examples given throughout this tutorial section demonstrate the
major features of Graphics BASIC. Type in the example exactly as
shown. You can then list and run each sample and watch the magic
appear on your screen. The tutorial is designed to show you how easy
it is to create complex graphics and sound on your Commodore 64.
For detailed explanations of the commands, see the command
reference section.
NOTE: If you are unfamiliar with BASIC, study your Commodore 64
User’s Guide before proceeding with Graphics BASIC.

Graphics--

What are HIRES and MULTI?
The Commodore 64 operates in two graphics modes: high-resolution
(HIRES—pronounced hi-rez) and multicolor (MULTI). The graphics
screen is made up of a series of dots or pixels. You create graphics by
controlling the status of each dot on the graphics screen, that is,
turning the dot on or off. To control each dot, you must know or set its
location. The screen is divided up into a grid much like a piece of
graph paper consisting of x and y coordinates. A dot’s location is
determined by the intersection of the x and y coordinates. The x
coordinate indicates the horizontal positioning across the screen and
the y coordinate indicates the vertical positioning up and down the
screen. By using these locations you can control the dots—on or off—
and you can position objects—such as sprites—at various locations.

The high resolution screen is made up of 320 dots horizontally and
200 dots vertically.

HIGH RESOLUTION SCREEN

The dot at the center of the screen has the location 160,100.
In hires mode, you can control each dot on the screen and you can
use two colors. In multicolor mode, you can use up to four colors (the
background color and three others), but you lose half of the horizontal
resolution. In multi mode, there are only 160 dots across the screen
instead of 320. In other words, each dot in hires mode is one pixel
wide; and each dot in multi mode is two pixels wide.

5

NOTE: When Graphics BASIC encountmn un m in i iti v"Hi program,
the line containing the error is listed. I ho location o|In
indicated by a double angle bracket symbol • • (In video). In
making the corrections, be sure to removo tho douhlw m uii" Im ickets
and press RETURN to enter the correction.

Changing Colors
You can change the border and background colors of the screen
using the commands BORDER and BACKGROUND. These commands
work if you include them within a program or if you type them directly
w ithout line numbers. If a demo program is still loaded into your
Commodore memory, type NEW to clear the memory of that program.
The program is stored on the Graphics BASIC disk permanently and
you will not destroy the copy stored on the disk by typing NEW. Type
in the following lines pressing the RETURN key after typing each line.

10 BORDER RED
15 BACKGROUND CYAN

Type RUN, press RETURN (or press f1), and watch the colors change.
In HIRES mode, you can work with two colors set with the HIRES
COLOR <co lo r> ON <co lo r> command. If you do not specify which
colors you want to use, the colors will be white on black The COLOR
HIRES command selects the color to be used with the next graphics
command (DOT or LINE) performed.
In MULTI mode, you can work with four colors—the background color
set with the BACKGROUND command, and three other colors set with
the MULTI COLOR command. The COLOR MULTI command selects
which of the three colors will be used to plot the next dot or line.
You can use the actual color names or codes in these commands. See
Appendix E for a list of colors and their codes.

NOTE: Graphics BASIC allows you to combine several commands in
one line as long as each command is separated by a : (colon). The
above example could have been written as follows:

10 BORDER RED : BACKGROUND CYAN

6

NOTE ON EDITING PROGRAMS: When you want to change a value
or mistake in a line, you can use the cursor movement keys (the two
keys on the lower right of the keyboard) to position the cursor where
you want the change. Type over the existing characters or use the
INST/DEL key to insert or delete characters. Press the RETURN key
to enter the corrections. (See the Commodore 64 User’s Guide for
more details.)

Plotting a Line
The LINE command draws a line from one point on the screen to
another. The points are represented by the x and y coordinates of the
screen. The point located on the lower left corner of the graphics
screen is 0,0. To plot a line from the lower left corner to the upper
right corner, specify the starting and ending locations of the line (the x
and y coordinates). Type:

20 LINE 0,0 TO 320,200 <RETURN>

Type HIRES, and press RETURN to switch from the text to the high
resolution screen. Type RUN (you will not see your typing on the
screen) and press RETURN to watch the program in action. A diagonal
line should appear on the screen. Notice that the background color
turned to black. If you were to type MULTI the screen would appear
with a CYAN background. Also notice how the line differs in HIRES
and MULTI modes—the horizontal resolution makes each dot two
pixels wide instead of one. Type TEXT (or press f7) to return to the
text screen and type LIST (or press f3) to list the lines of your
program.
Add a random element to the program by changing line 20, and create
a loop by adding line 40. The RND(1) command is a BASIC function to
generate a sequence of random numbers and perform calculations.
GOTO is a BASIC command that sends the program to another line
number; in this case the result is a repeating loop.

20 LINE TO 320*RND(1),200*RND(1)
40 GOTO 20

Type CLEAR and press RETURN to clear the screen of the diagonal
line. Type HIRES, press RETURN, and type RUN and press RETURN
(or press f1). A series of random lines should appear on the screen.
Press the RUN/STOP key to stop the program, type TEXT and press
RETURN, (or press f7).
Add a random color element to the program by adding line 30. This
line randomly flips through four colors.

30 COLOR 1 +4*RND(0)

7

Type CLEAR and press RETURN to Clear tho u rii| ih l'n ,, moo Ihen
type HIRES, press RETURN, type RUN, and i »iomh III I t l l lN Ilnndom
lines should appear on the screen in different coloih Hun tho mune
short program again, but type MULTI instead ol I H ill '• lio to io you
type RUN.

Press the RUN/STOP key to stop the program, and typo III SIT
before going on to the next section on drawing clrclon

Drawing Circles
The CIRCLE command in Graphics BASIC allows you to draw circular
shapes or arcs on the screen. With the CIRCLE command, you specify
the x and y coordinates at the center of the circle. With the XYSIZE
command, you specify the horizontal and vertical radii of the shape. By
changing the values of the radii, you can draw circles or ellipses of
varying sizes.

Type NEW to get rid of the short line program you just typed in. The
following statements will draw a circle at the center of your screen.

10 CLEAR: HIRES
20 CIRCLE 160,100 XYSIZE 42,30

Type RUN and press RETURN. (You do not need to type HIRES
because it was included as part of the program in line 10.)

8

NOTE: Because the screen is rectangular, the x and y radii will not be
the same if you want to draw a perfect circle. To draw a perfect circle
on a hires screen, the x radius should equal the y radius multiplied by
1.4. On a m ulticolor screen, the x radius should equal the y radius
multiplied by 1.6. For example, in line 20 above tne x radius of 42 was
calculated by multiplying the y radius (30) by 1.4.

You can use the circle command to create an ellipse by changing the
XYSIZE values. Type the following commands:

TEXT <RETURN>
LIST <RETURN>

Add line 40 to draw an ellipse as follows:
40 CIRCLE 160,100 XYSIZE 80,15 <RETURN>

Type RUN and press RETURN. An ellipse should appear around the
circle on the screen.
Experiment with different numbers for the x and y values and see what
effects they have on the graphics when the program is run again. Be
sure to put in the original variables before going on with the tutorial.

Filling in an Object
The FILL command in Graphics BASIC allows you to fill an enclosed
area with color. The object is filled with the current color (set with the
COLOR HIRES or COLOR MULTI command). You specify the point
within the object where the color will start. To fill in the current shape
on the screen in red, add line 30 to the listing:

30 COLOR HIRES RED : FILL 160,100 <RETURN>
Type RUN and press RETURN. Press f7 to switch to the text screen.

Plotting Dots
Place dots around your spheres by adding the following three lines
before line 20.

13 FOR 1=1 TO 320
15 COLOR WHITE : DOT l,320*RND(1)
17 NEXT I

Type RUN and press RETURN. A series of dots should appear first,
then your spheres.

NOTE: You could also press the f7
key for TEXT and the f3 key for LIST.

9

Printing Toxt on a Qruphlcu Sc man
The GPRINT AT command allown you in pul l»«! mi a gi«|ihl<:« screen.
You specify the location whom tho Inn I In In n ln il , I lh«m type the
text you want to appear. Locations for Uni cnmainmln illffm from the
locations for graphics. The location at thn uppnr Inti i 011101 of the
screen is 0,0. Press f7 and add tho following llnnn to llm i irclo
program:

50 GPRINT AT 1,1 “TO SEEK OUT'
60 GPRINT AT 1,3 “ NEW LIFE AND"
70 GPRINT AT 1,5 “ NEW CIVILIZATIONS”

Type RUN, press RETURN and the text should bo addod lo your high
resolution screen. You could change the size ol the letters by adding
the XYSIZE command as follows: GPRINT AT 1,1 XYSIZE 3,2 "TO
SEEK OUT”.

Printing Graphics and Program Listings
If you have a Gemini series or Commodore 1525 graphics printer, you
can print out the graphics you create. The command COPY HIRES TO
PRINTER prints out the image on the current hires screen. The
command COPY MULTI TO PRINTER prints out the image on the
current multi screen. (See the reference section for details.)
To print a program listing, use the following command sequence:

COPY TEXT TO PRINTER <RETURN>

10

Saving a Program
WARNING: Do not save your programs on the Graphics BASIC disk.
Use a separate formatted disk to store your programs. See Appendix
G for instructions on formatting a disk.
Remove the Graphics BASIC disk from the drive, and insert a
formatted disk. To save the circle program, type:

SAVE“ CIRCLE PROGRAM”,8
The number 8 specifies that you are using a disk drive with the device
number 8 to store your programs. Once the program is saved, you can
type NEW to clear the memory before going on to sprites.

Sprites____ __________________________________

Creating and Moving Sprites
The Commodore 64 has the capability to produce high resolution,
programmable graphics called sprites. Sprites are designs you can
create in practically any shape.
In creating a sprite, you determine its characteristics by making the
dots tha ffo rm the sprite visible or invisible, that is, turning the dots on
or off. You can display and animate up to eight sprites on the screen
at one time.
With Graphics BASIC, you can move sprites automatically on both the
text and graphic screens; animate sprites between several shapes
automatically; set sprite positions, colors, shapes; and turn the sprites
on or off. You can also check for sprite collisions as well as read any
sprite’s current position. Graphics BASIC also provides a built-in sprite
editor which allows you to create your own HIRES and MULTICOLOR
sprite shapes easily.
You can design up to thirty-two shapes at any one time and any sprite
can select any one of these thirty-two available shapes for it to
display. All eight sprites can select the exact same shape to display,
choose different shapes, or animate (switch between) several shapes.

Using the Sprite Editor
Before you can put a sprite into a program, you need to create the
sprite. You can create sprites in one of two modes: high resolution or
multicolor. Hires sprites use only one color, and multicolor sprites can
use four colors.
The sprite editor consists of a grid—24 dots wide by 21 dots tall for
high resolution sprites. Each dot equals one pixel. You form a sprite by
indicating which pixels are “ turned off” and which are “ turned on.” The
grid for multicolor sprites is 12 dots by 21 dots—the horizontal
resolution is cut in half. Every two pixels represents one color, and you
can use four different colors in one sprite.

11

Sovorrtl sprite ahnpon a m m < h i t l<><I m i H i m i i m p h h MA!ilC disk. Make
suro tho Qraphlcn MASK; rilnl< In In th«» iliivo I ■ n I in 111 < > pro-defined
shapes to be used In the tutorial that follow*

SPRITE LOAD"BBALL.SPR" - I I I 11 It IN -
To see the sprites in the sprlto editor, typo

EDIT and press RETURN.

The screen will clear and a grid will appear Indicating that you are
running the Graphics BASIC built-in sprlto editor llm grid Is an
enlarged representation of the shape you are presontly odltlng. The
actual sprite is displayed on the lower rlyhi of tho demon The sprite
edit area should look like this:

SHAPE:01
#

CURRENT COLOR: BUFFER

A number sign (#) indicates the current cursor position. The filled in
spaces indicate the pixels that are turned on, thus giving the sprite its
shape. The + key cycles forward through the sprite shapes, and the -
key cycles back.

Because these shapes are pre-defined for the tutorial, you do not
need to create new sprites or make any changes. However, the built-in
sprite editor has many features you should learn about. Some of these
features include a shape buffer to hold a sprite temporarily, scrolling,
changing sprite size, and switching between multicolor and high
resolution modes. See the EDIT command in the reference section on
sprites for an explanation of these features

12

Putting Sprites into a Program
Leave the sprite editing session by typing the letter Q. The screen will
clear and you will return to normal Graphics BASIC control. You now
have sprites to put into a program. Type NEW and then type the
following program to position, move, and animate your sprites.'Note:
do not type in the comments in parentheses.

10 RESET (this sets everything to normal)
20 SPRITE LOAD“ BBALL.SPR” (loads the sprites created

for you)
30 BACKGROUND

BLACKBORDER BLACK
40 FOR I = 1 TO 8 (loops through the sprites)
50 SPRITE I SHAPE 2 ON AT (displays sprites 1 through 8

10*1,50 and positions them)
60 SPRITE I COLOR I (cycles through the colors to

give each sprite a color)
70 NEXT I (completes the loop)

Type RUN, press RETURN, and a series of eight balls should appear
on the screen.
Sprite animation is one of the impressive features of Graphics BASIC.
You can create sprites which change form and move across the
screen. For example, a sprite could switch between the various shapes
of a walking person while moving to the right. And amazingly, the
animation and movement is totally transparent to BASIC—you can be
editing a program while a man is walking across the screen.

Next, animate your sprites with the ANIMATE and SPEED commands.
ANIMATE flips through the six sprite shapes. SPEED determines how
fast the sprites will move—zero is the fastest and 127 is the slowest.
You first set the animation sequence, set the speed, and then turn the
animation on. Type the following lines replacing line 70.

70 SPRITE MOVE (directs sprites to move)
80 SPRITE I ANIMATE 1,2,3,4,5, (flips through the sprite shapes in

6,5,4,3,2 SPEED 8 assigned sequence; sets speed)
90 SPRITE I ANIMATE ON (begins animation sequence)
100 NEXT I (completes the loop)

Before you type RUN, list line 20. Insert REM before the SPRITE
LOAD command. The sprites have already been loaded into the sprite
editor. Typing REM causes the program to treat the line as a remark,
thus ignoring it.
Type RUN, press RETURN, and the balls should start to bounce. Add
a slight delay before each sprite turns on. First, type LIST and press
RETURN. Change line 100 and add line 110.

100 FOR T = 1 TO 6 0 : NEXT T
110 NEXT I

Type RUN and press RETURN.

13

Make H i m Nprllon i i i d v m H i m m i p m i i l i y ■ l«>f In Ii h i the x and y
speodfi with th<> N l'l I l) i <imtiK<ihI « m ill y vuIiim'i nl 0,0 cause the
sprite to stand titlll, and valuon <>l ' • < mmn ll to move tapldly to the
upper right. Negative or ponlllvo valium ilo lo im lno the direction the
sprito moves. (Negative valuon i i i o v m l<> H i m loti, |i<>’illlvo values move
to the right.) Replace line 110 and add lino 120

110 SPRITE I SPEED -2 ,0
120 NEXT I

Type RUN and press RETURN. And see what amazing (eats you can
do with just a few lines.

LITTLE BITTY BOUNCING BALLS

Things to Play Around With

Make the change, enter it, and type RUN.
• change the SPEED value in line 80 (0 is the fastest; 1 27 is the

slowest)
• change the size of sprites by adding one of the following

commands to line 60 between the SPRITE I and COLOR I
commands

XYSIZE 2,2
XYSIZE 2,1
XYSIZE 1,2
XYSIZE 1,1 (returns to normal size)

• change the movement direction in line 110—make the value after
the SPEED command positive instead of negative

• change the amount of space between the sprites by removing the
10* in line 50

• type SPRITE FREEZE directly (not with a line number); type
SPRITE MOVE to start the sprites again

• change the x and y coordinates in line 50 to 150,1*25+10 or
150+1*2,1*10+10 (replacing the values 10*1,50)

• change colors in line 60 to 15*RND(8)
Experiment with other variables and commands to discover how easy
it is to program with Graphics BASIC.

Saving the Sprite Program

To save the sprite program, first remove the Graphics BASIC disk from
the disk drive. Insert a formatted disk to store your programs. You
could remove REM from line 20 before saving the program. Type:

SAVE“ SPRITUTOR”,8 <RETURN>

14

V
O

L
U

M
E

Making Sounds--
The Commodore 64 has a complex sound generator which can be
used to create sounds ranging from a laser zap to a three piece
orchestra. With such a wide selection of sounds possible, the
programming necessary would normally be extensive. With Graphics
BASIC sound commands, the task is immensely simplified.

The Commodore 64 has three ‘voices’ which can be independently
controlled. For example, while voice number one plays a high pitched
note sounding like a harpsichord, voice two can play a low note like a
violin and voice three can make a drum sound.
Type NEW before proceeding to the next section on sound. Press f4
and RETURN if you prefer programming w ithout bouncing sprites on
the screen.
The type of sound that each voice makes is determined by its WAVE
(triangle, sawtooth, pulse, and noise) and ADSR (attack, decay, sustain,
release). The WAVE number selects the waveform for the voice and
the ADSR number selects its attack time, decay time, sustain volume,
and release time (also called the volume envelope). These four
variables determine the form of the volume envelope for each note
played. For example, a short attack time will make notes start
suddenly, while a long attack time will produce notes which slowly rise
up to full volume. Graphically, the ADSR volume envelope looks like
this:

SUSTAIN
VO LU M E

Following are some examples of various ADSR settings.

ADSR 0 ,0 ,15 ,0 ADSR 5 ,0 ,10 ,5

ui
5

O>

TIME TIME

15

ADSR 7,4,10,7 i ADSR 1,2,7,5,2

X O

UJ

2
3

>

TIM E TIME

RUN the following program several times, substituting different values
for the ADSR and note the difference in the sound for each setting.
(Allowable ADSR values range from 0 to 15.)

NEW
10 SOUND CLEAR: VOLUME 15
20 VOICE 1 ADSR 0,0,15,0 WAVE 1 TONE 4000
30 VOICE 1 ON : REM START ATTACK
40 FOR 1=1 TO 1000 : NEXT I : REM HOLD NOTE
50 VOICE 1 OFF : REM START RELEASE
RUN

Now change the values following TONE and WAVE to see what effect
these have on the sound produced. (The TONE value may range from
0 to 65535 and WAVE values of 1 for triangle; 2 for sawtooth, and 4
for noise. W ave3 (pulse) requires an additional pulse variable which
may range from 0 to 1024, for example WAVE 3,258.)

Automated Sound
With Graphics BASIC, you have the ability to define a sequence of
tones to be played and then, at your command, they will automatically
be played for you. This works much like animated sprites, only with
sound you are changing the TONE values for a VOICE rather than the
SHAPE values for a SPRITE Each of the three voices can be set up to
play its own sequence of tones and this all happens independent of
your BASIC program. In other words, you can be listening to a three
part harmony while editing your program.

Define a simple sequence of notes to see how it w orks Type in this
short program and RUN it.

NEW
10 RESET
20 VOLUME 15
30 VOICE 1 WAVE 1 ADSR 15,9,12,12
40 VOICE 1 PLAY 14764,16572,13253,6573,9854,9854 SPEED 30
50 VOICE 1 GO
60 SOUND GO
RUN

16

If the volume on your TV or monitor is turned up, you will hear the four
notes being played.
Now insert a comma and a back-arrow (the key in the upper-leftmost
corner of your keyboard) in line 40 so that it reads as follows:

40 VOICE 1 PLAY 1 4764,1 6572,1 3253,6573,9854,9854,-*-
SPEED 30

When you RUN the program again, the same sequence of notes will
play again, only now it will start over after it is finished. To stop the
notes, type SOUND OFF. Change the SPEED in line 40 from 30 to 1
and listen to the effects. SPEED values range from 0 to 255.

Learning More About Graphics BASIC
This tutorial has given you just a hint of the many features of Graphics
BASIC. You can build upon what you have learned and go on to create
complex programs with exciting graphics and sound. The Reference
Section which follows describes all of the Graphics BASIC commands
you will need.

17

18

REFERENCE SECTION
The command directory on the following pages explains each
Graphics BASIC command in detail. The commands are grouped by
function: graphics, sprites, sound, input/output commands,
programming aids, and text commands.
Each command is described and illustrated by one or two examples to
give you a sample of the use of the command. Some of the examples
are taken out of context of a program and are not meant to be run. In
these cases, the comment “ for illustration only” precedes the example.
Demo programs for some of the commands are included on your
Graphics BASIC disk. If one of these programs is listed, load and run it
as follows:

LOAD“ <nam e>” ,8
RUN

To stop and list the program, press the RUN/STOP and RESTORE
keys. You will be returned to the Graphics BASIC text screen. Type
LIST to print the program listing. Make changes in some of the values
and run the program again to see the results.
The following conventions are used in Graphics BASIC commands:
1. Graphics BASIC commands are displayed in capital letters and

must be entered precisely as shown.
2. Items in angle brackets (< . . . >) are required variables which you

provide.
3. Variable separators (such as a comma, semi-colon, or colon) must

be included in the statement.
4. Items inside squared brackets ([. . .]) are optional variables or

limits that can be part of the command statement.
5. Optional statement parameters followed by three dots (. . .) can

be repeated as needed.
6. Items separated by a slash (/) indicate a choice must be made.

19

COMMAND SUMMARY
All of the Graphics BASIC commands and syntax are grouped by
category and listed on the following pages. Items in brackets [...] are
optional; and items in angle brackets < .. .> are variables. The
numbers and symbols preceding some commands indicate the
following:
KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics or Gemini series Printer
8 Disables all interrupts (temporarily) RESET leaves them off

Utilities and Enhancements

Joysticks
<var>=JO Y(<n>)

P rogram m ing A ids
FIND “ < s trin g > ”
CHANGE “< s tring> ” TO “< s trin g > ”
REN [<n>] [,<n>]
ON ERROR GOTO <n>
ON ERROR ON
ON ERROR OFF
PROCEDURE <nam e> [(<var> ,<var> ,. . <var>)]
DO <nam e> [<var>, < v a r> ,. . . , <var>)]
IF <cond ition> THEN <com m and> : ELSE <command>
ELSE <com mand>
GOTO <exp> (also GOSUB, RESTORE, LIST, etc.)

Miscellaneous
KEY ON
KEY OFF
KEY (<n>)=string
KEY LIST
KEY SAVE “ < filenam e>” [,<device>]
KEY LOAD “ < filenam e>” [,<device>]

2 0

High Resolution and Multicolor Commands
8 RESET

BACKGROUND <co lo r>
BORDER <co lo r>

1 TEXT [FROM < n >] [TO < n>]
1 HIRES [FROM <n>] [TO <n>]
1 MULTI [FROM < n>] [TO <n>]

CLEAR [<n>]
HIRES COLOR <co lo r> ON <co lo r>
MULTI COLOR <color> , <co lor> , <co lo r>
COLOR [HIRES] [MULTI] <co lo r>

2 3 4 DOT <x> , < y> [;<x>, < y>] . . . etc
2 3 4 <var> = DOT(<x>,<y>)
2 3 4 LINE [<x> ,<y>] [TO < x> ,< y>] . . . etc

SCALE [<x> ,<y>]
3 SETORIGIN [<x> ,<y>]

2 3 WINDOW [< x> ,< y> ,< x> ,< y>]
2 3 4 BOX < x> ,< y> TO < x> ,< y>
2 3 4 BOX < x> ,< y> XYSIZE < x> ,< y>
2 3 4 CIRCLE < x> ,< y> XYSIZE < x> ,< y> [FROM <n>] [TO < n>]

[STEP <n>]
5 GPRINT [AT < x> ,< y>] [XYSIZE < x> ,< y>] <outpu t data>

2 3 4 FILL < x> ,< y>
4 7 COPY HIRES TO PRINTER

4 COPY HIRES TO SPRITE < n >
4 COPY SPRITE < n > TO HIRES
5 COPY TEXT TO HIRES

! t l l S I t ^ ^ ‘l'Sfi l,ename^ . [; ^ 8ViCe^) default device8 HIRES LOAD “ <filenam e> [,<device>] I h . .
8 MULTI SAVE “ < filenam e>” [,<device>] f ~ .
8 MULTI LOAD “ < filenam e>” [,<device>] I ,s ° ' a,slv

COPY MULTI TO SPRITE < n>
COPY SPRITE < n > TO MULTI

KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics Printer
8 Disables all interrupts (temporarily) RESET leaves them off

21

Sprite Commands
8 RESET
8 EDIT

SPRITE MULTICOLOR <color> , <co lor>
SPRITE < n> ON

OFF
2 3 AT < x> ,< y>

COLOR <color>
MULTI
HIRES
XYSIZE < x> ,< y>
ON BACKGROUND
UNDER BACKGROUND
ANIMATE ON
ANIMATE OFF

1 SPEED < x> ,< y>
1 SPRITE < n> ANIMATE < n > ,< n >< n> SPEED

SPRITE MOVE
SPRITE FREEZE

2 3 <var> = XPOS (<n>)
2 3 <var> = YPOS (<n>)

<var> = SPRITE (<n>)
<var> = BACKGROUND (<n>)
SPRITE < n> CLEAR HIT
SPRITE CLEAR HIT
COPY SPRITE < n> TO HIRES
COPY HIRES TO SPRITE < n>
SCALE [<x> ,<y>]

3 SETORIGIN [<x> ,<y>]
8 SPRITE SAVE < n > ,< n > “ < filenam e>” [,<device>] |
8 SPRITE LOAD “< filenam e>” [,<device>]

COPY MULTI TO SPRITE < n>

KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics Printer
8 Disables all interrupts (temporarily) RESET leaves them off

< n>

default
device
number

is 8 (disk)

22

Sound Commands
8 RESET

SOUND CLEAR
VOLUME <n>
SOUND ON
SOUND OFF
SOUND GO
SOUND FREEZE
VOICE < n> TONE < n>

ADSR < n> ,< n > ,< n > ,< n >
WAVE < n > [,<n>] (or WAVE <wavename>)
[,<n>]

1 VOICE < n > PLAY [CONT] < n > [;<n>;<n>J,<n>
[;< n > ;< n >],.. .SPEED < n>

Copy Commands_________________________
COPY TEXT TO HIRES
COPY TEXT TO PRINTER

7 COPY HIRES TO PRINTER
COPY SPRITE <sprite number> TO HIRES/MULTI

7 COPY MULTI TO PRINTER
COPY TEXT TO MULTI (not recommended)
COPY HIRES TO SPRITE <n>
COPY MULTI TO SPRITE < n>

KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics Printer
8 Disables all interrupts (temporarily) RESET leaves them off

23

Text Commands
8 RESET

BACKGROUND <color>
BORDER <co lor>

1 TEXT [FROM <n>] [TO <n>]
1 HIRES [FROM <n>] [TO <n>]
1 MULTI [FROM <n>] [TO <n>]
5 PRINT AT < x> ,< y> Coutput data>

SCROLL <d irection> < n > [WINDOW <x> ,< y> ,< x> ,< y>]
ROLL <d irection> < n > [WINDOW <x> ,< y> ,< x> ,< y>]

5 COPY TEXT TO HIRES
COPY TEXT TO PRINTER

8 TEXT SAVE “< filenam e>” [,<device>]
8 TEXT LOAD “< filenam e>” [,<device>]

CHAR ROM
CHAR RAM
CHAR (<ascii>) = < n > ,< n > ,< n > ,< n > ,< n > ,< n > ,< n > ,< n >
CHAR (<ascii>,n) = “ <an 8-character string>”

8 CHAR SAVE “ < filenam e>” [,<device>]
8 CHAR LOAD “< filenam e>” [,<device>]
6 COPY UPPERCASE TO RAM
6 COPY LOWERCASE TO RAM
6 CHAR SET MEMORY
6 CHAR RESET MEMORY

KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics Printer
8 Disables all interrupts (temporarily) RESET leaves them off

24

I/O (Input/Output) Commands
8 DIR [,<device>]

DISK [,<device>]
DISK “ <command string> ” [,<device>]

8 TEXT SAVE “ < filenam e>" [,<device>]
8 TEXT LOAD “ < filenam e>” [,<device>]
8 HIRES SAVE “ < filenam e>” [,<device>]
8 HIRES LOAD “ < filenam e>” [,<device>]
8 MULTI SAVE “ < filenam e>” [,<device>]
8 MULTI LOAD “ < filenam e>” [,<device>]
8 SPRITE SAVE < n > ,< n > “ < filenam e>” [,<device>]
8 SPRITE LOAD “ < filenam e>” [,<device>]
8 CHAR SAVE “ < filenam e>” [,<device>]
8 CHAR LOAD “ < filenam e>” [,<device>]
8 KEY SAVE “< filenam e>” [,<device>]
8 KEY LOAD “< filenam e>” [,<device>]

COPY TEXT TO PRINTER
4 7 COPY HIRES/MULTI TO PRINTER

<var> = JOY (<n>)

KEY DESCRIPTION

1 Interrupt-driven
2 Coordinates depend on ORIGIN
3 Coordinates depend on SCALE
4 Window clipped
5 Depends on RAM or ROM character set currently selected
6 Resets BASIC workspace and erases variables
7 Requires Commodore Graphics Printer
8 Disables all interrupts (temporarily) RESET leaves them off

default
device
number

is 8
(disk)

25

GRAPHICS!
BACKGROUND Cbackground color>

Description: Changes the background of the text screen to
<background color> you specify. You can use either
the color numbers or the actual screen color names
themselves. See Appendix E for a list of the colors
available. This command also selects the background
color to be used in multicolor mode. The f2 key has
been pre-defined to print out the word: BACKGROUND.
You can use this command in either direct or program
mode.

Example:

Errors:

Command
Format:

BACKGROUND RED

10 BACKGROUND BLACK
RUN

10 BACKGROUND 1+2*7
RUN

ILLEGAL QUANTITY ERROR

1. The color number given is out of range.

BACKGROUND <co lo r>

BORDER <border color>

Description: Changes the color of the border to cborder color>.
Either the color numbers or the actual color names may
be used. You can use this command in either direct or
program modes.

Example:

Errors:

Command
Format:

BORDER PURPLE

10 BORDER RED
RUN

10 BORDER 8/2+1
RUN

ILLEGAL QUANTITY ERROR
1. The color number given is out of range.

BORDER <color>

26

GRAPHICS
BOX Ccorner x>,<corner y> [XYSIZE <x>,<y>]

[TO <corner x>,<corner y>]

Description: Draws rectangular boxes on the HIRES and MULTI
screens. The coordinates Ccorner x> and <corner y>
specify the location on the screen where a corner of the
box will be drawn. The XYSIZE values determine the
size and shape of the box. If the values of < x> and < y>
are positive, the <corner x> , Ccorner y> point will be
the lower left corner of the box. By using negative
values for the XYSIZE, the box will be drawn down and
to the left of the point Ccorner x>,Ccorner>. When
using the TO option, you can specify the upper right
corner of the box rather than the size of the sides.

Examples: 10 HIRES
20 BOX 10,10 XYSIZE 30,40
RUN
CLEAR
RESET

10 HIRES
20 FOR A=0 TO 360 STEP 10
30 BOX 100,100 XYSIZE 30,30
40 NEXT A
RUN
CLEAR
RESET

27

GRAPHICS’
CIRCLE Ccenter x>, <center y> XYSIZE

<x size>,<y size> [FROM <starting angle>]
[TO <ending angle>] [STEP <angle>]

Description: Draws circles, ellipses, arcs, and regular polygons. The
CIRCLE variables Ccenter x> and Ccenter y> specify
the location on the screen of the center of the proposed
circle. The XYSIZE variables determine the size and
shape of the circle. By changing the Cx size> and Cy
size>, larger circles and arcs can be made, as well as
ellipses and elliptical arcs.
Omitting the optional FROM . . . TO command draws a
full circle. Including the FROM TO command creates an
arc. By making the Cangle> large in the optional STEP
sub-command, polygons can be drawn. All angles are in
degrees and may take on any values.

Examples: 10 HIRES
20 CIRCLE 50,60 XYSIZE 10,30
RUN
RESET_______________________

20 CIRCLE 100,100 XYSIZE 28,20 STEP 360/5
RUN
RESET___

20 CIRCLE 100,120 XYSIZE 50,40 FROM 10 TO 180
REM DRAWS ARC

RUN___

The angle values used in the FROM . . . TO command
are as follows:

90

Demo
Programs: CIRCLE FILL DEMO

MODERN ART DEMO

28

'GRAPHICS
CLEAR [<BYTE>]

Description: Fills the high-resolution (and multicolor) screen memory
with <byte> . CLEAR can be used either before or after
the HIRES COLOR n ON n or MULTICOLOR n1,n2,n3
commands. The screen will become the designated
HIRES color, however, only after both commands have
been used.

CLEAR or CLEAR 0 turns the screen to the background
color. CLEAR 255 turns the screen to the foreground
color if used in HIRES mode. CLEAR 255 also turns the
foreground color to <co lo r3> of the MULTICOLOR
command if the screen is in MULTICOLOR mode. Also,
CLEAR 85 will turn the MULTICOLOR screen to
<co lo r1> and CLEAR 170 will turn it to <color2>.

Example: 10 MULTI : BACKGROUND PURPLE
20 MULTICOLOR RED,GREEN,BLUE
30 CLEAR
RUN

Effect:

Example:

The HIRES screen is now purple.

RESET
10 HIRES
20 HIRES COLOR RED ON YELLOW
30 CLEAR 255
RUN

Effect: The HIRES screen is now red.

Errors: ILLEGAL QUANTITY ERROR
1. The number after the CLEAR command is greater
than 255 or less than 0.

Command
Format: CLEAR

CLEAR <num ber>

see also
SPRITE CLEAR HIT

29

GRAPHICS!
COLOR [HIRES] <color>

COLOR [MULTI] <color>

Description: Selects the color to be used with the DOT and LINE
commands. Either the color number or the actual color
name may be used. When drawing in HIRES mode, the
COLOR HIRES <co lo r> command should be used.
When drawing in MULTI mode, the COLOR MULTI
<co lo r> command should be used. However, you can
omit the HIRES or MULTI following the word COLOR. If
omitted, Graphics BASIC will assume you are going to
draw in the mode in which the computer is presently
operating. For example, if you are in HIRES mode,
COLOR <co lo r> sets the color for drawing on the
HIRES screen.

Example: RESET
10 HIRES
20 HIRES COLOR BLUE ON BLACK
30 FOR D — 1 TO 300 : NEXT D
40 COLOR HIRES YELLOW
50 BOX 100,100 XYSIZE 30,40
Press the f1 key several times to see the effects.

Effects:

Example:

The HIRES screen will be black and the box plotted will
switch from yellow to blue.

RESET
NEW
10 MULTI : BACKGROUND 0 : CLEAR
20 MULTICOLOR RED,BLUE,YELLOW
30 COLOR BLUE
40 LINE TO 100,120
RUN

Effects: The multicolor screen will be black and the next line
plotted will be in blue.
NOTE: If a <co lo r> is used which is not one of the
principal colors selected in the HIRES color n1 ON n2
or MULTI COLOR n1,n2,n3 and BACKGROUND
commands, an error will not occur. Instead, the next line
or dot plotted will be drawn in the selected color.
Caution must be taken when doing this, however,
because when two such lines cross, their colors will
“ bleed” onto one another. This will not occur if your
figures do not come into contact with each other, and

30

'GRAPHICS
bleeding will never occur if only the principal colors are
selected. This is a lim itation of the Commodore 64 itself
and cannot be avoided.

Errors: ILLEGAL QUANTITY ERROR
1. <co lo r> is not in the range of 0 to 15.

Command
Format: COLOR <co lo r>

COLOR HIRES <co lor>
COLOR MULTI <co lor>

Demo
Program: MULTICHANGE DEMO

COLORWHEEL DEMO

31

GRAPHICS
COPY HIRES TO SPRITE <sprite number>

COPY MULTI TO SPRITE <sprite number>

Description: Transfers—or “ picks up”—the image underneath the
specified sprite and puts it into the sprite shape data.
This command is useful for “ picking up” objects on the
hires or multi screen and moving them around. When
used in conjunction with the COPYSPRITE <sprite
number> TO HIRES command, images can be easily
transferred from one part of the graphics screen to
another.

Example: NEW
10 BACKGROUND 1 : CLEAR
20 MULTI : MULTICOLOR PURPLE, GREEN, BLUE
30 FOR T = 1 TO 25 : COLOR 3*RND(8) + 4
40 LINE TO 320*RND(8), 150*RND(8) : NEXT T
50 SPRITE 1 ON AT 150,100 MULTI
60 COPY MULTI TO SPRITE 1
70 FOR T = 200 TO 100 STEP - 20
80 SPRITE 1 AT 150,T
90 COPY SPRITE 1 TO MULTI : NEXT T
RUN

The short program above creates a sprite and copies a
multicolor image onto the sprite. That sprite is then
copied back onto the screen with the COPY SPRITE 1
TO MULTI command. Keep pressing the f1 key (located
on the right side of the keyboard) to RUN the program
again.

With the following commands, you can pick up letters
(from a character set) and put them in a sprite. Type the
following commands to load a font, and copy them to a
sprite. Make sure the Graphics BASIC disk is in the
drive.
NEW
RESET
CHAR LOAD “ COMPUTER.FONT”
CHAR RAM
HIRES TO 15
CLEAR
GPRINT AT 1,1 XYSIZE 3,2 “ HESWARE”
SPRITE 1 ON AT 25,200
COPY HIRES TO SPRITE 1
SPRITE 1 SPEED 1,0 : SPRITE MOVE

While the sprite is visible on the screen, type:
COPY SPRITE 1 TO HIRES <RETURN>

32

IGRAPHICS
DOT <x>,<y> [;<x>,<y>| |;< x> ,< y>]. . .

Description: Plots a dot [or series of dots] at location < x> ,<y> . The
dot will appear in the color defined by the COLOR
command. The < x> ,< y> coordinates will always depend
on the current setting of the origin and the present
SCALE. Note also that dots will not be plotted if they lie
outside of the specified WINDOW.
If multicolor dots are being plotted, only half the
horizontal resolution of HIRES is possible. The
coordinate systems of the two modes, however, are
identical. The only difference lies in the fact that the
multicolor dots will be twice as wide as high resolution
dots. Thus, the 160th multicolor dot will have an x-
coordinate of 320 just as if it were a HIRES dot.

Example: RESET
NEW
10 MULTI : BACKGROUND RED
20 MULTICOLOR WHITE,PURPLE,PEACH
30 CLEAR : COLOR MULTI WHITE
40 DOT 10,8
RUN

Effects:

Example:

The multicolor screen is now red and a white dot should
appear at (10,8)—the lower left corner of the screen.

RESET
NEW
10 HIRES
20 HIRES COLOR WHITE ON BLACK
30 CLEAR
40 FOR 1=1 TO 32 STEP .10 : x(1)=l*10 :

Y(1)=ABS(100*SIN (I))
50 COLOR WHITE : DOT X(1), Y(1)
60 NEXT I
RUN

Effect: Plots a partial white sine wave. Stop the program by
pressing the RUN/STOP key and then press f7.
Add the following two lines and run the program again:

55 COLOR BLACK : DOTX(6), Y(6)
57 FOR J = 5 TO 1 STEP -1 : X(J+1)=X(J):

Y(J+1) = Y(J) : NEXT J
Command
Format: DOT < x> ,< y>

DOT < x> ,< y> ;< x> ,< y> ;< x> ,< y> . . .
Demo
Programs: SATURN DEMO

SHUTTLE DEMO

33

FILL <x>,<y>

GRAPHICS

Description: Fills an enclosed object with the current color on the
HIRES screen. The specified point (x,y) must be within
the object, otherwise the entire area outside the object
will be filled.

Example: RESET
NEW
10 HIRES : COLOR PURPLE
20 BOX 100,100 XYSIZE 50,50
30 FILL 130,120
RUN

Demo
Program: CIRCLE FILL DEMO

PIE CHART DEMO
MODERN ART DEMO

GPRINT [AT <cursorx>,<cursory>]
[XYSIZE <xfactor>,<yfactor>] [,] [<output data>] [;/,]

Description: Prints letters and numbers on the HIRES and MULTI
screens. This command works just like the standard
BASIC PRINT command with a few exceptions. GPRINT
recognizes only alphanumeric and graphic characters,
color codes, reverse on/off codes, and return. Instead of
responding to the conventional cursor movements,
GPRINT allows x,y positioning of the ‘hires’ cursor.
GPRINT also has the ability to expand the size of
printed characters in both the horizontal and vertical
directions.

Example: RESET
NEW
10 HIRES TO 20 : CLEAR
20 FOR 1=1 TO 13
30 GPRINT AT I,I “ GRAPHICS BASIC”
40 NEXT I
RUN

34

IGRAPHICS
GPRINT (Continued)

Example: RESET
NEW
10 CHAR RAM : CHAR LOAD “ OLD.FONT”
20 REM < — TEN COLOR CODES*:C$=“ [PUR][BLU]

[SKY][LGN][GRE][YEL][PIN][RED] [ORG][BRN]”
30 HIRES : CLEAR
40 FOR 1=1 TO 10
50 GPRINT AT 1,2*1+1 XYSIZE 2,2 LEFT$(C$,I); “GOTHIC

COLORS BATMAN”
60 NEXT I
RUN
*To get the ten color codes, press the keys listed below
(press the CTRL key or the Commodore logo key (C<)
and the number at the same time):
purple CTRL 5
blue CTRL 7
sky C< 7
It. green C< 6
green CTRL 6
yellow CTRL 8
pink C< 3
red CTRL 3
orange C< 1
brown C< 2
NOTE: The GPRINT will not ‘wrap’ characters around to
the start of the next line if you try to print beyond the
right side of the screen. However, if you try to print off
the bottom of the screen, the cursor will wrap up to the
first line and characters will appear starting at the top of
the screen.

Errors: ILLEGAL QUANTITY ERROR
1. The x,y position given for the cursor does not lie on
the screen.
2. The x,y expansion factors given are negative or too
large.

Command
Format: GPRINT

GPRINT <outpu t data>
GPRINT AT <x> ,<y> ,< ou tpu t data>
GPRINT AT < x> ,< y> XYSIZE <x> ,<y> , Coutput data>

Demo
Program: GPRINT DEMO

35

GRAPHICS!

HIRES

Description: Causes the screen on your Commodore 64 to display
high resolution graphics instead of the normal TEXT
screen. You can switch from a hires screen to a
multicolor screen by typing MULTI. Switch to a text
screen by typing TEXT.

Example: RESET
NEW
10 HIRES
RUN

Effects: You will now see the HIRES screen. To see what you
are typing, simply type TEXT and hit RETURN.

See also
MULTI
TEXT
HIRES TO/FROM
TEXT TO/FROM

HIRES [FROM <firstline>j [TO <lastline>]

Description: Splits the screen into two sections: one for text and the
other for high resolution graphics. High resolution
graphics are visible from < firs tline> to < lastline> . A
text screen is displayed on the remaining portion of the
screen.

Examples: 10 H IR E S FROM 1 TO 10
(for illustration . __
only) 10 H IR ES FROM 10

10 H IR E S TO 2

10 H IR E S FROM 1 TO 2*9

10 A = 1
20 B =9
30 H IR ES FROM A TO B+ 8

Errors: ILLEGAL QUANTITY ERROR
1. Either of the numbers given in the HIRES command
are not in the range of 1 to 25.

36

IGRAPHICS
HIRES (Continued)
Command
Format:

Demo

HIRES
HIRES TO < line>
HIRES FROM < line>
HIRES FROM < line> TO < line>

Programs: SPLIT DEMO

HIRES COLOR <foregroundcolor> ON <backgroundcolor>

Description: Defines the principal foreground and background colors
for use on the HIRES screen.
Colors may be defined using any of the 16 Commodore
color numbers (0-15) or by using the 1 6 color names
that Graphics BASIC recognizes (see page 109).
NOTE: Normally, only two colors are used in HIRES
mode. Other colors can be used, but every character-
block of dots on the HIRES screen must always share
the same two colors: e ither the background color or the
foreground color. If colors other than these two principal
colors are used, lines which cross each other may
“ bleed” colors onto one another. This is a lim itation of
the Commodore and cannot be avoided. No problems of
this nature will occur if you lim it yourself to the two
principal colors or prevent drawings of different colors
from coming into contact.

Examples:

Effect:

Examples:
(for illustration
only)

Errors:

Command
Format:

RESET
NEW
10 HIRES COLOR WHITE ON BLACK
20 COLOR WHITE : LINE 0,0 TO 100,200
HIRES
RUN

Draws a white line on screen with a black background.

10 HIRES COLOR 1 ON 0
10 B = 4
20 HIRES COLOR B+1 ON 6*2

ILLEGAL QUANTITY ERROR
1. A color number is not in the range of 0 to 15.

HIRES COLOR <co lo r> ON <co lo r>

37

GRAPHICS
LINE [<x>,<y>| [TO <x>,<y>] [TO < x > ,< y >]. . .

Description: Draws lines from any point on or off the screen to any
other point. The LINE command will always draw lines in
the color selected by the COLOR command. The LINE
command can also be used with the DOT command
where the DOT command determines the starting point
for the LINE command.
The < x> ,< y> coordinates used in the LINE command
are referenced from the origin as set by the SETORIGIN
command, and also affected by the present SCALE.
Following are the various forms of the LINE command.
LINE x1,y1 TO x2,y2

Draws a line from (x1,y1) to (x2,y2)

LINE TO x,y
Draws a line from the last point plotted to (x,y)

LINE x1,y1 TO x2,y2 TO x3,y3
Draws a string of lines from (x1,y1) to (x2,y2) to
(x3,y3).

LINE x,y
Sets the starting point of the next LINE TO
command to (x,y). Nothing is plotted.

NEW
10 HIRES
20 HIRES COLOR WHITE ON BLACK
30 COLOR WHITE
40 CLEAR
50 FOR 1=1 TO 690 STEP 5
60 LINE 0,0 TO 1,200
70 NEXT I
RUN
RESET
10 HIRES
20 HIRES COLOR SKY ON BLUE
30 COLOR SKY
40 CLEAR
50 X1 = 5 : X2=315
60 Y1 = 5 : Y 2=195
70 LINE X1,Y1 TO X2,Y1 TO X2,Y2 TO X1,Y2 TO X1,Y1
RUN

Example: RESET

Effect: Draws a frame around the screen.

38

'GRAPHICS
LINE (Continued)

RESET
NEW
10 HIRES ‘ CLEAR
20 HIRES COLOR WHITE ON BLUE : COLOR WHITE
30 FOR I = 1 TO 4 : X(l)=150*RND(1)+50 :

Y(l)=80*RND(l)+20 : NEXT I : Y(4)=Y(4)+100
40 DOT X(1), Y(1)
50 FOR I =2 TO 3 : LINE TO X(I),Y(I) : NEXT I
60 LINE TO X(1),Y(1)
70 FOR I = 1 TO 3 : DOT X(4),Y(4) : LINE TO X(I),Y(I) :

NEXT I
RUN
Press the f1 key to see another random pyramid.

Command
Format: LINE < x> ,< y>

LIN E<x>,<y> TO < x> ,< y>
LINE TO <x,y>
LINE < x> ,< y> TO < x> ,< y> TO < x> ,< y>
LINE TO < x> ,< y> TO < x> ,< y> .. .

Demo
Program: DESIGN DEMO (press space bar see each design)

MULTISTAR DEMO
DIAMOND DEMO
SHIELD DEMO

GRAPHICS!
MULTI

Description: The MULTI command will cause the entire screen to
display multicolor graphics instead of the normal text
screen. You can switch from the multicolor screen to
the hires screen by typing HIRES, and you can get back
to the text screen by typing TEXT.

Example:

Effects:

10 MULTI
RUN

The screen will display m ulticolor graphics. To return to
text mode simply type TEXT.

See also
HIRES
TEXT

MULTI [FROM <firstline>] [TO <lastline>]

Description: Splits the screen with m ulticolor graphics visible from
< firs tline> to < lastline>. A text screen is displayed on
the remaining portion of the screen.

Example:
(for illustration
only)

10 MULTI FROM 5 TO 15
10 MULTI FROM 10

10 MULTI TO 12
10 A=5 B=20
20 MULTI FROM A TO B

Errors: ILLEGAL QUANTITY ERROR
1. One of the two line numbers given is out of the
range 1 to 25.

Command
Format: MULTI

MULTI TO < Iine>
MULTI FROM < line>
MULTI FROM < lin e > TO < line>

40

GRAPHICS
MULTI COLOR <color1>,<color2>,<color3>

Description: Selects the three principal colors that will be used for
plotting on the multicolor screen. The background color
for the multicolor screen is the same as the background
color for the text screen. Use the BACKGROUND
command to select the multicolor background color.
You can indicate colors using the 16 color names the
Graphics BASIC recognizes. (A list of the color names
can be found on page 109.)
WARNING: Do not use the PRINT“ [CLR/HOME] ”
statement after using the MULTICOLOR command.
NOTE: Normally, only four colors are used in MULTI
mode: the three principal colors defined with the MULTI
COLOR n1,n2,n3 command and the BACKGROUND
color. When other colors are used, intersecting lines
may “ bleed” colors onto one another. Also, when a color
other than one of the three principal colors or the
background color is selected, it simply replaces
<co lo r1> in this command.

Exam ples: RESET
NEW
10 MULTICOLOR RED, GREEN, BLUE
20 BACKGROUND YELLOW : COLOR GREEN
30 LINE 100,100 TO 200,200
MULTI
RUN

E ffect: A green diagonal line appears on a yellow background.

Errors: ILLEGAL QUANTITY ERROR
1. The given color numbers are out of the range 0 to
15.

Com m and
Form at: MULTI COLOR <co lor> , <co lo r> ,<co lo r>

Demo
Program: COLORWHEEL DEMO

41

GRAPHICS!
SCALE [<x range>,<y range>]

Description: Changes the scale of the HIRES and MULTI screens.
For example, the width of the screen can be set to be 1
across or 10,000 across. The same can be done for the
vertical scale. Once the scale has been set, the origin
can be moved around with the SETORIGIN command.
Once the screen has been scaled, the coordinates used
for defining the origin are scaled according to the
preset scale. The commands SCALE 20,4 and
SETORIGIN 10,2 set up the screen to the following
scheme.

- 10,2

- 1 0 ,-2

1

2-

i n n....... . |

(
A ° 1

.
Ol

1
1

M
r

5 10

10,2

1 0 ,-2

Demo
Programs: SATURN DEMO

See also
SETORIGIN

42

GRAPHICS
SETORIGIN [Corigin x>,<origin y>]

Description: Sets the origin anywhere on or off the screen. The
origin acts as your reference point. You indicate the
location of 0,0 of an x,y coordinate system and plot
various commands in reference to that location. After
you use the SETORIGIN command, all new lines, dots,
window settings, and sprites will be positioned with
respect to the new origin.
If you were to plot a DOT at (0,0) it would normally
appear in the lower left hand corner of the screen. If
you were to use the SETORIGIN 100,100 command, the
same DOT command would cause a dot to appear at
100,100 relative to the lower left hand corner of the
screen.
Typing SETORIGIN with no parameters resets the origin
to the lower left corner of the screen. Note that the
coordinates given for the origin will be affected by the
current SCALE.

Examples:
(for illustration
only)

50 SETORIGIN 100,100
60 LINE -1 0 ,0 TO 10,0
50 SETORIGIN 1000,1000
60 LINE 0,0 TO -1 0 0 0 ,-9 5 0

50 SETORIGIN
60 DOT 0,9

Command
Format: SETORIGIN

SETORIGIN < x> ,< y>

Demo
Program: ORIGIN DEMO

SETORIGIN DEMO

See also
SCALE

43

GRAPHICS
WINDOW [<lowerleft x>,<lowerleft y>,

Cupperright x>,<upperright y>]

Description: Sets up a WINDOW on the screen. This window
prevents any lines or dots to be plotted outside the
designated area. The coordinates for the WINDOW are
always relative to the ORIGIN and affected by SCALE.
This WINDOW feature is useful when drawing figures
larger than the screen. When the figure is drawn, it will
be as if you are looking at it through a window—only a
portion of the drawing appears.

When you first load Graphics BASIC, the WINDOW is
defaulted to the same size as the screen. If you type
WINDOW (without any bounds), the window will be reset
to its default value. You cannot define the WINDOW to
be larger than the screen.

Example:

Example:

RESET
NEW
10 RESET: HIRES
30 FOR J=1 TO 50 : K =J*3+10 : LINE 0,K TO

320,K : NEXT J
RUN
To see what WINDOW does, add the following lines
(press f7 to switch to the text screen):
20 FOR L=1 TO 3 : READ AB,C,D : WINDOW AB,C,D
40 NEXT L
50 DATA 10,40,120,180 : REM 1ST WINDOW
60 DATA 180,50,310,160 : REM 2ND WINDOW
70 DATA 20,10,300,36 : REM 3RD WINDOW
RUN

NEW
RESET
10 HIRES
20 HIRES COLOR WHITE ON BLACK
30 WINDOW 180,50,310,160
40 LINE 0,130 TO 360,120
RUN

Effects:

Command
Format:

Demo
Program:

There will be a long line starting at the left edge of the
screen extending to the right side.

WINDOW
WINDOW < x> ,< y> ,< x> ,< y>

WINDOW DEMO
WIND/CIRC DEMO

44

BACKGROUND (<sprite number>)

Description:

Example:
(for illustration
only)

Errors:

Demo
Program:

Checks for sprite to background collision. If the given
sprite has been in contact with any characters or
graphics, the function will be true—a signal that a
collission has occurred. Do not confuse this command
with the BACKGROUND command that controls the
background color. Notice the required parentheses
around <sprite number>.

10 IF BACKGROUND (2) THEN PRINT “ IT HIT!”
As with the SPRITE(<sprite number>) function, the
sprite’s background collision flag will be cleared after
each use of the function, or when SPRITE CLEAR HIT is
performed.
NOTE: Sprite to background collisions work identically
to sprite to sprite collisions. Thus to check if a sprite
has or is touching a background, simply use the
BACKGROUND(n) command. If you want to check if a
sprite is in contact with the background at an instant
use the SPRITE CLEAR HIT command.

ILLEGAL QUANTITY ERROR

1. <sprite number> is out of range. The number
should be 1 to 8.

BOUNCE BALL DEMO
AIRPLANE DEMO

See also
SPRITE CLEAR HIT

45

SPRITES
COPY SPRITE <sprite number> TO HIRES/MULTI

Description: Displays pre-defined sprite shapes on the HIRES or
MULTI screens. For example, by moving a sprite with
the shape of a man around and repeatedly executing
the COPY SPRITE command, you will create many
identical men on the HIRES or MULTI screen. You can
produce interesting effects when copying sprites
several times while they are both moving and animating
automatically. To erase sprites, simply COPY them when
the sprite is turned off.
NOTE: When copying multicolor sprites to the
m ulticolor screen, the screen multicolors must be set as
follows for the color to be copied properly:

given SPRITE MULTICOLOR <sprite color1>,
<sprite color2> set MULTICOLOR <any color>,
<sprite color1>,<sprite color2>

Examples: COPY SPRITE 1 TO HIRES
c o p y spR|TE N T0 MULT|

See the examples under the COPY HIRES TO SPRITE
command on page 32.

Demo
Program: HATMAN RACE DEMO (demonstrates MULTI)

SPACEMAN DEMO (demonstrates HIRES)

EDIT

Description: Clears the screen and displays a grid indicating that you
are now running the Graphics BASIC built-in sprite
editor. This editor allows you to design your own hires
and multicolor sprite shapes for use in your own
programs. The grid on the screen is an enlarged
representation of the shape you are presently editing.
Using the standard cursor control keys along with a few
other specially defined keys, you can quickly design and
manipulate shapes. A special shape buffer can hold a
shape temporarily. This is useful when you wish to copy
or move a sprite shape from one place to another.

46

SPRITES
EDIT (Continued)

Following is a list of all the recognized keys and their
functions within the Graphics BASIC sprite shape editor:

Moves the cursor right.
Moves the cursor left.
Moves the cursor up.
Moves the cursor down.
Moves the cursor to the left of

the next line.
Plots a point in the present

color and moves right.
Erases a point and moves

right.
Clears the present sprite

shape.
Reverses the bit pattern of

the present shape.
Moves the cursor to the upper
left corner.
Moves to the left and deletes a

dot.
Terminates the editor.
Edit next shape.
Edit preceding shape.
Toggle the X size.
Toggle the Y size.
Flip the sprite horizontally.
Flip the sprite vertically.
Scroll sprite up.
Scroll sprite down.
Scroll sprite left.
Scroll sprite right.
Rotate sprite clockwise.
Toggle the mode between

HIRES and MULTICOLOR
Save the present shape in the

shape buffer
Copy the shape buffer contents

to present shape
Set current color to multicolor 1
Choose color for multicolor 1
Set current color to sprite color
Choose color for sprite color.
Set current color to multicolor 2.
Choose color for multicolor 2.
Set current color to

background color.
Choose color for background.

[right CRSR]
[shift] [left CRSR]
[shift] [up CRSR]
[down CRSR]
[RETURN]

[period]

[space bar]

[shift CLR/HOME]

[CTRL] R

[CLR/HOME]

[INST/DEL]

Q
+

X
Y

T
@
/

5

£
M

S

C

f1
f2
f3
f4
f5
f6
f7

f8

47

SPRITES
EDIT (Continued)

When you leave the sprite editor, the screen clears and
you return to normal Graphics BASIC control with both
your program and variables unaltered. Save your sprite
shapes with the SPRITE SAVE command.
Before the sprite editor is entered, an equivalent to the
RESET command is performed. Therefore, all animators
and sound will clear.

The sprite editor ignores all unassigned keys and
returns no BASIC error messages.
The EDIT command can be used in a program with a
line num ber

20 EDIT: PRINT“ DONE”
30 END

Example: EDIT
If you do not have any sprites loaded into the sprite
editor, you will see a “ garbage” or undefined sprite in
the sprite editing area. Clear the sprite editing area by
pressing the SHIFT and CLR/HOME keys at the same
time. Move from one sprite shape to another with the +
and - keys. Use the . (period) to plot a point, and the
space bar to erase a point. Leave the sprite editor by
typing the letter Q.
NOTE: Some older models of the Commodore 64 cause
flickering in the sprite edit area.

NOTE ON EDITING MULTICOLOR SPRITES
You can create multicolor sprites using up to four
colors—the background color, the sprite color, and two
multicolors. However, you have only half the horizontal
resolution. In the sprite editor, you are working with 12
pairs of dots across in multi mode instead of 24 dots in
hires mode. Each pair of dots represents one of the four
colors as follows:
background color . . (two blanks)
multicolor 1 X X (two solids)
multicolor 2 . X (one blank, one solid)
sprite color X . (one solid, one blank)

You do not need to worry about working with pairs of
dots—the m ulticolor sprite editor takes care of this for
you. First, type M to enter the multicolor mode in the
sprite editor, and notice that the cursor is now < >
instead of #. Also notice that the sprite has turned to

48

—

EDIT (Continued)
three colors—black, white, and purple. (Black represents
multicolor 1, white represents the sprite color, and
purple represents multicolor 2.) You can select which
colors you want to use as listed below.
Think of the function keys as a palette. Pressing the
function key w ithout shifting selects the color
(background, sprite color, multicolor 1, and multicolor 2)
you want to work with. Pressing the shifted function key
cycles through the available colors; stop when you
reach the desired color. The color is shown in the
“ current color” square at the top of the screen.
f1 Selects multicolor 1.
f2 Chooses the color to be used for multicolor 1.

f3 Selects sprite color.
f4 Chooses the color to be used for sprite color.

f5 Selects multicolor 2.
f6 Chooses the color to be used for multicolor 2.

f7 Selects background.
f8 Chooses the background color.
Once the sprite is plotted, you can cycle through the
colors again (using the shifted function keys) to select
the best combination of colors. When you leave the
sprite editor or save the sprites, the actual colors you
selected will not be saved (sprites are saved with the
default colors of black, purple, and white). When putting
the multicolor sprites into a program, use the SPRITE
COLOR, SPRITE MULTICOLOR, and BACKGROUND
commands to set their colors.

49

SPRITE(<sprite number>)

Description:

Example:
(for illustration
only)

Example:

Checks for sprite to sprite collision. If the specified
sprite has previously come in contact with any other
sprite, the function will be true.

60 IF SPRITE(3) AND SPRITE(5) THEN GOSUB 1000
The Commodore 64 is unable to detect which sprite has
collided with which sprite. Therefore, the IF . . . THEN
comparison in the above example would be true if sprite
3 was in contact with sprite 8 and sprite 5 was in
contact with sprite 2. Then both sprites would have their
sprite to sprite flags set, but this would not necessarily
mean that they were in contact with each other.
Once this function has been called, the sprite to sprite
collision flag will be cleared. It will be set again when
the sprite collides with another sprite.
NOTE: Caution must be taken when checking the
sprite-to-sprite collision of moving sprites. When two
sprites collide, their collision flags are set within the
computer. When the two sprites move away from each
other, however, their flags will still indicate that they
have collided. To clear these old values, simply execute
the SPRITE CLEAR HIT command.

If you want to check if a sprite has hit, or is hitting
another sprite, simply use the SPRITE(<n>) command.
If you want to know if a sprite is in contact with another
sprite at any instant, first execute the SPRITE CLEAR
HIT command.

Type RESET and NEW.
Enter the sprite editor and create a sprite shape to use
in the example:

EDIT
SHIFT CLR/HOME
CTRL R

Q

(enter sprite editor)
(clears the edit area)
(reverses the bit pattern, that is,
ail bits on instead of off, and
creates a sprite shape)
(leave sprite editor)

SPRITE (Continued)

Errors:

Demo
Program:

10 SPRITE 1 ON AT 150,100 SPEED 1,0 COLOR
WHITE SHAPE 1

20 SPRITE 2 ON AT 300,100 SPEED -4 ,0 COLOR
BLACK SHAPE 1

30 SPRITE MOVE
40 FOR T=1 TO 100 : NEXT T : SPRITE CLEAR HIT
50 IF SPRITE(1) AND SPRITE(2) THEN SPRITE 1

SPEED -1 ,0 : SPRITE 2 SPEED 4,0
55 GOTO 70
60 GOTO 50
70 FOR T=1 TO 100 : NEXT T : SPRITE CLEAR HIT
80 IF SPRITE(1) AND SPRITE(2) THEN SPRITE 1

SPEED 1,0 : SPRITE 2 SPEED -4 ,0
85 GOTO 40
90 GOTO 80

ILLEGAL QUANTITY ERROR
1. <sprite number> is not in the range of 1 to 8.

BALL&BOX DEMO

51

SPRITES

SPRITE <sprite number> ANIMATE ON

SPRITE <sprite number> ANIMATE OFF

Description: Allows the animation of individual sprites to be turned
on and off. When the animation is turned on using this
command, the sprite will flip between the specified
sprite shapes at the given rate (set with the SPEED
command) ONLY after the SPRITE MOVE command has
been entered.

Example: RESET
NEW
3 SPRITE LOAD “ GRBASIC.SPR”
5 HIRES

10 SPRITE 1 ON AT 100,100 COLOR WHITE SHAPE 1
20 SPRITE 1 ANIMATE OFF
30 FOR X = 1 TO 8
40 SPRITE X ANIMATE 1,2,3,4,5 SPEED 10
50 SPRITE X ANIMATE ON
60 NEXT X
70 SPRITE MOVE
RUN

Errors: ILLEGAL QUANTITY ERROR

1. <sprite number> is out of range.

Demo
Program: HATMAN DEMO

ANIMATE DEMO

52

SPRITE <sprite number> ANIMATE <shape1>,
[<shape2>]. . . SPEED <speed>

Description:

Examples:

Errors:

Demo
Program:

Selects the shapes to be flipped between when
animation is on. If, for example, shapes 10, 11, 12, 13,
and 14 were all different shapes and you wanted to
flip between the shapes very quickly, you would type:
SPRITE 1 ANIMATE 10,11,12,13,14,13,12,11 SPEED 1

This command simply changes the shape of the given
sprite automatically from 10 to 11 to 12 and on through
the sequence to 11, and then repeats the sequence. A
small number for the speed will cause it to flip through
the given shapes very quickly, while a large number will
cause the shape of the sprite to change slowly. Zero is
the fastest, 127 is the slowest. A speed of 60 will flip
the shape approximately once every second. The
number of shapes in a sprite’s animation sequence
cannot exceed 16.
NOTE: The sprite will not begin to change between
shapes until the SPRITE n ANIMATE ON and SPRITE
MOVE commands are executed.

RESET
NEW
10 SPRITE LOAD“ HATMAN.SPR”
20 HIRES
30 SPRITE 1 ON AT 100,100 COLOR WHITE SHAPE 1
40 SPRITE 1 ANIMATE 1,2,3,4,5,6,7,8,9 SPEED 30
50 SPRITE 1 ANIMATE ON : SPRITE MOVE
RUN

ILLEGAL QUANTITY ERROR
1. <sprite number> is out of range, <shape> is out of
range, or <speed> is out of range.

8BALLS DEMO
ANIMATE DEMO

53

SPRITES!
SPRITE <sprite number> AT <sprite x>,<sprite y>

Description: Positions sprites at specific locations on the screen.
<sprite number> must be an integer from 1 to 8. The
coordinates are always relative to the origin as set by
the SETORIGIN command and affected by the SCALE.
This should be taken into account when positioning
sprites. Also, when the coordinates <sprite x>,
<sprite y> exceed the boundaries of the screen, the
sprite will wrap around to the other side. The WINDOW
command has no effect on sprites.

Example: NEW
5 RESET : HIRES
10 SPRITE 1 ON COLOR WHITE SHAPE 10
20 SPRITE 1 AT 100,146
RUN

Effects: Sprite 1 will appear as shape 10 and will be white. The
location where it will appear is (100,146).

Command
Format: SPRITE <num ber> AT <x>,<y>

Demo
Program: BOUNCE BALL DEMO

54

SPRITE [<sprite number>] CLEAR HIT

Description:

Command
Format:

Example:

Clears the sprite collision status for the specified sprite,
or for all eight. By executing this command immediately
before the SPRITE (n) or BACKGROUND (n) functions are
checked, the immediate status of the sprite’s collision is
returned. Otherwise, the SPRITE (n) and BACKGROUND
(n) function will indicate the collision status since it was
last cleared and not at the instant the function is
executed. Thus, to check if a sprite has hit, simply use
the collision functions normally. To check if a sprite is
hitting, use SPRITE CLEAR HIT first.

SPRITE CLEAR HIT
SPRITE < n> CLEAR HIT

See the example listed under the SPRITE (<sprite
number>) command on page 50.

55

SPRITES!
SPRITE <sprite number> COLOR <sprite color>

Description: Sets the color of <sprite number> to <sprite color>.
Either the color number or the color name may be used.
If the sprite is in HIRES mode, the whole sprite will
appear in the given color. With multicolor sprites, this
command only sets one of the sprite colors. The other
two sprite colors are selected using the SPRITE
MULTICOLOR command.

Examples:
(for illustration
only)

10 SPRITE 1 COLOR RED

10 X=7
20 SPRITE X COLOR 4

Errors: ILLEGAL QUANTITY ERROR

1. <sprite number> or <sprite color> is out of range.

Command
Format: SPRITE <num ber> COLOR <co lor>

SPRITE <sprite number> HIRES

Description: Puts an individual sprite into high resolution mode.

Examples: 10 SPRITE 3 HIRES
(for illustration
only) 10 SPRITE 1 HIRES

Errors: ILLEGAL QUANTITY ERROR

1. <sprite number> is out of range.

Demo
Program: 8BALLS DEMO

56

SPRITE LOAD “<file name>” [,<device number>]

Description:

Example:

Effects:

Command
Format:

Loads sprite shapes which have been saved using the
SPRITE SAVE command. The SPRITE LOAD command
will load from the disk unless a device number other
than 8 is specified. The SPRITE LOAD will bring stored
shapes back into the same place from which they were
originally saved. In other words, if you were to save
shapes 10 through 17, for example, then the 8 shapes
saved on disk would load back into shapes 10 through
17. You can use the SPRITE LOAD command within a
program. The sprites will be loaded into the sprite editor
and program execution continues with the next BASIC
statement.

10 SPRITE LOAD “ GRBASIC.SPR”
RUN

The sprite shape data stored on the disk will be loaded
into memory. View the sprites by typing EDIT.
If the SPRITE LOAD encounters a disk error, it will abort
the load and return with no error messages. The only
indication that an error has occurred will be the flashing
red light on your disk drive.
NOTE: The SPRITE LOAD command can be used to
vector-load machine language programs without
affecting BASIC memory pointers.

SPRITE LOAD “ < file name>”
SPRITE LOAD “ < file name>”, <device number>

57

SPRITES!
SPRITE MOVE and SPRITE FREEZE

Description: These two commands act as master controls for all
sprite animation and movement. When you use the
SPRITE FREEZE command, no sprite movement or
animation will occur until you enter the SPRITE MOVE
command. At that time, all sprites with a pre-defined
speed (set with SPRITE n SPEED x,y) will start to move
and all sprites with pre-defined animation sequences
(set with SPRITE n ANIMATE n,n,n,.. . SPEED x) will
begin to animate if they were told to do so with the
SPRITE n ANIMATE ON command.

This master control of animation and movement is
provided so that the movement and animation of several
sprites may be synchronized. Otherwise, they would
take off as soon as their command was given,
irrespective of what other sprites were doing. Once you
use the SPRITE MOVE command, however, any of the
SPRITE n SPEED x,y or SPRITE n ANIMATE 1,2,3 .. .
SPEED x, or SPRITE n ANIMATE ON/OFF commands
will immediately take effect.

Make sure the Graphics BASIC disk is in the drive. Try
the following sequence:

10 SPRITE LOAD “ GRBASIC.SPR”
20 SPRITE 1 SHAPE 1 ON AT 10,30
30 SPRITE 1 SPEED 1,1
40 SPRITE MOVE
50 SPRITE 1 ANIMATE 10,11,1 2,11,1 0 SPEED 2
60 SPRITE 1 ANIMATE ON
RUN

Demo
Programs: DRIVING DEMO

58

SPRITE <sprite number> MULTI

Description: Puts an individual sprite into multicolor mode. The sprite
chosen will appear with colors corresponding to those
set with the SPRITE <sprite number> COLOR <sprite
color> and SPRITE MULTICOLOR <multicolor1 >,
<m ultico lor2> commands.

Examples:
(for illustration
only)

Errors:

Demo
Program:

10 SPRITE 1 MULTI
10 SPRITE 3*2 MULTI

ILLEGAL QUANTITY ERROR
1. <sprite number> is out of range.

MULTIHATMAN DEMO

SPRITE MULTICOLOR <sprite m ultico lorl>,
<sprite multicolor 2>

Description: Defines the two colors which may be used with
multicolor sprites.

Example: First, type RESET and load the pre-defined sprites
stored on the disk as follows:

SPRITE LOAD“ HATMAN.SPR”
and then type in the following short program:

10 SPRITE MULTICOLOR RED, WHITE
20 SPRITE 1 ON AT 100,100 SHAPE 10 SPEED 1,0
30 SPRITE 1 MULTI
40 SPRITE 1 COLOR YELLOW
50 SPRITE 1 ANIMATE 1,2,3,4,5,6,7 SPEED 5
60 SPRITE 1 ANIMATE ON
70 SPRITE MOVE
RUN
Change the colors in lines 10 and 40 to see how the
colors work when you RUN the program again.

Errors: ILLEGAL QUANTITY ERROR
1. <sprite number> is out of range.
2. <sprite m ultico lorl > or <sprite m ulticolor2> is out

of range.
Demo
Programs: PENCIL DEMO

59

■

SPRITES!
SPRITE <sprite number> ON or SPRITE <sprite number>

OFF

Description: Turns individual sprites on and off. <sprite number>
must be an integer from 1 to 8. When a sprite is turned
on, the sprite’s present shape will be displayed on the
screen at the present sprite position. When a sprite is
turned off, it still retains its shape, position, and other
parameters. It simply is no longer displayed.

Example:

Errors:

NEW
10 SPRITE LOAD “ HATMAN.SPR”
20 HI RES: HI RES COLOR BLUE ON GRAY1
30 PRINT “ (CLR)” : REM SHIFTED CLR/HOME

KEY IN QUOTES
40 FOR SP = 1 TO 8
50 PRINT “ CURRENT SPRITE IS ” ;SP
60 HIRES FROM 10
70 PRINT “ (CLR)”
80 IF SP=8 THEN SPRITE 8 ON:END
90 SPRITE SP OFF

100 FOR SP = 1 TO 8
110 PRINT “ CURRENT SPRITE IS ” ;SP
120 SPRITE SP ON AT 100,100
130 FOR DELAY = 1 TO 500:NEXT DELAY
140 IF SP=8 THEN SPRITE 8 ON:END
150 SPRITE SP OFF
160 NEXT SP
RUN

ILLEGAL QUANTITY ERROR

1. <sprite number> is not an integer from 1 to 8.

Command
Format: SPRITE <num ber> ON

SPRITE <num ber> OFF

60

SPRITES
SPRITE <sprite number> ON BACKGROUND

SPRITE <sprite number> UNDER BACKGROUND

Description: Controls the priority of an individual sprite with respect
to the background.

Examples: 10 SPRITE 3 ON BACKGROUND
(for illustration
only)

Effects: This will result in sprite number 3 appearing on top of
any characters or graphics that appear at the same
place on the screen. In other words, the sprite will be in
front of everything else.
10 SPRITE 3 UNDER BACKGROUND

Effects: This will cause sprite 3 to appear underneath, or behind,
all other graphics and characters.
A sprite’s priority with respect to the characters and
graphics (as set with these two commands) will not
change the sprite to sprite priority, (i.e. Sprite 1 will
always appear in front of other sprites.)

Errors: ILLEGAL QUANTITY ERROR
1. <sprite number> is not in the range of 1 to 8.

Demo
Program: PRIORITY DEMO

61

SPRITES!
SPRITE SAVE <first shape> , Clast shape> ,

“<file name>” [, <device number>]

Description: Saves sprite shape data on cassette or disk so it will
not be lost when the computer is turned off. With the
SPRITE SAVE command, any sequential group of sprite
shapes may be saved to be retrieved later using the
SPRITE LOAD command. Note that the default device
number is 8 rather than 1 as with the conventional
SAVE.

Example:
(for illustration
only)

Effect:

Example:

Effect:

Example:

Effect:

Command
Format:

10 SPRITE SAVE 13,13 “ MY-SPRITES"

Sprite shape 13 will be saved on disk.

10 SPRITE SAVE 1,17 “ GAME-SPRITES” ,1

Sprite shapes 1 through 17 will be saved on cassette.

A$=“2 SPRITES”
SPRITE SAVE 1,2 A$,10

Sprite shapes 1 and 2 will be saved on disk device 10,
with the file name 2 SPRITES.
If the SPRITE SAVE encounters a disk error, it will abort
the save and return to BASIC control without an error
message. The red light on your disk drive will flash, and
this will be the only indication that something has gone
wrong.

SPRITE SAVE <shape number>,<shape number>
“ filename”

SPRITE SAVE <shape number>,<shape number>
“ filename”,<device>

62

SPRITE <sprite number> SHAPE <shape number>

Description:

Example:
(for illustration
only)

Errors:

Assigns a shape to the given sprite. Space for 32
shapes are originally allocated in the sprite editor. Any
sprite can select any one of the available shapes as
well as share any shape with any other sprite.
Here is the formula for figuring out where a sprite shape
is in memory:
First location of shape = (shapenumber + 31) * 64
NOTE: Shape 1 starts at memory location 2048. This
shape data occupies the space immediately preceding
your BASIC program, so care must be taken when
POKEing data directly into this area.

5 A=2
10 SPRITE 1 SHAPE 4
20 SPRITE A SHAPE 4
30 SPRITE 8 SHAPE 16+3

ILLEGAL QUANTITY ERROR
1. <sprite number> is not in the range of 1 to 8.
2. <shape number> does not reference a valid
location in memory.

Command
Format: SPRITE <num ber> SHAPE <num ber>

SPRITES!
SPRITE <sprite number> SPEED <x speed>,<y speed>

Description: Defines the <x speed> and < y speed> of the given
sprite. Values of 0,0 will cause the sprite to remain still,
while 5,5 will cause it to move rapidly to the upper-right.
NOTE: Movement will not actually take place until the
SPRITE MOVE command is executed.

Examples:
(for illustration
only)

Errors:

Demo
Program:

10 SPRITE 1 SPEED -1 ,0
10 SPRITE 1 SPEED -3 ,1

10 A=8
20 SPRITE 4 SPEED A ,-A*6

ILLEGAL QUANTITY ERROR

1. <sprite number> is out of range.
2. < x speed> or < y speed> is out of range. (127 to
-1 2 8)

HATMAN RACE DEMO

SPRITE <sprite number> XYSIZE <x factor>,<y factor>

Description: Sets the horizontal and vertical size of any sprite. An
<x factor> ,<y factor> of 1,1 will set the sprite to its
normal size, while a value of 2,2 will make it twice as
large in horizontally and vertically.

Examples: 10 SPRITE 3 XYSIZE 2,2
(fonllustration ̂Q g pR |TE 3 XYS|ZE 1,2

Errors: ILLEGAL QUANTITY ERROR
1. < x factor> or < y factor> is not a 1 or 2.
2. <sprite number> is not in the range of 1 to 8.

64

XPOS (<sprite number>)

Description: Returns the x coordinate of the specified sprite. The
returned value is affected by the ORIGIN and SCALE.

Example: 10X=XPOS(2)

Errors: ILLEGAL QUANTITY ERROR
1. <sprite number> is not in the range 1 to 8.

Demo
Program: AIRPLANE DEMO

YPOS(<sprite number>)

Description: Returns the y coordinate of the specified sprite. The
returned value is affected by the ORIGIN and SCALE.

Example: 1()Y=YPOS(5)

Errors: ILLEGAL QUANTITY ERROR
1. <sprite number> is not in the range 1 to 8.

Demo
Program: AIRPLANE DEMO

65

SOUND
SOUND CLEAR

Description: Resets the WAVE, VOLUME, TONE, and ADSR values
for all three voices. This is useful at the beginning of
programs to ensure that the sound generator has been
reset.

Description: These two commands act as master controls for all
automated sound playing. When the SOUND FREEZE
command is executed, all automated sound sequences
will stop until the SOUND GO command is executed. At
this time, all pre-defined sound sequences which have
been turned on will start to play.
This master control of automated sound is provided so
that several voices may be synchronized. Otherwise, the
various voices would begin playing their sequence as
soon as their voice go command was given. Once the
SOUND GO command has been executed, the VOICE
<voice number> PLAY command will immediately take
effect irrespective of what any other voices may be

Demo
Program: 3-PART SONG DEMO

3-VOICE DEMO

SOUND ON and SOUND OFF

Description: Turns the master volume down to zero. When the
SOUND ON command follows it, however, the volume
level is restored to its original value. If the SOUND ON
command is executed before the SOUND OFF
command, the master volume will be set to its default
level of zero.

Example: 10 SOUND CLEAR
for illustration
only)

SOUND GO and SOUND FREEZE

doing.

Exam ple:
(for illustration
only)

10 VOLUME 10
20 SOUND OFF
110 SOUND ON

Demo
Program: 3-VOICE DEMO

6 6

VOICE <voice number> ADSR <attack>,
<decay>,<sustain>,<release>

Description: The values given in th is command determine the form of
the volume envelope for the particular voice.

When the VOICE Cvoice number> ON command is
executed, the attack will be triggered causing the
volume of the voice to rise at the given <attack> rate.
After it has reached peak volume, the volume will start
to fall at a rate determined by the <decay> setting. The
voice will then remain at the <susta in> volume setting
until the VOICE Cvoice number> OFF command is
executed. At this time, the volume level will fall at the
pre-defined <decay> rate until it is no longer heard.

It should be noted that the <attack>,<decay>, and
<release> values all determine the rate at which the
volume level changes, while the <susta in> value is
simply a volume setting. <a ttack>,<decay>, and
<release> rates all vary from 0 for an instantaneous
change to 15 which will cause the volume level to
slowly change over a period of several seconds.

Example: NEW
10 RESET: VOLUME 15
20 VOICE 1 WAVE 1 ADSR 6,0,15,0 TONE 10000
30 VOICE 1 ON
RUN

The command SOUND OFF will stop the sound. The
command SOUND CLEAR will reset the ADSR values to
zero.

Errors: ILLEGAL QUANTITY ERROR
1. <voice number> is out of range.
2. One of the ADSR settings is not in the range 0 to
15.

Demo
Program: BOUNCE BALL DEMO

3-PART SONG DEMO
ADSR DEMO

67

SOUND!
VOICE Cvoice number> GO and VOICE Cvoice number>

FREEZE

Description:

Example:

These two commands allow the automated playing of
individual voice sequences to be turned on and off.
When the VOICE <voice number> GO command is
executed, the given voice will begin to automatically
play, but only if the SOUND GO command has been
entered.

NEW
10 RESET : VOLUME 15
20 VOICE 1 WAVE 1 ADSR 0,0,15,0 PLAY 1000,4000,

SPEED 10
30 VOICE 1 GO
40 SOUND GO
RUN

Stop the sound by typing SOUND FREEZE directly and
type SOUND GO to turn it on again.

Errors: ILLEGAL QUANTITY ERROR
1. <voice number> is not in the range of 1 to 3.

68

i

V
O

L
U

M
E

SOUND
VOICE Cvoice number> PLAY [CONT] Ctone> [;Cnote

duration>] [;Crelease tim e >], Ctone>
[;Cnote duration>] [;Crelease tim e>],. . . []
[SPEED Cspeed>]

Description: This is the command in which a voice’s tone sequence
for automated sound is defined. A typical VOICE PLAY
command might look like this:

VOICE 1 PLAY 1000,2000,3000,4000 SPEED 10
The listed < tone> values would be played one after
another at the given speed and then stop. With the
optional backarrow, the sequence would be repeated
over and over. To do this, you would type
VOICE 1 PLAY 1000,2000,3000,4000, SPEED 10
By using the optional <note duration> and <release
tim e> parameters, a rhythm can be created allowing
certain notes to play longer than others. The Cnote
duration> value defines the time between the moment
the attack is started to the moment the release is
started. The <release tim e> value defines the time from
the moment the release is started to the moment the
next note starts. Graphically, it appears like this:

You can figure out the number of seconds between the
start of each note by using the following formula:
time = (<note dura tion>+<re lease time> + 1)*

(<speed> + 1)/60

So, for example, to create a series of short notes one
second apart, you would use the command:
VOICE 1 PLAY 2000; 1 ;2, — SPEED 14
With voice one set as follows:
VOICE 1 WAVE 1 ADSR 0,2,10,2

69

SOUND
VOICE -

Example:

Errors:

Demo
Program:

PLAY (Continued)

If you wished to make the notes different tones and
lengths you could set up your automated sound table
with th is program:

NEW
10 SOUND CLEAR : VOLUME 15
20 VOICE 1 WAVE 1 ADSR 1,0,15,7
30 FOR 1=1 TO 11
40 T=4000*(24 (1/12)) :REM CHROMATIC SCALE
50 D =IN T(30*R N D (1)+1)
60 VOICE 1 PLAY CONT T;D;1, — SPEED 0
70 NEXT I
80 VOICE 1 GO : SOUND GO
RUN__
Note that with the CONT inserted after the PLAY that
the notes contained in the sequence may be defined
using separate PLAY commands, or just one command
contained within a loop as was done here. For example,
the command
VOICE 1 PLAY 1000,2000,3000 SPEED 10
is functionally identical to the commands
VOICE 1 PLAY 1000 SPEED 10
VOICE 1 PLAY CONT 2000 SPEED 10
VOICE 1 PLAY CONT 3000 SPEED 10
or the loop:
FOR 1=1 TO 3 : VOICE 1 PLAY CONT 1000*1 SPEED 10
: NEXT
Caution must be taken when playing short notes with
long attack, release, and decay times because the
automated sound will not necessarily wait for a decay to
take place before starting the next note, nor will it wait
for the attack to bring the voice up to full volume before
starting the release.

ILLEGAL QUANTITY ERROR
1. Number of notes to be played in any one voice
exceeds 63.

3-PART SONG DEMO
BOUNCE BALL DEMO

70

SOUND
VOICE <voice number> TONE Ctone number>

Description: Sets the tone of the given voice. Changing < tone
number> will cause the voice to play different notes.
For example, a < tone number> of 7382 will produce a
440 Hz tone which is the note A in concert pitch. The
back of the manual contains a list of < tone number>
values which correspond to various notes, as well as a
formula for computing the < tone number> for any of
the 12 semitones in any of the 7 available octaves.

Example: NEW
10 VOLUME 15
20 VOICE 1 TONE 6000 ADSR 0,0,15,0
30 VOICE 1 ON
RUN

10 VOLUME 15
20 FOR 1=1 TO 3
25 VOICE I WAVE TRIANGLE
30 VOICE I TONE 2000*2 4 I
40 VOICE I ADSR 0,0,15,0 ON
50 NEXT I
RUN

Errors: ILLEGAL QUANTITY ERROR
1. Cvoice number> is out of the range 1 to 3.
2. < tone number> is out of the range 0 to 65535.

71

VOICE <voice number> WAVE
<wave number> [,<pulse width>]

Description: Selects the waveform for a particular voice. Following
are the available waveforms and their corresponding
WAVE commands:

WAVE 1 or WAVE TRIANGLE
Triangle

SOUND!

WAVE 2 or WAVE SAW
Sawtooth

WAVE 3,<pulse w idth> or WAVE P U LSE,<pulse w idth>
Pulse

PULSE
'W ID T H ’

WAVE 4 or WAVE NOISE

Example: 10 V O IC E 2 WAVE 1
(for illustration _ „ .
only) 1 0 W =4

20 V O IC E 1 WAVE W

10 V O IC E 1 WAVE 3,545

NOTE: The optional [,<pulse w idth>] is only valid when
selecting WAVE 3. This value determines the duration of
the pulse, and may range from 0 to 1024.

72

Errors: ILLEGAL QUANTITY ERROR
1. <voice number> is not a 1,2, or 3.
2. <wave number> is not in the range of 1 to 4.
3. <pulse w idth> is not in the range of 0 to 1024.
SYNTAX ERROR
1. A <pulse w idth> does not follow wave 3.

Demo
Program: AIRPLANE DEMO

3-PART SONG DEMO
BOUNCE BALL DEMO

VOLUME <level>

Description: Acts as a master volume control for all three voices.
Decreasing the volume level with this command has the
same effect as turning down the volume on your TV or
monitor. The < leve l> ranges from 0 to 15.

Example:
(for illustration
only)

10 VOLUME 0
10 VOLUME 10

10 FOR l=0 TO 15
20 VOLUME I
30 NEXT I

Errors: ILLEGAL QUANTITY ERROR
1 . < leve l> is not in the range of 0 to 15.

Demo
Program: 3-PART SONG DEMO

3-VOICE DEMO

73

INPUT/OUTPUT
COPY HIRES/MULTI TO PRINTER

Description: Prints the present high resolution or multicolor image
on the HIRES or MULTI screen on a 1525 Graphics
Printer or Gemini series printer. Note that only graphics
within the WINDOW will be printed. Pressing the
RUN/STOP key stops the printing.

. . A

.......%

MULTI IMAGE

, 4 \
..

''!i

Mi
liliilli!"

::r..i i

...*li!i!ij!;::|.
*!i'l

|j>.'
r

..

V !|
IlliiS j

f J
..

i

r i m
j r

....f

NOTE TO G EM iN I PRINTER OWNERS: Before using
the COPY HIRES/MULTI TO PRINTER command, type
in the following num ber

SYS 32512 <RETURN>

Examples:
(for illustration
only)

COPY HIRES TO PRINTER
COPY MULTI TO PRINTER

74

INPUT/OUTPUT
DIR [<device number>]

Description: Prints out the disk directory of the given device. If no
device number is specified, device 8 is assumed. This
command is equivalent to:

LOAD“$”,<device # >
LIST

but it does not affect the program in memory. To slow
the scrolling of the directory listing, hold down the CTRL
key. Pressing the RUN/STOP key stops the scrolling
and there is no continue function.

Examples: DIR
DIR 9
If you were to read the directory of the Graphics BASIC
disk, you would see several files listed. To distinguish
between the various types of files the following
conventions were used:

demo programs: <dem o name> DEMO
sprites: <sprite data name> . SPR
character sets: <char set name> . FONT
screen graphics: <screen name> . GRPIC

DISK “ <command string>” [,<device number>]

D escrip tion : Standard Commodore disk drive commands may be
easily sent to the disk drive addressed by <device
number> with this command. If no device number is
given, device 8 is assumed.

The standard disk drive commands are
NO for NEW
CO for COPY
RO for RENAME
SO for SCRATCH
I for INITIALIZE
OPEN for OPEN
CLOSE for CLOSE

See the section on disk commands in your disk drive
manual for further explanations.

Examples: DISK “ SO:JAYS DEMOS”,9
DISK “ NO:MASTER DISK, IL”

DISK A$
NOTE: The DISK command is equivalent to:
10 OPEN 37,<device number>,15
20 PRINT#37,<command string>
30 CLOSE 37

75

INPUT/OUTPUT
DISK [,<device number>]

Description: The error status for the disk drive addressed by <device
number> is printed on the screen when this command
is executed. It is equivalent to:

10 OPEN 37,<device number>,15
20 INPUT#371N,N$,T,S
30 PRINT N,N$,T,S
40 CLOSE 37

The default device number is 8 .

Examples: DISK

DISK, 9

JOY(<joystick number>)

Description: This function returns a value corresponding to the
present position of the given joystick. The values
returned correspond to the various positions as follows:
 1DOWN AND LEFT
 2 DOWN 8
 3DOWN AND RIGHT 7 i 9
 4LEFT V /
 5NEUTRAL 4 5 __ - 6
 6RIGHT / v
 7UP AND LEFT / X
 8UP 1 t 3
 9 UP AND RIGHT 2

Example: NEW
10 N=JOY(1)
20 IF N<0 THEN PRINT“ FIREI!” : N=
30 PRINT“ X,Y DIRECTION”,
40 Y=INT((N—4)/3) : X = N -Y *3 -5
50 PRINT X;Y
60 GOTO 10
RUN

-N

Errors: ILLEGAL QUANTITY ERROR

1 . < joystick number> is not 1 or 2 .

Demo
Program: JOYSTICK DEMO

76

INPUT/OUTPUT
HIRES SAVE “ <file name>” [,<device number>] and

HIRES LOAD “ <file name>” [,<device numbe'r>]

Description: These commands are used to save and retrieve the
image on the high resolution screen. The default device
number is 8 .
The format of the file created is as follows:

Sequential File
1 Byte : “ H”

8000 Bytes: High resolution screen
1000 Bytes: High resolution color screen

Examples: H IR E S SAVE “PIE C H A R T ’
(fon|,us,rati° n H IR ES LOAD “H E S A D ”,9

H IR ES LOAD A$

MULTI SAVE “ <file name>” [,<device>] and
MULTI LOAD “ <file name>” [,<device>]

Description: These commands save and load the multicolor screen.
The default device number is 8 . The format of the file
created is as follows:

Sequential File
1 Byte : “ M”

8000 Bytes: Multicolor screen
1000 Bytes: Multicolor color screen
1000 Bytes: Text color memory

Examples: MULTI SAVE A$
(for illustration M U LTI LOAD “ P ICTU R E”
only)

NOTE: Two multicolor screen files which you can load
are on the Graphics BASIC disk. Type:
10 RESET
20 MULTI LOAD “ FUJ*” : MULTI
30 GOTO 30
or
10 RESET
20 MULTI LOAD “ HES*” : MULTI
30 GOTO 30
Press the RUN/STOP key to stop the program, and
press f7 to switch to the text screen.

Demo
Program: HES BOUNCE DEMO

77

TEXT SAVE “ <file name>” [,<device>]

TEXT LOAD “ <file name>” [,<device>]

Description: With these commands, the text screen may be saved
and loaded. The default device number is 8 . You can
design screens using text, such as tables or templates,
and save them.
The format of the file created is as follows:

Sequential File
1 Byte : “T”

1000 Bytes: Text characters
1000 Bytes: Text color memory

Examples: TEXT SAVE “ SPACE INVASION”
K ' UStrati0n TEXT LOAD “TABLE” ,9

TEXT LOAD A$,D

INPUT/OUTPUT

78

PROGRAMMING AIDS
CHANGE “Cold string>” TO “ <new string>”

Description: Finds all occurrences of <o ld string> and replaces
them with <new string>. If <o ld string> contains a
standard BASIC or Graphics BASIC command, it must
be enclosed in single quotes rather than the double
quotes as shown above. Slashes can also be used to
separate the strings. Be sure to put one space before
and after the word TO.

Example: C H A N G E “RON’S ” TO “TOM ’S ”
(for illustration
only) C H A N G E /G O T O / TO /G O S U B /

C H A N G E ’MID$C TO ’RIGHT$(’

NOTE: CHANGE ’PRI’ TO ’I’ will not change all PRINT
commands to INT commands. The whole command
must be contained within the single quotes, that is,
change 'PRINT TO 'INT.

See also
FIND

DO <procedure name> [(<variable1> , . . . , < variable n>)]

Description: Initiates the specified procedure and passes the given
variables as parameters. If more variables are given
than are defined in the specified procedure, they are
ignored. When less than the required number of
variables are passed, the remainder of the parameters
are set to zero.

Example: DO POLYGON(6)
oniy)IIUStrat'°n See the example under PROCEDURE.

Demo
Program: HATMAN RACE DEMO

See also
PROCEDURE

79

PROGRAMMING AIDS
ELSE <statement> or ELSE <line number>

Description: When used in conjunction with the IF . . . THEN
command, control is transferred to the ELSE
<statem ent> or < line number> when the IF . . . THEN
condition is false. Note that ELSE is a command in itself
and must be separated from other commands by a
colon.

Examples: 10 IF A=1 THEN PRINT “ONE” : ELSE PRINT “ NOT ONE”
(for illustration
only) 10 IF B$=“ RON” THEN PRINT “ GILBERT” : GOTO 100

20 ELSE PRINT “TOM MCFARLANE” : GOTO 100

FIND “<search string>”

Description: Prints out all of the lines in your BASIC program
containing <search string>. When searching for BASIC
or Graphics BASIC commands, the entire command
must be given and it must be enclosed in single quotes.
The string may also be enclosed in slashes.

Examples: FIND “ HES”
(for illustration FIND ‘PRINTonly) FIND/GOSUB/

See also
CHANGE

GOTO <line number>

Description: This command has been enhanced to allow branching
to line numbers specified by variables, as well as line
numbers themselves.

Examples: GOTO A
(for illustration _____ __ .
only) GOTO B*4

NOTE: The RENumber command will not renumber
variable line numbers.
This variable line number modification also works for
these commands:

ON GOTO
GOSUB
ON GOSUB
I F . . . THEN
RESTORE and ELSE

80

PROGRAMMING AIDS
KEY (<key number>) = <string>

Description: This command assigns a given function key the
specified string. With this command, you can re-define
what the function keys perform. No more than 32
characters may be assigned to any one function key.

KEY(1) = “DISK” + CHR$(13)
KEY(A) = STR$(A)
KEY (J+1) = “ HESWARE IS GREAT’
See also

KEY ON
KEY OFF
KEY LOAD
KEY SAVE

KEY LIST

Description: Lists the current operations the function keys contain.
To see the current functions type: KEY LIST
<RETURN>. In Graphics BASIC, the function keys have
been programmed as follows:

f 1 RUN <RETURN>
f2 BACKGROUND
f3 LIST <RETURN>
f4 SPRITE OFF
f5 DIR <RETURN>
f6 KEY LIST
f7 TEXT <RETURN>
f8 DISK

NOTE: The +CHR$(13) following the assignment string
adds a carriage return to the function. Pressing such a
function key would be the equivalent of typing the
function and pressing return.
You can change the function key assignments to suit
your own needs using the KEY, KEY SAVE, and KEY
LOAD commands.

Examples:
(for illustration
only)

81

PROGRAMMING AIDS
KEY LOAD “ <file name>” [,<device>]

KEY SAVE “ <file name>” [,<device>]

Description: These commands will save and load the present
function key assignments. You can change the function
key assignments with the KEY command. The default
device number is 8 . The command KEY LIST displays
the current function key assignments.

Examples: KEY LOAD “ MY KEYS”

KEY LOAD “ GRKEYS.RAT’,1
See also

KEY ON
KEY OFF
KEY

Description: These two commands control the function key string
expansion feature of Graphics BASIC. After KEY ON is
executed, the string assigned to each function key will
be printed when a function key is pressed while in the
immediate mode (i.e., while a program is not running).
After KEY OFF is executed, the function keys behave as
they normally do w ithout Graphics BASIC installed.

(for illustration
only) KEY SAVE A$,9

KEY ON and KEY OFF

82

PROGRAMMING AIDS
LIST

Description: The list command in Graphics BASIC operates just as in
normal BASIC, with one exception. When the Graphics
BASIC LIST command is used within a BASIC program,
the program execution is not terminated. In other words,
the LIST command can be used anywhere w ithin a
program w ithout halting execution. To slow the scrolling
of a listing (when you use LIST in direct mode), hold
down the CTRL key.

Example: NEW
10 PRINT: PRINT “ HERE IS MY PROGRAM”
20 LIST
30 PRINT: PRINT “ DONE”
40 END
When you type RUN, the following will be printed on the
screen:
HERE IS MY PROGRAM
10 PRINT: PRINT “ HERE IS MY PROGRAM”
20 LIST
30 PRINT: PRINT “ DONE”
40 END
DONE

83

PROGRAMMING AIDS
ON ERROR GOTO <line number>

Description: Sets the line number to GOTO when any error occurs.
Because this command must be executed in order for
any errors to be trapped, it is a good idea to place it
near the beginning of your programs. Also, it should be
noted that when an error actually does occur, and the
ON ERROR ON command has been executed, control
will be transferred to < line number> and error trapping
will be automatically turned off. This is to prevent an
error-handling routine from causing an error and calling
itself. Thus, after the error has been handled, the ON
ERROR ON command needs to be executed if you want
to trap more errors.

When an error occurs, the program jumps to the < line
number> following GOTO. After control is transferred to
Cline number>, the variable ER contains the error
number, and LI contains the line number in which the
error occurred. By checking the values held in ER and
LI, you can determine which error has been found and
where it is.
If an error occurs during a FOR . .. NEXT loop, the
FOR .. . NEXT loop is terminated and cannot be
continued.

Example: 20 J = 1
30 FOR I = 1 to 999999
40 J = J*l* l* l
50 PRINT J
60 NEXT I
70 END
RUN

The line with the error should be listed. Add these lines
and RUN the program again.
10 ON ERROR GOTO 80
80 PRINT “ NUMBERS TOO LARGE”
90 END

See page 101 for a table of all possible errors and their
corresponding error numbers.

See also
ON ERROR OFF
ON ERROR ON

84

PROGRAMMING AIDS
ON ERROR OFF

Description: Turns off the most recent error found with the ON
ERROR GOTO command. After it is executed, all errors
will halt program execution and will be displayed on the
screen as normal. In addition, Graphics BASIC prints the
line on which the error occurred with a reversed arrow
inserted at the point w ithin the line which caused the
error. This feature is especially useful for debugging.

See also
ON ERROR ON
ON ERROR GOTO

ON ERROR ON

Description: Activates error trapping and prevents your program from
crashing. When an error occurs while the ON ERROR
ON feature is activated, the program branches to the
line number specified by the ON ERROR GOTO < line
number> command. If an error occurs while error
trapping is on, no error message will be printed. Instead,
control will be transferred to the line number of your
program which was set by the ON ERROR GOTO Cline
number> command.
NOTE: If an error occurs before the ON ERROR GOTO
Cline number> command has been executed, then an
undefined statement error will occur. (This is assuming
that ON ERROR ON was executed.)

Example: NEW
10 DIM A(10)
20 ON ERROR GOTO 100
30 ON ERROR ON
40 FOR I = 1 TO 20
50 A(l) = I * 100
60 PRINT A(l)
70 NEXT I
80 END
100 PRINT “ ERROR IN LINE” ;LI
110 PRINT “VARIABLE NOT DIMENSIONED HIGH

ENOUGH”
120 END
RUN

See also
ON ERROR GOTO
ON ERROR OFF

85

PROGRAMMING AIDS
PROCEDURE <procedure name> [(<variable 1>,

<variable n >)]. . .

RETURN

Description: Defines a procedure to be initiated by the DO
command. A procedure is a subroutine which has a
name and the capability to pass variables. Using
procedures in your programs eliminates the necessity of
having numerous GOTOs or GOSUBs. When a
procedure is required, you initiate it with the DO
command followed by the name of the procedure. The
command RETURN ends the procedure.

Procedure names cannot contain spaces, and
procedures cannot be RUN. Procedures are initiated
with the DO command.

Up to 10 variables may be passed and they must all be
standard floating point variables, (i.e., no integer or
string variables are allowed).

Examples: 10 PROCEDURE POLYGON (N) Type in
15 CLEAR but
20 CIRCLE 100,100 XYSIZE 28,20 STEP 360/N do not
30 RETURN RUN
HIRES TO 15
DO POLYGON(5) Type in
DO POLYGON(8)_____________________________ directly

NOTE: (for advanced programmers) By passing an
array, recursive procedures can be created.

Demo
Program: HATMAN RACE DEMO

See also
DO

8 6

PROGRAMMING AIDS
REN [<increment>],[<starting line number>]

Description: Resequences the line numbers of the entire program in
memory, as well as modifies all line references (such as
after the commands GOTO, GOSUB, ON GOSUB, IF . . .
THEN, etc.). The default < increm ent> and <starting line
number> values are both 10. Thus if just REN is typed,
the program will be renumbered starting at 1 0 and
counting up by 1 0 for each subsequent line.

Examples: REN
(for illustration
only) REN 1

REN 5,100
NOTE: When using variables for line numbers, care
must be taken to ensure that they still address the
proper line after the REN has been executed.
Commands that can use variables for line numbers are:
GOTO, GOSUB, THEN, ELSE, and RESTORE.

87

PROGRAMMING AIDS
RESET

Description: Returns the graphics, sprites, and sound to normal. This
command is useful to place at the beginning of a
program, or to enter directly before running a program.
The RESET command sets the following conditions:
Puts the screen into text mode.
Turns off all eight sprites.
Freezes all sprite animation and movement.
Clears all animation sequences.
Resets the origin to the lower left corner of the screen.
Resets the window to the screen size.
Sets all sprites XYSIZES to 1,1.
Sets all sprites to HIRES mode.
Freezes all automatic sound.
Turns off all three voices.
Clears all automatic sound sequences.
Clears the HIRES and MULTI screens.
Resets the BACKGROUND and BORDER colors.
Clears the TEXT screen.
Resets the SCALE.
Turns ON ERROR to off.
Resets scrolling window.
Resets memory.
Clears variables.
Resets to ROM character set.

Example: 10 RESET
(for illustration ____
only) R E S E T

RESTORE [<line number>]

Description: Allows the pointer to the next DATA element to be set
to the beginning of the specified < line num berX

Examples: RESTORE 100
(for illustration
only) A = 5

RESTORE A

NOTE: When the latter form is used as shown in the
example above, the RENumber command will not adjust
the line number accordingly.

88

TEXT COMMANDS
CHAR(<ascii>) = <n>,<n>,<n>,<n>,<n>,<n>><n>,<n>

D escrip tion : Redefines characters to create a RAM character set.
The <ascii> number following CHAR is the screen
display code of the character you want to redefine. For
example, the letter A has the screen display code 1. To
redefine the letter A, you would type CHAR(1) followed
by the decimal values representing the redefined
character. (Refer to pages 132-134 of your Commodore
64 User’s Guide for a complete list of screen display
codes.) A character consists of a block of 64 dots as
pictured below where each dot is either on (filled in) or
off (blank):

BINARY
= 1 1 1 1 1 1 1 1
= 11000001
= 00100000
= 00010000
= 00010000
= 00100000
=11000001
= 11 1 1 1 11 1

DECIMAL
= 255
= 193
= 32
= 16
= 16
= 32
= 193
= 255

Example:

The binary number indicates which dots are on (1) and
which dots are off (0). Each dot (bit position) has a
power of 2. To calculate the decimal number, take the
bit positions with the value of 1 and find the
corresponding column number (the power-of- 2 number).
For example, the upper leftmost bit is equal to 1 28 or 2
to the 7th power. Add the results of each dot in the row
to arrive at the decimal value for that row. When you are
finished calculating the decimal values of the redefined
character, you should have eight numbers between 0
and 255.
For example, to define A to be the character shown
above, type:

CHAR(1) = 255,193,32,16,16,32,193,255
The 1 in parentheses assigns the given character its
location (its screen display code) in the RAM character
set. There are up to 255 locations.
Use a redefined character in a program as follows:
10 COPY UPPERCASE TO RAM
20 CHAR RAM
30 CHAR(1)=255,193,32,16,16,32,193,255
40 PRINT “A”
RUN

The new character should replace the A everywhere it
appears.

See also
CHAR (<ascii>,n) 89
CHAR SAVE
CHAR LOAD

TEXT COMMANDS
CHAR (<ascii>,n) = “<an 8-character string>”

Description: This is an alternative way to define your own character
set. This variation uses a visual representation of the
actual character to be redefined. Each CHAR
(<ascii>,n) command sets the bits (on or off) w ithin one
row of the specified ascii character. For example, the
following eight commands would define a complete
character in place of the letter A.

CHAR (1,1)= “ xxxxxxxx”
CHAR (1,2)=“ xx x”
CHAR (1,3)=“ x
CHAR (1,4)=“ x
CHAR (1,5)=“ x
CHAR (1,6)=“ x
CHAR (1,7)=“ xx x”
CHAR (1,8)=“xxxxxxxx”

The first number in parentheses after CHAR is the
screen display code of the character you want to
redefine (see pages 132-134 of your Commodore 64
User’s Guide). The second number indicates the row of
the character. The x represents a bit that is on, and a
space represents a bit that is off. (Any character except
for a space will register a bit that is on.)

Example: 10 COPY UPPERCASE TO RAM
20 CHAR RAM
30 CHAR (1,1)=“ xxxxxxxx”
40 CHAR (1,2)=“ xx x”
50 CHAR (1,3)=“ x
60 CHAR (1,4)=“ x
70 CHAR (1,5)=“ x
80 CHAR (1,6)=“ x
90 CHAR (1,7)=“ xx x”

100 CHAR (1,8)=“ xxxxxxxx”
RUN

The new character should replace the letter A everywhere it appears.
See also

CHAR (<ascii>)
CHAR LOAD
CHAR SAVE

90

TEXT COMMANDS
CHAR RAM

Description: Switches to a character set in RAM located at $3800
through $4000. If there is no character data located
there, (that is, you haven’t redefined any characters)
garbage will appear as characters. Character sets can
be loaded into this area of RAM with the CHAR LOAD,
CHAR (<ascii>) or CHAR (<ascii>,n) commands. You
can create your own character sets using character
editor software, or you can use the sample character
sets included on the Graphics BASIC disk. Return to the
standard Commodore character set by using the CHAR
ROM command. The character set in RAM will not be
destroyed when you type CHAR ROM. To clear the RAM
of the character set, type COPY UPPERCASE TO RAM.

Example: CHAR LOAD “ OLD.FONT” (loads a complete font from
the disk)

CHAR RAM (displays characters from RAM)

Type: “We have fonts, too!”
The characters should appear in old English style
letters. Typing CHAR ROM switches back to the
standard ROM character set, although the old English
font will remain intact in RAM.

See also
CHAR (<ascii>)
CHAR LOAD
CHAR SAVE
CHAR ROM
COPY LOWERCASE TO RAM
COPY UPPERCASE TO RAM
CHAR SET MEMORY
CHAR RESET MEMORY

91

TEXT COMMANDS
CHAR ROM

Description: Displays the standard ROM character set, that is, the
character set which appears when you first turn on the
Commodore. CHAR ROM does not destroy a character
set in RAM. You can get the character set in RAM back
with the CHAR RAM command.

Example: CHAR LOAD “ CURSIVE.FONT”
CHAR RAM
Type: KEY LIST
CHAR ROM
All the characters should change back to normal.
See also

CHAR LOAD
CHAR RAM

kHESkiM^RE '5 EFittFIrl I E S B A S I C
f o e vakjPi comma b o r e so- campidiEn

(C O M P U T E R F O N T >

t fE S W A J fc E : ' & G R A P r a i t t S

■yyyR aE: OiXDE tfO M M O liO KE 6-4 (t'OHPOTEK
(O L D E N G L IS*-* F O N T)

'C - S rv -c iA K -L -t-O -

rU o -J j, c -a - rn . e . v’-e .-A . m x m e !

(C U R S I U E F O N T >

92

TEXT COMMANDS
CHAR SAVE “<file name>” [,<device>]

CHAR LOAD “<file name>” [,<device>]

Description: These two commands are used to save and retrieve
RAM character sets. The default device number is 8 .
You can load and save the characters you create with
the CHAR (<ascii>) and CHAR (<ascii>,n) commands,
whether you created them using a program or input
them directly w ithout line numbers. To save the
character(s), type CHAR SAVE followed by a file name in
quotes. To load the character(s), type COPY
UPPERCASE TO RAM, CHAR RAM, and CHAR LOAD
“ filename”. CHAR LOAD loads the entire character set,
even if you only redefined one character.
The Graphics BASIC disk contains three complete
character sets: Old English, computer, and cursive
lettering. When loading one of these character sets, use
the file names:

Example:

OLD.FONT
COMPUTER. FONT
CURSIVE.FONT

for Old English
for computer style lettering
for cursive lettering

Use the CHAR RAM command to switch to the
character set once you have loaded it.
Return to the standard Commodore character set by
using the CHAR ROM command.
WARNING: The data for RAM character sets occupies
memory inside the BASIC workspace. If your BASIC
program is large, the program may be destroyed.

CHAR LOAD“ COMPUTER.FONT’
CHAR RAM
Type: “THE BYTE STOPS HERE.”

Effect: All characters on the screen will appear in the
customized font.

See also
CHAR RAM
CHAR ROM
CHAR (<ascii>)
COPY UPPERCASE TO RAM
COPY LOWERCASE TO RAM

93

TEXT COMMANDS

CHAR SET MEMORY

CHAR RESET MEMORY

Description: Reserves the memory needed for user-defined
characters. BASIC now assumes you have less memory
to work with, thus the area is protected from any BASIC
actions. When either of the commands are used, all
variables are destroyed. If you want to protect a RAM
character set from damage by BASIC variable storage,
one of these two commands must be initiated to
reconfigure the memory, even if you plan to load
another character set for use. The memory will remain
configured for a RAM character set until the RESET or
CHAR RESET MEMORY command is used. Thus, if a
RAM character set is being used and the RESET or
CHAR RESET MEMORY command is initiated, the
character set is no longer protected from BASIC
variables or program storage.
In a program where you are using a redefined character
set, use the CHAR SET MEMORY command before you
define any variables or dimension any arrays. Use CHAR
RESET MEMORY command when you are finished with
the character set or near the end of the program.

Example: 10 CH A R S E T M EM ORY
(for illustration 20 CH A R LOAD“CO M PU TER.FO N T”
only) 30 CH A R RAM

40 G PR IN T

900 CH A R R E S E T M EM ORY

94

COPY TEXT TO HIRES

TEXT COMMANDS

Description: Copies the characters appearing on the text screen to
the high resolution screen. All previous images on the
graphics screen will be written over.

COPY TEXT TO PRINTER

Description: Prints the characters appearing on the text screen onto
a standard Commodore compatible printer at device 4.
Graphics characters will only appear properly when the
Commodore 1525 printer is used.
This command will print program listings or text in a 40-
column format. To print your program listings in an 80-
column format, use the following sequence of
commands:

OPEN 4,4 : CMD4 : LIST

Example: 10 HIRES
20 LINE 0,0 TO 120,120
COPY TEXT TO PRINTER

95

TEXT COMMANDS
COPY UPPERCASE TO RAM

COPY LOWERCASE TO RAM

Description: These two commands copy character definition data
from ROM into the reserved 2K RAM character set. You
can then take the character definition data and redefine
it to create customized characters (see CHAR (<ascii>)
and CHAR (<ascii>,n).
Note that only uppercase or lowercase may be stored in
the 2K RAM area at one time. Also, these two
commands erase all variables and reconfigure BASIC
workspace. See the memory map for details.

This command must be used before typing in CHAR
RAM if you are redefining characters with CHAR
(<ascii>) or CHAR (<ascii>,n). You do not need to use
these commands with CHAR LOAD.
The commands COPY UPPERCASE TO RAM and COPY
LOWERCASE TO RAM replaces (i.e. destroys) a
character set currently in RAM.

Example: COPY UPPERCASE TO RAM

CHAR RAM
CHAR (62) = 60,66,165,129,165,153,66,60

Effect: Each time you press >, a smiling face should appear,
although the computer still treats the character as >.

See also
CHAR SET MEMORY
CHAR RESET MEMORY
CHAR RAM
CHAR ROM
CHAR (<ascii>)
CHAR (<ascii>,n)

96

TEXT COMMANDS
PRINT AT <x> ,<y> [,| [<data>]

Description: Prints the data you supply at the specified cursor
position on the text screen. The < x> and < y> values
are referenced from 1 , 1 at the upper left corner of the
screen. (Screen locations are different for TEXT and
HIRES screens.)

Examples: PRINT AT 10,5 A$
PRINT AT X*4,Y+5“ATTACK OF THE MUTANT
CAMELS!”
PRINT AT A,B,C

See also
GPRINT

TEXT

Description: Causes your Commodore 64 to display normal
characters on the screen, as opposed to HIRES or
MULTI graphics. This is the mode that your computer is
in when you turn it on.

Example: 10 TEXT
See also

HIRES
MULTI
TEXT FROM/TO

97

TEXT COMMANDS

TEXT [FROM <firstline>] [TO <lastline>]

Description: Splits the screen with a TEXT screen visible from
<firs tline> to < lastline> . The remainder of the screen
will be in the previous graphics mode. If FROM
< firs tline> is omitted, text will appear from the top of
the screen down TO <lastline>. Similarly, if TO
< lastline> is omitted, text will appear FROM <firs tline>
down to the bottom of the screen.

Examples:
(for illustration
only)

Errors:

10 TEXT FROM 10 TO 10
10 TEXT FROM 20
10 A=4 : B=7
20 TEXT FROM A TO B

10 TEXT TO 20

ILLEGAL QUANTITY ERROR
1. One of the two lines given is not in the range of 1 to
25.

Command
Format: TEXT

TEXT TO < line>
TEXT FROM < line>
TEXT FROM < line> TO < line>

Demo
Program: SPLIT DEMO

98

TEXT COMMANDS
SCROLL <direction> <#characters> [WINDOW <min x>,

<min y>,<max x,>,<max y>]

ROLL <direction> <#characters> [WINDOW <min x>,
<min y>,<max x>,<max y>]

Description: These two commands scroll or roll the specified portion
of the screen in the given <direction>. The acceptable
directions are RIGHT, LEFT, UP, and DOWN. (Only the
first character is required.) The WINDOW values specify
the cursor positions for the upper left and lower right
corners of the scrolling window referenced from 1 , 1 at
the upper left corner of the screen. If the WINDOW
option is omitted, the previous window setting is used,
and if none has been previously set, the WINDOW is
defaulted to the entire screen.

Examples: SCROLL RIGHT WINDOW 4,4,10,10

and

(tor illustration
only) SCROLL LEFT 4

ROLL UP A*2
ROLL DOWN 6 WINDOW 1,1,15,15

Demo
Program: SCROLL DEMO

99

--------- ---------

NOTES

1 0 0

APPENDIX A: ERROR MESSAGES
Error N um ber M essage

1 Too Many Files
2 File Open

3 File Not Open
4 File not found
5 Device Not Present
6 Not input file
7 Not output file
8 Missing file name
9 Illegal device number
1 0 Next w ithout For
11 Syntax
12 Return w ithout Gosub
13 Out of data
14 Illegal Quantity
15 Overflow
16 Out of memory
17 Undefined statement
18 Bad subscript
19 Redimensioned array
2 0 Division by zero
21 Illegal direct
2 2 Type mismatch
23 String too long
24 File data
25 Formula too complex
26 Can’t continue
27 Undefined function
28 Verify
29 Load
30 Break
See pages 150-151 of your Commodore 64 User’s Guide for more
details on these error messages.
NOTE: When Graphics BASIC encounters an error in your program,
the line containing the error will be listed. The location of the error will
be indicated by a double angle bracket < > (in reversed video). In
making the corrections, be sure to remove the double angle bracket
symbol.

101

APPENDIX B: DEMO PROGRAMS

Demo Programs on Diskette
ADSR DEMO
DIAMOND DEMO
ROTATE SQUARES
SHUTTLE DEMO
DRIVING DEMO
SPLIT DEMO
WINDOW DEMO
8 BALLS DEMO
ORIGIN DEMO
HATMAN DEMO
MULTISTAR DEMO
DESIGN DEMO
MULTIHATMAN DEMO
MULTIBAR DEMO
ELLIPSE DEMO
JOYSTICK DEMO
AIRPLANE DEMO
GPRINT DEMO
3-VOICE DEMO
BALLS BOX DEMO
MULTICHANGE DEMO
3-PART SONG DEMO
BOUNCE BALL DEMO
PIE CHART DEMO
CIRCLE FILL DEMO
MODERN ART DEMO
SATURN DEMO
HATMAN RACE DEMO
SCROLL DEMO
SPACEMAN DEMO
WIND/CIRC DEMO
ANIMATE DEMO
PRIORITY DEMO
SETORIGIN DEMO
COLORWHEEL DEMO
PENCIL DEMO
HES BOUNCE DEMO

Character Sets

Graphics BASIC must be loaded into
the computer before you can
load a demo program. To load
a demo, type:

LOAD“ <dem onam e>” ,8
To run the demo, type:

RUN

CURSIVE.FONT
OLD.FONT
COMPUTER.FONT

To load a character set, type
CHAR LOAD“<fontnam e>”
CHAR RAM

APPENDIX C: MEMORY MAP
Graphics BASIC does some reconfiguration of the Commodore 64 ’s
memory. Following is a memory map of the Commodore 64 with
Graphics BASIC installed.

$0000 $0000 to
$FFFF

BANK 1

$4000 '
$3FFF

BANK 2

$8000 '
$7FFF

BANK 3

$C000
$BFFF

BANK 4

$FFFF

BANK 1 $0000 to $3FFF

$03 FF

$07 FF

$0FFF

$1 FFF

$2FFF

$37FF

$3FFF

5UUUU

$0 400

$0800

$1000

$2000

SYSTEM AREA : 1 K

TEXT character memory: 1 K

Sprite shapes: 2K

Start of BASIC workspace

$ 3 0 0 0

$ 3 8 0 0

End of BASIC workspace
(when RAM characters are used)

RAM characters set

104

$ 4 0 0 0

$5 000

$5E00

$ 6 0 0 0

$7 000

BANK 2 $4000 to $7FFF

End of BASI
(no RAM ch

2 workspace
aracter set)

Graphic s BASIC

$4FFF

$5BFF

$5FFF

$6FFF

$7FFF

105

$ 8 000

$A000

BANK 3 $8000 to $BFFF

Graphic s BASIC

Microsoft BASIC

$9FFF

$BFFF

106

BANK 4 $C000 to $FFFF
$cooo

$C 400

S C800

$D000

SEOOO

SFOOO

Sound and sprite animation tables

Hires and Multicolor screen: 1K

Sprite shapes: 2K

I/O and ROM character set: 4K

Kernal and Hires screen

$C 3FF

$C 7FF

$CFFF

$DFFF

SEFFF

$FFFF

ZERO PAGE
Zero page remains the same while Graphics BASIC is installed with
the exception of four memory locations:

$00FB - $ 0 0 FE Used by Graphics BASIC

107

APPENDIX D: CAUTIONS IN GRAPHICS BASIC
GRAPHICS BASIC AND OTHER PROGRAMS
Graphics BASIC is an addition to the existing BASIC in your
Commodore 64. If you have any programs that patch into the present
BASIC, use memory locations used by Graphics BASIC or that do not
check the existing memory configurations before POKEing data into
memory, they will not necessarily function properly in conjunction with
Graphics BASIC. All standard BASIC programs, however, should have
no problem running under Graphics BASIC whether they use the
extended commands or not.

VECTORS
When Graphics BASIC is installed it is necessary that you not change
the following vectors:

$ 0 3 1 4 -$ 0 3 1 5 IRQ interrupt routine.
$0318 - $0319 NMI interrupt routine.
$ 0 3 3 0 -$ 0 3 3 1 LOAD Routine.
$0332 - $0333 SAVE Routine.
$0326 - $0327 Character output routine.

INTERRUPTS
Graphics BASIC uses the C-64’s interrupts to their maximum
capabilities. If any program adjusts the IRQ interrupt vector for its use,
then all interrupt-driven features of Graphics BASIC will be
inoperative. The interrupts should never be disabled or changed from
BASIC or Machine Language when Graphics BASIC is installed.
The following Graphics BASIC modes rely on interrupt control:

Split Screens,
Automatic Sprite Movement,
Sprite Animation,
and
Automated sound

DISK or CASSETTE FILES
Disk or Cassette Files (used with the OPEN command) should never
be used in Graphics BASIC when any interrupt-driven mode is
engaged. To use disk or cassette files, first execute the RESET
command. This will disable all interrupt-driven functions. If you forget,
the computer will lock up. To free the computer, hit the RUN-STOP
and RESTORE keys at the same time. This will cause Graphics BASIC
to RESET. Your variables and program, however, will not be lost.

All LOAD and SAVE commands will operate properly with sprite
animation or a split screen engaged. They simply halt all interrupt-
driven functions until after the LOAD or SAVE is completed.

108

APPENDIX E: GRAPHICS BASIC COLORS

In Graphics BASIC you can use the actual color names in place of the
color numbers. The following is a list of all the colors Graphics BASIC
understands.
0 - BLACK
1 - WHITE
2 - RED
3 - CYAN
4 - PURPLE
5 -G R EEN
6 - BLUE
7 - YELLOW
8 - PEACH
9 - BROWN

1 0 - PINK
11 - GRAY1
12 - GRAY2
1 3 - LGREEN
1 4 - SKY
15-G R A Y 3
NOTE: When using one of these recognized color names, care must
be taken to ensure that it is spelled properly. Otherwise, it will be
interpreted as a variable name and its present value will be used as a
color number, (e.g. COLOR GREAN will set the color to white when
the variable GREAN=1.)

APPENDIX F: NOTE TABLE

Note Octave Tone number Note number

A 4 7382 0
Bb 4 7821 1
B 4 8286 2
C 4 8779 3
C# 4 9301 4
D 4 9854 5
D# 4 10440 6
E 4 11061 7
F 4 11718 8
F# 4 12415 9
G 4 13253 1 0
G# 4 13935 1 1

A 5 14764 0
Bb 5 15642 1
B 5 16572 2
C 5 17557 3
c# 5 18601 4
D 5 19708 5
D# 5 20879 6
E 5 22121 7
F 5 23436 8
F# 5 24830 9
G 5 26306 10
G# 5 29871 11
A 6 29528 0

440 Hz

880 Hz

1760 Hz

To calculate a tone number not in the list above, use the following
formula:

<Tone num ber>=(1.059463157) 4 (<note num ber>)*59059*2f
(<oc tave> -7)

Where <note number> is the value of the note you are looking for (for
example, the note number for the note D in any octave is 5) and where
<octave> is a number between 0 to 6 representing 7 full octaves
available on the Commodore 64.

1 1 0

APPENDIX G: DISK INFORMATION
Formatting a Disk
Before you can use a disk for program storage, you need to set up
“ magnetic signposts” for the disk drive to read. You give the disk a
name and a two-character ID number. This process is called formatting
the disk.

CAUTION: Formatting a disk erases any files currently on that
disk.

To format a disk, remove the Graphics BASIC disk and insert a blank
disk. Use the DISK command in Graphics BASIC as follows: (Device
number 8 is assumed.)

DISK “ NO:<name>,ID”

For example:
DISK“ NO:GRBASICPROGS,64” <RETURN>

The red light on the disk drive will come on for about a minute; then
the red light will turn off, and the disk will be formatted.

Disk Care
To ensure long life and reliable operation from your disks, follow these
guidelines:

• Keep disks away from magnetic objects—information on the disks
may be erased or become hopelessly deranged. Magnetic objects
include: your TV or monitor, disk drive, power supply, printer,
telephone, even paperclips stored in a magnetized holder.

• Do not touch the exposed parts (shiny parts that show through the
black disk liner) or the disk with anything. This includes
fingerprints, coffee spills, cigarette ashes, paperclips, and dust.

• Store disks in their protective envelopes and in a vertical position
when not in use. Keep the disk away from any direct heat source—
sunlight, heaters, sleeping cats.

111

INDEX
Graphics BASIC commands are listed in capital letters. Page numbers
in boldface indicate the page in the command reference section
where the command is explained in detail.

ADSR 15, 67
ANIMATE 13, 52, 53
animating sprites 13, 52, 53, 58
animation, sprite

MOVE 13, 58
FREEZE 14, 58
ANIMATE OFF 52
ANIMATE ON 13, 52
SPEED 13, 53, 64

assigning shape to sprites 63
attack, see ADSR
automated sound 16, 6 8 , 69, 70
BACKGROUND 6 , 26
BACKGROUND, sprite

collision 45
background color 6
BORDER 6 , 26
BOX 27
branching 80
buffer, sprite 46
cautions 108
CHANGE 79
changing function keys 81
CHAR <asc ii> 89
CHAR <ascii,n> 90
CHAR LOAD 93
CHAR RAM 91
CHAR RESET MEMORY 94
CHAR ROM 92
CHAR SAVE 93
CHAR SET MEMORY 94
character generation 89, 90
character set

creating 89, 90
demos 32
loading 93
saving 93
switching 91, 92

characters, redefining 89, 90
CIRCLE 8, 9, 28
CLEAR 7, 29

clearing a sprite collision 55
CLOSE command 75
collision detection 45, 50
colon (:) 6
color

background 6 , 26
border 6 , 26
high resolution 6 , 30
m ulticolor 6 , 30
sprites 48, 56

COLOR 30, 37, 41, 56
color codes 109
COLOR HIRES 6 , 30
COLOR MULTI 6 , 30
color numbers 109
command conventions 19
command separation (:) 6
command summary 2 0
conditional statement 80
CONT 69
controlling the joystick 76
coordinates, screen 5
COPY command 75
COPY HIRES/MULTI TO

PRINTER 10, 74
COPY HIRES TO SPRITE 3.2
COPY MULTI TO SPRITE 32
COPY SPRITE TO HIRES/

MULTI 32, 46
COPY TEXT TO HIRES 95
COPY TEXT TO PRINTER 95
COPY UPPERCASE/LOWERCASE

TO RAM 32, 96
copying

graphics 32
sprites 46
text 32, 95

decay see ADSR
defining characters 89, 90
defining function keys 81
deleting disk file 75

112

INDEX
demo programs 2 , 1 0 2
DIR 75
directory

disk 75
using function key 81

DISK 75, 76
disk directory 75
disk drive

error status 76
commands 75

displaying a sprite 60
DO 79
DOT 9, 33
drawing

arcs 28
boxes 27
circles 28
dots 33
ellipses 28
lines 38
polygons 28
rectangles 27

EDIT 46
editing

CHANGE 79
CRSR keys 7, 46
FIND 80
programs 79
sprites 46

ellipses 28
ELSE 80
envelope generator, see ADSR
error detection 84, 85
error messages 1 0 1
error status of disk drive 76
error trapping 84, 85
FILL 34
filling in an object 34
FIND 80
find and replace 80
fonts 89-94
foreground color 37
format a disk 75
FREEZE, sprite 58
FREEZE, sound 68
function keys 3, 81, 82
functions, user defined 81

GEMINI printers 74
GOTO 80
GPRINT 34, 35
GRPINT AT 13, 34, 35
graphics 5
high resolution 5
high resolution graphics

printing 74
HIRES 36
HIRES COLOR...ON 37
HIRES FROM 36
HIRES LOAD 77
HIRES SAVE 77
HIRES TO 36
horizontal axis 5
IF...THEN 80
INITIALIZE command 75
interrupting printer 74
interrupts 108
JOY 76
joystick control 76
KER NAL107
KEY 81
KEY LIST 81
KEY LOAD 82
KEY OFF 82
KEY ON 82
KEY SAVE 82
LINE 38
line numbers

renumbering 87
LIST 83
loading

character sets 93
demo programs 1 0 2
function key assignments 81
Graphics BASIC 1
hires graphics 77
multicolor screen 77
sprites 57
text 78

locations, screen 5
lowercase characters 96
master volume 66, 73
memory map 103
MOVE 58
MULTI 40

113

INDEX
MULTI COLOR 41
MULTI FROM 40
MULTI LOAD 77
MULTI SAVE 77
MULTI TO 40
multicolor 5
multicolor sprites 48
musical note table 1 1 0
musical note formula 1 1 0
NEW command 75
noise 72
note duration 69
ON ERROR GOTO 84
ON ERROR OFF 85
ON ERROR ON 85
OPEN command 75
ORIGIN 43
PLAY 69
plotting

circles 28
dots 33
lines 38

positioning a sprite 54
PRINT AT 97
printing

directory 75
hires graphics 74
letters on HIRES 34, 35
listings 95
programs 95
text 97

printing graphics with Gemini
Printer 74

priority, sprite 61
PROCEDURE 86
procedure statement 79, 86
pulse wave 72
radius 9
redefining characters 89, 90
redefining function keys 81
release, see ADSR
REMark statement 13
REN 87
RENAME command 75
renumbering lines 87
RESET 88
RESTORE 88

retrieval
sprites 57
graphics 77
text 78

ROLL 99
saving

character set 93
function key assignments 82
hires/multi graphics 77
multicolor screen 77
sprites 62
text screen 78

sawtooth wave 72
SCALE 42
SCRATCH command 75
screen coordinates 5
screen locations 5
screen modes

hires 3
multi 3
text 3

SCROLL 99
scrolling 99
searching 80
selecting colors for Multi

screen 41
SETORIGIN 43
sets, character 89-94
setting color for sprite 56
setting sprite priority 61
SHAPE 63
size, sprite 64
sound automation 68, 69, 70
SOUND CLEAR 66
SOUND FREEZE 66
SOUND GO 66
SOUND OFF 66
SOUND ON 66
sound tempo 69
sound waves 72
SPEED 53, 64, 69
speed

sprite
x,y travel 64
amimation 53

sound tempo 69
voice 69

114

INDEX
split screen 36, 98
splitting the screen 3, 36, 98
SPRITE 50
sprite animation 52, 53
SPRITE ANIMATE OFF 52
SPRITE ANIMATE ON 52
SPRITE ANIMATE SPEED 53
SPRITE AT 54
SPRITE CLEAR HIT 55
sprite collision 45, 50
SPRITE COLOR 56
sprite display priorities 61
sprite editing functions 46-48
sprite editor 46
SPRITE FREEZE 58
SPRITE HIRES 56
SPRITE LOAD 57
SPRITE MOVE 58
SPRITE MULTICOLOR 59
SPRITE OFF 60
SPRITE ON 60
SPRITE ON BACKGROUND 61
sprite positioning 54
sprite priority 61
SPRITE SAVE 62
sprite size 64
SPRITE SHAPE 63
sprite shape buffer 46
SPRITE SPEED 64
sprite to background collisions 45
sprite to sprite collisions 50
SPRITE UNDER BACKGROUND 61
SPRITE XYSIZE 64
STEP 28
stopping a program 2, 3
stopping printing 74
storage

character sets 93
hires screen 77
multi screen 77
sprites 62

string
change 79
find 80

structured programming 79, 80
sustain, see ADSR
switching character sets 91, 92
switching screen modes 3
tempo, sound 69
TEXT 3, 97
TEXT FROM 98
TEXT LOAD 78
text, printing 95, 97
TEXT SAVE 78
TEXT TO 98
timing, voice 69, 71, 72
TONE 71
triangle wave 72
turning function keys off and on 82
turning sound off and on 6 6
turning sprites off and on 60
turning voices off and on 60
uppercase characters 96
user defined function keys 81
vectors 108
vertical axis 5
VOICE ADSR 67
VOICE FREEZE 68
VOICE GO 68
VOICE PLAY 69
VOICE TONE 71
VOICE WAVE 72
voices 15
VOLUME 73
volume envelope 15, 67
WAVE 72
waveforms 15, 72
WINDOW 44, 99
XPOS 65
YPOS 65
XYSIZE

BOX 27
CIRCLE 28
GPRINT 34
sprites 64
text 34

x, y speed, sprite 64
zero-page 107

115

ACKNOWLEDGEMENTS

The programmers would like to thank Charles and Barbara Landis for
all their support and understanding in this project.

Special thanks to Jay Stevens and Tom Wahl for their suggestions
during the development of this product, their numerous and creative
demo programs, and their support in the preparation of this manual.
This manual has been thoroughly tested and to the best of our
knowledge, the text is free of typographical and technical errors.
However, in spite of our thorough testing procedures, a few errors may
have crept in. If you catch any errors, we would appreciate hearing
about them, as well as any other comments or suggestions on this
manual.
Barbara Harvie
Product Documentation Manager
Human Engineered Software
150 North Hill Dr.
Brisbane, CA 94005

116

