

THE
 SPREAD SHEET

handic.

Disclaimer

Neither Handic Software $A B$ nor its distributors, make any warranty, either expressly or implied, with respect to the program described herein, its quality, performance, merchantability, or fitness for any particular purpose. This program is sold "as is". The risk as to its quality and performance is with the buyer. Should the program prove defective following its purchase, the buyer land not the creator of the program. Handic Software Ab, their distributors or their retailers) must assume the cost of any necessary servicing, repair or correction and any incidental or consequential damages resulting from any defect in the program even if the creator of the program has been advised of the possibility of such damages.

Copyright

The computer software program Calc Result and the manual describing its operation are copyright (C) 1983 Handic Software Ab, Sweden. No part of it, the program disk, data recorded on rom, or this manual, may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the original copyright holder. Copies of program disks may only be made by the original purchaser in order to perform the functions described in the manual for his personal use and benefit.

Help

If you have any comments about the contents of the Calc Result manual, or the program itself, please write to your national distributor. Whilst Handic Software Ab have made every effort to ensure the accuracy of the manual, and the operation of the program itself, any errors noticed by users will be corrected as quickly as possible. Your help in this respect will be greatly appreciated by other users.

CONTENTS

Introduction
Using the manual iii
Part 1 Using CALC RESULT 1
Minimum equipment 1.1
The CBM keyboard 1.2
Color keys 1.2 .1
How CALC RESULT handles data 1.3
Starting CALC RESULT 1.4
Part 2 The CALC RESULT Tutorial 2
Lesson 1 2.1
The screen 2.1.1
Cursor movement 2.1.2
Screen scrolling 2.1.3
Automatic cursor movement 2.1 .4
Faster cursor movement 2.1.5
Correcting errors 2.1.6
Writing on the work sheet 2.1.7
Using formulas and recalculation 2.1.8
More about labels and values 2.1.9
Formulas through cursor movement 2.1.10
Saving information on disk or tape 2.1.11
Editing the input line 2.1.12
Summary of Lesson 1 2.1.13
Lesson 2 2.2
Getting data from disk or tape 2.2 .1
Interest rate calculation 2.2.2
Replicating a formula 2.2.3
Replicating a chain of formulas 2.2.4
Screen formatting 2.2 .5
Fixing titles 2.2.6
Fast recalculation 2.2.7
Adjusting the column width 2.2.8
Summary of Lesson 2 2.2 .9
Lesson 3 2.3
Formula repetition 2.3.1
Replicating values and texts 2.3.2
Replicating a column 2.3.3
Replicating a column several times 2.3.4
Sum function 2.3.5
Formatting a single co-ordinate 2.3.6
Replicating a format 2.3.7
Replicate function for copying a row or column 2.3.8
NA (Not Available) function 2.3.9
Inserting and and erasing rows and columns 2.3.10
Moving matrices with the move function 2.3.11
Recalculation order 2.3.12
Reference order for formulas 2.3.13
Summary of Lesson 3 2.3.14
Lesson 4 2.4
More about formats and values 2.4.1
Large and small values 2.4.2
Mathematical priority 2.4.3
A small matrix 2.4.4
Formatted printouts 2.4 .5
Minimum and maximum values 2.4 .6
Count and mean functions 2.4 .7
Absolute and integer functions 2.4.8
If-then-else function 2.4.9
True and false statements 2.4.10
Random function 2.4.11
Percent function 2.4.12
Manual and automatic recalculation 2.4.13
Graphics on the screen and printed 2.4.14
Summary of Lesson 4 2.4.15
Part 3 Commands and functions 3
Screen structure 3.1
CALC RESULT Commands
System command 3.2
Transport command 3.3
Edit command 3.4
Format command 3.5
Global command 3.6
CALC RESULT Functions
File functions 3.7
Formatting functions (global) 3.8
Formatting functions (local) 3.9
Graphic functions 3.10
Cursor functions 3.11
Mathematical functions 3.12
Co-ordinate functions 3.13
Program functions 3.14
Row and column functions 3.15
Recalculation functions 3.16
Printout functions 3.17
Formula references 3.18
APPENDIX
Error messages User errors 1
Formula errors 2

INTRODUCTION

CALC RESULT is a new business software package from HANDIC SOFTWARE AB.

For those who deal with complex calculations or simulations CALC RESULT will quickly become irreplacable and not only speed up your work but make complex jobs easier.
The many unique facilities in CALC RESULT greatly ease and speed up the many ways in which you can manipulate data:

* CALC RESULT uses a work sheet which can be divided into rows and columns. The intersections between the rows and columns create thousands of positions or co-ordinates. In every one of these coordinates you can enter numbers, words or formulas which are to be calculated. The format commands allow you to give each co-ordinate an individual character format.
* The editing functions in CALC RESULT allow you to change, insert and erase text, formulas and values. CALC RESULT's original appearance can be reorganised as often as you want to accommodate new rows and columns.
* Once entered, a formula can be repeated anywhere in the work sheet. CALC RESULT can also sum, calculate the mean value and manipulate chosen rows, columns or co-ordinates. CALC RESULT interprets, as many other spread sheet programs do not, formulas according to the normal mathematical rules.
* CALC RESULT records the formulas you use and protects them when working through a problem. If you change any given value, all other related values will be automatically recalculated. Recalculation makes CALC RESULT a powerful planning and calculation tool allowing you not only to correct errors, but vary values to study different solutions.
* CALC RESULT has a graphic output which can print bar charts with user defined scales. Tables of data can also be individually formatted for printing.

USING THE MANUAL

The manual is divided into three main parts. As users of CALC RESULT will have varying degrees of computer experience, the manual is designed accordingly.

Part 1

This section informs you of the minimum equipment you need and the details on how to start off with CALC RESULT for the first time.

Part 2

This section is a lesson-by-lesson tutorial in how to use CALC RESULT. Those who have little or no experience with computers or spread sheet programs will find that this section will answer most of their questions. From the simple mechanics of CALC RESULT in Lesson 1 the book will painlessly take you through the variaty of CALC RESULT commands and functions ending with lesson 4 on graphics.

Each section of the tutorial shows what to do, which keys to type, what to expect. With practice you will become familiar with the more advanced features of CALC RESULT and you will find that you only have to use Part 3 containing CALC RESULT's command reference.

Part 3

This section defines all CALC RESULT commands and functions and gives a complete description of the screen. The structure of every function is described and, where necessary, a short example will illustrate how it works.

Appendix

This section details Error messages.

Part 1 Using CALC RESULT

1.1 MINIMUM EQUIPMENT

To be able to use this version of CALC RESULT you will need the following equipment:
1 A Commodore 64
2 A Tape recorder or a disk drive
3 A VIC 1515/1525, 1520 or 1526 printer
4 The special CALC RESULT cartridge which must be inserted in the Commodore 64 before you can use CALC RESULT. NOTE!
Remember that the Commodore 64 must be turned off before you insert or remove the cartridge, or else the cartridge will be destroyed!

1.2 THE CBM KEYBOARD

Simultanously the Commodore 64 keyboard has a number of keys with double functions. To be able to use the upper function you must press the SHIFT key with the key of the double function. It is with this in mind, we describe the key such as INST where you will have to press the SHIFT key and at the same time the key with the text INST. When capital letters are to be used always SHIFT to uppercase.

The following symbols are used in calculations:

+ addition
- subtraction
/ division
* multiplication
\uparrow exponentiation
In this manual when a single key is to be pressed, the key is placed between apostrophes eg: ' \mathbf{A} ', ' 1 ', 'HOME' and 'SPACE'

Texts and co-ordinate references are automatically printed in capital letters. It is up to you to decide whether you want to use small or capital letters in titles.

Inputs containing more than one character are kept in quotation marks eg: "A157", "1600", "PROFIT" and "A1+B1".

The keys carrying special functions are:

1 F7 - this key is the CALC RESULT command key. Press the key once and this gives you access to the CALC RESULT commands and functions

This key is also used to stop a chosen function, and when using it, the program returns to where it was before the function keys were used. It also halts printing if required
2 CRSR - these keys are used to move the cursor on the screen. A cursor movement is indicated by an arrow, ' $\mathbf{\prime}$, pointing in either direction.

3 HOME - is used for moving the cursor to the upper left corner of the screen. Pressing this key twice will place the cursor in position A1.

4 DEL - this is part of the INST/DEL function. This key is used when incorrect input is to be erased. By placing the small cursor to the right of the text this text is be erased and everything to the right is moved one position to the left.
4 INST - is used to insert texts. By placing the small cursor at the place where the insertion is to be made everything is moved one position to the right.
5 SPACE - is used to enable CALC RESULT to differentiate between values and labels. When a label is entered the SPACE key should be pressed first. Every input which is not preceeded by a SPACE will be accepted as either a value or formula.

NOTE!! SHIFTED SPACE is used to change an earlier input which has been accepted as a LABEL to become a VALUE, and vice versa
$6 \uparrow$ - uparrow is used to undertake a recalculation.
7 F8 - this key makes it possible to edit the input line. All keys that are usually used for editing can be used for correcting this line.
8 RETURN this key is used to send what has been written to the computer.
The F7 key accesses the CALC RESULT control functions:
3 CLR - the CLR key is used to clear the current work sheet
9 F3 - is GO TO. This is used to move the cursor to a particular position. For example to BK150, the command is 'F3' "BK150"

'RETURN'

10 F6 - Hardcopy. Prints whats up on the screen. The printer will print out the entire screen except for the top three lines.

1.2.1 COLOR KEYS

The color keys are the following:

Together with the CTRL key
1 = Black
$2=$ White
$3=$ Red
$4=$ Cyan
$5=$ Purple
$6=$ Green
$7=$ Blue
$8=$ Yellow

Together with the Commodore key
1 = Orange
$2=$ Brown
$3=$ Light red
$4=$ Grey 1
5 = Grey 2
$6=$ Light green
$7=$ Light blue
$8=$ Grey 3

1.3 HOW CALC RESULT HANDLES DATA

CALC RESULT uses two places for storing data:

* When working with CALC RESULT your data is sent to the computer's internal memory, RAM. This memory is sufficient for storing about 1000 memory positions - that is room for a co-ordinate formula or a piece of text. This memory for storing data will normally be enough but if this is not enough you can easily store your work sheet on disk or on tape.
* When you have finished your work you can store the work sheet, or part of it, on the disk/tape. There you store the work sheet with reference to a file name. Of course you can call it back for further use.

1.4 STARTING CALC RESULT

1 Insert your cartridge as explained in the Commodore 64 USER'S GUIDE

2 Now switch on the power to your Commodore 64
The computer will then load CALC RESULT from the cartridge.
When loading is finished, CALC RESULT will show its format on the screen.

You will see the text (C) HANDIC SOFTWARE AB on the inputline. This text will disappear as soon as a key is pressed.

3 Switch on the power to:
Your printer, VIC 1515/1525, 1520 or 1526. NOTE!! When using 1515/ 1525 you have to change their device number to 5 . See their printer manuals.

Your disk drive

Part 2 The CALC RESULT Tutorial

2.1 Lesson 1

2.1.1 THE SCREEN

Load CALC RESULT according to the instructions given earlier in Section 1.4. If the command line is blank press:
'F7'
then press:
'CLR' (SHIFT and CLR/HOME) ' \mathbf{Y} '
These function will clear the complete work sheet of data.
You will notice that the screen is divided into numbered rows and lettered columns. At every intersection between a column and a row there is a co-ordinate (input position), eg A1, C5, J11 etc. At every coordinate a word, number or formula can be written.

1 Command line, the top-most line, shows the CALC RESULT commands and the cursor co-ordinates.

2 The middle line, Help line, shows the three functions which always follow the command choices on the top-most line. These are:
F3 for GO TO. Moves the cursor to a specified co-ordinate.
F6 for HARDCOPY. The printer copies what is on the screen, except for the command lines.
CLR for CLEAR. Clears the current work sheet.
This line also is used for:

- answering CALC RESULT's questions, except for printer functions answered by one single character
- together with the input line will display any instructions connected with editing printouts
- to the left it shows what type of information is in the cursor position - either VALUE (values or formulas) or LABEL (texts).

3 Input line, on this line the characters that you have written for a particular co-ordinate will be shown while the cursor is in that coordinate. It is also used for accepting input.
See Section 3.1 for a detailed description of the format of the CALC RESULT screen.

2.1.2 CURSOR MOVEMENT

At the co-ordinate A1, which is at the upper left hand corner of the work sheet, you will see a white bar called the cursor. The writing on the screen is done along with the cursor co-ordinate.

The cursor can be moved using the CRSR keys and the shift key.
Press the key once. The cursor has now moved to the position immediately to the right, column B, row 1. The co-ordinate reference in the control line has changed to B1.
Now press the key, the cursor moves back to column A, row 1. Pressing the ' key the cursor moves down to column A, row 2 , pressing the ' ' key the cursor moves back to its original position A1.
The cursor can move across the current work sheet to column BK (63 columns), and down as far as line 254.

2.1.3 SCREEN SCROLLING

When CALC RESULT is loaded you will see two axes, one horizontal and one vertical. There are four columns and twenty-one rows on the screen.

By pressing the ' key several times you will come to the last column (D). Now press the ' key again and you will notice that column A disappears through the left edge out off the screen, while the last column on the screen is now column E. If you continue to press the ' key, more columns will disappear out trough the left edge of the screen while an equal number of columns will appear on the right hand side of the screen.
This effect is called scrolling since it gives the effect of rolling up or out a sheet of paper. If you press the ' - ' key, the same effect will be seen with the movement of the rows. To get back to A1 you use the same keys but SHIFTED.

2.1.4 AUTOMATIC CURSOR MOVEMENT

To speed up scrolling you use the same CRSR keys but, by keeping the key depressed, the cursor continues to move automatically in that direction. If you continue to press the ' ' key you will get to position A254 which is the bottom line of the electronic work sheet. Now press the ' key until you come to position BK254, this is the bottom corner of the work sheet. This gives a total of 63 columns and 254 rows on each work sheet.
As you can see the CALC RESULT electronic work sheet is much larger than it appears at first.

2.1.5 FASTER CURSOR MOVEMENT

Even with the automatic repeat function it takes some time to get to the last position on the work sheet. There is a much quicker way to move the cursor to the desired position. Press the control key, 'F7', to get the system command
The key 'F3' is the command for GO TO. Press this. The text GO TO appears on the INPUT LINE.

Type ' \mathbf{A} ' once

The letter " A " appears on the input line.
Now press the number ' 1 ' key as we want to go to co-ordinate A1, followed by 'RETURN'
The whole screen changes to the upper left hand corner of the work sheet and the cursor is at position A1. Try some other co-ordinates and check that the cursor moves to the chosen positions.

The fast cursor movement works in all directions, but to move quickly to the top left of your screen you can use the HOME function.

Start by moving the cursor to co-ordinate M125. This you achieve by using the method we have just learned. Now if you press the 'HOME' key (not SHIFTed) the cursor moves to the upper left corner. By pressing 'HOME' once more the cursor is returned to co-ordinate A1. Irrespective of where the cursor is on the screen you need only to press the HOME key twice to move it to A1.

2.1.6 CORRECTING ERRORS

CALC RESULT has a number of features which allow you to correct errors. One of these is the DEL key. Suppose you type the coordinates for the movement of the cursor to A12 and you write A122 by mistake. This is one ' 2 ' too many. Just press the DEL key once and the extra 2 will disappear. Everytime you press the DEL key, you will move the cursor back one position erasing any character in that position.

To negate a chosen command you can use the F7 key, which aborts the command and you return to the previous cursor position.

2.1.7 WRITING ON THE WORK SHEET

As we have seen, moving the cursor to different parts of the work sheet on the screen is very easy. Writing on the work sheet is equally straight forward.
CALC RESULT must be able to differentiate between the different kinds of inputs since they can be values, labels and formulas. To do this all labels start with a depression of the SPACE key. All inputs which have not been initiated with SPACE are regarded by CALC RESULT as either value or formula.

If you wish your labels to be all in capitals you can treat them as values by neglect pressing the space bar, then change them to LABELS by pressing SHIFT SPACE. We are now going to construct the example shown in the following picture.

Let us start to write on our sheet. Just to make sure that we have not left old data on the sheet, start by pressing
'F7' 'CLR' (this is the shifted home key) and 'Y'
The screen will blank and the cursor will be placed at A1. Move the cursor to A2, then type:
'SPACE' (this is the space bar) "GROSS INCOME"
On the help line the text Label appears, this means an alphanumeric input is required and this input will not be used in calculations.
Remember, if you make a mistake while typing, use the DEL key to backup to the position you wish to correct.
When you are ready press '
On the input line the text GROSS INCOME disappears. The cursor has moved to the co-ordinate B2 and the words "GROSS \mathbb{N}^{\prime} " appears at A2.

Do not worry about the co-ordinate not containing the complete label - this will be explained further on.

Now type "7000"
Notice that on the help line the word Value appears, this is because of the numeric input and this input can be used in calculations. By pressing the
'DEL' key four times you remove the figure 7000,

" $5000+2000$ " 'RETURN'

If right, CALC RESULT should answer 7000.
When you press 'RETURN' the cursor remains at B2, but if after making an input you press the key the value will also be accepted, and the cursor moves directly to C2.
All the 'CRSR' keys work in the same way and can help to make the input of data quicker.

2.1.8 USING FORMULAS AND RECALCULATION

Move the cursor to A4 and then type:

'SPACE' "COSTS" '

The word COSTS should now be at A4 and the cursor at B4. We will now write a different kind of formula.

We want expenses to be 40% of the value of income. We could write ". $4 *$ B2" - the sign * represents multiplication - but it is easier to use CALC RESULT's percent-function (\%). It works like this: if you want to express 10 percent you just write \%(10). In our example then it will be \%(40).
Type the following at B4:

"\%(40)*B2" 'RETURN'

In B4 the sum 2800 should be displayed and on the command line the formula $\% 40 *$ B2
Move the cursor to co-ordinate B2 and try to type:

"8000" 'RETURN'

As you can see the screen flashes red and an ERROR message appears. CALC RESULT will not allow you to write over an existing formula $(5000+2000)$. You must first empty the position or alternatively edit the formula. Blanking the position can be done with the function F7 B and editing on the input line with F8. This editing function will be explained later. We will blank the formula.
At position B2 type:

'F7' 'B'

Now type "8000" 'RETURN'
You have now inserted a new value at position B2 (8000) but the interesting thing is that B4 has also been changed (3200). The value in B4 is still 40% of the GROSS INCOME. This demonstrates CALC RESULT's recalculation feature.

2.1.9 MORE ABOUT LABELS AND VALUES

We will take a closer look at labels and values. Type the following to take us to A6.

'F7' 'F3' "A6" 'RETURN'

We will now write a formula to calculate the difference between income and expenditure. Type:

'SPACE'

After pressing SPACE we see the text LABEL on the command line. CALC RESULT looks at this first input to determine whether this is an alphanumeric (LABEL) or numeric (VALUE) input. Type:

"NET INCOME" ' ${ }^{\prime}$

We are now ready to calculate net income which equals gross income less costs. Type:
"B2-B4" 'RETURN'
The answer 4800 is at B6. On the command line the formula B2-B4, will be shown.

2.1.10 FORMULAS THROUGH CURSOR MOVEMENT

You already know how to move the cursor into different positions, write messages or titles, a number or numbers and formulas which refer to other positions. You will by now realize that changing the values in B2, B4 or both will lead to new values in B6, thanks to the recalcution function. When you were writing the formula for Income minus Expenditure, you most probably checked to see that Income was at B2 and Expenditure at B4. If you are writing a number of formulas you would have to keep careful track of positions. Due to the scrolling function, columns will disappear off the left edge of the screen which would make things even more difficult.
CALC RESULT has a solution to this problem. You write the formula and let CALC RESULT fill in the co-ordinates for you. To try, first blank B6 by typing:

'F7' 'F3' "B6" 'RETURN' 'F7' 'B'

Now type:
"B2-"
Move the cursor to B4 and press:

'RETURN'

You will see the formula completed. You can even get the first coordinate using the cursor.

With the cursor at B6, blank the position again and type
' + '
Move the cursor to B2 press:
' -
Move the cursor to B4 and press

'RETURN'

As you can see, you only have to type the arithmetic operation symbols,,$+- / . *$ and \uparrow after positioning the cursor.

This technique of cursor movement between co-ordinates may seem a little strange at first but does enable you to omit typing the actual coordinate positions.

Try the following example to test your understanding of this. Position the cursor at B8 and write a formula to express net income as a percentage of gross income. (The formula is B6/B2*100). Use the cursor movement method and type only,$+ /$ and $*$ signs to write the formula. If you do it correctly your answer will be 60%.

2.1.11 SAVING INFORMATION ON DISK OR TAPE

To save the data that you have created in this lesson, you will now use the disk/tape that you inserted previously.
When you have your DISKTAPE inserted press:
'F7' 'T' (T for transport).
On the command line DISK, TAPE will be displayed.

Choose unit by either pressing:
'D' or 'T'
NOTE!! When working with a disk it must be formatted before it can be used by CALC RESULT. See the CBM disk manual.
The command line will display LOAD, SAVE.
Press 'S' for save
We will call our example TESTEX. Enter
"TESTEX." and then press 'RETURN'
If you are using a tape recorder you will be instructed to press RECORD and PLAY.

NOTE!! When using a tape recorder the operating system in Commodore 64 will turn off the screen. It turns on again after the saving or loading is finished. The save/load procedure takes about 9 minutes.
NOTE!! The maximum number of files that can be stored on a disk is nine.
When your file is stored, the screen will return your work. If you want to erase the work sheet, use the F7 CLR function.

2.1.12 EDITING THE INPUT LINE

The F8 key enables you to correct information on the input line. When editing the following keys can be used $\$$. INST, DEL, CLR and HOME.

To demonstrate this, type the following: THIS IS A LONG STATEMENT at co-ordinate A1. Press:

'HOME' 'HOME' 'SPACE' and "THIS IS A LONG STATEMENT" 'RETURN'

We will now change this to: THIS IS A VERY LONG STATEMENT. You could use the DEL key and retype, but using the F8 is quicker. Type:

'F8'

Move to the L in LONG and then use the INST key to create space for the word VERY (five spaces are needed). Type

"VERY" and 'RETURN'

The text is now THIS IS A VERY LONG STATEMENT.
Now change the text to THIS IS A VERY VERY LONG STATEMENT. before you go on.

2.1.13 SUMMARY OF LESSON 1

This lesson has given you an insight to the CALC RESULT methods of working.
If you need to practice the examples again before advancing, do so. If there are things you do not understand - or which do not seem to 'work' - write yourself a note. Most problems will disappear as you continue.
In this lesson we have seen how the CALC RESULT screen is created and what the control lines do. You learned how to move the cursor over the work sheet and scroll the screen, to insert text, values and formulas. You have amended text or values already inserted and seen how CALC RESULT recalculates values. You have also cleared the work sheet using F7 CLR, edited on the input line and stored work on the Disk/Tape.

Just check that you really remember how to do these things before going any further.

2.2 Lesson 2

2.2.1 GETTING DATA FROM DISK OR TAPE

Start by loading CALC RESULT. If you already have the program loaded press
'F7' 'CLR' and ' \mathbf{Y} ' to clear the screen
In this lesson we shall create a table which contains labels, values and formulas. But first take a quick look at the TRANSPORT COMMAND.
Press:
'F7' 'T'
On the command line DISK, TAPE will be seen. Press either: 'D' or 'T'
On the command line appears LOAD, SAVE.
Press 'L'
Name the file to be loaded by typing:

"TESTEX."

Press: 'RETURN'

now the TESTEX file will be fetched and the data placed in the computer memory.

You can now see that your data is once again on the screen.
Before we continue clear the screen using

'F7' 'CLR' \mathbf{Y} '

2.2.2 INTEREST RATE CALCULATION

We are now going to create the table example. (Clear the screen if this has not yet been done.)
We want to see how much money we will have accumlated after one year if we save 5000 with an interest of 15 percent.

Move the cursor to A2 and press
'SPACE' "YEAR" '' "1983" 'RETURN' 'F7' 'F' 'I'
Continue to A4 and press:

Move the cursor to A6. Press:

'SPACE' "CAPITAL" ' " 5000 " 'RETURN'

Now calculate the interest. First place the text AMOUNT OF INTEREST in co-ordinate A8. Move the cursor to co-ordinate A8 and then type:

'SPACE' "AMOUNT OF INTEREST" "'

Do not worry about not being able to see all your text in the coordinate. This will be fully explained later.
The formula that calculates the interest amount is $B 6 * B 4 / 100$. Type:

"B6*B4/100" 'RETURN'

Saving 5000 at an interst rate of 15% makes at the end of the first year, in this exemple, an interest amount of 750 .

2.2.3 REPLICATING A FORMULA

Your screen should look like this:

Now calculate total interest over a ten year period: Every year the capital will be increased by 5000 and the interest rate will increase by half a percent each year.

Start by placing the cursor at co-ordinate C 2 and type:

"B2+1" 'RETURN' 'F7' 'F' 'I'

Repeat this formula to give us the values over ten years. The function doing this is in the Edit command. Take a look, press:

'F7' and 'E'

On the command line you will see EDIT: C D G | M P R T. To explain this, take a look at section 3.4.

The function that we are looking for is REPLICATE. When we know which function we want to use, just press the character.
Choose REPLICATE by pressing:

'R'

On the screen REPLICATE will be seen on the command line and on the help/input line SOURCE RANGE C2 TO... TARGET RANGE...TO.. Press:

'RETURN' 'RETURN'

What we have done so far is to state that we want to repeat the formula in position C2. CALC RESULT now wants to know where the formula is to be repeated (target range). We intend to expand our calculations to 10 years. The first year is B2, the second is C2 and the tenth will be K2. As we want to copy the formula in C2 to D2 continuing up to K2 type:

"D2" 'RETURN' and 'K2'

An alternate way to do this would be to move the cursor to D2 and press:

'RETURN'

and then move the cursor to K2 and press:

'RETURN'

When you are ready, the input line will look like this: SOURCE RANGE C2 TO C2 TARGET RANGE D2 TO K2. Press:

'RETURN'

On the help line you will now see: ABS. OR REL. CALC RESULT is asking if we want the same formula - B2 +1 - in all the co-ordinates - ABSolute - or if the formula is to be made - RELative - to the other co-ordinates. In our example we want to increase by one each year, so the formula will be B2 +1 then $\mathrm{C} 2+1$ etc. Press:
' \mathbf{R} ' for relative

Numbers will fill the co-ordinates D2, E2, F2 etc. If you move the cursor to the last co-ordinate K2 you will see 1992.

Go to C4. Now increase the interest by 0.5% per year.
Do this with the formula " $\mathbf{B 4}+\mathbf{0 . 5}$ " and then replicate this across to column K4.

When done correctly the interest at K4 should be 19.5 .
To recap, to repeat a formula:
1 Place the cursor on the formula you want to repeat, then:
2 Press 'F7' 'E' 'R'
3 Give the SOURCE RANGE ...TO ...by moving the cursor to the coordinate that you want to repeat and then pressing RETURN twice (once for FROM and once for TO).

If you want to repeat an interval of co-ordinates, first move the cursor to the first co-ordinate press RETURN and then move the cursor to the last co-ordinate in the interval and press RETURN.

4 Give the TARGET RANGE ...TO... that is, the range of co-ordinates over which you want the formula repeated.

5 State if the co-ordinates within the formula are unchanged (ABS.) or relative (REL.).

If you make a mistake just press the DEL key and start again.

2.2.4 REPLICATING A CHAIN OF FORMULAS

To complete our calculation of interest over ten years we need two more formulas. The first formula will calculate the capital increase each year $(B 6+5000)$ plus the interest of the year before ($B 8$). This formula is to go at C6. Press:

'F7' 'F3' "C6" 'RETURN' "B6+5000+B8" 'RETURN'

The answer in C6 should be 10750. The second formula will calculate the yearly interest which will be C6*C4/100.

Cursor to C8, type

"C6*C4/100" 'RETURN'

The answer in C8 should be 1666.25. Now we have all the formulas to complete our calculations. Start by moving the cursor to C 6 and then use the replicating function (REPLICATE). Press:
'F7' 'E' and 'R'

On the help/input line REPLICATE: SOURCE RANGE C6 TO...TARGET RANGE ..TO... will be seen. If you press RETURN, RETURN like last time only the formula in C6 will be replicated. This time C8 is to be included. Press:

'RETURN' (for C6)

then move to C 8 and press:

'RETURN'

On the help/input line SOURCE RANGE C6 TO C8 TARGET RANGE C8 TO...will be seen. Our replicating interval is between D6 and K6.
Move the cursor to D6 and press:

'RETURN'

Now give the end co-ordinate for the TARGET RANGE by typing

"K6" 'RETURN'

State if the formula is unchanged or relative. In our case it is relative. You will have to press R for every co-ordinate. Press:

' \mathbf{R}^{\prime} ' \mathbf{R}^{\prime} ' \mathbf{R}^{\prime} and ' \mathbf{R} '

You will now see all the formulas and values in all these co-ordinates.
Check that in K6 you have 114700. and in K8 22366.5.
By now CALC RESULT has done quite a lot of work for you, but some of the figures are a little difficult to read. We can improve this by reformatting the screen.

2.2.5 SCREEN FORMATTING

Type:

'F7' 'G' 'F' '\$'

The letters mean GLOBAL FORMAT and \$ means two decimal places. This is explained in detail further on in the manual. Press:

'F7' 'F3' "B8" 'RETURN'

Now take a look at the following picture.

CALC RESULT has rounds up values, where there is place enough, to two decimals. This does not mean that the values used to calculate in the memory are rounded up, they are still computed with twelve digits. You will see that the figures in row 2 are unchanged. This is because the individual formats always keep a higher priority than the global one.
Before going any further, reset the format to global to show the values as they were to begin with. Press:

'F7' 'G' 'F' 'G'

Then change the screen back to a two decimal format.

2.2.6 FIXING TITLES

Move the cursor to B1.
The values for each year are easily seen but not the titles. To improve this, press:
'F7' and 'G'
On the command line GLOBAL: C F will be seen. Press:
' \mathbf{C} ' to change the column width

Now COLUMN WIDTH will be seen on the command line and CALC RESULT is waiting for a WIDTH on the input line. Choose 18 for width. Type:

"18" and 'RETURN'

The texts are now visible in full.
Use 'HOME' 'HOME' to go to A1, then press:
'F7' and 'E'
on the command line EDIT: C D G I M PRT will be seen. Choose T for TITLES. Press:

'T'

This function fixes a column on the left hand edge of the screen. To remove the additional A column use the to move E onto the screen. For this title function to work, the column to be fixed must be at the left hand edge of the screen.
As you can see CALC RESULT readjusts the rest of the columns irrespective of the title width making sure there will always be three columns shown on the screen. Now readjust the columns widths (B and so on). Go to B1 and type:

'F7' 'G' 'C' '6' and 'RETURN'

Try moving the cursor on the screen. As you see you cannot move the cursor to the fixed A column.

You can write on the second A column, however, and values or texts inserted there will be reproduced in the fixed A column also. You can quickly move the cursor to the unfixed A column by using the HOME function.

Before proceeding remove the TITLES function and set normal column width. Type:

'F7' 'L' 'F7' 'G' 'C' '8' 'RETURN'

2.2.7 FAST RECALCULATION

With the help of the replicating function we have written a number of formulas and values. How are these related to each other?

First go to B2, B4 or B6, continuing values only. If you go to B8 or any other co-ordinate you will see that these are dependent on one or several other, positions. This means that if you go to B4 and change the interest rate all the values that are related to B 4 will also change. Try changing B4 to 20 and see what happens.
Move the cursor to B4 and type:

"20" 'RETURN'

CALC RESULT will recalculate all the other values.
Change B4 back to 15 before you go on.

2.2.8 ADJUSTING THE COLUMN WIDTH

This is a function that can help avoiding the need to scroll the screen when you are using only a few columns. Move the cursor to A1 (use the HOME function). When you are ready press:

As you can see, we now have more columns on the screen since every column is smaller.

You can use this Global command whenever you want to, and choose a working size between 5 and 18 characters per column.
When you have only 6 characters per column you will see that the text entries lose some characters. If you move the cursor to positions A4 or A8 you will see on the command line that all the words are still there, even though they are not shown on the screen. All the texts are available as written, and if you wish you can format the screen to get to see it all.

2.2.9 SUMMARY OF LESSON 2

We have now learnt many of CALC RESULT's functions, and you may be finding it hard to keep track of them. Do not be afraid of experimenting if you have an idea, or are doubtful about how something works. You cannot damage either the computer or the CALC RESULT program.
In this lesson we have introduced some new commands and functions. They are:

- FORMAT COMMAND: 'F7' 'F' that allows you to format the display of any individual co-ordinate.
- GLOBAL COMMAND: 'F7' 'G', using Column and Format makes it possible to change the column width and format of all co-ordinates.
- EDIT COMMAND: 'F7' 'E', by using the functions Replicate and Titles it is possible to: duplicate formulas and fix the titles on the left of the screen.
- LEAVE: 'F7' 'L' restores the screen after using the Title function.

2.3 Lesson 3

2.3.1 FORMULA REPETITION

Start by loading CALC RESULT. If the program is already loaded press
'F7' 'CLR' 'Y' to clear the screen, then change the column width to 7

In this example we will create a table which contains ten columns and ten rows like this picture:

First mark out the ten columns which start at column B1. One way is starting in column B with 1, inserting 2 for column C etc. but this is unnecessary when one can do it by using the replicate function.
Write COLUMN in A1 and 1 in B1 by moving the cursor to co-ordinate A1 and then press:

'SPACE' "COLUMN" "' 1 '

Move cursor to C1. Now write a formula which can be replicated
Enter the formula $1+\mathrm{B} 1$ in C1. Type

"1+B1" 'RETURN'

In C1 the figure should be 2, but on the command line you see $1+$ B1 Now we have created a formula to use. Next press

'F7' 'E' 'R' (for Replicate)

Since just C 1 is to be replicated you press:

'RETURN' 'RETURN' ' \quad '

Now you give the TARGET RANGE by pressing

'RETURN' "K1" and 'RETURN'

Here you are asked if the formula is ABSolute or RELative. It is relative. Press:

'R'

We want to draw a line under the column numbers.
Move the cursor to A2 and press:

'F7' '-' '-'

You have now underlined the A column. By replicating this it can go over the entire table, press:

'F7' 'E' 'R' 'RETURN' ‘RETURN' ' ${ }^{\prime}$

'RETURN' "K2" and 'RETURN'

If you have got it right your sheet should look like this.

2.3.2 REPLICATING VALUES AND TEXTS

Move the cursor to A4 and then type:

'SPACE' "ROW 2" '1' "150" and 'RETURN'

Fill all the columns in ROW 2 with 150 by using the replicate function. Press:

'F7' 'E' 'R' 'RETURN' 'RETURN'
 "C4" 'RETURN' "K4" and 'RETURN'

Is this the best way if you later want to change the figure in every column? No, because if you want to change all the columns you will have to use the replicate function each time. It is much easier to let the values relate to each other from the beginning, this is done as follow:

'F7' 'F3' "C4" 'RETURN' "B4" 'RETURN'

'F7' 'E' 'R' 'RETURN' 'RETURN'
 "D4" 'RETURN' "K4" and 'RETURN' 'R'

It still shows 150 but if you move to D4 you will see on the command line C 4 and if you continue to the right you will notice that the coordinate is related to the co-ordinate before. This means that you can change one value and all the dependent co-ordinates will have that new value as well.

Change all the co-ordinates to 1000 :

'F7' 'F3' "B4" 'RETURN' "1000" 'RETURN'

We will now change co-ordinate E4 to K4 to the value 3000. This is done the same way as before. Enter 3000 in co-ordinate E4 and the rest is done by CALC RESULT. Remember that the co-ordinate is protected and you have to use the Blank function. Look at the command line, where 3000 is seen and then go to F4, do you see E4 written here? As you can see, E4 is a start value for the co-ordinates to K4.

What happens if a new value is placed in co-ordinate B4? Try with 200:

'F7' 'F3' "B4" 'RETURN' "200" and 'RETURN'

Only co-ordinates B4 to D4 are changed. This is because E4 is not related to D4. If you wanted all the values to be changed, you would have to first of all place D4 in co-ordinate E4, but do not do this in our example.

Now place more values in the table.
Move the cursor to A6 and press:
'SPACE' "ROW 4" '" " $\mathbf{4 0 0}$ "
Move the cursor to A8 and press:
'SPACE' "ROW 6" '" "600"
Move the cursor to A10 and press:

'SPACE' "ROW 8" '" "800"

Move the cursor to A12 and press:

'SPACE' "ROW 10" ' and "1000" 'RETURN'

Move the cursor to C4.
At this stage your screen should look like the picture below.

Now we shall replicate the rest of the values in the remaining nine columns with the value in column B. Do you remember the method we used to fill ROW 2? You should use the same method here.

2.3.3 REPLICATING A COLUMN

Staying at co-ordinate $\bar{C} 4$ you will see B 4 on the command line. Relatively C 4 is connected to B 4 as C 6 is to B 6 etc. Write the following at C4:

'F7' 'E' 'R' 'RETURN' 'RETURN'

"C6" 'RETURN' "C12" 'RETURN' and 'R'

If you have followed the instructions correctly you will have the same values in COLUMN 2 as in COLUMN 1.

The NA messages stands for Not Available, we will describe it further on in this lesson. But for now just erase those positions which contains NA.

2.3.4 REPLICATING A COLUMN SEVERAL TIMES

Now we have formulas for every ROW. The next step is to replicate these formulas over the rest of the table. This time we must give the whole interval which will be copied as the Source Range.
Move the cursor to C 6 and then type the following:

'F7' 'E' 'R' 'RETURN' "C12" 'RETURN'
 "D6" 'RETURN' "K6" 'RETURN'
 ' \mathbf{R}^{\prime} ' \mathbf{R}^{\prime} ' \mathbf{R}^{\prime} and ' \mathbf{R}^{\prime}

2.3.5 SUM FUNCTION

This function will total all the values in every COLUMN. First separate the total line from the values by underlining ROW 10 in the table.

Move the cursor to A13 and press:
'F7' ' =' ' '

'F7' 'E' 'R' 'RETURN' 'RETURN' ' ' 'RETURN' "K13" and 'RETURN'

Enter the text SUM: in co-ordinate A15 by writing:

'F7' 'F3' "A15" 'RETURN' 'SPACE' "SUM:" and '

First total COLUMN 1. As you have seen we can easily replicate the formula later to the other columns. The cursor should be in co-ordinate B15. Type:

"SUM(B4:B12)" 'RETURN'

Within the parenthesis the co-ordinates are to be totalled. Now the
sum for COLUMN $1-3000$ - is shown. The rest of the totals are obtained by replicating. Stay in co-ordinate B15 and type,

'F7' 'E' 'R' 'RETURN' 'RETURN' ' ' 'RETURN' "K15" 'RETURN' 'R' 'R'

All the COLUMNS have individual totals and your screen should look like the picture below.

We will now create a sum total. Type:

'F7' 'F3' "A19" 'RETURN' 'SPACE' "TOTAL"
 ' $=$ ' "SUM(B15:K15)" and 'RETURN'

In co-ordinate A20 you will now see 49600. It is as easy to get the sum total of these numbers without first producing a row of totals which are themselves added together. CALC RESULT can sum an area - in this example the matrix with the top left corner B4 and the bottom right hand corner K12. Try this method.

Move the cursor to A21 and type:

"SUM(B4:K12)" 'RETURN'

You should now have the same answer as in A20. Now let us show every SUM as a percentage of this TOTAL.

Move the cursor to co-ordinate A17 and type:

'SPACE' "PERCENT" '"B15/A21" and 'RETURN'

In COLUMN 1 the answer is 0.0605 , ie approximately 6%.

2.3.6 FORMATTING A SINGLE CO-ORDINATE

The value at A17 - 0.0605 - is difficult to read and we do not need so many decimal places. The usual format in CALC RESULT is maximum precision (M) but for our needs integer format is better. First multiply the formula at B17 by 100 and then format it to an integer value. Move the cursor to B17 and type:

'F8'

Then edit the formula to read "B15/A21*100"
When ready type:

'RETURN' 'F7' 'F' 'I'

The title TOTAL is not in the correct position compared to its values. This is because CALC RESULT normally positions text on the left and numeric values to the right. We will adjust TOTAL to its values by formatting it.
Move the cursor to A19 and type:
' $\mathbf{F 7}$ ' ' \mathbf{F} ' and ' \mathbf{R} '
See picture below.

2.3.7 REPLICATING A FORMAT

Move the cursor to B17. We will now replicate the formula for SUM as a percent of TOTAL. Write:

'F7' 'E' 'R' 'RETURN' 'RETURN' '

'RETURN' "K17" and 'RETURN'

To answer the question ABSsolute OR RELative, think of how we want to treat the formula B15/A21*100. The first value at B 15 must change as we require different sums each time, but A21 (total) remains the same. Press
' \mathbf{R} ' (for relative at B15) and ' \mathbf{A} ' (for absolute at A21)
You should now have percentage values in the rest of the columns. As you can see, the formatting to integer value has also been replicated.

2.3.8 REPLICATE FUNCTION FOR COPYING A ROW OR COLUMN

Move the cursor to A13.
We will now draw a line under the percentage values. This time we will use a different method. Press:

'F7' 'E' 'R' 'RETURN' "K13" 'RETURN'

"A18" 'RETURN' "A18" 'RETURN'
This uses the replicate function when a row needs to be copied. It works the same way when copying a column

Before continuing further in this lesson, experiment by changing values in the table and observe what happens - do you understand why some can be changed, but not others?

2.3.9 NA (NOT AVAILABLE) FUNCTION

Suppose co-ordinate B4 is for the time being, unknown, then we can make use of the NA function - Not Available

Move the cursor to B4 and type:

'F7' 'B' 'SPACE' "NA" 'RETURN'

You will see a red NA in all the co-ordinates which are related to B4.
Now erase B4 with the BLANK-function.
Place the following formula at B4:

" $1 / 0$ " and 'RETURN'

Now we get a red ERROR instead of NA. ERROR means exactly that - in this case a division by zero error has been done.

When a formula contains references to one or more co-ordinates which have a value of zero, an ERROR answer is given. If the formula contains references to another co-ordinate which is a LABEL, then NA will be shown. NOTE that these messages are red.

Before we go on blank B4 and place a value there

2.3.10 INSERTING AND ERASING ROWS AND COLUMNS

If you want to insert an extra row in your table, eg ROW 12, first move to A13. Type:

'F7' 'E' 'I' 'R'

I is for insert and R is for row. This creates an empty row at row 13. All the rows under 13 are moved one row downwards.

Do this insertion once again.
Now we have a place for ROW 12. Move the cursor to A14 and type

'SPACE' "ROW 12" 'RETURN'

To remove the line we have inserted, and to restore our table to its orginal appearance, move the cursor to A13 and press:
'F7' 'E' 'D' 'R' 'F7' 'E' 'D' 'R'
D stands for DELETE. Using these functions you can either insert or delete both columns and rows. If you insert a column all the other columns are moved one step to the right.

The formulas that are affected by insertion or deletion are adjusted When deleting a row or column all formulas that contain references to the deleted row or column become LABELS. Those co-ordinates that then refer to these LABELS will show NA. You can then edit these coordinates using the edit function, F8.

2.3.11 MOVING MATRICES WITH THE MOVE FUNCTION

We are now going to move the matrix which contains the 2 nd , 3rd and 4th values in ROW 6 and ROW 8. Move the cursor to co-ordinate C8 and press:

On the command line MOVE is seen and on the help/input line FROM C8 TO C8 TARGET RANGE...
The matrix to be moved is defined by the co-ordinates C8 - the upper left hand edge, and E10 the bottom right hand corner. Continue by giving the bottom corner co-ordinate. Type:

"E10" 'RETURN'

Now give the co-ordinate to which the whole matrix is to be moved.
With the cursor at C19 press 'RETURN'
Your screen will now look like the one below:

Change the value in B8 or B10. As you can see CALC RESULT calculates the matrix just as if it was still in the TABLE.
Before continuing, try moving some other matrices. This method works just as well as moving single rows and columns.

2.3.12 RECALCULATION ORDER

On many occasions now you have seen CALC RESULT recalculate values after every new input, for instance when you change the values in the TABLE. Recalculation in CALC RESULT works by starting with the upper left corner and then calculating downwards towards the lower right corner.

Each formula is calculated once only, unless you order a second recalculation by pressing the up arrow key. This means that coordinate A1 cannot be a formula that refers to other co-ordinates Formulas must be stored from the upper left hand corner right down across the screen till you reach the bottom right corner.

CALC RESULT can look at the formulas either column by column or row by row. In the right corner on the command line a C is displayed. This is the RECALCULATION INDICATOR and indicates the order of calculation - C for column, or R for row. Normally CALC RESULT's recalculation is by column and calculates $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \ldots \mathrm{~B} 1, \mathrm{~B} 2$. B3.....etc.

In most circumstances this has no effect on the results of recalculations, but there are instances when the correct result is dependent on the direction of the recalculation and it is important to know when this arises.

We will take such an example, but first save your TABLE on a disk/ tape before you clear the screen. If you don't remember how to save your file, refer to Section 2.1.12 or the command reference 3.8.1.

When the example has been saved type the following:

'F7' 'CLR' 'Y' "10" '' "10+A1" 'RETURN'

'F7' 'E' 'R' 'RETURN' 'RETURN'

"C1" 'RETURN' "D1" 'RETURN' 'R'

'F7' 'F3' "A3" 'RETURN' "2*D1"

When you write formulas think of how the co-ordinates are dependent of each other. You will most probably see that this must be calculated row by row.

Test this by entering in A1 a value of 2. Press:

'HOME' '2' and 'RETURN'

Try pressing the ' \uparrow ' key once and study the screen.
This key depression will order recalculation and now A3 is correct.
If you change the recalculation order by pressing:

'F7' 'O' 'R'

and place the value "10" in A1 you can see that it will calculate properly this time.

The conclusion from this experiment is that one should construct models so that they either lie in rows or columns but, if possible, not in both directions. If you are uncertain type \uparrow several times just to be sure your model has no "forward" or "circular" references.

2.3.13 REFERENCE ORDER FOR FORMULAS

The formula in A3 is an example of "Forward Reference" because it refers to the co-ordinate which "normally" is calculated before B1.

In some cases the "Forward Reference" is built on others, to get the result press the \uparrow key several times.
"Circular references" are impossible to calculate no matter how many recalculations done.

Before continuing, reset recalculation order to columns.
Clear the screen.
Now we will place the formula, $10+\mathrm{D} 2$, in co-ordinates B2 and D2. With the cursor at B2 type:

"10+D2" 'RETURN'

As a reference to an empty co-ordinate the answer is NA. This is to help you to avoid and discover eventual mistakes. Type:

"' '0' $\mathbf{0 \prime \prime}$ 'RETURN' "10+D2" and 'RETURN'

Why doesn't this formula give NA since it is also refers to an empty co-ordinate? True, but here the formula refers to a value of zero. This kind of formula is called a self-reference. You should always insert a value - even if it is zero - at a co-ordinate before creating a selfreference formula, otherwise the answer will always be shown as NA.
Each time you undertake a further calculation - each time the ' \uparrow ' key is pressed - a new value will be shown.

2.3.14 SUMMARY OF LESSON 3

We have gone through many of the more important CALC RESULT functions. In this lesson you have learned to use:

- REPLICATE used to repeat a value, formulas, text, rows, columns and formats
- SUM used to total rows, columns and areas
- EDITING used to insert, remove and move rows, columns and areas
- NA function used to represent information that is not present as well as how formulas should or should not be referred to. When you feel that you are ready, continue on to Lesson 4.

2.4 Lesson 4

2.4.1 MORE ABOUT FORMATS AND VALUES

Load CALC RESULT as described in Part 1. If you have not already done so, clear the screen.

Write the following:

'F7' 'F3' "B10" 'RETURN'

"54.456" 'RETURN'

```
'F7' 'E' 'R' 'RETURN' 'RETURN'
"" 'RETURN' "* and 'RETURN'
```

You now have the same values in the three co-ordinates B10, C10 and D10 and as we have not given any format command all three coordinates have the normal global format. Move the cursor to B10 and press:

```
'F7' 'F' 'I'
'F7' 'F' 'L' '@'
'F7' 'F' '$'
'F7' 'F' 'L'
```

We have now formatted B10 to integers, positioned on the left, and C10 to 2 decimal places, also positioned to the left.

Alongside VALUE on the Help line you will see "\$L" for the format of the co-ordinate in the current cursor position. The dollar sign \$ represents two decimal places and L the left hand positioning. CALC RESULT always leaves an empty position at the beginning of each column to leave a vertical space between them.

Now press:

'F7' 'G' 'F' and 'I'

to change the global format to whole numbers - integer. The only coordinate which was affected was D1 because the others were individually formatted. Local formats always take priority over global ones. At the right hand edge of the Command line you will see "।" indicating the Global Format for the current work sheet.
With the cursor in B10 press:

'F7' 'F' and ' \mathbf{M}^{\prime}

This has deleted the Integer value and returns it to its original form you have the value 54.456 again. The Maximum Precision format does not affect the left adjustment - M format is only concerned with the
way a number is rounded, not its position. Now we will do the same for C10. Move the cursor to C10 press:

'F7' 'F' and 'M'

Lastly change the global format back to normal format by pressing:

'F7' 'G' 'F' and 'G'

How the numbers are presented depends on the current column width Type:

'F7' 'G' 'C' '6' 'RETURN'

And you have the value 54.46 in all the co-ordinates. CALC RESULT always leaves a blank position to the left while showing as many numbers as possible within the column width.

2.4.2 LARGE AND SMALL VALUES

Clear the screen. Note that earlier global command are erased, here giving normal column width (8).
Enter 9999999 (seven 9) in A1. Press:

"9999999" 'RETURN'

This is the largest value to be shown in an 8 character wide column.
Place the formula $1+\mathrm{A} 1$ in co-ordinate B 1 . Goto B 1 and press

"1+A1" 'RETURN'

The value 10000000 is written as $1 E 7$ instead, which is 1 times 10 to the power of 7 .
Place .0000001 in C1. Move the cursor to C1 and press:

".0000001" 'RETURN'

Here the value $1 \mathrm{E}-7$ means 1 times 10 to the power of -7 .
When a value is given, the column width is taken into consideration. If it is too small or too large the value is shown as above. Try to increase the column width. Type:

'F7' 'G' 'C' "11" and 'RETURN'

As you see the values are now shown in full.

2.4.3 MATHEMATICAL PRIORITY

So far we have had relatively simple formulas in our examples. If a formula contains more than one function you must understand in which order the formula will be calculated.

CALC RESULT always calculates according to the normal mathematical laws. In the following list 1 has the highest priority, 11 the lowest.

1 Higher mathematical function references such as MIN, MAX, ABS and INT
2 Functions and characters within parenthesis
3 Exponent \uparrow
4 Multiplication and division * and /
5 Addition and subtraction + and --
6 Less than and greater than < and $>$ Not equal to and equal to $<>$ and $=$ Equal to or greater than $=>$ Equal to or less than $=<$ Greater than or equal to $>=$ Less than or equal to $<=$
7 NOT
8 AND
9 OR
10 THEN and ELSE
11 IF
In general, the higher mathematical functions are followed by parenthesis containing the range of the expression. The colon character is used to describe the areas and each expression within the parenthesis is differentiated with a comma. See the example in Section 2.4.6.

2.4.4 A SMALL MATRIX

Start by clearing the screen. Now put in a series of different values which you can use in the tests which follow of the higher mathematical functions and priorities.

Move the cursor to B5, type:
" 20 " ' $2.25+$ B5" 'RETURN'
'F7' 'E' 'R' 'RETURN' 'RETURN' '' 'RETURN'
"F5" 'RETURN' 'R'
Move the cursor to B5, type:

Move the cursor to D5, type:

'F7' 'E' 'C' 'RETURN' "F5" 'RETURN' "B6" 'RETURN'

Move the cursor to B7, type:
"500" '-' "50" 'RETURN'
Move the cursor to B5, type:
'F7' 'E' 'R' 'RETURN' "B8" 'RETURN' "E6" 'RETURN' "F6" 'RETURN' 'A'
Move the cursor to E8, type:

'F7' 'E' 'C' 'RETURN' "F10" 'RETURN' "C7" 'RETURN'

Move the cursor to B9, type:

'1' 'RETURN' 'F7' 'G' 'C' '6' 'RETURN'

If everything is as it should be your screen should look like displayed in the following example.

2.4.5 FORMATTED PRINTOUTS

CALC RESULT enables you to format printouts to your requirements.
We will format a printout for this work sheet. Press:

'F7' 'E' 'P'

P is for PRINTING. Here you will choose between formatted and direct printing.

- Direct printing allows you to choose a part of the work sheet or the entire work sheet to be printed in the same format as shown on the screen.
- Formatted printing lets you decide the number of rows and the width of each of the columns varying between 1 to 255 characters wide.

Choose formatted printout, press:

'F'

All the lines of a work sheet - 254 lines - can be printed, but as our example contains only 10 we write this.

'1' 'RETURN' "10" 'RETURN'

We now decide which columns to print, press:

'C' 'RETURN' "10" 'RETURN'

For the other four columns you can have varying widths. Remember the smallest width allowed is 1 characters wide. After entering all the column widths (do not forget the B column) press RETURN once again, this tells CALC RESULT it can start the printout.

When ready, the work sheet will be printed according to your format. Make sure your printer is connected, switched on, and has paper!

2.4.6 MINIMUM AND MAXIMUM VALUES

Start by searching for the smallest value in column E. Move the cursor with the 'HOME' key to A1 and then type:

"MIN(E1:E10)" and 'RETURN'

In A1 '20' is seen, and it is easy to check that this is the column's smallest value. The colon is used to split the start and end values for the area which is to be searched. The blank co-ordinates within E1 and E4 created no problems.

Now we look for the largest value within the matrix. Type:

'申' "MAX(B5:B10,C5:C10,D5:D10,E5:E10,F5:F10)" 'RETURN'

Here you see how the comma is used to separate the different expressions.

2.4.7 COUNT AND MEAN FUNCTIONS

The COUNT function, counts the number of co-ordinates containing values or valid formulas within the row/column or area.

Move the cursor to A5 and press:
"COUNT(B1:B10)" and 'RETURN'
The answer is 7.
The MEAN function calculates the average value of the given row/ column or given area.
Move the cursor to A7 and press:

"MEAN(F5:F9)" 'RETURN'

The mean of $29,20,24.5,500$ and 50 should be 124.7. You can check this by moving to A8 and type:

"SUM(F5:F9)/5" 'RETURN'

This answer is also 124.7.

2.4.8 ABSOLUTE AND INTEGER FUNCTIONS

The ABSOLUTE function, ABS, works with an expression, and gives the value's absolute value. To get the absolute value of -150 write:

"ABS(-150)"

The answer is 150
The INTEGER function, works like the ABS with expression. INT functions gives the integer part of a value. If we have 26.75 in C6 and 500 in C7 we could have the integer sum in A20 as follows:

Move the cursor to A20 and type:

"INT(C6+C7)" 'RETURN'

The answer will be 526. The INT function does not round off the numbers compared to the formatting function F7 F I which does.

2.4.9 IF-THEN-ELSE FUNCTION

IF is always followed by ELSE. With this function the following tests can be accomplished.
IF the value in co-ordinate B 5 is larger than the value in co-ordinate F 10
THEN 1 is placed in co-ordinate A 3 or ELSE the value at B 5 will be placed in A3.

Move the cursor to A 3 and type:

"IF (B5>F10) THEN(1) ELSE(B5)" 'RETURN'

Since the value in B5 is less than the value in F10, the answer is 20 as this is the value in $B 5$.

Note! When using this function, and some of the conditions are not available, NA, the answer will be NA even if the true condition in itself is correct.

2.4.10 TRUE AND FALSE STATEMENTS

These are expressions which impose certain conditions that must be passed and cleared before further calculation can be undertaken. This can be useful, for example, in a calculation of interest which is dependent on the amount saved when 1000 will attract 11% while 2000 will get 13% and so on. By using the IF...THEN...ELSE... structure, you can place conditions on co-ordinate values.

(IF A1=1 THEN C1 ELSE 2)*D1

In the example above we see that if A1 is equal to 1 then D1 will be multiplied by C1. If A1 is not equal to 1 then D1 will be multiplied by 2 . When the statement is true then the value or expression after THEN will be taken as this represents truth, while a false statement will be given the section after ELSE. You could also have a condition within the condition e.g.:

F1*(IF A1=1 THEN 1 ELSE (IF A1=2 THEN 2 ELSE 3))

This shows that if A1 is egual to 1 then F1 will be multiplied by 1 otherwise it will be tested by the next condition. You must always have the ELSE at the end otherwise CALC RESULT will show that an error has been made. If you were to write the following:

IF A1 THEN 2*3/A2 (true) ELSE 3+B2 (false)

Now if A1 is blank or is a text, it will have the value NA so as to indicate that there is no value in it. But, if A1 had the value 0 then it will do $3+B 2$ as the statement is false. All other values will lead to a true statement.

If you should get FORMULA TOO COMPLEX as a reply, then you will have to break up your expression as CALC RESULT cannot calculate it. Within the IF...THEN ..ELSE structure you can use AND, OR and NOT to change the conditions. NOT will change the true/false statement so that it will be false/true instead.

When using AND both expressions must be true in order to make the statement true:

IF A1=1 AND B1=10 THEN 100 ELSE 5

A1 $1=1$	T	T	F	F	$(T=T R U E \quad F=F A L S E)$
B1 $=10$	T	F	T	F	
Result	100	5	5	5	

When using OR both or one of the expressions must be true to make the statement true:

IF $\mathrm{A} 1=1$ OR B1=10 THEN 100 ELSE 5

A1 $1=1$	T	T	F	F
B1 $=10$	T	F	T	F
Result	100	100	100	5

NOT, AND and OR are the lowest in the mathematical priority. NOT is higher than AND while AND is higher than OR.

2.4.11 RANDOM FUNCTION

The RND random number function is used to produce random numbers. If you want a random number which lies between zero and 100 in co-ordinate G20 you type:

'F7' 'F3' "G20" 'RETURN' "RND(100)" 'RETURN'

The random value will stay in the co-ordinate until you place another value there.

If you need a random number between 1 and 100 that changes each time a recalculation is done then use the function referring to a coordinate like this: in G19 type

"99" 'RETURN'

Cursor to G20, blank the old formula and insert the new one by typing:

'F7' 'B' "1+RND(G19)" '

Each time a recalculation is undertaken a new value for the random number between 1 and 100 will be given at G20. Try this several times using the \uparrow key for the recalculation.

2.4.12 PERCENT FUNCTION

This function is useful to easily express percentage values, eg to express 15% you could write 0.15 but, with the percent function you just write "\%(15)".

To get the percentage of a formula eg F5+F6, type:
"\%(F5+F6)" 'RETURN'
In the first example you do not need the parenthesis - you could just write \%15. In the other you have to have them because the function will otherwise only operate on the first value.

2．4．13 MANUAL AND AUTOMATIC RECALCULATION

As you most probably noticed in a number of your earlier examples CALC RESULT takes time when recalculating a value．Every value is calculated to up to twelve positions and it can take a number of seconds to recalculate many values over a large sheet．Often，you do not need a recalculation for every new value when you make an entry， but only when all the values have been entered．
CALC RESULT lets you to choose between automatic and manual recalculation．Automatic recalculation is set when you start up CALC RESULT．

If you want to avoid recalculation during every new input，press：

＇F7＇＇R＇＇M＇

You can enter as many new inputs as you want without being interrupted by recalculations．After you have changed a number of values in the matrix you can do a recalculation by pressing the up arrow key．When you have finished all your inputs，go back to Automatic Recalculation by pressing：

＇F7＇＇R＇＇A＇

As you see a recalculation is done．

2．4．14 GRAPHICS ON THE SCREEN AND PRINTED

CALC RESULT＇s graphic function gives you a bar chart which you specify．

The graphic function works in such a way that the row or column which is to be represented is determined by the current cursor co－ ordinate．
Start by moving the cursor to A17 and then type：

＂90＂＇申＂＂100＂＇申＇＂115＂＇申＇＂SUM（A17：C17）＂

Now give each of these four co－ordinates a color．See section 1．2．1 for color format．

Move the cursor to A17 and type：

＇F7＇＇E＇＇G＇＇R＇

CALC RESULT now clears the screen and asks for LOWER and UPPER LIMIT．This is the scale interval within which the bars will lie． Since our values are 90，100， 115 and 305 a range 0 to 500 will be fine． Type：

'0' 'RETURN' "500" 'RETURN'

You will now be asked to title your bar chart with a maximum of 39 characters. Then press:

'RETURN'

To print press:
'F6'
Now you will be given the option of adding two more rows of text to the printed version of the chart. When you have input the data for the first you can move to the second line with the 'RETURN' key.

When you have completed titling your chart press:

'RETURN'

and the printout will start.

2.4.15 SUMMARY OF LESSON 4

As well as practising some earlier functions we have also in this lesson learned:

- How CALC RESULT presents values on the screen even when its column size does not have space enough, for example, 1E7
- Some new formatting functions both local and global and how they influence each other.
- How to print what is on the screen.
- More mathematical functions such as MIN, MAX, COUNT, MEAN. ABSolute, RaNDom, INTeger, \% (percent), IF, THEN and ELSE.
- CALC RESULT's mathematical priorities.
- You have tried CALC RESULT's manual recalculation feature
- Lastly you have seen how CALC RESULT's present values as a bar chart.

Part 3 Commands and functions

Screen structure 3.1
CALC RESULT Commands
System command 3.2
Transport command 3.3
Edit command 3.4
Format command 3.5
Global command 3.6
CALC RESULT Functions
File functions 3.7
Formatting functions (global) 3.8
Formatting functions (local) 3.9
Graphic functions 3.10
Cursor functions 3.11
Mathematical functions 3.12
Co-ordinate functions 3.13
Program functions 3.14
Row and column functions 3.15
Recalculation functions 3.16
Printout functions 3.17
Formula References 3.18

3.1 SCREEN STRUCTURE

CALC RESULT's screen contains not only the information that you enter for your work, but also a number of different texts, characters and values to tell you what commands or functions you are using or have selected. What these symbols on the screen mean will be explained here.

1 Command line. On this line commands, contents of the position of the cursor and functions can be seen
2 Help line. Here the three functions, 'F3' for GO TO, 'F6' for HARDCOPY and 'CLR' for CLEAR are shown when the command key - F7 - has been pressed

CALC RESULT also uses this line to ask questions and indicate the answer to be given. Except for printout editing, all these answers can be given with one key depression. A small cursor shows where the input should be.
3 Input line. Here the characters which are being input are shown. Questions which need several key depressions to answer are also shown here. A small cursor shows where the input will be.
4 Error codes. One character is used for User errors and three for Formula input errors (see Appendix)

5 AC, AR, MC and MR gives type of recalculation. For example; AC indicates automatic column-wise recalculation, MR manual row-wise.
6 Shows available memory space by indicating the number of memory positions remaining to use. A value uses a maximum of one position, but the number of memory positions used for formulas and labels depends on their length.

7 Shows the current cursor co-ordinate.
8 Here is shown the type of co-ordinate at the current cursor position: either LABEL (letters) or VALUE.

9 These characters tell you the format of the current co-ordinate position: M for maximum precision, I for integer, $\$$ for two decimal places, R for right adjusted and L for left adjusted. The current format remains with the co-ordinate until changed or erased

10 The same characters as above indicate the global format for the current work sheet. Like the local format it remains with the current work sheet until it is changed or erased.
11 X-axis, shows the columns labeled alphabetically from A to BK (63 columns)

12 Y-axis, shows the rows numbered from 1 to 254 .

CALC RESULT COMMANDS

The CALC RESULT COMMANDS are shown here together with a short explanation of each command and function.

3.2 SYSTEM command: B E F G L O T R -

B: Blank
E:Edit command
F:Format command
G:Global command
L:Leave
O:Order
T:Transport command ...
R:Recalculate

Cancel contents of cell under cursor
For screen and printer
Individual cell
Global format and column width Title, split-screen and window Of recalculation
For Disk/Tape communication
Automatic or manual
Automatic repetition of characters at cell under cursor

3.3 TRANSPORT command: L S

L:DISK/TAPE Load
File to computer
S:DISKTAPE Save
File on disk/tape

3.4 EDIT command: C D G I M P R T

C:Copy	Data area to another area
D: Delete.	Row or column
G:Graphic	Bar chart
I:Insert	Row or column
M:Move	Data area to another area
P:Print.	Worksheet or user-defined format
R:Replicate	Data area to other areas
T:Title	Protects a title in the left column

3.5 FORMAT command: C G M I \$ L R

C: Color
G:Global
M:Maximum
I:Integer
\$:
L:Left
R: Right

Cell. Sets global format
Global ... Sets normal format
Select color

Sets maximum precision display mode
Sets integer display mode
Sets 2 decimal display mode
Sets contents at left
Sets contents at right

3.6 GLOBAL command: C F

C: Column width Sets global width in all columns except in protected title-column
F:Format

CALC RESULT FUNCTIONS

File functions 3.7
Save a file on Disk/Tape 3.7 .1
Get a file from Disk/Tape 3.7.2
Formatting functions (global) 3.8
Formatting 3.8.1
Column Width 3.8.2
Formatting functions (local) 3.9
Color format 3.9 .1
Global format 3.9.2
Maximum precision format 3.9.3
Integer format 3.9 .4
Two decimal format 3.9.5
Left adjusting 3.9 .6
Right adjusting 3.9 .7
Graphic functions 3.10
Graphics on the screen 3.10 .1
Graphics printed 3.10 .2
Cursor functions 3.11
Moving the cursor 3.11 .1
Moving the cursor towards A1 3.11 .2
Go to 3.11.3
Mathematical functions 3.12
Order of priority 3.12 .1
All the mathematical functions 3.12.2
Co-ordinate functions 3.13
Automatic character repeat 3.13 .1
Blanking a co-ordinate 3.13 .2
Moving a co-ordinate 3.13 .3
Copying a co-ordinate 3.13.4
Repeating a co-ordinate 3.13 .5
Self references in a co-ordinate 3.13.6
Program functions 3.14
Loading the program 3.14 .1
Row and column functions 3.15
Moving an area (matrix) 3.15 .1
Copying an area (matrix) 3.15 .2
Replicating an area 3.15 .3
Inserting a row or column 3.15 .4
Deleting a row or column 3.15 .5
Setting a title 3.15 .6
Recalculation functions 3.16
Automatic/Manual recalculation 3.16 .1
Recalculation by Row/Column 3.16 .2
Undertaking recalculation 3.16 .3
Undertaking multiple recalculations 3.16 .4
Printout functions 3.17
Hardcopy 3.17 .1
Direct printout 3.17 .2
Formatted printout 3.17 .3
Formula References 3.18
Moving relative references 3.18 .1
Copying absolute references 3.18 .2
Replicating references 3.18 .3

3.7 FILE FUNCTIONS

3.7.1 SAVE A FILE ON DISK/TAPE

This function is used to store work on the disk/tape. The total contents of the work sheet are stored, under its specific name, on the disk/ tape.
The contents of the RAM are still left intact after the file has been saved so that you can continue working with it.
To save your file start by typing:
'F7' 'T' 'D' (or 'T') 'S'
Enter the file name with a maximum 12 characters not including ' ": ; \# \$ * ?

Then press 'RETURN'

If, when you have successfully saved your file and you are going to start a new project, you might need to clear the work sheet, then use the Clear function - F7 CLR -
NOTE!! The maximum number of files that can be stored on a disk in limited to nine.

3.7.2 GET A FILE FROM DISK/TAPE

To get a file containing a work sheet type:
'F7' 'T' 'D' (or 'T') 'L'
Enter the file name, press 'RETURN'.

3.8 FORMATTING FUNCTIONS (GLOBAL)

3.8.1 FORMATTING

Also see FORMATTING (LOCAL). All positions (co-ordinates) within the current work sheet, except those title protected, are set to the format which is given.
Note that 'F7' 'G' 'F' 'G' resets all previous global formats. If, for example, left adjusted integer format has been chosen earlier, then both these formats will be deleted. NOTE!! The color format is not changed

3.8.2 COLUMN WIDTH

The column width can vary between 5 and 18 characters. When CALC RESULT starts the column width is set to 8 .

To change the column width type:

'F7' 'G' 'C'

Give the column width and then press 'RETURN'
All the positions (co-ordinates), within the current work sheet, are set to the given width

Note that title protected columns are not influenced by this aid.

3.9 FORMATTING FUNCTIONS (LOCAL)

It is possible in both global and local functions to combine two formats, eg left adjustment and integer.
Note that all local formats except GLOBAL FORMAT have the same effect as the corresponding global format except that they only affect one co-ordinate instead of the whole work sheet. Used locally, however, the GLOBAL FORMAT does not have the same meaning as it does when used globally.

3.9.1 COLOR FORMAT

Changes the color on the current co-ordinate. See section 1.2.1 for color alternatives.

Place the cursor at the co-ordinate which is to be colored. Type
'F7' 'F' 'C' and choose color key

3.9.2 GLOBAL FORMAT

Locally:
Changes the format of the current co-ordinate to the global format set up earlier - this will be the 'start-up' format if the Global Format has not been changed. NOTE!! The color format is NOT changed.
Place the cursor at the co-ordinate which is to be formatted. Type

Globally:
Resets all co-ordinates at the current work sheet to CALC RESULT's normal format, that is labels are left adjusted, values right adjusted and with maximum precision (decimals are shown if there is enough room). All earlier global formats are overridden. NOTE!! The color format is NOT changed.

3.9.3 MAXIMUM PRECISION FORMAT

Changes format at current co-ordinate to maximum precision, decimals are shown if there is enough space. This function only affects integer and two decimal place functions, other local formats are not changed.

Place the cursor at current co-ordinate. Type
'F7' 'F' 'M'

3.9.4 INTEGER FORMAT

Sets integer format at current co-ordinate. Any decimals are not rounded mathematically, they are just not shown in the display. This function only affects maximum precision and two decimal place formats, other local formats are not changed.
Place the cursor in the position which is to be changed. Type
'F7' 'F' 'I'

3.9.5 TWO DECIMAL FORMAT

Presents the value at current co-ordinate to two decimal places. This function only affects maximum precision and integer formats, other local formats are not changed

Place the cursor in the co-ordinate which is to be changed. Type
'F7' 'F' '\$'

3.9.6 LEFT ADJUSTING

Changes from right adjusted to left adjusted at the current position (co-ordinate). This function only affects right adjusted formats, other formats are not changed.
Place the cursor at the co-ordinate which is to be changed. Type

3.9.7 RIGHT ADJUSTING

Changes left adjustment to right adjustment at the current position (co-ordinate). This function only affects left adjusted formats, other formats are not changed.

Place the cursor at the co-ordinate which is to be changed. Type 'F7' 'F' 'R'

3.10 GRAPHIC FUNCTIONS

This function represents the values from any row or column as a bar chart against a user selected scale.

3.10.1 GRAPHICS ON THE SCREEN

Move the cursor to the current start co-ordinate and then type:

'F7' 'E' 'G'

If a row is to be represented press ' \mathbf{R} ' otherwise press ' \mathbf{C} ' for column.
Give the lower and upper limits of the scale for the bars of the chart. Provide a title, maximum 39 characters

The function ends by pressing 'F7'.

3.10.2 GRAPHICS PRINTED

All graphics can be printed by using the hardcopy function, 'F6'
You are also able to include two further lines of titling for printed graphic output which can be used to label the bars of the chart. After each of these two lines press:

'RETURN'

When ready the printout will start.

3.11 CURSOR FUNCTIONS

3.11.1 MOVING THE CURSOR

Movement of the cursor is controlled by the two CRSR keys together with SHIFT.

3.11.2 MOVING THE CURSOR TOWARDS A1

The HOME key is used for fast cursor movements towards coordinate A1.

One press of HOME results in the cursor being moved to the upper left corner of the screen

A second press of HOME makes the cursor, no matter where it is positioned on the work sheet, go to co-ordinate A1 of that work sheet.

3.11.3 GO TO

The cursor can be moved to any co-ordinate on the current work sheet by typing

'F7' 'F3'

Write the co-ordinate to which the cursor is to be moved and then press 'RETURN'

3.12 MATHEMATICAL FUNCTIONS

3.12.1 ORDER OF PRIORITY

CALC RESULT always calculates according to the normal mathematical laws. In the following list 1 has the highest priority, 11 the lowest.

NOTE!! That CALC RESULT corrects formulas before saving them unnecessary brackets are removed, double minus signs are changed to positive and when a number of plus signs are written, only one remains.
1 Higher mathematical function references such as MIN , MAX, ABS and INT
2 Functions and characters within parenthesis

```
3 Exponent \uparrow
    4 \text { Multiplication and division * and}
    5 \text { Addition and subtraction + and -}
    Less than and greater than < and >
    Not equal to and equal to <>> and =
    Equal to or greater than =>
    Equal to or less than =<
    Greater than or equal to <=
    Less than or equal to >=
    7 NOT
    8 \text { AND}
    9 OR
10 THEN and ELSE
1 1 ~ I F ~
```

In general, the higher mathematical functions are followed by parenthesis containing the range of the expression. The colon character is used to describe the areas and each expression within the parenthesis is differentiated with a comma.

NOTE!! That in the IF THEN ELSE function if any of the co-ordinates give NA then the result will be given as NA even if the condition is true.

3.12.2 ALL THE MATHEMATICAL FUNCTIONS

All the functions are presented here in groups within which they all have the same structure. An example is given for each group.

GROUP 1

COUNT Gives the number of co-ordinates containing a constant or valid formula (without NA or error)

MAX Chooses the largest value within a given area
MIN Chooses the smallest value within a given area
MEAN Gives average value for a certain area
STDDEV Calculates the standard deviation of a given area
SUM Calculates the sum of a given area
Structure: FUNCTION (argument, argument, argument.....)
Example: MEAN(A1:A5, B1:B5)

GROUP 2

NPV To calculate the net present value
Structure: FUNCTION (percent, argument: argument)
Example: NPV(.10,C1:G15)

GROUP 3

NA Shows that the co-ordinate represents a value or a formula that refers to an invalid co-ordinate
Structure: FUNCTION
Example: SPACE NA
GROUP 4
ABS, EXP, FRAC, INT, LN, LOGIO SQRT and RND
Structure: FUNCTION (expression)
Example: $\mathrm{ABS}(\mathrm{A} 1+1 * 2.5 / \mathrm{B} 7)$
GROUP 5
IF THEN ELSE
Structure: IF expression THEN expression ELSE expression
Example: IF A1 = 10 THEN B1 + 2 ELSE 5

GROUP 6

OR, AND and NOT
Structure: FUNCTION within IF THEN ELSE
Example: IF A1 $=10$ OR C1 $=5$ THEN B1 +2 ELSE 5

3.13 CO-ORDINATE FUNCTIONS

3.13.1 AUTOMATIC CHARACTER REPEAT

Is used to repeat a character in a given co-ordinate.
If one wants to fill a co-ordinate with, for example, equal signs, type: 'F7' '-' '='

The current co-ordinate will be filled, irrespective of the column width, with equal signs.

3.13.2 BLANKING A CO-ORDINATE

Used to empty a co-ordinate.
Place the cursor at the current co-ordinate and type
'F7' 'B'

3.13.3 MOVING A CO-ORDINATE

Place the cursor at current co-ordinate and type

'F7' 'E’ ‘M' 'RETURN' 'RETURN'

Give the co-ordinate to which co-ordinate contents are to be moved. Then type:

'RETURN'

3.13.4 COPYING A CO-ORDINATE

Place the cursor at the required co-ordinate and type

'F7' 'E' 'C' 'RETURN' 'RETURN'

Give the co-ordinate where the copy is to be placed. Then type 'RETURN'

3.13.5 REPEATING A CO-ORDINATE

Place the cursor at the co-ordinate and type:

'F7' 'E' ‘R' 'RETURN' 'RETURN'

Provide the target range over which the selected co-ordınate are to be repeated, ending each entry with 'RETURN' The entries can be made by cursor movements or by direct inputs of the co-ordinate positions.

3.13.6 SELF REFERENCES IN A CO-ORDINATE

This is used for creating new values at every calculation. To create, for example, a counter at A1 go to A1 and type:

'F7' 'R' 'M' " 1 " 'RETURN' "A1+1" 'RETURN'

There will now be a zero in A1 with the formula on the command line Every time the up \uparrow key is pressed for a recalculation the value at A1 is increased by one. If you return to automatic recalculation the value will increase each time an input is made. You can also test this with the automatic recalculation feature and recalculate a number of times.

Note: because of the way CALC RESULT works it will always calculate your self-reference as it is input - this is why we used minus one for the starting value. When the formula was accepted CALC RESULT calculated the value to be zero.

3.14 PROGRAM FUNCTIONS

3.14.1 LOADING THE PROGRAM

Insert the CALC RESULT cartridge at the Commodore 64.
Switch on the Commodore 64
CALC RESULT will show its format on the screen.
If the format does not appear, switch off the CPU, remove the cartridge and go through the same procedure again.

Switch on the power to:
Your printer, NOTE! When using VIC 1515/1525 you have to change their device number to 5 , see their printer manuals.

Your disk drive
Remember: to be able to use the CALC RESULT commands you have to press the 'F7' key.

3.15 ROW AND COLUMN FUNCTIONS

3.15.1 MOVING AN AREA (MATRIX)

A specified area can be moved within the current work sheet. As an example we choose to move the area between A1 until C5 to J1
Fill the area A1 - C5 with some characters and values.
Place the cursor at the co-ordinate which is the start position (here A1). Type:

'F7' 'E' 'M' 'RETURN'

Give the last co-ordinate position of the area you want to move to either through cursor movement or direct enterence of the co-ordinate (here C5). Then press

'RETURN'

Now input the starting co-ordinate of the area to receive the moved area - press

"J1" 'RETURN'

The original positions A1 to C5 are now empty. Move the cursor to J1 (use GO TO) to check that the movement has been made.

3.15.2 COPYING AN AREA (MATRIX)

A specified area can be copied within the current work sheet. As an example we choose to move the area between A 1 until C 5 to J 1 .

Fill the area A1-C5 with some characters and values.
Place the cursor at the co-ordinate which is the start position (here A1). Type:

'F7' 'E' 'C' 'RETURN'

Give the last co-ordinate position of the area you want to copy either through cursor movement or direct enterence of the co-ordinate (here C5). Then press

'RETURN'

Now input the starting co-ordinate of the area to receive the copied area - press

"J1" 'RETURN’

Move the cursor to $\downarrow 1$ (use GO TO) to check that the copy has been made.

3.15.3 REPLICATING AN AREA

This function is used to copy the content of several positions to various different places on the current screen. While it is possible to copy a single position, row or column it is not possible to copy a row to a column or vice versa. Nor is it possible to replicate a matrix.

As an example of this function we will place rows of stars over the whole work sheet. Start by filling A1 and A2 with stars. Place the cursor at A1. Press

These stars will now be replicated to row 10 . Press

'F7' 'E' 'R'

Give the origin of the area of the asterisks we are going to replicate.

'RETURN' '-' 'RETURN'

Now input the area they are to fill by typing

"A10" 'RETURN' "I10" 'RETURN'

Having given both SOURCE RANGE and TARGET RANGE, when there is a reference to another position, the question ABSolute OR RELative will be asked. You have to decide if the positions are RELATIVE or not. Answer the question with ' \mathbf{A} ' or ' \mathbf{R}^{\prime}

3.15.4 INSERTING A ROW OR COLUMN

This function inserts an empty row or column at any place on the screen. To insert a row, type:

'F7' 'E' 'I' 'R'

Everything at and below the current row is moved downwards one step.

If a column is to be inserted, type
'F7' 'E' 'I' 'C'
Everything at and to the right of the current column is moved one step to the right.

The formulas that are affected by the movement are adjusted to the new positions or changed to NA.

Note that it is not possible to insert a column if there is any data in the last column (BK), without first moving the contents of or blanking out the BK column. The same qualification is true when trying to insert rows if row 254 has been used.

3.15.5 DELETING A ROW OR COLUMN

This function enables you to remove a row/column from any position on the screen.

To create an example write the label "A1" at A1, "B1" at B1 and so on to fill the area as far as C5. We will now erase row 3 .
Place the cursor at any position on row 3 and type

'F7' 'E' 'D' 'R'

Everything below the cursor is moved upwards one step, this means that row 4 has replaced row 3 . Thus row 3 has been deleted.

To delete a column: place the cursor at any position on column B and type:

'F7' 'E' 'D' 'C'

Everything to the right of the cursor is moved one column to the left and the original contents of column B are erased.
NOTE!! That formulas which contain references to a deleted row or column will be changed to LABELS and any references to them will become NA

NOTE!! That the last used column/row can NOT be deleted. Here you can replicate or move a blank column/row instead.

3.15.6 SETTING A TITLE

In the first column of the screen it is useful to be able to display text titles with a differant column width to the rest of the screen. It is also helpful for this column to be fixed in position when scrolling the work sheet.

To create a title column, scroll the work sheet until the column is at the left edge of the screen and then type:
'F7' 'E' 'T'
The title is removed by typing ' $F 7$ ' ' L '

3.16 RECALCULATION FUNCTIONS

3.16.1 AUTOMATIC/MANUAL RECALCULATION

When CALC RESULT is started automatic recalculation begins as well as all positions that are relative to each other will be calculated. A recalculation will be undertaken each time a formula is entered or changed

To change from automatic to manual recalculation type:

'F7' 'R' 'M'

When this function is chosen recalculation will take place only at the position of the cursor. This is useful when you are going to change several values on a work sheet and every change affects other positions. After all the changes have been made you can change BACK to automatic recalculation to see the new results. Type
'F7' 'R' 'A'
Note that the calculation order remains with the current work sheet until it is changed.

3.16.2 RECALCULATION BY ROW/COLUMN

When CALC RESULT is started it will calculate columnwise. If you want to change that type:

'F7' 'O' 'R'

and it will now calculate row by row (starting from A1).

When you want to change it back to columnwise again, type:
'F7' 'O' 'C'
Note that the calculation order remains with the work sheet until it is changed

3.16.3 UNDERTAKING RECALCULATION

You can undertake recalculation at any time by pressing the ' \uparrow ' key.

3.16.4 UNDERTAKING MULTIPLE RECALCULATIONS

To undertake a number of recalculations type
'F7' 'R' 'N'
Give the number of recalculations you require (1-999). If, for example, you want 25 type

"25" 'RETURN'

These recalculations can be stopped by pressing the 'F7' key.

3.17 PRINTOUT FUNCTIONS

Depending on your needs you can choose between three different types of printout of CALC RESULT data. Check that your printer is connected and has an adequate supply of paper. If you create a format wider than the selected paper width the rows will 'wrap round'.

NOTE!! When using VIC 1515/1525 you have to change their device number to 5 , see their printer manuals.

3.17.1 HARDCOPY

This function gives you a screen dump of everything except the first three lines of the screen. Position the data you want to print on the screen and press:

'F7' 'F6'

Note that when printing graphics you only need to press 'F6' without using the F7 key.

3.17.2 DIRECT PRINTOUT

Direct printout enables you to choose a part of the current work sheet to print with the same format as the global format for that work sheet. Press:

'F7' 'E' 'P' 'D'

Now give the area to be printed by inputting the co-ordinate that is the upper left corner of the area (FROM), press 'RETURN' and then, in the same way, the lower right (TO).

3.17.3 FORMATTED PRINTOUT

Formatted printout gives you extensive control over the output of the data from the work sheet. You can define the number of rows that the printout will include and the width of the columns to be included. The width of the columns can vary between 1 and 255 characters. Press:

'F7' 'E' 'P' 'F'

Input the letter of first column of the printout, for instance A, press 'RETURN', give its column width followed by 'RETURN'.
Repeat this for each column that the printout is to include. End with 'RETURN'.

3.18 FORMULA REFERENSES

3.18.1 MOVING RELATIVE REFERENCES

Clear the screen and then input some formulas containing references. Move the cursor to A1 and type:
' 1 ' ' "A1+1" 'RETURN'
'F7' 'E' 'R' 'RETURN' 'RETURN' "' 'RETURN' "D1" 'RETURN' 'R'

There is now a row where all the values are dependent on the value at A1, they are relative. What will happen to these references if the formulas are moved to other co-ordinates?

Try by moving B1 and C1 to B5 and C5 respectively. With the cursor at B1 type:

```
'F7' 'E' 'M' 'RETURN' '\' 'RETURN' "B5" 'RETURN'
```

When you move the cursor to the new co-ordinates you will see that the formula at B5 still refers to A1 but the formula at C5 has been changed, it now referes to B5. If you move the cursor to D1 you will see that the formula there has also been changed, it now refers to C 5 .
Move the cursor to C5 and press:

'F7' 'E' 'M' 'RETURN' 'RETURN' "D5" 'RETURN'

The formula at D5 is unchanged but at D1 you will find that the formula there now refers to D5.

This works in the same way when moving formulas which contains absolute references. It is not possible to move a row to a column or vice versa.

3.18.2 COPYING ABSOLUTE REFERENCES

Clear the screen, move the cursor to A1 and type:
"1000"
Now move the cursor to C1 and type:
"A1-100"

Repeat this formula from C 1 to C 10 by typing:

'F7' 'E' 'R' 'RETURN' 'RETURN'

' ${ }^{\prime}$ 'RETURN' "C10" 'RETURN' 'A'
When you look at the formulas you will see that they all refer to A1, they are absolute.
See what happens if a part of the column is copied to another column.
Move the cursor to C4 and type:
'F7' 'E' 'C' 'RETURN' "C8" 'RETURN' "D15" 'RETURN'
When you examine the D column you will see that the formulas look the same, they all refer to A1.

Note that it works the same way when copying formulas which contain relative references. It is not possible to copy a row to a column or vice versa

3.18.3 REPLICATING REFERENCES

The two earlier reference examples showed how to use the REPLICATE function for replicating formulas with relative or absolute references. This example shall show how it works when both relative and absolute references are involved.

Clear the screen and type

"10" ' 20 " ' $\mathbf{l}^{\prime \prime}$ ' $\mathrm{A} 1+10+\mathrm{B} 1$ " 'RETURN'
 'F7' 'E' 'R' 'RETURN' 'RETURN' ' 'RETURN'
 "A10" 'RETURN' 'R' 'A'

When you have examined the formulas you will find that the A coordinate is relative and the B co-ordinate absolute. Now we shall replicate a part of this column.
Move the cursor to A6 and type:

'F7' 'E' 'R' 'RETURN' "A10" 'RETURN'

"A14" 'RETURN' "C14" 'RETURN'

As A 5 is the start value for all columns being replicated it must be absolute. B1 on the other hand is absolute all the time. Type: ' \mathbf{A} ' ' \mathbf{A} ' The following A-references will be relative, type:

$$
\text { ' } R^{\prime} '^{\prime} '^{\prime} R^{\prime} \text { ' } A^{\prime} \text { ' } R^{\prime} \text { ' } A^{\prime} '^{\prime} R^{\prime} \text { ' } A^{\prime}
$$

Move the cursor to A14. As you can see the formula there is simular to the one at $\mathrm{A} 6(\mathrm{~A} 5+10+\mathrm{B} 1)$, it is absolute. If you move the cursor to B14 and C14 you will see the same formula. You will notice the difference when you examine the others. Here the A reference has been related to its surronding co-ordinates.

ERROR MESSAGES

1 USER ERRORS

Error Code	Cause Illegal position
2	Illegal position range
3	input of an illegal position, eg A0 or B1D12, when using the GO TO function
$4-9$	Unused error codes

2 FORMULA ERRORS

Error Code
100

101

102

103

Cause
Attempting to overwrite an earlier input formula (All formulas are protected

Formula expressed in too complicated a manner

Syntax error eg THEN argument IF argument ELSE argument
Too many arguments in a multiple (max 8)

Remedy
Refer to REPLICATE

See above

Change to valid position, A1 - BK254

Remedy
Write the formula in another postion or delete the current formula

Put the formula in several positions If it uses IF THEN ELSE try to use OR, AND and NOT
Correct the syntax in this example to: IF. THEN .ELSE
Put the formula in several positions

Attempting to mix areas with arguments eg (A1:C5+12)

Attempting to insert a multiple argument as an argument within another argument function eg SUM(A1:E3,MIN(B1:D2))

NPV is short of arguments (must have at least two)

First argument within NPV is wrong
(Should be percent. like .13 for 13%)

Here it should be:
(A1:C5) +12

Erase the inner multiple argument function

Input missing argument

Change the first argument to valid percentage value.

MADE IN SWEDEN PRODUIT EN SUĖDE
handic froklit

