

DotBASIC Plus created by
Dave Moorman

Based on Mr.Mouse Technology

by Lee Novak

Manual by
Dave Moorman, Lee Novak, Alan Reed

Join the DotBASIC Community

More from these Authors:

"Shall Not Perish" or "The god of 524288 Switches", Salvific Issues of Automatic Data Processing
by Dave M. Moorman

Also Steal This Book

by Alan Reed

Untitled: A Tale of Indecision
by Lee Novak

Copyright 2008 eTower Marketing
All Rights Reserved

All Programs Copyright 1982-2008 J&F Publishing, Inc

INTRODUCTION
DotBASIC Plus

3

USING THIS BOOK

e at LOADSTAR are pleased to offer the ultimate software development package for the Commodore

64: DotBASIC Plus.

DotBASIC Plus (DB+) is a new and exciting way to put pizzazz in your programs. While DotBASIC is
astoundingly easy to use, there are a few new concepts that may be unfamiliar to the BASIC 2.0 programmer. So, we highly
recommend you start from the beginning. The first part of the manual will walk you through a number of program ideas,
explaining the various DB+ commands and concepts along the way. Take the time to work your way through themτwe
promise it will pay off! Once you get the hang of DotBASICΣ ȅƻǳΩƭƭ ōŜ ŀƳŀȊŜŘ ŀǘ Ƙƻǿ ǎƭƛŎƪ ŀƴŘ ǇǊƻŦŜǎǎƛƻƴŀƭ ȅƻǳǊ ǇǊƻƎǊŀƳǎ
can look with just a few lines of code.

DotBASIC is the ideal programming environment for the novice ς however, at least some familiarity
with BASIC 2.0 (the built-in language on the C-64) will help. We will start from scratch. Yep τ "Hello, World"
will be our first project. From there, we will explore doing text boxes, menus, Event Regions, mouse controls,
and a host of other features.

The second part, The DotBIBLE, is the άwŜŦŜǊŜƴŎŜ DǳƛŘŜέ ǎŜŎǘƛƻƴ ƻŦ ǘƘŜ Ƴŀƴǳŀƭ. Every current DotBASIC
command (cleverly abbreviated to DotCommand) is listed here alphabetically. ¸ƻǳΩƭƭ ōŜ ŀōƭŜ ǘƻ ƭƻƻƪ ǳǇ ǘƘŜ
proper syntax and see a short description of each DotCommand.

In the Appendices ȅƻǳΩƭƭ ŦƛƴŘ a DotBASIC Quick Reference sheet, a DotCommand Summary, info for
machine language programmers, and other interesting and useful things for the more advanced user.

The following conventions are used throughout this book:

¶ Special Commodore characters are shown in brackets. For example, {clr} is the SHIFT / HOME key combination,
{down} is the CRSR down key, and so on.

¶ We will use the "variable" db for the disk drive containing your DotBASIC disk, as in [h!5έ.Φ59±έΣdb.
Likewise, dw represents the drive containing your Work disk.

¶ We present DotCommands in the following way:

NAME

Syntax: dotcommand,parameters

Some DotCommands are easier to remember than others. .MENU is pretty self explanatory, but άRandom
Indexέ makes a little more sense than .RDMIτthus the blue NAME field.

Some typical parameters used throughout:

X,Y,W,H This is the area field. X and Y represent row (0-39) and column (0-24) of the upper left
corner of the area. W is width (1-40) and H is height (1-25).

CO Color

W

4 DotBASIC Plus v2.2

SC Screen Code

D Disk drive device number. Your current drive number is automatically assigned to D by
your DotBASIC Plus program. ¢ƘŜǊŜΩǎ ƴƻ ƭƻƴƎŜǊ ŀƴȅ ƴŜŜŘ ǘƻ ǿƻǊǊȅ ŀōƻǳǘ ǿƘŀǘ ŘŜǾƛŎŜ
number to use when creating programs that require disk drive access. Just use D.

LOC Location in RAM memory, as in 49152 or 40960.

PAGE Page number in RAM. Each page is 256 bytes long. To convert a page to a decimal
memory location, multiply by 256. For example, page 192 is 192*256 = 49152. We at
LOADSTAR like using pages when talking about memory. Refer to page 6, Making
Memory Management Manageable, to see why using Pages just makes sense.

STRING$ String, as in A$, or ά{¢wLbDέ. Most DotCommands can use string variables (A$), literals
(ά{¢wLbDέ) or concatenated strings (!ϷҌέ{¢wLbDέ). A few, however, require a literal
string and a few insist on string variable only.

SYSTEM REQUIREMENTS

Keep your original DB+ disks in a safe place. Use a copy of the DotBASIC Plus disk and at least one disk
drive. The system really works best if you have two or more drives. In fact, this manual assumes that you are
using two drives. The DB+ Library disk should be in one drive and your formatted Work Disk in the other. (I use
drive 8 for my Work and drive 9 for the DB+ Library disk. Your situation may vary. I also work in VICE, the
Versatile Commodore Emulator, on a Pentium 400 Windows 98 machine. Even on the shiny new equipment, I
am woefully behind the cutting edge!τDave)

If you absolutely must use a single disk drive, you will need to be sure you have 100+ blocks free on
your DotBASIC Plus disk to have room for your work. Just be sure to copy your program to another disk when
the project is completed. Your essential files are: B.YOURPROG, MOUSE 2.1 7K 2000, YOURPROG.DML,
YOURPROG.DBS, and any file with a DBA prefix. Did we mention that DotBASIC really works best with two disk
drives?

DOTBASIC FEATURES

1. DotBASIC Plus is an Adaptable, Mouse Capable BASIC Extension. DB+ programs boot from default BASIC, and exit
to default BASIC. DB+ currently has 100 additional commands, using an easy-to-use and easy-to-read ".command"
structure. Your DB+ program has code overhead for only the DotCommands you use.

2. Quick environment set-up puts all the necessary files on your work disk and creates a boot program for your
project. Easily "include" the DotCommands you need with "DEV". Library commands are merged with your
program code.

3. Programs written with DotBASIC Plus automatically support a mouse in port 1 and a joystick in port 2. The joystick
FIRE button is the same as the left mouse button. For joystick users, any key can be defined to replace the missing
right mouse button. If you have CMD's SmartMouse, the middle button will double the mouse's speed.

4. Do-Loop Method for Fast Mouse Control, with Loop-Until and Loop-While. Event Regions and Mouse Roll-Over
effects, including "Region Text" to display information.

5. Boxes/Windows, Screen Stash/Restore, Text Area Cut/Paste for pop-in/pop-out menus, dialogs and effects. Print
At/Print Center/Word-Wrapped Text Blocks. Wait for Key/Wait for Key or Mouse Click. Read Keypress against
given string of keystrokes. Two improved INPUT commands.

6. BLOAD/BSAVE/Directory Load/Disk Command. Character/Color Swap/Copy Memory/Swap Memory
7. Regular Menus/Scrolling Menus/Multi-Column Menus/Scrolling-Multi-Select Menus.
8. Rack Mr.Edstar (LOADSTAR's 38-column editor) files into virtual string arrays τ even under ROM. Store strings in

memory (under ROM) and Rack into a virtual array.
9. SIDPlayer! Craig Chamberlain's classic Enhanced SIDPlayer available as two DotCommands. Load and display High-

Res and Multi-Color Bitmap Graphics. Draw on Bitmap Screen. Print Text on Bitmap Screen. Sprite Control,
including expansion, priority, and multi-ŎƻƭƻǊ ƳƻŘŜ ŜŦŦŜŎǘǎΦ [ƛƴƪ ǎǇǊƛǘŜǎϥ Ǉƻǎƛǘƛƻƴǎ ǘƻ ŜŀŎƘ ƻǘƘŜǊ ŦƻǊ άŜŀǎȅ-to-ǇƭŀŎŜέ
mega-sprites.

10. AND THE GREATEST FEATURE OF ALLτ DB+ is designed to grow, with new commands and variations being
continuously developed. Just add the new command files to your library and use them as needed.

INTRODUCTION
DotBASIC Plus

5

 GETTING STARTED

IN THIS SECTION: Page

Creating a New Project 7

DotCommands

TEXT COLOR 8

BACKGROUND COLOR 8

BORDER COLOR 8

OFF 8

DO-LOOP 9

MOUSE ASK 9

UNTIL 9

άLƴŎƭǳŘƛƴƎέ bŜǿ 5ƻǘ/ƻƳƳŀƴŘǎ 10

Creating Text Boxes 12

 DotCommands

 TEXT BOX 12

 BOX 12

 KEY/MOUSE WAIT 12

 Regions 13

 DotCommands

 DEFINE REGION 13

 AFFECT REGION 14

 PUT MOUSE 14

 PRINT AT 14

 PRINTCENTER 14

 KEYPRESS 16

6 DotBASIC Plus v2.2

MAKING MEMORY MANAGEMENT MEMORABLE

At LOADSTAR we like simplicity. But memory locations are quite confusing, especially when
written in decimal numbers. And, if you are rather new to programming, those hexadecimal
numbers (like $A000) are even harder to read. So we use Pages. The 64K of the C-64 can be
divided into 256 Pages, each containing 256 bytes. Actually, this is how the computer sees
memory, described in two bytes τ lo byte and hi byte. We call the hi byte the Page number.

Here are some Page numbers that are important with DotBASIC Plus:

0 Zero Page τ where the system does a lot of work.
4 Beginning of the text screen.
8 Beginning of the font.
16 Beginning of DB+ code
46-54 Sprite image area.
55-?? DB+ commands.
160 Beginning of BASIC ROM
176 Half way through BASIC ROM
192 "Open" memory.
208-223 Input/Output registers
224-255 Kernal ROM

Pages 128-207 will be used with certain DotCommands, such as .SID and .BMP. Be sure to
look at the Memory Map on the Quick Reference Sheet when using these commands. When
we have a Mr.Edstar text to BLOAD, we just multiply the Page number by 256, as in:

.bl,"t.text",d,160*256

Another great trick: on the disk directory, we can see how many Disk Blocks a file uses. A Disk
Block is 254 bytes long, so we can use this number to figure out how many pages a file will
encompass. For instance, if "t.text" is 12 Blocks in size, we know we can BLOAD "t.text2" to
page 160+12, or

.bl,"t.text2",d,172*256

Now that's memorable!

GETTING STARTED
DotBASIC Plus

7

GETTING STARTED: CREATING A NEW PROJECTτάHELLO, WORLDέ

ƘŀǘΩǎ ǊƛƎƘǘ, ladies and gentlemen, we are going to start with the semi-ƻōƭƛƎŀǘƻǊȅ άIŜƭƭƻΣ ²ƻǊƭŘέ program. This tutorial
will introduce you to the world of DotBASIC programming, gently acquaint you with some programming concepts that
might be new to you, and show you a few DotCommands. tŜǊƘŀǇǎ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘƭȅΣ ǿŜΩƭƭ ǘŜŀŎƘ ȅƻǳ Ƙƻǿ ǘƻ ŎǊŜŀǘŜ ŀ

new DotBASIC Work disk.

So are you ready to go? Format your Work disk, making sure all disks are in the proper drives.
Remember, we will use the "variables" db for your DB+ disk drive and dw for the Work disk drive. Ready?

Here we go!

LOAD"B.DOTBASIC",db

And

RUN
First, choose the drive your Library όά5ƻǘέύ disk is in. The
next menu that appears is "Work Dsk." Choose the drive
your Work Disk is in. You will be asked to confirm both
choicesτ press N, then press Y to try again.

You are now prompted to input the program name. We
will call this program hello. Type in "hello"and press RETURN.

The necessary files for your project are created and copied
to your Work drive. Then your project is automatically RUN. You will
see the mouse arrow for a second, then a READY prompt in white. You are now ready to program in DotBASIC Plus! [ŜǘΩǎ
see what we have on our Work disk now. LOAD"$",dw And LIST the program. You will see:

B.HELLO is the boot program, the one you will load and run to start your DotBASIC program. ¢ƘŜ ά.Φέ ǇǊŜŦƛȄ ƛǎ ŀ
LOADSTAR convention that makes it easy to recognize a multi-ǇŀǊǘ ǇǊƻƎǊŀƳΩǎ ōƻƻǘ ŦƛƭŜ. You can rename the boot file to
anything you like, of course, but do not rename any of the other files on your Work disk.

MOUSE2.1 7K 1000 provides many of the commands you will use.

T

8 DotBASIC Plus v2.2

HELLO.DML is the ML program that interprets commands from DB+ and makes them work. One of the neat things
about DotBASIC Plus is that the .DML program only contains the DotCommands your program needsτȅƻǳ ǿƻƴΩǘ ǿŀǎǘŜ
valuable RAM on DotCommands you areƴΩǘ ǳǎƛƴƎ (see page 10 for more on this).

HELLO.DBS is your DB+ program. This is the place where you will be working.

Next, LOAD"HELLO.DBS",dw and RUN it. Now LIST the program:

5 d=peek(186): dd=56*256: mm=16*256
10 rem begin list
20 rem.endlist
30 sysdd
40 .tx,1: print"{clr}";:.bg,6:.br,14
59998 .of
59999 end
60000 gosub60008: n$=n$+".dbs"
60001 d=peek(186): sys14339
60002 open1,d,15,"s 0:"+n$: close1
60003 saven$,d:end
60008 n$="hello"
60009 return

Line 5 sets up important variables. Lines 10 through 20 are used to add commands to your DB+ program. Line 30
starts DB+. Line 40 uses three DB+ commands.

TEXT COLOR
Syntax: .TX, CO

.TX sets the Text color. Add 128 to CO (color) to REVERSE the text.

BACKGROUND COLOR
Syntax: .BG, CO

 Sets the background color.

BORDER COLOR
Syntax: .BR, CO

Sets the Border color.

Sure, POKE 53280,CO, POKE 53281,CO or POKE 646,CO will work just fine. But aren't these commands easier to
read? And the +128 option for .TX will come in handy. Promise!

On line 59998 we have another DotCommand:

GETTING STARTED
DotBASIC Plus

9

OFF
Syntax: .OF

.OF turns off DB+ and returns your computer to its normal default state. The SYS14339 in line 60001 does the
same thing.

When you break out of a DB+ program and the arrow is still visible, DotBASIC Plus has NOT been shut off. You
should type .OF in immediate mode to stop the special features. However, like me, you will forget. Therefore, before
RUNning your edited code, first GOTO60000. This is the beginning of our LOADSTAR "scratch and save" routine. With DB+,
all you ever need to do to save your program is GOTO60000 and press RETURN. This not only saves your current work, it
also turns off DB+. If DB+ is not turned off before RUNning, the computer will usually lock up.

Impressed? Confused? Don't worry. We will now write "Hello, World"!

100 print "Hello, World"
102 . do
104 . ma
106 . un l2 % or peek(198)
108 print "{clr}";
110 poke 198, 0

Actually, the printing of "Hello World" is just plain BASIC 2.0. The DB+ improvement comes with lines 102-106 and
three new DotCommands:

DO- LOOP
Syntax: .DO

.DO begins a Do-Loop. If you have worked with any language other than BASIC 2.0, you know what a Do-Loop is all
about. Much of your mouse control and effects can be performed within a Do-Loop, making your program very responsive.
We will explain in a moment.

MOUSE ASK
Syntax: .MA

.MA puts all the current conditions of the mouse in various variables. One of those variables is L2%, which is 0 until
the left mouse button is clicked. (This goes for the joystick fire button as well.) This DotCommand provides the programmer
with a tremendous amount of information! Refer to the Quick Reference Sheet on the back cover for a complete list of
mouse variables that are returned by .MA.

UNTIL
Syntax: .UN, Boolean expression

.UN is short for UNtil, and in the above example the program will loop back to the .DO until either L2% or
PEEK(198) are not 0. So when you click the left mouse button, fire button, or press any key, the program falls through the
UNtil. Otherwise, this code just waits for something to happen.

The Do-Loop is perfect for many mouse-driven activities and we will use it a lot.

10 DotBASIC Plus v2.2

So GOTO60000 then RUN your program! Always GOTO60000 before RUNning your program! That way, if DB+ is still
active in the background, it will be stopped. Running a program with DB+ still active usually results in an ugly crash. (OK,
άǳƎƭȅέ ƛǎ ǘƻƻ ǎǘǊƻƴƎ ŀ ǿƻǊŘΦ .ǳǘ ȅƻǳ ǿƛƭƭ ƘŀǾŜ ǘƻ ǊŜǎŜǘκǊŜǎǘŀǊǘ ȅƻǳǊ /спΣ ŀƴŘ ȅƻǳǊ ǿƻǊŘǎ ƳƛƎƘǘ ōŜ ǳƎƭȅ. ς Dave)

You can do all sorts of things with this. For example, a FOR- NEXT loop will add some color and fun:

100 for x= 0to15:.tx,x:print"Hello, World":next

 Change line 102 to

102 .do:.ma

then add:

103 .bg,cx%and15
104 .br,cy%and15

 Now your mouse/joystick will control the color of the background and border. CX% gives the text cell X-coordinate
(after .MA happens), and CY% is the Y-coordinate. You will find this feature extremely valuable!

INFINITE COMMANDSΥ Ih² ¢h άLb/[¦59έ bEW DOTCOMMANDS WITH DEV

 DotBASIC Plus has ƻƴƭȅ ŀ ŦŜǿ άbuilt-ƛƴέ 5ƻǘ/ƻƳƳŀƴŘǎΣ ŀƴŘ ǘƘŜȅ include all the ones we learned about in the
previous άHello, Worldέ ǘǳǘƻǊƛŀƭ. In case you skipped it (and shame on you if you did), those DotCommands are:

 .tx Text Color
 .bg Background Color
 .br Border Color
 .do Do Loop
 .un Until
 .ma Mouse Ask
 .of Off (Kill DotBASIC)

 As useful as these are, a BASIC extension with only a few new commands (eleven, actuallyτǘƘŜǊŜΩǎ ŀƭǎƻ .WH, .KP,
.QS, and .QR) would not be something to get terribly excited about. Fortunately, DotBASIC Plus has the ability to add many
more. (100 so far! And the list just keeps growingτDave). However, except for the ones we just mentioned, you will have
to "include" the new commands in your program. We have to let DotBASIC know which DotCommands we will need.

 Why go through all this? Why not give me all the commands at once and skip this άƛƴŎƭǳŘƛƴƎέ ǎǘǳŦŦ? Because, since
your DB+ ǇǊƻƎǊŀƳǎ ǿƛƭƭ ƻƴƭȅ άƛƴŎƭǳŘŜέ ǘƘŜ 5ƻǘ/ƻƳƳŀƴŘǎ ȅƻǳ ƴŜŜŘ ȅƻǳǊ ǇǊƻƎǊŀƳǎ ǿƛƭƭ ǇƻǘŜƴǘƛŀƭƭȅ ƘŀǾŜ ŀ ƭƻǘ ƳƻǊŜ w!a
available to them. Why take up valuable memory for dozens and dozens ƻŦ ŎƻƳƳŀƴŘǎ ȅƻǳ ŀǊŜƴΩǘ ǳǎƛƴƎΚ Secondly, the
machine language part of your DotBASIC programs όǘƘŀǘΩǎ ǘƘŜ ŦƛƭŜ ƻƴ ȅƻǳǊ ²ƻǊƪ Řƛǎƪ ǿƛǘƘ ǘƘŜ Φ5a[ŜȄǘŜƴǎƛƻƴύ ƻƴƭȅ ƴŜŜŘs
to be large enough to contain the DotCommands you choose, saving you a sizable amount of disk space. Finally, and maybe
Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘƭȅΣ ǘƘƛǎ ǇǊƻŎŜǎǎ ƻŦ άƛƴŎƭǳŘƛƴƎέ ƳŀƪŜs it very easy for machine language programmers to create new
DotCommands ǘƘŀǘ Ŏŀƴ ǘƘŜƴ ōŜ άƛƴŎƭǳŘŜŘέ ŀƭƻƴƎ ǿƛǘƘ ǘƘŜ ƻƭŘ ƻƴŜǎ. This way our palette of DotCommands can be
expanded into infinity! Imagine the possibilities!

GETTING STARTED
DotBASIC Plus

11

{ƻ ƭŜǘΩǎ ŎǊŜŀǘŜ ŀ ƴŜǿ ǇǊƻƧŜŎǘΣ ƻƴŜ ǘƘŀǘ ƴŜŜŘǎ ŀ ŦŜǿ ƴŜǿ 5ƻǘ/ƻƳƳŀƴŘǎ ǿŜ ƘŀǾŜƴΩǘ ǎŜŜƴ ȅŜǘ. With your disks still in
the drives, reset your computer, then LOADƨB.DOTBASICƨƗdb and RUN. Choose the drives you are using (as before). This
time, for the program name, input hello2

 After your Work disk is created and tƘŜ άƘŜƭƭƻнέ ǇǊƻƎǊŀƳ ǊǳƴǎΣ ƭŜǘΩǎ LIST-999 and take a look at the first few lines
of code.

5 d=peek(186): dd=56*256: mm=16*256
10 rem begin list
20 rem.endlist
30 sysdd
40 ƚÔØƗʦƙ ÐÒÉÎÔƨǅÃÌÒǆƨƘƙƚÂÇƗʫƙƚÂÒƗʦʩ

Notice lines 10 and 20. ¢ƻ άƛƴŎƭǳŘŜέ ƴŜǿ 5ƻǘ/ƻƳƳŀƴŘǎΣ ŀƭƭ ǿŜ Řƻ ƛǎ ŜƴǘŜǊ ǘƘŜƳ
between these two lines, in the form of REM statements.

Now for the fun. Add this line to your program:

11 rem.text,.box ,.keymw

²ŜΩǾŜ άƛƴŎƭǳŘŜŘέ ǘƘǊŜŜ ƴŜǿ 5ƻǘ/ƻƳƳŀƴŘǎ ŀŦǘŜǊ ǘƘŜ REM statement, each one separated by a comma. Note that
there are no spaces anywhere after the REM statement. If you use a DotCommand in your program without "including" it,
you will get a ?DOTCOM NOT FOUND ERROR IN LINE xxxx response.

Save the program (good old GOTO60000), then ,/!$ƨ"ƚ$%6ƨƗdb and RUN it. Remember, LOADSTAR uses a
άōΦέ ǇǊŜŦƛȄ ǘƻ ŘŜƴƻǘŜ ōƻƻǘ ǇǊƻƎǊŀƳǎΦ DEV will find your Work disk and present you with a screen very much like the one
you see here.

Choose your DotBASIC program (the one that has a .DBS extension)
with the CRSR keys and press RETURN. DEV creates a command list, collects
the ML codes necessary, and saves a new HELLO2.DML file to your Work Disk.
HELLO2.DML is the ML program that interprets commands from DB+ and
makes them work. The 5ƻǘ/ƻƳƳŀƴŘǎ άƛƴŎƭǳŘŜŘέ ōŜǘǿŜŜƴ ƭƛƴŜǎ м0 and 20 of
your DotBASIC program are added to this .DML file.

As DEV runs, you will see your included DotCommands listed, along
with shared routines and data files. These shared routines are internal
DotBASIC Plus commands that are used to help create the DotCommands you
are adding. LǘΩǎ ƛƴǘŜǊŜǎǘƛƴƎ ǘƻ ǎŜŜ 59±Ωǎ ǇǊƻƎǊŜǎǎ while it is building the new
.DML file for your project, but if DEV appears to be adding strange commands
like area, putstr, putint ŀƴŘ ǎƻ ƻƴΣ ŘƻƴΩǘ ǇŀƴƛŎ. DEV will give ȅƻǳ ǿƘŀǘ ȅƻǳ άƛƴŎƭǳŘŜέ ŀƴŘ ƴƻǘƘƛƴƎ ŜƭǎŜ. Finally, DEV will
LOAD and RUN your DotBASIC program, putting you back in your project (and on the Work Disk). YƻǳǊ άƛƴŎƭǳŘŜŘέ
DotCommands are ready to go!

How does DEV know which drive your program is on? When you load and run your project, the drive number is
tucked away in memory. When DEV is finished, it uses this value to find your program again. So you can use DEV at anytime
from any drive to add or remove commands from your program.

To summarize, you can run DEV as often as you like, anytime you like. Just save your work (GOTO 60000) and run
DEV from your DotBASIC Plus disk. Choose your DotBASIC program (with the .DBS extension) and in a few moments you will
be right back where you left offτexcept armed with a few new powerful DotCommands. LǘΩǎ ǊŜŀƭƭȅ ǾŜǊȅ ǎƛƳǇƭŜΦ

12 DotBASIC Plus v2.2

CREATING TEXT BOXES

Nothing can spruce up the appearance of your program quite like a fancy text box, thus ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ŜȄǇƭƻǊŜ
three new DotCommands: .TEXT, .BOX, and .KEYMW. ²ŜΩǾŜ ŀƭǊŜŀŘȅ ƛƴŎƭǳŘŜŘ ǘƘŜƳ ƛn our hello2 project from the previous
ǘǳǘƻǊƛŀƭΣ ǎƻ ǿŜΩƭƭ ǊŜǘǳǊƴ ǘƻ ǘƘŀǘ. [h!5έ.ΦI9[[hнέΣdw then RUN and LIST. bƻǿ ƭŜǘΩǎ look at the three commands.

TEXT BOX
Syntax: .TEXT,X,Y,W,STRING$

This command prints the string at X,Y τ and word wraps it to fit in W width. It doesn't get much easier than that!
.TEXT ǿƻƴΩǘ ǇǊƛƴǘ ŀƴȅǘƘƛƴƎ ƛŦ ǘƘŜ ǘŜȄǘ ƛǎ ǘƻƻ ƭƻƴƎ ǘƻ ōŜ ǿǊŀǇǇŜŘ. For example, .TEXT will print nothing if W equals 10 and
STRING$ Ґ άAntidisestablishmentarianismέ.

BOX
Syntax:.BOX,X,Y,W,H,SC,CO

¢Ƙƛǎ ƛǎ ŀ 5ƻǘ/ƻƳƳŀƴŘ ȅƻǳΩƭƭ ǳǎŜ ƛƴ ƴŜŀǊƭȅ ŜǾŜǊȅ ǇǊƻƧŜŎǘ. .BOX draws a box on
the screen with the upper left corner at X,Y, a width of W, and a Height of H. SC stands
for Screen Code τ usually 32 for a blank screen or 160 for REVERSEd spaces. CO is COlor,
of course. If you use 255 for SC, the area is painted with CO. Add 16 to CO to draw a
frame around the box. This DotCommand does a lot!

KEY/MOUSE WAIT
Syntax:.KEYMW

Key/Mouse Wait replaces the Do-Loop we mentioned above. The program stops and waits for either a mouse click
or a key press. The mouse variables hold the mouse's current information. I% will contain the ASCII number of the key
pressed (0 if none).

We are going to draw a box on the screen and fill it with text. First the box:

100 .box ,5,5,3 0, 07,32,1+16

This box has its upper left corner at column 5, row 5, is 30 columns wide and 7 rows high (or deep). The screen
code is 32 τ a space, with a color of 1 τ white. The +16 puts a frame around the box.

GETTING STARTED
DotBASIC Plus

13

Now we need some text to put in the box.

110 t$="This is a wonderful test of this remarkable system. "
111 t$=t$+"Nothing can possibly go wrong with this test."

T$ ƴƻǿ ƘƻƭŘǎ ǘƘƛǎ ƭƻƴƎ ǘŜȄǘΦ [ŜǘΩǎ ǎŜǘ ǘƘŜ ǘŜȄǘ ŎƻƭƻǊ ǘƻ yellow, and the border and background to black.

112 . tx,7:.br, 0:.bg, 0

 We are now ready to print the text with .TEXT. Note that the X,Y
locations are one more than the box's X,Y, and the width is two less than
that of the box. ¢ƘŀǘΩǎ ǘƻ ƪŜŜǇ ǘƘŜ ǘŜȄǘ ŦǊƻƳ ƻǾŜǊǿǊƛǘƛƴƎ ƻǳǊ ŦǊŀƳŜΦ

120 .text,6,6,28,t$

 And watch how tidy this is:

130 .keymw

Be sure to save your program, then RUN it.

Whoa! Pretty snazzy for just a few commands. This is a simple example of how seriously powerful DotBASIC Plus
is.

If you want to do something more, add these lines:

140 a$="Clicked Your Mouse"
150 ifi%> 0thena$="Pressed the "+chr$(i%) + " Key"
160 .text 6,15,28,a$
170 .keymw
180 print "{clr}":.of:end

REGIONS

"Modern Programming" is graphic- oriented, with a GUI τ Graphic User Interface. With DotBASIC Plus we can
create some great, άbuttonέ controlled programs. ¢ƘŜ ƪŜȅ ǘƻ ŎǊŜŀǘƛƴƎ άōǳǘǘƻƴǎέ you can mouse over and click on is the
concept of Event Regions. Regions are, in fact, one of the most important concepts in DotBASIC Plus. Absorb the following
information ŀƴŘ ȅƻǳΩƭƭ ōŜ ǿŜƭƭ ƻƴ ȅƻǳǊ ǿŀȅΗ

Regions are areas of the screen, defined by you, which the mouse senses when the arrow is over them. These
Regions can also be affected by another DotCommand, changing the Region color and other features τ much like ǿŜΩǾŜ
already done with BOXes. {ƻΣ ƭŜǘΩǎ ŎƻƴǎƛŘŜǊ ǘƘǊŜŜ ƴŜǿ 5ƻǘ/ƻƳƳŀƴŘǎΥ

DEFINE REGION
Syntax: .DREG,REG#,X,Y,W,H

This is sort of like the first part of a .BOX DotCommand τ just the position of the area on the screen. Each Region
has a number, and you can have up to 64 Regions on the screen at a time. So, to define Region #1 we could have a line like
this one:

100 .dreg,1,1 0,8,5,3

 We have defined Region #1. The Region begins at column 10, row 8. The Region is 5 characters wide and 3
characters deep. Simple as that!

14 DotBASIC Plus v2.2

 Check out .DREG in the DotBIBLE section to learn a lot more about this DotCommand.

AFFECT REGION
Syntax: .AREG,REG#,SC,CO

So .AREG is like the rest of the BOX command, controlled by the Region number.

PUT MOUSE
Syntax: .PUTM,X,Y

This DotCommand puts the mouse arrow anywhere on the screen.

We will also use .P@, .PC, and .BOX in this program τ so it is time to put your disks in their drives, boot up
B.DOTBASIC, and create a new program called "buttons".

The first thing to do is add the needed commands to the list:

11 rem. p@,.pc,. box
12 rem. dreg ,. areg ,. putm

Save your program with GOTO60000, then LOAD"B.DEV",db from your DB+ disk, and run it. We are going to
change line 40 again τ making the background and border both Light Blue (14). You should know how to do that. And we
want to use two colors for our buttons τ an unhighlighted color and a highlighted color. We will put these in variables to
make everything much easier to read.

99 un=1: hi =7

bƻǿ ǿŜΩǊŜ ǊŜŀŘȅ ǘƻ ƎŜǘ ǎǘŀǊǘŜŘ. The easiest way to position buttons on the screen is to first print the text of the
buttons with .P@.

PRINT AT
Syntax: .P @,X,Y,STRING$

PRINT AT prints STRING$ at the X/Y screen text cell coordinates. It only prints strings, so numeric values must be
put in STR$(value).

A close relative of PRINT AT is PRINT CENTER. ²ŜΩƭƭ ōŜ ǳǎƛƴƎ ƛǘ ƛƴ ŀ ŦŜǿ ƳƻƳŜƴǘǎΣ ŀƴŘ ƛǘΩǎ ŜǾŜƴ ŜŀǎƛŜǊΦ

PRINTCENTER
Syntax: .PC,Y,STRING$

This DotCommand prints STRING$ centered on row Y.

Back to our example, we have already chosen locations for four buttons, but feel free to play around with the
concept.

110 . p@,3,5,"Button One"
120 . p@,20,5,"Button Two"
130 . p@,3,15,"Button Three"
140 . p@,20,15,"Button Four"

RUN the program to see if this is what you want.

GETTING STARTED
DotBASIC Plus

15

Now weΩƭƭ create our Regions, defined as areas one space wider than our text in all directions. These Regions will
become ƻǳǊ ŎƭƛŎƪŀōƭŜ άōǳǘǘƻƴǎΦέ The .DREG DotCommand defines each Region, and on the same line we will use .AREG to
color in the buttons. Insert these lines:

108 . dreg ,1,2,4,15,3:. areg ,1,16 0,un

109 . tx ,un+128

 (The .TX DotCommand is only necessary on the first button.)

118 . dreg ,2,19,4,15,3:. areg ,2,16 0,un

128 . dreg ,3,2,14,15,3:. areg ,3,16 0,un

138 . dreg ,4,19,14,15,3:. areg ,4,16 0,un

RUN this. You should have nice white buttons with REVERSE text in
each. Now for the shadows. Before the buttons are created, we insert a few
lines that create the shaded area. Using BOX, just add 1 in each direction for
the X and Y coordinates, and use a darker color than the background.

106 . box,3,5,15,3,16 0,6

116 . box,2 0,5,15,3,16 0,6

126 . box,3,15,15,3,16 0,6

136 . box,2 0,15,15,3,16 0,6

Another interesting way to add a shadow effect to your text boxes is to create a BOX with CO defined as 255. This
will create a box that shades the defined area. This creates an especially attractive effect if the area you are shading
contains text or graphic characters.

Batta-bing! Your four buttons are ready to go. Our next trick is to place the Mouse Arrow in the lower right corner
of Button One.

 150 .putm,15,6

The trick to "Roll-Overs" is to keep track of the current button and the last
button the arrow has pointed at. Since the arrow is now on button 1, we will set a
variable (OG) to 1. We also need to change the color of Region 1 to the highlight color.

152 og=1

154 .areg,1,255,hi

Note that a screen code of 255 in .AREG (as with .BOX) will paint the color on the existing image.

We have just one other thing to do in preparation for this program τ and this is just for classiness! You will
understand soon.

160 b$(1)="One"

161 b$(2)="Two"

162 b$(3)="Three"

163 b$(4)="Four"

Now we are ready for the Do-Loop that will make it all work.

16 DotBASIC Plus v2.2

 200 .do

 202 .ma

Remember, .MA gets mouse information into DB+. One piece of information is the Region the arrow is currently
over τ returned in RG%. But if RG% = 0 or RG% equals the old Region (OG) then we do not want to do anything.

210 if rg%= 0 or rg%=og then299

This line will cause the Do-Loop to loop as long as the Region has not changed and the left mouse button is not
clicked. But if the Region has changed, we need to affect the Regions τ and update OG.

220 . areg , og,255, un:. areg , rg %,255, hi

230 og=rg %

299 . un l2 %

Take a close look at what is happening, and then RUN the program. Of course, at this point, when you click the left
mouse button, the program will stop. So we need something a tad more elegant.

300 .tx,6

305 .pc,21,"You Pressed Button "+ b$(og)

310 .pc,23,"Again (Y/N)"

320 poke198, 0

330 .do:.kp,"yn": . un i%

340 if i%=2 then 4 00

350 .box,1,21,39,3,32, 0

360 goto 2 00

400 .tx,1:.bg,6:.br,14:print"{clr}";

In line 305 you now see what those B$(n)s were all about. This is a fairly easy Y/N loop you can use for a myriad of
purposes.

In line 330Σ ȅƻǳΩƭƭ ŦƛƴŘ ŀƴƻǘƘŜǊ new DotCommand τ.KP. ¢Ƙƛǎ ƛǎ ŀ άōǳƛƭǘ ƛƴέ 5ƻǘ/ƻƳƳŀƴŘΣ ǎƻ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ
include it.

KEYPRESS
Syntax: .KP,STRING$

This routine quickly scans your string and checks if any of those keys are being pressed at the moment. If one is,
that key's position within the string will be returned in I%.

GETTING STARTED
DotBASIC Plus

17

 MENU MADNESS!

IN THIS SECTION:

Simple Menus 19

DotCommands

BOX 19

STASH 19

RESTORE 19

MENU 19

Multi-Column Menus 22

Scrolling Menus 22

DotCommands:

BLOAD 23

DIRECTORY 23

SCROLLING MENU 23

PROJECT: DOTMENU 24

Mouse Variables 26

Multi-Select Scroll Menus 28

 DotCommands

 SELECTED ITEM (INDEX) 28

Manual Menu Icons 29

18 DotBASIC Plus v2.2

THE HISTORY OF DOTBASIC PLUS

Chuck Peddle and the engineering team of the Motorola 6800 went to work for MOS Technology in
1975 to create the 6502 microprocessor and the KIM 1 test computer. MOS Technology was bought
ǳǇ ōȅ WŀŎƪ ¢ǊŀƳƛŜƭΩǎ /ƻƳƳƻŘƻǊŜ .ǳǎƛƴŜǎǎ aŀŎƘƛƴŜ ŎƻƳǇŀƴȅ ƛƴ мфтсΣ ŀƴŘ tŜŘŘƭŜ ǳǇƎǊŀŘŜŘ ǘƘŜ
KIM 1 into the PET 2000 ς a ready to use home computer.

In 1981, Al Charpentier and Charles Winterble at MOS Tech developed the VIC-II Video Integrated
Circuit while Robert Yannes designed the SID ς Sound Interface Device ς chip. Tramiel called for a
home computer built around the capabilities of these two chips in October, and the Commodore 64
was unveiled at the Consumer Electronics Show in Las Vegas in January of 1982.

That same year, Jim and Judi Mangham started a table-top publishing venture called Softdisk,
creating monthly software collections for the Apple II computer. In 1984, Softdisk, Inc. brought out
LOADSTAR Monthly for the increasingly popular Commodore 64. Former bar band guitarist Fender
Tucker took over Managing Editorship in 1988, and encouraged a generation of independent
programmers to greater elegance and style.

!ǘ CŜƴŘŜǊΩǎ ǎƘƻǳƭŘŜǊ ǿŀǎ WŜŦŦ WƻƴŜǎΣ ŀ ǘŀƭŜƴǘŜŘ ǇǊƻƎǊŀƳƳŜǊ ǿƘƻ ŎǊŀŦǘŜŘ Ƴŀƴȅ ƻŦ [h!5{¢!wΩǎ
Utility Wares. He also was the ML (Machine Language) guy, and introduced hobbyist programmers
to the Toolbox ς a collection of ML routines to augment BASIC. Several programmers of the
άLOADSTAR {ŎƘƻƻƭέ ǘƻƻƪ ǘƘŜ ƛŘŜŀ ǘƻ ŦǳǊǘƘŜǊ ƘŜƛƎƘǘǎΣ culminating in Mr. Mouse, by Lee Novak.

Mr. Mouse had all the features of an ordinary toolbox ς menus, boxes, print at, etc. ς plus full
mouse control. The module went through a number of versions and sizes until Mr. Mouse 2.1
contained nearly everything a programmer might need to create classy point-and-click software.

Dave Moorman became a LOADSTAR programmer in 1993, and took to Mr. Mouse immediately. In
2000, he published a PC Windows-ready monthly called eLOADSTAR, which repackaged programs
from the 190+ issues of LOADSTAR. By the end of the year, when Fender Tucker was ready to set
aside LOADSTARΣ 5ŀǾŜ ǎǘŜǇǇŜŘ ƛƴ ǘƻ ŎƻƴǘƛƴǳŜ ǘƘŜ άƭƻƴƎŜǎǘ ǊǳƴƴƛƴƎ Řƛǎƪ ƳŀƎŀȊƛƴŜ ƛƴ ƘƛǎǘƻǊȅΦέ

Wanting to create a complete BASIC Extension and software development environment, Dave took
Mr. Mouse 2.1 and gave it command names, rather than the SYSaddress commands used in ML
modules. The commands all began with a period ς and DotBASIC was born. The second version,
DotBASIC Plus ς with programmer-customized command lists ς is before you now.

Dave sent a copy to Alan Reed, who fell in love with the new language. The documentation, in five
C-64 text files, needed some tender loving care ς and Alan was just the guy to do it. As he edited
the DB+ Manual, he also worked with the various commands to discover the full capabilities of the
language. This, of course, led to fixes and new commands to be added to the library.

http://en.wikipedia.org/w/index.php?title=Al_Charpentier&action=edit
http://en.wikipedia.org/w/index.php?title=Charles_Winterble&action=edit
http://en.wikipedia.org/w/index.php?title=Robert_Yannes&action=edit

MENUS
DotBASIC Plus

19

ow that you have experienced how easy it is to begin a program in the DB+ environment, we can go on to some of
the powerful commands available to you.

One of the greatest features of DotBASIC Plus is its ability to easily create slick, professional looking menus. Drop-
down-menus, multi-column menus, file requestors, even multi-select scrolling menus with manually created iconsτ
DotBASIC Plus ŎŀƴΣ ŀǎ ǿŜΩƭƭ ŘƛǎŎƻǾŜǊΣ Řƻ ŀƭƭ ǘƘŜǎŜ fairly easily using four different menu-creating DotCommands: .MENU,
.MCMENU, .SCMENU, and .MSMENU. We will approach .MENU and .MCMENU first, since they are the simplest of the
menu DotCommands and share certain characteristics. Likewise, .SCMENU and .MSMENU are slightly more sophisticated
and also have features in common.

SIMPLE MENUS

.MENU (MENU) and .MCMENU (MULTI-COLUMN MENU) are similar in that the menu choices are created by you
and printed to the screen. The menu DotCommands then turn that portion of the screen into a menu. In other words, we
set up the screen to look like a menu, then DotBASIC Plus turns it into a real menu. Menus like this are very simple to
create, and they look great. We will begin by building a program called MENU. MENU, perhaps not surprisingly, uses the
.MENU DotCommand. ²ƘƛƭŜ ǿŜΩǊŜ ŀǘ ƛǘΣ ǿŜΩƭƭ try out some other important new DotCommands too.

hǳǊ ǇǊƻƎǊŀƳ άMENUέ will put a menu on the screen, and then use it to GOSUB to line numbers for each item.
What the subroutines do is not important τ they can do anything you want!

First, put in your Work disk, then LOAD"B.DOTBASIC",db and RUN it. Select your DotBASIC drive and Work drive,
confirm, and input "menu" for the program name. Now you are ready! We will need several new DotCommands added to
our .DML fileΣ ǎƻ ŘƻƴΩǘ ŦƻǊƎŜǘ ǘƻ άƛƴŎƭǳŘŜέ ǘƘŜƳ ŀƴŘ Ǌǳn DEV. [ŜǘΩǎ ǘŀƪŜ ŀ ŎƭƻǎŜ ƭƻƻƪ ŀǘ ŜŀŎƘ ƻŦ ǘƘŜƳΦ

BOX
Syntax: .BOX,X,Y,W,H,SC,CO

²ŜΩǾŜ ǎŜŜƴ ǘƘƛǎ ƻƴŜ ōŜŦƻǊŜΣ ōǳǘ ǎƛƴŎŜ .h· ƛǎ ǎǳŎƘ ŀƴ ƛƳǇƻǊǘŀƴǘ 5ƻǘ/ƻƳƳŀƴŘΣ ǿŜΩƭƭ ǘŀƭƪ ŀōƻǳǘ ƛǘ ŀƎŀƛƴ. BOX puts a
box of screen code (SC) in color CO in the area with the upper left corner at X/Y, a Width of W (1-40) and a Height of H (1-
25).

STASH
Syntax: .STASH,PAGE

Instantly stashes the whole screen to the given memory PAGE. We like Page 208
or 216.

RESTORE
Syntax: .RESTR,PAGE

Restores the screen image stashed at given memory PAGE. Pages are an easy way to deal with memory. Each page
is 256 bytes, so PAGE*256 is the memory location. You can STASH and RESTORE to memory under ROM and I/O.

!ƴŘ ŦƛƴŀƭƭȅΧ

MENU
Syntax: .MENU,X,Y,W,I,U,H,HK$

This DotCommand turns screen rows defined by you into menu lines. X/Y set the upper left corner of the menu
area. W is the width of the menu bar, and I is the number of items. U is the color of unhighlighted items, and H is the color
of the highlighted item. HK$ ŀƭƭƻǿǎ ǳǎ ǘƻ ŘŜŦƛƴŜ άƘƻǘƪŜȅǎέ ŦƻǊ ƻǳǊ ƳŜƴǳ. More on this later. The number of the menu line
chosen is returned in SL% (as in SeLection).

N

20 DotBASIC Plus v2.2

We start by telling DB+ that we need these DotCommands.

11 rem. p@,.pc
12 rem. box,. menu
13 rem. stash ,. restr

Save your program with GOTO60000, then LOAD"B.DEV",db and RUN.

bƻǿΣ ƭŜǘΩǎ ƎŜǘ ǎǘŀǊǘŜŘΗ In this example, we want to put the menu in a box that has a shadow. This is fairly easy with
DB+. But first, we will change the screen colors in line 40 to .BG, 0 and .BR, 0. Now let's put the title of the program on the
screen:

 100 .pc, 0Ɨƨ-9 -%.5 02/'2!-ƨ

Next we need a different background. Black does not work well for shadows! We could just change the background
color with .BG, color, but that is not fancy enough for us! We want black ς the background color ς to be the color of all our
text. Sounds confusing, maybe ς ōǳǘ ƘŀƴƎ ƛƴ ǘƘŜǊŜ ŀƴŘ ŀƭƭ ǿƛƭƭ ōŜ ƳŀŘŜ ŎƭŜŀǊΦ !ƴŘ ȅƻǳΩƭƭ ƭŜŀǊƴ ŀ ƴŜŀǘ ǘǊƛŎƪ ǘƻ ōƻƻǘΗ

102 .box, 0,1,4 0,18,16 0,1

To parse out this command: the .BOX will extend from column 0, row 1 (thus skipping row 0 and our title) for 40
columns and 18 rows. It will use screen code 160 τ a REVERSE space τ in the color of 1 (white).

Now to put the menu on the screen. This is "in the rough." We just want to find where it will look best.

150 .p@,14,5,"A. Item 1{F7}B. Item 2{F7}E. Exit"

It so happens we have already positioned this text to be centered under the title. But you can easily move it
around by changing the two coordinates (X and Y). The {F7}'s are carriage returns to the beginning column on the next line
of the PRINT AT. This is a good alternative to using a separate .P@ for each line.

Now that the menu text is positioned correctly, we need to put a box around it.

140 .box,13,4,12,5 ,16 0,8

Again, we have already done the calculations. But it is pretty easy to
figure out. The left edge of the box is one space to the left of the text. The
top is one row above the first line of the menu. Width and Height/Items will
depend on what is printed.

We are making the box in REVERSE space characters (160) in the
color Orange (8). We will want the text to also be in REVERSE orange, so we
add a line:

141 .tx,8+128

 (This is why I like the .TX command! Just use the same color value as the box, then add 128 to REVERSE the textτ
Dave)

You can run the program at this point if you want. In fact, you can run it after each line is added. And remember,
don't forget, do a GOTO60000 often. (I do it after adding each line! We have just too many power outages around here!τ
Dave)

One last thingτ a shadow. List line 140 and change the line number to 138 and press RETURN. Now LIST 138-140.
Edit line 138 by adding 1 to each of the first two values (the upper left corner of the BOX). Then change the color to 15 (light
gray).

MENUS
DotBASIC Plus

21

138 .box,14,5,12, 5,16 0,15

When you run the program now, a shadow appears. And you thought shadows were difficult!

Now the Box that is going to contain our menu items is in place and looks suitably snazzy. The items that make up
our menu choices are looking good and they are where they should be. The final step is the .MENU DotCommand that will
turn this into a real menu. Positioning the menu is not hard. Set the X/Y to the place where you printed the first line (άA.
Item1έ). Set the Width to one less than the width of the Box. Then set I to the number of items in the menu. ²ŜΩƭƭ ŀƭǎƻ ŀŘŘ
ǎƻƳŜ ΨƘƻǘƪŜȅǎΩ ǎƻ the user can select the menu items with the keyboard if so desired.

160 . menu,14,5,1 0,3,8,7,"abe"

We are using 8 as the unhighlighted color (to match the box) and 7 as the highlighted color. The hotkeys are listed
in a string τ "abe".

There you go!

We are going to fancy this up just a bit more. We want to have the menu screen come back after a selection is
made, so we will Stash it in a nice safe place in memory. The best two pages for screen stashes are 208 and 216 τ
underneath the I/O.

155 .stash,2 08

.MENU returns the item number in SL%. So all we need to do is create an ON-GOSUB to direct the program. When
the subroutine returns, we .RESTR the screen we stashed at 208, then GOTO line 160.

170 onsl%gosub1000,2 000,3 000
180 .restr,2 08
190 goto16 0

Now, we will do something simple for each menu Item.

1000 .tx,1:print"{clr}Item 1"
1010 .do:.ma:.un l2%orpeek(198)
1020 poke198, 0: return
2000 .tx,3:print"{clr}Item 2"
2010 goto1 010
3000 .tx,1:.bg,6:.br,14:?"{clr}"
3010 .of:end

You can see how easy it will be to create great programs, listing all the features in the menu. It can also be seen
how άmodernέ looking drop-down menus can be created using .MENU along with .STASH and .RESTR. DotBASIC Plus will
take care of the presentation; all you have to do is write the features!

22 DotBASIC Plus v2.2

MULTI-COLUMN MENUS

 !ǎ ǿŜΩǾŜ ǎŜŜƴΣ .MENU is a pretty powerful DotCommand. Bǳǘ ǿŜΩǊŜ Ƨǳǎǘ ƎŜǘǘƛƴƎ ǎǘŀǊǘŜŘΗ What if you need a multi-
column menu? No problem!

MULTI-COLUMN MENU
Syntax: .MCMENU,NC,X,W,Y,I,U,HI,HOT$

This command has a lot in common with .MENU, with a few exceptions. NC is the number of columns in your
menu, which can be from 1 to 5. You must follow that with an X coordinate and W width value for each column of your
menu. Y coordinate and I (for Items) apply to all columns.

U is the color of unhighlighted items in the menu. The highlight bar is colored HI. If you don't want the text to
REVERSE or un-REVERSE as the bar moves, add 128 to HI.

The user can move the mouse or joystick right to the desired item, or use the CRSR keys to change rows and
columns. The items are numbered in this order: down the first column, then the next, and so on. So, if you had 3 columns
with 7 items in each column, the 2nd column would start with item number 8.

Items can be directly selected by pressing the appropriate Hotkey (HOT$). The highlight bar is moved to that item
number, unless it doesn't exist. Pressing the Global Escape key (MV+12) ALWAYS returns a zero in SL% (turn to page 26 to
learn more about MV variables).

The selected item's number is returned in SL%. The maximum number of columns is 5, making the highest possible
SL% (25 rows) equal to 125. There's a reason for this.

So, a three column menu with three items in each might be created with the following line. ²ŜΩƭƭ shade the X and
W coordinates for each column differently to make it a little clearer:

.MCMENU,3,2,8 , 12,8 , 22,8 ,4,3, 6, 7,HOT$

With what you already know about the regular .MENU command, try out .MCMENU. Consider this a "homework"
assignment. Make that "homeplay!"

SCROLLING MENUS

 Sometimes your menu has more items than will fit on the screen at one time. A file requestor, for example, is a
menu that displays a disk directory. A file requestor can easily have 30, 50, even hundreds of items to choose from. What is
ƴŜŜŘŜŘ ƛǎ ŀ {/wh[[LbD a9b¦ ǘƘŀǘ ǿƛƭƭ ƎƛǾŜ ǳǎ ά¦Ǉέ ŀƴŘ ά5ƻǿƴέ ōǳǘǘƻƴǎ ǘƻ ŎƭƛŎƪΣ ŀƭƭƻǿƛƴƎ ǘƘŜ ǳǎŜǊ ǘƻ ǎŎǊƻƭƭ ǘƘǊƻǳƎƘ ǘƘŜ
menu selections. DotBASIC Plus allows for two such menus, created with two different DotCommands: .SCMENU and
.MSMENU.

 Scrolling MŜƴǳ ƛǘŜƳǎ ŀǊŜƴΩǘ ǎƛƳǇƭȅ ǇǊƛƴǘŜŘ ǘƻ ǘƘŜ ǎŎǊŜŜƴ ƳŀƴǳŀƭƭȅΣ ŀǎ ǿƛǘƘ .MENU. Instead, Scrolling Menus get
their information two ways. First, Mr.Edstar files saved to your disk can be read in with the BLOAD (.BL) DotCommand.
Mr.Edstar is LOADSTARΩǎ handy 38 column text editor. Mr.Edstar files are terminated with a zero. If the file you want to
BLOAD does not end in zero, use .BL 0 instead. .BL 0 is exactly like .BL, with the exception that a zero is tacked onto the
end of the BLOADed file.

 The second way to get menu items into a scrolling menu is with the .DIR DotCommand. .DIR loads in a disk
directory, then converts it to an Mr.Edstar format ready to be used by the scrolling menu.

 ²ŜΩƭƭ now take a look at these new DotCommands: .BL, and .DIR to load our menu items into memory; and
.SCMENU to create a scrolling menu. ¢ƘŜƴ ǿŜΩƭƭ ŎǊŜŀǘŜ ŀ ǳǎŜŦǳƭ DotBASIC program that shows off some of ǿƘŀǘ ǿŜΩǾŜ
learned so far.

 After walking through a project that uses .SCMENU we will take a look at Mouse Variables. By POKEing different
values into MV+offset locations, we can customize menus and other DB+ features.

MENUS
DotBASIC Plus

23

 Finally, we will take a look at the .MSMENU DotCommand, that allows us to create a multi-select, scrolling menu.

 .ǳǘ ŦƛǊǎǘΣ ƭŜǘΩǎ ǘŀƪŜ check out those new DotCommands:

BLOAD
Syntax: .BL,FILE$,D,LOC

BLOAD will load files from device D (already assigned by DB+) to any memory
location, except pages 208-223 ($D000- DFFF). This is how we will get your menu items
into memory to be used by .SCMENU. It can also be used, of course, to BLOAD sprite data,
custom character sets, and your machine language routines. E$ returns the error message.
F% returns the end location (plus 1) of the BLOADed file. Note that values above 32767
cause the integer F% to be negative. Refer to .I2FP in the DotBIBLE to learn how to convert
F% to a positive value in these cases.

Remember, DB+ presets the variable D to the current disk drive τ just to be handy.

 LŦ ǘƘŜ ŦƛƭŜ ȅƻǳ ŀǊŜ .[h!5ƛƴƎ ŦƻǊ ŀ ǎŎǊƻƭƭƛƴƎ ƳŜƴǳ ŘƻŜǎƴΩǘ ŜƴŘ ǿƛǘƘ ŀ ȊŜǊƻ ōȅǘŜΣ ǳǎŜ .BL 0 instead.

DIRECTORY
Syntax: .DIR,"$:*",D,LOC,#FILENAMES

This will read the disk directory from device D (already defined as the current disk drive number by your DotBASIC
template program). The directory can be placed anywhere, even under I/O. DB+ converts the directory to a Mr.Edstar file
as it is brought in. This allows Scrolling Menu to use the information as a file requestor.

Normally you would use "$:*" to get all the disk's filenames. You can replace "$:*" with any search pattern you
want, up to 16 characters long. For example, using "$:b.*,t .*" on a LOADSTAR disk (using a real C-64 or True Drive in VICE)
ǿƻǳƭŘ ōǊƛƴƎ ƛƴ ǘƘŜ ƴŀƳŜǎ ƻŦ ŀƭƭ ǘƘŜ ōƻƻǘ ŦƛƭŜǎ όǘƘƻǎŜ ǘƘŀǘ ōŜƎƛƴ ǿƛǘƘ άōΦέ) and text files (those beginƴƛƴƎ ǿƛǘƘ άǘΦέύ.

E$ will return the error message. T$ will contain the disk's name within quotes, and B$ will contain the "blocks
free" message. Use VAL(B$) to extract the number of blocks free on the disk. N% returns the number of filenames loaded.

If there was an error during the directory retrieval, T$ and B$ will return strings full of spaces, and E$ will tell about
the error.

.DIR has one more parameter: how many filenames you have room to hold. This number should be calculated as:

files = INT((bufferspace-1)/32)

For example, if your buffer was from 49152 to 53248 (pages 192- 208), you could fit INT((4096-1)/32) = 127 names
there. If the buffer space is filled up before all the filenames are loaded, B$ will return "more files on disk". If you don't care
about buffer space, use 0 for the number of filenames.

A good place to put your directory information is in pages 224+. You easily put 250 filenames in this area under
ROM.

SCROLLING MENU
Syntax: .SCMENU,X,Y,W,H,B,I,UN,HI,LOC,T$,B$

For this command to work, you must have the items you wish to menu in memory, and it must end with a zero
byte. Mr.Edstar files end with a zero byte and can be loaded with the .BL DotCommand. Otherwise, use .BL 0 to load a file
into memory and automatically tack a zero byte on the end. Or you can use .DIR to get a disk directory.

The X,Y,W,H parameters set the area the menu will occupy (X, Y, Width, Height).

24 DotBASIC Plus v2.2

The confusing letters read like this:

Box
Icons
UN-highlight
HIghlight
LOCation

H must be at least 6 characters tall and W must be 11 characters or more wide. B is the color of the menu box. The
unhighlighted items of the menu are color UN. HI is the highlight bar color. If you don't want the text to REVERSE or un-
REVERSE as the bar moves, add 128 to HI.

I sets the color of the four words in the corners of the menu: HOME, UP, DOWN, and QUIT. Left-click on UP or
DOWN to scroll the text. Right-click on them and the list jumps a page at a time.

LOC is the location of the Mr.Edstar file or directory, which can be anywhere in memory.

The user can use the CRSR keys to scroll or page through the text as well.

Clicking on HOME will bring the list to the top. Pressing the HOME key will bring the highlight bar to the top of the
page, and the next press brings the list to the top.

Click on an item or press RETURN to select it. The entire item is returned in W$. F$ will return a null unless this is a
file requestor - in which case it contains the filename. SL% returns the selection number.

Clicking on QUIT, pressing Q, or pressing the Global Escape key (see Mouse Variables later in this chapter) will
return zero in SL% and nulls in W$ and F$.

T$ is printed at the menu's top, in REVERSE, between HOME and UP. B$ is printed at the bottom, between QUIT
and DOWN. You needn't use the actual variables T$ and B$, but if this is going to be a file requestor, it's perfect. The user
gets to see the disk name and blocks free without any extra effort from you.

Set W to 255 and the proper width for a file requestor will be assigned, but that's it. DB+ knows what filename info
looks like and will set F$ properly when it finds a filename - regardless of width.

Obviously, .SCMENU is pretty powerful and has a lot of associated variables and parameters. We will now begin a
ǇǊƻƧŜŎǘ ǘƘŀǘ ǎƘƻǳƭŘ ōǊƛƴƎ ƛǘ ŀƭƭ ǘƻƎŜǘƘŜǊΣ ŀƴŘ ǿƘŜƴ ȅƻǳΩǊŜ ŦƛƴƛǎƘŜŘ ȅƻǳΩƭƭ ƘŀǾŜ ŀ ǳǎŜŦǳƭ ǇǊƻƎǊŀƳ ŦƻǊ ȅƻǳǊ ǎƻŦǘǿŀǊŜ ŎƻƭƭŜŎǘƛƻƴ.

PROJECT: DOTMENU

We now have all the tools we need now to create our first
really useful DB+ programτǿŜΩƭƭ Ŏŀƭƭ ƛǘ 5ƻǘa9b¦. DotMENU will
load a disk directory, create a menu of its contents and
automatically LOAD and RUN the program you select. Copy
DotMENU and its associated files (B.DOTMENU, MOUSE2.1 7K
1000, DOTMENU.DML, and DOTMENU.DBS) onto a blank disk and
ȅƻǳΩƭƭ ƘŀǾŜ ŀ ƴƛŎŜ ǘƻƻƭ ǘƻ ƪŜŜǇ ȅƻǳǊ ǎƻŦǘǿŀǊŜ ƻǊƎŀƴƛȊŜŘ. Even
better, you can use STAR LINKER 2.1 on the DB+ Utility Disk to
combine the parts of DotMENU into a single file. All this is possible
with just a few lines of DotBASIC code.

 {ƻ ŎǊŜŀǘŜ ŀ ƴŜǿ ǇǊƻƧŜŎǘ ŎŀƭƭŜŘ άdotmenuέ ŀƴŘ ƭŜǘΩǎ ƎŜǘ
started!

 CƛǊǎǘ ǿŜ ƴŜŜŘ ǘƻ ΨƛƴŎƭǳŘŜέ our DotCommands.

 11 rem.dir,.scmenu,.box,.pc

MENUS
DotBASIC Plus

25

 Change the background color to white (1) and the border to m.grey (12) by editing the .BG and .BR DotCommands
in line 40. GOTO60000 and then run DEV.

 ¢ƘŜ ŦƛǊǎǘ ǘƘƛƴƎ ǿŜΩƭƭ Řƻ ƛǎ ǳǎŜ .BOX to create a nice looking screen.

 100 .box, 0,3,4 0,22,16 0,12

 110 .box, 0, 0,4 0,3,16 0,6

 120 .box,1,1,38,1,16 0,14

 130 .box, 0,24,4 0,1,16 0, 0

 ²ŜΩƭƭ ŘƛǎǇƭŀȅ ǘƘŜ ǘƛǘƭŜ ŦƻǊ ǘƘŜ ƳŜƴǳ ŀǘ ǘƘŜ ǘƻǇ ƻŦ ǘƘŜ ǎŎǊŜŜƴ-- in the center of the blue BOX created by lines 110-
120. !ƭǎƻΣ ǿŜΩƭƭ ŘƛǎǇƭŀȅ ŀ ƳŜǎǎŀƎŜ ƛƴ ǘƘŜ ōƭŀŎƪ ōŀǊ ŀŎǊƻǎǎ ǘƘŜ ōƻttom of the screen created by line 130.

 170 .tx,14+128:.pc,1,na$

 180 .tx,0+128 ƙƚÐÃƗʧʩƗƨ$ÏÔ-%.5 ʧ00ʭƨ

 Remember, when setting the text color with .TX, add 128 for REVERSE text.

 NA$ wiƭƭ ǊŜǇǊŜǎŜƴǘ ƻǳǊ Řƛǎƪ άǘƛǘƭŜΦέ To make it easy to ƳƻŘƛŦȅΣ ǿŜΩƭƭ ŘŜŦƛƴŜ ǘƘƛǎ ǾŀǊƛŀōƭŜ ŀǘ ǘƘŜ ǾŜǊȅ ǘƻǇ ƻŦ ǘƘŜ
program.

 ʦ ÎÁʙˮƨ$ÉÓË $ÉÒÅÃÔÏÒÙƨ

So, if you put DotMENU on a disk of public domain software, you might define NA$ ŀǎ άtǳōƭƛŎ 5ƻƳŀƛƴ 5ƛǎƪΦέ

 We can go ahead and load in the disk directory now.

 200 ƚÄÉÒƗƨʙƙǉƨƗÄƗ224*256,25 0

Our directory information is being loaded into page 224 (location 57344), which gives us plenty of room for 250
directory entries.

 Now for the menu itself. Note the Width value of 255. Use 255 for Width, and DB+ will automatically format the
menu for a file requestor (or you could just give the menu a Width of 30).

 220 .scmenu,5,4,255,18,6, 0,11,2, 224*256 ,t$,b$

 The variable SL% will hold the number of the menu item selected. LŦ ǘƘŜ ǳǎŜǊ ǎŜƭŜŎǘǎ άvǳƛǘέ ƻǊ ǇǊŜǎǎŜǎ ǘƘŜ άvέ ƪŜȅΣ
SL% will equal zero, so we need the menu to exit cleanly.

 230 if sl%= 0 ÔÈÅÎ ÐÒÉÎÔƨǅÃÌÒǆƨƘƙƚÏÆƙÅÎÄ

The famous Dynamic Keyboard routine will now LOAD the selected program and RUN it. The name of the file
selected will be in F$, making the setup a piece of cake.

240 print"{clr}{down}{down}{down}loadf$,d"

250 print"{down}{down}{down}{down}run{home}"

260 poke631,13:poke632,13:poke198,2:end

LǘΩǎ ǊŜŀƭƭȅ ǘƘŀǘ ǎƛƳǇƭŜ. Go ahead and RUN it. LǘΩǎ ƴƛŎŜΣ ōǳǘ ƴƻǘ ǉǳƛǘŜ yet nice enough.

When the .DIR DotCommand is executed, the number of files is returned in the N% variable. We can use this to
give the user a little more information.

26 DotBASIC Plus v2.2

 20ʪ ÍÓʙˮÓÔÒʙƽÎ˧ƾ˩ƨ &ÉÌÅÓ ÏÎ 4ÈÉÓ $ÉÓËƨƙƚÔØƗ0+128:.pc,24,ms$

 [ŜǘΩǎ ŀƭǎƻ ŎǊŜŀǘŜ ŀ ǎƘŀŘƻw around the directory window. Create a .BOX with a color value of 255 to shade the area
it affects. Lǘ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊ ǿƘŀǘ ǿŜ ǳǎŜ ŦƻǊ SC (screen code) in this case, sƻ ǿŜΩƭƭ ǳǎŜ нрр.

 210 .box,6,5,3 0,18, 255,255

 GOTO60000 and then RUN. Impressed? DotBASIC Plus can do a lot with very little effort.

¢ƘŜǊŜΩǎ ƻƴŜ ƳƻǊŜ ǘƘƛƴƎ ǿŜ Ŏŀƴ Řƻ ǘƻ ƳŀƪŜ ƛǘ ǇŜǊŦŜŎǘ. Did you notice that the menu icons (home, up, down, quit)
are all in lower case? We can capitalize these items with two lines of code.

 150 poke4734,p eek(4734)+128:poke4739,peek(4739)+128

 160 poke4742,peek(4742)+128:poke4746,peek(4746)+128

MOUSE VARIABLES

MV is a system variable that points to the start of a variable zoneτa place where
certain user-accessible settings and other data are held. You will use POKE MV + OFFSET
to change how some of the DotCommands work. MV is particularly useful in customizing
menus, but there are many other cool and interesting features that can be brought to the
surface by POKEing new values to MV. [ŜǘΩǎ highlight just a few of the DB+ features where
MV comes into play.

First off, iǘΩǎ ǎƛƳǇƭŜ ǘƻ ǳǎŜ ǘƘŜ ƪŜȅōƻŀǊŘ ǘƻ ǎƛƳǳƭŀǘŜ ŀ ƭŜŦǘ ƳƻǳǎŜ ŎƭƛŎƪτjust press
RETURN. But what about right-clicks? The keyboard can mimic the right mouse button too.

MV+14 Right Keycode (F7 = 3)

MV+14 holds the keyboard equivalent to the right mouse button, which is pre-defined as F7, but you could change
it if you've assigned a function to the right mouse button and would like to use F7 (and F8) for something else.

Note that MV+14 is not a PET-ASCII code. "Keycodes" are generated by the SCNKEY routine during the interrupt.
They can be determined with this one-line program:

10 print peek(2 03):goto 1 0

When you RUN it, hold down the key you want to designate as a button and note the number showing. Be aware
that keycodes are not affected by the special (SHIFT/á/CTRL) keys, and these special keys don't have keycodes - so they
can't be used as mouse buttons.

We can make some other choices about how DB+ interprets keypresses with MV+18.

MV+18 Keyboard Enable (default 129)

+128 Return can click
+64 Space can click
+32 á (Commodore Key) can click.
+1 CRSR keys move arrow

Even the CRSR keys can control the arrow pointer around the screen. This makes it especially easy to add
"keyboard support" to your programs without having to think about it. By default, of course, the RETURN key serves as the
left mouse button.

MENUS
DotBASIC Plus

27

MV+10 MV+11

+128 Automatic Caging of Mouse +128 Automatic Caging of Mouse

+ 64 Automatic Point-to-First + 64 Automatic Point-to-First

+ 32 Must Select + 32 Must Select

+ 16 Escape Equal-to-Last + 16 Click Any Active Region

+ 8 Honor Hotkey Colors + 8 Honor Hotkey Colors

+ 4 Dual Response + 4 Dual Response

+ 2 Un-highlight after Select + 2 Un-highlight after Select

+ 1 Stray-to-Exit + 1 Stray-to-Exit

With a POKE, you could enable the á key to also serve as the left mouse button. This would be useful for any "click and
drag" situations within your program, only because the á key can be read independently of the CRSR keys. It is awkward to
use, but it works. RETURN or SPACE can be used to "click" the rest of the time. It's more natural.

As mentioned earlier, MV variables can be used to greatly customize 5ƻǘ.!{L/Ωǎ menu DotCommands. Consider
what MV+10, MV+11 and MV+12 can do to change the way menus behave. Note that the numbers in parenthesis are the
default values.

MV+10 Menu Type (192)
MV+11 Multi-Column Menu Type (192)
MV+12 Global Escape (0)

MV+12 holds the ASCII code for what you'd like to designate as the escape key for ALL your menus. SL% returns a
zero when the escape key is pressed.

MV+10 and MV+11 dictate how your menus will behave. Each bit stands for a specific menu feature. Just add up
the values for the features you want and POKE that number to MV+10 or MV+11.

MV+11 is used to define features for Multi-Column Menus only. Just like MV+10, this byte has eight features
attached to it. Only bit 4 (+16) is different. +16 makes Event Regions active and clickable for Multi-Column Menus.

For all other menu types, use MV+10. Since MV+10 and MV+11 ŀǊŜ ŀƭƳƻǎǘ ƛŘŜƴǘƛŎŀƭΣ ƭŜǘΩǎ ŘŜŀƭ ǿƛǘƘ ǘƘŜƳ ǘƻƎŜǘƘŜǊΦ

+128 causes the mouse to be confined within the menu's borders. After a selection is made, the previous Cage is restored.
If auto-caging is not enabled, the user may be able to click on the area outside of the menu, which would return zero in SL%
(unless it is an active Region). If you are using Regions (MV+11), you probably shouldn't enable the Cage at all. If you are
clicking on an Event Region to flip through "pages" of items, it would be bothersome to have the pointer yanked away with
each press.

+64 causes the mouse to be put at the rightmost cell of the first item the instant a regular menu is called. As with auto-
Caging (+128), enabling this feature might not be a good idea if you are using Event Regions.

+32 causes nothing to happen if the user clicks on the area outside of the menu. The menu remains active as it waits for a
real selection. When creating a multi-column menu (MV+11), +32 is especially valuable. Since clicks that occur nowhere can

28 DotBASIC Plus v2.2

be ignored, you don't have to make the columns touch. This is made even better if Regions are active. Only Regions and
items of the menu could then be clicked on.

+16 causes the escape key, when pressed, to automatically select the last item in your menu - just as if you pressed its
hotkey. This saves some code if "Close this Menu" is the last item in your menus - especially when using the ON-GOTO
command.

When using MV+11 and a Multi-Column Menu, +16 allows the user to click on ANY active Region. If this
happens, 128 is added to the Region number and that value is returned in SL%. The Region is not "highlighted" in
any way as the pointer moves over it. This feature has limited uses and does require some setup on your part. You
probably won't want to use the same ol' Regions as the main portion of your program. Special Regions should be
defined, making sure that only THEY are the active ones, and labeled in some way to inform the user that these
areas are clickable.

If Regions are active, the hotkeys no longer select individual items in the menu, but Regions! 128 will be
added to the hotkey's number and that value is returned in SL%. Even the fanciest menu can still have complete
keyboard compatibility!

+8 causes the highlight bar to not change the colors of characters that have neither the Highlight nor Un-highlight color
applied to them. This is an interesting way to inform users of your menu's hotkeys. To use this feature properly, you must
make sure the entire menu area is colored in the Un-highlight color, except for the hotkey-characters.

+4 causes the selection number to be returned in SL% (as well as the accumulator) when called from ML. This is a
Mr.Mouse feature, and not particularly necessary to DB+.

+2 causes the highlight bar to be removed after a selection is made.

+1 causes the menu to be aborted if the mouse strays from the menu area. SL% is returned as zero if this happens.

MULTI-SELECT SCROLLING MENUS

 If you need to pick multiple items from a menu, DB+ can accommodate you. This type of menu is by nature a little
trickier to setup -- ǘƘŀǘΩǎ ǿƘȅ ǿŜΩǾŜ ǎŀǾŜŘ ƛǘ ŦƻǊ ƭŀǎǘ. The results are worth a little extra effort. ²ŜΩƭƭ ƴŜŜŘ ǘǿƻ ƴŜǿ
DotCommands to make it work.

MULTI-SELECT SCROLL MENU
Syntax: .MSMENU,X,Y,W,H,B,I,UN,HI,S,WB,LOC,T$,B$

You can see that .MSMENU is not much different from .SCMENU. Multi-Select Scroll Menus need two additional
parameters, S (color of Selected items) and WB (color of selected item With menu-Bar).

After .MSMENU is executed, pressing the EXIT key (MV+16) or click Quit, SL% will return the number of items
selected. If ESCAPE is pressed or Cancel is clicked (manual icons only), the menu is cancelled and zero is returned in SL%.
The selected items still exist, and still can be indexed, but you are just told that there weren't any selected items.

{ƻ ƴƻǿ ǿŜ ƪƴƻǿ Ƙƻǿ Ƴŀƴȅ ƛǘŜƳǎ ȅƻǳΩǾŜ ǎŜƭŜŎǘŜŘ όSL%), how do we access the actual items? For that, we need
another DotCommand, .SEL.

SELECTED INDEXED ITEM
Syntax: .SEL,NUMBER

After using a multi-select menu, .SEL is used to ask for each "N"th selected item - whenever and as often as you
want - so long as it remains within the current INDEXable file. If that sounds confusing, have no fearτall will be made clear.

Selecting items is as easy as hitting RETURN or clicking on them. The item is toggled and the mouse and highlight
bar are moved down to the next item, scrolling when necessary - even when selecting with the mouse!

MENUS
DotBASIC Plus

29

LǘΩǎ ŀƭǿŀȅǎ Ŝŀǎȅ ǘƻ ǎǇƻǘ ǘƘŜ ǎelected items, even when they are under the highlight bar. Which of the U,HI,S,WB
items are REVERSEd is set from bits 3- 0 to MV+15. By default, the highlight bar and all selected items are REVERSEd. Each
REVERSE bit can be temporarily disobeyed by adding 128 to the U,HI,S,WB parameters.

If you create a Multi-Select Scroll Menu and select 5 items, SL% will contain the number 5. The .SEL DotCommand
will return each item in W$, or if the menu consists of a disk directory the filename selected is returned in F$. Here is an
example:

 10 for n=1 to sl%

 20 .sel, n

 30 print w$

 40 next n

N will increment from 1 to the number of items selected (SL%). Each time .SEL,N is executed, the Nth item is
returned in W$ and then displayed.

.MSMENU recognizes these keys in addition to those used in a Scrolling Menu (Up, Down, Home, Quit). With
.MSMENU, the keys A, N, and T function to select ALL, NONE, and to TOGGLE ALL items (respectively). The mouse user
cannot access these special features unless you enable manual icons!

If you are using manual icons, the mouse usually can move anywhere on the screen. Nothing happens if the user
clicks outside the menu. Even clicking on an active Region has no effect IF the Region number isn't one to which we have
assigned a function.

MANUAL ICONS

When defining a Scrolling Menu or a Multi-Select Scrolling Menu, X+128 enables a powerful new feature. If you do
not like the generic look of the scrolling menu, you can now do something about it!

Several things change when X+128 is used.

1. The BX,I,T$, and B$ parameters are ignored.
2. The scrolling menu is not drawn.
3. The mouse is not caged on the menu.
4. The X,Y,W,H parameters now represent the area for the actual scrolling text alone.

"Manual Icons" means just that. DB+ is trusting YOU to create, label, and enable (as Regions) the icons for your
scrolling menu. They can be any size and at any location.

Here are the Region numbers and the functions they would have for a regular scrolling menu:

1. Home
2. Scroll up
3. Scroll down
4. Exit
5. Page up
6. Page down

Regions 5 and 6 aren't necessary, so don't feel obligated to use them. Nothing bad will happen if you don't have 6
active Regions. Right-clicking on Regions 2 and 3 also page-up and page-down, too. However, joystick users with a repeating
fire button may appreciate Regions 5 and 6. No matter what you decide, be sure to include Regions 1-4: the same ones that
are present using the generic "standard" icons.

Multi-Select Scroll Menus will obey up to four extra Regions, if you take the time to define them.

30 DotBASIC Plus v2.2

7. Select all
8. Select none
9. Toggle all
10. Cancel

Pressing EXIT or clicking on Region 4 will return the number of selected items in SL%. Region 10 behaves just like
ESCAPE, returning a grand total of zero selected items.

Since you may not always label the EXIT icon as "Quit", MV+16 exists so you can assign an appropriate key to the
exit function. The CRSR keys still scroll and page, and HOME still goes home. ESCAPE cancels, just like EXIT (in the regular
Scrolling Menu).

