

DotBASIC Plus created by
Dave Moorman

Based on Mr.Mouse Technology

by Lee Novak

Manual by
Dave Moorman, Lee Novak, Alan Reed

Join the DotBASIC Community

More from these Authors:

"Shall Not Perish" or "The god of 524288 Switches", Salvific Issues of Automatic Data Processing
by Dave M. Moorman

Also Steal This Book

by Alan Reed

Untitled: A Tale of Indecision
by Lee Novak

Copyright 2008 eTower Marketing
All Rights Reserved

All Programs Copyright 1982-2008 J&F Publishing, Inc

INTRODUCTION
DotBASIC Plus

3

USING THIS BOOK

e at LOADSTAR are pleased to offer the ultimate software development package for the Commodore

64: DotBASIC Plus.

DotBASIC Plus (DB+) is a new and exciting way to put pizzazz in your programs. While DotBASIC is
astoundingly easy to use, there are a few new concepts that may be unfamiliar to the BASIC 2.0 programmer. So, we highly
recommend you start from the beginning. The first part of the manual will walk you through a number of program ideas,
explaining the various DB+ commands and concepts along the way. Take the time to work your way through them—we
promise it will pay off! Once you get the hang of DotBASIC, you’ll be amazed at how slick and professional your programs
can look with just a few lines of code.

DotBASIC is the ideal programming environment for the novice – however, at least some familiarity
with BASIC 2.0 (the built-in language on the C-64) will help. We will start from scratch. Yep — "Hello, World"
will be our first project. From there, we will explore doing text boxes, menus, Event Regions, mouse controls,
and a host of other features.

The second part, The DotBIBLE, is the “Reference Guide” section of the manual . Every current DotBASIC
command (cleverly abbreviated to DotCommand) is listed here alphabetically. You’ll be able to look up the
proper syntax and see a short description of each DotCommand.

In the Appendices you’ll find a DotBASIC Quick Reference sheet, a DotCommand Summary, info for
machine language programmers, and other interesting and useful things for the more advanced user.

The following conventions are used throughout this book:

 Special Commodore characters are shown in brackets. For example, {clr} is the SHIFT / HOME key combination,
{down} is the CRSR down key, and so on.

 We will use the "variable" db for the disk drive containing your DotBASIC disk, as in LOAD”B.DEV”,db.
Likewise, dw represents the drive containing your Work disk.

 We present DotCommands in the following way:

NAME

Syntax: dotcommand,parameters

Some DotCommands are easier to remember than others. .MENU is pretty self explanatory, but “Random
Index” makes a little more sense than .RDMI—thus the blue NAME field.

Some typical parameters used throughout:

X,Y,W,H This is the area field. X and Y represent row (0-39) and column (0-24) of the upper left
corner of the area. W is width (1-40) and H is height (1-25).

CO Color

W

4 DotBASIC Plus v2.2

SC Screen Code

D Disk drive device number. Your current drive number is automatically assigned to D by
your DotBASIC Plus program. There’s no longer any need to worry about what device
number to use when creating programs that require disk drive access. Just use D.

LOC Location in RAM memory, as in 49152 or 40960.

PAGE Page number in RAM. Each page is 256 bytes long. To convert a page to a decimal
memory location, multiply by 256. For example, page 192 is 192*256 = 49152. We at
LOADSTAR like using pages when talking about memory. Refer to page 6, Making
Memory Management Manageable, to see why using Pages just makes sense.

STRING$ String, as in A$, or “STRING”. Most DotCommands can use string variables (A$), literals
(“STRING”) or concatenated strings (A$+”STRING”). A few, however, require a literal
string and a few insist on string variable only.

SYSTEM REQUIREMENTS

Keep your original DB+ disks in a safe place. Use a copy of the DotBASIC Plus disk and at least one disk
drive. The system really works best if you have two or more drives. In fac t, this manual assumes that you are
using two drives. The DB+ Library disk should be in one drive and your formatted Work Disk in the other. (I use
drive 8 for my Work and drive 9 for the DB+ Library disk. Your situation may vary. I also work in VICE, the
Versatile Commodore Emulator , on a Pentium 400 Windows 98 machine. Even on the shiny new equipment, I
am woefully behind the cutting edge!—Dave)

If you absolutely must use a single disk drive, you will need to be sure you have 100+ blocks free on
your DotBASIC Plus disk to have room for your work. Just be sure to copy your program to another disk when
the project is completed. Your essential files are: B.YOURPROG, MOUSE 2.1 7K 2000, YOURPROG.DML,
YOURPROG.DBS, and any file with a DBA prefix. Did we mention that DotBASIC really works best with two disk
drives?

DOTBASIC FEATURES

1. DotBASIC Plus is an Adaptable, Mouse Capable BASIC Extension. DB+ programs boot from default BASIC, and exit
to default BASIC. DB+ currently has 100 additional commands, using an easy-to-use and easy-to-read ".command"
structure. Your DB+ program has code overhead for only the DotCommands you use.

2. Quick environment set-up puts all the necessary files on your work disk and creates a boot program for your
project. Easily "include" the DotCommands you need with "DEV". Library commands are merged with your
program code.

3. Programs written with DotBASIC Plus automatically support a mouse in port 1 and a joystick in port 2. The joystick
FIRE button is the same as the left mouse button. For joystick users, any key can be defined to replace the missing
right mouse button. If you have CMD's SmartMouse, the middle button will double the mouse's speed.

4. Do-Loop Method for Fast Mouse Control, with Loop-Until and Loop-While. Event Regions and Mouse Roll-Over
effects, including "Region Text" to display information.

5. Boxes/Windows, Screen Stash/Restore, Text Area Cut/Paste for pop-in/pop-out menus, dialogs and effects. Print
At/Print Center/Word-Wrapped Text Blocks. Wait for Key/Wait for Key or Mouse Click. Read Keypress against
given string of keystrokes. Two improved INPUT commands.

6. BLOAD/BSAVE/Directory Load/Disk Command. Character/Color Swap/Copy Memory/Swap Memory
7. Regular Menus/Scrolling Menus/Multi-Column Menus/Scrolling-Multi-Select Menus.
8. Rack Mr.Edstar (LOADSTAR's 38-column editor) files into virtual string arrays — even under ROM. Store strings in

memory (under ROM) and Rack into a virtual array.
9. SIDPlayer! Craig Chamberlain's classic Enhanced SIDPlayer available as two DotCommands. Load and display High-

Res and Multi-Color Bitmap Graphics. Draw on Bitmap Screen. Print Text on Bitmap Screen. Sprite Control,
including expansion, priority, and multi-color mode effects. Link sprites' positions to each other for “easy-to-place”
mega-sprites.

10. AND THE GREATEST FEATURE OF ALL— DB+ is designed to grow, with new commands and variations being
continuously developed. Just add the new command files to your library and use them as needed.

INTRODUCTION
DotBASIC Plus

5

 GETTING STARTED

IN THIS SECTION: Page

Creating a New Project 7

DotCommands

TEXT COLOR 8

BACKGROUND COLOR 8

BORDER COLOR 8

OFF 8

DO-LOOP 9

MOUSE ASK 9

UNTIL 9

“Including” New DotCommands 10

Creating Text Boxes 12

 DotCommands

 TEXT BOX 12

 BOX 12

 KEY/MOUSE WAIT 12

 Regions 13

 DotCommands

 DEFINE REGION 13

 AFFECT REGION 14

 PUT MOUSE 14

 PRINT AT 14

 PRINTCENTER 14

 KEYPRESS 16

6 DotBASIC Plus v2.2

MAKING MEMORY MANAGEMENT MEMORABLE

At LOADSTAR we like simplicity. But memory locations are quite confusing, especially when
written in decimal numbers. And, if you are rather new to programming, those hexadecimal
numbers (like $A000) are even harder to read. So we use Pages. The 64K of the C-64 can be
divided into 256 Pages, each containing 256 bytes. Actually, this is how the computer sees
memory, described in two bytes — lo byte and hi byte. We call the hi byte the Page number.

Here are some Page numbers that are important with DotBASIC Plus:

0 Zero Page — where the system does a lot of work.
4 Beginning of the text screen.
8 Beginning of the font.
16 Beginning of DB+ code
46-54 Sprite image area.
55-?? DB+ commands.
160 Beginning of BASIC ROM
176 Half way through BASIC ROM
192 "Open" memory.
208-223 Input/Output registers
224-255 Kernal ROM

Pages 128-207 will be used with certain DotCommands, such as .SID and .BMP. Be sure to
look at the Memory Map on the Quick Reference Sheet when using these commands. When
we have a Mr.Edstar text to BLOAD, we just multiply the Page number by 256, as in:

.bl,"t.text",d,160*256

Another great trick: on the disk directory, we can see how many Disk Blocks a file uses. A Disk
Block is 254 bytes long, so we can use this number to figure out how many pages a file will
encompass. For instance, if "t.text" is 12 Blocks in size, we know we can BLOAD "t.text2" to
page 160+12, or

.bl,"t.text2",d,172*256

Now that's memorable!

GETTING STARTED
DotBASIC Plus

7

GETTING STARTED: CREATING A NEW PROJECT—“HELLO, WORLD”

hat’s right, ladies and gentlemen, we are going to start with the semi-obligatory “Hello, World” program. This tutorial
will introduce you to the world of DotBASIC programming, gently acquaint you with some programming concepts that
might be new to you, and show you a few DotCommands. Perhaps most importantly, we’ll teach you how to create a

new DotBASIC Work disk.

So are you ready to go? Format your Work disk, making sure all disks are in the proper drives.
Remember, we will use the "variables" db for your DB+ disk drive and dw for the Work disk drive. Ready?

Here we go!

LOAD"B.DOTBASIC",db

And

RUN
First, choose the drive your Library (“Dot”) disk is in. The
next menu that appears is "Work Dsk." Choose the drive
your Work Disk is in. You will be asked to confirm both
choices— press N, then press Y to try again.

You are now prompted to input the program name. We
will call this program hello. Type in "hello"and press RETURN.

The necessary files for your project are created and copied
to your Work drive. Then your project is automatically RUN. You will
see the mouse arrow for a second, then a READY prompt in white. You are now ready to program in DotBASIC Plus! Let’s
see what we have on our Work disk now. LOAD"$",dw And LIST the program. You will see:

B.HELLO is the boot program, the one you will load and run to start your DotBASIC program. The “B.” prefix is a
LOADSTAR convention that makes it easy to recognize a multi-part program’s boot file. You can rename the boot file to
anything you like, of course, but do not rename any of the other files on your Work disk.

MOUSE2.1 7K 1000 provides many of the commands you will use.

T

8 DotBASIC Plus v2.2

HELLO.DML is the ML program that interprets commands from DB+ and makes them work. One of the neat things
about DotBASIC Plus is that the .DML program only contains the DotCommands your program needs—you won’t waste
valuable RAM on DotCommands you aren’t using (see page 10 for more on this).

HELLO.DBS is your DB+ program. This is the place where you will be working.

Next, LOAD"HELLO.DBS",dw and RUN it. Now LIST the program:

5 d=peek(186): dd=56*256: mm=16*256
10 rem begin list
20 rem.endlist
30 sysdd
40 .tx,1: print"{clr}";:.bg,6:.br,14
59998 .of
59999 end
60000 gosub60008: n$=n$+".dbs"
60001 d=peek(186): sys14339
60002 open1,d,15,"s0:"+n$: close1
60003 saven$,d:end
60008 n$="hello"
60009 return

Line 5 sets up important variables. Lines 10 through 20 are used to add commands to your DB+ program. Line 30
starts DB+. Line 40 uses three DB+ commands.

TEXT COLOR
Syntax: .TX,CO

.TX sets the Text color. Add 128 to CO (color) to REVERSE the text.

BACKGROUND COLOR
Syntax: .BG,CO

 Sets the background color.

BORDER COLOR
Syntax: .BR,CO

Sets the Border color.

Sure, POKE 53280,CO, POKE 53281,CO or POKE 646,CO will work just fine. But aren't these commands easier to
read? And the +128 option for .TX will come in handy. Promise!

On line 59998 we have another DotCommand:

GETTING STARTED
DotBASIC Plus

9

OFF
Syntax: .OF

.OF turns off DB+ and returns your computer to its normal default state. The SYS14339 in line 60001 does the
same thing.

When you break out of a DB+ program and the arrow is still visible, DotBASIC Plus has NOT been shut off. You
should type .OF in immediate mode to stop the special features. However, like me, you will forget. Therefore, before
RUNning your edited code, first GOTO60000. This is the beginning of our LOADSTAR "scratch and save" routine. With DB+,
all you ever need to do to save your program is GOTO60000 and press RETURN. This not only saves your current work, it
also turns off DB+. If DB+ is not turned off before RUNning, the computer will usually lock up.

Impressed? Confused? Don't worry. We will now write "Hello, World"!

100 print"Hello, World"
102 .do
104 .ma
106 .un l2% or peek(198)
108 print"{clr}";
110 poke 198,0

Actually, the printing of "Hello World" is just plain BASIC 2.0. The DB+ improvement comes with lines 102-106 and
three new DotCommands:

DO-LOOP
Syntax: .DO

.DO begins a Do-Loop. If you have worked with any language other than BASIC 2.0, you know what a Do-Loop is all
about. Much of your mouse control and effects can be performed within a Do-Loop, making your program very responsive.
We will explain in a moment.

MOUSE ASK
Syntax: .MA

.MA puts all the current conditions of the mouse in various variables. One of those variables is L2%, which is 0 until
the left mouse button is clicked. (This goes for the joystick fire button as well.) This DotCommand provides the programmer
with a tremendous amount of information! Refer to the Quick Reference Sheet on the back cover for a complete list of
mouse variables that are returned by .MA.

UNTIL
Syntax: .UN, Boolean expression

.UN is short for UNtil, and in the above example the program will loop back to the .DO until either L2% or
PEEK(198) are not 0. So when you click the left mouse button, fire button, or press any key, the program falls through the
UNtil. Otherwise, this code just waits for something to happen.

The Do-Loop is perfect for many mouse-driven activities and we will use it a lot.

10 DotBASIC Plus v2.2

So GOTO60000 then RUN your program! Always GOTO60000 before RUNning your program! That way, if DB+ is still
active in the background, it will be stopped. Running a program with DB+ still active usually results in an ugly crash. (OK,
“ugly” is too strong a word. But you will have to reset/restart your C64, and your words might be ugly. – Dave)

You can do all sorts of things with this. For example, a FOR-NEXT loop will add some color and fun:

100 for x=0to15:.tx,x:print"Hello, World":next

 Change line 102 to

102 .do:.ma

then add:

103 .bg,cx%and15
104 .br,cy%and15

 Now your mouse/joystick will control the color of the background and border. CX% gives the text cell X-coordinate
(after .MA happens), and CY% is the Y-coordinate. You will find this feature extremely valuable!

INFINITE COMMANDS: HOW TO “INCLUDE” NEW DOTCOMMANDS WITH DEV

 DotBASIC Plus has only a few “built-in” DotCommands, and they include all the ones we learned about in the
previous “Hello, World” tutorial. In case you skipped it (and shame on you if you did), those DotCommands are:

 .tx Text Color
 .bg Background Color
 .br Border Color
 .do Do Loop
 .un Until
 .ma Mouse Ask
 .of Off (Kill DotBASIC)

 As useful as these are, a BASIC extension with only a few new commands (eleven, actually—there’s also .WH, .KP,
.QS, and .QR) would not be something to get terribly excited about. Fortunately, DotBASIC Plus has the ability to add many
more. (100 so far! And the list just keeps growing—Dave). However, except for the ones we just mentioned, you will have
to "include" the new commands in your program. We have to let DotBASIC know which DotCommands we will need.

 Why go through all this? Why not give me all the commands at once and skip this “including” stuff? Because, since
your DB+ programs will only “include” the DotCommands you need your programs will potentially have a lot more RAM
available to them. Why take up valuable memory for dozens and dozens of commands you aren’t using? Secondly, the
machine language part of your DotBASIC programs (that’s the file on your Work disk with the .DML extension) only needs
to be large enough to contain the DotCommands you choose, saving you a sizable amount of disk space. Finally, and maybe
most importantly, this process of “including” makes it very easy for machine language programmers to create new
DotCommands that can then be “included” along with the old ones. This way our palette of DotCommands can be
expanded into infinity! Imagine the possibilities!

GETTING STARTED
DotBASIC Plus

11

So let’s create a new project, one that needs a few new DotCommands we haven’t seen yet. With your disks still in
the drives, reset your computer, then LOAD”B.DOTBASIC”,db and RUN. Choose the drives you are using (as before). This
time, for the program name, input hello2

 After your Work disk is created and the “hello2” program runs, let’s LIST-999 and take a look at the first few lines
of code.

5 d=peek(186): dd=56*256: mm=16*256
10 rem begin list
20 rem.endlist
30 sysdd
40 .tx,1: print”{clr}”;:.bg,6:.br,14

Notice lines 10 and 20. To “include” new DotCommands, all we do is enter them
between these two lines, in the form of REM statements.

Now for the fun. Add this line to your program:

11 rem.text,.box,.keymw

We’ve “included” three new DotCommands after the REM statement, each one separated by a comma. Note that
there are no spaces anywhere after the REM statement. If you use a DotCommand in your program without "including" it,
you will get a ?DOTCOM NOT FOUND ERROR IN LINE xxxx response.

Save the program (good old GOTO60000), then LOAD”B.DEV”,db and RUN it. Remember, LOADSTAR uses a
“b.” prefix to denote boot programs. DEV will find your Work disk and present you with a screen very much like the one
you see here.

Choose your DotBASIC program (the one that has a .DBS extension)
with the CRSR keys and press RETURN. DEV creates a command list, collects
the ML codes necessary, and saves a new HELLO2.DML file to your Work Disk.
HELLO2.DML is the ML program that interprets commands from DB+ and
makes them work. The DotCommands “included” between lines 10 and 20 of
your DotBASIC program are added to this .DML file.

As DEV runs, you will see your included DotCommands listed, along
with shared routines and data files. These shared routines are internal
DotBASIC Plus commands that are used to help create the DotCommands you
are adding. It’s interesting to see DEV’s progress while it is building the new
.DML file for your project, but if DEV appears to be adding strange commands
like area, putstr, putint and so on, don’t panic. DEV will give you what you “include” and nothing else. Finally, DEV will
LOAD and RUN your DotBASIC program, putting you back in your project (and on the Work Disk). Your “included”
DotCommands are ready to go!

How does DEV know which drive your program is on? When you load and run your project, the drive number is
tucked away in memory. When DEV is finished, it uses this value to find your program again. So you can use DEV at anytime
from any drive to add or remove commands from your program.

To summarize, you can run DEV as often as you like, anytime you like. Just save your work (GOTO 60000) and run
DEV from your DotBASIC Plus disk. Choose your DotBASIC program (with the .DBS extension) and in a few moments you will
be right back where you left off—except armed with a few new powerful DotCommands. It’s really very simple.

12 DotBASIC Plus v2.2

CREATING TEXT BOXES

Nothing can spruce up the appearance of your program quite like a fancy text box, thus we’re going to explore
three new DotCommands: .TEXT, .BOX, and .KEYMW. We’ve already included them in our hello2 project from the previous
tutorial, so we’ll return to that. LOAD”B.HELLO2”,dw then RUN and LIST. Now let’s look at the three commands.

TEXT BOX
Syntax: .TEXT,X,Y,W,STRING$

This command prints the string at X,Y — and word wraps it to fit in W width. It doesn't get much easier than that!
.TEXT won’t print anything if the text is too long to be wrapped. For example, .TEXT will print nothing if W equals 10 and
STRING$ = “Antidisestablishmentarianism”.

BOX
Syntax:.BOX,X,Y,W,H,SC,CO

This is a DotCommand you’ll use in nearly every project. .BOX draws a box on
the screen with the upper left corner at X,Y, a width of W, and a Height of H. SC stands
for Screen Code — usually 32 for a blank screen or 160 for REVERSEd spaces. CO is COlor,
of course. If you use 255 for SC, the area is painted with CO. Add 16 to CO to draw a
frame around the box. This DotCommand does a lot!

KEY/MOUSE WAIT
Syntax:.KEYMW

Key/Mouse Wait replaces the Do-Loop we mentioned above. The program stops and waits for either a mouse click
or a key press. The mouse variables hold the mouse's current information. I% will contain the ASCII number of the key
pressed (0 if none).

We are going to draw a box on the screen and fill it with text. First the box:

100 .box,5,5,30,07,32,1+16

This box has its upper left corner at column 5, row 5, is 30 columns wide and 7 rows high (or deep). The screen
code is 32 — a space, with a color of 1 — white. The +16 puts a frame around the box.

GETTING STARTED
DotBASIC Plus

13

Now we need some text to put in the box.

110 t$="This is a wonderful test of this remarkable system. "
111 t$=t$+"Nothing can possibly go wrong with this test."

T$ now holds this long text. Let’s set the text color to yellow, and the border and background to black.

112 .tx,7:.br,0:.bg,0

 We are now ready to print the text with .TEXT. Note that the X,Y
locations are one more than the box's X,Y, and the width is two less than
that of the box. That’s to keep the text from overwriting our frame.

120 .text,6,6,28,t$

 And watch how tidy this is:

130 .keymw

Be sure to save your program, then RUN it.

Whoa! Pretty snazzy for just a few commands. This is a simple example of how seriously powerful DotBASIC Plus
is.

If you want to do something more, add these lines:

140 a$="Clicked Your Mouse"
150 ifi%>0thena$="Pressed the "+chr$(i%) + " Key"
160 .text 6,15,28,a$
170 .keymw
180 print"{clr}":.of:end

REGIONS

"Modern Programming" is graphic- oriented, with a GUI — Graphic User Interface. With DotBASIC Plus we can
create some great, “button” controlled programs. The key to creating “buttons” you can mouse over and click on is the
concept of Event Regions. Regions are, in fact, one of the most important concepts in DotBASIC Plus. Absorb the following
information and you’ll be well on your way!

Regions are areas of the screen, defined by you, which the mouse senses when the arrow is over them. These
Regions can also be affected by another DotCommand, changing the Region color and other features — much like we’ve
already done with BOXes. So, let’s consider three new DotCommands:

DEFINE REGION
Syntax: .DREG,REG#,X,Y,W,H

This is sort of like the first part of a .BOX DotCommand — just the position of the area on the screen. Each Region
has a number, and you can have up to 64 Regions on the screen at a time. So, to define Region #1 we could have a line like
this one:

100 .dreg,1,10,8,5,3

 We have defined Region #1. The Region begins at column 10, row 8. The Region is 5 characters wide and 3
characters deep. Simple as that!

14 DotBASIC Plus v2.2

 Check out .DREG in the DotBIBLE section to learn a lot more about this DotCommand.

AFFECT REGION
Syntax: .AREG,REG#,SC,CO

So .AREG is like the rest of the BOX command, controlled by the Region number.

PUT MOUSE
Syntax: .PUTM,X,Y

This DotCommand puts the mouse arrow anywhere on the screen.

We will also use .P@, .PC, and .BOX in this program — so it is time to put your disks in their drives, boot up
B.DOTBASIC, and create a new program called "buttons".

The first thing to do is add the needed commands to the list:

11 rem.p@,.pc,.box
12 rem.dreg,.areg,.putm

Save your program with GOTO60000, then LOAD"B.DEV",db from your DB+ disk, and run it. We are going to
change line 40 again — making the background and border both Light Blue (14). You should know how to do that. And we
want to use two colors for our buttons — an unhighlighted color and a highlighted color. We will put these in variables to
make everything much easier to read.

99 un=1:hi=7

Now we’re ready to get started. The easiest way to position buttons on the screen is to first print the text of the
buttons with .P@.

PRINT AT
Syntax: .P@,X,Y,STRING$

PRINT AT prints STRING$ at the X/Y screen text cell coordinates. It only prints strings, so numeric values must be
put in STR$(value).

A close relative of PRINT AT is PRINT CENTER. We’ll be using it in a few moments, and it’s even easier.

PRINTCENTER
Syntax: .PC,Y,STRING$

This DotCommand prints STRING$ centered on row Y.

Back to our example, we have already chosen locations for four buttons, but feel free to play around with the
concept.

110 .p@,3,5,"Button One"
120 .p@,20,5,"Button Two"
130 .p@,3,15,"Button Three"
140 .p@,20,15,"Button Four"

RUN the program to see if this is what you want.

GETTING STARTED
DotBASIC Plus

15

Now we’ll create our Regions, defined as areas one space wider than our text in all directions. These Regions will
become our clickable “buttons.” The .DREG DotCommand defines each Region, and on the same line we will use .AREG to
color in the buttons. Insert these lines:

108 .dreg,1,2,4,15,3:.areg,1,160,un

109 .tx,un+128

 (The .TX DotCommand is only necessary on the first button.)

118 .dreg,2,19,4,15,3:.areg,2,160,un

128 .dreg,3,2,14,15,3:.areg,3,160,un

138 .dreg,4,19,14,15,3:.areg,4,160,un

RUN this. You should have nice white buttons with REVERSE text in
each. Now for the shadows. Before the buttons are created, we insert a few
lines that create the shaded area. Using BOX, just add 1 in each direction for
the X and Y coordinates, and use a darker color than the background.

106 .box,3,5,15,3,160,6

116 .box,20,5,15,3,160,6

126 .box,3,15,15,3,160,6

136 .box,20,15,15,3,160,6

Another interesting way to add a shadow effect to your text boxes is to create a BOX with CO defined as 255. This
will create a box that shades the defined area. This creates an especially attractive effect if the area you are shading
contains text or graphic characters.

Batta-bing! Your four buttons are ready to go. Our next trick is to place the Mouse Arrow in the lower right corner
of Button One.

 150 .putm,15,6

The trick to "Roll-Overs" is to keep track of the current button and the last
button the arrow has pointed at. Since the arrow is now on button 1, we will set a
variable (OG) to 1. We also need to change the color of Region 1 to the highlight color.

152 og=1

154 .areg,1,255,hi

Note that a screen code of 255 in .AREG (as with .BOX) will paint the color on the existing image.

We have just one other thing to do in preparation for this program — and this is just for classiness! You will
understand soon.

160 b$(1)="One"

161 b$(2)="Two"

162 b$(3)="Three"

163 b$(4)="Four"

Now we are ready for the Do-Loop that will make it all work.

16 DotBASIC Plus v2.2

 200 .do

 202 .ma

Remember, .MA gets mouse information into DB+. One piece of information is the Region the arrow is currently
over — returned in RG%. But if RG% = 0 or RG% equals the old Region (OG) then we do not want to do anything.

210 if rg%=0 or rg%=og then299

This line will cause the Do-Loop to loop as long as the Region has not changed and the left mouse button is not
clicked. But if the Region has changed, we need to affect the Regions — and update OG.

220 .areg,og,255,un:.areg,rg%,255,hi

230 og=rg%

299 .un l2%

Take a close look at what is happening, and then RUN the program. Of course, at this point, when you click the left
mouse button, the program will stop. So we need something a tad more elegant.

300 .tx,6

305 .pc,21,"You Pressed Button "+b$(og)

310 .pc,23,"Again (Y/N)"

320 poke198,0

330 .do:.kp,"yn": .un i%

340 if i%=2 then 400

350 .box,1,21,39,3,32,0

360 goto 200

400 .tx,1:.bg,6:.br,14:print"{clr}";

In line 305 you now see what those B$(n)s were all about. This is a fairly easy Y/N loop you can use for a myriad of
purposes.

In line 330, you’ll find another new DotCommand —.KP. This is a “built in” DotCommand, so we don’t need to
include it.

KEYPRESS
Syntax: .KP,STRING$

This routine quickly scans your string and checks if any of those keys are being pressed at the moment. If one is,
that key's position within the string will be returned in I%.

GETTING STARTED
DotBASIC Plus

17

 MENU MADNESS!

IN THIS SECTION:

Simple Menus 19

DotCommands

BOX 19

STASH 19

RESTORE 19

MENU 19

Multi-Column Menus 22

Scrolling Menus 22

DotCommands:

BLOAD 23

DIRECTORY 23

SCROLLING MENU 23

PROJECT: DOTMENU 24

Mouse Variables 26

Multi-Select Scroll Menus 28

 DotCommands

 SELECTED ITEM (INDEX) 28

Manual Menu Icons 29

18 DotBASIC Plus v2.2

THE HISTORY OF DOTBASIC PLUS

Chuck Peddle and the engineering team of the Motorola 6800 went to work for MOS Technology in
1975 to create the 6502 microprocessor and the KIM 1 test computer. MOS Technology was bought
up by Jack Tramiel’s Commodore Business Machine company in 1976, and Peddle upgraded the
KIM 1 into the PET 2000 – a ready to use home computer.

In 1981, Al Charpentier and Charles Winterble at MOS Tech developed the VIC-II Video Integrated
Circuit while Robert Yannes designed the SID – Sound Interface Device – chip. Tramiel called for a
home computer built around the capabilities of these two chips in October, and the Commodore 64
was unveiled at the Consumer Electronics Show in Las Vegas in January of 1982.

That same year, Jim and Judi Mangham started a table-top publishing venture called Softdisk,
creating monthly software collections for the Apple II computer. In 1984, Softdisk, Inc. brought out
LOADSTAR Monthly for the increasingly popular Commodore 64. Former bar band guitarist Fender
Tucker took over Managing Editorship in 1988, and encouraged a generation of independent
programmers to greater elegance and style.

At Fender’s shoulder was Jeff Jones, a talented programmer who crafted many of LOADSTAR’s
Utility Wares. He also was the ML (Machine Language) guy, and introduced hobbyist programmers
to the Toolbox – a collection of ML routines to augment BASIC. Several programmers of the
“LOADSTAR School” took the idea to further heights, culminating in Mr. Mouse, by Lee Novak.

Mr. Mouse had all the features of an ordinary toolbox – menus, boxes, print at, etc. – plus full
mouse control. The module went through a number of versions and sizes until Mr. Mouse 2.1
contained nearly everything a programmer might need to create classy point-and-click software.

Dave Moorman became a LOADSTAR programmer in 1993, and took to Mr. Mouse immediately. In
2000, he published a PC Windows-ready monthly called eLOADSTAR, which repackaged programs
from the 190+ issues of LOADSTAR. By the end of the year, when Fender Tucker was ready to set
aside LOADSTAR, Dave stepped in to continue the “longest running disk magazine in history.”

Wanting to create a complete BASIC Extension and software development environment, Dave took
Mr. Mouse 2.1 and gave it command names, rather than the SYSaddress commands used in ML
modules. The commands all began with a period – and DotBASIC was born. The second version,
DotBASIC Plus – with programmer-customized command lists – is before you now.

Dave sent a copy to Alan Reed, who fell in love with the new language. The documentation, in five
C-64 text files, needed some tender loving care – and Alan was just the guy to do it. As he edited
the DB+ Manual, he also worked with the various commands to discover the full capabilities of the
language. This, of course, led to fixes and new commands to be added to the library.

http://en.wikipedia.org/w/index.php?title=Al_Charpentier&action=edit
http://en.wikipedia.org/w/index.php?title=Charles_Winterble&action=edit
http://en.wikipedia.org/w/index.php?title=Robert_Yannes&action=edit

MENUS
DotBASIC Plus

19

ow that you have experienced how easy it is to begin a program in the DB+ environment, we can go on to some of
the powerful commands available to you.

One of the greatest features of DotBASIC Plus is its ability to easily create slick, professional looking menus. Drop-
down-menus, multi-column menus, file requestors, even multi-select scrolling menus with manually created icons—
DotBASIC Plus can, as we’ll discover, do all these fairly easily using four different menu-creating DotCommands: .MENU,
.MCMENU, .SCMENU, and .MSMENU. We will approach .MENU and .MCMENU first, since they are the simplest of the
menu DotCommands and share certain characteristics. Likewise, .SCMENU and .MSMENU are slightly more sophisticated
and also have features in common.

SIMPLE MENUS

.MENU (MENU) and .MCMENU (MULTI-COLUMN MENU) are similar in that the menu choices are created by you
and printed to the screen. The menu DotCommands then turn that portion of the screen into a menu. In other words, we
set up the screen to look like a menu, then DotBASIC Plus turns it into a real menu. Menus like this are very simple to
create, and they look great. We will begin by building a program called MENU. MENU, perhaps not surprisingly, uses the
.MENU DotCommand. While we’re at it, we’ll try out some other important new DotCommands too.

Our program “MENU” will put a menu on the screen, and then use it to GOSUB to line numbers for each item.
What the subroutines do is not important — they can do anything you want!

First, put in your Work disk, then LOAD"B.DOTBASIC",db and RUN it. Select your DotBASIC drive and Work drive,
confirm, and input "menu" for the program name. Now you are ready! We will need several new DotCommands added to
our .DML file, so don’t forget to “include” them and run DEV. Let’s take a close look at each of them.

BOX
Syntax: .BOX,X,Y,W,H,SC,CO

We’ve seen this one before, but since BOX is such an important DotCommand, we’ll talk about it again. BOX puts a
box of screen code (SC) in color CO in the area with the upper left corner at X/Y, a Width of W (1-40) and a Height of H (1-
25).

STASH
Syntax: .STASH,PAGE

Instantly stashes the whole screen to the given memory PAGE. We like Page 208
or 216.

RESTORE
Syntax: .RESTR,PAGE

Restores the screen image stashed at given memory PAGE. Pages are an easy way to deal with memory. Each page
is 256 bytes, so PAGE*256 is the memory location. You can STASH and RESTORE to memory under ROM and I/O.

And finally…

MENU
Syntax: .MENU,X,Y,W,I,U,H,HK$

This DotCommand turns screen rows defined by you into menu lines. X/Y set the upper left corner of the menu
area. W is the width of the menu bar, and I is the number of items. U is the color of unhighlighted items, and H is the color
of the highlighted item. HK$ allows us to define “hotkeys” for our menu. More on this later. The number of the menu line
chosen is returned in SL% (as in SeLection).

N

20 DotBASIC Plus v2.2

We start by telling DB+ that we need these DotCommands.

11 rem.p@,.pc
12 rem.box,.menu
13 rem.stash,.restr

Save your program with GOTO60000, then LOAD"B.DEV",db and RUN.

Now, let’s get started! In this example, we want to put the menu in a box that has a shadow. This is fairly easy with
DB+. But first, we will change the screen colors in line 40 to .BG,0 and .BR,0. Now let's put the title of the program on the
screen:

 100 .pc,0,”MY MENU PROGRAM”

Next we need a different background. Black does not work well for shadows! We could just change the background
color with .BG,color, but that is not fancy enough for us! We want black – the background color – to be the color of all our
text. Sounds confusing, maybe – but hang in there and all will be made clear. And you’ll learn a neat trick to boot!

102 .box,0,1,40,18,160,1

To parse out this command: the .BOX will extend from column 0, row 1 (thus skipping row 0 and our title) for 40
columns and 18 rows. It will use screen code 160 — a REVERSE space — in the color of 1 (white).

Now to put the menu on the screen. This is "in the rough." We just want to find where it will look best.

150 .p@,14,5,"A. Item 1{F7}B. Item 2{F7}E. Exit"

It so happens we have already positioned this text to be centered under the title. But you can easily move it
around by changing the two coordinates (X and Y). The {F7}'s are carriage returns to the beginning column on the next line
of the PRINT AT. This is a good alternative to using a separate .P@ for each line.

Now that the menu text is positioned correctly, we need to put a box around it.

140 .box,13,4,12,5,160,8

Again, we have already done the calculations. But it is pretty easy to
figure out. The left edge of the box is one space to the left of the text. The
top is one row above the first line of the menu. Width and Height/Items will
depend on what is printed.

We are making the box in REVERSE space characters (160) in the
color Orange (8). We will want the text to also be in REVERSE orange, so we
add a line:

141 .tx,8+128

 (This is why I like the .TX command! Just use the same color value as the box, then add 128 to REVERSE the text—
Dave)

You can run the program at this point if you want. In fact, you can run it after each line is added. And remember,
don't forget, do a GOTO60000 often. (I do it after adding each line! We have just too many power outages around here!—
Dave)

One last thing— a shadow. List line 140 and change the line number to 138 and press RETURN. Now LIST 138-140.
Edit line 138 by adding 1 to each of the first two values (the upper left corner of the BOX). Then change the color to 15 (light
gray).

MENUS
DotBASIC Plus

21

138 .box,14,5,12, 5,160,15

When you run the program now, a shadow appears. And you thought shadows were difficult!

Now the Box that is going to contain our menu items is in place and looks suitably snazzy. The items that make up
our menu choices are looking good and they are where they should be. The final step is the .MENU DotCommand that will
turn this into a real menu. Positioning the menu is not hard. Set the X/Y to the place where you printed the first line (“A.
Item1”). Set the Width to one less than the width of the Box. Then set I to the number of items in the menu. We’ll also add
some ‘hotkeys’ so the user can select the menu items with the keyboard if so desired.

160 .menu,14,5,10,3,8,7,"abe"

We are using 8 as the unhighlighted color (to match the box) and 7 as the highlighted color. The hotkeys are listed
in a string — "abe".

There you go!

We are going to fancy this up just a bit more. We want to have the menu screen come back after a selection is
made, so we will Stash it in a nice safe place in memory. The best two pages for screen stashes are 208 and 216 —
underneath the I/O.

155 .stash,208

.MENU returns the item number in SL%. So all we need to do is create an ON-GOSUB to direct the program. When
the subroutine returns, we .RESTR the screen we stashed at 208, then GOTO line 160.

170 onsl%gosub1000,2000,3000
180 .restr,208
190 goto160

Now, we will do something simple for each menu Item.

1000 .tx,1:print"{clr}Item 1"
1010 .do:.ma:.un l2%orpeek(198)
1020 poke198,0: return
2000 .tx,3:print"{clr}Item 2"
2010 goto1010
3000 .tx,1:.bg,6:.br,14:?"{clr}"
3010 .of:end

You can see how easy it will be to create great programs, listing all the features in the menu. It can also be seen
how “modern” looking drop-down menus can be created using .MENU along with .STASH and .RESTR. DotBASIC Plus will
take care of the presentation; all you have to do is write the features!

22 DotBASIC Plus v2.2

MULTI-COLUMN MENUS

 As we’ve seen, .MENU is a pretty powerful DotCommand. But we’re just getting started! What if you need a multi-
column menu? No problem!

MULTI-COLUMN MENU
Syntax: .MCMENU,NC,X,W,Y,I,U,HI,HOT$

This command has a lot in common with .MENU, with a few exceptions. NC is the number of columns in your
menu, which can be from 1 to 5. You must follow that with an X coordinate and W width value for each column of your
menu. Y coordinate and I (for Items) apply to all columns.

U is the color of unhighlighted items in the menu. The highlight bar is colored HI. If you don't want the text to
REVERSE or un-REVERSE as the bar moves, add 128 to HI.

The user can move the mouse or joystick right to the desired item, or use the CRSR keys to change rows and
columns. The items are numbered in this order: down the first column, then the next, and so on. So, if you had 3 columns
with 7 items in each column, the 2nd column would start with item number 8.

Items can be directly selected by pressing the appropriate Hotkey (HOT$). The highlight bar is moved to that item
number, unless it doesn't exist. Pressing the Global Escape key (MV+12) ALWAYS returns a zero in SL% (turn to page 26 to
learn more about MV variables).

The selected item's number is returned in SL%. The maximum number of columns is 5, making the highest possible
SL% (25 rows) equal to 125. There's a reason for this.

So, a three column menu with three items in each might be created with the following line. We’ll shade the X and
W coordinates for each column differently to make it a little clearer:

.MCMENU,3,2,8,12,8,22,8,4,3,6,7,HOT$

With what you already know about the regular .MENU command, try out .MCMENU. Consider this a "homework"
assignment. Make that "homeplay!"

SCROLLING MENUS

 Sometimes your menu has more items than will fit on the screen at one time. A file requestor, for example, is a
menu that displays a disk directory. A file requestor can easily have 30, 50, even hundreds of items to choose from. What is
needed is a SCROLLING MENU that will give us “Up” and “Down” buttons to click, allowing the user to scroll through the
menu selections. DotBASIC Plus allows for two such menus, created with two different DotCommands: .SCMENU and
.MSMENU.

 Scrolling Menu items aren’t simply printed to the screen manually, as with .MENU. Instead, Scrolling Menus get
their information two ways. First, Mr.Edstar files saved to your disk can be read in with the BLOAD (.BL) DotCommand.
Mr.Edstar is LOADSTAR’s handy 38 column text editor. Mr.Edstar files are terminated with a zero. If the file you want to
BLOAD does not end in zero, use .BL0 instead. .BL0 is exactly like .BL, with the exception that a zero is tacked onto the
end of the BLOADed file.

 The second way to get menu items into a scrolling menu is with the .DIR DotCommand. .DIR loads in a disk
directory, then converts it to an Mr.Edstar format ready to be used by the scrolling menu.

 We’ll now take a look at these new DotCommands: .BL, and .DIR to load our menu items into memory; and
.SCMENU to create a scrolling menu. Then we’ll create a useful DotBASIC program that shows off some of what we’ve
learned so far.

 After walking through a project that uses .SCMENU we will take a look at Mouse Variables. By POKEing different
values into MV+offset locations, we can customize menus and other DB+ features.

MENUS
DotBASIC Plus

23

 Finally, we will take a look at the .MSMENU DotCommand, that allows us to create a multi-select, scrolling menu.

 But first, let’s take check out those new DotCommands:

BLOAD
Syntax: .BL,FILE$,D,LOC

BLOAD will load files from device D (already assigned by DB+) to any memory
location, except pages 208-223 ($D000-DFFF). This is how we will get your menu items
into memory to be used by .SCMENU. It can also be used, of course, to BLOAD sprite data,
custom character sets, and your machine language routines. E$ returns the error message.
F% returns the end location (plus 1) of the BLOADed file. Note that values above 32767
cause the integer F% to be negative. Refer to .I2FP in the DotBIBLE to learn how to convert
F% to a positive value in these cases.

Remember, DB+ presets the variable D to the current disk drive — just to be handy.

 If the file you are BLOADing for a scrolling menu doesn’t end with a zero byte, use .BL0 instead.

DIRECTORY
Syntax: .DIR,"$:*",D,LOC,#FILENAMES

This will read the disk directory from device D (already defined as the current disk drive number by your DotBASIC
template program). The directory can be placed anywhere, even under I/O. DB+ converts the directory to a Mr.Edstar file
as it is brought in. This allows Scrolling Menu to use the information as a file requestor.

Normally you would use "$:*" to get all the disk's filenames. You can replace "$:*" with any search pattern you
want, up to 16 characters long. For example, using "$:b.*,t.*" on a LOADSTAR disk (using a real C-64 or True Drive in VICE)
would bring in the names of all the boot files (those that begin with “b.”) and text files (those beginning with “t.”).

E$ will return the error message. T$ will contain the disk's name within quotes, and B$ will contain the "blocks
free" message. Use VAL(B$) to extract the number of blocks free on the disk. N% returns the number of filenames loaded.

If there was an error during the directory retrieval, T$ and B$ will return strings full of spaces, and E$ will tell about
the error.

.DIR has one more parameter: how many filenames you have room to hold. This number should be calculated as:

files = INT((bufferspace-1)/32)

For example, if your buffer was from 49152 to 53248 (pages 192-208), you could fit INT((4096-1)/32) = 127 names
there. If the buffer space is filled up before all the filenames are loaded, B$ will return "more files on disk". If you don't care
about buffer space, use 0 for the number of filenames.

A good place to put your directory information is in pages 224+. You easily put 250 filenames in this area under
ROM.

SCROLLING MENU
Syntax: .SCMENU,X,Y,W,H,B,I,UN,HI,LOC,T$,B$

For this command to work, you must have the items you wish to menu in memory, and it must end with a zero
byte. Mr.Edstar files end with a zero byte and can be loaded with the .BL DotCommand. Otherwise, use .BL0 to load a file
into memory and automatically tack a zero byte on the end. Or you can use .DIR to get a disk directory.

The X,Y,W,H parameters set the area the menu will occupy (X, Y, Width, Height).

24 DotBASIC Plus v2.2

The confusing letters read like this:

Box
Icons
UN-highlight
HIghlight
LOCation

H must be at least 6 characters tall and W must be 11 characters or more wide. B is the color of the menu box. The
unhighlighted items of the menu are color UN. HI is the highlight bar color. If you don't want the text to REVERSE or un-
REVERSE as the bar moves, add 128 to HI.

I sets the color of the four words in the corners of the menu: HOME, UP, DOWN, and QUIT. Left-click on UP or
DOWN to scroll the text. Right-click on them and the list jumps a page at a time.

LOC is the location of the Mr.Edstar file or directory, which can be anywhere in memory.

The user can use the CRSR keys to scroll or page through the text as well.

Clicking on HOME will bring the list to the top. Pressing the HOME key will bring the highlight bar to the top of the
page, and the next press brings the list to the top.

Click on an item or press RETURN to select it. The entire item is returned in W$. F$ will return a null unless this is a
file requestor - in which case it contains the filename. SL% returns the selection number.

Clicking on QUIT, pressing Q, or pressing the Global Escape key (see Mouse Variables later in this chapter) will
return zero in SL% and nulls in W$ and F$.

T$ is printed at the menu's top, in REVERSE, between HOME and UP. B$ is printed at the bottom, between QUIT
and DOWN. You needn't use the actual variables T$ and B$, but if this is going to be a file requestor, it's perfect. The user
gets to see the disk name and blocks free without any extra effort from you.

Set W to 255 and the proper width for a file requestor will be assigned, but that's it. DB+ knows what filename info
looks like and will set F$ properly when it finds a filename - regardless of width.

Obviously, .SCMENU is pretty powerful and has a lot of associated variables and parameters. We will now begin a
project that should bring it all together, and when you’re finished you’ll have a useful program for your software collection.

PROJECT: DOTMENU

We now have all the tools we need now to create our first
really useful DB+ program—we’ll call it DotMENU. DotMENU will
load a disk directory, create a menu of its contents and
automatically LOAD and RUN the program you select. Copy
DotMENU and its associated files (B.DOTMENU, MOUSE2.1 7K
1000, DOTMENU.DML, and DOTMENU.DBS) onto a blank disk and
you’ll have a nice tool to keep your software organized. Even
better, you can use STAR LINKER 2.1 on the DB+ Utility Disk to
combine the parts of DotMENU into a single file. All this is possible
with just a few lines of DotBASIC code.

 So create a new project called “dotmenu” and let’s get
started!

 First we need to ‘include” our DotCommands.

 11 rem.dir,.scmenu,.box,.pc

MENUS
DotBASIC Plus

25

 Change the background color to white (1) and the border to m.grey (12) by editing the .BG and .BR DotCommands
in line 40. GOTO60000 and then run DEV.

 The first thing we’ll do is use .BOX to create a nice looking screen.

 100 .box,0,3,40,22,160,12

 110 .box,0,0,40,3,160,6

 120 .box,1,1,38,1,160,14

 130 .box,0,24,40,1,160,0

 We’ll display the title for the menu at the top of the screen-- in the center of the blue BOX created by lines 110-
120. Also, we’ll display a message in the black bar across the bottom of the screen created by line 130.

 170 .tx,14+128:.pc,1,na$

 180 .tx,0+128:.pc,24,”DotMENU 2008”

 Remember, when setting the text color with .TX, add 128 for REVERSE text.

 NA$ will represent our disk “title.” To make it easy to modify, we’ll define this variable at the very top of the
program.

 1 na$=”Disk Directory”

So, if you put DotMENU on a disk of public domain software, you might define NA$ as “Public Domain Disk.”

 We can go ahead and load in the disk directory now.

 200 .dir,”$:*”,d,224*256,250

Our directory information is being loaded into page 224 (location 57344), which gives us plenty of room for 250
directory entries.

 Now for the menu itself. Note the Width value of 255. Use 255 for Width, and DB+ will automatically format the
menu for a file requestor (or you could just give the menu a Width of 30).

 220 .scmenu,5,4,255,18,6,0,11,2,224*256,t$,b$

 The variable SL% will hold the number of the menu item selected. If the user selects “Quit” or presses the “Q” key,
SL% will equal zero, so we need the menu to exit cleanly.

 230 if sl%=0 then print”{clr}”;:.of:end

The famous Dynamic Keyboard routine will now LOAD the selected program and RUN it. The name of the file
selected will be in F$, making the setup a piece of cake.

240 print"{clr}{down}{down}{down}loadf$,d"

250 print"{down}{down}{down}{down}run{home}"

260 poke631,13:poke632,13:poke198,2:end

It’s really that simple. Go ahead and RUN it. It’s nice, but not quite yet nice enough.

When the .DIR DotCommand is executed, the number of files is returned in the N% variable. We can use this to
give the user a little more information.

26 DotBASIC Plus v2.2

 205 ms$=str$(n%)+” Files on This Disk”:.tx,0+128:.pc,24,ms$

 Let’s also create a shadow around the directory window. Create a .BOX with a color value of 255 to shade the area
it affects. It doesn’t matter what we use for SC (screen code) in this case, so we’ll use 255.

 210 .box,6,5,30,18,255,255

 GOTO60000 and then RUN. Impressed? DotBASIC Plus can do a lot with very little effort.

There’s one more thing we can do to make it perfect. Did you notice that the menu icons (home, up, down, quit)
are all in lower case? We can capitalize these items with two lines of code.

 150 poke4734,peek(4734)+128:poke4739,peek(4739)+128

 160 poke4742,peek(4742)+128:poke4746,peek(4746)+128

MOUSE VARIABLES

MV is a system variable that points to the start of a variable zone—a place where
certain user-accessible settings and other data are held. You will use POKE MV + OFFSET
to change how some of the DotCommands work. MV is particularly useful in customizing
menus, but there are many other cool and interesting features that can be brought to the
surface by POKEing new values to MV. Let’s highlight just a few of the DB+ features where
MV comes into play.

First off, it’s simple to use the keyboard to simulate a left mouse click—just press
RETURN. But what about right-clicks? The keyboard can mimic the right mouse button too.

MV+14 Right Keycode (F7 = 3)

MV+14 holds the keyboard equivalent to the right mouse button, which is pre-defined as F7, but you could change
it if you've assigned a function to the right mouse button and would like to use F7 (and F8) for something else.

Note that MV+14 is not a PET-ASCII code. "Keycodes" are generated by the SCNKEY routine during the interrupt.
They can be determined with this one-line program:

10 print peek(203):goto 10

When you RUN it, hold down the key you want to designate as a button and note the number showing. Be aware
that keycodes are not affected by the special (SHIFT//CTRL) keys, and these special keys don't have keycodes - so they
can't be used as mouse buttons.

We can make some other choices about how DB+ interprets keypresses with MV+18.

MV+18 Keyboard Enable (default 129)

+128 Return can click
+64 Space can click
+32 (Commodore Key) can click.
+1 CRSR keys move arrow

Even the CRSR keys can control the arrow pointer around the screen. This makes it especially easy to add
"keyboard support" to your programs without having to think about it. By default, of course, the RETURN key serves as the
left mouse button.

MENUS
DotBASIC Plus

27

MV+10 MV+11

+128 Automatic Caging of Mouse +128 Automatic Caging of Mouse

+ 64 Automatic Point-to-First + 64 Automatic Point-to-First

+ 32 Must Select + 32 Must Select

+ 16 Escape Equal-to-Last + 16 Click Any Active Region

+ 8 Honor Hotkey Colors + 8 Honor Hotkey Colors

+ 4 Dual Response + 4 Dual Response

+ 2 Un-highlight after Select + 2 Un-highlight after Select

+ 1 Stray-to-Exit + 1 Stray-to-Exit

With a POKE, you could enable the key to also serve as the left mouse button. This would be useful for any "click and
drag" situations within your program, only because the key can be read independently of the CRSR keys. It is awkward to
use, but it works. RETURN or SPACE can be used to "click" the rest of the time. It's more natural.

As mentioned earlier, MV variables can be used to greatly customize DotBASIC’s menu DotCommands. Consider
what MV+10, MV+11 and MV+12 can do to change the way menus behave. Note that the numbers in parenthesis are the
default values.

MV+10 Menu Type (192)
MV+11 Multi-Column Menu Type (192)
MV+12 Global Escape (0)

MV+12 holds the ASCII code for what you'd like to designate as the escape key for ALL your menus. SL% returns a
zero when the escape key is pressed.

MV+10 and MV+11 dictate how your menus will behave. Each bit stands for a specific menu feature. Just add up
the values for the features you want and POKE that number to MV+10 or MV+11.

MV+11 is used to define features for Multi-Column Menus only. Just like MV+10, this byte has eight features
attached to it. Only bit 4 (+16) is different. +16 makes Event Regions active and clickable for Multi-Column Menus.

For all other menu types, use MV+10. Since MV+10 and MV+11 are almost identical, let’s deal with them together.

+128 causes the mouse to be confined within the menu's borders. After a selection is made, the previous Cage is restored.
If auto-caging is not enabled, the user may be able to click on the area outside of the menu, which would return zero in SL%
(unless it is an active Region). If you are using Regions (MV+11), you probably shouldn't enable the Cage at all. If you are
clicking on an Event Region to flip through "pages" of items, it would be bothersome to have the pointer yanked away with
each press.

+64 causes the mouse to be put at the rightmost cell of the first item the instant a regular menu is called. As with auto-
Caging (+128), enabling this feature might not be a good idea if you are using Event Regions.

+32 causes nothing to happen if the user clicks on the area outside of the menu. The menu remains active as it waits for a
real selection. When creating a multi-column menu (MV+11), +32 is especially valuable. Since clicks that occur nowhere can

28 DotBASIC Plus v2.2

be ignored, you don't have to make the columns touch. This is made even better if Regions are active. Only Regions and
items of the menu could then be clicked on.

+16 causes the escape key, when pressed, to automatically select the last item in your menu - just as if you pressed its
hotkey. This saves some code if "Close this Menu" is the last item in your menus - especially when using the ON-GOTO
command.

When using MV+11 and a Multi-Column Menu, +16 allows the user to click on ANY active Region. If this
happens, 128 is added to the Region number and that value is returned in SL%. The Region is not "highlighted" in
any way as the pointer moves over it. This feature has limited uses and does require some setup on your part. You
probably won't want to use the same ol' Regions as the main portion of your program. Special Regions should be
defined, making sure that only THEY are the active ones, and labeled in some way to inform the user that these
areas are clickable.

If Regions are active, the hotkeys no longer select individual items in the menu, but Regions! 128 will be
added to the hotkey's number and that value is returned in SL%. Even the fanciest menu can still have complete
keyboard compatibility!

+8 causes the highlight bar to not change the colors of characters that have neither the Highlight nor Un-highlight color
applied to them. This is an interesting way to inform users of your menu's hotkeys. To use this feature properly, you must
make sure the entire menu area is colored in the Un-highlight color, except for the hotkey-characters.

+4 causes the selection number to be returned in SL% (as well as the accumulator) when called from ML. This is a
Mr.Mouse feature, and not particularly necessary to DB+.

+2 causes the highlight bar to be removed after a selection is made.

+1 causes the menu to be aborted if the mouse strays from the menu area. SL% is returned as zero if this happens.

MULTI-SELECT SCROLLING MENUS

 If you need to pick multiple items from a menu, DB+ can accommodate you. This type of menu is by nature a little
trickier to setup -- that’s why we’ve saved it for last. The results are worth a little extra effort. We’ll need two new
DotCommands to make it work.

MULTI-SELECT SCROLL MENU
Syntax: .MSMENU,X,Y,W,H,B,I,UN,HI,S,WB,LOC,T$,B$

You can see that .MSMENU is not much different from .SCMENU. Multi-Select Scroll Menus need two additional
parameters, S (color of Selected items) and WB (color of selected item With menu-Bar).

After .MSMENU is executed, pressing the EXIT key (MV+16) or click Quit, SL% will return the number of items
selected. If ESCAPE is pressed or Cancel is clicked (manual icons only), the menu is cancelled and zero is returned in SL%.
The selected items still exist, and still can be indexed, but you are just told that there weren't any selected items.

So now we know how many items you’ve selected (SL%), how do we access the actual items? For that, we need
another DotCommand, .SEL.

SELECTED INDEXED ITEM
Syntax: .SEL,NUMBER

After using a multi-select menu, .SEL is used to ask for each "N"th selected item - whenever and as often as you
want - so long as it remains within the current INDEXable file. If that sounds confusing, have no fear—all will be made clear.

Selecting items is as easy as hitting RETURN or clicking on them. The item is toggled and the mouse and highlight
bar are moved down to the next item, scrolling when necessary - even when selecting with the mouse!

MENUS
DotBASIC Plus

29

It’s always easy to spot the selected items, even when they are under the highlight bar. Which of the U,HI,S,WB
items are REVERSEd is set from bits 3-0 to MV+15. By default, the highlight bar and all selected items are REVERSEd. Each
REVERSE bit can be temporarily disobeyed by adding 128 to the U,HI,S,WB parameters.

If you create a Multi-Select Scroll Menu and select 5 items, SL% will contain the number 5. The .SEL DotCommand
will return each item in W$, or if the menu consists of a disk directory the filename selected is returned in F$. Here is an
example:

 10 for n=1 to sl%

 20 .sel,n

 30 print w$

 40 next n

N will increment from 1 to the number of items selected (SL%). Each time .SEL,N is executed, the Nth item is
returned in W$ and then displayed.

.MSMENU recognizes these keys in addition to those used in a Scrolling Menu (Up, Down, Home, Quit). With
.MSMENU, the keys A, N, and T function to select ALL, NONE, and to TOGGLE ALL items (respectively). The mouse user
cannot access these special features unless you enable manual icons!

If you are using manual icons, the mouse usually can move anywhere on the screen. Nothing happens if the user
clicks outside the menu. Even clicking on an active Region has no effect IF the Region number isn't one to which we have
assigned a function.

MANUAL ICONS

When defining a Scrolling Menu or a Multi-Select Scrolling Menu, X+128 enables a powerful new feature. If you do
not like the generic look of the scrolling menu, you can now do something about it!

Several things change when X+128 is used.

1. The BX,I,T$, and B$ parameters are ignored.
2. The scrolling menu is not drawn.
3. The mouse is not caged on the menu.
4. The X,Y,W,H parameters now represent the area for the actual scrolling text alone.

"Manual Icons" means just that. DB+ is trusting YOU to create, label, and enable (as Regions) the icons for your
scrolling menu. They can be any size and at any location.

Here are the Region numbers and the functions they would have for a regular scrolling menu:

1. Home
2. Scroll up
3. Scroll down
4. Exit
5. Page up
6. Page down

Regions 5 and 6 aren't necessary, so don't feel obligated to use them. Nothing bad will happen if you don't have 6
active Regions. Right-clicking on Regions 2 and 3 also page-up and page-down, too. However, joystick users with a repeating
fire button may appreciate Regions 5 and 6. No matter what you decide, be sure to include Regions 1-4: the same ones that
are present using the generic "standard" icons.

Multi-Select Scroll Menus will obey up to four extra Regions, if you take the time to define them.

30 DotBASIC Plus v2.2

7. Select all
8. Select none
9. Toggle all
10. Cancel

Pressing EXIT or clicking on Region 4 will return the number of selected items in SL%. Region 10 behaves just like
ESCAPE, returning a grand total of zero selected items.

Since you may not always label the EXIT icon as "Quit", MV+16 exists so you can assign an appropriate key to the
exit function. The CRSR keys still scroll and page, and HOME still goes home. ESCAPE cancels, just like EXIT (in the regular
Scrolling Menu).

MENUS
DotBASIC Plus

31

SOUND & GRAPHICS

IN THIS SECTION:

Bit-Maps and SidPlayer 33

DotCommands

BITMAP 33

SID 33

Grafstar 33

DotCommands:

GRAF 34

MODE 34

PEN COLOR 34

PLOT 34

LINE 34

GET PEN 35

CLIP 35

OFFSET 0,0 35

FILL 35

Scriptor 36

 DotCommands

 SCRIPTOR 36

 SCRIPTOR PRINT 36

32 DotBASIC Plus v2.2

THE COMMODORE 64 IS A GRAPHICS MACHINE

BASIC V2, the C-64’s built-in language, has a lot of limitations. Its story is well known: when
designing the PET, Commodore’s first personal computer, founder Jack Tramiel negotiated a
deal with Microsoft’s Bill Gates for their very popular version of the BASIC programming
language. Purportedly, Gates believed the 6502 processor was a toy and he was, in fact,
angry when he learned someone on his payroll was working on a 6502 BASIC. When Tramiel
and Commodore came along, Microsoft saw an opportunity to cut their losses. They agreed
to sell their BASIC to Commodore for a low (some estimates are as low as $10,000) flat-fee.
Gates figured, according to one story, that if Commodore was successful they would certainly
need revisions and upgrades for future models, thus bringing further revenues to Microsoft.
If this is true, Gates certainly did not know Jack Tramiel! Commodore continued to use that
version of BASIC, only slightly modified by their own geniuses (they owned BASIC 2.0, after
all), for years.

When Commodore’s new line of home computers, the VIC-20 and C-64, came on the scene
BASIC 2.0 was looking very, very long in the tooth. Both these machines had many
capabilities that the PETs didn’t have at all, but yet the VIC and C-64 were both using what
was essentially that original version of PET BASIC. Many new features simply could not be
accessed in BASIC at all. On the upside, 20 million or so computers later, Jack Tramiel is one
of the few people to ever get the best of Bill Gates in a business deal. (Bill learned a thing or
two, and did the same thing when he bought DOS outright.)

Perhaps the greatest let-down in this sad marriage of convenience is BASIC 2.0’s complete
lack of sound and high resolution graphics commands. Everything, and we mean everything,
has to be accomplished with PEEKs and POKEs. This is a tolerable (barely) limitation for the
VIC-20 since the VIC’s simple (but great) sound and graphics features are very
straightforward and easy to program, even with nothing but PEEKs and POKEs. Not so with
the C-64. Sprites, hi-res graphics, and the incredible SID sound chip are all pretty
sophisticated — and maddening to program in BASIC 2.0.

Not anymore! Programming our beloved 8-bit computer is supposed to be a fun mental
exercise, not the drudgery of typing two words – PEEK and POKE – over and over again. In
fact, many Commodore 64 enthusiasts never really learn how to do sound and graphics
programming for exactly this reason. DotBASIC Plus changes all that with a truly extensive
set of DotCommands that make it all so simple and fun. After all, that’s what it’s all about,
right?

SOUND & GRAPHICS
DotBASIC Plus

33

et’s dive right in! We have to be a little more careful about our RAM layout now – some of these new DotCommands
eat up pretty significant chunks of available memory. We’ll pay close attention to that below, and you can always refer
to the Memory Map included on the Quick Reference on the back cover of this book.

BITMAP
Syntax: .BMP,FILE$,D,160,128,156

.BMPSCR,SWITCH

SWITCH 1 = Display Bitmap
 0 = Display Text Screen

When you include .BMP in your program, both .BMP and .BMPSCR are added to your DotCommand list. Also, an
auxiliary file BLOAD is automatically added to your boot program. DBA.UNP.ML is copied to your work disk and loaded into
memory — using pages 205-207.

Also, the Top of BASIC is lowered from page 160 to 128, to make room for the bitmap, which uses 128-132, 160-
191, and 156-159 for display.

In your program, use .BMP to load and unpack a LOADSTAR .SHP graphic file, using the values listed above. The
arrow sprite is automatically copied to page 132 and the screen is switched over by .BMPSCR,1.

100 .bmp,"graphic.shp",d,160,128,156

110 .bmpscr,1

120 .do:.ma:.un l2%

130 .bmpscr,0

Your mouse arrow will not even flicker! Oh, you don't want the arrow on the graphic? Add POKE 53269,0 to line
110 and POKE 53269,3 to line 130.

SIDPLAYER
Syntax: .SID,LOC

.SIDOFF

DB+ will play SIDSongs! When you include .SID in your program, .SID and .SIDOFF are added to your DotCommand
List. Also, an auxiliary file BLOAD is added to your boot program so that DBA.SID.ML is loaded into memory — using pages
192-204.

Also, the Top of BASIC is lowered from page 160 to 144 (unless .BMP is used), to make room for the MUS file(s) at
144-154 (with .BMP) or 144-159 (without .BMP).

100 .bl,"music1.mus",d,144*256

110 .sid,144*256

120 .do:.ma:.un l2%

130 .sidoff

GRAFSTAR

The world of bitmap graphics from DotBASIC Plus is made possible by a module Dave Moorman wrote years ago —
Grafstar. As you can gather from the commands listed below, we have a lot of power here! When you include .GRAF in
your program, all the other commands listed in the following section are added to your DotCommand List. Also, an auxiliary
file BLOAD is added to your boot program so that DBA.GRA.ML is loaded into memory — using pages 134-145. By the way,
the Grafstar DotCommands work just fine along with .BMP.

L

34 DotBASIC Plus v2.2

 Here are the Grafstar DotCommands:

 .GRAF

.GMODE,MODE#

.GPEN,P0,P1,P2,P3

.GPLOT,X,Y,PEN

.GLINE,X,Y,PEN

.GP,X,Y

.GCLIP,X1,X2,Y1,Y2

.GR00,XOFF,YOFF

.GFILL,X,Y,PEN#

Now the details:

GRAF
Syntax: .GRAF

This MUST be the first command of the Grafstar commands used. This initializes the location for the Bitmap —
Bitmap at page 160, color at page 128, just like with the .BMP command.

MODE
Syntax: .GMODE,MODE#

Sets the type of screen that is being displayed.

0 Default Text Screen
1 High Res Bitmap
2 Text Screen — Multi-Color
3 Multi-Color Bitmap
4 Show Text, Clear High Res

*

5 High Res Bitmap, Cleared
*

6 Show Text, Clear Multi-Color
*

7 Multi-Color Bitmap, Cleared
*

*
Modes 4 - 7 put 0's in all bitmap locations. Modes 4 and 5 also put current colors for pens 0 and 1 into the color

map.

If you are using .GRAF commands with .BMP, use .BMP,f$,d,160,128,156 to load the SHP graphic, then —
rather than .BMPSCR — use .GMODE,1 (hi res) or .GMODE,3 (multi-color) to switch to the bitmap, and .GMODE,0 to return
to the text screen. (.BMPSCR has a toggling effect that gets cumbersome. Actually, we have fixed the problem, but use
.GMODE anyway. – Dave)

PEN COLOR
Syntax: .GPEN,P0,P1,P2,P3

This sets the colors of the four "pens" used with .GPLOT, .GLINE and .GFILL. The four background color
registers are used for this, so P0 will change the background of your text screen (use .BG,color to reset the background of
the text screen after .GMODE,0).

PLOT
Syntax: .GPLOT,X,Y,PEN

Plots a pixel at pixel X/Y in the color set for the PEN number. X/Y values off the screen are OK, just not visible.

LINE
Syntax: .GLINE,X,Y,PEN

Draws a line from the previous .GPLOT or the last point of the previous .GLINE.

SOUND & GRAPHICS
DotBASIC Plus

35

GET PEN
Syntax: .GP,X,Y

Returns the pen number of the pixel at X/Y in P%. If X/Y is not visible, P% will hold 128.

CLIP
Stntax: .GCLIP,LEFT,RIGHT,TOP,BOTTOM

Grafstar uses dynamic clipping to avoid trying to plot a point that is out of bounds. Before calculating the actual
memory and bit location, the coordinates are checked against the clip parameters. If not visible, Grafstar avoids some
useless drudgery! But the upshot is that you can set the clip parameters with this command. With .GCLIP, you can keep
your graphics within a window area.

Note that you must add 1 to the RIGHT and BOTTOM values. Or to put it another way, LEFT and TOP is the first
point to be plotted while RIGHT and BOTTOM is the first point to be clipped.

Clip values MUST be within the following range:

LEFT 0 - 319 (High Res)
LEF T 0 - 159 (Multi-Color)
RIGHT 1 - 320 (High Res)
RIGHT 1 - 160 (Multi-Color)
TOP 0 – 199
BOTTOM 1 – 200

Also, RIGHT must be greater than LEFT and BOTTOM greater than TOP. Grafstar checks and produces an ILLEGAL
VALUE ERROR when something is wrong.

OFFSET 0,0
Syntax: .GR00,XOFF,YOFF

Lets you place the coordinates 0,0 ANYWHERE on the screen. Negative coordinates are visible.

XOFF Number of pixels that the X coordinate 0 will be pushed to the right.
YOFF Number of pixels that the Y coordinate 0 will be pushed down.

XOFF and YOFF must be legal screen coordinates:

XOFF 0 - 319 (High Res)
XOFF 0 - 159 (Multi-Color)
YOFF 0 – 199

With OFFSET, you can define polygons as a series of vertices, in all four quadrants, and position the polygon with
the OFFSET command. To center the plotting of a polynomial, set the OFFSET to the middle of the screen:

100 .gr00,160,100

Just think of the possibilities!

FILL
Syntax: .GFILL,X,Y,PEN

The parameters are identical to PLOT, LINE, and GET POINT, and are adjusted in the same way as for OFFSET. FILL
will take the pen value at the coordinates given, consider it "empty," and replace every contiguous instance with the PEN
given in the command, stopping at the occurrence of any location that is “not empty."

36 DotBASIC Plus v2.2

You will note that Grafstar's FILL is reasonably fast. This is because if an entire byte of bitmap memory is "empty,"
the byte is filled at once: an 8x improvement in plotting speed.

SCRIPTOR

his pair of commands will print text to a bitmap screen. Though primarily for high resolution screens, Scriptor can put
a well designed multi-color font on a multi-color bitmap.

When you Include .SCRIPT, you also get .SCPRNT for no extra charge – yet another money saving exclusive from
LOADSTAR!

SCRIPTOR
Syntax: .SCRIPT,160,128,PAGE (usually Page 8)

You MUST initialize Scriptor with .SCRIPT,160,128,LOC, where LOC is the location of the text font. This is normally
at page 8, so

100 .SCRIPT,160,128,8

should work fine. You can .BL a font file most anywhere you want.

SCRIPTOR PRINT
Syntax: .SCPRNT,X,Y,STRING$

 SCRIPTOR PRINT allows you to specify the X and Y coordinates on the 40 x 25 screen and print your STRING$ there. You
don’t place the text at the pixel location. This DotCommand prints as if the hi-res screen were a text screen.

 Another thing to keep in mind is that the routine prints as if there were a semicolon at the end of the string. If you
want to have the cursor act "normally" you'll have to append a carriage return at the end of your string. No problem.
STRING$ becomes STRING$ +CHR$(13).

To print HOWDY in the middle of a hi-res screen you'd use:

110 .scprnt,17,12,"HOWDY"+chr$(13)

That's not all, though. Your string can have almost anything in it, even CLR, HOME, CRSR UP/DOWN/ RIGHT/LEFT,
RVS-ON, RVS-OFF, and color commands! In hi-res mode you have control of the foreground color and the background color
for any character printed.

The routine starts off with any color commands affecting the foreground colors. In other words, the characters
themselves.

If you want to change the color of the background of a part of the screen you insert a CTRL-I, or CHR$(9), into your
string. It will appear in your code as a REVERSEd “I”. To get back to foreground mode, insert a CTRL-H, or CHR$(8) at the
beginning of your next string.

You can also get REVERSEd characters the way you always do, inserting a CTRL-9 before your string. CTRL-0 puts
you back in regular mode. However, one thing is different.

 This routine evolved from LOADSTAR’s menu system and we don't use normal REVERSEd characters – so it won't
do you any good to use a regular 9-block font that has any of the REVERSEd characters customized. All you actually need for
Scriptor are the unREVERSEd characters. Scriptor will print REVERSEd characters, but they will always be REVERSEd
versions of your unREVERSEd characters.

Making Scriptor work with multi- color bitmaps takes some fiddling around. Since multi-color pixels are double-
wide, letters such as M, N, H, and W look a lot alike. However, you can use DBDesign to design a mulit-color font, using the
two alternative colors for "anti-aliasing." The technique is tricky and takes some "thrash and crash" twiddling.

T

SOUND & GRAPHICS
DotBASIC Plus

37

 STRINGS AND THINGS

IN THIS SECTION:

Virtual Arrays 39

DotCommands

RACK 39

RACK INDEX 39

PRINT RACKED INDEX 39

Screen Objects 40

DotCommands

SET SOB 40

LINK SOB 40

CUT SOB 40

PASTE SOB 41

DELETE SOB 41

Visual Design 41

DotCommands

FONT/TOOLBOX/STASH 41

SWAP MEMORY 42

Registering DotBASIC Plus 42

38 DotBASIC Plus v2.2

TOP DOWN PROGRAMMING – OR HOW TO PLAN BEFORE YOU PLUNGE.

When you think of a particular project – be it a game or something serious – the best thing to do is
write down everything you want your code to do. The more you clearly understand where you are
going, the better your code will be. Most programs offer a bunch of features which the user can choose
at various times. Just make a list!

Then create your Menu! It can be as simple or as fancy as you want. A time-worn layout puts a “menu
bar” across the top of the screen, with “File,” “Edit,” and other groups of functions listed. Each of these
words is put in an Event Region. Then wait for one to be clicked:

 1000 EN=0:.DO
1005 .DO:.MA:.UN CR%

 1010 ON CR% GOSUB 2000,3000,4000
 1015 .UN EN
 1020 .OF:END
 2000 .STASH,208: rem stash screen to page 208 to clear the menu later
 2006 .BOX,1,1,5,6,255,255: rem shadow box
 2008 .BOX,0,0,5,6,160,1:.TX,1+128: rem menu box
 2010 .P@,1,1, “Disk{f7}Load{f7}Save{f7}Exit”: rem print menu
 2020 .MENU,1,1,4,4, “dlse”:rem execute menu
 2030 .RESTR,208:rem clear the menu by restoring stashed screen
 2040 ON SL% GOSUB 2100,2200,2300,2090: rem do features

2050 RETURN: rem return to main loop (1000-1015)
2090 EN=1:RETURN: rem exits program (line 1015-1020)

You put your code in each area – 2100, 2200, and 2300. Note how Exit is done – using the variable
EN to keep the program looping until it is changed to not zero in line 2090. Then the outer Do-Loop
falls through and the program ends.

Do the same for the menus in areas 3000, and 4000 (and as many menus as you need). Now all you
have to do is write how each feature is performed.

Should you try your hand at Visual Basic or C++ or some other “Incredibly Big Machine” programming
language, you will find that all you have to do is write your Event Handling routines. See – you are
already doing it the “professional” way!

 STRINGS & THINGS
DotBASIC Plus

39

ou’ve almost made it! We are now nearly at the end of the Tutorial section of the DotBASIC Plus manual. We’ve
covered a lot of territory, and you are probably already programming your Commodore 64 in ways that you never
imagined. We’ve come a long way since BASIC 2.0, baby! Believe it or not, though, we’ve barely scratched the surface

of all that DB+ can do. The DotBIBLE section lists many, many more DotCommands that do all sorts of interesting things
that should keep you busy for years to come. Thanks to DotBASIC’s modular design, you can expect even more new
DotCommands to come from LOADSTAR. Hopefully we’ll see new DotCommands created by users like you, too.

In this final chapter of the Tutorial section, we’re going to go over a few remaining concepts. Then you’re on your
own!

VIRTUAL ARRAYS

Never again must you fight for string space in your text adventures and other programs. With the following
DotCommands, you can put your lines of text in a Mr.Edstar file (Mr.Edstar is our nifty text editor that produces 38-column
lines of text), use .BL or .BL0 to BLOAD it into memory (under ROM), then use Rack (.RK) to turn the text into a virtual
string array. Rack Index (.RI) will put any line into W$ for use in your program. Let’s look at these new DotCommands in
depth.

RACK
Syntax: .RK,LOC

This routine takes a Mr.Edstar file (terminated by a zero) that you have BLOADed into memory and "racks it up".
By this, we mean that a table of pointers is created right after the zero at the end of the text, enabling you to use the
following .RI or .PRI DotCommands to grab or print individual lines of the file. Thus, we can look at .RK as the
DotCommand that creates our virtual array.

The file being racked can be located anywhere in memory, even under I/O. Racking needs 3 bytes per line at the
end of the file for its pointers. The total number of items in the virtual array is returned in N%.

 RACK INDEX
Syntax: .RI,INDEX#

Once you've racked up a Mr.Edstar file, you can index it. The indexed item is returned in W$. F$ is also set by
indexing, and will always return a null unless you happen to be looking at a directory, in which case it contains the entry's
filename.

Here is a simple example:

100 .bl0,"t.diskover",d,40960

110 .rk,40960

120 for x = 1 TO n%

130 .ri,x

140 print w$

150 next

 Remember, racking and indexing requires that the file BLOADed be terminated with a zero. Mr.Edstar files are
already terminated with zero, so use .BL to BLOAD these. Use .BL0 for everything else. .BL0 will BLOAD your file and
tack a zero on the end.

PRINT RACK INDEX
Syntax: .PRI,X,Y,INDEX#

This routine indexes an item and prints it anywhere on the screen. The string is NOT returned in W$ or F$.

Y

40 DotBASIC Plus v2.2

SCREEN OBJECTS: SOBS

Text Cut and Text Paste are DotCommands for copying a portion of the screen into memory, then pasting it
anywhere on the screen. However, .CUT and .PASTE require correctly re-describing the width and height of each cut.
Can’t we do better? As a matter of fact, we can. With Screen Objects, or SOBs, we’ve created a group of DotCommands
that:

 Set a location in memory for the cut Screen Object.
 Cut to a continuous, indexed stretch of memory, including the width and height information. This memory could

then be BSAVEd and BLOADed into a program at will.
 Link a BLOADED Screen Object Collection to the program.
 Paste with just the index number and the X and Y coordinates of the upper left corner of the object.
 Remove Screen Objects from the collection.

Announcing the SOB DotCommands, which do just what we want. Now, using DBDesign, you can cut portions from any .FTS
screen, collect them into an .SOC file, and use the file in any program.

USING SOB COMMANDS

The first thing necessary is telling the program where the SOB Collection is in memory. If this is a new collection
(one you are making in the program itself) use the following DotCommand

SET SCREEN OBJECT
Syntax: .SETSOB,LOC

where LOC is the beginning of the memory where the collection will be. This can
be anywhere in memory, even under ROMs and I/O.

If a .SOC file is to be BLOADed, either do the BLOAD after .SETSOB, or use

LINK SCREEN OBJECT
Syntax: .LNKSOB,LOC

after the BLOAD. Either way will work fine. .SETSOB creates an empty collection. .LNKSOB just links the memory to
the program. .LNKSOB also gives us a useful way to keep two or more Screen Object Collection in memory, switching
between them when needed.

Cutting a Screen Object is simple:

CUT SCREEN OBJECT
Syntax: .CUTSOB,X,Y,W,H

X and Y are, of course, the coordinates of the upper left corner of the object, W is its width, and H is its height. The
object is put in the next available space in the collection, and the index total is incremented. Be sure W and H do not exceed
the right or bottom of the screen.

Also, after a cut, the variable FP will contain the memory location of the end of the area plus one. This is very
handy for saving the collection as a file with BSAVE.

100 .setsob,49152

110 .cutsob,0,0,10,10

120 .cutsob,10,0,10,10

130 .cutsob,0,10,10,10

140 .bs,"file.soc",d,49152,fp

Now to paste an object to the screen:

 STRINGS & THINGS
DotBASIC Plus

41

PASTE SCREEN OBJECT
Syntax: .PSTSOB,INDEX#,X,Y

INDEX# is the number, in order of being cut, of the object, and X and Y are the coordinates for placing the upper
left corner of the object to the screen.

And now for the grand-finale:

DELETE SCREEN OBJECT
Syntax: .DELSOB

.DELSOB simply deletes the last object in memory, which may be useful if memory is limited, or you need to
change the last object in the collection.

NOTE: The SOBs use the current font for their character patterns.

USING VISUAL DESIGN

The best way to create sharp looking programs is to visually design the
screen – your user interface – using DBDesign, which is available on the
DotBASIC Utility Disk. This program lets you place or type characters on the
screen, edit the font, cut and paste sections of the screen, and even cut out
Screen Objects and save them to a .SOC file. You can use any of the three
text screen modes: Normal, Multi-Color, and Extended Background. And, if
you are placing Event Regions on the screen, the DBDesign BOX function
will give you the X,Y,W,H of the area – which you can jot down and use for
.DREGing your Regions in the program. For complete documentation on
DBDesign, refer to the “Read About It” file on your DotBASIC Utility Disk.

 DBDesign can save your designs in several ways. First, the whole
screen, with font and color data, can be saved as an .FTS file which uses 16
memory pages. To put the designed screen in your program, we have a
great DotCommand for you:

FONT/TOOLBOX/STASH
Syntax : .FTS,PAGE

Using DBDesign, you can visually design a screen, then save it as an .FTS file. This file includes font, screen, color,
and text mode information. The file fills 16 pages. Use .BL to BLOAD the .FTS file to memory (anywhere except under I/O –
208-223 – we suggest page 224), then use .FTS to put everything on the screen. Instantly!

100 .bl,”myprog.fts”,d,224*256
110 .fts,224

Instantly, your pre-designed screen is staring back at you!

42 DotBASIC Plus v2.2

The second way DBDesign can save your screen and color information only as a .TBS file. TBS stands for Tool-Box-
Stash. .TBS files are good to use if multiple screens share the same font. To display a .TBS file, simply BLOAD it into RAM
and use .RESTR to put it on the screen, like this:

1000 .bl,"screen.tbs",d,160*256
1002 .restr,160

 Finally, DBDesign can save the font only. This allows you to easily change your character set in a program.
DotBASIC Plus uses Page 8 for character sets (even if it appears you are using the default character set), and a complete
character set fills 8 pages. Changing your font, then, is as simple as BLOADing it into Page 8, like this:

 1000 .bl,"f.screen",d,8*256

 Shazzam! That was easy! What if you have two fonts, and you want to keep them both in RAM, swapping them in
and out when needed? No problem! To do it, we need another DotCommand. You’ll love this one!

SWAP MEMORY
Syntax: .SWPMEM,START,END+1,DESTINATION

SWAP MEMORY will swap the area of memory with that at the DESTINATION, at a
rate of 41 cycles per byte. (Having the destination between the start and end is NOT a good
idea with .SWPMEM!)

To use SWAP MEMORY to swap our two fonts in and out:

 100 .bl,”f.font1”,d,8*256 (Displays Font #1)

 110 .bl,”f.font2”,d,224*256 (BLOAD Font #2 into Page 224)

 120 .swpmem,8*256,16*256,224*256 (Swap!)

To swap back, just issue the .SWPMEM again, exactly like before.

 STRINGS & THINGS
DotBASIC Plus

43

The DotBIBLE
DotBASIC Infinite Burgeoning Language Explanation

44 DotBASIC Plus v2.2

SHORT, MEMORABLE, CONCISE, AND OPAQUE

Incredible synergy comes when two writers/editors merge to create the ultimate manual for

the ultimate language. However, Dave and Alan had their "moment:"

 Dave's version: When it came to a name for the complete listing of DotCommands, Alan and

I hit an impasse. He wanted to use the term "bible." I, being a clergy in my real life, had

problems with that term. We might have come to blows were it not for the fact that we live

some 1000 miles apart.

 Alan's version: Dave, being a preacher, wanted to use the term "bible." I was not so sure the

term was appropriate, and thought "Command Summary" was more fitting. Fortunately, I live

in Ohio and Dave is in Colorado. Also, I am younger and more agile than Dave.

 On the other hand, both Alan and Dave agreed that the best names in computerdom are

short, memorable, concise, and opaque — like PET, which stands for Personal Electronic

Transactor. Alan suggested the name for the Summary be "Dot-something." Dave tossed

around some random acronymic possibilities, and suggested Dot Basic Infinite Burgeoning

Language Explanation.

DotBIBLE!

Call it what you may —the following is the official list of DotCommands as of 2008.

 THE DOTBIBLE
DotBASIC Plus

45

.ALPH ALPHABETIZE
Syntax: .ALPH,START#

DESCRIPTION: Sorts racked data, treating the START# character in each string as the first character sorted. Normally,
START# would equal one (1), of course. However, changing START# can be useful if you need to sort a directory of
LOADSTAR text files, for example, and want to ignore the “T.” prefix on each file.

See also: .DIRSRT, .RK

.AREG AFFECT REGION
Syntax: .AREG,REG#,SC,CO

 SC=255 PAINT
CO+16 BLOCK
CO+32 FRAME
CO+64 UN-REVERSE

*

CO+128 REVERSE
*

CO+192 FLIP
*

CO=255 SHADE

*Color RAM will not be affected unless you add an additional 16 to the values above.

DESCRIPTION: Affect the specified Region with SC (Screen Code) and CO (Color). This command is very similar to .BOX, but
instead of specifying the X,Y,W,H parameters, you indicate which defined Region (using .DREG) you want to affect.

See also: .BOX, .DREG, .DRTEXT, .EDRTEXT, .ROLOVR

.BG BACKGROUND COLOR BUILT-IN
Syntax: .BG,CO

DESCRIPTION: Change the background color to the value of CO.

See also: .BR, .TX

.BL BLOAD
Syntax: .BL,FILE$,D,LOC

DESCRIPTION: Performs a binary load from device D to any memory location, except Pages 208 - 223.

Related Variables:
E$ Returns the error message.
F% Returns the end location (plus 1) of the BLOADed file. Values above 32767 cause F% to be
 negative (use .I2FP to convert F% to a positive number).

See also: .BL0, .BS, .DIR, .DISK, .I2FP, .RK

.BL0 BLOAD WITH ZERO
Syntax: .BL0,FILE$,D,LOC

DESCRIPTION: Performs a binary load from device D to any memory location, except Pages 208 - 223, and adds a zero
(0) to the end of the LOAD. This can be useful when using Scrolling Menus and other DotCommands that expect their data
to end with a zero byte.

Related Variables:
E$ Returns the error message.
F% Returns the end location (plus 1) of the BLOADed file. Values above 32767 cause F% to be
 negative (use .I2FP to convert F% to a positive number).

See also: .BL, .BS, .DIR, .DISK, I2FP, .RK

46 DotBASIC Plus v2.2

.BMP LOAD SHP FILE
Syntax: .BMP,FILE.SHP$,D,160,128,156

DESCRIPTION: Used with the .BMPSCR DotCommand, .BMP loads and unpacks a LOADSTAR SHP graphic file, using the
values listed above. The arrow sprite is automatically copied to page 132 and switched over by .BMP. When you include
.BMP in your program, both .BMP and .BMPSCR are added to your DotCommand list.

An auxiliary file BLOAD is added to your boot program so that DBA.UNP.ML is copied to your Work disk and loaded into
memory — using pages 205-207.

Also, the Top of BASIC is lowered from page 160 to 128, to make room for the bitmap, which uses 128-132, 160-191, and
156-159 for display.

See also: .BMPSCR

.BMPSCR DISPLAY SHP FILE INCLUDED WITH .BMP
Syntax:.BMPSCR,SWITCH

SWITCH 1 = Display Bitmap
 0 = Display Text Screen

DESCRIPTION: After loading a SHP bitmap with .BMP, use .BMPSCR to either display the SHP file or return to the text
screen. POKE 53269,0 to turn off the mouse pointer and POKE 53269,3 to restore it.

 EXAMPLE:

100 .bmp,"graphic.shp",d,160,128,156
110 .bmpscr,1
120 .do:.ma:.un l2%
130 .bmpscr,0

See also: .BMP

.BOX BOX
Syntax:.BOX,X,Y,W,H,SC,CO

 SC=255 PAINT
CO+16 BLOCK
CO+32 FRAME
CO+64 UN-REVERSE

*

CO+128 REVERSE
*

CO+192 FLIP
*

CO=255 SHADE

*
Color RAM will not be affected unless you add an additional 16 to the values above.

DESCRIPTION: Draws a box made up of the SC Screen Code, in the color defined by CO. The box is drawn on the screen
with the upper left corner at X,Y, a width of W, and a Height of H.

See also: .AREG, .FANCY, .TEXT, .TEXTC

.BR BORDER COLOR BUILT-IN
Syntax: .BR,CO

DESCRIPTION: Changes the border color to the value of CO.

See also: .BG, .TX

.BS BSAVE
Syntax: .BS,FILE$,D,START,END+1

DESCRIPTION: Save a section of memory to D. Only memory accessible by the CPU may be saved - meaning you can't save
data hidden under the ROMS or I/O.

 THE DOTBIBLE
DotBASIC Plus

47

Related Variables:
E$ Returns the error message.
See also: .BL, .BL0

.CAGEM CAGE MOUSE
Syntax: .CAGEM,X,Y,W,H

DESCRIPTION: Confines the mouse pointer's movement within an area.

See also: .LG, .PUTM

.CHRSWP CHARACTER SWAP
Syntax: .CHRSWP,SEEK,REPLACE,CO

DESCRIPTION: Scans the screen for a specific screen code (SEEK), and replaces it with the given screen code (REPLACE), with
the given color (CO). A color of 128 causes only the characters to be changed, not their colors.

See also: .COLSWP

.COLSWP COLOR SWAP
Syntax: .COLSWP,SEEK,REPLACE

DESCRIPTION: This routine finds all instances of a specific color (SEEK) and replaces them with the given color (REPLACE).
Screen memory is not affected.

See also: .CHRSWP

.CPYCHR COPY CHARACTER
Syntax: .CPYCHR,START,END+1,DESTINATION
DESCRIPTION: Lifts the ROMs and exposes the Character-ROM in the $D000 area so you can copy it.

See also: .CPYMEM, .SWPMEM, .CPYIO

.CPYIO COPY I/O INTACT
Syntax: .CPYIO,START,END+1,DEST

DESCRIPTION: Lift the ROMs, but leave the $D000 area alone. This would be useful in copying the color RAM or the VIC-II’s
settings.

See also: .CPYCHR, .CPYMEM, .SWPMEM

.CPYMEM COPY MEMORY
Syntax: .CPYMEM,START,END+1,DEST

DESCRIPTION: All ROMS are lifted and a raw memory transfer is performed at a speed of approximately 28 cycles per byte.
If the DESTinaton lies somewhere between the START and END, a backwards copy is performed to prevent corruption.

See also: .CPYCHR, .CPYIO, .SWPMEM

.CUT CUT
Syntax: .CUT,X,Y,W,H,LOC

DESCRIPTION: Stash any size portion of the screen to any location, even under I/O. The data is stored sequentially in
memory with each cell's screen code and color code stored one after another.

To determine how much memory is consumed by .CUT, use this formula:

bytes = W * H * 2

See also: .PASTE, .CUTSOB, .PSTSOB

48 DotBASIC Plus v2.2

.CUTSOB CUT SCREEN OBJECT
Syntax: .CUTSOB,X,Y,W,H

DESCRIPTION: The screen object defined by X,Y,W,H is put in the next available space in the Screen Object Collection, and
the index total is incremented. Be sure W and H do not exceed the right or bottom of the screen.

After using .CUTSOB, the variable FP will contain the memory location of the end of the area plus one.

The Screen Object data is arranged as follows:

 BYTE
 0 Index number
 1-2 Offset to end of collection
 3-4 Offset to next screen object
 5 Width
 6 Height
 7 Screen Object data alternating Screen Code/Color bytes

.CUTSOB uses three ML DotCommands:

.AREA which turns our X,Y,W,H to X1,X2,Y1,Y2 format (for compatability with Mr.Mouse)

.MULTIPLY which multiplies .A and .X and puts the results in 834/835

.PUTIFP which puts a two-byte interger value in .A/.X into a floating point variable, from the name given in
251/252

We also use #SOBDATA as a data block containing the beginning address of the collection, used by all four commands.

Related Variables:
FP End of SOC+1

See also: .CUT, .DELSOB, .LNKSOB, .PASTE, .PSTSOB, .SETSOB

.DELSOB DELETE SCREEN OBJECT
Syntax: .DELSOB

DESCRIPTION: Deletes the last Screen Object in memory.

See also: .CUT, .CUTSOB, .LNKSOB, .PASTE, .PSTSOB, .SETSOB

.DISK DISK COMMAND
Syntax: .DISK,COMMAND$,D

DESCRIPTION: Sends string (COMMAND$) to device D via the command channel. To only read the error channel, send a
null string (""). COMMAND$ cannot be a variable; it must be a literal string.

Related Variables:

E$ Returns the error message.

.DIR GET DIRECTORY
Syntax: .DIR,"$:*",D,LOC,#FILENAMES

DESCRIPTION: Reads the disk directory from device D and stores it in LOC. The directory can be placed anywhere, even
under I/O. DB+ converts the directory to an EDSTAR file as it is brought in. This allows Scrolling Menu to use the information
as a file requestor. You can replace "$:*" with any search pattern you want, up to 16 characters long. For example, using
"$:b.*,p.*" on a LOADSTAR disk would bring in the names of all the boot files (those that begin with “b.” and packed files
(those beginning with “p.”).

The number of filenames a given buffer area can hold can be determined by:

files = INT((bufferspace-1)/32)

A good place to put your directory information is in pages 224+. You easily put 250 filenames in this area under ROM.

 THE DOTBIBLE
DotBASIC Plus

49

Related Variables:
E$ Returns the error message.
T$ Returns the disk header information, in quotes.
B$ “Blocks Free” message.

See also: .DIRSRT, .PSEL, .SCMENU

.DIRSRT SORT DIRECTORY
Syntax: .DIRSRT

DESCRIPTION: Alphabetically sort an already BLOADed and racked directory.

See also: .ALPH, .DIR

.DO DO BUILT-IN
Syntax: .DO:loop

DESCRIPTION: Begin a Do Loop.

See also: .MA, .UN, .WH

.DREG DEFINE REGION
Syntax: .DREG,REG#,X,Y,W,H

DESCRIPTION: Any area of the screen can be defined as a "Region". You specify the Region number (1-64) and its area.
When Regions overlap each other, the highest numbered Region prevails.

Related variables Defaults:

MV+0 Region Data Zone: LB (0)
MV+1 Region Data Zone: HB (45)
MV+2 # of Active Regions (0)

MV+1 normally has a value of 45, which assigns the Region data to page 45.

Defined Regions are not "seen" by the mouse unless you mark them as active, by placing a value into MV+2. For example, if
this number is 7, then Regions 1-7 are active. Each time you define a Region, that Region number is automatically placed
into MV+2 for your convenience. That means if you have defined three Regions, than redefine Region 2, you will need to
POKE MV+2,3 to restore all the Regions.

Region data can be placed almost anywhere, the exception being under the ROMS or I/O. Pages 45-55 are available for this
use in DB+. (This is also the area for Sprite Images.) If you want to change the location of your Region data, you should first
set the Region Data Zone with POKEs to MV+1 and MV+0 before defining Regions. So, if you change the location of your
Region data, it's your job to ensure this area is safe from BASIC and your other data.

See also: .AREG, .BOX, .DRTEXT, .EDRTEXT, .ROLOVR

.DRTEXT DEFINE REGION TEXT
Syntax: .DRTEXT,NUMBER,"STATIC STRING"

DESCRIPTION: "Region text" is when the user moves the mouse pointer around the screen, and a message bar at the
bottom of the screen informs the user of what will happen if he or she clicks on that particular area. These strings don't
have to be associated with Regions - it's just likely that this will be their most common use.

Strings defined as Region text must NOT be made by combining smaller strings. The string's POINTER will be stored in its
proper slot in the Region Text Zone. Be sure this zone is safe from BASIC and other data. We suggest the area in pages 46-
55. The Zone will never exceed 3 pages.

All Region text will be printed in MV+22's color. Add 128 to MV+22 for REVERSE printing. (Adding 64 changes the way the
pointers are stored and is most useful from ML.)

Add 32 to MV+22 and all your Region text will be CENTERED.

50 DotBASIC Plus v2.2

Add 16 instead, and each string will be printed after a forced leading space.

Related Variables: Defaults:

MV+20 Region Text Zone (LB) (0)
MV+21 Region Text Zone (HB) (4)
MV+22 Region Text Color / Flags (1)
MV+23 Region Text Row (24)

See also: .AREG, .BOX, .DREG, .EDRTEXT, .PRTEXT, .ROLOVR

.EDRTEXT EDSTAR TO REGION TEXT
Syntax: .EDRTEXT,LOC

DESCRIPTION: This command defines ALL Region text with a single command! It takes an EDSTAR file (terminated by 0),
racks it up, and POKEs LOC to MV+24 and MV+25. The number of lines in the file is returned in N%.

Keep in mind that the FIRST line of the EDSTAR file will be referenced by number zero. You can have as many lines as you
want.

See also: .AREG, .BOX, .DREG, .EDRTEXT, .PRTEXT, .ROLOVR

.EVENT EVENT
Syntax: .EVENT,"keystroke"

DESCRIPTION: Waits until Mouse Left or Right button is clicked, or Key is pressed and character is in "keystroke". If Mouse
click, I% = -1 (Left) or -2 (Right). All mouse variables are current. If keystroke, I% = position in "keystroke". The keystroke
string can be literal or variable.

This handy routine also does Roll-Overs so it’s important to set them up with .SETROL before calling .EVENT.

See also: .DO, .MA

.FANCY FANCY LATTICE
Syntax: .FANCY,X,Y,W,H,S1,S2,C1,C2

DESCRIPTION: Draws an alternating pattern from the two screen codes (S1/S2) and colors (C1/C2) you specify.

See Also: .BOX

.F2SPR FONT-TO-SPRITE
Syntax: .F2SPR,SC,SPRITEIMAGE#

DESCRIPTION: Copies font character of SC (screen code) to Sprite Image (184-219)

See also: .SPRITE, .SPRFX, .SPRMV

.FTS FONT/TOOLBOX/STASH
Syntax: .FTS,PAGE

DESCRIPTION: Using DBDesign, you can visually design a screen, then save it as an FTS file. This file includes font, screen,
color, and text mode information. The file fills 16 pages. Use .BL to BLOAD the FTS file to memory (anywhere except under
I/O — 208-223 — we suggest page 224), then use .FTS to put everything on the screen. Instantly!

EXAMPLE:

100 .bl,"file.fts",d,224*256
110 .fts,224

Note: .BL0 should NOT be used for .FTS files. (that extra 0) will fall into the next Page of memory.

See also: .BL, .BL0

 THE DOTBIBLE
DotBASIC Plus

51

.GRAF GRAFSTAR
Syntax: .GRAF

DESCRIPTION: Initializes the location for the Bitmap — Bitmap at page 160, color at page 128, just like with the .BMP
command. Including .GRAF and running DEV also includes the rest of the Grafstar suite of DotCommands: .GMODE, .GPEN,
.GPLOT, .GLINE, .GP, .GCLIP, .GR00, and .GFILL

See also: .GCLIP, .GFILL, .GLINE, .GMODE, .GPEN, .GPLOT, .GP, .GR00

.GCLIP CLIP INCLUDED WITH .GRAF
Syntax: .GCLIP,X1,X2,Y1,Y2

DESCRIPTION: Restricts Grqfstar graphics within a window area. Note that you must add 1 to the X2 (RIGHT) and Y2
(BOTTOM) values. Or to put it another way, X1 and Y1 is the first point to be plotted while X2 and Y2 is the first point to be
clipped.

Clip values MUST be within the following range:

X1 (LEFT) 0 - 319 (High Res)
X1 (LEFT) 0 - 159 (Multi-Color)
X2 (RIGHT) 1 - 320 (High Res)
X2 (RIGHT) 1 - 160 (Multi-Color)
Y1 (TOP) 0 – 199
Y2 (BOTTOM) 1 – 200

Also, X2 must be greater than X1 and Y2 greater than Y1. Grafstar checks and produces an ?ILLEGAL VALUE ERROR when
something is wrong.

See also: .GFILL, .GLINE, .GMODE, .GPEN, .GPLOT, .GP, .GR00, .GRAF

.GFILL FILL INCLUDED WITH .GRAF
Syntax: .GFILL,X,Y,PEN#

DESCRIPTION: Takes the pen value at the coordinates given, considers it "empty," and replaces every contiguous instance
with the PEN# given in the command, stopping at the occurrence of any location that is “not empty."

See also: .GCLIP, .GLINE, .GMODE, .GPEN, .GPLOT, .GP, .GR00, .GRAF

.GLINE LINE INCLUDED WITH .GRAF
Syntax: .GLINE,X,Y,PEN

DESCRIPTION: Draws a line from the previous .GPLOT or the last point of the previous .GLINE.

See also: .GCLIP, .GFILL, .GMODE, .GPEN, .GPLOT, .GP, .GR00, .GRAF

.GMODE MODE INCLUDED WITH .GRAF
Syntax: .GMODE,MODE#

DESCRIPTION: Sets the type of screen that is being displayed.

Modes:
0 Default Text Screen
1 High Res Bitmap
2 Text Screen — Multi-Color
3 Multi-Color Bitmap
4 Show Text, Clear High Res

*

5 High Res Bitmap, Cleared
*

6 Show Text, Clear Multi-C
*

7 Multi-Color Bitmap, Cleared
*

52 DotBASIC Plus v2.2

*
 Modes 4 - 7 put 0's in all bitmap locations. Modes 4 and 5 also put current colors for pens 0 and 1 into the color

map.

If you are using .GRAF commands with .BMP, use .BMP,F$,D,160,128,156 to load the SHP graphic, then — rather than
.BMPSCR — use .GMODE,1 (hi res) or .GMODE,3 (multi-color) to switch to the bitmap, and .GMODE,0 to return to the text
screen. (.BMPSCR has a toggling effect that gets cumbersome.)

See also: .GCLIP, .GFILL, .GLINE, .GPEN, .GPLOT, .GP, .GR00, .GRAF

.GP GET PEN INCLUDED WITH .GRAF
Syntax: .GP,X,Y

DESCRIPTION: Returns the pen number of the pixel at X/Y in P%. If X/Y is not visible, P% will hold 128.

Related Variable:
P% Pen #

See also: .GCLIP, .GFILL, .GLINE, .GMODE, .GPEN, .GPLOT, .GR00, .GRAF

.GPEN DEFINE PEN COLOR INCLUDED WITH .GRAF
Syntax: .GPEN,P0,P1,P2,P3

DESCRIPTION: This sets the colors of the four "pens" used with .GPLOT, .GLINE and .GFILL. The four background color
registers are used for this, so P0 will change the background of your text screen (use .BG,color to reset the background of
the text screen after .GMODE,0).

See also: .GCLIP, .GFILL, .GLINE, .GMODE, .GP, .GPLOT, .GR00, .GRAF

.GPLOT PLOT INCLUDED WITH .GRAF
Syntax: .GPLOT,X,Y,PEN

DESCRIPTION: Plots a pixel at pixel X/Y in the color set for the PEN number. X/Y values off the screen are invisible.

See also: .GCLIP, .GFILL, .GLINE, .GMODE, .GP, .GPEN, .GR00, .GRAF

.GR00 SET OFFSET INCLUDED WITH .GRAF
Syntax: .GR00,XOFF,YOFF

DESCRIPTION: Lets you place the coordinates 0,0 ANYWHERE on the screen. Negative coordinates are visible.

XOFF Number of pixels that the X coordinate 0 will be pushed to the right.
YOFF Number of pixels that the Y coordinate 0 will be pushed down.

With .GR00, you can define polygons as a series of vertices, in all four quadrants, and position the polygon with .GR00. To
center the plotting of a polynomial, set the offset to the middle of the screen:

.GR00, 160, 100

See also: .GCLIP, .GFILL, .GLINE, .GMODE, .GP, .GPEN, .GPLOT, .GRAF

.I2FP INTEGER-TO-FLOATING POINT
Syntax: .I2FP,INTEGER

DESCRIPTION: Some DotBASIC variables return negative values for numbers greater than 32767. BASIC 2.0’s FRE(0)
command is another example. The unsigned value is returned in the variable FP.

Related Variables
FP Unsigned value of INTEGER

EXAMPLES:

 THE DOTBIBLE
DotBASIC Plus

53

.i2fp,fre(0):print fp

 .i2fp,f%:print fp (after a BLOAD)

See also: .BL, .BL0

.INP TEXT INPUT
Syntax: .INP,X,Y,TXT,CSR,LEN,DEFAULT$

X+128 REVERSE input
Y+128 Integer numbers only
Y+192 Positive and negative decimal numbers only

DESCRIPTION: When called, DEFAULT$ is printed at X,Y followed by a blinking cursor. The user can CRSR through the text,
INSERT, DELETE, HOME, or CLR at will. Most normal characters are allowed, except for those fearsome quotation marks.
The string is returned in W$.

TXT is the text color and CSR is the cursor color. LEN is the maximum number of characters allowed, which cannot exceed
80. The default string (DEFAULT$) will be cut short if it exceeds LEN.

A nice thing about .INP is that it automatically clears out the space it needs, which is handy for inputting over fields that
might contain old data.

To input in REVERSE, add 128 to X. If you want to allow only numbers to be entered, add 128 to Y. If you want to allow
numbers AND the decimal and minus symbols, add 192 to Y.

The Keyboard Enable variable at MV+20 is temporarily zeroed during the INPUT routine. It looks silly if the arrow pointer
moves back and forth as you are CRSRing through the text.

Related Variables:
W$ Result of user input

.INPLUS INPUT PLUS
Syntax: .INPLUS,X,Y,TXT,CSR,LEN,S,OUT$,DEFAULT$

X+128 REVERSE input
Y+128 Integer numbers only
Y+192 Positive and negative decimal numbers only

DESCRIPTION: When called, DEFAULT$ is printed at X,Y. TXT is the text color and CSR is the cursor color. L is the maximum
length allowed, which cannot exceed 80. The user can CRSR through the text, HOME, CLR, INSERT, and DELETE at will.

If you want to input in REVERSE, add 128 to X. To allow only numbers to be entered, add 128 to Y. To allow numbers AND
the decimal and minus symbols, add 192 to Y.

S is the starting location of the blinking cursor. For example, if S was 7, then the cursor would pop up over the 8th character
of the default string. Why not the 7th? Well, zero is used to represent the leftmost (1st) character. If you positioned your
.INPLUS against the left border, you'd see that S corresponds to the usual 0-39 Cell-X values.

If S exceeds the length of the default string (DEFAULT$), the cursor would pop up right after the end of DEFAULT$. Since
this string can never exceed 80 characters, any S value above 80 ensures the cursor will start off at its "normal" position at
the end of DEFAULT$.

OUT$ allows you to specify extra keys you want to act like RETURN. For example, you might have a list of figures and would
like to be able to use CRSR UP/DOWN to move through each one, and then press F1 to signify when you're done altering
the lot.

The string is returned in W$. I% tells you WHICH exit-key was pressed. It is zero when RETURN is used, and any other value
means that specific key from OUT$ was pressed to exit.

Since the incoming keypresses are checked against OUT$ first, you could use CRSR LEFT, RIGHT, HOME, or ANY key to act as
a special RETURN key. Of course, using LEFT and RIGHT as exit keys means they couldn't be used to move the blinking
cursor within the current line of input. However, if you had a bunch of values in rows and columns, using all four CRSR keys
to move through items would be handy!

54 DotBASIC Plus v2.2

Related Variables:
W$ Result of user input
I% “Exit” key

.INSTR IN-STRING
Syntax: .INSTR,SEARCH$,TARGET$,N

DESCRIPTION: If found, the N
th

 character of the search string (SEARCH$) contained in the target string (TARGET$) is
returned in I%. If not found, I%=0. For example, .instr,”A”,B$,2 returns the position of the 2

nd
 instance of the character “A”

in the string B$.

Related Variables:
I% First character of SEARCH$ found in TARGET$

See also: .PINSTR

.KEYMW KEY/MOUSE WAIT
Syntax:.KEYMW

DESCRIPTION: When called, the program stops and waits for either a mouse click or a key press. The mouse variables hold
the mouse's current information. I% will contain the ASCII number of the key pressed (0 if none). For mouse clicks, I% is -1
for a left click and -2 for right.

Related Variables:
I% PET-ASCII value of key press or -1/-2 for left/right mouse click.

See also: .WKEY, ,KP

KEYPRESS KEY PRESS BUILT-IN

Syntax: .KP,STRING$

This routine quickly scans your string and checks if any of those keys are being pressed at the moment. If one is,
that key's position within the string will be returned in I%.

Related Variables:
I% Key's position within the string

See also: .WKEY, .KEYMW

.LG LET GO
Syntax: .LG

DESCRIPTION: This DotCommand will wait until the user is not holding either of the mouse buttons (or their equivalents)
down, even if it takes all day.

 EXAMPLE

100 .do:.ma:.bg,x
110 x=(x+1)and15:.lg
120 .un L2%

See also: .CAGEM, .PUTM

.LNKSOB LINK SCREEN OBJECTS
Syntax: .LNKSOB,LOC

DESCRIPTION: After BLOADing a Screen Object Collection, .LNKSOB links the memory, defined in LOC, to the DotBASIC
program. An alternative is to first use .SETSOB, then BLOAD the .SOC file.

See also: .BL, .CUTSOB, .DELSOB, .PSTSOB, .SETSOB

 THE DOTBIBLE
DotBASIC Plus

55

.MA MOUSE ASK BUILT-IN
Syntax: .MA
DESCRIPTION: Puts all the current conditions of the mouse in various variables.

Related Variables
PX% Pixel-X Coordinate
PY% Pixel-Y Coordinate
CX% Cell-X Coordinate
CY% Cell-Y Coordinate
L1% Left Button State

L2% New Left Click
R1% Right Button State
R2% New Right Click
RG% Region # Mouse is Over
CR% Region # being Clicked

SC% Screen Code under Mouse
CC% Color Code under Mouse
PP% Screen Memory Position of
Mouse

.MCMENU MULTI-COLUMN MENU
Syntax: .MCMENU,NC,X,W,Y,I,U,H,HOT$

 H+128 Don’t REVERSE/Un-REVERSE text.

DESCRIPTION: Displays a multi-column menu with NC number of columns (max 5). An X and W (width) parameter must be
included for each column. The Y coordinate and I (# items) apply to all columns. U is the color of unhighlighted items in the
menu. The highlight bar is colored H. If you don't want the text to REVERSE or un-REVERSE as the bar moves, add 128 to H.

The items are numbered in this order: down the first column, then the next, and so on. So, if you had 3 columns with 7
items in each column, the 2nd column would start with item number 8.

Items can be directly selected by pressing the appropriate Hotkey (HOT$). The highlight bar is moved to that item number,
unless it doesn't exist. Pressing the Global Escape key (MV+12) ALWAYS returns a zero in SL%.

The selected item's number is returned in SL%.

Related Variables:
SL% # of the menu item selected.

See also: .MENU, .MENUA, .MENUB, .MSMENU, .SCMENU

.MENU MENU
Syntax: .MENU,X,Y,W,I,U,HI,HK$

HI+128 Don’t REVERSE/Un-REVERSE text under Menu Bar
HI+64 Don’t REVERSE/Un-REVERSE HotKeys

DESCRIPTION: Turns screen rows defined by you into menu lines. U is the color of unhighlighted items, and H is the color
of the highlighted item. HK$ allows us to define “hotkeys” for our menu. The number of the menu line chosen is returned in
SL%

You can use the CRSR/RETURN keys instead of a mouse or joystick. In order to provide a more natural menu interface, the
Keyboard Enable variable at MV+20 is temporarily zeroed during menus. The CRSR keys are then read manually to move the
highlight bar, one move per press, like we're all used to.

The HOT$ string allows direct selection of menu items. For example, if you have hotkeys of "loadst*r", and the user presses
"d", the fourth item is selected and the highlight bar is moved there. If there was no such item, SL% still returns a 4 but the
highlight bar would not change.

The H+64 feature of menus will only work if "honor hotkey colors" is enabled. A Hotkey Color is just ANY color within the
text of a menu which is neither the highlight nor un-highlight color. That leaves you with 14 colors to make your menu's
hotkeys stand out, and stay that way.

Refer to the Menu Madness section of the Tutorial for a through description of all the DotBASIC Plus menu features.

Related Variables:
SL% Selected item
MV+10 Menu Type

See also: .MCMENU, .MENUA, .MENUB, .MSMENU, .SCMENU

56 DotBASIC Plus v2.2

.MENUA AUTO-MENU A (SHADOW)
Syntax: .MENUA,X,Y,U,H,HK$,ITEMS$

DESCRIPTION: Automatically creates a menu (see .MENU) with shadow effect. Place the menu items in the ITEMS$ string,
with each item separated by an F7.

Related Variables:
SL% Selected item
MV+10 Menu Type

See also: .MCMENU, .MENU, .MENUB, .MSMENU, .SCMENU

.MENUB AUTO-MENU B
Syntax: .MENUB,X,Y,U,H,HK$,ITEMS$

DESCRIPTION: Automatically creates a menu (see .MENU). Place the menu items in the ITEMS$ string, with each item
separated by an F7.

Related Variables:
SL% Selected item
MV+10 Menu Type

See also: .MCMENU, .MENU, .MENUA, .MSMENU, .SCMENU

.MSG PRINT MESSAGE
Syntax: .MSG,CO,STRING$

DESCRIPTION: This command prints your string just like Region text. The screen line (0-24) the message will print at is
defined in MV+23. You provide the color, and MV+22 specifies the REVERSE state, centering, or the leading space. This
command is useful for special prompts and messages. The plus "+" can be used to concatenate strings printed by this
routine.

Related Variables:
MV+22 Region Text Color

+128 REVERSE printing
+ 64 leading space
+ 32 automatic center

MV+23 Region Text Row

See also: .DRTEXT, .EDRTEXT, .PRTEXT

.MSMENU MULTI-SELECT SCROLLING MENU
Syntax: .MSMENU,X,Y,W,H,B,I,UN,HI,S,WB,LOC,T$,B$

HI+128 Don’t REVERSE/Un- REVERSE text under Menu Bar
HI+64 Don’t REVERSE /Un- REVERSE HotKeys
W=255 File Requestor
X+128 Manual Icons
LOC=0 Do Not Rack

DESCRIPTION: Creates a scrolling menu that allows for multiple selections. The confusing letters are mostly colors and read
like this:

Box
Icons
Un-highlight
Highlight
Selected
(selected) With bar
Location

 THE DOTBIBLE
DotBASIC Plus

57

It's always easy to spot the selected items, even when they are under the highlight bar. Which of the U,H,S,W items are
REVERSEd is set from bits 3-0 to MV+15. By default, the highlight bar and all selected items are REVERSEd. Each REVERSE
bit can be temporarily disobeyed by adding 128 to the U,H,S,W parameters.

Selecting items is as easy as hitting RETURN or clicking on them. The item is toggled and the mouse and highlight bar are
moved down to the next item, scrolling when necessary - even when selecting with the mouse!

The additional keys A, N, and T function within multi-select menus to select ALL, NONE, and to TOGGLE ALL items
(respectively). The mouse user cannot access these special features unless YOU enable manual icons!

Exiting a multi-select menu is the confusing part. If you press the EXIT key (MV+16), SL% will return the number of items
selected. If ESCAPE is pressed, the menu is cancelled and zero is returned in SL%. The selected items still exist, and still can
be indexed, but you are just told that there weren't any selected items.

Refer to the .SEL DotCommand to see how the selected menu items are accessed.

Related Variables
SL% Number of items selected
MV+10 Menu Type
MV+12 Global Escape
MV+16 Define “Quit” HotKey

See also: .MCMENU, .MENU, .MENUA, .MENUB, .SCMENU, .SEL

.P@ PRINT AT
Syntax: .P@,X,Y,STRING$

DESCRIPTION: Prints STRING$ at location X,Y

See also: .PC, .TEXT

.PASTE PASTE
Syntax: .PASTE,X,Y,W,H,LOC

DESCRIPTION: Used with .CUT, this DotCommand requires that you specify the area to be filled. As long as you use the
same Width and Height as the cut data, you can paste it wherever you want, oodles of times. However, no part of the area
can be off-screen.

See also: .CUT

.PAUSE PAUSE
Syntax: .PAUSE,JIFFIES

DESCRIPTION: This routine waits for the specified number of jiffy interrupts to pass before returning control to you. The
wait is (usually) measured in sixtieths of a second, and the value cannot exceed 255.

.PC PRINT CENTER
Syntax: .PC,Y,STRING$

DESCRIPTION: Prints STRING$ centered on row Y.

See also: .P@, .TEXT, .TEXTC

58 DotBASIC Plus v2.2

.PINSTR PUT IN-STRING
Syntax: .PINSTR, CHR$,TARGET$,POSITION

DESCRIPTION: POKEs one byte of CHR$ into T$ at POSITION. .PINSTR changes the actual string itself. That is, if you have a
short program:

10 t$=”text”
20 .instr,"x",t$,1:if i%=0 then 99
30 .pinstr,"s",t$,i%
99 .of:end

This program will search T$ for any instances of “x” and then replace the “x” with an “s”. As expected, this changes the
value of T$ to “test”. What you may not expect is this – after RUNning the program, LIST it again:

10 t$=”test”
20 .instr,"x",t$,1:if i%=0 then 99
30 .pinstr,"s",t2$,i%
99 .of:end

.PINSTR changed the actual string in line 10! If you want to preserve the original value of T$, concatenate T$ with a “”
(double quote), like this:

10 t$=”test”:t$=t$+””
20 .instr,"x",t2$,1:if i%=0 then 99
30 .pinstr,"s",t2$,i%:goto 20
99 .of:end

See also: .INSTR

.PPRNT PRINT RACKED DATA
Syntax: .PPRNT

DESCRIPTION: Prints previously Racked data to an attached printer (device 4), with 1 inch margins top, bottom, and left.

See also: .RK, .TEXRD

.PRFILE PRINT FILENAMES
Syntax: .PRFILE,X,Y,INDEX#

DESCRIPTION: If you've used Get Directory (.DIR) and have Racked up the resulting text, you can immediately print the
filenames to the screen at X,Y.

See also: .DIR, .PRI, .RK

.PRI PRINT SELECTED ITEM
Syntax: .PRI,X,Y,INDEX#

DESCRIPTION: Indexes an item from racked data and prints it anywhere on the screen. The string is NOT returned in W$ or
F$.

See also: .RK, .PRFILE

 THE DOTBIBLE
DotBASIC Plus

59

.PRTEXT PRINT TEXT
Syntax: .PRTEXT,INDEX

DESCRIPTION: This prints Region text on the line specified in MV+23. It fills up the unused part of the line with spaces, so
you don't have to worry about erasing the old text before printing over it. The string will be printed as specified in MV+22.
Usually the "index" will be RG%, but it doesn't have to be.

100 .bl,0,”textfile”,d,40960
110 .edrtext,40960
200 .do:.ma
210 .prtext,rg%
220 .un cr

Related Variables:
MV+22 Region Text Color

+128 REVERSE Printing
+64 Leading Space
+32 Automatic Center

MV+23 Region Text Row

See also: .DRTEXT, .EDRTEXT, .MSG

.PSEL PRINT MULTI-SELECT MENU ITEM
Syntax: .PSEL,X,Y,INDEX#

Description: After exiting a multi-select menu, SL% holds the number of selections. To print out those selections:

100 if sl%>24thensl%=24
105 if sl%=0then:.of:stop
110 forx=1tosl%
120 .psel,0,x,x
130 next

See also: .DIR, .PRI, .SEL

.PSTSOB PASTE SCREEN OBJECT
Syntax: .PSTSOB,INDEX#,X,Y

DESCRIPTION: Pastes Screen Object to the screen. INDEX# is the number, in order of being cut, of the object, and X and Y
are the coordinates for placing the upper left corner of the object to the screen. If any part of the Screen Object is off
screen, or the index number is too high, the object will not be pasted onto the screen.

See also: .CUTSOB, .DELSOB, .LNKSOB, .SETSOB

.PUTM PUT MOUSE
Syntax: .PUTM,X,Y

DESCRIPTION: This DotCommand puts the mouse arrow anywhere on the screen.

See also: .CAGEM, .LG

.QR IRQ RESTORE BUILT-IN
Syntax: .QR

DESCRIPTION: Restores IRQ and the mouse pointer.

See also: .QS

60 DotBASIC Plus v2.2

.QS IRQ SUSPEND BUILT-IN
Syntax: .QS

DESCRIPTION: When DB+ is started, an arrow is created (sprite at 44*256). You can turn off the arrow and mouse control at
anytime with .QS, and turn it back on with .QR. When accessing the disk drive, it is often a good idea to execute a .QS
beforehand. Note that this isn’t necessary with any DotBASIC DotCommands, but if you are accessing the drive from BASIC
2.0 (with the OPEN command, for example) you should suspend IRQ with .QS and then restore IRQ afterwards with .QR

See also: .QR

.RDMI RANDOM INDEX
Syntax: .RDMI,ITEMS,BEGIN

DESCRIPTION: Need to shuffle an index? Maybe you have a card game that needs 52 cards shuffled. Here is the fast way to
do it in no time at all! ITEMS is the number of items to be shuffled (1-128), BEGINning with number (0-128).

NOTE: You must DIM an integer array at the top of your program (before any other DIM or use of any other array) with at
least as many elements as items to be shuffled. This array will hold your shuffled index.

EXAMPLE
1 DIM R%(52)
100 .RDMI,52,1
110 FOR X = 1 TO 52
120 PRINT R%(X)
130 NEXT

 R%(1) to R%(52) will hold the values 1-52 in random order.

.RESTR SCREEN RESTORE
Syntax: .RESTR,PAGE

DESCRIPTION: Restores the screen image stashed at given memory PAGE. Pages are an easy way to deal with memory. Each
page is 256 bytes, so PAGE*256 is the memory location. You can STASH and RESTORE to memory under ROM and I/O.

See also: .STASH

.RI RACK INDEX
Syntax: .RI,INDEX#

DESCRIPTION: Once you've racked up a Mr.Edstar file, you can index it. The indexed item is returned in W$. F$ is also set by
indexing, and will always return a null unless you happen to be looking at a directory, in which case it contains the entry's
filename.

Related Variables
W$ Indexed Item
F$ Indexed Filename

See also: .PRI, .PRFILE, .RK, .RRK, .SAVSTR, .SETSTR

.RK RACK
Syntax: .RK,LOC

DESCRIPTION: This routine takes a Mr.Edstar file (terminated by a zero) that you have BLOADed into memory and "racks it
up". By this, we mean that a table of pointers is created right after the zero at the end of the text, enabling you to use
various DotCommands to grab or print individual lines of the file.

The file being racked can be located anywhere in memory, even under I/O. Racking needs 3 bytes per line at the end of the
file for its pointers. The total number of items in the virtual array is returned in N%.

 THE DOTBIBLE
DotBASIC Plus

61

Related Variables
N% Number of Items

See also: .PRI, .PRFILE, .RI, .RRK, .SAVSTR, .SETSTR

.ROLOVR ROLL-OVER
Syntax: .ROLOVR

DESCRIPTION: Enables the automatic effects declared by .SETROL when the mouse rolls over a Region. See .SETROL for
examples.

See also: .EVENT, .SETROL

.RRK RE-RACK
Syntax: .RRK,LEN

DESCRIPTION: When an area of memory is Racked by the .RK DotCommand, text is formatted to a length of 38 characters.
This is a time-tested LOADSTAR standard that allows for very pretty text screens with room for a custom border around the
text if so desired. If your project calls for a length other than 38 characters, use .RRK after you have Racked your data
with.RK.

See also: .RK

.RU ARE YOU SURE?
Syntax: .RU,BOX,REV,U,HI,UREV,STRING$

DESCRIPTION: Puts a dialogue box in the center of the screen that asks, “Are You Sure?” The box is drawn with the color
BOX. The unhighlighted YES/NO buttons are in the color U, highlighted YES/NO buttons are in the color HI. To REVERSE the
dialogue box, set REV to 1.

If REV equals 1, the flag UREV can be set to one. This flag causes .RU to print the unhighlighted YES/NO option in REVERSE.
To have the highlighted YES/NO option REVERSEd, add 128 to HI. If REV equals zero, setting UREV has no effect.

Color codes can be imbedded in STRING$, but centering will be off without some tweaking.

The user’s response is placed in YN%.

Related Variables
YN% 0=NO
 1=YES

See also: .YN

.SAVSTR SAVE STRING
Syntax: .SAVSTR,STRING$

DESCRIPTION: Stores BASIC strings into memory, (including under ROM or under I/O), which can later be Racked with .RK,
indexed with .RI, saved to disk etc. .SAVSTR copies STRING$ to the location defined by .SETSTR, followed by a zero byte.
The next .SAVSTR begins at that zero byte.

FP holds the memory location of the zero byte. Thus, you can use these commands to create a text file! Assuming you have
strings in A$(n) array:

100 .setstr,49152
110 for x = 1 to 10
120 .savstr,a$(x)

62 DotBASIC Plus v2.2

130 next
140 .bs,”t.text”,d,49152,fp+1

Now you can load those strings into another array with:

200 .bl0,”t.text”,d,160*256
210 .rk,160*256
220 dimb$(n%)
230 for x = 1 to n%
240 .ri,x
250 b$(x)=w$
260 next

Another good use is to "collect" filenames with a certain extension:

300 .dir,”$:*”,d,160*256,240
310 .rk,160*256
320 .setstr,160*256
330 f=0:for X=1 to N%
340 .ri,X:if right$(f$,4)=".dbs” then:.savstr,f$:f=1
350 next
360 if f <> 1 then end
370 .rk,160*256
380 for x = 1 to N%:.ri,X:printw$:next

And yes! You can collect right on top of the directory data, because your string list will be smaller than the
directory on every line.

Related Variables:
FP Memory location of last zero byte.

.SCMENU SCROLLING MENU
Syntax: .SCMENU,X,Y,W,H,B,I,UN,HI,LOC,T$,B$

HI+128 Don’t REVERSE /Un- REVERSE text under Menu Bar
HI+64 Don’t REVERSE /Un- REVERSE HotKeys
W=255 File Requestor
X+128 Manual Icons
LOC=0 Do Not Rack

DESCRIPTION: Creates a scrolling menu from the Racked data in memory at LOC. The extra parameters are:

Box
Icons
UN-highlight
Highlight
LOCation

T$ is printed at the top of the menu, and B$ is printed at the bottom. If the Racked data is a disk directory, T$ is defined by
DotBASIC with the disk’s header, while B$ equals the “Blocks free” message.

Several things change when X+128 is used.

1. The BX,I,T$, and B$ parameters are ignored.
2. The scrolling menu is not drawn.
3. The mouse is not caged on the menu.
4. The X,Y,W,H parameters now represent the area for the actual scrolling text alone.

The following Regions can be defined by the programmer wishing to create their own menu buttons:

 THE DOTBIBLE
DotBASIC Plus

63

1. Home
2. Scroll up
3. Scroll down
4. Exit
5. Page up
6. Page down

For a very complete overview of this powerful DotCommand, refer to the Menu Madness section of the Tutorial.

See also: .DIR, .MCMENU, .MENU, .MENUA, .MENUB, .MSMENU, .PSEL, .SCNUME, .SEL

.SCNUME SCROLL NUMBER ENABLED
Syntax:.SCNUME,CURX,CURY,TOTX,TOTY,SELX,SELY,REV

DESCRIPTION: Like LOADSTAR’s Presenter, you can make a message like "Line 172 of 308" that is updated each time
the information changes. Multi-select menus can also show the total number of selected items.

To use .SCNUME simply define the X and Y cell coordinates of the info you want to display

 CURX,CURY Current Line Number
 TOTX,TOTY Total Lines
 SELX,SELY Number of Selected Items

Use a value of 255 in X or Y of any item you do NOT want to display.

Give REV a value of 1 to print the text REVERSEd. Otherwise make REV equal to zero.

Related Variables:
MV+15 Scroll Menu Type

See also: .MSMENU,.SCNUME

.SCPRNT SCRIPTOR PRINT INCLUDED WITH .SCRIPT
Syntax: .SCPRNT,X,Y,STRING$

DESCRIPTION: This DotCommand is Included with .SCRIPT and allows you to print STRING$ to the X and Y coordinates on
the 40 x 25 hi-res screen. You can't place the text at any pixel location. This routine prints as if the hi-res screen were a
text screen.

See also: .SCRIPT

.SCRIPT SCRIPTOR
Syntax: .SCRIPT,160,128,PAGE

DESCRIPTION: In conjunction with .SCPRNT, this command allows the programmer to print text to the hi-res screen.
.SCRIPT Initializes Scriptor with .SCRIPT,160,128,FONT, where FONT is the location of the text font. This is normally at
page 8.

See also: .SCPRNT

.SEL INDEX SELECTED ITEMS
Syntax: .SEL,NUMBER

DESCRIPTION: After using a multi-select menu, .SEL is used to ask for each "N"th selected item.

EXAMPLE

10 for n=1 to sl%:.sel,n:print w$
 40 next n

See also: .MSMENU, .PSEL

64 DotBASIC Plus v2.2

.SETROL SET ROLL-OVER INCLUDED WITH .ROLOVR
Syntax: .SETROL,REGION#,U,HI

 REGION#=0 All Regions
 HI=255 Disable Roll-Over for this Region

DESCRIPTION: Used with .ROLOVR, this DotCommand allows any defined Region to change color whenever the mouse
arrow – ahem – rolls over them. U is the unhighlighted region color, and HI is the highlighted color.

See also: .EVENT, .ROLOVR

.SETSOB SET SCREEN OBJECT
Syntax: .SETSOB,LOC

DESCRIPTION: Defines location of the Screen Object Collection and zeroes the index. LOC is the beginning of the memory
where the collection will be. This can be anywhere in memory, even under ROMs and I/O.

If a .SOC file is to be BLOADed, either do the BLOAD after .SETSOB, or use .LNKSOB.

See also: .CUTSOB, .DELSOB, .LNKSOB, PSTSOB

.SETSTR SET STRING LOCATION
Syntax: .SETSTR,LOC

DESCRIPTION: Sets the beginning of string memory. .SAVSTR can then be used to copy strings to that memory, followed by
a zero byte.

See also: .PRI, .RI, .RK, .RRK, .SAVSTR

.SID SID PLAYER
Syntax: .SID,LOC

.SIDOFF

DESCRIPTION: Plays the SidSong located at LOC .SID uses pages 192-204, and the Top of BASIC is lowered from page 160
to 144 (unless .BMP is used). A good LOC for the MUS file(s) is at pages 144-154 (with .BMP) or 144-159 (without .BMP).
.SIDOFF is automatically included with .SID.

See also: .SIDOFF

.SIDOFF SID OFF INCLUDED WITH .SID
Syntax: .SIDOFF

DESCRIPTION: Turns off music played by .SID

See also: .SID

.SPRITE SPRITE
Syntax: .SPRITE,S#,0/1,I#,CO,X,Y

I#=0 Sprite will not be changed
CO=16 Ignore color
X=0 Sprite will not be moved

DESCRIPTION: Puts any sprite anywhere on the screen. S# is the Sprite Number (0-7). 0/1 is Off (0) or On (1).
I# is the Image Number. (In DB+, Sprite Images can run from 185 to 223.) CO is obvious, as are X and Y. Remember, visible
Sprite coordinates begin with X=24 and Y=50.

See also: .SPRFX, .SPRMV

 THE DOTBIBLE
DotBASIC Plus

65

.SPRFX SPRITE EFFECTS
Syntax: .SPRFX,S#,XEX,YEX,PRI,MC

DESCRIPTION: .SPRFX controls the various switches: XEX and YEX are X-Expand and Y-Expand. PRI is sprite Priority, and MC
is Multi-Color. Using 0 disables an effect, 1 enables it. Putting 128 in any of these we leave the setting unchanged.

See also: .SPRITE, .SPRMV

.SPRMV SPRITE MOVE
Syntax; .SPRMV,S#,X,Y,MODE

DESCRIPTION: Allows you to link the positions of sprites to each other with given offsets. Sprite 0 cannot be linked, but
each of the other sprites can be linked to the sprite just before it. For example, you have a moveable object that requires
two sprites staying side by side. We will use sprites 0 and 1:

100 .SPRMV,1,24,0,1
110 .SPRMV,0,100,100,0

In line 100, we set MODE to 1 to link Sprite 1 to Sprite 0. The X/Y values are the pixel offsets — +24 and 0. The offsets can
be negative numbers! Then, in line 110, we use MODE 0 to position Sprite 0 at 100/100. Sprite 1 will be placed at
124/100. The offsets continue until a non-linked sprite occurs (or Sprite 7). To unlink a sprite, use MODE 128.

See also: .SPRITE, .SPRFX

.STASH STASH SCREEN
Syntax: .STASH,PAGE

DESCRIPTION: Instantly stashes the whole screen to the given memory PAGE. We like using Page 208 or 216 —under I/O.

See also: .RESTR

.SWPMEM SWAP MEMORY
Syntax: .SWPMEM,START,END+1,DESTINATION

DESCRIPTION: Swap the area of memory with that at the destination, at a rate of 41 cycles per byte. Swapping to a
location within the START/END range will have unwanted results!

See also: .CPYCHR, .CPYIO, .CPYMEM, .SWPMEM

.TEXRD TEXT READER
Syntax: .TEXRD,LOC,BKGDCOL,TXTCOL,ICONCOL,NAME$

DESCRIPTION: Racks the data in LOC and puts in on the screen. Includes option for 65-column (1 inch margin) print-out to
printer 4.

BKGCOL is the background color, TXTCOL is the text color, ICONCOL is the color of the menu bar, title bar and up/down
scroll icons, and NAME$ is printed in the center of the title bar on row 0.
See also: .PPRINT

.TEXT TEXT BOX
Syntax: .TEXT,X,Y,W,STRING$

DESCRIPTION: This command prints the string at X,Y — and word wraps it to fit in W width.

See also: .BOX, .P@, .PC, .TEXTC

66 DotBASIC Plus v2.2

.TEXTC TEXT BOX, CENTERED
Syntax: .TEXTC,Y,W,STRING

Y+128 Center Vertically on Row Y

DESCRIPTION: Prints STRING$ centered, beginning on row Y, word wrapped at width W. Add 128 to Y to center vertically on
row Y.

See also: .BOX, .P@, .PC, .TEXT

.TX TEXT COLOR BUILT-IN
Syntax: .TX,CO

CO+128 REVERSE Text

DESCRIPTION: Changes the text color. Add 128 to CO for REVERSEd text.

See also: .BG, .BR

.UN UNTIL BUILT-IN
Syntax: .UN,Boolean expression

DESCRIPTION: Used with .DO, this DotCommand causes the Do Loop to repeat until condition is true.

See also: .DO, WH

.WH WHILE BUILT-IN
Syntax: .WH, Boolean expression

DESCRIPTION: Used with .DO, this DotCommand causes the Do Loop to repeat as long as condition remains true.

See also: .DO, .UN

.WKEY WAIT KEY
Syntax: .WKEY

DESCRIPTION: Halts the program until a key is pressed. The ASCII value is returned in I%.

Related Variables:
I% ASCII Value of Keypress

See also: .KEYMW

.YN YES/NO
Syntax: .YN,X,Y,CO,HI,REV

DESCRIPTION: Creates a ‘Yes/No” dialog box anywhere on the screen defined by X and Y. CO is the box color and HI is the
color of the YES/NO buttons when highlighted. To REVERSE the window, set REV to 1.

Related Variables:
YN% 0=NO
 1=YES

See also: .RU

 THE DOTBIBLE
DotBASIC Plus

67

APPENDICES

IN THIS SECTION:

DotCommand Summary

Quick Reference Sheet

System Variables

Machine Language Protocol

Index

Final Thoughts

68 DotBASIC Plus v2.2

DOTBASIC COMMAND SUMMARY
DDoo--LLoooopp PPaaggee SSyynnttaaxx

 Do 51 .do Start Do-Loop
 Loop Until 68 .un (boolean) Loop Until = True
 Loop While 68 .wh (boolean) Loop While = True

DDiisskk AAcccceessss

 BLOAD 47 .bl,f$,d,loc
 BLOAD with Zero 47 .bl0,f$,d,loc
 BSAVE 48 .bs,f$,d,begin,end(+1)
 Disk Command 50 .disk,com$,d
 Get Directory 50 .dir,"$:*",d,loc,#filenames

MMeennuu

 Auto Menu w/out Shadow 58 .menub,x,y,u,h,hk$,it$
 Auto Menu w/Shadow 57 .menua,x,y,u,h,hk$,it$
 Multi-Column Menu 56 .mcmenu,nc,x,w,y,h,uc,hc,hk$
 Multi-Select Menu 58 .msmenu,x,y,w,h,b,i,u,hi,s,w,l,t$,b$
 Normal Menu 57 .menu,x,y,w,i,u,h,hk$
 Print Multi-Selection 61 .psel,x,y,index
 Scroll Number Info 65 .scnume,cur,tot,sel
 Scrolling Menu 64 .scmenu,x,y,w,h,b,i,u,hi,lc,t$,b$
 Select Index 65 .sel,index

SSccrreeeenn EEffffeeccttss

 Are You Sure? 63 .ru,u,h,rev,yncolor,ynrev,string
 Box -- Fancy 52 .fancy,x1,x2,y1,y2,s1,s2,c1,c2
 Box – Regular 48 .box,x,y,w,h,sc,co
 Color Background 47 .bg,co
 Color Border 48 .br,co
 Color Text 68 .tx,co
 Event 52 .event ,keystring
 Event Define Roll Text 51 .drtext,#,"literal string"
 Event Def Roll Text Edstar 52 .edrtext,loc
 Event Print Roll Text 60 .prtext,index
 Event Region Affect 47 .areg,region#,sc,co
 Event Region Define 51 .dreg,region#,x,y,w,h
 Event Rollover 62 .rolovr
 Event Set Rollover 65 .setrol,region,u,h
 Print At 59 .p@,x,y,string
 Print Center 59 .pc,y,string
 Screen FTS Display 52 .fts,page
 Screen Restore 62 .restr,page
 Screen Stash 67 .stash,page
 Swap Characters 49 .chrswp,seek,replace,co
 Swap Colors 49 .colswp,seek,replace
 Text Box Center Word Wrap 67 .textc,y,w,string
 Text Box w/Word Wrap 67 .text,x,y,w,string
 Text Cut 49 .cut,x,y,w,h,loc
 Text Paste 59 .paste,x,y,w,h,loc
 Yes/No 68 .yn,x,y,u,h,rev

MMoouussee

 Ask Mouse 56 .ma
 Cage Mouse 49 .cagem.x,y,w,h
 IRQ Restore 61 .qr
 IRQ Suspend 61 .qs
 Key/Mouse Wait 56 .keymw
 Let Go 56 .lg
 Put Mouse 61 .putm,x,y

 APPENDIX
DotBASIC Plus

69

DOTBASIC COMMAND SUMMARY, cont.
MMeemmoorryy MMaannaaggeemmeenntt PPaaggee SSyynnttaaxx

 Copy Character 49 .cpychr,start,end+1,dest
 Copy I/O Intact 49 .cpyio,start,end+1,dest
 Copy Memory 49 .cpymem,start,end+1,dest
 Swap Memory 67 .swpmem,start,end+1,dest

VViirrttuuaall AArrrraayy//SSttrriinnggss

 Instring Put 59 .pinstr,chr$,target$,position
 Instring Search 56 .instr,search$,target$,beginnum
 Rack Memory 62 .rk,loc
 Rack Print Indexed Filename 60 .prfile,x,y,index
 Rack Print Indexed Item 60 .pri,x,y,index
 Rack Retrieve Index Item 62 .ri,index
 Re-Rack 63 .rrk,len
 Sort Directory 51 .dirsrt
 Sort Racked Data Alpha 47 .alph,from
 String Memory Put 63 .savstr,string
 String Memory Set 66 .setstr,loc

SSccrreeeenn OObbjjeeccttss

 Cut 50 .cutsob,x,y,w,h
 Delete 50 .delsob
 Location Link 56 .lnksob,loc
 Location Set 66 .setsob,loc
 Paste 61 .pstsob,index,x,y

BBiittmmaapp GGrraapphhiiccss

 Graf Access Commands 53 .graf
 Graf Clip 53 .gclip,x1,x2,y1,y2
 Graf Fill 53 .gfill,x,y,pen
 Graf Offset 54 .gr00,xoff,yoff
 Graf Pen Color 54 .gpen,p0,p1,p2,p3
 Graf Pixel Line 53 .gline,x,y,pen
 Graf Pixel Plot 54 .gplot,x,y,pen
 Graf Screen Mode 53 .gmode,mode
 Screen Print 65 .scprnt,x,y,string
 Screen Print Setup 65 .script,160,128,font
 SHP Display 48 .bmpscr,1/0 on/off
 SHP Load 48 .bmp,"file.shp",d,160,128,156

IInnppuutt//OOuuttppuutt

 Input 55 .inp,x,y,txcol,csrcol,len,def$
 Input Enhanced 55 .inplus,x,y,t,c,len,st,out$,def$
 Message Line 58 .msg,co,string

SSIIDD

 SID Player On 66 .sid,loc
 SID Player Off 66 .sidoff

SSpprriittee

 Font to Sprite 52 .f2spr,sceencode,sprimage#
 Sprite Effects 67 .sprfx,s#,xex,yex,pri,mc
 Sprite Move 67 .sprmv,s#,x,y,mode
 Sprite On 66 .sprite,s#,0/1,i#,co,x,y

MMiisscceellllaanneeoouuss

 Pause 59 .pause,jiffies
 Random Index 61 .rdmi,begin (0-127),plus (0-128)
 Wait for Keypress 68 .wkey

70 DotBASIC Plus v2.2

BOX / AFFECT REGION

.BOX,X,Y,W,H,SC,CO

.AREG,REG#,SC,CO

SC=255 PAINT

CO+16 BLOCK

CO+32 FRAME

CO+64 UN-REVERSE
*

CO+128 REVERSE
*

CO+192 FLIP
*

CO=255 SHADE

*
Color RAM will not be affected unless you

add an additional 16 to the values above.

**
FRAME MV VALUES

MV+ 46 MV+ 42 MV+47

MV+44 MV+41 MV+ 45

MV+48 MV+43 MV+49

MENUS

.MENU,X,Y,W,I,U,HI,HOT$

.MCMENU,NC,X,W,Y,I,U,HI,HOT$

.MSMENU,X,Y,W,H,B,I,UN,HI,S,WB,LOC,T$,B$

.SCMENU,X,Y,W,H,B,I,UN,HI,LOC,T$,B$

.MENUA,X,Y,UN,HI,HOT$,ITEM$

.MENUB,X,Y,UN,HI,HOT$,ITEM$

EXAMPLE

.MENUA,0,0,8,9,”123C”, "Item{F7}Item{F7}Item{F7}Close"

SL% Selection Number

HI+128 Don’t Reverse/Un-Reverse text under Menu Bar

HI+64 Don’t Reverse/Un-Reverse HotKeys

W=255 File Requestor

X+128 Manual Icons

LOC=0 Do Not Rack

MV+12 Global Escape

MV+16 Define “Quit” HotKey

MV+10 (Regular Menus) / MV+11 (Multi-Column Menus)

+128 Automatic Caging of Mouse

+ 64 Automatic Point-to-First

+ 32 Must Select

+ 16 Escape Equal-to-Last MV+11 = Click Any Active Region

+ 8 Honor Hotkey Colors

+ 4 Dual Response

+ 2 Un-highlight after Select

+ 1 Stray-to-Exit

 Menu Regions

1. Home 6. Page down

2. Scroll up 7. Select all

3. Scroll down 8. Select none

4. Exit 9. Toggle all

5. Page up 10. Cancel

Menu Icons RAM Locations: 4734, 4739, 4742, 4746

TEXT BOX

.TEXT,X,Y,W,STRING$

.TEXTC,Y,W,STRING$

X+128 Center Horizontally

Y+128 Center Vertically on Y

MOUSE ASK VARIABLES

PX% Pixel-X Coordinate

PY% Pixel-Y Coordinate

CX% Cell-X Coordinate

CY% Cell-Y Coordinate

L1% Left Button State

L2% New Left Click

R1% Right Button State

R2% New Right Click

RG% Region # Mouse is Over

CR% Region # being Clicked

SC% Screen Code under Mouse

CC% Color Code under Mouse

PP% Screen Memory Position

MV VALUES

 MV+0 Region Data Zone: LB MV+17 Twin Flag (S/T/M)

MV+1 Region Data Zone: HB MV+18 Keyboard Enable

MV+2 # of Active Regions MV+20 Region Text Pointers: LB

MV+3 Pointing Pixel-X MV+21 Region Text Pointers: HB

MV+4 Pointing Pixel-Y MV+22 Region Text Color

MV+5 Sprite Update +128 REVERSE Printing

MV+6 Min. Joystick Speed + 64 Leading Space

MV+7 Max. Joystick Speed +32 Automatic Center

MV+8 Joystick Acceleration MV+23 Region Text Row

MV+9 Joystick Deceleration MV+24 Index Pointer Zone: LB

MV+12 Global Escape MV+25 Index Pointer Zone: HB

MV+14 Right Keycode (F7) MV+26 Index Item Count: LB

MV+15 Scroll Menu Type MV+27 Index Item Count: HB

MV+16 Scroll Menu Exit

MEMORY MAP

Page Contents

128
129
130
131
132
133
134
135
...
144
145
146
...
151
152
153
154
155
156
157
158
159
160
161
162
...
189
190
191
192
193
...
203
204
205
206
207

If you are not using .BMP,

.GRAF, or .SCRIPT, then 144-159

are available for Music files, and

160-191 are available for data,

such as directories and text.

BMP Color

Grafstar

MUS File

Scriptor

BMP Multi-Color Data

Bit-Map Data

SIDPlayer

Bit-Map Load/Unpack

SPRITES

MISC

Calculate # Files for .DIR

INT((bufferspace-1)/32)

.TX,CO+128

Reverse Text

SYS DD+6

List DotCommands

INPUT

.INP,X,Y,TXT,CSR,LEN,DEF$

.INPLUS,X,Y,T,C,L,ST,OUT$,DEF$

X+128 Reverse Input

Y+128 Numbers Only

 APPENDIX
DotBASIC Plus

71

DOTBASIC PLUS SYSTEM VARIABLES

MV CONTROLS DEFAULTS

MV+0 Region Data Zone: LB 0

MV+1 Region Data Zone: HB 44

MV+2 Number of Active Regions 0

MV+3 Pointing Pixel-X 0

MV+4 Pointing Pixel-Y 0

MV+5 Sprite Update 1

MV+6 Minimum Joystick Speed 1

MV+7 Maximum Joystick Speed 8

MV+8 Joystick Acceleration 8

MV+9 Joystick Deceleration 80

MV+10 Menu Type 192

+128 automatic caging of mouse

+ 64 automatic point-to-first

+ 32 must select

+ 16 escape equal-to-last

+ 8 honor hotkey colors

+ 4 dual response

+ 2 un-highlight after select

+ 1 stray-to-exit

MV+11 Multi-Menu Type 192
MV+12 Global Escape 0
MV+14 Right Keycode (F7) 3
MV+15 Scroll Menu Type(n000uhsw) 135
MV+16 Scroll Menu Exit (Q) 81
MV+17 Twin Flag (sync/twin/mono) 128
MV+18 Keyboard Enable (rsl0000c) 193

+128 Return can click

+64 Space can click

+32 +128 Return can click

+64 Space can click

+32 Key can click.

+1 CRSR keys move arrow

MV+20 Region Text Pointers: LB 0

MV+21 Region Text Pointers: HB 4

MV+22 Region Text Color 1

+128 REVERSE printing

+ 64 leading space

+ 32 automatic center

MV+23 Region Text Row 24

MV+24 Index Pointer Zone: LB 0

MV+25 Index Pointer Zone: HB 0

MV+26 Index Item Count: LB 0

MV+27 Index Item Count: HB 0

MV+41 Frame Center Area 32

MV+42 Top Edge 64

MV+43 Bottom Edge 64

MV+44 Left Edge 93

MV+45 Right Edge 93

MV+46 Top-Left Corner 112

MV+47 Top-Right Corner 110

MV+48 Bottom-Left Corner 109

MV+49 Bottom-Right Corner 125

MOUSE VARIABLES

PX% Pixel-X Coordinate

PY% Pixel-Y Coordinate

CX% Cell-X Coordinate

CY% Cell-Y Coordinate

L1% Left Button State

L2% New Left Click

R1% Right Button State

R2% New Right Click

RG% Region # Mouse is Over

CR% Region # being Clicked

SC% Screen Code under Mouse

CC% Color Code under Mouse

PP% Screen Memory Position of Mouse

72 DotBASIC Plus v2.2

DOTBASIC MACHINE LANGUAGE PROTOCOL

L Coders UNITE! You have nothing to lose but your Chains!

OK, maybe "chains" is too strong a term. But if you code in 65xx ML, you know how hard it is to even think in terms
of relocatable code. Our ML likes absolute addresses. Which is not a particularly bad thing. I mean, we only have 65536
bytes to worry about!

 DotBASIC Plus is designed for those who have not become addicted to individual bits and bytes, but want plenty
of power over the machine. And since DB+ is Adaptable to the needs of the programmer, we can provide infinite
DotCommands to do just that.

But we have to follow a certain "protocol", a few rules that make DB+ ML code "modulettes" work with each other
and the system. So this article is about how to write a new DB+ Command.

CHOOSING A NAME

Obviously, the command name has to be unique, a legal filename, no more than 9 characters, and not include any
BASIC 2.0 Keyword. (You won't believe my own frustration with command names like .PRINTSTR! The PRINT is tokenized
by BASIC 2.0, and is not recognized by DotBASIC. Moan! —Dave)

The filename for the code must be

DCM.command.ML

where command is then name of your new DotCommand.

THE LAYOUT

When a DotCommand is called from the DB+ program, the Carry is Cleared. When the same command is called
from another ML command, the Carry is Set. This allows us to sort out the two situations in just four bytes of code:

0000 BCC BAS
0002 BCS ML

 Often, the difference between the two is that the BAS section will collect parameters from BASIC and put the values in
various places. The ML portion expects the data to be in such places.

BAS
**** JSR GETINT
**** STA 900
**** JSR GETINT
**** STA 901

ML
**** LDA 900
**** LDX 901

etc.

 But getting back to the header

0000 BCC BAS
0002 BCS ML
0004 BYT 255
0005 BYT ",S,Y,N,T,A,X",0

ML
0006 RTS

BAS

M

 APPENDIX
DotBASIC Plus

73

0007

Byte 4 of the code is the beginning of the ML's "include" section, which ends with a 255 byte. We will look at this in
a moment.

Next comes the "self-documenting" feature. In the above example, the text is added to the command name (when
the DB+ programmer types SYS DD+6) as

COMMAND,S,Y,N,T,A,X

 Your code at BAS will need to get the parameters into the code. We have some jumps to do this for you:

 DD = 14336

 GETINT Gets Integer
Returns: LO>.A HI>.X
(.Y not affected)
JSR DD+15

GETFP Gets Floating Point

Returns Floating Point in ACC#1
JSR DD+12

GETSTR Gets String
Returns: LEN>.A LO>.X HI>.Y
JSR DD+9

 GETSIN Gets Signed Integer

Returns: LO>.A HI>.X
Allows negative values.
JSR DD+58

 DOING DATA

You can put transitory data anywhere you think will be safe. I use the cassette buffer extensively for put and take
situations. Obviously, this area is no good for values I want to keep from command call to command call. For this, you can
set aside space in your code itself, using the following method:

DD=14336
SETLOC = DD + 27

 TOP
 BCC BAS
 BCS ML

 BYT 255
 BYT",x,y",0

ML
RTS

DATA
BYT 0,0,0,0

BAS
LDA#DATA-TOP
LDX#164
JSR SETLOC

 JSR GETSIN
LDY#0
CLC
ADC(164),Y
STA(164),Y
INY
TXA
ADC(164),Y
STA(164),Y
JSR GETSIN

74 DotBASIC Plus v2.2

LDY#2
ADC(164),Y
STA(164),Y
INY
TXA
ADC(164),Y
STA(164),Y

 Here we set aside four bytes at DATA. To "find" where these bytes are, we first put the relative location of DATA
(DATA-TOP) in .A, and a zero page address in .X. Then we use SETLOC, which finds the current address of the code and adds
the distance to DATA. The result is put in the zero page address given in .X and the next — in this case 164/165, ready for
Indirect Y addressing!

 And that is just what we do with each GETSIN — adding the value to each byte in DATA. Later, we can use the same
data to position a sprite or the cursor.

 But, you are saying, you have several commands that must access the same safe data. That certainly won't work
with SETLOC. And you are right! So we have Data Blocks. These are small PRG files with enough space for the needed
shared data. A Data Block filename uses a "#" to signify it is data and not a command. So use your assembler to create the
Data Block file, with a name such as:

 DCM#MYDATA.ML

In your code, you will need to include the Data Block.

DD = 14336
SETDAT = DD + 30

BCC BAS
BCS ML
BYT 1,"#MYDATA",0,255
BYT ",Q",0

ML
 RTS

BAS

LDA#1 ; Index > .A
LDX#164; ZP > .X
JSR SETDAT

 The Data Block name (#MYPROG) is preceded by a number byte which serves as an index. The name is followed by a 0
byte and the "include" area is terminated with a 255 byte.

 To set the Data Block, the index number is put in .A and the zero page address is put in .X. JSR SETDAT then put the
address of the Data Block in the two zero page bytes, ready for an Indirect Y call.

 SUBROUTINES

 If you absolutely need a subroutine in your code, you can use the SETLOC to put the subroutines address in two zero
page bytes. Then POKE a 76 in the byte before the ZP address bytes. Simply JSR to that ZP location.

TOP
 BCC BAS

BCS ML
BYT255
BYT0

ML
RTS

ROUTINE
LDA#0
SEC

LOOP
ROL
DEX
BPL LOOP
RTS

 APPENDIX
DotBASIC Plus

75

BAS

LDA#ROUTINE-TOP
LDX#165
JSR SETLOC
LDA#76
STA164

JSR GETINT
AND#7
TAX
JSR 164

This code uses a subroutine to set a given bit (bit number in .X). At BAS, we put the relative address of ROUTINE in
.A and 165 in .X. The location of ROUTINE is put in 165/166 by SETLOC. Then we put 76 in 164 (JMP instruction), and we
are ready to roll!

COMMAND CALLING COMMAND

But now for the niftiest trick of DB+ ML protocol. One command can call the ML portion of another command!

 Let's first write DCM.SETBIT.ML

BCC BAS
BCS ML
BYT255
BYT":ML BIT>900",0
BAS
RTS

ML
LDA#0
SEC
LDX 900

LOOP
ROL
DEX
BPL LOOP
RTS

Simple enough. Now we will write DCM.SPR1.BC, which will turn on a given sprite.

DD = 14336
SETML = DD + 21
DOML = DD + 24

BCC BAS

 BCS ML
 BYT 1,"SETBIT",0,255
 BYT ",BIT#",0
ML
 RTS

BAS

LDA#1
JSR SETML
JSR GETINT
STA 900
JSR DOML
ORA 53269
STA 53269
RTS

Note that in the include section, SETBIT does NOT have the preceding dot. I did this just to confuse myself! Again,
the index number is put in .A then SETML is called. This sets up the jump to the code of SETBIT. Then any data can be set up
for the routine (putting the bit number in 900) and the routine called with DOML.

76 DotBASIC Plus v2.2

 SUMMARY

That's all there is to it. Do not jump directly to any location in your code. Do not load or store a register directly
from or to any location in the body of your code. But you do have everything you need to put relative locations in zero page
or find and use other command codes. Here is a schematic of the first bytes of your code:

BCC BAS
BCS ML
BYT<index byte>
BYT<"com-name" or "#data-name">
BYT<0>
BYT<another index byte>
BYT<"com-name" or "#data-name">
BYT<0>
BYT 255 ; end include section

BYT<"syntax info">
BYT 0

Open space

BAS

 ...
 RTS

ML
 ...
 RTS

(I am looking forward to any and all DotCommands you might think of. I believe anything we can do in ML can
become available to DB+ users! – Dave)

 APPENDIX
DotBASIC Plus

77

INDEX

The DotCommands

.ALPH, 45

.AREG, 14, 45

.BG, 8, 34, 45, 52

.BL, 23, 33, 39, 41, 45, 50

.BL0, 23, 39, 45, 61

.BMP, 33, 34, 46, 51, 52, 64

.BMPSCR, 33, 34, 46, 52

.BOX, 11, 12, 19, 46

.BR, 8, 46

.BS, 46, 61

.CAGEM, 47

.CHRSWP, 47

.COLSWP, 47

.CPYCHR, 47

.CPYIO, 47

.CPYMEM, 47

.CUT, 40, 47

.CUTSOB, 40, 48

.DELSOB, 41, 48

.DIR, 23, 48, 62

.DIRSRT, 49

.DISK, 48

.DO, 9, 49

.DREG, 13, 49

.DRTEXT, 49

.EDRTEXT, 50

.EVENT, 50

.F2SPR, 50

.FANCY, 50

.FTS, 41, 50

.GCLIP, 34, 35, 51

.GFILL, 34, 35, 51, 52

.GLINE, 34, 51, 52

.GMODE, 34, 51, 52

.GOFFSET, 34

.GP, 34, 35, 52

.GPEN, 34, 52

.GPLOT, 34, 51, 52

.GR00, 35, 52

.GRAF, 33, 34, 51, 52

.I2FP, 23, 45, 52

.INP, 53

.INPLUS, 53

.INSTR, 54

.KEYMW, 12, 13, 54

.KP, 16, 54

.LG, 54

.LNKSOB, 40, 54

.MA, 9, 54

.MCMENU, 22, 55

.MENU, 19, 55

.MENUA, 55

.MENUB, 56

.MSG, 56

.MSMENU, 28, 56

.OF, 8

.P@, 14, 57

.PASTE, 40, 57

.PAUSE, 57

.PC, 14, 57

.PINSTR, 57

.PPRNT, 58

.PRFILE, 58

.PRI, 39, 58

.PRTEXT, 58

.PSEL, 59

.PSTSOB, 41, 59

.PUTM, 14, 15, 59

.QR, 59

.QS, 10, 59

.RDMI, 60

.RESTR, 19, 41, 60

.RI, 39, 60, 61

.RK, 39, 60, 61

.ROLOVR, 61

.RRK, 61

.RU, 61

.SAVSTR, 61, 62, 64

.SCMENU, 23, 62

.SCNUME, 63

.SCPRNT, 36, 63

.SCRIPT, 36, 63

.SEL, 29, 63

.SETROL, 50, 63

.SETSOB, 40, 64

.SETSTR, 61, 62, 64

.SID, 33, 64

.SIDOFF, 33, 64

.SPRFX, 65

.SPRITE, 64

.SPRMV, 65

.STASH, 19, 65

.SWPMEM, 42, 65

.TEXRD, 65

.TEXT, 12, 13, 65

.TEXTC, 66

.TX, 8, 25, 66

.UN, 9, 66

.WH, 10, 66

.WKEY, 66

.YN, 66

A

Alphabetize, 45

B

B.DOTBASIC, 7

B.Files, 7

Bitmap Graphics, 33

BLOAD, 22, 23, 33, 39, 41, 46, 50

Block, 45, 46

Boxes, 12, 45

C

Cage, 27

Colors

Screen, Text, Border, 8

D

DBDesign, 36, 40, 41, 50

DEV, 11

Disk Blocks, 6

Disk Menu

DotMENU Project, 24

DML Files, 7, 11

Do-Loop, 9, 12

DotBASIC

Adding new DotCommands, 10

Creating new DotCommands, 71

Editing, 9

Features, 4

History, 2

Quiting, 8

Registering, 42

Starting a new project, 7

E

EDSTAR, 23, 39, 48, 50

Error Messages

B.DEV troubleshooting, 11

DOTCOM NOT FOUND ERROR, 11

F

Filenames, collecting, 62

78 DotBASIC Plus v2.2

Fill, 36

Fonts

Creating and replacing, 41, 42

Frame, 45, 46

G

Get Directory, 23

Global Escape, 22, 24, 27, 55, 70

GOTO60000, 9

Grafstar, 33

H

Hotkeys, 26, 28, 55

I

Including DotBASIC Commands, 10,

11, 46

INDEXing Data, 28, 39

Input, 53

Keypresses, 12, 16, 54

J

Joysticks, 9, 30

K

Key/Mouse Wait, 12

Keycodes, 26

Keypresses, detecting, 12, 54

L

Loading Files. See BLOAD

LOADSTAR, 2

M

Machine Language, 71

Manual Icons. See Menus, Manual

Icons

Memory Management, 6

Menus

File Requestors, 23

Manual Icons, 29

Multi-Column, 22

Multi-Select Scroll Menu, 28

Scrolling Menu, 23, 30

Scrolling Menus, 22

Mouse

Button Regions, 13

Buttons, 26

Reading, 9, 10, 54

Variables (MV), 26

Mouse Ask, 9, 54

MOUSE2.1 7K 1000, 7

Mr.Edstar, 23, 39, 60

Mr.Mouse, 28

Music, 33, See .SID

MV Variable, 26

Complete List, 70

MV+10, 27

MV+11, 27

MV+12, 27

P

Page in RAM, 4, 6

Paint, 45, 46

PRINTing Text, 12, 39, 56

PRINTint to Bitmap, 36

R

Racking Data, 39

Region Text, 49

Regions, 13, 27, 28, 29, 30, 45, 49, 50,

56, 58

Buttons, clickable, 13

Maximum Number, 13

Scrolling Menu Regions, 29

Roll-Overs, 15, 50, 63

S

Scratch and Save Routine, 9

Screen Design, 41, 50

Screen Objects, 40

Scriptor, 36

Scroll Number, 63

Scrolling Menus, 22

Shading Effect, 15, 21, 46

SHP Graphic File, 33

SIDPlayer, 33

Sprites, 50, 64

T

Text Box, creating, 12

Text Boxes, 12

Tool-Box-Stash, 41

V

Variables

B$, 23, 24, 62

db, 3

dw, 3

F$, 39, 60

Mouse Ask, 54

N%, 39

SL%, 20, 24

T$, 23, 24, 62

Typical Parameters, 3

W$, 29, 39, 60

Virtual Arrays, 39

W

Windows, 12

Word-Wrapping Text, 12, 65

Work Disk, 4, 7, 33

 APPENDIX
DotBASIC Plus

79

FINAL THOUGHTS: WHERE TO GO FROM HERE

diting and writing new material for this reference guide has been a wonderful way for me to learn the ins-and-outs of

DotBASIC Plus. If you want to really dig in deep, I highly recommend you spend the next six months or so re-writing

and editing this book.

 Barring that, here are a few things this novice programmer has learned on his journey:

 I love DBDESIGN. With this astounding tool you can easily create some pretty amazing looking screens
before typing a single line of code. There are several FTS files on the DotBASIC disks. If you are a
LOADSTAR reader you will find all sorts of interesting FTS screens, fonts, and SHP files in practically every
recent issue. I have learned quite a few interesting tricks just from taking a look at the way Dave creates
the FTS screens he uses with LOADSTAR. Every program I write has a nice FTS screen – and there’s no
reason every program you write can’t also have a great looking interface.

 To make defining your Regions simpler, use DBDESIGN. Draw boxes (Edit/Box) around your Regions, and
you will see the area parameters in the top right of the screen. Just write these down for each region and
you can create your Regions with no guesswork!

 After BLOADing your programs FTS file, use .STASH to tuck your screen away in memory. Now you can
use those 16 pages of RAM occupied by the FTS file for other things.

 DBDESIGN can also create TBS files. These are like FTS files, minus the font information. Thus, they are
only 8 pages long rather than 16. To use a TBS file in your DB+ program, BLOAD the TBS into RAM and
then .restr,PAGE where PAGE is the location where you BLOADed the TBS.

 Screen Objects are useful for many applications. Everything from game characters to drop down menus
can be built from Screen Objects and then easily moved around the screen. Again, DBDESIGN is the tool
for creating Screen Objects. Design the Objects, then copy them to your Screen Object Collection
(Edit/Box/Copy/Store SOB). When you have your collection designed, save it as a Screen Object
Collection.

 To replace the font in your DB+ program, BLOAD the new font then swap it with pages 8 – 16. If your
font is BLOADed to page 224, for example, just .swpmem,8*256,16*256,224*256. Do the same swap
again to switch back.

 LINK and PACK your DotBASIC projects. These two utilities, both on the DB+ Utility Disk are quite useful.
LINKER will take the separate files that make up your DB+ project and combine them into a single file
(don’t include the B.FILE), then PACK will compress that single file to the smallest possible size.

 When using .SID, remember that you can’t put anything in pages 192 – 204 (49152 – 52224), as .SID
makes use of this area. Also, by issuing PEEK(49152) and checking for a non-zero value, you can determine
if the SID is still playing.

 Use the DO-LOOP! Anytime you are about to write a FOR-NEXT loop, stop and ask yourself if it couldn’t be
done more efficiently with a DO-LOOP. You’ll find that DO-LOOPs execute much faster than FOR-NEXT
loops.

 Read this book! Working through the tutorials in the beginning will get you started, and the DotBIBLE
and Quick Reference Sheet should be a constant companion when coding.

 Subscribe to LOADSTAR. You’ll find several new DotBASIC programs in each issue, along with
documentation.

 Visit the DotFORUM! When you purchased DB+ an account was created for you on the DotBASIC Forum,
online at http://8bitcentral.com/dotbasic. You’ll find further tutorials (including videos), places for you to
ask questions and get answers, and receive DB+ updates and programs.

Happy Programming!

ARR

E

http://8bitcentral.com/dotbasic

