
U~[D)l u~ .J.~QjJ~ [P)[R1~~ QjJ~~ IJ[M]~[Q)
i]g I i]g I [i¥l] (Q) [Q) [i¥l] (Q) [Q) I I [i¥l] (Q) [Q) i]g [i¥l] I

, mal i]g [i¥l] ffi\iA mal ~ ~ [Q) ffi\ ~ ~ ffi\ ~ ~ [Q) +=
+ = ~ = ~ [Q) CC (Q) [L [Q) ffi\ ~ (Q) [R1lJ (QJ lUJ ~ lJ ~
[Q) ~ [F ~ ~ ~ lJ ~ (Q) [F (Q) [R1lJ [}=l] ~ (Q) CC ffi\ ~ lUJ [L ffi\ [R1 W

- ~~lJ~[R1[P) CC~ [Q)[L~lJ [L~u

[CC (Q) mal [P) lJ ~ ~ [Q) (Q) [R1
=[F~~[Q) ~~ lUJmal
[P) ffi\ [Q) ~~

(QJlUJ ~ 99

lJW[P)~
~ ~ CC (Q) [Q) ~ ~ [Q) ~ CC ~ mal ffi\ [L [}=l] ~ iA [i¥l] lUJ [Q) @ ~]
[CC(Q)mal [P)~[L~ f[L(Q)ffi\[Q)~~@ fCC~[P) · f[P)ffi\~[R1~
f ~ iA ~ cG . fCC (Q) mal [P) f ~ [R1 [R1 (Q) [R1 ~ CC ~ [P) [P) [F ffi\

[F [L

lJ~
(Q)

CC~ *EWf
~/~CC[R1 W18)
~[L ~ ~ ~ lUJ~~[R1 ~ ffi\[R1~ffi\~[L~

CC(Q)~~lJffi\~lJ ~ ~ CC~ ~ CC@
@ lJ (OJ ~ ~ [L ~ +~ [Q) lUJ ~ ~ Vfl!} ffi\ [P) [Q) [R1 (Q) [P)

. (Q)~~[R1 [Q)[i¥l]~~lUJ ~ [i¥l]~~lUJ~ [Q)+ + @~

_ @= [R1 [R1 ~ ~ [R1 [L~ffi\ ~~ ~~ [R1[P)~

~ [P) ~ ~ [p) @ iA (Q) [R1 (Q) [R1 ~ ~ [Q) lUJ I lUJ i]g

~[M1](Q)~~ ~[R1 fu~[g1[M1]~~ffi\l ~~W ~ [M1] ~u
~~CC[L(Q)~~ ~ [F~[M[Q)~ [Q)~@ ~u ~ ~ [Q)(Q)~
~ + [L (Q) (Q) [P) ~ . ~ [L (Q) (Q) [P) ~ @ ~ [gi ffi\ ~ CC [}=l] ~ [gi ffi\ ~ CC [}={]

""

Performance Micro Products
"The Park at 95"

770 Dedham Street-S2
Canton, Massachusetts 02021

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C64-FORTH™

A FORTH LANGUAGE SYSTEM FOR THE COMMODORE-64

by Gregg Harris

C64-FORTH CONFORMS TO:

FORTH-79 STANDARD WITH DOUBLE-NUMBER EXTENSIONS

A product of:

Performance Micro Products
770 Dedham St.
Canton, MA 02021 USA

Any mention within this manuaL of COMMODORE 64, C64, or 'the 64',
is reference to the COMMODORE 64 personaL computer manufactured
and marketed by COMMODORE BUSINESS MACHINES, INC. The FORTH
Language standards are defined and maintained by the FORTH
INTEREST GROUP (P.O. Box 1105, San CarLos, CA. 94070). This
version of C64-FORTH meets the FORTH-79 standard with DoubLe
Number Extensions.

W e w 0 u L d L ike t 0 a c k now Led g e r~ r. C h a r L e s H. Moo r e, the c rea t e r 0 f
FORTH, and aLL of the contributors of FORTH INC. who have he Lped
make FORTH something more than a word to stick after 'GO'. Some
of the descriptions in our ASSEMBLER section refLect the work of
Bi L L RagsdaLe, from his treatise on a Forth AssembLer for the
6502. The method adopted for scaLing in the graphics routines
was taken from work by A L Len Tracht. Our thanks to A L Len for
providing a practicaL impLementation.

We be L i eve C64-FORTH to be as c Lose to the FORTH-79 standard as
is possibLe in the word set provided, the way standard words work
as generaL Ly accepted, and in the manuaL's attempt to convey the
operation of those words. Upon shipment of the first copy, there
were no known fLaws in achieving the above goaL, nor 'bugs'
within any of the code. If any user of C64-FORTH finds
otherwise, we emphaticaL Ly encourge notification of such. We
wou Ld not want buy software from a company that did not care to
provide support once the product's out the door, so we're not
going to ask you to.

PERFORMANCE MICRO PRODUCTS, INC.
770 Dedham St. -S2
Canton, Mass. 02021

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C64-FORTH™

COPYRIGHT 1983 BY PERFORMANCE MICRO PRODUCTS INC.
ALL RIGHTS RESERVED

- COPYRIGHT NOTICE

The C64-FORTH package incLuding the object code, and FORTH source
screens, both suppLied on disk or cassette, and this user manuaL
are seriaL numbered and are protected by a copyright.
Reproduction by any method whatsoever of these copyrighted
programs or the user manuaL is expressLy prohibited without the
expressed written permission of Performance Micro Products, Inc.
To protect your copy of this software, you are permitted to make
one backup copy of the contents of this disk or cassette. This
backup may not be redistributed.

Except for a singLe backup copy, it is a FederaL crime to make a
copy of the manuaL, fLoppy disk, or cassette for use by anyone
other than the individuaL who purchased this software, or the
individuaL for which a company purchased this software. A reward
wi LL be provided for information which Leads to the prosecution
and conviction of parties who vioLate this copyright.

With respect to distribution of appLication programs created
using C64-FORTH, we aL Low distribution of this software using the
"SAVETURNKEY" command with no LegaL restrictions or License fee,
providing that the end user does not have access to the FORTH
words contained in the C64-FORTH nucLeus. Programs created with
"SAVETURNKEY" wi L L operate in a stand-a Lone configuration and
wi LL not require the purchase of a C64-FORTH.

The individuaL, for whom this software was purchased, may save
new or modified versions of C64-FORTH, for his/her own use onLy,
onto disk or cassette by using the "SAVESYSTEM" command under
C64-FORTH. Since any program saved under this command is a fuL Ly
usabLe FORTH system, the above restrictions on redistribution
a Lso appLy. Disks or cassettes containing ONLY FORTH source
screens, and not any usabLe copies of any FORTH system generated
from C64-FORTH, may be freeLy distributed.

SeriaL numbers are embedded in severaL different formats in
severaL different pLaces in the C64-FORTH software. We intend to
identify and prosecute the source of any originaL or modified
copy of C64-FORTH, not generated with the SAVETURNKEY command,
that was redistributed for compensation or not.

3

This poLicy is in the best interests of the Legitimate purchasers
and users of C64-FORTH. Performance Micro Products wouLd Like to
continue to offer a broad spectrum of software products incLuding
many extension and appLications packages for C64-FORTH. We
cannot afford the time and financiaL demands required to produce
very versati Le, user-forgiving, and extensiveLy tested software
if users of C64-FORTH do not respect our right to compensation
for our investment.

- LIMITED WARRANTY INFORMATION

For a period of ninety (90) days from the date of sa Les,
Performance Micro Products, Inc. warrants that the cassette or
diskette containing software programs is free from defects. In
the event of a defect the customer's soLe and excLusive remedy is
Limited to the correction of the defect by repLacement or
compLete refund at Performance Micro Products eLection and soLe
expense. Performance Micro Products has no obLigation to repLace
items that have fai Led due to abuse or misuse. Peformance Micro
Products makes no warranty as to the design, capabi Lity,
capacity, or suitabi Lity for use of the software. Software is
Licensed to the originaL retai L purchaser on an "as is" basis,
without warranty. The customers excLusive remedy in the event of
a software defect is the rep Lacement or update of the software
within 90 days of the date of purchase upon the return of the
originaL cassette or diskette to Performance Micro Products.

Except as provided herein, Performance Micro Products shaLL not
have any Liabi Lity with respect to any Loss Liabi Lity or damage
caused directLy or indirectLy by the software soLd or furnished
by Performance Micro Products. The excLusion of Liabi Lity shaL L
incLude but not be Limited to any interruption of service, Loss
of business or anticipatory profits or consequentiaL damages
resuLting from the use of the software.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ABOUT THIS MANUAL

It is not within the scope of this manual to provide a complete
introduction to FORTH. There are several good books avai lable
that break a new user in on FORTH a little more slowly. The
goals of this manual then were defined as:

1) The manual is to serve as a concise reference guide to the
words avai lable under, and the architecture of, this C64-FORTH
implementation of the FORTH language.

2) The user is assumed to be at least somewhat fami liar with the
Commodore-64, and has tried writing some programs in BASIC.
Equivalent routines in BASIC wi II be shown whenever a FORTH word
or function is simiLar to one in BASIC.

3) ELaboration on a subject is done to provide enough information
so a new user shou ldnlt need a book on FORTH as long the user is
wiLLing to experiment. ELaboration is aLso done on subjects not
usuaLLy covered in most books on FORTH.

DONIT BE AFRAID TO EXPERIMENT! Get in there and peek and poke
around (or shou Ld I say @ and around). Look at what you are
doing. Take note of conditions before you try something; note
resu Lts after you try it. Set up conditions to see how different
FORTH words work. FORTH can be a lot more rewarding and
versati Le than Languages that Ido it a III for you.

5

Any mention
Commodore-64,

CONVENTIONS IN THIS MANUAL

of 'the 64', or C64 wi L L of course refer
such as "press the STOP key on the 64".

to the

Any input of commands must aLways be foL Lowed by pressing the
RETURN key. Nothing wi L L happen unti L you do. At fi rst, this is
indicated in the exampLes by the symboL <return> as a
reminder, but Later in the manua L it is assumed that you wi L L do
it automaticaL Ly after typing in any commands or numbers.

There are cases where a symboL is used to indicate a string of
characters representing a name or something is to be substituted.
This wi LL usuaLLy be expressed as a keyword within greater-than
and Less-than symboLs. An exampLe is when the symboL' <name> '
appears, this is an indication that a character string is to be
entered, which wi L L be used as the name of a definition being
created. If <name> is used Later in the description, the SAME
character string is to be substituted again.

ExampLes wi L L have underLined the part typed in by the user ONLY
when the response from C64-FORTH is significant. C64-FORTH
responds to a Line input with 'OK' (or a question mark '?' if
there was an error). Later in the manuaL, the practice of
underLining user input and indicating C64-FORTH's 'OK' response
is discarded.

NumericaL vaLues in exampLes are sometimes given in DECIMAL,
sometimes in HEX. We feeL it is a great heLp to become
proficient in the HEX number system as weL L as with decimaL
numbers. The reLationship or necessity of using a certain vaLue
wi L L often be far more obvious when dispLayed in HEX. The base
of the vaLues given in some exampLes is not stated when it is
obvious what it must be.

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LOADING AND RUNNING C64-FORTH.

Make sure both the 64 and the disk drive are on before inserting
the C64-FORTH disk into the disk drive.

Load the program by typing:

LOAD"C64FORTH",8 <return>

and when finished, type:

RUN <return>

A copyright and seriaL number message shouLd have been printed
and the cursor shouLd be fLashing. If not, remove the disk, turn
power off to both the 64 and the disk drive for a few seconds,
and repeat.

MAKING A BACKUP COpy OF C64-FORTH

Upon entering C64-FORTH for the first time, you shouLd
immediateLy make a backup copy of the C64-FORTH disk. With the
originaL C64-FORTH disk stiLL in the drive, type:

2 LOAD <return> (note: the space between 121 and ILOAD 1

is important!)

A backup routine wiLL be Loaded from disk. FoLLow aLL
instructions and when done you wi L L have an exact copy of the
C64-FORTH disk. You shouLd put the originaL C64-FORTH disk away,
and shouLd use ONLY the backup from now on. Sections in this
manuaL cover how to create an appLication program disk, how to
backup source code screens that you create, and initiaLize a new
screen disk. But unti L you become more fami Liar with C64-FORTH,
the backup disk you just made is aLL you need.

7

CONTENTS

The FundamentaLs of FORTH •••••••••••••••••••••••••••••••••••• 10

Entering Commands in the FORTH System •••••••••••••••••••••••• 14

Bas; cSt a c k Op era t ; on s ••••••••••••••••••••••••••••••••••••••• 15
manipuLating stack items 16
arithmetic operations 18
working in different number bases 19
constants and variabLes 20
fetching and storing 21
fetching and storing bytes 22
doubLe precision numbers 23

FLag sand Co mpa r; son s •••••••••••••••••••••.•••••••••••••••••• 25

Loop; n 9 and Bran chi ng ••••••••••••••••••••••••••••••••••••.••• 27
do Loops 27
if •• eLse •• then 30
begin •• untiL 31
begin •• again 31
begin •• whiLe •• repeat 31
nesting of Looping structures 32

A r ray s ••• 33
simpLe arrays 33
create •• does> 34

C rea t i ng Ne wOe fin it i on s ••••••••••••••••••••••••••••••••••••• 38
coLon definitions 38

T ext an d Nu me r; c Ou t pu t •••••••••••••••••.•••.•••••••••.•••••• 41
singLe character output 41
text output 41
numeric formatting 43

Te x t and Nu me r; C In pu t ••••••••••••••••••.•••••••••••••••••••• 44

8

singLe key input 44
inputting a Line of text 4S
numeric input 47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Hand Lin g S t r i n g sin FO RTH •••••••••••••••••••••••••••••••••••• 49
how strings are stored in memory 49
description of string commands 50 thru 59

F i LeI /0 •..........•..........•...........••.••..••.•..•.••.. 60
description of fiLe ilo commands 60 thru 66
sampLe programs using string and fi Le ilo commands 66,67

Detai Ls of the C64-FORTH System •••••••••••••••••••••••••••••• 68
SAVESYSTEM and DC 68
DIR 69
Listing muLtipLe screens on the VIC-1525 printer 69
BUFFERS, MEMTOP, and using avai LabLe RAM 70
BORDER, BKGRND, and CHRCLR variabLes 72
restore key function 72
function of DV1, DV2, DV3, and DV4 73
function of SYSDEV# 75
TA~EFLG 75
vaLidating the screens disk, and disk pecuLiarities 76
error messages 76
using IEEE interface cartridges 77
the structure of a definition in memory 78
debugging FORTH routines using the TRACE feature 80
memory map 82
SAVETURNKEY 83

The ED I TO R ••• A- 1
editor command summary A-6

The AS S EM8 LE R ••••••••••.••••••.••••.•••••.• L ••••••••••••••• B- 1
assembLer gLossary B-22

FORTH Graphics on the Commodore 64 C-1
graphics gLossary C-3

FLoating Point (ReaL) Numbers •••••••••••••••••••••••••••••• D-1
fLoating-point gLossary D-4

C 6 4- FOR TH GLOS S A RY •• • E- 1

9

THE FUNDAMENTALS OF FORTH

The FORTH Language architecture is bui Lt around the DATA STACK.
WhiLe FORTH aLLows memory Locations to be assigned for use as
variabLes, constants, and work areas, the data stack is used to
hoLd and transfer most vaLues and parameters (DATA ITEMS) for use
by the various sections of a program. The data stack aL Lows very
quick and convenient access to data items. Since most data items
needed by or produced within intermediate portions of a program
are temporary in nature, the data stack proves very handy.

The way the data stack works is identicaL to the way Reverse
PoLish-Notation (RPN) type of caLcuLators on the market work.
Many anaLogies have been created to describe the FORTH data stack
in use, the foLLowing is perhaps one of the cLosest.

We aL L have a desk or tabLe somewhere with a pi Le of stuff on it.
When bi L Ls come in, we put them on 'top of the stack'. When we
get paid, it's time to pay the bi L Ls (after aLL, we are
responsibLe). We take the first bi L L off the top of the stack
and take care of it. We continue unti L aLL bi L Ls have been
removed from the stack and taken care of. A new bi L L has come
in, and there is on Ly one copy of it. We make a photocopy of it
and throw that on the pi Le too so we have a copy for ourseLves
when we go to pay it.

This basic throw-on-take-off principLe is referred to in FORTH as
push-on-pop-off. We wi L L refer to data put on the stack as DATA
ITEMS. A data item, when added to the stack, is PUSHED ON. A
data item, when removed from the stack, is POPPED OFF. In a
FORTH program you wi L L usua L Ly push appropriate va Lues or data
items on the stack, CALL (invoke) a Lower-LeveL procedure which
wiLL remove or modify vaLues on the stack, and controL wiLL
return to the higher-LeveL procedure with resuLts Left on the
stack.

The stack is the mechanism by which portions of a FORTH program
communicate with other portions of the program. The FORTH
Language itself is comprised of a number of commands that operate
on memory Locations such as variabLes, constants, and buffers, or
on data items on the stack. In other computer Languages, these
are referred to as instructions. In FORTH, the commands are
usuaLLy referred to as WORD DEFINITIONS, or more simpLy WORDS.
The number of words making up the FORTH Language is variabLe.
The FORTH standards define a minimum subset, and new words can
easi Ly be added by the user to make a very versati Le and
customized higher-LeveL Language. The concept of the FORTH word
fits weL L with the concepts of the FORTH vocabuLaries and
dictionary, which wi L L be expLained in a minute.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r--~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The FORTH program itseLf is Loaded into the COMMODORE-64 just
Like a BASIC program. FORTH is different however in that a
portion of itseLf is written in FORTH code. FORTH actuaLLy is
comprised of two types of code. The first is direct machine code
routines, just Like what BASIC itseLf is written in. The second
type is WORD DEFINITIONS. A WORD definition is comprised of a
number of POINTERS. The pointers point to Locations that contain
addresseses of machine code routines. When a definition EXECUTES,
the machine code at the address found at the destination of the
first pointer is executed, then the code at the address found at
the destination of the second pointer is executed, etc., giving
the appearance that the WORD definition is executing.

A word definition has two parts. The HEADER is made up of the
definition's NAME, as weL L as other information. The BODY of the
definition contains pointers to addresses of routines that wi L L
execute specific functions. Definitions are Linked together
sequentiaL Ly in the DICTIONARY. The dictionary may be comprised
of severa L VOCABULARIES. FORTH is the name of the main
vocabuLary. To see the names of aL L the words in the FORTH
vocabuLary, type:

FORTH VLIST <return>

The Listing on the screen may be s Lowed down by pressing the CTRL
key on the C64 keyboard, or may be terminated by pressing the
STOP key.

In C64-FORTH as shipped, there is onLy one other vocabuLary, the
EDITOR vocabuLary. To see the words in the EDITOR vocabuLary,
t y p e:

EDITOR VLIST <return>

Notice that some new names appear, foL Lowed by the words in the
FORTH vocabuLary. ALL vocabuLaries Link back to FORTH. To
return to just the main FORTH vocabuLary, type:

FORTH <return>

Why are new vocabuLaries created? You can create new definitions
with the same names as words in the FORTH vocabuLary. If you
create those definitions in the FORTH vocabuLary, the originaL
definitions are no Longer accessibLe. If you create them in a
new vocabuLary, they are. ALso, as you enter commands (the names
of words), the FORTH system searches through the current
vocabuLary, then the FORTH vocabuLary itseLf, for a match. If a
match is found, the definition is executed. Putting the
definitions of seLdomLy used words into other vocabuLaries wi L L
speed up the searching when just the FORTH vocabu Lary is
seLected.

1 1

Even though the use of vocabuLaries suggests a 'tree' structure
for the dictionary, it actua L Ly is a Linear structure. When a
new definition is added to the dictionary, it is put onto the end
(top) of the dictionary, and information is put into its header
that Links (LogicaL Ly connects) it to the previousLy defined word
IN THE PRESENT VOCABULARY.

Words are provided to do simpLe operations on data items on the
stack and on the contents of memory Locations. You can create
and use variabLes, constants, data arrays, and buffers much the
same as in other Languages. There is a cLass of words avai LabLe
caL Led DEFINING WORDS. These words are for creating new WORD
TYPES or DATA TYPES. UnLike some other Languages, you may create
new types of instructions, and very compLex custom data storage
and manipuLation commands. FORTH can be customized to be a very
simpLe, easy to use Language, or very compLex with extensive
high-LeveL capabiLities.

FORTH, unLike PASCAL or FORTRAN, is not a strongLy 'typed'
Language. This means that in FORTH, you may free Ly manipu Late
vaLues on the stack or in memory considering them as one type of
data (e.g. 16-bit integers), then Later you may use the data
considering it to be another type (e.g. 2-byte pairs of ASCII
characters).

In FORTH, unLike most other high-LeveL Languages, you have
compLete access to, and direct controL of, the entire computer
down to the machine LeveL. This does provide extreme versati Lity
and speed, however there is one major disadvantage - there is no
protection of the FORTH system itseLf. It is quite easy, if one
is careLess, to overwrite parts of the FORTH system causing a
system crash and Loss of aL L recent work. The point here is that
unti L you become an experienced FORTH user, save current work
frequentLy. We don't want to discourage experimentation; we just
suggest that you isoLate it from usefuL work.

In other Languages, you create new programs by writing source
code as one Long continuous fi Le. A compi Ler, such as PASCAL,
takes the source code fi Le, reads it in, and converts it to
executabLe machine code (caL Led COMPILING). This machine code is
saved as a fi Le, and when the user wants the program to run, he
Loads the code fi Le and executes it. With interpreters, such as
the BASIC in the C64, the source code fi Le is aLso the executabLe
code in a way. The interpreter scans the program source code
fi Le and INTERPRETS (executes machine code routines that performs
the function identified by the name of the instruction) each
instruction name found. The program source code is one continous
f i L e •

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FORTH functions in both a compi Ler and an interpreter mode.
Norma L Ly, it is in the interpreter mode. When it responds to a
Line of commands after the RETURN key is pressed, FORTH acts very
much Like BASIC in the direct mode. FORTH tries to match each
word name encountered. The code corresponding to the name is
executed as each name is found in the INPUT STREAM. 'Input
stream' is another name for the Line of commands and/or numeric
vaLues that was input in response to the fLashing cursor. OnLy
when new words are being created by defining COLON DEFINITIONS
(coLon defs are expLained in the section ADDING NEW DEFINITIONS),
does FORTH enter the compiLer mode. In this mode, word names are
not interpreted as they are being read in from the input stream,
but are compi Led into memory. This means a new word is being
created and added to the dictionary that may be executed Later,
when back in the interpreter mode, just by typing its name.

The source code for a new program is not written and saved as one
continous fi Le however. The concept of SCREENS thus arises. A
FORTH screen (not to be confused with the screen of the TV or
dispLay that the 64 is hooked up to) is a bLock of 1024 bytes of
data that is transferred to and from the disk or cassette as one
unit. When a FORTH screen is LOADED, it is read in from disk,
and the FORTH interpreter uses it as the input stream. In
effect, it is the same as if you had typed in the 1024 characters
in response to the fLashing cursor.

By using the editor suppLied with C64-FORTH, the user may pLace
into screens the source code to define new word definitions.
Since in FORTH the concept of writing a program is to keep
definitions short and bui Ld up higher-LeveL definitions from
Lower-LeveL definitions, the 1024 byte Limit on a screen is no
probLem. One screen may itseLf Load another screen. Therefore,
one entire program, comprised of source code on many screens, may
be Loaded with just one command.

Screens may aLso be used for purposes other than source code
definitions. Since the screen, when Loaded, is fed into the
input stream, any words that aren't part of new coLon definitions
being created are executed immediateLy. Thus, a screen may act
as an indirect command fi Le. Di rect reading and writing of
screen bLocks to and from memory is possibLe, aL Lowing use of
screens for storing data arrays, tabLes, machine code subroutines
and overLays, etc.

C64-FORTH
cassette.
messages,
assembLer,

is shipped with a number of screens on the disk or
Screens 4 and 5 contain ASCII error and status

screens 6 through 17 contain the source code for the
and other screens may contain code or data.

13

ENTERING COMMANDS IN THE FORTH SYSTEM

Before continuing, how to enter commands in the FORTH system
should be covered. Whereas in other languages, you have
INSTRUCTIONS, OPERANDS (such as an immediate numeric value, name
of a variable, etc.), and OPERATORS (such as + and =). In FORTH,
you just have WORDS and NUMERIC VALUES. A WORD is an entry in
the dictionary. When the name of a word is specified, a piece of
code somewhere gets executed. Therefore, to effect a command,
you just enter into the input stream the name of a word in the
dictionary. You may enter the names of severa l words at a time
in a command (input) line, or just one at a time. Every function
avai lable in FORTH has an entry in the dictionary and can be
invoked just by entering the name of it.

When you press the RETURN key, al l characters on the current line
are passed to the FORTH as the input stream. Every word name or
sequence of characters representing a number MUST be seperated by
AT LEAST ONE SPACE. Since an operator such as multiply (*) in
other languages is defined as a word in FORTH, there must be at
least one space between numbers and things like + , * , etc. The
only way FORTH knows when the name of one word stops. and the
name of another word begins, or when a numeric representation
begins and ends, is by detection of a space character.

You may be wondering what is the range of characters you may use
within the name of a word. The answer is ANY SCREEN-PRINTABLE
character may be used within the name of a word. To keep
compatabi lity with other FORTH systems however, you shou ld not
use any special Commodore graphics characters, only standard
ASCII characters when definining new dictionary entries. The
name of any FORTH word may be up to 31 characters in length.

How do you enter comments between FORTH commands (word names) ?
Merely by placing the comment within parentheses. But remember,
you must place at least one space between the left-parenthesis
and the start of the comment, since "(" is a word, a di ctionary
entry, that when executed, scans off the input stream up to the
first right-parenthesis found (No, nesting of comments is not
a llowed in FORTH).

Why is FORTH called a 'postfix notation i language? What this
gibberish means is that any parameters, quaLifiers, numerical
va lues, etc. that a word wi l L need MUST be on the stack BEFORE
the word is executed. In BASIC, you specify the instruction
first, then the parameters, such a numerical vaLues, the string
to print, variable names, etc. Just remember that in FORTH you
must specify everything first, then you specify the name of the
word you want to execute.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BASIC STACK OPERATIONS

In this manuaL, the term DATA ITEM is used genericaL Ly to refer
to an item on the stack. A data item in most cases takes up 16-
bits (2-bytes) of stack space. Getting a number on the stack is
quite simpLe - just specify it. A string of characters found in
the input stream that does not match any entry in the dictionary
is converted to a number (if possibLe) and pushed onto the data
stack. The range aL Lowed for number input is -32768 to +65535
(ways of getting around the Limits wi L L be discussed Later). A
number in this range is caLLed a SINGLE PRECISION INTEGER.

Words that operate on items on the stack consider singLe
precision integers to be one of two types:

1) a SINGED SINGLE PRECISION INTEGER.
in the range of -32768 to 32767.

This is a whoLe number

2) an UNSIGNED SINGLE PRECISION INTEGER. This is a whoLe
number in the range of 0 to 65535. An exampLe whe~e an
unsigned integer wiLL be specified is the address required
for fetching data from or storing data to memory or 1/0
devices.

Note that the unsigned vaLue 65535 is equaL to the signed vaLue
of -1,65534 is equaL to -2, and unsigned 32768 is equaL to
signed -32768. It is up to the routine that uses or modifies a
stack or memory va Lue, as to how the va Lue is interpreted.

To put a number(s) onto the stack, just type in the vaLue(s) in
response to the f Lashing cursor, fo L Lowed by <return>. An 'OK'
is printed. The 'OK' is FORTH's way of showing that the Line
jus tin put was f u L L y a C C e pte d. Top r i n t 0 u t the top vaL u eon the
stack, use the "dot" command (the aSCll decimaL point, or
period). Dot removes the top vaLue and prints it as a SIGNED
singLe precision integer.

142 OK

· 142 OK

-7 678 10426 -32000 OK

· -32000 OK

· . 10426 678 OK

· -7 OK

32769 . -32767 OK

15

Note that the most recentLy added vaLue to the stack is printed
first. At this point, the stack shouLd be empty. To verify,
just enter the dot command again.

o EMPTY STACK

If the empty stack message didn't occur, you somehow had extra
va Lues on the stack. Keep executing the dot command unti L the
message occurs. The va Lue printed just before the empty stack
message is aLways meaningLess, since the check for the stack
being empty is aLways made upon return back into the input prompt
routine.

The word used to print the top stack va Lue as an UNSIGNED integer
is U. (pronounced "u dot").

-1 U • 65535 OK

- MANIPULATING STACK ITEMS

There are severaL FORTH words avai LabLe for dupLicating,
removing, or changing the position of stack items. To assign an
identity to different stack items for the purpose of showing
effects on stack items by FORTH words, a certain notation is
used. This is described more fuLLy on page 1 of appendix E, the
start of the gLossary. BasicaLLy, n1 means number #1, n2 means
number #2, etc. If n2 is to the right of n1, then n2 is higher
on the stack (cLoser to the top) than n1. The three dashes (" __ -
") i n d i cat e the ex e cut ion poi n t 0 f the w 0 rd. VaL u est 0 the L eft
of the dashes are what's required on the stack before the word is
executed, vaLues to the right are the resuLts after execution of
the word.

r~ e n t ion s h 0 u L d b e mad e her e a s tot h e fun c t ion 0 f the G LOS S A R Y a t
the back of this manuaL. The gLossary works Like a normaL
dictionary. The names of all the words in the base FORTH
vocabuLary are Listed, with descriptions of how the words
function, and their stack requirements and effects. Once you get
up to speed in FORTH, you wi L L probabLy be using onLy the
gLossary part of this manuaL. There are seperate gLossaries for
words avai LabLe for graphics use, strings, fLoating-point, and
under the ASSEMBLER. These have been pLaced in seperate sections
of the manuaL since they are not necessary in normaL FORTH
programming.

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I

The stack manipuLation commands are:

DUP

SWAP

DROP

OVER

ROT

n PICK

n ROLL

n1 n1 n1
dupLicates the top stack item

n1 n2 n2 n1
exchanges the top two stack items

n1
removes and discards the top stack item

n1 n2 n1 n2 n1
copies the second item and pushes it on the stack

n1 n2 n3 n2 n3 n1
rotate the top three stack items

n4 n3 n2 n1 n
copy the n-th stack item
push it onto the stack.
DUP, 2 PICK is the same

n4 n3
(not counting n
e.g. 1 PICK is
as OVER.

n2 n1 n?
itseLf) and
the same as

n4 n3 n2 n1 n n? n? n? n?
rotate the top n stack items (not counting n. itseLf)
e.g. 3 ROLL ;s the same as ROT, and 4 ROLL has the
effect: n4 n3 n2 n1 4 n3 n2 n1 n4

ExampLes:

37 DUP 37 37 OK

1 23 19 SWAP 123 19 OK

42 1 2 DROP 42 0 EMPTY STACK

78 6 OVER 78 6 78 OK

1 0 20 30 ROT 10 30 20 OK

1 0 20 30 40 4 PICK OK

10 40 30 20 10 OK

1 0 20 30 40 4 ROLL OK

10 40 30 20 OK

17

- ARITHMETIC OPERATIONS

It is very simpLe to perform arithmetic operations on vaLues on
the stack. AL L vaLues necessary must be on the stack before the
operation is performed:

3 17 + 20 OK

20 32 -12 OK

78* 56 OK

204 17 1 12 OK

FORTH is a 'free-format' Language. You may specify one operation
per Line or many operations per Line. You may aLso controL when
operations are done, as Long as the required number of vaLues are
on the stack:

372 8 + + + 20 OK

3 7 + 2 + 8 + 20 OK

3 7 + 2 OK

8 + + 20 OK

Operations are performed in the order that they are specified:

3 78+ * 45 OK (equiv. to (7+8)*3)

378 * + 59 OK (equiv. to (7*8)+3

There are severaL other words in FORTH for arithmetic operations.
Refer to the gLossary for descriptions on:

*1
1 +
ASS

18

*/MOD
1- 2+

IMOD
2-

MAX MIN

MOD
2*

NEGATE
21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- WORKING IN DIFFERENT NUMBER BASES

Numbers in base 10 (the decimaL system) are not at home in
computers. The reLationship between addresses, bit patterns,
disp Lays of memory contents, etc. become more apparent when
working in other number bases. Whi Le decima L numbers are
sufficient in BASIC, for Languages such as FORTH or assembLy that
aL Low you more absoLute controL over the computer hardware,
HEXadecimaL (base 16) is more meaningfuL.

BASE is a FORTH variabLe that keeps track of the current number
base. AlL input and output number conversions <characters into
binary vaLues and visa versa) are done according to the current
base.

DECIMAL sets BASE to 10. ALL numbers input are expected to be
decimaL numbers, and aLL numbers printed out are decimaL.

DECIMAL 89+ 17 OK

HEX sets BASE to 16:

HEX 89+ 1 1 OK

1 A C + 26 OK

The current BASE se Lected stays in effect unti L changed. If you
were brought-up in mini-computer Land, you are probabLy used to
OCTAL numbers. You may work with octaL numbers by setting BASE
to 8:

8 BASE 76+ 15 OK

Other bases (such as BINARY) may be se Lected in a simi Lar way (2
BASE !).

19

- CONSTANTS AND VARIABLES

In BASIC, a constant is a variabLe whose vaLue does not change
throughout the course of the program. In FORTH, CONSTANTS and
VARIABLES are uniqueLy different data types.

Constants and variabLes are dictionary entries, just Like word
definitions. When the name of a constant is executed, the vaLue
of that constant is pushed onto the stack. The numbers 0,1,2,
and 3, because they are used so frequent Ly, are actua L Ly defined
as constants. Since the dictionary is searched before a numeric
conversion is attempted, this speeds things up.

There are other
executed, pushes
dispLay Line:

DECIMAL C Il

constants in FORTH,
onto the stack the

40 OK

such as C/l. C/l, when
number of characters per

The word CONSTANT itseLf is a defining word.
create new constants:

It is used to

<initiaL vaLue> CONSTANT <constant name>

ExampLe:

7 CONSTANT DAYS/WK OK

creates a new dictionary entry, caL Led DAYS/WK , and assigned the
va Lue of 7 to it. Whenever DAYS/WK is executed, the va Lue 7 wi L L
be pushed onto the stack:

DAYS/WK 7 OK

VARIABLES are used extensiveLy in FORTH. As in BASIC, variabLes
may be initiaLized and changed easi Ly. When the name of a
variabLe ;s executed, the ADDRESS (Location) of the contents of
the variabLe is pushed onto the stack.

In the dictionary, a constant or variabLe is made up of a header
(containing the name and Linkage and execution-code pointers),
and a body consisting of two bytes. The 16-bit vaLue of the
constant or variabLe is stored in these two bytes. The onLy
difference is that a constant wi L L fetch the contents of the body
and put it on the stack, and a variabLe wi L L put the address of
the body (Location of the vaLue) on the stack.

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

The, w 0 r d V A R I A B LEi t s eLf i sad e fin i n g w 0 rd.
create new variabLes:

VARIABLE <variabLe name>

ExampLe:

VARIABLE #OFERRORS OK

It is used to

When #OFERRORS is executed, it Leaves the address of its current
vaLue. When a variabLe is created, its initiaL vaLue is random.
To initiaLize it, a vaLue must be stored in it as described in
the fo L Lowing section.

In FORTH, there are a number of USER VARIABLES (e.g. BASE). The
contents of the variabLe are not stored immediateLy foL Lowing the
header in memory, but in a tabLe caL Led the USER AREA Located at
the top of memory used by the FORTH system. ALthough
functionaL Ly identicaL to variabLes, executing the name of a user
variabLe Leaves the address within the user area of the contents
of the variabLe.

- FETCHING AND STORING

Two words, @ ("fetch") and! ("store") are used to read from, or
write to variabLes or memory Locations. @ 'fetches' (reads the
16-bit contents of) the memory Location pointed to by the address
on the stack. The address on the stack is repLaced by the
contents read from that Location:

641 @ 2048 OK

I The equivaLent in BASIC is:

I PRINT(PEEK(642)*256+PEEK(641))

I Since executing the name of a variabLe Leaves an address on the
stack, then @ can be used to read the contents of a variabLe.

21

From a previous exampLe:

#OFERRORS @ o OK

(the vaLue printed may not be 0 since we did not initiaLize the
variabLe #OFERRORS yet.)

BASIC:

200 PRINT NE

User variabLes may be read the same way:

BASE @ 10 OK

(store) is used to write a vaLue to a 16-bit memory Location.
requires two vaLues on the stack. The second stack vaLue must

be the va Lue to store, and the top stack va Lue must be the
address to store it at. Both vaLues are removed from the satck
after the store is done.

513 1142 o 55414 OK

The Letters "AB" shouLd have appeared in bLack in the upper right
corner of the dispLay screen. Since executing the name of a
variabLe Leaves an address on the stack, then! can be used to
change the contents of a variabLe:

10 BASE OK

- FETCHING AND STORING BYTES

@ and! are used for 16-bit vaLues. Since the 6502/10 is an 8-
bit machine, words are provided for reading from and writing to
byte Locations. C@ is used for 8-bit fetching, and C! is used
for 8-bit storing.

(what is the current border coLor?

53280 C@ 14 OK

(change the current border coLor)

4 53280 C! OK

(restore the border coLor to start-up vaLue)
(Note: the variabLe BORDER contains the coLor vaLue that

C64-FORTH sets the border to upon start-up)

BORDER C@ 53280 C! OK

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- DOUBLE PRECISION NUMBERS

Since each position on the stack can hoLd a data-item consisting
of 16-bits, the number range is Limited to -32768 to 65535. This
is rather Limited for some types of appLications, so a cLass of
words is provided in FORTH to extend the range of possibLe stack
va Lues. Ca L Led DOUBLE PRECISION INTEGERS, the effecti ve range
may be -2,147,483,648 to 2,147,483,647. OnLy SIGNED doubLe
precision integers are supported in this version of C64-FORTH.
DoubLe numbers take up 32-bits (4-bytes) of stack space.

A doubLe number is input by pLacing a decimaL point somewhere
within the number. No matter where the decimaL point is pLaced,
the same vaLue ends up on the stack, but the Location where the
decimaL point was found is pLaced in the user variabLe DPL.

The word for removing the doubLe number on top of the stack and
printing it as a SIGNED doubLe integer is D. (lid dot"):

1234.567 D. 1234567 OK

DPL @ 3 OK

12.34567 D • 1234567 OK

DPL @ 5 OK

123456.7 D • 1234567 OK

DPL @ 1 OK

A doubLe number on the stack may be treated as two singLe
integers. The high order part of the number (the high 16-bits)
is the top stack item, the Low order part is the second stack
item:

HEX 12345678. OK

1234 OK

5678 OK

To convert a positive singLe integer on the stack to a doubLe
integer, just push a zero. To convert a negative singLe integer
on the stack to a negative doubLe integer, just push 65535.
The word S->D (for 'singLe-to-doubLe') automaticaLLy converts a
singLe precision integer into a doubLe integer, accounting for
the sign of the integer. To convert a doubLe integer into a
signed singLe integer, just execute DROP to remove the top 16-
bits of the doubLe number.

23

I
DoubLe number equivaLents to most of the singLe integer stack
manipu Lation commands exist. They are the same commands I
preceeded by a 121.

2 !
2DUP

2@
2DROP 2SWAP 20VER 2ROT

2CONSTANT and 2VARIABLE work simi Lar to
counterparts:

DECIMAL 8732109. 2CONSTANT BIGNUM OK

BIGNUM D. 8732109 OK

2VARIABLE BNUM OK

99998888. BNUM 2! OK

BNUM 2@ D. 99998888 OK

the i r singLe number

DoubLe precision arithmetic operations usuaLLy begin with a IDI.

D+ D- DABS DMAX DMIN DNEGATE

There are severaL words used that accept or produce both singLe
and doubLe precision numbers. Refer to the gLossary for their
functions:

D+- r·, * r~ I M/MOD S->D U* UI

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FLAGS AND COMPARISONS

- FLAGS

FORTH uses fLags extensi ve Ly. Actua L Ly, a fLag p Laced on the
stack is just a numeric vaLue. If the vaLue pLaced on the stack
is a zero (0), it is said to be a FALSE fLag. If a vaLue pLaced
on the stack is non-zero, it is said to be a TRUE fLag. A true
fLag is usua L Ly a va Lue equa L to 1, but not a Lways. Many FORTH
routines return a condition, either true or faLse, to indicate
whether something did or did not happen, something was or was not
within a specified range, etc. Program branching and Looping
directives, described Later, may test the vaLue of the fLag, and
take action depending on its state.

- COMPARISONS

Severa L FORTH words are provided for doing comparisons between
numeric vaLues on the stack. A fLag is returned by the
comparison routine. In the case of 0=, a true fLag is Left on
the stack if the top stack vaLue when the routine 0= was caLLed
was equa L to zero (0). 0= removed the top stack va Lue in the
process of testing it. If the vaLue was not equaL to zero, the
fLag returned is faLse, or equaL to O. 0= can thus be seen to be
usefuL for inverting the TRUTH of a fLag, i.e. using 0= on a fLag
on top of the stack wi L L return a FALSE va Lue of the f Lag was
TRUE, and wi L L return a TRUE va Lue if the f Lag was FALSE. (NOT
is another FORTH word that is identicaL to 0=)

There are two other comparators that test just one stack va Lue.
They are 0< which tests if the top stack vaLue is Less than 0,
and 0> which tests if the top stack vaLue is greater than zero.
Both of these assume the top stack item is a signed singLe
integer.

1 0= o OK

o 0= 1 OK

-2 0< 1 OK

28 0> 1 OK

65530 0> o OK

There are four comparators that operate on the top two stack
va Lues: < = > and U< < and> assume the two va Lues are
signed singLe integers, U< assumes they are unsigned singLe
integers, and = just pLain doesn't care.

25

The relationship tested between comparators that require two
stack items is:

<second stack value> COMPARISON <top stack value>

Thus, 3 18 > wi L L return a FALSE f Lag since 3 is not greater
than 18.

There are five comparators for testing the relationship of signed
and unsigned doubLe precision integers:

DO= D< D= D> DU<

Refer to the gLossary for descriptions.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,---.------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LOOPING AND BRANCHING

- DO LOOPS

A DO Loop is simi Lar to the FOR •• NEXT Loop in BASIC. A Loop is
set up with a starting vaLue, an ending vaLue, and an increment.
The vaLue that changes with each pass through the Loop is caL Led
the INDEX of the Loop, and the vaLue that serves to terminate
(cause the exiting of) the Loop is ca L Led the LIMIT.

A DO Loop is constructed as foLLows:

<Limit+1> <starting vaLue> DO Loop code •• LOOP

A vaLue that is equaL to the desired Loop Limit +1 is pushed onto
the stack, the vaLue representing the starting vaLue of the index
is pushed onto the stack, then the Loop is entered. It is
important to understand that the words DO and LOOP can on Ly be
used inside of a coLon definition, because at campi Le-time they
create the structure that at execute-time wi LL provide a Looping
effect!

The Limit must be specified as 1 greater than the vaLue desired
to terminate the Loop since the index is incremented BEFORE it is
compared against the Limit.

As an exampLe, Lets print the first S characters of the aLphabet.
Since a DO Loop can onLy be impLemented within a coLon
definition, we must define a word with the Loop and then execute
the word:

ALPHAS 70 6S DO I EMIT LOOP ;

ALPHAS ABCDE OK

The FORTH word I fetches the current index of the Loop and pushes
it onto the stack. The equivaLent of the above routine in BASIC
is:

10 FORI=6ST069
20 PRINTCHR$(I);
30 NEXTI

DO Loops may be nested:

DO •• DO •• DO • • • LOOP • • LOOP • • LOOP

27

To obtain the current index of the next outer Loop the FORTH word
J is used, and to obtain the index of the third outer Loop K is
use d:

LOOPTEST 3 0 DO

LOOPTEST
1-0 J=O
1=1 J =0
1=0 J=1
1=1 J=1
1=0 J=2
1=1 J=2 OK

2 0 DO
CR "1=" I

LOOP
LOOP ;

In BASIC, the above routine wouLd be:

10 FORJ=OT02
20 FORI=OT01
30 PRINT"I=";I;"J=";J
40 NEXTI
50 NEXTJ

"J=" J

LOOP sets up the structure of the definition being created such
that at execute-time a vaLue of +1 is added to the current index,
then the index is compared with the Limit. A different
increment, incLuding negative vaLues, may be specified by using
+LOOP instead of LOOP. +LOOP takes the top stack vaLue and adds
that to the Loop index. The Loop index is then compared against
the Limit, and if it exceeds the Limit, the Loop is exited:

MINUSSTEP -1 100 DO CR I -10 +LOOP ;

i s equivaLent to:

10 FOR I= 100 TO 0 STEP-10
20 PRINTI
30 NEXTI

NOTE: both LOOP and +LOOP work according to SIGNED arithmetic.
This means that the Loop wi L L be terminated either by the current
index exceeding the Limit, OR arithmetic overfLow occuring when
COMPARING THE CURRENT INDEX TO THE LIMIT. For instance, if the
Limit of the Loop was specified as a negative number, and the
current index is being incremented in the positive direction, the
Loop wi L L terminate after on Ly one iteration. Simi Lar Ly, if the
Limit was specified as positive, and the current index is
increasing in the negative direction, the Loop wi L L terminate
after onLy one iteration.

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

,I
,.
I
I
I
I
I
I
I
I
I

A DO Loop may be prematureLy terminated by executing LEAVE.
LEAVE sets the current index equaL to the Loop Limit. However,
the DO Loop IS NOT EXITED UNTIL THE LOOP POINT IS ENCOUNTERED.
Since desire to terminate a DO Loop prematureLy is probabLy based
upon some event happening, LEAVE can be executed within the
IF •• ELSE •• THEN structure that detected the condition:

DO <fLag> IF LEAVE ELSE •• Loop code •• THEN LOOP

Since LOOP and +LOOP work according to SIGNED arithmetic, this
means that absoLute memory addresses cannot be used for the index
and Limit of a Loop if the address range crosses over the
boundary at 32768 (8000 hex). There is a word that has been
PROPOSED as a future FORTH standard word ca L Led /LOOP. /LOOP
works Like +LOOP but according to UNSIGNED arithmetic, thus
absoLute memory addresses may be used. The current FORTH
PROPOSAL states that /LOOP is to work onLy with the index being
incremented in the POSITIVE direction. /LOOP as provided in this
impLementation of C64-FORTH works in BOTH directions to aL Low you
to increment the index in both positive AND negative directions.

ExampLes of usage (aLL numbers are in HEX):

8020 7FFO DO I C@ FF XOR I C! 3 /LOOP

wi L L compLement every third byte in the range of 7FFO to 801F

77FF 8FFF DO 0 I C! -1 /LOOP

wi L L cLear aL L bytes in the range 8FFF down to 7800 starting with
the highest byte first.

29

- IF ••• ELSE ••• THEN

Since FORTH does not aL Low Line numbers or LabeLs, structures
h a v e bee n pro vi de d for pro g ram bra n chi n g. IF •• E L S E •• THE N is use d
as foLLows:

<fLag> IF true part ELSE faLse part THEN

The IF •• ELSE •• THEN structure can onLy be used within a coLon
definition. At execute-time, a fLag is expected on the stack
upon entering the structure. The code that was compi Led into the
definition by IF tests the fLag. If it represents a TRUE
condition, then the code between IF and ELSE (the true part) is
executed. If the fLag is FALSE, then the code between ELSE and
THE N (t he fa L s epa r t) i sex e cut e d. E i the r the t rue par tOR the
faLse part is executed, not both. Whichever part was entered,
execution continues after THEN.

TESTFLAG (print whether fLag on stack is
IF "FLAG IS TRUE"
ELSE "FLAG IS FALSE"

o TEST FLAG FLAG IS FALSE OK

1 TESTFLAG FLAG IS TRUE OK

BASIC equiv:
10 IF C=O THEN 40
20 PRINT"C IS TRUE"
30 GOTO 50
40 PRINT"C IS FALSE"
50 REM ** REST OF PROGRAM **

THEN . ,

true or faLse)

IF •• THEN is a speciaL case aL Lowing execution of a section of
code onLy if a fLag on the stack tests TRUE. If FALSE, execution
just skips over the IF •• THEN part.

TEST1 IF ." FLAG IS TRUE" THEN " THIS IS COMMOM CODE" ;

o TEST1 THIS IS COMMON CODE OK

1 TEST1 FLAG IS TRUE THIS IS COMMON CODE

BASIC equiv:

10 IF C=O THEN 30
20 PRINT"C IS TRUE"
30 PRINT"THIS IS COMMON CODE"

30

OK

I
I
I
I
I
I
I
I
I

II
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

•
I
I
I
I
I
I
I
I
I

- BEGIN •• UNTIL

BEGIN •• UNTIL is handy for Looping unti L a certain condition
exists. The condition (fLag) is tested just before the UNTIL
part:

BEGIN Loop code <fLag> UNTIL

The Loop code is aLways executed at Least once. Some comparison
or operation is done at the end of the Loop code that Leaves a
f Lag on the stack for the UNTIL part to check. If the fLag tests
FALSE, execution Loops back to just after the BEGIN part. If the
fLag tests TRUE, execution faLLs through to after the UNTIL part.

(wait untiL the 'V' key is
BTEST BEGIN

GET

pressed)
(start of Loop)
(read keyboard)

89 = UNTIL ; (V key = vaLue of 89)

BASIC equiv:
10 GETA$
20 IF A$ <> "V" THEN 10

- BEGIN •• AGAIN

BEGIN •• AGAIN creates what amounts to an infinite Loop:

BEGIN •• Loop code.. AGAIN

The Loop code is executed forever. While this
immediately seem usefuL, certain process controL or
system appLications wiLL need this structure.

- BEGIN •• WHILE •• REPEAT

may not
turnkey

BEGIN •• WHILE •• REPEAT forms a structure that is
but can be exited upon a certain condition:

an infinite Loop,

BEGIN •• part1.. <fLag> WHILE •• part2 •• REPEAT

When the BEGIN •• WHILE..REPEAT structure is entered, part1, if it
exists, is executed. A fLag placed on the stack by a comparison
or operation is tested. If the fLag is TRUE, the foL Lowing code
(part2) is executed. If the fLag tests FALSE, the Loop is
exited and execution continues after the REPEAT. If part2 is
executed, then controL jumps back to just after the BEGIN.

31

Once again, any controL structure (DO •• LOOP, IF •• THEN •• ELSE, and
BEGIN •• structures) can onLy be used within a coLon definition!
Any attempt to use them whi Le in the interpretive mode wi L L
generate an error.

- NESTING OF LOOPING STRUCTURES

Nesting of Looping and branching structures is a L Lowed as Long as
EACH STRUCTURE IS FULLY CONTAINED WITHIN ANOTHER. For instance,
an IF •• THEN structure cannot be used to branch out of a DO Loop
or BEGIN •• UNTIL structure:

DO
BEGIN
IF

IF
IF

BEGIN

LOOP THEN
UNTIL THEN
THEN •• UNTIL

These are exampLes of aLLowabLe structures:

32

BEGIN
DO
IF

IF
BEGIN
DO

ELSE
WHILE

BEGIN

THEN
REPEAT

UNTIL

NOT ALLOWED!
NOT ALLOWED!
NOT ALLOWED!

UNTIL
LOOP

LOOP THEN

I
I
I
I
I
I
I
I
I

•
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I

•
I
I
I
I
I
I
I
I
I

ARRAYS

- SIMPLE ARRAYS

Looking at how FORTH works, we see three things that must be done
to create and use arrays:

1) The amount of space necessary must be reserved in the
dictionary so FORTH does not overwrite the contents of
the array

2) A header and name must be given to the array so we may
obtain the address that the data starts at

3) InitiaLizing or changing array entries must be easy

CREATE is a FORTH word used to create a header, assign it the
foL lowing name, and link it to a code routine that when executed,
Leaves the address of the first byte in the body. Used as
folLows:

CREATE <defname>

A new definition, cal Led <defname>, is added onto the end of the
dictionary, and is linked to the current vocabuLary. There is no
space aL located for the body of <defname>. When <defname> is
Later executed, the address of the first byte after its header is
pushed onto the stack.

Space may be al located with the ALLOT command. ALLOT takes a
specified number, and adds it to the end-of-the-dictionary
pointer. The contents of the space that is al located is not
initiaLized or aLtered in any way.

Instead of ALLOT, we may COMPILE specific vaLues into memory.
This process places an 8 or 16-bit vaLue onto the end of the
dictionary, and advances the end-of-the-dictionary pointer by 1
or 2. C, compi les a byte va lue into memory advancing the
dictionary pointer by 1, and, (comma) compi les a 16-bit vaLue
into memory advancing the dictionary pointer by 2. With C, and,
we now have a way to aLLocate and initiaLize memory at the same
time.

33

Suppose we wouLd Like to create a tabLe of squares for the first
ten integers. In BASIC we wouLd have:

10 DIMA(10)
20 FORX=OT09
30 READN:A(X)=N
40 NEXTX
50 REM *** REST OF PROGRAM ***
1000 DATA 1,4,9,16,25,36,49,64,81,100

In FORTH:

CREATE SQUARES
1 C, 4 C, 9 C, 16 C, 25 C, 36 C, 49 C, 64 C, 81 C, 100 C,

A tabLe of 10 bytes is now created. When SQUARES executes, the
address of the first byte within the tabLe is pushed onto the
stack. Offsets may be added to this vaLue to point to other
vaLues in the tabLe:

SQUARES 2+ C@ 9 OK

SQUARES 9 + C@ 100 OK

150 SQUARES 8 + C! OK

SQUARES 8 + C@ 150 OK

TabLes of 16-bit vaLues may be created with, (comma) instead of
C,. If the tabLe need not be initiaLized, but wi L L be fi L Led by
the program, just use ALLOT:

CREATE SQUARES 10 ALLOT

- CREATE and DOES> structure

CONSTANT, VARIABLE, and ":" have been referred to as defining
words, meaning that they are used to create new definitions in
the dictionary. Most FORTH programmers can go the rest of their
Lives using just these three types for creating aL L new
definitions. This expLanation of the CREATE and DOES> structure
can be skipped over by new FORTH users to avoid confusion.

DOES> is aLways used with CREATE within a coLon definition.
The CREATE - DOES> team is used to create new defining words
(simi Liar to defining a new data type in some other higher LeveL
Languages, such as PASCAL, but in FORTH it is rea L Ly generating a
new WORD TYPE). The greatest use for creating new word types
with the CREATE - DOES> structure is for defining arrays.

34

I
I
I
I
I
I
I
I
I

•
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CREATE and DOES> are aLways used together in the same definition.
There are two seperate operations to consider about any defining
word. The first is what happens when the defining word is used
to create a new definition. The second is what happens when the
new Ly-defined word executes.

'CREATE - DOES> aLLows you to preciseLy define both circumstances.
They are used as foL Lows:

<typename> CREATE •• part1 •• DOES> •• part2 •• ;

A new defining word is created ca L Led <typename>. The new
defining word can be used to create new word definitions or data
types:

<typename> <defname>

When <typename> is executed, a new definition is created with the
name <defname>. When bui Lding the definition <defname>, the
FORTH code between the CREATE and DOES> part of <typename>
(•• part1 ••), is executed. TypicaL Ly, this code wi L L aL Locate
space for an array, and provide a way to initiaLize vaLues within
the array if desired.

When <defname> is Later executed, the address of the first byte
in the body of <defname> is pushed onto the data stack, THEN the
FOR T H cod e bet wee nth e DOE S > and ; par t 0 f < t Y pen a me> (•• par t 2 ••)
is executed. TypicaLLy, this wiLL provide the address of a
specific entry within the tabLe, provide the entry within the
tab Le, or somthing simi Lar.

As an exampLe, even though the defining word CONSTANT is aLready
present within the FORTH vocabuLary, we can redefine it:

CONSTANT DOES> @ . , CREATE ,

When CONSTANT is used to define a constant:

12 CONSTANT MON/YR

a new header is created in the dictionary with the name r..,ON/YR.
Then the part between CREATE and DOES> is executed. The comma
takes the top vaLue off the data stack, and compi Les it into
memory. The header caLLed MON/YR now has a 16-bit vaLue equaL to
12 in the first two bytes after it.

35

When MON/YR is Later executed, the address of the first byte of
its body is pushed onto the stack. Then the part between DOES>
and; of CONSTANT is executed, which fetches the 16-bit contents
of the Location pointed by the top stack item, i.e. the address
just pushed. Likewise, we can see that the defining word
VARIABLE wouLd be defined as:

VARIABLE CREATE 0, DOES> . ,

Here the part between DOES> and; ;s nonexistent, so nothing is
done to the address Left on the stack.

Now, to redefine our previous array SQUARES. We want to create a
defining word that can be used to create arrays. We want it to
be capabLe of creating and initiaLizing an array of 10 entries in
one case, 18 entries in another case, etc •• When we Later refer
to the name of a array created, we want it to return the address
of a specific entry within the array.

Lets create our new defining word:

ARRAY CREATE 0 DO C, LOOP DOES> + 1- ;

ARRAY is then used as foLLows:

100 81 64 49 36 25 16 9 4 1 10 ARRAY SQUARES

A new array caL Led SQUARES is created. The first thing that
happens after the header is formed, is the top stack vaLue is
taken as the Limit of the DO Loop. This shouLd be the number of
entries that wi L L be in the array being created. Next, the DO
L 00 pis en t ere d. For as man y tim e s as the rea r e en t r i e sin the
array, a va Lue wi L L be pu L Led off the data stack and compi Led
into the dictionary. This wi L L effectiveLy both aL Locate space
for and initiaLize each entry. In this exampLe, first the 1 is
puLLed off the stack and pLaced in the first entry, then a 4 in
the second, etc.

When SQUARES is Later executed in the foLLowing manner:

6 SQUARES

the address of the first entry of the tabLe is pushed onto the
stack. The part between DOES> and; of ARRAYS is then executed,
which adds the address to the previous vaLue on the stack, in
this case the 6. Since we are expecting the address of the 6th
entry in the tabLe, and entry 1 is in the address+O position, a 1
is next subtracted from the effective address. The resuLting
address is the Location of the 6th entry in the tabLe. It may be
accessed by:

36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6 SQUARES C@ 36 OK

Other arrays may be created with the same defining word:

31 30 31 30 31 31 30 31 30 31 28 31 12 ARRAY DAYS/MONTH

The number of days in ApriL is found as:

4 DAYS/MONTH C@ 30 OK

To define ARRAY for creating arrays that don't need
initiaLization:

ARRAY CREATE ALLOT DOES> + 1- ;

and is used in the form:

10 ARRAY TEMPVALS

With techniques expLained Later, Large arrays can be initiaLized
from data stored in screens.

37

CREATING NEW DEFINITIONS

- COLON DEFINITIONS

The most common way to add new commands to the FORTH system is to
create COLON DEFINITIONS. Most of the words in the base FORTH
dictionary are defined as coLon defs. A coLon definition is
essentiaL Ly a List of pointers to previousLy-defined words. When
FORTH appears to 'execute' a word that was defined as a coLon
def, actua L Ly it is executing the code (or coLon def) identified
by each pointer in the body of the definition.

A coLon definition, as the name impLies, starts off with a coLon
(':'). Next, the user suppLies the name which is to be assigned
to it. The names of previousLy-defined FORTH words make up the
body of the definition, which is terminated with a semi-coLon
(';'):

<name> • <body> • ;

ExampLe:

CLRSCREEN 147 EMIT ;

A new word, named CLRSCREEN, has been added to the FORTH
dictionary. To see this, type VLIST. CLRSCREEN is now the top
word in the current vocabuLary.

When 'CLRSCREEN' is typed in, the body of the definition wi L L be
scanned and executed. First, the vaLue 147 is pushed onto the
stack, then the routine EMIT is executed. EMIT takes the top
vaLue off the stack and prints it as a character (printing a
vaLue of decimaL 147 happens to cLear the screen).

Notice that when you were defining the new definition CLRSCREEN,
the screen did not cLear. NormaLLy, if you type 147 EMIT in
response to the fLashing cursor, the screen cLears. However,
when a coLon is encountered in the input stream, the FORTH system
stops executing commands (interpreter mode) and starts COMPILING
a definition (i.e. enters the compi Ler mode). A HEADER entry
is created in the current vocabuLary, the foL Lowing <name> is
assigned to it, Linkage pointers are added, and aLL subsequent
numeric vaLues and previousLy-defined FORTH words up to the semi
coLon are COMPILED into the definition. 'COMPILED into the
definition' means a pointer is added onto the body of the current
definition that either points to another definition to execute,
or to a routine that at execute-time wi L L push the specified
numeric vaLue onto the stack. Encountering the semi-coLon turns
off the campi Le mode and FORTH re-enters the interpreter mode.
Any word names now found in the input stream wi L L be executed
immediateLy again.

38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Co Lon defs may be NESTED to any depth. This means
definition has been created, it may be referenced in the
a new definition, which may be referenced in the body of
newer definition, etc. For exampLe, having aLready
CLRSCREEN, we may enter:

3RDLINE CLRSCREEN CR CR . ,

on c e a
body of
an even
defined

When 3RDLINE is executed, the screen is cLeared and the cursor is
moved down to the third screen Line. 3RDLINE, now defined, may
be used in the definition of a new command, and so forth:

SHOWNEST 3RDLINE " EXAMPLE OF NESTING" ;

Most of the words in the FORTH gLossary may be used inside of a
coLon definition. There are some words cLassified as IMMEDIATE.
These words overide compi Le mode and execute immediateLy.
Examp Les are the names of vocabu Laries (ASSEMBLER, EDITOR, etc.)
and branching controL structures (IF •• ELSE •• THEN, BEGIN •• UNTIL,
etc.). Words marked as IMMEDIATE are not compi Led into the
current definition, but perform a function necessary during the
compi Le mode. Good exampLes of coLon defs are the definitions of
some of the FORTH words:

DECIMAL
HEX 16

10 BASE
BASE

68 +
FILL

. ,
· ,
· ,
· ,

PAD HERE
BLANKS BL
DEFINITIONS
UPDATE PREV

CONTEXT @ CURRENT
@ @ 32768 OR PREV

. ,
@ . ,

How many FORTH words can you use to make up the body of a new
definition? As many as you want. It is customary in FORTH
programming to keep definitions short, but it is not a ruLe.
There is a Limit when typing in an input Line. 80 characters is
the maximum the 64 aL Lows you to input at one time. However,
since FORTH is free-format, you may create a definition by
inputting many Lines. When entering a new definition Longer than
an 8D-character input Line, you l L L notice that FORTH does not
respond with the fami Liar lOKI response when the RETURN key is
hit. When you finaLLy terminate the new definition by using the
semi-coLon, FORTH re-enters the interpreter mode and responds
with lOKI.

39

When you type in a coLon definition as an input Line, you Loose
the 'source code'. There is no easy way to examine a word
definition to determine the sequence of words that was used to
define it. Therefore, it is good practice to enter aL L
definitions, constant and variabLe decLarations, defining arrays,
etc. onto source screens. The LOAD command reads in a source
screen treating it, as if it were typed in as one Long input Line.
The advantage gained here is that it can be permanent Ly stored
onto disk or tape, aiding future work. The LOAD command is used
as foLLows:

<scr#> LOAD

The screen# <scr#> is read in from disk if not aLready in memory,
and the FORTH input interpreter begins at the start of the screen
considering it as a 1024 byte Long input Line. NormaLLy, when
the 1024 bytes are aL L read in, FORTH prints 'OK' and returns to
expecting input from the keyboard buffer. If the word '-->' is
found in the screen being LOADed; then the FORTH interpreter
stops using the current screen, Looks for the next screen in
memory or on disk, then feeds that screen into the input stream.
If an error is encountered anywhere, LOADing of the current
screen immediateLy stops and an error message is printed. At
this point, and before entering ANY other command, if you type
WHERE <return>, FORTH wi L L disp Lay the current Line within the
current screen the error occurred at, and wi th an up-arrow wi L L
point to just after the word/character string the error occured
in.

Say you had a Line in screen #20 that read:

TEST CR XXX ;

and you do not have a word aLready defined in the dictionary
ca L Led XXX. When you go to Load the screen you wi L L get an
error, and when you type WHERE you'LL see the foLLowing:

20 LOAD 20
WHERE

TEST CR

XXX ?

XXX •
t'

CAN'T FIND

Right after entering the LOAD command, FORTH echoes the screen
number it is LOADing. When XXX was encountered, no entry was
found in the dictionary, so it is printed out with the? CAN'T
FIND error message. When WHERE was typed in, FORTH printed the
current Line that contained the error, and on the foL Lowing Line
printed an up-arrow just after the word that was not recognized.

Many of the screens on the C64-FORTH disk contain source code
written in FORTH. AnaLysis of the routines pLus experimentation
is the best way to Learn how to define new definitions. Create
some of your own source screens using the editor (the editor is
described in Appendix A) and try Loading them.

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

TEXT AND NUMERIC OUTPUT

- SINGLE CHARACTER OUTPUT

A va Lue on the stack may be printed as an ASCII character by
using the word EMIT. The va Lue to be printed shou Ld be in the
range 0 to 255.

65 EMIT 67 EMIT AC OK

BASIC equ;v:

PRINTCHR$ (65); CHR$ (67);

- TEXT OUTPUT

There is an easy way to print out ASCII messages •• " (dot-quote)
is a FORTH word used to print out a string of characters. It is
used as foLLows:

" <text string>"

~-. .

The rem u S t b eon e spa c e bet w ~ e,lJ" ." and the s tar t 0 f the m e s sag e •
The t ext me s sag e i s t e r min ate d -b y a quo t e c h a r act e r. "p r i n t s
out the character string starting one space after it up to the
terminating quote character.

ExampLe:

." TEXT STRING OUTPUT TEST" TEXT STRING OUTPUT TEST OK

BASIC equivaLent:

PRINT"TEXT STRING OUTPUT TEST";

" may be used within a coLon definition to print out a message
on the screen when the definition is executed:

AS C N U r~ S CR " 0123456789" , OK

ASCNUMS
0123456789 OK

41

CR, SPACE, and SPACES are specialty words. CR outputs a 'return'
and is the same as executing PRINT by itseLf in BASIC. To print 3
returns in FORTH:

CR CR CR

OK

In BASIC:

PRINT:PRINT:PRINT

SPACES prints a specified number of spaces on the screen:

9 SPACES OK

SPACE prints just one space.

"ABC" SPACE "DEF" ABC DEF OK

FORTH stores character strings in memory as a string of character
bytes preceeded by a byte count. To print out a character string
in memory in this format, the FORTH word TYPE is used. The
add res S 0 f the s tar t 0 f the c h a r-a..€:-t e r by t e sis s p e c i fie d, a Lon g
wit h the b y t e c 0 u n t • Let's R: L ~e . ash 0 r t s t r i n gin tom e m 0 r y •
We' L L use E B U F, w h i chi s a 3 0 - b yt e b u f fer i n FOR T H use d t 0 h 0 L d
the status message sent back from the disk.

pLace count of characters foLLowed by character bytes in EBUF)

3 EBUF C! 65 EBUF 1+ C 49 EBUF 2+ C! 33 EBUF 3 + C! OK

EBUF 1 + 3 TYPE A 1 ! OK

Why did we store the byte count in the first byte when we didn't
need it? To demonstrate another word, COUNT, which is given an
address of the start of a FORTH string in memory. COUNT returns
the starting address of the character bytes, foL Lowed by the byte
count taken out of the head of the string. Since this is just
what TYPE wants, then the preceeding exampLe becomes:

E BU F COUNT TYPE A 1 ! OK

You may have guessed that COUNT is defined in the FORTH
dictionary as:

COUNT DUP 1 + SWAP C@ ;

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--~ - ----

To do the equivalent of COUNT TYPE in BASIC:
(assuming string & byte count start at 8000 decimal

100 IF PEEK(8000) = 0 THEN 140
110 FOR X=8001 TO 8001+PEEK(8000)-1
120 PRINTCHR$(PEEK(X));
130 NEXTX
140 REM *** REST OF PROGRAM ***

- NUMERIC FORMATTING

VaL u e son the s t a c k may bee as i L y p r i n ted. • (d 0 t), U. , and D.
have aLready been mentioned. These three print the number,
foL Lowed by a space. Since you donlt aLways know how many spaces
the number wi L L take up on the screen, co Lumn formatting might
seem difficut. FortunateLy, FORTH provides words for numeric
formatting.

.R is used to print a stack vaLue right-justified within a
specified fieLd. The number on top of the stack just as .R is
executed is used as the fieLd width. The second vaLue on the
stack is the vaLue printed out as a SIGNED INTEGER. For
instance, suppose we wish to pri~ the top three stack vaLues in .--- ..
a coL u m n, e a c h pro c e e d e d by a:m ~s age:

COLTST CR
CR

"VAL1:" 5
"VAL3:" 5

• R CR
• R ;

"VAL2:" 5 • R

Push three vaLues onto the stack, then execute COLTST. Each
number wi L L be printed after the message within a fieLd 5
characters wide, right-justified:

21367 17 832 COLTST
VAL1: 832
VAL2: 17
VAL3:21367 OK

To print out a number right-justified in BASIC:

100 B$=STR$(S): REM **
110 PRINT RIGHT$ ("

S = NUMBER TO PRINT
" + RIGHT$(B$, LEN(B$)-1), 5)

U.R is used to print an UNSIGNED number right-justified, and D.R
is used to print a SIGNED DOUBLE number right-justified in the
same manner.

43

TEXT AND NUMERIC INPUT

- SINGLE KEY INPUT

KEY is used to fetch the next character from a Line of input. The
Commodore 64 input routine is ca L Led. If the keyboard' buffer is
empty, the 64 waits with the f Lashing cursor input prompt unti L
the RETURN key is pressed. The ASCII vaLues of the keys in the
order they were pressed are returned to the KEY routine one at a
time. The va Lue for the RETURN key (13 decima L) wi L L indicate
the end of the input Line. With the way the 64 impLements the
input function, this routine is not of much use. The foL Lowing
words described wi LL be of more heLp.

GET ca L Ls a C64 routine that scans the keyboard Looking for a key
depressed. It returns immediateLy, whether a key was pressed or
not. The ASCII vaLue of the key sensed is returned as the top
vaLue of the stack. If no key was depressed, then GET returns
with a vaLue of zero (0) as the top stack item. ExampLes of some
of these input words wi L L be given in the section LOOPING AND
BRANCHING. The BASIC equivaLent of GET is:

100 GETA$
1 1 0 I F A $ = " "T HEN A = 0 : GOT 0 1 3 _0 ;;= ..
120 A= ASC(A$) -
130 REM ** REST OF PROGRAM ***

KEY IN, L ike GET, i s not a FORTH s tan dar d w 0 rd. I tis pro v ide d

for convenience in this impLementation. A common practice in
programs is to print out a message on the screen for the user to
read, and wait for a key to be pressed to continue. The troubLe
with doing this in BASIC is that the f Lashing cursor does not
appear whi Le the program is waiting for a key to be pressed:

100 PRINT"PRESS ANY KEY TO CONTINUE"
110 GETA$: IFA$="" THEN 110
120 REM ** REST OF PROGRAM ***

or:

100 PRINT"DO YOU WISH TO PLAY GAr~E AGAIN
110 GETA$: IFA$="" THEN 110
120 IFA$="N" THEN STOP
130 IFA$<>"Y" THEN 110
140 REM ** REST OF PROGRAM ***

(Y / N) " " . . ,

KEYIN provides the same function as Line 110 of the above
routines, however it aLso turns on the fLashing cursor '"hile it's
waiting as an indication to the user.

44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------------------------------------~------------------------------------ .. ----

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\tJAITKEY CR " PRESS ANY KEY TO CONTINUE" KEYIN ;

KEYIN turns off the cursor as soon as a key is pressesd, and
returns the ASCII va lue of the key pressed on the stack. This
vaLue may be tested, and program branching may be based on it.

- INPUTTING A LINE OF TEXT

whi Le KEY may be used to input a Line of text from the keyboard,
there is a cLeaner way to do it. But before describing the
commands, the description of HERE would be heLpfuL.

HERE is a word that returns the current top of the dictionary,
i.e. the address of the first free byte after the end of the
dictionary. PAD returns an address that is aLways 68 bytes
beyond the HERE address. When anything is compi led into the
dictionary, thus extending it, both HERE and PAD values move
upwards. The opposite happens when the size of the dictionary is
decreased via FORGET.

The space from PAD downwards to HERE is used for numeric to ASCII
conversion, such as in printing a stack vaLue. The space from
HER E up war d s toP A Dis use d _ b i-=£h.-e - FOR T H s Y s t emf 0 r i n put S t rea m
par sin g. I not her war d s , t h -e -i"p ace s tar tin g fro m HER E i sus e d a s
a temporary character string buffer. Each command in the input
stream (that is seperated by spaces) is moved first into the
buffer starting at HERE. The character string is assumed to be
the name of a FORTH definition. The dictionary is searched for a
match. If a match is found, the definition whose name matches
the com man dis e x e cut e d. I f nom a t chi s f a u n d, the s t r i n g 0 f
characters is converted into a number, if possible, and pushed
onto the stack. If conversion is unsuccessful, an error message
('? CAN'T FIN 0) i sis sue d.

The same words that FORTH uses to scan an input Line are
avai labLe to the user. The buffer area starting at HERE is aLso
avai LabLe, ONLY BETWEEN COMMANDS IN THE INPUT STREAM.

The FORTH word EXPECT may be used to input a string of characters
from the user, much Like the BASIC:

100 INPUT"ENTER MONTH:";A$

45

Before executing EXPECT, the user must indicate where the string
of characters is to be placed in memory. HERE is a gooo place,
as long as you make use of all the characters input before
exiting back to the FORTH input stream interpreter. Another
thing that wi l l corrupt data in the HERE buffer is doing printing
of stack values, since numeric conversion starts at PAD and works
downwards. This is no problem if the input string is say 40
characters or Less, but is a definite problem on longer input
Lines. The user must aLso indicate to EXPECT the MAXIMUM number
of characters to accept. EXPECT waits unti l the maximum number
of characters is recei'led, or unti l the RETURN key is pressed.
It then puts a coupLe of <nuLLs> (0 bytes) at the end of the
input string before returning. This aL lows the user to determine
the end of the string.

ASKMONTH CR
CR

" ENTER MONTH:" HERE 9
" THE MONTH ENTERED '",AS: II

EXPECT
HERE 9 TYPE . ,

The character string may of course be input elsewhere in the
FORTH system or moved from HERE for more permanent storage (see
the CMOVE command in the gLossary).

'II h i LeE X P E C T has i tis use f u l n e s s, the rei s abe t t e r war d. M 0 S t
of the time you wi L L need a Q U;A;t;:IF I E R to a word. For instance,
suppose you wanted to print=a-~age header on the printer after
opening it as a fi Lee In BASIC you would do:

OPEN4,4,1
PRINT#4,"LISTING OF STAR SPARK'fS SPACE 'liAR GAME"

FORTH has a word caL Led 'IIORD that wi l l scan off a string of
characters from the input stream and pLace them into HERE,
preceeded by a byte count. The DELIMITER CHARACTER may be
specified. This means that you specify the character that the
text string may start and end with. This may be the space
character, the quote character, or anything else.

'linen the word definition using 'IIORD is executed, it must be
fol lowed by a text string that starts and ends with the specified
delimiter. The file 1/0 commands are explained in another
section, but to just explain the next example, the PRINT# routine
requi res the fi le#, address of a text string, and a text string
byte count (fi le# addr count ---):

46

define command to output following string to printer

PRNTR 34
4
HERE
COUNT
PRINT~ ,

',0/0 R 0 (SCAN OFF STRING ~ITHIN QUOTE CHARACTERS)
(FILE#)
(START OF STRING LEFT BY ~ORD
(LEAVE ADDRESS & LENGTH OF STR:NG
(SEND STRING TO PRINTER)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Once defined, PRNTR may be used to send a character string to the
printer:

4 4 0 0 0 OPEN
PRNTR "LISTING OF STAR SPARKYS SPACE WAR GAME"

(if you tried this 'with a COMMODORE VIC 1525
have to output a RETURN to get the Line to
foLLowing sequence:)

13 EBUF
4 CLOSE

C ! 4

- NUMERIC INPUT

EBUF 1 PRINT#

printer, you'L L
print. Type the

Whi Le it is easy to push numeric vaLues onto the stack before
executing a FORTH word, it is often desirabLe to have a routine
request a numeric vaLue from the user. Since the user is typing
aLphanumeric characters, how can these be converted into numbers?
In BASIC this is done automaticaLLy:

INPUT"ENTER STARTING NUMBER:";N

I n FOR T H , N U M B E R con v e r t s a s:t gn-g 0 f A SCI I c h a r act e r sin me m 0 r y
into a SIGNED DOUBLE NUMBER which it Leaves on the stack. The
address of the FORTH character string (byte count + string) is
passed to NUMBER. The number is converted according to the
current numeric BASE. If a decimaL point is encountered in the
character string, its position is stored in the user variabLe
DPL, but wi L L otherwise be ignored. Since the conversion stops
upon reaching a space or a nuL L byte, EXPECT may be used to
input the string as Long as a byte count greater than or equaL to
the Length of the string is pLaced as the first byte. An ASCII
minus sign encountered at the start wiLL Leave a negative vaLue.
A genera L numeric input routine may now defined:

d
INPUT DECIMAL (or any other base)

HERE 1 + 10 EXPECT read in up to 1 0 characters)

1 0 HERE C ! (pLace byte count at start)

HERE NUMBER . (convert string to number) ,

To input a singLe precision integer, just DROP the top word off
the stack after INPUT returns, or pLace DROP in INPUT just after
NUMBER and before ;

INPUT 1234
. 0 OK

1234 OK -

OK

47

Since 'WORD may aLso be used to input numeric vaLues, it is easy
to read in and convert numeric strings representing the vaLues
in a tabLe. For instance, in the graphics command set there is a
word called SPDEFINE. SPDEFINE is used to create a sprite
definition in memory. SPDEFINE calls the definition SPCODE to
read in and convert 63 numbers (actua lly character strings
representing numbers) that fol low in the remainder of the screen.
SPCODE is defined in the dictionary as:

If

HEX

SPCODE
21 0 DO

3 0 DO
BL 'WORD NUMBER DROP

(DO FOR 21 LINES)
(DO FOR 3 VALUES PER LINE)
(READ IN & CONVERT NUMBER)

LOOP
S'WAP ROT (REVERSE ORDER OF THE 3 BYTES IN THIS LINE)

(COMPILE THE BYTES INTO THE DICTIONARY) C, C, C,
LOOP ;

a screen contains the following:

CREATE SPRO SPCODE
00 00 00
00 F F 00
01 FF 80
03 00 cO
03 00 cO
03 00 CO .-~- .

03 00 CO -
03 00 CO
03 00 CO
03 00 cO
03 00 CO
03 00 CO
03 00 CO
03 00 CO
03 00 CO
03 00 CO
03 00 CO
03 00 CO
01 F F 80
00 F F 00
00 00 00

I
I
I
I
I
I
I
I
I
I
I
I
I
I

When this screen is Loaded, a new dictionary entry caLLed SPRO I
will be created and SPCODE will read in the foLLowing 63 vaLues
and store them as bytes in the body of the definition. By
modifying the above definition of SPCODE you can create varying I
sizes of data tabLes, arrays, etc.

48

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

HANDLING STRINGS IN FORTH

The techniques previousLy mentioned for text input and output are
avai LabLe in most FORTHs. C64-FORTH provides a specia L group of
words to manipuLate character strings for the convenience of the
user. They are not normaLLy part of the C64-FORTH system - they
must be Loaded in from disk. On your C64-FORTH disk starting on
screen # 20 are the source definitions for the string words.
Just type:

20 LOAD

and the extensions wi L L be added onto
The commands described in the rest
avai LabLe for your use.

your current FORTH system.
of this chapter are now

- HOW STRINGS ARE STORED IN MEMORY

It was previousLy mentioned that FORTH strings are stored as a
string of characters preceeded by a Length byte (note that EXPECT
and TYPE are exceptions ;n t~t they deaL onLy characters
the m s e L v e s , and ; t ; sup t 9 ::;h-e use r t a k e e p t r a c k 0 f b y t e
counts). The string extensions foL Low a simi L;ar concept,
however the current-Length byte ;s preceeded by a maximum
aLLowabLe Length byte. The maximum aLLowabLe Length for ANY
string ;s 255 characters. Most of the string functions return an
address IoIhich points to the current-Length byte. NormaL FORTH
words such as COUNT, TYPE, CMOVE, etc. can be used to operate on
strings ;n memory. However, when a string is stored into memory,
the byte preceeding the destination is checked. If the Length of
the string to be stored is Longer than the maximum count al Lowed,
then onLy the aL Lowed number of bytes is accepted from the
string. This feature prevents the user from overlolriting parts of
the FORTH system by moving strings too Long for the destination -
a precaution most FORTHS do not provide.

A FORTH string in memory:

max
Length
a L lowd

current
Length
byte

I I I
the characters are stored here ••••

I I I

r
I The address of a string aLways points to

the Length byte.

49

The space starting at PAD is used as a temporary storage area for
strings. If a string is currentLy stored starting at PAD, PAD
wi L L contain the current Length of the string, the string itseLf
wi L L start at PAD +1 and continue upwards, and NO max byte count
is stored at PAD -1. PAD is aLways assumed to be abLe to contain
the maximum Length for a string - 255 characters. Certain string
functions a Lso use the space from PAD+256 to PAD+511 for
temporary operations, but this is transparent to the user.

The C64-FORTH extensions manipuLate strings in a manner simi Liar
to numeric stack items. If the stack has a Limited depth, how
can it be used to hoLd strings aLso? Easy the strings
themseLves are not stored on the stack, rather the ADDRESS of the
string is stored on the stack. NormaL stack operators such as
DUP, ROT, SWAP, etc. may be used to manipuLate string pointers.
This aLLows for very efficient string handLing.

A few things must be kept in mind - One of the functions, $!,
checks the specified destination address, and uses the preceeding
byte as a max byte count. Therefore, you cannot use $! to move a
string to some random memory location that has not been decLared
as a string variabLe or constant UNLESS you first store a max
byte count into the destination address-1. You couLd however use
CMOVE or <CMOVE to move the string there. Then any of the string
functions can use that string as a SOURCE string for an
operation, since the max lengu. count is onLy checked when
s tor i n gas t r i n g • A l so, a n u ~ t:[s"t ;. i n g i sin die ate dON L Y b y the
current Length byte being equaL to 0 (zero). The contents of a
nuL L string may be any random pattern of byte values so only the
current Length = 0 should be used to detect a nuLL string. One
thing more - the address of PAD changes with the current end of
the FORTH dictionary. If a string is temporari Ly stored at PAD,
and the end of the dictionary is changed, the data starting at
the new location of PAD is meaningless.

In the foL
show the
gLossary.
address of

"

Lowing descriptions, the same stack notation is used to
stack requirements and effects as is used in the

$1, $2, wi l L represent strings (actua lly the
the strings) on the stack.

$1
at compi Le time
at run time

The first of the string extentions is" (quote). "functions
simiLiar to " except instead of printing a string, "moves a
string into the temporary hoLding area at PAD. Like .", "
operates differentLy in direct (interpretive) mode than when
being compi Led into a definition. To put a string of characters
into the PAD area, just type" foL lowed by one space, then the
string of characters delimited by another" character:

" ABCDEFG" OK

50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

" Leaves the
string there.
type:

address of PAD on the stack
To see the character string as

once it stores the
it is stored at PAD

8 DUMP
5206 7 41

(the address of PAD ~as

42 43 44 45 46 47
Left on the stack)

.ABCDEFG

(DUMP dispLays a section of memory starting at a specified
address for a specified # of bytes. RegardLess of ~hat base you
are in, DUMP al~ays prints in HEX numbers to give a readabLe
format on the 40-character screen. The contents of 8 Locations
are printed per ro~, fal lo~ed by ASCII representations of the
contents of the Locations.)

" can a L so be use d 'oj i t h i n a colon definition. W hen the
definition i s be i n g compi Led, the string i s pLaced i n t 0 the
definition. When the definition i s executed, the ADDRESS of the
string i n memory (i n the body of the definition) i s pLaced on the
s t a c k :

TEST " TEST STRING" (OK

Na~ type:

TEST OK ---u. 24872 OK

The address printed ~i L L be dependent upon the actuaL Location in
memory the definition TEST ended up. You may print the string
by:

TEST COUNT TYPE TEST STRING OK

$ • $1)

The COUNT-TYPE pair seems inconvenient. There are ~ords for
printing out stack vaLues, so one is provided for printing out
strings from a string address on the stack. $. prints the string
pointed to by the top address on the stack. The address of the
string is removed from the stack by $. From a previous exampLe:

TEST $ • TEST STRING OK

51

$VARIABLE N at compi Le time
$1 at run time)

$VARIABLE is used to create a new dictionary entry, and reserve
space for a string of a specified maximum Length. When creating
a new string variabLe, you specify the maximum Length of any
strings to be stored in it in the future, pLus the name of the
variabLe. For exampLe:

1 6 $VARIABLE FILENA~'E OK

wi L L create a string variabLe that can hoLd a string of up to 16
characters in Length. The contents of the variabLe just created
is not initiaLized, and may consist of random va Lues, but the
current string Length is set to 0 (zero) to indicate a nu L L
string is currentLy stored. At any future time, just referencing
the name of the string variabLe wi L L push the address of the
string contained onto the data stack. ExampLes of using string
variabLes are given in some of the other word descriptions.

$CONSTANT ($1
$2

at compi Le time
at run time)

$CONSTANT functions just Like $VARIABLE except it provides a way
top r e - i nit i aLi z e a s t r i n g va r i a,b4-e. 0 n c e the s t r i n g con s tan tis
c rea ted, ita p pea r sex act L y L t k iji-and can b e use d L ike, a s t r i n g
variabLe. The maximum Length of the string constant defined is
set to the Length of the string it was initiaLized to. To create
a string constant, first put the address of a string on the data
stack, then use $CONSTANT foL Lowed by the name you wish to assign
to the new constant:

" Press any key to continue ••• " $CONSTANT PKEY OK

" defined a string and Left the address of PAD
which is , .. here the string was temporari Ly stored.
created a new dictionary entry, ca L Led it PKEY,
string at PAD to PKEY. To verify this:

PKEY

Even
PKEY

$ • Press any key to continue •••

though it is caL Led a constant,
at a future time, since it acts

it is created.

52

OK

you can store
Like a string

on the stack,
$CONSTANT then
and moved the

a string into
variabLe once

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

$! $1 $2

$! stores string $1 at the Location $2. If $2 is the address of
PAD, then the maximum byte count of the destination is assumed to
be 255; otherwise the byte at $2-1 is fetched and used as the max
count. The r1INIMUM of either the current Length of $1 or the max
byte count just fetched is the number of characters transferred
to the destination. The Length of the string formed at $2 is set
to the number of characters actuaLLy moved.

From a previous exampLe:

"TESTDATA.DAT" FILENAME $! OK
FILENAME $. TESTDATA.DAT OK

Let's try storing a string that is Longer than the maximum Length
aLL 0 wed. W hen c rea tin g the s t r ; n g v a ria b L e F I LEN A r1 E ina
previous exampLe, we specified a maximum Length of 16 bytes or
characters.

" ABCDEFGHIJKLMNOPQRSTUVWXYZ" FILENAME $! OK
FILENAME $. ABCDEFGHIJKLMNOP OK

Here it is obvious that onLy 16 characters were accepted when
storing the specified string into a string variabLe of onLy 16
characters maximum Length.

$+ ($1 $2 PAD

$+ is used to concatenate (add together) strings. $2 is added
onto the end of $1 and the resulting string is Left starting at
PAD. Either string may be in PAD to begin with (but not both
obviousLy), and the resuLting string is Left in PAD.

ExampLes:

"ABCDEF" $CONSTANT
"123456" TEMP$ $+
$. 123456ABCDEF OK

TEMP$ OK
OK

TEMP$ "123456" $+ $. ABCDEF123456 OK

If the totaL Length of the two strings combined is greater than
255 characters, an erroneous string wi II result.

53

LEFT$ $1 N PAD)

LEFT$ functions simi liar to its BASIC companion. LEFT$ returns a
string comprised of the left N # of characters of string $1. If
the length of string $1 is less than N characters long, then the
string $1 in its entirety is returned. The string $1 may be at
PAD to 'start with, and the resulting string is left at PAD.

"1234567890" 4 LEFTS S.
~T~E~M~P~$ __ ~8~~L~E~F~T~$ __ ~$~. ABCDEF

1234
OK

OK

Remember that when TEMP$ was defined a few examples ago, it was
initia lized with a string of on ly 6 characters, therefore the
ful L string was returned when the Leftmost 8 characters was
requested.

RIGHT$ S1 N PAD

RIGHTS works simi Liar to its BASIC counterpart. The rightmost N
of characters is returned from string $1 with the resulting
string Left at PAD. If N is = 0, then a nulL string is returned,
if N is greater than the length of $1, then $1 is returned.

TEMP$ 3 RIGHT$ $.
TEMP$ 12 RIGHT$ $.

MID$

DEF OK
ABCDEF

,;~- .
-.~,.....

GK -~

$1 STRTPOS #CHR PAD

MID$ returns a sub-string comprised of #CHR characters starting
at position STRTPOS in string $1. As in BASIC, MID$ assumes the
fir s t c h a r act e r ina s t r i n g i sat p 0 sit ion 1, the sec 0 n d
character is in position 2, etc ••• If STRTPOS is greater than
the length of $1, or if either STRTPOS or #CHR is equa l to 0,
then a nuLL string is returned. If string $1 has fewer
characters than #CHR from the starting position to the end of the
string argument, then the whole rest of the string is returned.

" 1234567890" 3 4
" 1234567890" 101
" 1234567890" 1 2 3

54

MID$ $.
MID$ $.
MID$ $.

3456 OK
a OK
OK (nuLL string was

returned)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LEN ($1 LEN

LEN returns the current
previous exampLe:

Length of the specified string. To use a

TEMP$ LEN 6 OK
" 1234567890" 5 0 MID$ LEN o

CHR$

OK (a nuLL string was
returned by MID$)

(B PAD)

CHR$ returns a 1-character string created from the byte vaLue
passed on the stack. This may be used to insert carriage-returns
in a string, printer controL commands, etc.

TEMP$ 13 CHR$ $+ $. ABCDEF
OK

ASC ($1 8)

ASC returns a number from 0-255 which corresponds to the
Commodore ASCII vaLue of the fi-L,Stcharacter in the specified
string. If there are no ch-a~-t'ers in the string, a "NULL
S T R I N G" m e s sag e w iLL b e p r i n t e-d and a vaL u e 0 f z e row iLL b e
returned. The nuL L-string message can be avoided by adding
(concatenating) a string equaL to CHR$(O) onto the end of the
string to use ASC on.

"ABCDEF" ASC 65 OK
~"~"~~A~S~C~~~~N~U~LL STRING 0 OK
o CHR$ TEMP$ $! "" TEMP$ $+ ASC o OK

VAL ($1

VAL converts a string of characters into a singLe-precision
number and returns it on the stack. The conversion stops at the
first non-digit character. The character string may start with a
minus sign, and the converson is done according to the current
base.

"-1234" VAL -1234 OK
"65530" TEMP$ $! TEMP$ VAL -6 OK

55

J

DVAL $1

DVAL works just Like VAL except a doubLe-precision # is

"12345678" TEMP$ $! OK
TEMP$ DVAL D. 12345678 OK

HEX TEMP$ DVAL DECIMAL D. 305419896 OK

returned:

Note that in the Last exampLe the conversion pushed a vaLue equaL
to 12345678 HEX onto the stack, which when printed in decima L
comes out 305419896.

STR$

STR$ takes the top stack
characters, Leaving it at
either a space or minus
ori gina L va Lue.

1234 STR$ 8 DUMP
6592 5 20 31 32 33

-32760 STR$ 8 DUMP
6592 6 2D 33 32 37

DSTR$

(N PAD

vaLue and converts it to a string of
PAD. The resuLting string begins with

sign depending on the sign of the

34 20

.~ ---- -
~--

20

20

• 1 234 OK

.-32760 OK

D PAD

DSTR$ acts the same as STR$ except a doubLe-precision number is
taken from the stack and converted to a string. No decimal point
is included in the string, however a definition can be created
for that purpose:

1 2 $VARIABLE S 1 1 2 $VARIABLE S2 (temporary variabLes)

DLRSTR$ (D PAD)

DSTR$ " $" S 1 $+ S 1 $!
S 1 DUP LEN DPL @ LEFT$ S2 $!
S 1 DPL @ RIGHT$ S 1 $!
S2 " " $+ S 1 $+ ; (string Left at PAD)

56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DLRSTR$ may now be used to create a do L Lar va Lue out of a doub Le
number on the stack (note: the position of the decimaL point must
be in variabLe DPL, which it aLready is if the doubLe number on
the stack has been the most recent number converted from the
input stream)

534.86 DLRSTR$ $ • $ 534.86 OK

The DPL @ pair used in DLRSTR$ may be repLaced by the constant 2
to ignore the position of the decimaL point in the number input
to aLways have 2 decimaL pLaces in the finaL string. S1 2 255
r~ I D $ S 1 $! may b e use d aft e r D S T R $ i n D L R S T R $ toe Lim ina t e the
Leading space thus putting the doLLar sign right before the
va Lue, and other improvements may be made in a simi Liar manner.

INPUT$

INPUT$ provides
and store it in

10 INPUT A$

very convenient way to
a variabLe. In BASIC we

$1)

input a character
wouLd do :

string

INPUT$ aL Lows us to do a simi Liar thing in FORTH. The FORTH word
EXPECT is caL Led, which requir~-maximum count of characters.
1ft h e add res S t 0 S tor e the s ~t ri" n 9 b e i n gin put ($ 1) i seq u a L t 0

PAD, then 255 is used as the input count; otherwise the maximum
Length of the destination is used.

80 $VARIABLE A$
GETDATE CR "INPUT TODAY'S DATE: " INPUT$ A$. ,

When GETDATE is executed, a character string of up to 80
characters (the maximum Length of string variabLe A$) wi l L be
accepted and stored in AS.

GETDATE
INPUT TODAY'S DATE: JULY 27, 1983 OK
A$ S. JULY 27, 1983 OK

POSS $1 $2

POS$ searches for the first occurance of string $2 within string
$1. If found, N is returned which is the position of the start
of the matching string within $1. If not found, N returns equa L
to zero. Using the string input into A$ in the previous exampLe:

A$ " 27," POS$
A$ " 1983A" POS$
A$ "JULY" POSS

6 OK
o OK

OK
(no match found)

57

I

J

$= $1 $2 fLag

$= is used to compare two strings and returns a true fLag if the
strings contain the same characters AND they are equaL in Length.

"ABCDEFGH" A$ $!
"ABCDEF" A$ $=
"ABCDEFGH" A$ $=

$<

OK
o OK

1 OK
strings not same Length)

(strings identicaL)

$1 $2 fLag

$< compares $1 to $2 and returns a true fLag if $1 is Less than
$2, OR if $1 is shorter than $2.

"ABCDEF" A$ $< 1 OK ($1
($1
($1

is shorter than $2)
is not Less than $2 " ABCDEFGH"

" ABCDEFGG"

$>

$> compares
than $2, OR

$NUMBER

A$ $<
A$ $<

o OK
1 OK is Less than $2 by vaLues)

$ 1 t 0 $ 2 and ret u r--~ a t rue
if $1 is Longer in- Ctngth.

$1

f Lag

$1

$2 fLag

i f $1 is greater

D

$ N U ~, B E R fun c t ion saL m 0 s tid e n tic a L tot h e FOR T H s tan dar d w 0 r d
NUMBER. However, NUMBER aborts with an error if the string being
converted into a doubLe number contains an unexpected character.
$NUMBER converts a string of characters into a doubLe-precision
stack va Lue, but onLy stops the conversion process upon
encountering a non-expected character in the string. JExpected J
characters means a possibLe Leading minus sign, an embedded
decimaL point, and any numeric vaLue Legitimate to the current
base. The address of the first non-expected character within
string $1 that the conversion stops at is left in the variable
$NUMADR.

$NUMBER wi l L prove very usefu l at times. If you have created a
data fi Le from within a BASIC program, and PRINTed numeric va Lues
out to it, you wi L L have a data fi Le containing something Like
this on disk:

34, 567,JOHN SMITH,1428 ELM ST.,LIVELYHOOD,KA,999-555-8426

58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I The above may have been created with a BASIC statement such as:

I
I
I
I
I
I
I
I
I
I
I
I

2020 PRINT NiBiNSiTSiCSiS$i P$

BASIC seperates PRINTed vaLues by commas, which are not
'expected' characters in NUMBER conversion, but $NUMBER wi L L
convert one of the numbers in the above exampLe and stop the
conversion process upon encountering a comma. The address of the
character that stopped the conversion, in this case one of the
commas, is Left in $NUMADR. A combination of the vaLue Left in
SNUMADR, and proper use of MID$ can be used to scan off and
convert a data fi Le saved on disk via either BASIC or C64-FORTH.

OTHER DEFINITIONS:

FoLLowing are a few other definitions used in the string
extension screens that may occasionaL Ly be usefuL:

-TEXT (add r 1 N1 addr2 N2

-TEXT is a PROPOSED FORTH STD word. The description of the
pro p 0 saL (a n d the 0 per a t ion 0 f -~b e w 0 r d a s d e fin e din the C 6 4 -
FORTH string extensions) is: ":':...'::'"''tompare two strings over the
Len g t h N 1 beg inn i n gat add r-1 ~ n dad d r 2 • Ret urn z e r 0 i f the
strings are equaL. If unequaL, return N2, the difference between
the Last characters compared: addr1 (i) addr2(i) "

Note that the addresses passed to -TEXT are NOT norma string
address (i.e. of the byte count at the start of a string), but
rather absoLute addresses within strings of characters.

SCOMPARE $1 $2 f Lag

I Compares $1 with S2 returning a fLag as foLLows:

I
I
I
I
I

1) Positive if $1 is greater than S2 OR equaL to $2 but Longer,
2) Zero if the strings are identicaL in content and Length,
3) Negative if $1 is Less than $2 OR equaL to $2 but shorter.

UMOVE fromadr toadr #byt

UMOVE is a universaL version of CMOVE and <CMOVE. UMOVE decides
which version to caLL, taking into consideration source
destination overLap.

59

FILE I/O

The FORTH screens generated by C64-FORTH are saved onto disk or
tape as sequentiaL data fi Les. The routines used by C64-FORTH to
do this are aLL avaiLabLe to the user. They aLLow creating or
accessing FORTH screens as data fiLes, and data fi Les created by
or to be used by BASIC programs. As in BASIC, tape I/O is as
easi Ly worked with as disk I/O. Program type fi Les and reLative
fiLes aLso are accessabLe.

The one major difference between accessing data fi Les via C64-
FORTH and through BASIC is that C64-FORTH does data reading and
writing from/to an externaL fi le on a straight byte-by-byte
basis. It is up to the user to determine and identify whether
data is numeric, components of ASCII string data, etc.
Conversely, error checking is easier than possibLe in BASIC.

- SYSDEV#

SYSDEV# is a C64-FORTH variabLe used by the I/O routines. Most
r 0 uti n e s aut 0 mat i caL L y set i t_t 0 the de vic e n u m b e r 0 f the I /0
u nit cur r e n t L y b e i n g a c c e sse d._ ...::ftr e- L 0 101- LeveL r 0 uti n e s 0 fOP EN,
C lOS E, GET # , IN PUT # , P R I NT # , A"N t)= C M D # don 0 t use S Y S D E V # a taL l,
they rely upon the device number being passed through the OPEN
command. However, some of the disk error checking routines do
require that the device number of the disk be present in SYSDEV#.
It is a good practice to set SYSDEV# before opening any fi Les to
a disk or tape device. Note that the Low byte- of the contents of
SYSDEV# hoLd the device #, and the high byte, normaLLy 0,
indicates which drive to use of a muLtipLe-drive unit such as a
4040. ALso, SAVESYSTEM and SAVETURNKEY commands require that
SYSDEV# be hoLding the device number of the I/O unit that C64-
FORTH is to be saved on.

- ST

ST is a C64-FORTH variable. After any I/O using OPEN, CLOSE,
GET#, INPUT#, and PRINT#, the ending I/O status is Left in ST. In
BASIC programs, the variabLe ST is usuaL Ly checked after a
transfer:

100 INPUT#2, A$(I),B
110 IF ST<>O THEN 1000

REM ** READ IN STRING & NUMBER
; REM ** LINE 100 IS ERROR ROUTINE

The same can be done in C64-FORTH:
" I/O STATUS ERROR" 2 HERE 80 INPUT# ST C@ IF

60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
-I

1
I
I
I
I
I
I
I
I
I
I
I

- OPEN (fi Le# dev# sa fnptr fnbytcnt)

A fi Le must be opened before it may be accessed. Parameters
must be passed to the OPEN command giving the specifications
necessary to access the fiLe. The major difference between the
FORTH OPEN and the BASIC OPEN commands is that with BASIC OPEN,
an optionaL fi Lename or command string may be specified, whereas
the FORTH OPEN must be passed a fi Lename/command string count and
pointer EVEN IF ONE DOES NOT EXIST (in this case a a is pushed
onto the stack for a fi Lename/command string count, and any va lue
may be pushed on as a fi Lename/command string pointer, as this
wiLL be i~nored).

(assuming a fi Lename/command string and byte
type ca L Led FNBUF and FNBUF contains the
foLLowed by the string 'O:TESTDATA,S,R')

2 (push a f i L e# onto stack)

8 (push device # onto stack)

count
byte

i sin
count

a data
of 1 4

2 (push secondary address onto stack)

FNBUF COUNT (push fi Lename string address and byte count)

OPEN (open the device for input)

BASIC equiv:
OPEN 2,8,2,"O:TESTDATA,S,R"

(too pen a d e vic e wit h 0 u t s p.~j f yin g a f i Len a m e 0 r com man d
string) - ~-.

4
4
1
a
DUP
OPEN

BASIC equiv:
OPEN 4,4,1

- CLOSE

(push f i L e# onto stack)

(push device #)

(push secondary address)

(push any vaLue to keep stack
(push fi Lename byte count - a
(open the device)

(fi Le#)

baLanced)

i n t his case)

Any fi Le that was opened must be properLy cLosed to ensure aL L
data is written to the fiLe, and to free up the fiLe or device
for further use.

2 CLOSE (cLose fiLe # 2)

BASIC:
CLOSE 2

61

J

- INPUT# (f i L e# addr count)

This is the easiest way to retreive character data from a fi Le on
disk or tape. The count specifies a MAXIMUM number of characters
to; n put (B A SIC aut 0 mat i caL L y L; mit sat 80) • IN PUT # t e r m ; nat e s
before reaching the maximum count if a RETURN (byte vaLue =13), a
<nuLL> code (byte vaLue =0), or the END-OF-FILE status ;s
received. The data received, including the RETURN or NULL byte
if encountered, is placed in memory starting at <addr+1>. The
count of the actual number of bytes received (this does not
inc Lude the RETURN or NULL bytes) ;s placed at <addr>, forming a
nor mal FOR T H s t r ; n g.

2 HERE 80 INPUT# (read 80 characters max. into memory
starting at end of dictionary)

BASIC:
INPUT#2,A$ or INPUT#2,C

- GET# (f i l e# addr count)

Simi lar to INPUT#, GET# retrieves <count> number of bytes from
<fi le#> and stores them as a FORTH string (byte count + bytes
r e c e i v e d) s tar t ; n gat < add r > ; -- -I n put i s t e r m ; nat e d b e for e
rea chi n g m a x i mum co u n tON L Y ~ 'rf:F'-d- e -t e c t ; 0 n 0 f the END - 0 F - F I L E
status. GET# can be used instead of INPUT# when the input data
is expected to contain byte vaLues equaL to 0 or 13 decimaL.
GET# is more usefuL than BASIC's GET# because it can be used to
input more than one byte at a time. Since the setup for a
transfer of a byte is far greater than actuaL Ly transferring the
byte, muLtipLe byte GETs wiLL be very fast, compared to putting
GET# in a Loop in BASIC.

(fetch 20 bytes from data fi Le)

7 HERE 20 GET#

In BASIC:
100 FOR Y=1 TO 20
110 GET#2,A$: A$=A$+CHR$(O)
120 A = ASC(A$)
130 POKE AD,A
140 NEXTY

62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- PRINT# (fiLe# addr count)

PRINT# is used to transfer data bytes to an externa L fi Le.
<count> number of bytes are transferred starting from <addr>. If
a FORTH string starts at HERE, then to send it to fi Le# 5:

5 HERE COUNT PRINT#

This is simiLar to BASIC's: PRINT#5,A$

NOTE: 5
itseLf,
after a
do the
memory,

13 EBUF

- CMD#

o 0 PRINT# is NOT identicaL to BASIC's PRINT#5 by
since Commodore 64 BASIC automaticaL Ly outputs a RETURN
print statement that doesn't end with a semi-coLon. To
identicaL function, pLace a RETURN code somewhere in
and output that:

C ! 5 EBUF 1 PRINT#

(fi Le#)

CMD# is simi Lar to BASIC's CMD .with a sLight difference (hence
the d iff ere n t n a me) ; 0 u t put i s .~~ t d i v e r ted fro m the s c r e e n to
the externaL device, but is=~t out seperateLy after it is
printed on the screen. In other words, the externaL device ;s
opened, a byte transmitted, and then cLosed each time a byte;s
printed on the C64 dispLay. Since disk versions of FORTH reLy
heavi Lyon the disk, this was necessary. Otherwise, to List
muLtipLe screens for instance, a screen wouLd have to be read in,
the CMD fi Le opened, CMD issued, the screen printed, the CMD
device cLosed, the next screen read in from disk, etc. Disk
directories wouLd have to be buffered in memory. CMD# impLements
this in a much cLeaner way aLLowing true hardcopy of the screen
dispLay.

For an exampLe of usage, see the section under 'Deta; ls of the
C64-FORTH system' caLled 'Listing muLtipLe screens on the VIC-
1525 printer'.

- ABORTIO

This routine may be caLLed from any FORTH routine. It cLoses
ALL open fi Les. This may be used in case of an 1/0 error.

63

- GETDEV (f i L e# de v#)

GETDEV returns the device number that a specified fi Le number was
opened with. The fi Le number must be a current Ly open fi Le.

- EBUF adr)

EBUF is a 3D-byte Long buffer used to hoLd the disk status sent
from the disk. See RDSTAT, CKRDSTAT, and CKWRSTAT.

- RDSTAT (f i L e#)

RDSTAT reads in the disk status from the disk ONLY if fi Le#
refers to a physicaL device number> 3. It is up to the user NOT
to use this routine on any device that is not a disk or cassette.
The status read in from the disk is Left in EBUF as a FORTH
string. If the device is a cassette (i.e. the device # < 4),
then an ASCII "00" (zero-zero) is Left at EBUF+1 and +2. Since
the first two ASCII bytes returned as a disk status indicates the
error code, a FORTH routine may be generaLized with regard to
disk or cassette. RDSTATting from a cassette wi L L return an 'OK'
status (indicated by the two ASCII zeros) • . ~- .

- CKST (fLag

~-. _.

flag=O if ok, =1 if end-of-f i Le)

CKST can be used to check the 1/0 status after a transfer (see
ST). If the status byte was equaL to 0, a FALSE fLag is
returned. If an END-OF-FILE is detected, this is not usuaLLy
an error but an indication for the program, hence CKST wi L L
return TRUE. Any error in the status, and CKST does not return.
I t P r i n t s the err 0 r me s sag e 'I lOS TAT USE R R 0 R: ' and.p r i n t S the
status byte in the current BASE. CKST then returns execution to
the FORTH input interpreter.

- CKRDSTAT (f Lag fLag=O if ok, 1 if end-of-fiLe)

CKRDSTAT first caL Ls CKST to check the 1/0 status byte. Then it
reads the ERROR CHANNEL to the disk (OPENCHN opens the error
channe L as fi Le# 15). CKRDSTAT returns FALSE if everything is
ok, TRUE if end-of-fiLe was detected. If the disk status
indicates an error (i.e., an error code >=20 is returned), then
the error message received from the disk (and stored in EBUF) is
printed. ALL open 1/0 fi Les are cLosed, and the C64-FORTH disk
error message is printed (ERROR is executed). ControL returns to

the FORTH input interpreter.

64

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- CKWRSTAT ()

CKWRSTAT is identicaL to CKRDSTAT except no fLag is returned.
This is not necessary when checking disk status after WRITING to
the disk, since the end-of-fi Le indication is meaningLess and
wi L L never occur. CKWRSTAT can be used to check di sk status when
reading, if you know the end-of-fi Le status wi L L not occur, or
you expect it to occur reading the Last byte of a fi Le of known
Length.

- ?DISK (fLag fLag=O if not disk, <>0 if disk)

?DISK returns a fLag based on whether the device number in
SYSDEV# is a disk or not. The onLy determination made is whether
the device number is >= 4.

- OPENCHN)

OPENCHN opens the error channeL to the disk.
defined as:

OPENCHN is

OPE N C H N ? DIS KIF 1 5 S Y S D-E ~-C @ . 1 5 0 PEN CKWRSTAT THEN . ,

In BASIC, this wouLd be:
10 OPEN 15,8,15
20 IF ST<>O THEN PRINT"I/O STATUS ERROR:";ST
30 GOSUB 1000
1000 INPUT#15,EN,EM$,ET,ES
1010 IF EN=O THEN RETURN
1020 PRINT"DISK ERROR ",EN;EM$;ET;ES STOP

- CLOSCHN ()

STOP

CLOSCHN c Loses the error channe L to the di sk that '.-las opened by
OPENCHN. CLOSCHN is defined as:

CLOSCHN ?DISK IF 15 CLOSE THEN ;

65

- ?FILE (f Lag fLag=O if ok, =1 if fi Le not found)

?FILE is handy after opening a fi Le to see if it exists on disk,
or if the 'fi Le does not exist' code is returned by the disk.
?FILE is defined as:

HEX '?FILE CKST DROP ?DISK IF
1 5 RDSTAT EBUF 1 + @ DUP 3236 = IF

DROP 1 ELSE 3030 I F
CR EBUF COUNT TYPE
CR ABORTIO 8 ERROR

THEN
ELSE 0 THEN . ,

***** SAM P L E PRO G R A r~ S *****

This is a good spot to give some sampLe programs. AL L three of
the foL Lowing exampLes require the C64-FORTH string extensions.

#1 - Sending a command to the disk

The C 6 4 - FOR T H w 0 r dOC can b e u s e-cL..t 0 sen d a com man d tot h e dis k ,
however, it cannot be compi L~d3"'n-t·o· a defini tion. To define a
version that can be compiLed into-a definition:

DCMD ($adr)

(DCMD sends the string at the address on the stack to the disk)
(Note. do not use this to send the directory command)

15 SWAP COUNT PRINT# (send string)
CKWRSTAT ; (check disk status)

Now, lets say we happen to have a coL Lection of fi Les on the
disk, ca L Led 'CLIENT1', 'CLIENT2', 'CLIENT3', 'CLIENT4', and
, C LIE N T 5 ' • W e had w r itt e n a s imp L e f i Lin g s y s t em, w _h i c h had L eft
these temporary fi Les out on the disk. Each one contains aLL the
data reLating to one cLient account. We have dropped cLient #1,
so we wish to drop his data, and consider cLient #2 to be the new
cLient 1, etc. The foL Lowing routine wi L L deLete CLIENT1, and
rename the subsequent fi Les.

20 $VARIABLE N$ (define temporary string var.)
REMOVECLIENT1

OPENCHN (open error channeL to disk)
"SO:CLIENT1" DCMD (remove cLient 1 fi Le)
6 2 DO (set up DO LOOP to rename fiLes)

" RO:CLIENT" N$ $! (form rename command string)
I STR$ 2 255 MID$ N$ SWAP $+ N$ $!
N$ " =CLIENT" $+ N$ $! N$ 11+ STR$ 2 255 MID$ $+
DCMD (send command string tQ disk)

LOOP
CLOSCHN ; (cLose error channeL

66

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

#2 - Print the starting and ending Load addresses'of a PRG fi Le

The foL Lowing routine requests the name of a fi Le on the disk in
dirve #8, then prints out the starting and ending Load addresses
of that fi Le.

16 $VARIA8LE N$
LOADADR
CR ." INPUT FILENAr~E: "
N$ INPUT$

(temporary string variabLe)

(get name of fi Le from user)

CR ." LOAD ADDRESSES OF
OPENCHN

" N$ $ •• "
(open

COUNT OPEN 14 8 14 N$ " ,P,R" $+
?FILE IF

ARE ••• " CR
error channeL)

(open the fiLe)
the fiLe exist?)

CR ." FILE DOES NOT EXIST"
ELSE

HEX 14 HERE 2 GET#
CR ." STARTING ADR: "
HERE 1+ @ DUP 4 U.R CR
8EGIN

(does
(no)

(yes, get starting Load address)
(and print it)
(Leave address on stack
(read in aLL bytes in the fiLe)

14 HERE 1 GET#
1 +

C KS T
1 -

(one at a time and increment the)
(address for each byte)

UNTIL (end-of-fiLe ?)
(yes, back address up one)

." LAST 8YTE ADDR: " 4 U.R (and print it)
THEN
CR 14 CLOSE CLOSCHN DECIMAL; cLose channeLs

~-

#3 - Copy a screen the hard way ~a 1024 byte fi Le-to-fi Le copy.

The foL Lowing routine copies the contents of one C64-FORTH screen
to another. Whi Le the C64-FORTH command COpy wi L L do this nice
and easy, this is a simpLe exampLe of data 1/0 to and from the
dis k •

3 $VARIA8LE 8$ 10 $VARIA8LE C$ 3 $VARIA8LE A$
CKFILE (fLag fLag =0 if fi Le wasn't found)
?FILE IF

CR ." FILE
ELSE 1 THEN

CALLED" PAD $. " NOT FOUND" 0 . ,

COPYSCR (

CR " SCREEN # TO COpy FROM: " A$.
CR " SCREEN # TO COpy TO " 8$.
OPENCHN
" SCR" A$ $+ C$ $!
1 4 8 14 C$ " ,S,R" $+ COUNT OPEN
CKFILE IF

" SCR" 8$ $+ C$ $!
13 8 13 C$ " ,S,W" $+ COUNT OPEN
CKWRSTAT
14 HERE 1024 GET# CKWRSTAT
13 HERE 1+ 1024 PRINT# CKWRSTAT

THEN
13 CLOSE 14 CLOSE CLOSCHN CR ;

)

INPUT$
INPUT$

(open
(does

(yes,

(read
(w r i t e

(cLose

input f i L e
f i L e exist ?)

open output f i L e)

i n 1 K of data)

i t au t to f i L e

aLL f i L e s

67

i

I

--~

DETAILS OF THE C64-FORTH SYSTEM

- SAVESYSTEM and DC

Every FORTH user deveLops his or her own custom word definitions
to do common functions easi Ly. The desire to make them a
permanent part of the FORTH system soon arises. Instead of
booting up the originaL version of C64-FORTH each session and
Loading in the screens with the definitions, it is very easy to
save the current system with aLL new additions onto disk. The
S A V E S Y S T E r~ com man dis use d as f 0 L Low s:

SAVESYSTEM "MYFORTH"

SAVESYSTEM first prompts the user to insert the ORIGINAL C64-
FORTH disk into the drive. SAVESYSTEM reads a section of it,
then prompts the user to insert the disk the FORTH system is to
be saved on.

The current version of the FORTH system wi L L be saved onto disk
as a fi Le named "MYFORTH" (or whatever fi Lename you put between
the quotes). The next time you power-up the system just Load
"MYFORTH" (or whatever you ca L L~.d-it), and RUN. Do a VLIST and
you 1.1 iLL see t hat you r c u S tom ~ ~Tn"i t ion s are par t 0 f the FOR T H
system.

The string between the quotes is sent direct Ly to the disk or
casse.tte, so disk fiLe repLace functions work:

SAVESYSTEM "@O: FORTH2. EXE"

C64-FORTH provides a word to send commands to the disk when in
the interpretive mode. DC sends whatever is bet'#leen the quotes
foL Lowing it to the disk, and reads the status back. DC can be
used aLone without a foL Lowing string to just read back and check
the status. The status is not printed if it has a status vaLue
Less than 20. In the current 1541's, the onLy two status codes
returned Less than 20 are 'OK' and 'FILES SCRATCHED'. ExampLes:

68

DC
DC
DC

UNO: FORTHWORK,Ol"
"SO:TEMP.DAT"

(send cmd to format a disk)
(scratch fi Le)
(just read and check status)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The user shouLd never use the originaL C64-FORTH disk, except to
Load C64-FORTH for the first time, and for SAVESYSTEMing and
S A VET URN KEY i n g. By us i n g the DC com man d a Lon g wit h S A V E S Y S T E i~,
you can easi Ly format and save the FORTH system off onto a new
disk. A disk with the C64-FORTH program on it appears as any
other Commodore-64 program disk. Screens are saved as ASCII
sequentia L data fi Les. This means you can save other kinds of
programs as we L L as data fi Les created by BASIC programs,
reLative fiLes, etc. By changing just a variabLe or two, C64-
FORTH can be quickLy adapted to make fuL L use of an extended
capacity fLoppy or Winchester drive.

Screens may be moved from one disk to another by writing a
routine to read them in from one disk (it wouLd heLp to aL Locate
more disk buffers via the BUFFERS command), mark them as updated,
then pLace the new disk in the drive and execute SAVE-BUFFERS.

There'is no initiaLization of screens necessary for a NEW'ed
bLank disk. If a screen or bLock is requested, and the specified
screen does not exist on disk, a screen fuL L of bLanks is
deLivered to the user. OnLy if the bLank screen is aLtered or
marked as updated, AND SAVE-BUFFERS is executed, wi L L it be
p Laced on the disk. (See the description of TAPEFLG for ho ... this
works with cassette)

--~.--
- DIR

DIR dispLays the directory of drive 0 of the disk specified in
S Y S D E V #. DC "$" a L soc aLL s the r 0 uti neD. I R. DC "$ 1" may be use d
for the directory of drive 1 of a muLtipLe-drive disk. The CTRL
key may be used to sLow down the Listing, and the STOP key may be
used to terminate the directory command. DIR may ONLY be used in
the interpretive mode (i.e. cannot be compi Led into a
definition).

- LISTING MULTIPLE SCREENS ON THE VIC-1525 PRINTER

To List more than one screen, the foL Lowing word wi L L provide
proper page formatting on a VIC-1525 printer:

LS 1 + SWAP DO I LIST CR CR CR CR LOOP ;

To List screens 60-79 on the printer:
4 4 0 0 0 OPEN
4 01D#
60 79 LS
4 CLOSE

69

- BUFFERS, MEMTOP, AND USING AVAILABLE RAM

When C64-FORTH first starts running, it maps (switches) out the
BASIC ROMs, and assumes the top of usable memory to be CFFF. It
first a L Locates 512 bytes beLow this point for use as RS-232
buffers, shouLd they be needed. Just beLow this, 128 bytes is
aL Located as the user area. The user area is a,tuaL Ly 64 16-bit
storage Locations, used to hoLd system parameters of the current
C 64- FOR T H s Y s t em. En t r i e sin the FOR T H d i c t ion a r y caL Led Use r
VariabLes store their contents here, not in the body of the
definition in the dictionary.

C64-FORTH then aL Locates bLock I/O buffers beLow the user area.
Fa u r b u f fer s are i m m e d i ate L y alL a cat e d. The n u m b era f b u f fer s
may be any number from 2 up to what space permits. Each buffer
takes up 1028 bytes. The command BUFFERS saves any updated
screens, multipLies the desired number of buffers by 1028, checks
if there is enough room between HERE+200 and the bottom of the
user area (LIMIT returns that address). If there is, the
specified number of buffers is reserved, and FIRST shows the new
bottom of the buffer area. If not, the number of buffers that
the rei s roo m for i s res e r v e d.

8 BUFFERS reserve 8 bLock buffers, if there is
enoug~ room for them)

;,.~

~--

It is important to note something here - Since PAD aLways points
to a Location 68 bytes above the current Location of HERE (i.e.,
the end of the dictionary), and the C64-FORTH string extensions
use the area from PAD to PAD+512, then you cannot use the string
extensions if you have the maximum number of bLock buffers
aL Located that space permits. ALso, if there is not enough space
to a L locate the requested number of bLock buffers, the user is
not informed of how many buffers actua L Ly were a L Located.
However, using the va Lues in FIRST and LIMIT and the va Lue of
1028 bytes per buffer, it is easy to caLcuLate the actuaL number
a L Located.

MEMTOP is used to Lower the effective top-of-memory of the FORTH
system. This is heLpfuL in reserving a section of RAM that FORTH
wi L L not touch except by commands from the user. The RS-232
buffers and the user area wi L l be reLocated just beLow the
address specified, and MEr"TOP ,.iLL attempt to aLLocate 4 bLock
buffers just beLow the user area. In deciding how far you can
move the top-of-memory do,.n, check the current top of the
dictionary (returned by HERE), add 840 to it (200+512+128), and
add the number of buffers desired times 1028. Subtract the
resu Lt from the physica L top of memory (DOOO hexl. This ','; L L
give you the maximum number of bytes that you may move the top
down.

70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Example:

HERE 840 + HEX U. 60F2 OK HERE + 200 + 128 + 512

404 2 * 60F2 + U. 68FA OK (we only need 2 buffers

DOOO 68FA U • 6706 OK

(6706
bytes.

hex is approx 26.4K bytes free. We'll reserve just
definitions. This wi II leave 10K free for adding new

DOOO 4000 MEMTOP MEMTOP executes COLD when done)
C64-FORTH

2 BUFFERS OK

prove that everything is lower)

HEX LIMIT U. 8D80 OK

FIRST U. 8578 OK

16K
)

What if at run-time you would like to reserve some space to use
as a buffer, but you are not sure which RAr~ locations between the
top of the dictionary and the bottom of the buffers are safe to
use? The best way is to request one or more of the block
buffers. The BUFFER command a l l~-a t es a 1 K byte b lock of memory
and assigns it to the block_-n~oer specified. The previous
contents of the buffer, if updated, are written out to disk. The
new block is NOT read in. This is not safe to do if your program
' .. ill be reading in blocks (screens). But for application
programs where no disk or cassette 1/0 is done except for data
fi le reading or writing, al l al located buffers are free to use.

A bLock number is passed to the BUFFER command. It's best to pick
a block number that is not configured on any 1/0 storage unit.
7FFF is a good buffer number to request since it's meaningless.
Just don't use a negative number. BUFFER returns the address of
the fir s t l 0 cat ion i nth e 1 K 0 f spa c e ass i g ned.

Example:
HEX 7FFF BUFFER U. C376 OK

To create a table, array, or machine code overlay and save it on
disk for future use, obtain use of a buffer as described above,
except specify the screen number you want it stored into on disk.
Immediately after obtaining the buffer, execute the UPDATE
command to have that buffer marked as updated. Fi II it, then
execute SAVE-BUFFERS to have it written out to disk. To read in
the screen at some future time, specify the screen number and
execute BLOCK. BLOCK ca lls BUFFER to request space to read in a
screen. The screen is read in and BLOCK returns the address of
the first byte in the block.

71

ExampLe:
(save a 1K tabLe of data onto disk screen #20)

20 BUFFER (request space for bLock #20 - addr returned)

(execute code here that fi LLs buffer in memory)

UPDATE SAVE-BUFFERS (write bLock out to disk screen #20)

- BORDER, BKGRND, AND CHRCLR VARIABLES

When C64-FORTH .is entered from BASIC or when either COLD or WARM
is executed, the coLors of the C64 border, background, and
characters printed are set from the coLor codes in these
variabLes. These may be changed at any time. The coLor codes
must be in the range 0-1S~

- RESTORE KEY

The RESTORE key on the C64 keyboard, when pressed with the STOP
key, can be used to restart the FORTH system, in case it 'hangs'
up. T his i s e f f e c t i veL y a ' war m.,. ~:t. art' , mea n i n g t hat de fin i t ion s
created since boot-up are not L ~-

RESTORE wi L L not work if the FORTH kernaL itseLf has somehow been
corrupted, or if the interrupts were turned off when setting up
speciaL graphics modes in the VIC-II chip. Data or return stack
overfLow can aLso corrupt the system to where recovery is
impossibLe. Upon boot-up, C64-FORTH writes a short NMI handLer
into the RAM underneath the kernaL ROM. This is to aL Low proper
NMI handLing via the RESTORE function even if high-res graphics
are current Ly being drawn to the RAM underneath the kerna L ROM,
in which case the kernaL RO~l;s temporariLy mapped out. If the
kernaL ROM is mapped out at the instant of a NMI interrupt, then
onLy a RESTORE key generated interrupt is recognized. A NMI
interrupt from a RS-232 channeL input or output operation is
disregarded, therefore RS-232 channeL 1/0 CANNOT be enabLed
during graphics writing to RAM underneath the kernaL ROM.

72

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

-I
I
I
I
I
I
I

- FUNCTION OF DV1, DV2, DV3, AND DV4

Up to four storage devices may be easi Ly configured into the C64-
FORTH system. Four variabLes exist that define the
characteristics of storage devices avai LabLe, named DV1, DV2,
DV3, and DV4. The variabLe$ each contain 4-bytes of data. The
first two bytes contain the number of screens that device may
hoLd. The third byte in each specifies the 1/0 device number of
that device (onLy 1 or 4-15 is vaLid as a device number). The
fourth byte contains the drive number of the unit. Norma L Ly
zero, this can be set to 1 to access drive #1 for 4040 duaL-drive
type disk units attached via an IEEE cartridge.

When the number of screens in one of the variabLes is zero, then
that 1/0 unit, as weLL as the foLLowing units, is not avaiLabLe
for storage of screens. The number of screens a device is
a L Lowed to store is found by reading the ftrst 2-bytes of its
variabLe:

DV1 @ U. (wiLL print out the # of screens/bLocks aLLowed
on memory device #1)

You may change the number of screens a L Lowed on a memory device
(or to enabLe a new device if it. is attached to either the seriaL
bus or via an IEEE interfac_e)~~.:y"storing a new number in the
de vic e va ria b L e. For ins tan c-e ;-=- you h a ve jus tho 0 ked up an 0 the r
1541 drive (the internaL jumpers were changed to configure it as
device #9), and you want to use it to store screens. The first
1541, device #8, is characterized by DV1. We must now
characterize DV2 to a L Low C64-FORTH to recognize the new dri vee
We must inform C64-FORTH of the number of screens, the bus device
#, and the drive #:

1 20 DV2 9 DV2 2+ C ! o DV2 3 + C !

Each screen takes up 5 disk bLocks. A screen takes up space on
disk ONLY when a screen has been stored to the diSk. But
assuming the fuL L number of aL LowabLe screens are stored on each
disk, 120 is the maximum practicaL amount storable on a 1541. If
you intend to have other programs stored an a screen disk at the
same time, you must Lower the number of al Lowable screens to
compensate. For convenience, lets make sure DV1 is set to 100
(C64-FORTH is shipped with DV1 set to 100, but lets make sure):

1 00 DV1

And to make sure
devi ces avai LabLe,

o DV3 o DV4

C64-FORTH doesn't think there are any
we will store a zero into DV3 and DV4:

more

73

Next we shouLd set the device and drive number of the new drive:

9 DV2 2+ C ! a DV2 3 + C !

DV1 shouLd aLready have 8 and a stored as the device # and drive
#. What we have just done is configure the C64-FORTH system as
foLLows:

- Memory device #1 is bus device #8, drive #0, and hoLds FORTH
screens # a to 99. The screens are stored on the disk currentLy
in drive a of device #8 as fiLes with names SCRO thru SCR99.

_ Memory device #2 is bus device #9, drive #0, and hoLds FORTH
screens # 100 to 219. The screens are stored on the disk
current Ly in drive a of device #9 as fi Les with names SCRO thru
SCR119.

Note that the fi Le names of screens stored on a disk are reLative
to SCRO. This means that if, referring to the above
configuration as an exampLe, you store a screen as screen # 123,
it wi L L be saved on drive #0 of device #9 as SCR23. You can at a
Later time put the disk that was in device #9 into device #8, and
access that same screen as screen #23. The way the aLgorithm
works is:

_ S c r e ens are s a v e don m e mar y d ~y:=R: e . # 2 a s f i L e s wit h n a m e s S C R x x
where xx is the user-specif:;~ screen # minus the number of
screens a L Lowed on memory device #1 (i.e. the contents of DV1 are
subtracted from the requested screen #).

_ Screens are saved on memory device #3 as fi Les with names SCRxx
where xx is the user-specified screen # minus the number of
screens a L Lowed on memory devices #1 and #2 (i.e. the contents of
both DV1 and DV2 are subtracted from the requested screen #).

_ Screens are saved on memory device #4 as fi Les with names SCRxx
where xx is the user-specified screen # minus the number of
screens a L Lowed on memory devi ces #1, 2, and 3 (i.e. the contents
of DV1, DV2, and DV3 are subtracted from the requested screen
) •

Commands such as LIST, EDIT, BLOCK, and COpy work on any screens
on any configured disk, as Long as the requested screen # is
within range. If not, an error message wiLL be dispLayed.

The cassette unit may be used as freeLy as a disk drive for
storing screens. Now since the FORTH wi L L return a screen fu L L
of bLanks if a requested screen does not aLready exist on the
disk, how does C64-FORTH know that a screen does not aLready
exist on a cassette? There is no way of it knowing. A variabLe
caL Led TAPEFLG has been added for that purpose, and is described
eLsewhere in this section.

74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- FUNCTION OF SYSDEV#

SYSDEV# is a variabLe used by the C64-FORTH 1/0 routines. In any
case where a BLOCK is read in or transferred out, R/\v
automaticaLLy sets this variabLe from the vaLues in DV1, DV2,
DV3, and DV4. But when a SAVESYSTEM or SAVETURNKEY is executed,
the program is saved onto whatever device number happens to be in
SYSDEV#. This is no probLem if the disk drive that C64-FORTH was
Loaded from is the one you wish to save the current FORTH system
to. If not, or if you've done bLock 1/0 (Loading or editing
screens for instance) from a different device, then you must set
SYSDEV# before executing a SAVESYSTEi., or SAVETURNKEY. The Low
byte of SYSDEV# hoLds the device #, and the high byte hoLds the
drive #.

ExampLe:
8 SYSDEV# SAVESYSTEM "CURRENT SYS"

- TAPEFLG

TAPEFLG is a variabLe used for cassette bLock 1/0. The probLem
arises when you wish to edit a screen that does not aLready exist
on the cassette. With the disk, no probLem. R/W detects the
F I LED 0 E S NOT E X 1ST s tat u s fro m .: ~t'!" e dis k , and c rea t e s a b Lan k
screen in memory to start with. ·~But since the cassette cannot
return that status, TAPEFLG was created to preserve the
structure of the R/W routine.

If the screen number we wish to edit does not exist on cassette,
the FORTH system couLd Look forever for it and never find it. So
when a screen is to be read in, and the device that screen is
associated with is the datasette (i.e. device #=1), then TAPEFLG
is checked. If TAPEFLG is =0, then the cassette is searched for
the screen. If TAPEFLG >0 and <256, then an inquiry is printed
on the screen asking whether it shou Ld Look for the fi Le on the
tape, or shouLd create a new bLank screen in memory and assign it
to the screen number specified. Any repLy, incLuding just
hitting the RETURN key, wi LL cause searching for the fi Le on the
cassette. On Ly by pressing the 'N' key wi L Lab Lank screen be
created.

75 I

_______________ --------"J

- VALIDATING THE SCREENS DISK, AND DISK PECULIARITIES

FORTH screens are saved onto the disk as sequentia L data fi Les.
When a screen is to be saved out to the disk, the data is saved
in the REPLACE mode. This means the fi Lename the screen was
saved out under was preceeded by "@O:". This causes no probLems
most of the time, but occasionaLLy a nearLy-fuLL disk wiLL act
strangeLy. Periodic VALIDATEing of the disk (type DC "VO") pLus
switching to a new empty disk to hoLd additionaL screens when an
oLd one becomes 80-90% fuLL wi LL prevent any probLems.

One other detai L - the onLy time a Commodore disk drive knows
that the fLoppy disk in it has been switched is by detection of
a different disk 10#. When you NEW a disk, it is imperative you
assign a unique 2-number or Letter code for the ID# (this 2-digit
code foL Lows the disk name in the NEW command you sent the drive
to format the disk). Never use the same 2-digit code for more
than one disk. And it is a good habit, aLthough not absoLuteLy
necessary, to initiaLize a disk that has just been swapped into
the drive (DC "10").

- ERROR MESSAGES
.-.~-

An error message is printed as a question mark ('?') foL Lowed by
a message number or informative text. As Long as the C64-FORTH
definition named 'EMSGS' exists in the dictionary, the error
messages printed wi L L be fairLy descriptive. Right after an
error, executing WHERE wi L L print out the Line at fau Lt and an
arrow pointing to just after where the error occured. Look for
missing spaces between FORTH words, Looping and branching
structures mispaired, vaLues Left on the stack wiLL cause
probLems within Looping and branching structures, etc. Sometimes
just the message is printed as a warning (e.g. ISN'T UNIQUE or
EMPTY STACK), and at other times controL is returned to the FORTH
input interpreter (as in USE ONLY WHEN LOADING). Screens 4 & 5
on the C64-FORTH disk contain copies of the error messages. In
the gLossary, refer to EMSGS and ERROR. If an error occured
when defining a coLon definition, and the definition cannot be
FORGET ten, execute SMUDGE. The most recent header can then be
removed.

76

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- USING IEEE INTERFACE CARTRIDGES

C64-FORTH wiLL automaticaLLy work with any Commodore
PET/CBM/VIC/C64 compatibLe disk drive. For the ones needing an
IEEE interface, certain ones are avai LabLe that are cartridge
based and pLug directLy into the 64 cartridge sLot. ROM code is
a necessary part if any catridge-base interface. The internal 64
kernaL 1/0 routines must be modified to divert commands and data
from the seriaL bus to the IEEE interface. Since any cartridge
ROM in the range 8000-9FFF is mapped out (made unaccessible as
the RAM underneath is mapped in) when C64-FORTH maps out the
BASIC ROMs, a way was provided to disabLe the disabLing of the
BASIC ROMs. ImmediateLy after Loading C64-FORTH, POKE 2067,255
before RUNning C64-FORTH. The BASIC ROMs, as we L L as any
cartridge ROMs, wi L l be Left accessible. On Ly one thing to
remember - there wi l L ~e ROM code in the range 8000-BFFF once you
enter C64-FORTH. Norma L Ly, the Lowest di sk buffer wi L lover lap
the BASIC ROM area. You must either decrease the number of
buffers down to 2, or MEMTOP the system down to 8000 hex. r~Er~TOP
is safer, since you won't have to worry about the end-of-the
dictionary overLapping the ROM code.

77
J

- THE STRUCTURE OF A DEFINITION IN MEMORY

We have been referring to different parts of a definition in
memory. It is time to briefLy cover the structure of a
definition as it appears in memory. Lets show how the foL Lowing
definition wiLL Look in memory:

TEST 2+ SWAP DUP ;

4 + 80 hex
T
E
S

"T" + 80 hex

previous
NFA

I
I

addr of

code routine

pointer to
2+

pointer to
SWAP

pointer to
DUP

pointer to
; S

I
I

<-- NFA - Name FieLd Address = start of def.
Length byte, with IMMEDIATE and SMUDGE bits
Name of definition

Last byte of name has bit 7 set

<-- LFA fieLd - contains address of start of
previous definition

<-- CFA fieLd - contains address of machine
code to execute

<--- PFA - This is the start of the body of
the definition

-:...-.-- ----

The N am e Fie L dAd d res S (N FA) i s the add res S 0 f the s tar t 0 f the
header. Every definition works upwards in memory, so the NFA is

-the address of the Lowest byte of that definition. The first
byte of the header is used for various things. The Lower 5 bits
of it contain the count of the number of characters in the name.
Bit 7 is aLways set to indicate the start of the header. Bit 6
is set to indicate if the definition is marked as IMMEDIATE,
meaning it wi L L exec~te immediateLy even within a new coLon
definition being created. Bit 5 is caL Led the SMUDGE bit. When
set, the definition wi L L be Listed with VLIST, but the definition
cannot be executed, FORGOTten, etc. When: is used to create a
new coLon definition, the SMUDGE bit is set. OnLy when the
terminating; is excuted, does the SMUDGE bit get cLeared. This
prevents executing a coLon definition that was not properLy
compLeted, due either to an error encountered within the source
code of the coLon definition, or the user just forgetting to
terminate the definition with;

78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

After the header byte, the name of the definition foL Lows, with
bit 7 being set in the Last character of the name. After the
name fieLd comes the LINK fieLd. This is a 16-bit pointer to the
start of the previous definition (the NFA of the previous
definition) WITHIN THE VOCABULARY IT WAS CREATED UNDER. This is
what Links aL L the definitions together for the purpose of
vocabuLary searches. The FORTH word LFA wi L L provide the address
of this fieLd within this definition.

Next comes the CODE fieLd. The code fieLd contains a 16-bit
pointer to a machine code routine. If this definition was
defined as a coLon definition, this wi l L contain the address of a
routine in FORTH that wiLL sequence through the pointers
contained in the body of this definition. If defined as a
constant, the address wi L L point to a routine that wi L L push the
16-bit contents of the body onto the stack, and so on for other
types of definitions. This Code FieLd Address points to this
Location.

And finaL Ly comes the body of the definition. The address of the
first byte of this fieLd is caL Led the Parameter FieLd Address.
If the definition is a coLon definition, the body is made up of
pointers to other , .. ord definitions. A coLon definition
terminates with a pointer to;S (EXIT is the same thing). ;S
teL Ls the FORTH interpreter that the current definition is
com p Let e dan d to' u n - n est' 0 n e l-'ev e L - t hat is, ret urn tot h e

- ~-
d e fin i t ion t hat caL Led it. --

If the definition is
onLy t' .. o bytes Long,
constant or variabLe.

-

a variabLe or constant,
containing the current

then the body is
contents of the

79

- DEBUGGING FORTH ROUTINES USING TRACE FEATURE

A simpLe trace function is buiLt into the system. It aLLows the
user to singLe-step through the execution of a FORTH coLon
definition. Definitions composed of machine code cannot be
stepped through. They wi LL execute entireLy in one step.

The trace feature is turned on by setting bits in Location 132
(84 hex) of zero page memory. If bit 7 is set by writing 128 (80
hex) to this Location, trace mode is immediateLy turned on. But
since you have to go through a Lot of FORTH kernaL routines for
the parsing and matching of input stream words, setting bit 6 is
preferred for tracing one specific routine. There is a word in
the FORTH dictionary which does that for you, caLLed TON.

ExampLe of usage:
3 7 TON *

This wi L L turn the trace mode on after the va Lues 3 and 7 are
pushed on the stack, and before * begins executing. You wi L L
skip over the FORTH system overhead, and tracing wi L L begin just
as the definition * is entered.

The n a m e 0 f the r 0 uti net 0 b e.~:..:s...Te p p edt h r 0 ugh s h 0 u L d f 0 L Low
immediateLy after turning on th~trace; otherwise the end-of-the
Line terminator, (the X <nuLL> routine, which is actuaLLy
defined as a word definition) wi L L start tracing. Any parameters
required by the routine to be examined shouLd be put on the stack
before trace is turned on.

ExampLe:
routine *1) (to trace the

3 10 6 TON *1 (turn on trace just before *1

Two types of trace Lines are shown.
t his:

A norma L Line wlLL Look L ike

2031 * I r~ 0 D 66 01 F 3 0006 OOOA 0003

AL L numbers are shown in HEX to provide a reasonabLe format on
the 40-character C64 screen.

The first number disp Layed
coLon definition of the NEXT
this pointer identifies wi L L
name of that routine foL Lows

80

i s the add res S 101 i t h i nth e
pointer to be fetched. The
be the next to be executed,
the address.

current
routine
and the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The next number specifies that actua l address of the bottom of
the data stack (which is the TOP stack item). When the stack is
empty, this value is 6C. It decrements by two for each data item
on the stack (4 for each double number).

The return stack pointer fa l Lows.
hoLd the next pointer address when
Loop index and limits, and temporary
return stack pointer also decrements
on it.

The return stack is used to
nesting down one level, DO
vaLues pLaced on by >R. The
by two for each entry placed

On the
stack,
shown,

remainder of the line, if any values are on the data
values are they wi L L be dispLayed. On Ly the top four

with the top stack item being the leftmost.

Every time FORTH 'nests' down one LeveL (starts executing a
lower-Level coLon definition), TRACE wi L l show this by printing a
colon in coLumn one of the display followed by the definition's
name:

* / r~ 0 D

'Unnesting' (returning to the higher-level definition) wi L L not
be shown, but can be recognized:Wh-en ;S or EXIT is about to - ~"'-.

execute. After ;S or EXIT _e~cutes, the return stack pointer
can be seen to increment by two showing the FORTH has unnested
one Leve L.

After each Line is dispLayed, hitting just the RETURN key','; II
singLe-step through the definition. If you wish to turn off
trace mode and finish executing the definition at fu l L speed,
press R To terminate execution of the routine, turn off trace
mode, and return to the FORTH input prompt, press X •

There is one other feature of the trace mode. At the flashing
cursor, you can press B as an option. B immediately executes a
6502 BRK (break) instruction. If you have a monitor wedge or
cartridge insta lled, you wi L L enter the monitor. i·1ake note of
the address printed upon entry to the monitor. You wi L l need
this address to return to C64-FORTH. You may now use the monitor
to examine and modify memory Locations, even to singLe-step (if
it is a feature of your monitor of course!) through machine
code routines if no FORTH system zero-page variables are
disturbed. When you desire to return to FORTH, type G xxxx
where xxxx is the address you wrote down when you entered the
monitor. You wi L l have executed the next FORTH word in the
definition you were tracing, and you may continue to singLe-step
through that definition. If the BRK vector has not been changed
by a monitor prior to initiaL entry into C64-FORTH, then the
FORTH redirects the BRK vector to a warm start routine, so the 8
command in trace does not crash when no monitor is present.

81

- MEMORY r~AP

The COMMODORE-64 memory map, with C64-FORTH in controL, Looks
Like this <aLL addresses in HEX):

OOOO-OOFF

0100-01FF

0200-03FF

0400-07FF

0800-4xxx

6502 page zero memory. Contains data stack, C64
1/0 and system variabLes.

6502 return stack. Bottom 80 bytes used as FORTH
terminaL input buffer.

C64 variabLes and buffers.

DispLay memory.

C64-FORTH program. HERE Leaves the address of the
current end of the FORTH dictionary. PAD, the
pointer to the text output buffer, aLways starts
68 bytes after the HERE address.

PAD+80 thru BD6F

BD70-CD7F

CD80-CDFF

CEOO-CFFF

DOOO

DOOO-DFFF

EOOO-FFFF

UsabLe RAM for expanding the FORTH dictionary,
machine code routines, work buffers, etc. Note
that the C64-FORTH editor uses this area for
cut-and-paste temporary storage.

;;.-~-

B L 0 c k b u f fer s. : A ~sh i p p ed, C 6 4 - FOR T His set u p for
4 b u f fer s • 1ft h e- n u m b e r 0 f b u f fer sis c han g ed,
or MEMTOP is changed, then this address range wi LL
be di fferent.

User area. The user area is 128 bytes Long, and
is a coLLection of variabLes desc'ribing the
characteristics of the current FORTH system. This
address range wi LL change if MEMTOP is changed.

RS-232 buffers. If device #2 is OPENed, these
buffers wi LL be used by the 64 kernaL ROM
routines.

By defauLt, the highest address +1 of usabLe
continuous RAM. MEMTOP may be used to Lower the
effective top-of-memory as perceived by the FORTH
system.

COMMODORE-64 1/0 register space.

COMMODORE-64 1/0 and screen dispLay ROMs. For
high-resoLution bit-mapped graphics, the RAM
that 'hides' behind these ROMs may be used.

The COMMODORE-64 BASIC ROMs are normaLLy in the address range
AOOO-BFFF, but are mapped out by C64-FORTH. They are repLaced by
usabLe RAM. The ROMs are re-enabLed when exiting to BASIC.

82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- SAVETURNKEY

SAVETURNKEY is the onLy way any version of C64-FORTH may be
redistributed. It aLso has the advantage of making the
application program more end-user oriented, since the FORTH
system itself is no Longer accessible. The program, after being
Loaded from BASIC and entered via RUN, initializes the system and
immediately executes the top \oIord in the FORTH vocabulary. Any
error exits back into the FORTH kerna l Vii II restart that last
definition. The RESTORE key also \oIorks properly and causes a
restart.

The procedure for creating a turnkey system is as follows:

1) Write and debug your application program (enough said).

2) If desired, to shorten load time of the application program,
you may forget the editor and error messages by:

FORGET EDITOR

You may also not need the floating-point extensions,
take up about 4K of space. FORGET FPOVER to recover
space too.

VI h i c h
that

3) Load your application progr~m?9nto the FORTH system.

4) Insert a pre-NEWed disk into the disk drive. Set SYSDEV# to
the device # you wish the program to be saved to.

5) Type the \oIord 'SAVETURNKEY' folLo\oled by the program name.

Ex. SAVETURNKEY "SPACE WIDGETS"

6) SAVETURNKEY immediately asks \oIhether you real ly do want
create a turnkey system, in case you were managing the
clouds when you entered the command. RepLy by pressing
the 'y' key if you Vleren't.

to

7) It responds by telling you to insert the next disk (pre-NEWed,
of course), and to press any key. The program is saved on disk
or tape, and the inquiry is repeated. Do this for as many
disks or tapes as you wish to create. Since the FORTH
system has been thorough ly corrupted, you'll have to reboot
C64-FORTH \oIhen done.

83

I
I
I
I
I
I
I
I
I _. -=--- -:.-:-'_. . -: -=
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

THE EDITOR

As mentioned earLier, source code in a FORTH system is stored in
a group of b Locks stored on di sk or tape ca L Led 'screens'. When
you go to edit a screen, the FORTH system first Looks to see if
it is aLready in memory. If not, it is caLLed from the disk or
tape unit first. Whi Le you are editing a screen, the changes
being made are kept onLy on the dispLay, the screen in memory is
not being changed at the same time. When you exit the editor,
you have the options of discarding the changes you made, updating
the screen in memory, updating and saving it out to disk, or
updating, saving it, and 'Loading' (compiLing) it.

To edit a screen, type:

<scr#> EDIT

If the requested screen # is not in memory, the screen wi L L be
read in from disk or tape. The first 1000 characters of the
FORTH screen wi L L be disp Layed. The remaining 24 characters of
the FORTH screen wi L L not genera L Ly be missed, but if necessary
access to them is possibLe. AL L editing is done on the portion
of the screen dispLayed. Editing a screen is done in much the
same way as editing Lines of a BASIC program. SeveraL additionaL
editing features have been provided to make the process even
easier. FuLL cursor movement over the dispLayed screen is
possibLe, however you are prevented from 'scroL Ling-up' the
screen by going off the bottom. The coLor-seLect keys «ctrL>-O,
<ctrL>-1, etc.), cursor movement keys, RVS-ON, RVS-OFF, and HOME
keys work normaL Ly. CLR-HOME does not cLear the screen but
performs the same function as HOME.

- SCREEN LINE LENGTH

Each Line of the dispLayed screen is normaL Ly considered to be 40
characters in Length. Inserting and deLeting characters when in
the middLe of a screen Line wi L L cause the shifting of characters
on that Line onLy with the foL Lowing two exceptions:

1) Function key 1 (f1) sets the current Line to a Length of
80 characters (the Last dispLayed Line cannot be set to a
Length of 80 characters). After this key is pressed, and
up to when the current row changes via a cursor movement,
pressing <return>, etc. the current Line Length wi L L stay
at 80. Any movement of characters on the current Line
from inserting or deLeting characters wi L L aLso cause
shifting of characters on the foL Lowing Line, since it
wilL be considered an extension of the current Line.

A-1

2)If you are using the key to deLete the previous
character, and you are currentLy at the first character
of a Line, the current Line is then considered an
extension of the previous line effectiveLy making it 80
characters in Length. The current line wi L l be shifted
into the previous line as you deLete characters.

- BUFFERS USED BY EDITOR

Certain functions of the editor create and use buffers in the
C64-FORTH memory space. The buffers are created within the space
from above PAD up to the bottom of the disk buffers. An 80-
byte CHARACTER buffer is used by the DELETE-CHARACTER-AND-SAVE
function, and a LINE buffer is used by the DELETE-LINE-AND-SAVE
function.

- INSERT functions

There are several different ways to insert text into the screen.
First there is the insert key (activated by <shift>-DEL) on the
64 keyboard referred to as INS. INS causes aLL text starting
from the current cursor position to the end of the Line to be
shifted to the right and a blank space is inserted at the current
position. Text at the end of the Line is 'shifted-off' and lost.
Next, a character INSERT MODE is turned on by the <ctrl>-I key.
Any further typing of aLpha-numeric characters wi L L expand the
current line starting from the current cursor position and wi II
insert the character typed. The insert-character function can be
turned off by the <ctrl>-O key. There is also an INSERT-BLANK
LINE function. The function key f4 moves the rest of the screen
down starting from the current line and inserts a bLank line. As
to what happens to the bottom line that got shifted off the
screen, refer to the section 'THE 26th LINE'.

- LINE CLEAR functions

Two keys perform line clear functions. The <ctrL>-C key clears
the current line and places the cursor at the start of the line.
<ctrL>-V clears text on the current Line starting at the current
cursor position up through the last character of the line. Note
that both of these functions work according to the currently set
line Length. Also, because of the 64 keyboard decoding, pressing
the STOP key wiLL function identically to <ctrl>-C in cLearing
the current line.

A-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

- DELETE functions

There are a Lso severa L ways to de Lete text. The DEL key on the
64 keyboard deLetes the character to the Left of the current
cursor position and shifts the rest of the Line Left one
character position to take up the space. Spaces are added to the
end of the Line as it is shifted Left. Note that a current Line
can be shifted into the previous Line. The <ctrL>-D key deLetes
the current character and coL Lapses the rest of the Line to take
up the space. Function key 3 (f3) deLetes the current Line. As
with the INS key and the insert-character function, any
text removed from the screen via the DEL key, the <ctrL>-D key,
or f3 is Lost forever. CUT and PASTE functions, described Later,
are used to deLete and save characters and Lines so that they may
be moved to other Locations in the current screen or to another
screen.

- CUT and PASTE functions

Five functions are provided for 'cut and paste' operations. Four
function keys, and one controL key are used to provide: DELETE
CHARACTER-AND-SAVE (f7), DELETE-LINE-AND-SAVE (fS), UNDELETE
CHARACTER (fS), UNDELETE-LINE (f6), and 'POP'-A-LINE «ctr L>-P).
Characters and Lines, as they are deLeted, are saved off in
temporary buffers. The fS and f6 function keys pu L L out and
insert into the current screen Line the most recentLy saved
characters and Lines, if any were. The characters or Lines are
removed from the buffers as they are UNDELETED. The 'POP'-A-LINE
key takes the most recentLy-deLeted Line from the Line buffer and
ins e r t sit be for e the cur r e n t Lin e, but doe s not rem 0 v e i t f ro m
the Line buffer. POP-A-LINE may be used to dupLicate a Line
severaL times within one or more screens. The characters and
Lines saved in the temporary buffers may be passed to other
screens AS LONG AS THE LENGTH OF THE FORTH DICTIONARY DOES NOT
CHANGE! This is done by editing one screen, deLeting characters
and/or Lines using the f7 and fS keys, exiting the screen-editing
mode, entering a second screen for editing, and using the f8
and/or f6 keys to insert characters and/or Lines into the new
screen. Between exiting the first screen and entering the
editing mode of the second screen, no definitions may be added,
de Leted, or Loaded, as this wi L L cause Loss of the saved
characters and Lines.

A-3

J

The character buffer in which characters deLeted by f7 are saved
in is 80 bytes (characters) Long. When fuL L, the deLete-
character function wi L L stop working. The Line-buffer uses any
avai LabLe space between the top of the FORTH dictionary and the
bottom of the screen buffers area. Here too, when the space is
fi L Led, Line-deLete no Longer works, and neither undeLete
character nor undeLete-Line works when there are no characters or
Lines Left in the buffers.

Note that the coLor of deLeted characters and Lines is not saved.
Characters and Lines are undeLeted in the current coLor.

- THE 26th LINE

Where are the remaining 24 characters that aren't dispLayed?
They reside in a 'mini-Line' just beLow the bottom of the screen.
Whenever any type of Line-insert function is done, Lines are
pushed down the screen toward the bottom. The bottom Line goes
into the 26th Line, the 'mini-Line'. Whenever any type of Line
deLete function is done, Lines are shifted up the screen and the
26th Line is brought in and pLaced on Line 25 of the screen.
Since it is onLy 24 characters Long, Line 25 is padded with
spaces on the screen. As Line 26 is moved onto the screen, it is
fiLLed with spaces, aLthough you can't see it. ALso, when Lines
are shifted down the screen, the first 24 characters of Line 25
go into Line 26, the remaining 16 characters of Line 25 are Lost,
as are the 24 characters that were in Line 26.

Therefore, if you need aL L the space avai LabLe in a screen,
putting text in the Last Line is simpLe. DeLete one of the Lines
current Lyon the screen using the DELETE.-LINE function key (fS),
which wi L L save it in the Line buffer. Move the cursor down to
Line 25 on the screen and type in the text that you want. OnLy
the first 24 characters count. When set, move the cursor back up
tow her e the Lin e was deL e ted. Use the UN DEL E T E - LIN E fun c t ion
key (f6) to fetch back the deLeted Line. The 24 character Line
at the bottom of the screen wi L L disappear as Lines are shifted
down - it went into Line 26. If you are worried about it being
present, just use f5 again to deLete Lines and you'L L see Line 26
come up into the screen. Be carefuL inserting Lines when you
have text in Line 26 as it wi L L be shifted out and Lost. Again,
for most appLications, screens are pLentiful and to ignore the
presence of the Last 24 characters is no Loss.

A-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- NON-TEXT DATA FOUND IN A SOURCE SCREEN

The editor is for editing source text screens. Any non-text data
found when the screen is first dispLayed is converted to a graph
ics character (usuaLLy the 'pi' character). When a screen is
exited with update, the screen ASCII text is transferred into the
screen buffer memory. Thus, if you create screens on disk which
contain random byte data and not source text, and you accident
aLLy enter the editing mode on one of those screens, you must
exit WITHOUT UPDATE to preserve the data. The 64 has many
controL characters in it's dispLay-controL character set and
aL Lowing random byte data to be dispLayed wouLd create a rather
useLess dispLay. Hence, most non-text data bytes are dispLayed
as a graphics character.

There are modes where contro L characters are accepted and
dispLayed. IdenticaL to BASIC, any controL characters entered
whi Le in the 'quote' mode (i.e. within paranthesis) inserts a
graphics representation of the controL character. ALso, any
coLor-seLect key pressed whiLe not in the quote mode enabLes the
key seLected, and the <shift>-COMMODORE key switches the case
(the dispLay font) as in normaL BASIC editing mode.

- EXITING THE EDITOR AND SAVING OR DISCARDING WORK

There are four ways to exit the editor. <ctrL>-Z exits, and
discards aLL work done. The contents of the screen in the disk
buffer memory area is not in any way modified or marked as
updated. <ctrL>-X exits the editor, updates the contents of the
screen in memory, and marks that screen as updated. <ctrL>-F
exits, the editor, updates the screen in memory, and goes through
the disk buffer area and writes out to disk ALL screens that are
marked as updated, which wiLL incLude the screen just edited.
The numbers of the screens are printed as they are saved.
<ctrL>-L exits the editor, updates the screen in memory, saves
aLL updated screens to disk, and begins Loading the screen just
the same as if you had typed: <scr#> LOAD. With <ctrL>-L or
<ctrL>-F, if for any reason there is a disk or tape error whi Le
FORTH is trying to save the screens, the screens wi LL be Left as
updated in memory, the error message wi L L be printed, and controL
wi LL return to the FORTH input routine. The probLem causing the
error can be corrected, then the screen(s) can be saved again by
the FORTH command SAVE-BUFFERS.

A-5

A-6

f1
f2.
f3
f4

fS
f6
f7
f8

INS
DEL

<ctrL>-B
<ctrL>-C
<ctrL>-D
<ctrL>-I
<ctrL>-O
<ctrL>-P

<ctrL>-V

<ctrL>-Z
<ctrL>-X
<ctrL>-F
<ctrL>-L

EDITOR COMMAND SUMMARY

- set current Line to effective Length of 80
- set current Line back to effective Length of 40
- deLete current Line (Line is not saved)
- insert a bLank Line

- deLete current Line and save
- undeLete a Line and insert at current row
- deLete current character and save
- undeLete a character and insert at current pos

- insert a bLank at the current cursor pos
- deLete previous character

- 'tab ' (move cursor) 4 positions to the right
- cLear current Line (RUN/STOP key does same)
- deLete current character (character not saved)
- turn on auto-insert
- turn off auto-insert

'pick' the most recent Line in the deLeted-Line
buffer and insert before current Line

- cLear to end-of-Line

- exit editor, discard aLL work done this screen
- exit editor, update screen in memory
- exit editor, update screen, and save screens
- exit editor, update screen, save aL L screens,

and Load this screen

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

THE ASSEMBLER

An assembLer for generating 6502 machine code has been incLuded
in source code format with the C64-FORTH package. Once the
assemb Ler has been Loaded into the FORTH di ctionary, the enti re
FORTH program can be 'SAVESYSTEMed' and the assemb Ler wi L L be a
permanent part of the bootabLe system. The assembLer screens are
screens # 6-17. To Load the assembLer, insert the C64-FORTH disk
and type:

6 LOAD

Screen # 6, when through Loading, automaticaL Ly initiates Loading
of screen # 7, and so on unti L the entire assembLer is created as
part of the FORTH system. You may then save the new FORTH system
onto a disk with the foLLowing command:

SAVESYSTEM "<fiLename>"

The assembLer is provided in source code format because even
though the 64 has approx. 51K of usabLe RAM when the BASIC ROMs
are disabLed, some C64-FORTH users may need every bit of
avai LabLe space. Once an appLication package has been written
and debugged, the editor may no Longer be needed. It consumes
approx. 2.5K of memory, and it was pLaced as the Last part of the
C64-FORTH package. The editor may be deLeted via 'FORGET EDITOR'
freeing up the 2.5K. Since the assembLer may be seLectiveLy
Loa d ed, t he 2 K 0 f spa c e t hat i t con S u me s nee d no t be t a ken u p i f
the appLication package is written aL L in higher-LeveL FORTH.
Thus, you can customize your FORTH system with or without the
editor, and with or without the assembLer.

The assemb Ler a L Lows generating 6502 machine code di rect Ly from
easi Ly associated 'mnemonics', or instructions. AssembLy Language
programs aL Low a one-to-one correspondence between- program
instructions and micro-processor operations. Whi Le FORTH
produces very space-efficient and fast running code, some
appLications require the absoLute controL of the micro-processor
that onLy machine code can give.

B-1

For users just picking up assembLy Language programming, the
COMMODORE-64 PROGRAMMER'S REFERENCE GUIDE has a brief
introduction on the subject, and there are severaL good books out
on the market on programming the 6502 in assembLy Language. One
usefuL point reLative to C64-FORTH is that you don't need the
64MON cartridge for the 64 to write, enter, and execute machine
Language programs.

- CODING IN C64-FORTH ASSEMBLY

Coding in C64-FORTH assembLy Language is simi Lar to coding in
higher- Leve L FORTH. Routines may origina L Ly be coded in FORTH
and debugged, then recoded into assembLy Language with minimaL
changes or restructuring. Structure controL directives (BEGIN--
UNTIL, IF---ELSE---THEN, etc.), whi Le imp Lemented di fferent Ly in
the assembLer vs. FORTH, function simi LarLy. Therefore, to assure
that assembLer versions are used in assembLy code, and to differ
entiate assembLer mnemonics from some FORTH word definitions, aL L
assembLer controL directives and mnemonics end with a comma
(','). This aLso aL Lows FORTH word definitions to be used during
assembLy to generate instruction addresses or to controL the
assembLy process. For exampLe:

CR ." ASSEMBLING BACKGROUND COLOR-SET ROUTINE"

(get current cursor coLor, and mask out high 4 bits
using machine code AND instruction, not FORTH
AND function)

646 LDA, HEX F # AND, DECIMAL (mask coLor vaLue
1 # CMP, 0= IF, (i s current cursor coLor = 1 '?

0 # LDA, 53280 STA, (yes, set border coLor to bLack
53281 STA, (and set background coLor to bLack

ELSE, (current cursor coLor not white,
1 # LDA, 53280 STA, (then set border coLor to white
53281 STA, (and set background coLor to white

THEN, (terminate conditionaL branches

RTS, (return from this subroutine

)

)
)

)
)

)

)
)

)

In traditionaL assembLy Language code, a LabeL is optionaLLy
specified first, then the instruction mnemonic, foL lowed by the
'operand' (the address to operate upon). In FORTH, to ensure
proper structured coding, LabeLs are not permitted. Operands must
preceed the instruction mnemonic, since in FORTH vaLues and
parameters used as quaLifiers must be put onto the data stack
before the routine that operates on them is caLLed, and instruc
tion mnemonics are actuaL Ly defined as word definitions.

B-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Note in the previous exampLe the use of the HEX and DECIMAL word
defs. The assembLer does not COMPILE definitions, but is
actuaL Ly operating in the INTERPRETIVE mode, just Like FORTH does
after it prints 'OK' on the screen and waits for user input. The
assembLy code instruction mnemonics are fed into the input stream
just the same as if you were typing them in in response to the
'OK' prompt. Therefore, the FORTH controL structures, such as
BEGIN---UNTIL , IF---ELSE---THEN , etc. cannot be used since
FORTH is not compi Ling a definition. Instruction mnemonics are
FORTH routines that execute immediateLy upon being read in. They
generate and pLace into memory byte data that wi L L effect the
proper instruction.

You wi LL aLso note in the tabLe of C64-FORTH assembLer mnemonics
that there are none of the 6502 'branch' instructions. In order
to encourage good programming technique, controL directives must
be used to effect branching, such as BEGIN,---UNTIL, , IF,--
ELSE,---THEN, etc. (Note that the ASSEMBLER versions have a
comma at the end of the directives. It is important to be aware
oft his dis tin c t ion.) The con t r 0 L d ire c t i veL i moi tat ion has
another advantage - whi le assembling source code, the assembLer
checks controL directives for proper nesting. This heLps ensure
that program branching during run-time execution is at Least
predictabLe. An aLternative to this wouLd be to have the FORTH
kernal controL the execution of each instruction, and this wouLd
be prohibitive timewise.

- ACCESSING MACHINE CODE ROUTINES FROM HIGHER-LEVEL FORTH

The ins t r u C t i on m n e m 0 n i c san d s t r u C t U r e c on t r 0 L d ire c t i v e s are
aLL de fin e din the ASS E M BL E R v 0 cab u L a r y. The nor maL way to
generate machine code routines is by using the FORTH word
definition 'CODE'. CODE automatical Ly creates a FORTH header,
estabLishes the Linkage into the machine code required for access
from higher-LeveL FORTH routines, and sets the active (context)
vocabuLary to ASSEMBLER. Instruction mnemonics can then be used
to add machine code to the definition. Returning to the higher
LeveL FORTH routines must be properLy done or the system wi LL be
corrupted <i.e. expect it to crash!). FinaLLy, the definition
must be verified for proper compLetion. This is done with the
'END-CODE' word definition.

Machine instructions within a machine code routine cannot ca L L
routines defined with the CODE/END-CODE structure. To ca L L a
machine code routine from another machine code routine the 'JSR'
(mnemonic for the caL L-routine function) instruction is used, and
to return back to the next instruction of the ca L Ler the 'RTS'
(mnemonic for return-to-caL Ler function) instruction must be
executed. This caL L-return sequence is different from how a
FORTH LeveL definition caLLs or invokes a sub-definition.
There is another way that a FORTH LeveL definition can access
(ca L L) a machine code routine. The CALL and CALLR FORTH

B-3

definitions aLLow directLy executing machine code routines that
terminate execution with the RTS instruction. These machine code
routines may then be ROM routines within the 64 memory space or
code routines generated via the C64-FORTH assembLer. And, of
course, any machine code routine that ends with a RTS instruction
can be caL Led from any other machine code routine.

Various tests are made within the assembLer to detect user
errors. CODE saves the data stack LeveL at the start of assembLy
Language definition. END-CODE checks to make sure the exiting
LeveL is the same as the starting LeveL detecting missing or
excess parameter type of errors. Structure controL directives
pLace check digits on the stack to ensure proper nesting and
pairing. UnimpLemented addressing modes and out-of-range vaLues
for 0 per and s are c h e eke d for and f Lag g e d. W h i Let h e s e mea sur e s
don't guarantee crash-free code, they do show up many of the more
common errors. A LittLe user caution is aLso necessary in
becoming fami Liar with the assembLer. For instance, the FORTH
definition 0= does something entireLy different than the
ASSEMBLER definition 0= even though it functiona L Ly appears the
same.

B-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- ASSEMBLER INSTRUCTION MNEMONICS

There are a number of 6502 instructions that are caL Led 'impLied'
instructions. There are no operands required for these
instructions, and assembLy of the mnemonic generates a one-byte
data item in memory that is the machine instruction. The impLied
instructions are:

BRK, CLC, CLD, CLI, CLV, DEX,
DEY, INX, INY, NOP, PHA, PHP,
PLA, PLP, RTI, RTS, SEC, SED,
SEI, TAX, TAY, TSX, TXA, TXS,
TYA,

In the· List of instructions avai LabLe under the assembLer, branch
instructions (other than JMP,) are not incLuded, as these are
generated automaticaL Ly by the structure controL directives. The
group of instructions Left are arithmetic, LogicaL, and data
movement instructions that have more than one addressing mode
each. Not everyone of the foLLowing instructions have the same
aL LowabLe addressing modes, so check a 6502 instruction reference
if you're not sure. The muLtipLe-mode instructions are:

ADC,
CPY,
LDA,
ROR,

AND,
DEC,
LDX,
SBC,

ASL,
EOR,
LDY,
STA,

BIT,
INC,
LSR,
STX,

CMP,
JMP,
ORA,
STY,

CPX,
JSR,
ROL,

(ActuaLLy, the JSR, instruction above has onLy one addressing
mode, but since it is a memory reference instruction, we'L L Let
it pass.)

The 6502 has 11 addressing modes for memory-reference
instructions. The 6502 considers the bottom page (256 bytes) of
memory to be speciaL, caL Ling it the 'zero-pagel (zp), and offers
shorter, quicker instructions for accessing those Locations. You
do not have to specify zp mode in assembLer source code - the
assembLer checks to see if the effective address is in the zero
page, and if so, generates the speciaL zp instruction instead of
the generaL memory reference instruction. This works for indexed
via X or Y modes as weLL as absoLute references. Before the
switch to zp mode is made however, the assembLer checks to see if
the zp mode is aL Lowed. If not, the generaL memory reference
instruction is generated anyway.

B-5

- ADDRESSING MODE SPECIFICATION I
The assembLer generates a one, two, or three-byte data item in I
memory that is the machine instrution pLus the effective address.
SimpLe symboLs inserted after the effective address and before
the instruction mnemonic conveys to the assembLer which mode is I
desired:

SYMBOL

.A

,X
,Y
X)
)y
()

none

ExampLes:

FORTH
ASSEMBLER

66 ADC,
FFD2 JSR,

.A ASL,
SF # CMP,

TABLE ,X LDA,
50 ,Y CMP,
o X) LDA,

50)y SBC,
FFFC () JMP,

B-6

DESIRED ADDRESSING MODE OPERAND RANGE

accumuLator
immediate data
indexed,X
indexed,Y

none
byte vaLue
zp or absoLute
zp or absoLute

indexed via X, indirect
indirect, indexed via Y
jump indirect

zp onLy (byte adr)
zp onLy (byte adr)
absoLute adr onLy
zp or absoLute direct memory reference

CONVENTIONAL
ASSEMBLER SOURCE CODE AND COMMENTS

ADC 66
JSR FFD2
ASL A
CMP #SF
LOA TABLE,X
CMP SO,Y
LDA (O,X)
SBC (SO),Y
JMP (FFFC)

;ADD ZP LOCATION 66
;CALL ROUTINE @ FFD2
;SHIFT ACC LEFT
;IS A = SF ?
;FETCH TABLE ENTRY + X
;tHECK BYTE IN ZP BUFFER+Y
;FETCH VAL INDI~ECTLY + x
;SUBTRACT INDIRECTLY + Y
;JUMP TO RESET ENTRY POINT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- RETURNING TO HIGHER-LEVEL FORTH

Returning to the FORTH system must be done proper Ly or the system
wi L L crash. The re-entry point into FORTH is actua L Ly the
interpretive-pointer sequencer. This routine executes the code
pointed to by the next pointer in the body of a FORTH definition.
The assembLer assigns the name 'NEXT' to the entry-point of this
routine. To properLy exit a machine code routine and re-enter
FORTH, execu~e a JMP to NEXT.

ExampLe:

(turn off auto-key repeat)
CODE RPTOFF

o # LOA, (cLear Loc. 650 to disabLe)
650 STA,
NEXT JMP, (return to FORTH)

END-CODE

VaLues may be added or removed to the data stack at the same time
that controL is returned to FORTH by jumping to other re-entry
points. AL L of these routines perform the indicated function,
then jump to NEXT for you. Refer to ASSEMBLER reference List for
detaiLed descriptions.

PUT
PUSH
PUSHOA
POP
POPTWO

-Overwrite bottom 16-bit vaLue on data stack
-Add 16-bit vaLue to bottom of data stack
-Add byte vaLue to stack as 16-bit vaLue
-Remove bottom 16-bit vaLue from data stack
-Remove bottom 2 16-bit vaLues from data stack

- THE DATA STACK

The FORTH data stack is accessabLe from assembLy code. The data
stack is a section of zero-page memory 80 bytes in Length. The
top of the stack when empty starts at 6C. If one word vaLue is
on the stack, the top of the stack is at 6A, with the Low byte of
the vaLue accessabLe at Loc 6A, the high byte of the vaLue is at
Loc. 6B. Va Lues can be added to the stack unti L it is fu L L, i.e.
when the data stack pointer gets down to 1C. Whenever controL
returns to the FORTH input interpreter, and the stack pointer is
down beLow 20 (hex), a stack-fiLLed error is issued.

B-7

J

AssembLy code may freeLy access, remove, and add data to the data
stack. The minimum data item that may be added to the stack is a
16-bit vaLue. The stack pointer must aLways be decremented or
incremented by an even number when adding or removing data items.
The stack pointer is actuaL Ly the 6502 X register. The zero-page
indexed-via-X addressing mode is used to access va Lues on the
stack. For exampLe:

o ,X LOA, (fetch Low byte of bottom of stack)

Since the stack starts from a certain memory Location and works
down as vaLues are added, the current position pointed to by the
stack pointer is referred to as the BOTTOM of the stack. The
TOP stack data-item referred to in FORTH is actua L Ly at the
bottom of the stack. Words have been defined in the assembLer
vocabuLary to make references to positions of certain data-items
on the stack. Since the Low byte of the most recentLy added data
item on the stack is accessed via addressing mode 0 ,X, then
the assembLer definition 'BOT' sets that addressing mode for the
current instruction.

For exampLe:

BOT LOA,

wiLL fetch into the accumuLator the Low byte of the first vaLue
on the stack. BOT 1+ LOA, wi L L fetch into the accumu Lator the
high byte of the first vaLue on the stack. BOT 2+ LOA, wi L L
fetch the Low byte of the second va Lue on the data stack, BOT 3 +
LOA, wi L L fetch the high byte of the second vaLue, and so forth.

Since the second data item on the stack is aLso frequentLy ne~ded
by a code routine, the symboL SEC has been provided. Thus,

SEC STA,

wi L L store the contents of the 6502 accumuLator into the Low byte
of the second data item on the stack. SEC is therefore
e qui vaL en t t 0 BOT 2 + 0 r tot h e add r e ss s p e c if; cat i on 2 ,X , and
SEC 1+ ;s equivaLent to BOT 3 + , etc.

B-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- RETURN STACK

The C64-FORTH return stack is actuaL Ly the 6502 machine stack.
The 6502 uses page 1 of memory (from 100 to 1ff) for saving
return addresses when subroutines are caLLed. FORTH itseLf uses
the return stack to save the interpretive pointer, to save the
index and Limit of DO Loops, and to save temporary vaLues. It is
very easy to 'crash' the FORTH system and the 64 by improperLy
adding or removing vaLues to the return stack. OnLy experienced
FORTH programmers shouLd attempt operations on the return stack
(with the exception of some of the return operations to FORTH, as
Listed in RETURNING TO FORTH).

VaLues on the return stack may be obtained via the PLA
instruction. The byte order convention is the same as with the
data stack -i.e. Low byte, then hi gh byte. Therefore, to pu L L
(remove) a 16-bit vaLue from the return stack, PLA, TAY, PLA,
wi L L first remove the Low byte of the vaLue, save it in the Y
register, then the high byte wi L L be removed and saved in the
accumuLator.

To access vaLues on the return stack without removing them, the S
register of the 6502 is used. The S register is the machine
stack pointer. It can be transferred into the X register, then
any byte on the return stack may be accessed via the ,X
addressing mode. Note that the X register must be saved and
Later restored before returing to FORTH. The process is:

1) save the X register in XSAVE

2) execute the TSX, instruction to bring the S reg to X

3) use 'RP)' as the address specification to address the
Lowest byte of the return stack. Use offsets to address
higher bytes (RP) 1+ , RP) 2+ , RP) 3 + , etc.). The
addressing mode is automaticaLLy set to ,X •

4) restore X before returning (Load X from XSAVE)

8-9

j

- 6502 REGISTER USAGE

The accumuLator is not set to any particuLar vaLue upon entry
into a CODE routine. It may be freeLy used and does not have to
be set to anything specific upon return to FORTH.

The X register is used as the data stack pointer by FORTH. If it
is used for anything but accessing the data stack, it's vaLue
must first be saved, the operation performed, then it must be
restored before returning to FORTH. Data items may be added to
the stack by decrementing X twice for each item, or incrementing
twice to remove each item.

ExampLes:
(push the
DEX, DEX,
3 # LOA,
BOT STA,

vaLue of 3 onto the data stack)
(make room for new entry)
(put 3 in Low byte)

o # LOA,
BOT 1+ STA,

(and cLear high byte)

(set top of memory pointer from address on stack)
BOT LOA, 643 STA, (fetch address and set pointer)
BOT 1+ LOA, 644 STA,
INX, INX, (remove item by incrementing X)

(set the screen cursor address from vaLues passed on
stack: COL# ROW#
NOTE: the X register is changed)

CODE SETCURSOR
XSAVE STX,
SEC LOY,
BOT LOA,
TAX,
CLC,
65520 .JSR,
XSAVE LOX,
POPTWO JMP,

END-CODE

(save X register)
(set Y = desired coL #)
(set X = desired row #)

(carry bit must be cLeared to set)
(caLL ROM routine)

(restore X before returning)
(remove vaLues from stack & return)

The Y register is set equaL to 0 upon entry into a CODE routine.
It may be freeLy used and does not have to be restored before
returning.

The S register, the 6502 machine stack pointer, points one byte
beLow the Low byte of the bottom return stack item. Improper
aLteration of the S register or vaLues on the return stack wi L L
aLmost guarantee a system crash.

The 6502 is in binary mode upon entry to a CODE routine. If
6502 decimaL caLcuLations are done, binary mode must be reinvoked
(via CLD,) before returning.

B-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I - FORTH SYSTEM REGISTERS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FORTH uses severaL variabLes whi Le running to controL execution
of FORTH code. These variabLes are onLy accessabLe via machine
code.

IP is the interpretive pointer. It points to the next pointer in
the body of a FORTH word def. This wi L L be the next word defini
tion executed by FORTH when controL is returned to it via jumping
to NEXT.

W points to the code fieLd of the FORTH definition just
executed. W-1 contains the vaLue 6C, which is the 6502 machine
vaLue for an indirect jump. FORTH enters a definition composed
of machine code by pointing W to the code fieLd address of the
definition, which points to the machine code foL Lowing it. FORTH
jumps to W-1, the indirect jump instruction, the pointer is
fetched out of the code fieLd of the definition, and the 6502 is
then executes the machine code of the definition.

UP is the User Pointer that contains the address of the base of
the user area a coLLection of variabLes defining the
characteristics of the current FORTH system.

There aLso is a work space area used by FORTH that can be used by
machine code routines. These are 9 consecutive bytes referenced
by the assembLer as N-1, N, N+1, N+7. These are zero-page
memory Locations, so they may be used as pointe~ Locations for
indirect addressing instructions, or as temporary storage
Locations. TraditionaL Ly N-1 is used for byte vaLues, and N, N+2,
N+4, and N+6 are used to hoLd 16-bit va Lues. The 9 Locations may
be used freeLy. VaLues put into these Locations may be passed to
caL Led subroutines, but not to other FORTH word definitions.
Many of the routines in the FORTH kernaL use the work space
Locations.

XSAVE is a byte Location in zero-page memory that is used to save
the X register during routines that need it for other purposes.
Some of the exampLes in this section show how it is used.

8-11

- SETUP

SETUP is a subroutine in the FORTH kernaL that is caLLabLe by a
machine code routine. SETUP removes a specified number of 16-bit
vaLues from the data stack and stores them in the work area. To
use the routine, the accumuLator is Loaded with the number of
va Lues to remove from the stack, then just ca L ~ SETUP. The
number of items to remove can onLy be from 1 to 4! The bottom
stack item is put into N,N+1 , the second item is put into
N+2,N+3 , etc.

ExampLe:

3 # LDA, SETUP JSR,

In this exampLe, the top 3 data-items are removed from the data
stack and pLaced into N through N+5.

- CREATING MACHINE CODE SUBROUTINES

Whi Le within a CODE definition another CODE definition cannot be
entered, a machine code subroutine that ends with the RTS,
instruction can be caL Led. CODE creates a definition header that
is compatibLe with FORTH higher-LeveL definitions, as weLL as
setting up conditions that a L Low END-CODE to check for errors.
We need something simpLer just to create a header for a machine
code routine. We can use 'CREATE' for this purpose. CREATE wi L L
create a header with the specified name. AssembLy code may then
be used to make up the body of the definition. The definition
must end with either the RTS, instruction, or a JMP, to a machine
code routine that terminates with the RTS, instruction. END-CODE
is not needed to compLete the definition, since no error-checking
conditions were set up initiaLLy. When the name of the new defi
nition is referred to, the ADDRESS of the first instruction in
the body of the routine is pLaced on the data stack. Therefore,
the NAME of the machine code routine may be used as an address
specification in another machine code or CODE definition.

8-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ExampLe:

(create machine code routine first to return <> 0 if
STOP key on 64 keyboard is depressed)

HEX
ASSEMBLER (seLect ASSEMBLER vocabuLary

is not used)
since CODE

CREATE STOPKEY?
DC01 LOA,
7F # CMP,
RTS,

(create header)
(read in I/O port key bits)
(i f S'T 0 P pre sse d, the n = 7 f)

(return with Z status bit set or cLeared)

(routine caL LabLe
CODE WAITSTOP

BEGIN,

fro m FOR T H wa its un t; L s top key p·r e sse d)

(start of wait Loop)
(see if STOP pressed)

(Loop untiL returns <> 0)
(return to FORTH)

STOPKEY? JSR,
0= NOT UNTIL,
NEXT JMP,

END-CODE

A note of caution: Make sure you properLy terminate a machine
code routine. Since no error checking is done, the system couLd
crash if a routine is caLLed that was not terminated with aRTS,
instruction or equivaLent JMP, instruction.

- BRANCHING AND LOOP CONTROL STRUCTURES

As in higher-LeveL FORTH, controL structure directives must be
used for program branching. The assembLer versions of the direc
tives effect the proper branch by pLacing into memory byte data
corresponding to the 6502 branch instructions. They aLso pLace
onto the data stack 'cheek' digits to heLp detect improper
nesting of structures or incompLete structures.

The controL structure directives are used for conditionaL Looping
or branching. The conditions aLLowed for branching are:

CONDITIONAL SPECIFIER CONDITION TESTED

CS is 6502 carry bit set ?
CS NOT is 6502 carry bit cLear ?
0= i s 6502 zero fLag set ?

0= NOT is 6502 zero fLag cLear ?
0< i s 6502 minus fLag set ?
0< NOT ; s 6502 minus fLag cLear ?
VS ; s 6502 overfLow fLag set ?
VS NOT is 6502 overfLow fLag cLear ?

8-13

When a conditionaL specifier is used, a value is pushed onto the
stack at assembLy time that aLlows the directive that foLLows to
place into memory the proper branch instruction to effect the
testing of the condition.

CONDITIONAL FORWARD BRANCHING:

<conditionaL specification> IF, ••• ELSE, ••• THEN,
IF, ••• THEN,

(or IF, ••• ELSE, ••• ENDIF,
and IF, ••• ENDIF,)

As in higher-level FORTH, this structure is used for conditionaL
forward branching. The condition is pLaced before the IF, part.
Byte data is placed in memory such that at runtime if the condi
tion tests TRUE, then control faLLs through to the first instruc
tion after the IF, part. If not, a branch is taken to the first
instruction after the ELSE, part (or THEN, if no ELSE, part was
specified).

What the assembler version IF, actuaLLy does is remove the
conditionaL pLaced on the stack, compiLe a branch instruction and
temporary branch offset into memory, then pLace the current
dictionary address onto the stack aLong with a check digit (the
number '2'to indicate an IF,ELSE,THEN, type of structure). The
way the stack is aLtered during assembLy is:

conditionaL IFaddress 2

Remember that this action is performed during the ASSEMBLY
process, not during run-time. During run-time, either the branch
is taken, or the code foLLowing the branch is executed.

If an ELSE, directive is encountered in the input text, then
first the check digit is checked to see that it is a '2'
indicating the innermost conditionaL structure was started by an
IF,. The address is then removed and the proper branch offset ;s
caLcuLated and placed into the branch instruction generated by
the IF,. The current dictionary address is then pLaced onto the
stack, aLong with a new check digit (aLso = 2). A JMP,
instruction is pLaced into memory to aLLow the code executed by
the IF, part to jump around the ELSE, part. A temporary jump
destination address is pLaced in the instruction. The effect of
the ELSE, during assembLy is:

IFaddr 2 ELSEaddr 2

B-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AssembLy code is assembLed into memory unti L a THEN, directive is
encountered. THEN, first checks the check digit to ensure it is
a '2', then corrects the JMP, destination address if an ELSE, was
part of the controL structure, or corrects the branch offset
generated by the IF, directive. The effect of THEN, during
assembLy is:

IFaddr 2 or ELSEaddr 2

CONDITIONAL LOOPING:

BEGIN, ••• <conditionaL specification> UNTIL,
(or END,)

This structure is used for conditionaL Looping or backward
branching. The BEGIN, is used to mark the start of the Loop, or
the destination of the backward branch. AssembLy code foL Lows,
then a condition is specified foLLowed by the UNTIL, (or END,).
The effect of this structure is to Loop unti L a specified
condition tests TRUE. ControL then faL Ls through, and the code
foLLowing the UNTIL, part is executed.

BEGIN, onLy pushes the current dictionary address onto the stack
foLLowed by a check digit equaL to 1. The effect of BEGIN,
during assembLy is:

BEGINaddr 1

UNTIL, first checks the check digit on the stack to verify that
the inner-most controL structure is a BEGIN,UNTIL, type of
structure. Then, using the conditionaL and the address pLaced on
the stack by BEGIN, , it generates a backward branch instruction
in memory whose destination is the first instruction given after
the BEGIN,' directive. The effect of UNTIL, during assembLy is:

BEGINaddr 1 conditionaL

8-15

CONDITIONAL EXECUTION AND LOOPING:

BEGIN, <conditionaL specification> WHILE, REPEAT,

This structure is used primari Ly for executing code within a Loop
unti L a condition is met. The BEGIN, is used to mark the start
of the Loop. Assemb Ly code may optiona L Ly fo L Low, then a
specified condition code is tested for. If the condition tests
TRUE, then the code between the WHILE, and REPEAT, parts is
executed. The REPEAT, causes an unconitionaL branch back to the
first instruction after the BEGIN,. If the condition tests
FALSE, then the Loop is exited and the first instruction
specified after the REPEAT, is executed.

BEGIN, onLy pushes the current dictionary address onto the stack
foL Lowed by a check digit equaL to 1. The effect of the BEGIN,
during assembLy is:

BEGINaddr 1

When the WHILE, directive is encountered, first the most recent
check digit on the stack is checked to see that it is a'1'
indicating the innermost control structure was started by a
BEGIN,. The equivaLent to an IF, directive is executed to pLace
a conditionaL forward branch instruction into memory, however a 4
is left on the stack as a check digit. The effect of the WHILE,
during assembLy is:

BEGINaddr 1 conditionaL BEGINaddr 1 WHILEaddr 4

When the REPEAT, directive is encountered, the second check digit
on the stack is checked to insure it is a '1' indicating this
whoLe mess was started with a BEGIN,. A JMP, instruction is
placed into the dictionary at this point to jump back to the
first instruction after the BEGIN, part. Next, the first check
digit on the stack is checked to insure it is a '4' indicating a
WHILE, was specified. The equivaLent to a THEN, directive is
executed to terminate the conditionaL forward branch instruction
placed into memory by the WHILE, part. The effect of the REPEAT,
during assembly is:

BEGINaddr 1 WHILEaddr 4

B-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ExampLes:

(Wait for a key to be pressed - if key pressed was ILl then
put a TRUE fLag on the stack, eLse, put a FALSE fLag on
the stack.)

HEX
CODE ?LKEY

XSAVE STX,
BEGIN,

FFE4 JSR,
0= NOT UNTIL,
4C # CMP,

(save X register)
(start of key-input Loop)

(get a vaLue from keyboard buffer)
(wait untiL <> 0)

(is ILl key pressed?)
0= IF,

1 # LD A,
ELSE,

o # LOA,
THEN,
XSAVE LOX,
PUSHOA JMP,

END-CODE

(move sprite
raster Line

HEX
CODE DOWNSCRN
N 1- STY, (
BEGIN,

0001 LOA,
DECIMAL 150
CS IF,

1 # LOA,
THEN,
001E LOA,
1 # AN 0,
N 1- ORA,

0= WHILE,
0001 INC,

REPEAT,
NEXT JMP,
END-CODE

(yes, put true fLag in acc)

(no, put faLse fLag in acc)

(restore X register)
(push fLag onto stack & return to FORTH)

#0 down the screen untiL it either reaches
150 or coLLides with another sprite)

use N-1 as terminating fLag - zero it first)
(start of Loop)

(is sprite #0 at or beyond Line 150 yet?)
CMP, HEX

N 1- STA, (yes, set fLag to terminate)

(has sprite coLLided with another sprite?)

(lorl in terminate fLag)
(exit if resuLt <> 0)

(eLse, increment row position of sprite #0)
(Loop back and continue)

(return to FORTH)

B-17

- GETTING AROUND ASSEMBLER SECURITY

As referred to in the section BRANCHING AND LOOP CONTROL
STRUCTURES, the assembLer checks for proper nesting of controL
structures and terminates with an error condition if improper
nesting is discovered. What if, for instance, you want to
forward branch out of a BEGIN, ••• UNTIL, Loop upon a certain
condition? There is a way to 'triCk' the assembLer into
generating the proper branch instructions by manipuLating the
check digits pLaced on the stack by the controL directives.
In the above case, the contro L structure you want to imp Lement
is:

BEGIN, ••• <conditionaL> IF, ••• <conditionaL> UNTIL, THEN,

Fo L Lowing the previous Ly described course of assemb Ly for the
directives, the condition of the data stack as the IF, directive
is encountered is:

BEGINaddr 1 conditionaL BEGINaddr 1 IFaddr 2

Since the innermost structure is a IF,THEN, type of structure,
and the next directive encountered is UNTIL, , you must trick the
assembLer into thinking the innermost structure is a BEGIN,UNTIL,
type. Both the check digits AND the addresses pLaced onto the
stack must be switched. 2SWAP works very niceLy for this
purpose. 2SWAP must be used AFTER the IF, , and before the
conditionaL specification of the UNTIL, directive. After the
2SWAP is executed, the data stack wi LL Look Like:

BEGINaddr 1 IFaddr 2 IFaddr 2 BEGINaddr 1

Then when the <conditionaL> UNTIL, is encountered, the proper
backward branch is pLaced into memory, and when the THEN, is
encountered, the conditionaL forward branch created by the IF, is
properLy terminated.

8-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ExampLe:

(move sprite #0 down one raster Line at a time untiL it
either hits another sprite or a background pattern)

HEX
CODE SPRITE DOWN
BEGIN,

D001 INC,
D01E LDA,
1 # AN D ,
0= IF,

D01F LDA,
1 # AND,

2SWAP
0= NOT UNTIL,
THEN,
NEXT JMP,
END-CODE

(start of loop)
(move sprite #0 down 1 raster Line)

(has sprite #0 coLlided w/another sprite?)

(if yes, branch out of loop)
(no, has sprite coL Lided with background?)

(switch addresses & check digits)
(branch back if not)

(terminate forward branch)

8-19

- MACROS

So you've heard aL L your assembLy-Language programmer friends
extoL the virtues of using MACROS? And, you figure, if they can
use them in their 'Legitimate' programming, why can't you use
them in FORTH ASSEMBLER? Go ahead, we're not stopping you. MACRO
capabi Lity in FORTH happens not to be a speciaL added feature,
but an aLLowabLe function just by defauLt.

MACROS in assembLy programming are a way of defining a sequence
of source code instructions to be generated just by specifying
the name of the MACRO and perhaps a quaLifier or two. Sounds
simi Lar to the way normaL higher-LeveL FORTH works? You got it.

Since the FORTH assembLer is comprised of definitions that
execute upon 'source' text being read in, you can ~reate a new
definition that causes severaL previousLy-defined definitions (
e.g. assembLer mnemonics) to execute just by specifying the new
definition. ALso, since the assembLer words use the data stack
to caLcuLate the effective addresses of machine code
instructions, parameters or quaLifiers may be passed to the new
definition to customize the generated code.

You'L L be wanting use of macros onLy when using the assembLer, so
it's best to define macros as part of the assembLer vocabuLary.
This way macro definitions won't be searched of Listed when doing
normaL higher-LeveL FORTH work. When you are done defining
macros, seLect the vocabuLary you wish to add new definitions to.
The procedure is:

8-20

ASSEMBLER DEFINITIONS

< macros are defined>

FORTH DEFINITIONS

< new CODE definitions can be created via the assembler
but pLaced in the FORTH vocabuLary>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A common exampLe of a commonLy desired macro is to increment a
2-byte (16-bit) pointer. Since the 6502 is a 8-bit machine, to
do this in normaL FORTH assembLy code, using N+2 as the pointer
Location for this exampLe, is:

N 2+ INC, 0= IF, N 3 + INC, THEN,

This code sequence must be used every time a pointer is to be
incremented in the assembLy code program. A macro can be defined
as such:

ASSEMBLER DEFINITIONS
: INC2, DUP INC, 0= IF, ROT 1+ INC, THEN, ;
FORTH DEFINITIONS

Then within the source code, the macro is invoked by:

N 2+ INC2,

A n a L ,y sis 0 f the mac r 0 INC 2, w iLL s how t hat the pro per cod e w iLL
be generated. Other exampLes of macros are:

ASSEMBLER DEFINITIONS

(cLear the accumuLator
CLRA, 0 # LOA, ;

(push the Location of a pointer onto stack addr
PSHLOC, DUP 1+ LOA, DEX, BOT STA, LOA, DEX, BOT STA, ;

(decrement a 16-bit counter addr)
DEC2, DUP LOA, 0= IF, 3 PICK 1+ DEC, THEN, DEC, ;

(push a pointer onto the stack & return to FORTH
addr)
PSHNEXT, DUP LOA, PHA, 1 + LOA, PUSH J M P, ;

)

(the foLLowing does the same thing as the one just defined,
but shows exampLe of nesting of macros)
PSHNEXT, PSHLOC, NEXT JMP, ;

B-21

- ASSEMBLER GLOSSARY

)y

,x

,y

• A

0<

0=

;CODE

8-22

Sets limmediate l addressing mode for the next instruction.

Sets lindirect indexed via yl addressing mode for the next
instruction.

Sets lindexed via Xl addressing mode for the next
instruction.

Sets lindexed via yl addressing mode for the next
instruction.

Sets the accumuLator direct addressing mode for the next
instruction.

ConditionaL specifier used before a controL directive.
This one causes the assembLy of a conditionaL branch
instruction that at run-time wiLL test if the 6502 IN I
status bit is set as the resuLt of some previous operation.

ConditionaL specifier used before a controL directive.
This one causes the assembLy of a conditionaL branch
instruction that at run-time wiLL test if the 6502 IZI
status bit is set as the resuLt of some previous operation.

Used as a way to concLude a coLon definition with
code to create a new type of FORTH LeveL definition.
new type is defined as:

machine
The

<typename> ••• FORTH defs ••• ;CODE ••• assembLy code •••

;CODE stops compiLation and terminates the definition
<typename> by compiLing <;CODE) into definition. The
CONTEXT vocabuLary is set to ASSEMBLER, and the foLLowing
assembLy code is added to the definition. Note: at Least
one FORTH definition must be caLLed between <typename>
and ;CODE.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

When <typename> is Later used to define a new word as in:

<typename> <defname>

the word <defname> wiLL be created with its execution
procedure given by the machine code foLLowing ;CODE.
That is, when <defname> is executed, the machine code
specified after the ;CODE of <typename> is executed.
(;CODE is actuaLLy defined in the FORTH kernaL. The
assembLer redefines it as:

;CODE [COMPILE] ASSEMBLER
IMMEDIATE

[COMPILE] ;CODE . ,

which wiLL make the ASSEMBLER the CONTEXT vocabuLary before
invoking ;CODE)

ASSEMBLER
Make the ASSEMBLER vocabuLary the CONTEXT vocabuLary. It
wiLL be searched first as each word is encountered in the
input stream for a match.

BEGIN,

BOT

CODE

CS

A structure controL directive thats marks the destination
address for a backwards Loop. Used with either the UNTIL,
directive or the WHILE, and REPEAT, directives, as in:

BEGIN, •••• <conditionaL> UNTIL, or
BEGIN, •••• <conditionaL> WHILE, ••• REPEAT,

An assembLer symboL that sets the addressing mode to access
the bottom byte of the data stack. An positive offset may
be added to this symboL to access other bytes on the data
stack. Used as foLLows:

BOT LDA, BOT 1+ STA, BOT 5 + ADC, etc.

A defining word used in the form:
CODE <defname> ••• •• END-CODE

to create a dictionary entry for <defname> in the CURRENT
vocabuLary. <defname>'s code fieLd contains the address
of its parameter fieLd. When <defname> is Later executed,
the machine code in this parameter fieLd wiLL execute. The
CONTEXT vocabuLary is made ASSEMBLER to make avaiLabLe the
assembLy code instruction mnemonics and directives.

A conditionaL specifier used before a controL directive.
This one causes the assembLy of a conditionaL branch
instruction that at run-time wiLL test if the 6502 'c'
status bit is set as the resuLt of some previous operation.

B-23

ELSE,
A structure controL directive that marks the end of the
code to be executed if a status condition tested TRUE, and
marks the start of the code to be executed if that status
condition tested FALSE. Used in the foLLowing way:

<conditionaL> IF, ••• ELSE, ••• THEN,

·END-CODE

IF,

IP

N

NEXT

8-24

Used to mark the end of a CODE definition. END-CODE checks
Checks that stack position is same as when CODE was executed
to check for imbaLanced directives or parameters. Then the
most recentLy defined CURRENT vocabuLary definition is
unsmudged making it avaiLable for execution from FORTH.
END-CODE exits the ASSEMBLER making CONTEXT the same as
CURRENT. This word was named ;C in earLy versions of
FORTH.

A structure controL directive that creates a forward branch
instruction- based on a 6502 status condition. At runtime,
if the status tests TRUE, execution faLLs through to the
foLLowing code. If it tests FALSE, the processor branches.
Used as foLLows:

<conditionaL> IF, ••• ELSE, • THEN, or
<conditionaL> IF, ••• THEN,

AssembLer symboL that specifies the address of the FORTH
interpretive pointer. Used as foLLows:

IP LDA, IP)Y LDA, etc.

At run-time, the NEXT routine moves IP ahead within a
coLon-definition. Therefore, IP points just after the
execution address being interpreted. If an in-.Line data
structure has been compiLed (e.g. a character string),
indexing ahead by IP can access this data.

AssembLer symboL that specifies the address of a 9-byte
workspace in zero-page memory. Within CODE routines and
machine code subroutines, free use of the workspace
Locations may be made over the range N-1 to N+7.

AssembLer symboL that specifies the address of the normaL

re-entry point in FORTH from a CODE definition. ALL CODE
definitions must return to NEXT or to a routine that
returns to FORTH (PUSH, PUT, PUSHOA , POP, POPTWO).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NOT

POP

During assembLy, NOT reverses the previous conditionaL
specification. When the foLLowing controL directive
is encountered, a conditionaL branch instruction is
generated that tests if the specified 6502 status bit is
cLear. For exampLe:

CS NOT IF,
wiLL, at run-time, faLL through to the foLLowing code if
the carry status bit is cLeared, or wiLL branch if the
carry bit is set.

AssembLer symboL that specifies the address of the re-entry
point in FORTH that wiLL remove and discard the bottom data
stack entry and then jump to NEXT.

POPTWO

PUSH

AssembLer symboL that specifies the address of the re-entry
point in FORTH that wiLL remove and discard 2 data stack
entries, then jump to NEXT.

AssembLer symboL that specifies the address of the re-entry
point in FORTH that wiLL, at run-time, push a new data-item
onto the data stack. The contents of the accumuLator wi LL
be used as the high byte of the new data-item, and the
bottom byte of the return stack wiLL be fetched and used as
the Low byte of the new item. For exampLe, to return to
FORTH and at the same time push the contents of N, N+1,

N LDA, PHA, N 1+ LDA, PUSH JMP, END-CODE

PUSHOA

PUT

AssembLer symboL that specifies the address of the re-entry
point in FORTH that wiLL, at run-time, push the contents of
the accumuLator onto the data stack, then jump to NEXT.
The vaLue in the accumuLator is pLaced as the Low byte of
the new stack entry, the high byte of the new entry is set
equaL to O. ExampLe:

1 # LDA, PUSHOA JMP, END-CODE

wiLL return and push a vaLue of 1 onto the data stack.

AssembLer symboL that specifies the address of the re-entry
point in FORTH that wiLL, at run-time, repLace the current
bottom entry on the data stack with the contents of the
accumuLator and the bottom of the return stack. The accu
muLator is used as the high byte, the bottom byte on the'
return stack is fetched and used as the Low byte. ExampLe:

• N LOA, PHA, N 1+ LDA, PUT JMP, END-CODE

8-25

REPEAT,

RP)

SEC

THEN,

A structure controL directive that creates an unconditionaL
jump instruction to the address Left on the stack by a
BEGIN, directive. Used in the foLLowing way:

BEGIN,. • <conditionaL> WHILE,. • REPEAT,

AssembLer symboL that specifies the addressing mode required
to access the bottom byte of the return stack. For this to
work at run-time, the return stack pointer (the S register)
must have been transferred to the X register). See section
caLLed 'RETURN STACK'.

IdenticaL to BOT 2+. AssembLer symboL that specifies the
address and addressing mode necessary to access the Low byte
of the second entry on the data stack. Used as foLLows:

SEC LDA, SEC 2+ STA, etc.

A structure controL directive that terminates a forward
branch instruction created by either an IF, or an ELSE,
controL directive. Used as foLLows:

<conditionaL>
<conditionaL>

IF, •
IF, •

• ELSE, •
• THEN,

• THEN, or

UNTIL,

UP

8-26

A structure controL directive that creates a conditionaL
branch instruction that wiLL branch to the address defined
with a BEGIN, directive if tre tested condition is FALSE.
Program execution faLLs through to the foLLowing code if
the condition tests TRUE. Used with BEGIN, to create a
program Loop or backward branch. Used as foLLows:

BEGIN, • <conditionaL specification> UNTIL,

AssembLer symboL that specifies the address of the pointer
to the base of the USER AREA. The user area is a bLock of
variabLes that define the characteristics of the current
FORTH system. Used as foLLows:

UP LDA, UP)y LDA, etc.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AssembLer symboL that specifies the address of the pointer
to the code fieLd <execution address) of the FORTH defini
tion begin executed. Indexing from the W pointer can
access any byte in the definition's parameter fieLd. For
exampLe:

2 # LDY, W)y LOA,'

wiLL fetch the first byte of the parameter fieLd of the
CODE definition executing these instructions.

WHILE,

X)

XSAVE

A structure controL directive that creates a forward
branch instruction based on a 6502 status condition.
Used between the BEGIN, and REPEAT, directives, WHILE,
aLLows a way to exit a program Loop. The branch is
taken if the tested condition is FALSE. If it tests
T RUE, ex e cut ion fa L L s t h r 0 ugh tot hen e x.t ins t r u c t ion
specified after the WHILE,. Used as foLLows:

BEGIN, • <conditionaL> WHILE,. • REPEAT,

Sets 'indexed via X, indirect' addressing rnode for the
next instruction.

AssembLer symboL that specifies the address of a zero page
Location that can be used for temporariLy saving the
contents of the X register. Since the X register indexes
to the data stack in zero page, it must be saved and
restored when used for other purposes. Used as foLLows:

XSAVE STX, XSAVE LDX,

B-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FORTH GRAPHICS ON THE COMMODORE 64

The graphics extensions avaiabLe with C64-FORTH are not part of
the normaL FORTH system, but are an aLready compi Led object code
b L 0 c k Loa de din and Lin ked in tot he s y s tern. LIS T s c r e e n 1 to see
which screen to start Loading to do this. There wi L L be two
options for Loading the graphics - one wi LL Load them after the
fLoating-point routines in the base FORTH system, the other
a Lternative is to Load them OVER the fLoating-point routines. If
your program wi L L not need rea L number capabi L ity, then you can
save space by pLacing the graphics where the fop. routines were.
Note that to add the graphics extensions to the system, you must
start with an unexpanded copy of the FORTH just as it boots up
from the origina L C64-FORTH disk. You cannot add the graphics
extensions if you have made ANY changes to the origina L FORTH
system. Once the graphics extensions are added, you may then
extend or customize the FORTH system to your needs, do a
SAVESYSTEM to save it as a new system, etc.

To use the graphics extensions, you MUST be fami Liar with how the
different graphics modes of the Commodore 64 work. A thorough
reading of the section on graphics in the Commodore 64
Programmer's Reference Guide is a must. The foL Lowing Graphics
GLossary contains description of aLL the usefu L L words in the
graphics extensions. You wiLL aLso find severaL graphics demo
programs on the C64-FORTH disk. Ana Lyzing these wi L L he Lp you
understand the function of the differenct words.

A bit-map dispLay may be set up in either hi-res or muLti-coLor
mode. AL L the pixeL-modifying routines, such as LINE, ARC, BOX,
etc. work according to which mode is currentLy set. AL L the user
has to do is seLect or deseLect muLti-coLor mode via the SETMC or
CLRMC commands.

VIDMEM must be used to initiaLize the VIC-chip to dispLay in
certain memory ranges. If the character mode is seLected, then
the addresses of the character ROM and the screen memory must be
specified. Since the VIC-chip operates in one of four 'banks'
(16K ranges), the highest two bits of the address passed for the
character ROM are used to set the bank #. Thats why in exampLes
you'L L see the routine to reset the VIC-chip to normaL operation
as:

HEX 1000 400 VIDMEM

Its easy to understand why 400 is passed as the address of the
screen memory, but you may wonder why 1000 is passed as the
address of the character ROM, when it is at absoLute address DOOO
underneath the address space of the VIC-chip. The reason is that
the VIC-chip is normaLLy set to bank 0, so the two highest bits
of the character ROM address must be D's.

C-1

VIDMEM aLso sets two variabLes - MBASE and SBASE. MBASE is used
by some routines to obtain the base address of the bi t-map
memory, so a specific pixeL Location can be caLcuLated. SBASE is
used to hoLd the address of the base of the screen memory in
character mode, or the coLor memory in bit-map mode.

The bit-map graphics words draw within a specified window. The
drawing window is defined by the variabLes, XLOW, YLOW, XLIM, and
YLIr~. The Largest size of the window may be 0,0 to 319,199
(159,199 in muLti-coLor mode). If the variabLes are set so that
the window extends outside this range, this range is used as the
window.

SETBM and SETMC both initiaLize these variabLes, so if you wish
to redefine the window, you must do it after using these words to
define the initiaL graphics modes. The order in which words
whouLd be executed then to set up a graphics screen is:

VIDMEM, SETBM/CLRBM, SETMC/CLRMC, then aLter the
window variabLes XLOW, YLOW, XLIM, and YLIM.

Once the dispLay is set up, you may switch between different
dispLay screens by using just VIDMEM. The other words are not
needed once the VIC-chip is properLy set. You onLy need VIDMEM
to change the addresses that point to dispLay areas.

The RAM underneath the C64 kernaL ROMs may be used as freeLy for
bit-mapped graphics as any other RAM. The pixeL-modifying
routines automatica L Ly switch in & out the ROMs as needed. The
STOP/RESTORE key function wi LL work properLy even if the kernaL
ROMs happen to be switched out at the time of the keys being
pressed, but RS-232 input or output happening coincident Ly may be
Los tor gar b Led.

C-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

GRAPHICS GLOSSARY

The foL Lowing gLossary contains descriptions of the graphics
functions provided. It foL Lows the same format as the FORTH
gLossary at the end of this manuaL. None of the words are part
of any FORTH standard, and onLy the words that are of possibLe
use to the programmer are described.

Most of the FORTH LeveL graphics words mereLy caL L subroutines
written in assembLy Language. The machine code equivaLents of
the higher-LeveL FORTH words have the same name preceeded by an
asterisk. In this gLossary, if a FORTH LeveL word mereLy caLLs a
machine code subroutine, the name of the subroutine wi L L given in
parenthesis at the end of the description of the word. AssembLy
Language programmers may program graphics with the same ease as
in higher-LeveL FORTH.

ARC

BCLR

BOX

BSET

BXOR

StrtangLe EndangLe Radius
Draw an ARC or CIRCLE from starting angLe specified to
ending angLe specified, with the radius specified. The
center of the ARC or CIRCLE drawn is about the pixeL
vaLue found in CURX,CURY. ARC drawing is aLways done
counter-cLockwise. A circLe is drawn by specifying the
starting angLe equaL to the ending angLe, or the ending
angLe 360 degrees greater than the starting angLe. The
range for the angLes is 0 <= angLe <= 360 degrees.
(*ARC)

ExampLe of a 3/4
o 270 50

arc
ARC

of radius 50 is:

ExampLe of a fuLL circLe of radius 90 is:
o 0 90 ARC or 0 360 90 ARC

x Y
Turn on cLear-bit mode and write the pixeL.

DeLtX DeLty

(*BCLR)

Draw a box starting from the current Location in
CURX,CURY to CURX+DeLtX,CURY+DeLtY. CURX,CURY is Left
at CURX+De LtX,CURY+De Lty. (*BOX)

X Y
Turn on set-bit mode and write the pixeL. (*BSET)

X Y
Turn on excLusive-or mode and write the pixeL. (*BXOR)

C-3

CBASE

CLRBM

CLRBMM

CLRMC

COSINE

CURX

CURY

FILBMM

FILCLR

C-4

adr
A variabLe that contains the base address of the
character ROM. NormaLLy set to 0000, the user may
change this if the character set has been redefined in
RAM. Used onLy by RCHR, the routine that writes a ROM
character into the hi-res screen.

Turns off bit-map mode.

CLears the bit-map memory.

Turns off muLti-coLor mode.

ang
Returns a
the angLe
the range

cosine
signed 16-bit integer that is the cosine
specified. The angLe specified shouLd be
a <= angLe <= 360 degrees. (*COSINE)

adr

of
in

A variabLe that the user sets with the X vaLue of the
pixeL to start drawing at (in the case of LINETO,
RLINETO, BOX, or RECT) or the X va Lue of the center of
the arc or circLe to draw. CURX wi L L contain the X
vaLue of the Last pixeL drawn upon return from LINE,
LINETO, RLINETO, BOX, or RECT, or if ARC is ca L Led,
wi L L contain the X vaLue of the center as specified
when the ARC routine was caLLed.

adr
A variabLe that the user sets with the Y vaLue of the
pixeL to start drawing at (in the case of LINETO,
RLINETO, BOX, or RECT) or the Y va Lue of the center of
the arc or circLe to draw. CURY wiLL contain the Y
vaLue of the Last pixeL drawn upon return from LINE,
LINETO, RLINETO, BOX, or RECT, or if ARC is ca L Led,
wi L L contain the Y vaLue of the center as specified
when the ARC routine was caLLed.

coLorvaL
FiLLs the bit-map memory with the 8-bit vaLue passed.

coLorvaL
Fi LLs the coLor memory with the 4-bit vaLue passed.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FILSCRN

GETADR

GETCEN

GFLGS

GRCLR

GRSET

GRXOR

LASTX

coLorvaL
Fi L Ls the screen memory with the 8-bit (Z-nybb Le) va Lue
passed.

x Y
The current vaLues in
pushed onto the stack.

CUR X and CURY
(*GETADR)

are fetched and

x Y
GETCEN returns on the stack the pixeL address af the
center of the current drawing window. (*GETCEN)

adr
VariabLe that is used as fLag bits to indicate various
graphics modes. Can be ignored when using FORTH LeveL
graphics uti Lities, but the machine Language programmer
must set/cLear certain bits for the pixeL-writing
routines to work properLy. Bit 15 is set if muLti
coLor pixeL writing is desired, cLeared for normaL hi
res pixeL writing. Bit 7 is set to have the pixeL
writing routine write in set-bit mode, Bit 6 is set to
have it write in cLear-bit mode, and both bits 6 & 7
must be cLeared to have it write in the excLusive-or
mode. AL L the graphics routines that write to the
muLti-coLor or hi-res screen caLL one pixeL-writing
routine, and these bits must be properLy set for the
desired writing mode.

Turn on cLear-bit mo de. ALL subsequent pix e L drawing
w iLL be done in cLear-bit mode.

Turn on set-bit mo de. ALL subsequent pix e L drawing
w iLL be done i n set-bit mode.

Turn on exc Lusi ve-or mode. ALL subsequent pi xe L
drawing wiLL be done in excLusive-or mode.

adr
A variabLe that is updated when a pixeL in mernory is
actuaL Ly modified. When a pixeL-writing routine (such
as LINE) returns, LASTX wi L L contain the X va Lue of the
Last pixeL that was written. For instance, if a Line
is being drawn that extends out of the current drawing
window, CUR X wi L L return with the X vaLue of the ending
pixeL of the Line, but LASTX wiLL contain the X vaLue
of the Last pixeL that was drawn within the current
drawing window.

C-5

LASTY

LINE

LINETO

MBASE

adr
A variabLe that is updated when a pixeL in memory is
actuaLLy modified. When a pixeL-writing routine (such
as LINE) returns, LASTY wi L L contain the Y va Lue of the
Last pixeL that was written. For instance, if a Line
is being drawn that extends out of the current drawing
window, CURY wi L L return with the Y vaLue of the ending
pixeL of the Line, but LASTY wiLL contain the Y vaLue
of the Last pixeL that was drawn within the current
drawing window.

strtX strtY endX endY
Draw a Line from strtX,strtY to endX,endY.
CURY Left at endX,endY. (*LINE)

CUR X and

endX endY
Draw a Line from the current pixeL
CURX,CURY to endX,endY. CURX,CURY
endX,endY. (*LINETO)

adr

L 0 cat ion
updated

i n
to

VariabLe set by VIDMEM to point to the starting address
of the bit-map memory.

I
I
I
I
I
I
I
I
I

MCCLRVAL N where a <= N <= 3

MCSETVAL

PIXMSK

C-6

Sets the 2-bit vaLue to write to muLti-coLor bit-map I
memory when in cLear-bit mode.

NOTE: If excLusive-or drawing function is seLected
(via GRXOR) in muLti-coLor mode, then the pixeL
modifying aLgorithm checks first to see if the 2-bit
pair at the current pixeL address is equivaLent to the
2-bit vaLue passed via MCSETVAL. If so, the 2-bit
vaLue passed via MCCLRVAL is pLaced in the current
pixeL Location; otherwise, the 2-bit vaLue passed via
MCSETVAL is pLaced in the current Location.

N where a <= N <= 3
Sets the 2-bit vaLue to write to muLticoLor memory when
in cLear-bit mode (see note under MCCLRVAL).

x Y adr msk
For a g; ven X,Y Location, PIXMSK returns on the stack
the address of the byte in the bit-map memory that
contains the pixeL, and the mask that can be used on
the byte, if read, to isoLate the pixeL vaLue itseLf.
(*PIXMSK)

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RCHR

RDPIX

RECT

RLINETO

RSPXY

SBASE

SETADR

SETBM

SETBMM

c h r# X Y
Draws a ROM character into the bit-mapped memory with
the upper-Left corner of the character starting at X,Y.
The character is zoomed (enLarged) according to the
current vaLue in the variabLe ZOOM. Chr# is the same
vaLue as if you were POKEing a character into the
screen memory - i.e. if you wanted a capita L "A", chr#
wouLd equaL 1. There are tabLes of the screen dispLay
codes in both the Commodore 64 User's Guide and the
Commodore 64 Programmer's Reference Guide. (*RCHR)

x Y N
Returns the current va Lue of a pi xe L. If the screen is
in hi-res mode, the vaLue N returned wi L L be in the
range 0-1, if the screen is in muLti-coLor mode, the
vaLue returned is in the range 0-3.

DeLtx DeLty
D raw a f iLL e d- box s tar tin g fro m the
CURX,CURY to CURX+De LtX,CURY+De LtY.
at CURX+DeLtX,CURY+DeLty. (*RECT)

DeLtx DeLty

current Location in
CURX,CURY is Left

Draws a Line in reLative mode from the current pixeL
address in CURX,CURY to CURX+De LtX,CURY+De LtY.
CURX,CURY is Left at CURX+De LtX,CURY+De LtY. (*RLINETO)

Sprite# DeLtX DeLtY
Moves the specified sprite a RELATIVE amount. De LtX
is added to the current X position of the sprite, and
DeLty is added to the current Y position of the sprite.
(*RSPXY)

adr
VariabLe set by VIDMEM to point to the starting address
of the screen memory.

x Y
Sets the current address. Takes
vaLues and pLaces them in CURX,CURY.

Turns on bit-map mode.

the top two
(*SETADR)

Sets aLL bits in the bit-map memory high.
(eq. to 255 FILBMM)

stack

C-7

J

~--------------------- -- ---------------

SETMC

SINE

SP1X

S P1 Y

SP2X

SP2Y

SP<BKGD

SP>BKGD

SPCOLOR

C-8

Turns on muLti-coLor mode.

ang sine
Returns a signed 16-bit integer that is the sine of the
angLe specified. The angLe specified shouLd be in the
range 0 <= angLe <= 360 degrees. (*SINE)

SP#
Sets the specified sprite # to 1X magnification (non
expanded in the X direction).

SP#
Sets the specified sprite # to 1Y magnitication (non
expanded in the Y direction).

SP#
Sets the specified sprite # to 2X magnification
(expanded in the X direction).

SP#
Sets the specified sprite # to 2Y magnification
(expanded in the Y direction).

SP#
Set s the priority of the specified sprite to be L e s s
than the background.

SP#
Sets the priority of the specified sprite to be greater
than the background.

SP# COLOR
Sets the sprite specified to the coLor specified.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
SPDEFINE

I
I
I
I
I
I SPMCOFF

I SPMCON

I SPMOV

I
I
I SPMSK

I
I
I
I
I

SPOFF

I
I

adr
(at compi Le time)

(when created def is executed)
SPDEFINE is used to create a new dictionary entry, read
in 63 consecutive ASCII representations of numbers,
converts them to binary form, and stores them in the
new definition. This word is provided for defining
sprites. When the name of the new definition is Later
executed, the address of the first byte of the sprite
d a t a i s pus h e don t) i~, - S ~ 3 C k • The w 0 r d S P M 0 V may b e
used to move the data up to an accessibLe area in
dispLay memory. When either HEX or BINARY (2 BASE !)
mode is used, this is a simpLe way to convert a graph
paper representation of a sprite figure into binary
code. The graphic demos on the C64-FORTH disk contain
some exampLes of how to use this word to define
sprites.

SP#
Turns off muLti-coLor mode for the specified sprite.

SP#
Turns on muLti-coLor mode for the specified sprite.

fromadr toadr
Moves a 63 byte chunk of data from the address
'fromadr' to address 'toadr'. The 'toadr ' is rounded
down by SPMOV to the nearest 64-byte boundary before
the data is moved. Intended for moving a sprite
definition from the FORTH dictionary up to the a memory
range in the current video dispLay bank.

SP# mask
When passed a sprite # in the range 0-7 a mask is
returned that corresponds to the binary power of the
sprite #. This means that a sprite # of 0 returns 1, a
sprite # of 1 returns 2, etc. The mask may be used to
mask out unused bits in a VIC-chip register to Look for
something reLated to just one sprite. For exampLe, to
check if sprite #3 has coLLided with the screen
background data, execute:

3 SPMSK D01F C@ AND

and a non-zero fLag wi L L be Left on the stack if a
coLLision occured. To check if any of sprites 0,4,
and 7 have coLLided with the background, execute:

o SPMSK 4 SPMSK OR 7 SPMSK OR D01 F C@ AND

SP#
Turns off the specified sprite.

C-9

SPaN

SPPTR

SPXY

UD*

VIDMEM

C-10

SP#
Turns on the specified sprite.

SP# adr
Set the sprite pointer at the end nf the screen memory
that corresponds to the specified sprite #. The
address specified (adr) is converted to a one-byte
sprite bLock address that points to a 64-byte bLock
within the current 16K dispLay bank. You must move the
sprite data itseLf to the current dispLay bank,
starting on a 64-byte boundary. The starting address
of the 64-byte boundary you moved the sprite data to is
what you pass to this routine to identify to the VIC
chip where the sprite data is in memory.

SP# X Y
Set the dispLayed Location of the specified sprite # to
X,Y.

d1 d2 dLow dhigh
Unsigned 32-bit by 32-bit muLtipLy Leaving
product. UsefuL for scaLing graphics objects.

adr1 adr2

a 64-bit
(*u 0 *)

Sets up the VIC-chip to certain dispLay addresses.
Adr1 is the address that the VIC-chip shouLd expect to
find the bit-map/character memory at, and adr2 is the
address the VIC-chip shouLd expect to find the screen
memory at. VIDMEM automaticaL Ly rounds down both
addresses to the proper boundaries. For exampLe, the
bit-map/character memory must start on a 2K boundary,
and the screen memory must start on a 1K boundary.
Once adr1 and adr2 are rounded down, MBASE is set to
adr1, and SBASE is set to adr2, and the VIC-chip starts
dispLaying from those Locations.

For exampLe:

~OOO C400 VIDMEM pLaces the hi-res bit-map memory
in the range EOOO-FFFF, and the screen memory in the
range C400-C7FF.

1000 400 VIDMEM (hex) resets the VIC-chip to normal
disp Lay ranges (same as power up - with screen memory
in range 400-7FF, and the ROM character memory is
addressed in the range 1000-17FF).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i I
I

I
I
I

X L I ~1

XLOW

XSCALE

YLIM

YLOW

YSCALE

adr
VariabLe used to specify the X vaLue of the lower
right corner of the current dispLay window. Pixel
modification wiLL not be done when the X value is
greater than this value. SETBM sets this to 319, and
SETMC sets it to 159. To define a drawing window,
change this value after SETBM or SETMC is used.

adr
Variable used to specify the X value of the upper
Left corner of the current display window. PixeL
modification wil L not oe done when the X vaLue is
less than this value. SETBM and SETMC both set this to
O. To define a drawing window, change this value after
SET B r~ 0 r SET M Cis use d.

adr
VariabLe used to set the scaLing factor for LINE, ARC,
BOX, and RECT drawing. If the variable is set = 0,
then no scaLing is appLied. For scaling along the X
axis, set this with a value in the range 1-255. A
vaLue of 1 gives maximum scaLing, 128 gives 50%
scaLing, and 255 gives minimum scaling.

adr
Variable used to specify the Y value of the Lower
right corner of the current display window. Pixel
modification wi L l not be done when the Y value is
greater than this vaLue. SETBM and SETMC both set this
to 199. To define a drawing window, change this value
aft e r SET B M 0 r SET 11 Cis use d.

adr
Variable used to specify the Y value of the upper
Left corner of the current display window. Pixel
modification wi L l not be done when the Y value is
Less than this vaLue. SETBr~ and SETMC both set this to
O. To define a drawing window, change this value after
SET B M 0 r SET ~1 Cis use d.

adr
Variable used to set the scaLing factor for LINE, ARC,
BOX, and RECT drawing. If the variable is set = 0,
then no scaLing is applied. For scaling along the Y
axis, set this with a value in the range 1-255. A
value of 1 gives maximum scaling, 128 gives 50%
scaling, and 255 gives minimum scaling.

o XSCALE 230 YSCALE wi II give approximately
round circles and arcs on most monitors.

C -11

ZOOM

C-12

adr
VariabLe used to hoLd the ZOOM (enLargement) factor for
writing ROM characters into the bit-map memory. Used
onLy by RCHR. When set = 0, the character is drawn
normaL size, when set equaL to 1, the character is
drawn twice normaL size, and so on up to a zoom factor
of 15.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FLOATING POINT (REAL) NUMBERS

C64-FORTH comes with fuL L fLoating-point capabi Lity. AL L of the
functions avai LabLe in BASIC for manipuLating reaL numbers are
provided in C64-FORTH. The fLoating-point words are part of the
FORTH system as it exists upon boot-up. The graphics words
foL Low the fLoating-point words, and the editor vocabuLary
foLLows the graphics. You wouLd not want the editor to be part
of any SAVETURNKEY package, since it is useLess at run-time and
takes up 2K or so of memory. You wi L L want to FORGET EDITOR
before Loading in your appLication program. If you a Lso do not
want any of the fLoating-point commands, you may FORGET 79-
STANDARD before Loading in your appLication program to start with
the smaLLest possibLe FORTH kernaL. But what if you want
graphics commands, but not fLoating-point? No probLem, you may
FORGET FPOVER to remove everything down through the fLoating
point routines. Then you may Load screen 50. Screen 50 has a
routine that wi L L Load in a pre-compi Led version of the graphics
commands that wi LL start at the former starting Location of the
fLoating-point routines. Therefore you wi L L have graphics
commands avai LabLe, but not the fLoating-point or editor commands
taking up space. Remember that FORGETting any part of the boot
up FORTH system removes the ASCII error messages (see description
of ERROR in the main gLoassary). If you wish to re-add the error
messages, Load in screen 49.

Back to the fLoating-point functions. The fLoating-point
cOin III d n d s are imp L e men ted m 0 s t L y a s COD E and ass e m b L y Lan g u age
routines. The routines are simi Liar to the fLoating-point code
found in the Commodore-64 BASIC ROMs. There wi L L be very sLight
accuracy differences between BASIC and FORTH functions, since
using the FORTH stack as the main parameter-passing mechanism
necessitates more frequent rounding-off than is done in BASIC.

C64-FORTH stores fLoating-point numbers in a sLightLy different
format than BASIC does interna L Ly. Whi Le BASIC uses 5 bytes to
store a f.p. number, C64-FORTH uses 6. This has two advantages -
the FORTH stack wi L L a Lways change by an even number of bytes,
aLLowing normaL FORTH words to manipuLate f.p. numbers on the
stack, and the 6-byte format a L Lows very easy conversion to the
IEEE fLoating-point standard format, interfacing to an arithmetic
processor such as the 9511, etc. C64-FORTH uses the same amount
of precision as BASIC (7-bit signed exponent in excess-128
format, a 24-bit signed mantissa, and an 8-bit Low-order
accumuLator during arithmetic operations, but again the mantissa
is rounded up more often than in BASIC). The aL LowabLe range of
fLoating-point numbers is the same as BASIC: +1.7E+38 thru
+2.9E-39.

D-1

C64-FORTH stores fLoating-point numbers on the stack or in memory
in the foLLowing format:

mantissa byte #3

I mantissa byte #4

I mantissa byte #1 I

mantissa byte #2 I

sign of mantissa

exponent

Low order word of mantissa

high order word of mantissa

sign/exponent

<-- top of stack or Lowest memory
Location

Bit 15 of the high-order word of the mantissa is aLways set upon
return from the fLoating-point routines, but does not have to be
set upon e~t~ring the routines. The sign of the mantissa is
pLaced in bit 15 of the sign/exponent word, bits 8-14 are
ignored, and bits 0-7 hoLd the exponent of the number. For
instance, the number 1234.5678E+9 can be pushed onto the stack
as foLLows:

HEX FC02 FB8 A9

Again, bit-15 of the high word of the mantissa can be set, so

FC02 8FB8 A9 represents the same number.
printing the number out using FP.

You may verify this by

FP. 1.2345678E+12 ok

Set tin g bit - 1 5 0 f the s i g n / e x p 0 n e n two r d m a k est hen '.1 -n 0 e ('
negative:

FC02 FB8 80A9 FP. -1.2345678E+12 ok

If the fLoating-point number on the top of the stack is equaL to
zero, the exponent wi L L be zero. This is the on Ly guaranteed
indication of a vaLue of zero! The sign bit may be set, and the
mantissa may contain a non-zero vaLue!

You don't normaL Ly have to worry about how fLoating-point numbers
get onto the stack or the format they are in, since words are
provided for converting integers and ASCII strings into fLoating
point numbers. But knowing the format aL Lows you to use a few
tricks, such as quickLy testing whether the top fLoating-point
number on the stack is negative, you can do:

DUP 0< IF

To test if the top stack f.p. vaLue is =0, do:

DUP FF AND 0= IF or DUP)LO 0= IF

0-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

None of these methods remove the number in the process of testing
it. They are aLso much faster than:

FPDUP FP 0 FP< IF

or FPDUP FP 0 FP= IF

The f.p. commands are pretty simpLe to use, and work simi liar to
the integer FORTH functions. UNDERFLOW and OVERFLOW conditions
are detected and handLed as error'". ;"lso, FPVAL takes the
address of a string from the stack and converts the string to a
fLoating-point number. The address of this string may be
obtained using the C64-FORTH string extensions. Therefore, in
BASIC you might have:

20 INPUT "ENTER ANGLE";A

Whi le in C64-FORTH using string extensions:

16 VARIABLE A$
: GETA "ENTER ANGLE? " A$ INPUT$ A$ FPVAL ;

If a print-right-justified fLoating-point equivaLent of .R is
desired, FPSTR$ converts a f.p. stack value into a string and
Leaves it at PAD. The string extensions may then be used to
right-aLign the characters in a fieLd of spaces.

D-3

DINTFP

FP

FP!

FP*

FP+

FP-

D-4

FLOATING-POINT GLOSSARY

fp
Not to be used by the programmer.
routine compi Led into a definition by
UP) takes the fLoating-point number
right after it and pushes it onto the

d fp

This is the code
FP. At runtime,

that was campi Led
stack.

DINTFP converts
point vaLue. D

the 32-bit integer d into a fLoating
is considered to be a signed vaLue.

(at compile time
fp (at run-time)

FP is used to input a fLoating-point vaLue. FP
executes whether it is within a definition being
campi Led or in the interpretive mode. FP scans the
foL Lowing input stream for an ASCII representation of a
fLoating-point number. If the campi Le mode is not
active, FP just Leaves the f.p. number on the stack.
If a definition is being campi Led, FP compi Les (FP)
into the definition, then the vaLue of the fLoating
point number. When the definition is Later executed,
UP) fetches the f.p. vaLue foL Lowing it, and pushes it
on the stack:

FP -7.9E+12 pushes the vaLue onto the stack

TESTFP FP -7.9E+12 FP.; wi L L create a definition
ca L Led TESTFP that when executed wi L L print the va Lue
-7.9E+12.

fp adr
Simi Liar to but stores a fLoating-point vaLue into a
6-byte memory Location. The Location to store the
vaLue must be at least 6-bytes in Length, and is
normally reserved by using FPVARIABLE.

fp1 fp2
FP* muLtipLies fp1

fp1 fp2
FP+ adds fp2 to fp1

fp1 fp2
FP- subtracts fp2
fpdif.

fpprod
by fp2 Leaving the product fpprod.

fpsum
Leaving the sum fpsum.

fpdif
from fp1 Leaving the difference

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FP.

FPI

FP<

FP=

FP>

FP@

FPABS

FPADR

FPATN

fp
FP. takes the fLoating-point vaLue off the stack,
converts it to a string starting at PAD, then prints
it. The vaLue is printed with either a Leading space
or minus sign, and is foLLowed by one space.

fp1 fp2 fpquot
FPI divides fp2 into fp1 Leaving the quotient fpquot.

fp1 fp2 fLag
FP< Leaves a true fLag if fp1 is Less than fp2, faLse
f Lag if not. 80th f.p. va Lues are removed in the
process of testing.

fp1 fp2 fLag
FP= Leaves a true fLag if fp1 is
f Lag if not. 80th f.p. va Lues
process of testing.

equaL to fp2" f-iLse
are removed in the

fp1 fp2
FP> Leaves a true
faLse fLag if not.
process of testing.

fLag
fLag if
80th f.p.

fp1 is greater than fp2,
vaLues are removed in the

adr fp
FP@ fetches the 6-byte fLoating-point number starting
at the address specified and Leaves it on the stack.

fp fpabs
FPABS returns the absoLute vaLue of a fLoating-point
number.

adr
A variabLe used by FPVAL. FPVAL is given the starting
address of a string that is to be converted to a
fLoating-point number. Conversion stops at the first
non-vaLid character. FPVAL pLaces the address of this
character in FPADR. When FPVAL exits, the program can
continue to scan off characters from the string by
starting at the address Left in FPADR.

fp fpatn
FPATN returns the arctangent of the
number passed to it. The resu Lt is
radians) whose tangent is the va Lue fp.
aLways in the range -PI/2 to +PI/2.

fLoating-point
the angLe (in

The resuLt is

D-5

J

FPCONSTANT

FPCOS

FPDINT

FPDROP

FPDUP

FPEXP

FPINT

FPLOG

FPOVER

D-6

fp
fp

(at compiLe time)
(at run-time)

FPCONSTANT is used to create a constant in the
dictionary that when referenced wi L L push the fLoating
point vaLue fp onto the stack. Can be used as foLLows:

FP -7.S6E9 FPCONSTANT SCALEFAC

SCALEFAC FP. -7.S6E+09 ok

fp fpcos
FPCOS returns the cosine of the angLe fp (the angLe fp
is assumed to be in radians).

fp d
FPDINT converts a fLoating-point number into a doubLe
integer. Note that the resuLt d is vaLid onLy when the
fLoating-point vaLue passed is within the range of
a doubLe-integer.

fp
FPDROP removes and discards the top fLoating-point
vaLue.

fp fp fp
FPDUP dupLicates the top fLoating-point vaLue.

fp fpexp
FPEXP caLcuLates the constant 'e' (2.71828183) raised
to the power of the vaLue fp. A vaLue of fp greater
than 88.0296919 causes an OVERFLOW error.

fp n
FPDINT converts a fLoating-point number into a 16-bit
integer. Note that the resuLt n is vaLid onLy when the
fLoating-point vaLue passed is within the range of a
singLe-precision integer.

fp fpLog
FPLOG returns the naturaL Logarithm (Log to the base of
e) of the vaLue fp. If fp is zero or negative, a "F.P.
VALUE ILLEGAL" error occurs.

fp1 fp2 fp1 fp2 fp1
FPOVER copies the second fLoating-point vaLue on the
stack and pushes it on top of the stack.

I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
I

I
I
I
I
I
I
I

I I
I
I
I
I
I
I
I
I
I
I
I

FPPI

FPRND

FPRJT

FPSGN

FPSIN

FPSQR

FPSTR$

FPSWAP

fppi
FPPI is a fLoating-point constant containing the vaLue
for PI (3.141592654). When referenced, FPPI pushes
this value onto the stack.

n fprnd
FPRND returns a random fLoating-point vaLue in the
range 0.0 to 1.0. The integer n passed is used to
determine the method of producing random va Lues. If n
is equaL to zero, then FPRND generates a number
directLy from the system "jiffy cLock". N being
negative wiLL cause a new "seed" vaLue to be seLected.
If n is positive, the same "pseudorandom" sequence of
numbers is returned, starting from the Last seLected
"seed" vaLue (done via a previous FPRND with n=-1).

fp1 fp2 fp3 fp2 fp3 fp1
The fLoating-point equivaLent of ROT. Rotates the
position of the top three fLoating-point vaLues.

fp n
FPSGN checks the vaLue fp passed, and returns integer
n. N is zero if fp was equaL to zero. N is equaL to 1
if the vaLue fp wa~ positive, and N return.s equaL to-1
if fp was negative.

fp fpsin
FPSIN returns the sine of the angLe fp (the angLe fp is
assumed to be in radians).

fp fpsqrt
FPSQR returns the square root of the va Lue fp. If fp
is negative, a "F.P. VALUE ILLEGAL" error occurs.

fp
FPSTR$ converts the fLoating-point vaLue fp into an
ASCII character string. The resuLting string is Left
starting at the current vaLue of PAD, and is compatibLe
with aL L of the string extensions. The string has
either a Leading negative sign or space character
depending on the vaLue of fp.

fp1 fp2 fp2 fp1
FPSWAP swaps the top two fLoating-point stack vaLues.

D-7

--

FPTAN fp fptan
FPTAN returns the tangent (in radians) of the vaLue of
fp. If the FPTAN conversion overfLows, a "F.P. DIVIDE
BY-ZERO ERROR" occurs.

FPVAL $adr fp
FPVAL converts the string starting at $adr to a
fLoating-point number. Conversion stops at the first
non-vaLid character (decimaL digits, ".", "E", "+", and
"_" are vaLid characters). The address of the non
vaLid character that terminated the conversion is Left
in FPADR. A "F.P. OVERFLOW ERROR" wi L L occur if the
string represents a vaLue out-of-range for fop. vaLues.
Note that FPVAL wi L L aLso terminate if the end-of-the
-string is reached (FPADR wi L L then point to the fi rst
byte after the string, which wi L L not be meaningfuL
data) •

FPVARIABLE (at compiLe time)

FPf

INTFP

UDINTFP

UINTFP

D-8

adr (at run-time)
FPVARIABLE is used to create a 6-byte data area
that can be used to store a fLoating-point variabLe.
When the variabLe is referenced, the address of the
data contained wi L L be pushed on the stack. When the
variabLe is created, its contents are not pre-
initiaLized. FPVARIABLE can be used as foL Lows:

FPVARIABLE LVALUE

FP -7.S6E9 LVALUE FP! LVALUE FP@ FP. -7.S6E+09 ok

fp1 fp2 fprsLt
The exponentiation function in BASIC is referenced by
using the up-arrow (f). C64-FORTH prefixes FP onto the
name to remind you the function requires fLoating-point
vaLues. Fp1 is raised to the power of fp2 with the
resuLt being Left on the stack.

n fp
INTFP converts the 16-bit integer n into a fLoating-
point vaLue. N is considered to be a signed integer.

ud fp
UDINTFP converts the 32-bit integer ud into a fLoating
point vaLue. Ud is considered to be an unsigned vaLue.

u fp
UINTFP converts the 16-bit integer u into a fLoating-
point vaLue. U is considered to be an unsigned vaLue.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C64-FORTH GLOSSARY

This glossary contains all of the word definitions
of C64-FORTH. The definitions are presented in
their ASCII sort.

in the kernal
the order of

The first line of each entry shows a symbolic description of the
action of the procedure on the data stack. The symbols indicate
the order in which input parameters have been pLaced on the
stack. Three dashes (---) indicate the execution point of the
definition. Any parameters Lefton the data stack are listed to
the right of the dashes. In this notation, the top of the stack
is to the right.

The symbols incLude:

addr memory address
b 8-bit byte (hi 8 bits = 0)

d 32-bit signed double integer
(most significant portion wit h sign on top of stack

f boolean flag
(0 = false, <>0 = true. True i s usually = 1)

f f boolean fa l s e flag (i • e. 0 i s placed on stack)

n 16-bit signed integer (-32768 <= n <= 32767)

t f booLean true fLa g
(i • e. non-zero number i s pLaced on stack)

u 16-bit unsigned integer (0 <= U <= 65535)

ud 32-bit unsigned integer (0 <= ud <= 4,294,967,295)

The following symbols are used in some of the definitions:

SYS

C64

79

For advanced FORTH programmers only. Used internally
by the FORTH system itself and is not a definition
normaLly used by a FORTH programmer.

Definition is not a part of the standard FIG-FORTH or
FORTH-79 standards. This definition exists as either
a necessary part of this implementation or as a
convenience for the user.

This definition is part of the 79-std minimum
required word set. Compatibi lity between different
FORTH systems can be guaranteed when only words in
this set are used.

)

The words in
pronunciations

quotes (e.g. "store"
for some FORTH words.

o r "tick") are standard

E-1

! C S P

#>

#S

(

(. "

(;CODE)

E-2

79 n addr "store"
Store n at address specified.

"store CSp"
Save the stack position (data stack pointer) in CSP.
Used as part of the compi Ler securi ty.

79 d1 d2 "sharp"
Generate from a doubLe number d1, the next ascii
character which is pLaced in an output string. ResuLt
d2 is the quotient after division by BASE, and is
maintained for further processing. Used between <#
and #>. See #S

79 d addr count "sharp greater"
Terminates numeric output conversion br dropping d,
leaving the text address and character count suitable
for TYPE

79 d1 d2 "sharp sOl
Generates ascii text in the text output buffer, by the
use of # , untiL a zero double nunber d2 results.
Used between <# and #> •

79 addr "tick"
Used in the form:

<defname>
Leaves the parameter field address of dictionary word
<defname>. As a compiLer directive, executes in a
coLon definition to compiLe the address as a literal.
If the word is not found after a search of CONTEXT and
CURRENT, an appropriate error message is given.

79 "paren"
Used in the form:

(<text>
Ignore a comment that wi LL bp deLimited by a right
parenthesis. May occur during interpreter input or
within a coLon definition. A bLank must be present
after the Leading parenthesis before the start of the
text.

SYS
The run-time proceedure, compiled by ."which
transmits the following in-Line text to the seLected
output device. See."

SYS
The run-time proceedure, compiled by ;CODE, that
rewrites the code field of the most recentLy defined
word to point to the foLLowing machine code sequence.
See ;CODE.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I (+LOOP)

I
I

(-FIND)

I (/LOOP)

I (ABORT)

I
(DIR)

I
(DO)

I
I

(FIND)

I
I (LINE)

I
I

(LOOP)

I (NUMBER)

I
I (R I W)

I)HI

I
I

SYS n
The run-time procedure compi Led by +LOOP,
increments the Loop index by n and tests for
compLetion. See +LOOP.

w h i c h
Loop

SYS addr
CaLLed internaLLy by -FIND and FORGET - The foLlowing
word in the input stream is scanned off and a match in
in the vocabuLary pointed to by addr is attempted.

S Y S n
The run-time procedure compiLed by ILOOP.

SYS
Executes after an error when WARNING is -1. This word
normal Ly executes ABORT, but may be aLtered (with care)
to a user's aLternative proceedure.

C64
CaLLed by DIR.

SYS
The run-time proceedure compiLed by DO which moves the
Loop controL parameters to the return stack. See DO.

SYS addr1 addr2 pfa b tf (if found)
addr1 addr2 ff (if not found)

Searches the dictionary starting at the name fieLd
addr2, matching to the text at addr1. Returns
parameter fieLd address, Length byte of name field
and booLean true for a good match. If no match is
found, onLy a boolean false is Left.

SYS n1 n2 addr count
Convert the Line number n1 and the screen n2 to the
disc buffer address containing the data. A count of
64 indicates the fuLL Line text Length.

SYS
The run-time procedure compi Led by LOOP which
increments the Loop index and tests for Loop
compLetion. See LOOP

SYS d1 addr1 d2 addrZ
Convert the ascii text beginning at addr1+1 with regard
to BASE. The new vaLue is accumulat~d into double
number d1, being left as dZ. Addr2 is the address of
the first convertabLe digit. Used by NUMBER.

C64 SYS
CaLLed by R/W •

C64 n1 n2
Take the high byte of n1 and leave as n2. UsefuL as a
divide by 256 bit shift, or to generate a byte vaLue
out of an address for use by the assembLer.

E-3

)LO

*

* Ii' 0 D

+

+ !

+-

+8UF

+LOO?

E-4

C64 n1 --- n2
Leave the Low byte of
byte. EquivaLent to
for generating a byte
by the assembLer.

n1 as n2, zeroing out the high
255 AND except faster. UsefuL
vaLue out of an address for use

79 n1 n2 n4 "times"
Leave the signed product of two signed numbers.

79 n1 n2 n3 n4 "times divide"
Leave the ratio n4 = n1*n2/n3 where aLL are signed
numbers. Retention of an intermediate 31 bit product
permits greater accuracy than wouLd be avaiLabLe with
the sequence:

n 1 n 2 * n3 I

79 n1
Leave the
n1*n2/n3
for * I

n2 n3 n4 n5 "times divide mod"
quotient n5 and remainder n4 of the operation

• A 31 bit intermediate product is used as

79 n1 n2 sum "pLus"
Leave the sum of n1+n2.

79 n addr "pLus-store"
Add n to the vaLue at the address.

n1 n2 n3
AppLy the sign of n2 to n1, which is Left as n3.

SYS add r1 addr2 f
Advance the disc buffer address addr1 to the address of
the next buffer addr2. BooLean f is faLse when addr2
is the buffer presentLy pointed to by variabLe PREVo

SYS 79 n1 (run-time)
addr2 n2 (compile time) "pLus-Loop"

Used in a coLon-definition in the form:
DO n1 +LOOP

At run-time, +LOOP seLectiveLy controLs branching back
to the corresponding DO based on n1, the Loop index
and the Loop Limit. The signed increment n1 is added
to the index and the totaL compared to the Limit. The
branch back to DO occurs untiL the new index is equaL
to or greater than the Limit (n1>O). Upon exiting
the Loop, the parameters are discarded and execution
continues ahead.

At compile time, +LOOP compiles the run-time word
(+LOOP) and the branch offs2t computed from HERE to
the address Left on the stack by DO. n2 is used for
compile time error checking.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+ORIGIN

,

-->

-FIND

-IN

-TRAILING

SYS n addr
Leave the memory address reLative by n to the origin
parameter area. n is the minimum address unit,
either byte or word. This definition is used to
access or modify the boot-up parameters at the origin
area.

79 n "comma"
Store n into the next avai LabLe dictionary memory
ceLL, advancing the dictionary pointer.

79 n1 n2 diff "subtract"
Leave the difference of n1-n2.

"next-screen"
Continue interpretation with the next disc screen.

SYS pfa b tf (found)
ff (not found)

Accepts the next text word (deLimited by blanks) in the
output strean to HERE, and searches the CONTEXT and
then CURRENT vocabuLaries for a matching entry. If
found, the dictionary entry's parameter fieLd address,
its Length byte, and a boolean true is left. Otherwise,
onLy a booLean faLse is Left.

SYS addr
Called internalLy by." and others to return the
address of the next byte in the input stream.

addr n1 addr n2
79 "dash-traiLing"
Adjusts the .character count n1 of a text string
beginning address to suppress the output of trailing
bLanks. i.e. the characters at addr+n2 are bLanks.

79 n "dot"

" 79

.LINE

Print a number from a signed 16 bit two's compLement
value, converted according to the numeric BASE. A
trailing bLank foLLows.

Used in the form:
." <text string>"

CompiLes an in-Line string <text string> CdeLimited by
the traiLing") with an execution procedure to
transmit the text to the seLected output device. If
executed outside a definition, ." wiLL immediateLy
p r i n t the t ext un tiL the fin a L ". I :, f~ In a x i mum n u m be r
of characters may be an instaLLation dependent vaLue.
See C.").

SYS Lin e scr
Print on the terminaL device, a
the disc by its Line and screen
bLanks are suppressed.

line of text from
number. Trai Ling

E-S

• R

I

ILOOP

I t1 0 D

o 1 2 3

0<

0=

0>

OBRANCH

1 +

1 -

2!

2*

E-6

n1 n2
Print the number n1 right aLigned in a fieLd whose
width is n2. No foLLowing bLank is printed.

79 n1 n2 quot
Leave the signed quotient of n1/n2.
has the sign of the dividend.

n

The remainder

SimiLiar to +LOOP except works with unsigned 16-bit
numbers. UsefuL for using absoLute addresses as
the index and Limit of a DO Loop. N may be either a
positive or negative increment. See +LOOP.

79 n1 n2 rem quot "divide
Leave the remainder and signed quotient of n1/n2.
remainder has the sign of the dividend.

n

mod"
The

These smaLL numbers are used so often that is
attractive to define them by name in the dictionary
as constants.

79 n f "zero Less"
Leave a true fLag if the number is Less than zero
(negative), otherwise Leave a faLse fLag.

79 n f
Leave a true fLag if the number
otherwise Leave a faLse fLag.

79 n f

"zero equaLs"
is equaL to zero,

Leaves a true fLag if n is greater than zero.

SYS f
Never used by the programmer.
The run-time procedure to conditionaLLy branch.
If f is faLse (zero), the foLLowing in-Line
parameter is added to the interpretive pointer to
branch ahead or back. CompiLed by IF, UNTIL, and
WHILE.

79 n1
Increment n1

79 n1
Decrement nl

n2
by 1.

n2
by one.

"one pLus"

C64 d1 addr
Store the doubLe number d1 at addr. The high 16-bits
of d1 are stored at addr, the Low 16-bits at addr+2.

C64 n1 n2
MuLtipLy top stack vaLue by two. This routine uses a
binary shift and is far faster than 2 * Useful
for bit shifting.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I

2+

2-

21

2@

2CONSTANT

2DROP

2DUP

20VER

2ROT

2SWAP

2VARIABLE

79 n1 n2 "two pLus"
Increment n1 by 2. Same as 2 + •

79 n1 n2
Decrement n1 by 2. Same as 2 - •

C64 n1 n2
Divide top stack vaLue by two. This routine is much
faster than 2 1 UsefuL for bit shifting.

C64 addr d1
Fetch the doubLe number stored at addr.

C64 d1
A defining word simiLar to CONSTANT except for doubLe
numbers.

C64 d1
Remove and discard the doubLe number on top of the
stack.

C64 d1 d1 d1
DupLicate the doubLe number on the top of the stack.

C64 d1 d2 d1 d2 d1
Copy the second doubLe number on the stack, pLacing it
as the new top.

C64 d1 d2 d3 d2 d3 d1
Rotate the top three doubLe numbers on the stack,
bringing the third to the top.

C64 d1 d2 d2 d1
Exchange the top two ~oubLe numbers on the stack.

C64 d1
A defining word simiLar to VARIABLE but for doubLe
numbers.

79-STANDARD 79
A word which does nothing, however if the user can
execute the word without an error condition occuring,
the user can be assured aLL FORTH-79 extensions are
present. For compatibi Lity between different FORTH
systems.

E-7

J

;

;CODE

; S

<

<#

E-8

79 "coLon"
Used to create a "coLon definition" in the foLLowing
way:

<defname> . ,
Creates a dictionary entry defining <defname> as
equivaLent to the foLLowing sequence of FORTH words
untiL the next ';' or ';CODE' This word may then
be used in new definitions or executed just by typing
in '<defname>'. The definition must be properLy
terminated (with the ';' or ';CODE') and no errors
shouLd have occured. If not properLy terminated, the
name <defname> wiLL be Listed during a VLIST , however,
the definition cannot be executed.

Other detaiLs are that the CONTEXT vocabuLary is set to
the CURRENT vocabuLary and words used in the body of
the definition that have their precedence bit set (i.e.
were themseLves defined as IMMEDIATE words) are
executed rather than being compiLed.

79
Trusted companion to coLon (':'). Used to terminate
a new coLon-definition, unsmudge the header of the
definition which makes it executabLe, and turns off the
compiLation mode. ; compiLes the run-time word ';S'
onto the end of the definition.

SYS
Used as a way to concLude a coLon definition with
machine code to create a new type of FORTH LeveL
definition. The new type is defined as:

<typename> •• FORTH defs •• ;CODE ••• assembLy code ••
Since the assembLer is needed to add assembLy code
onto the FORTH definition, this word is more expLicitly
defined in the ASSEMBLER vocabuLary.

Used by the programmer within source code being Loaded
from a FORTH screen. Stops interpretation of the
screen aLLowing the rest of the screen to be used for
comments.

79 n1 n2 f
Leave a true fLag if n1 is Less than n2 ,
leave a faLse fLag.

79

"Less than"
otherwise

Setup for numeric output formatting using the words:
<# SIGN #>

The conversion is done on a doubLe number, producing
text at PAD.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

<CMOVE

=

>

>IN

>R

?

?COMP

?CSP

?DISK

?DUP

?ERROR

?EXEC

addr1 addr2 count
Identical to CMOVE except the highest byte is moved
first, proceeding towards low memory. Useful for
when the destination string wi II overlap the source
string. See CMOVE.

79 n1 n2 f "equals"
Leave a true flag if n1 = n2; otherwise leave a false
f lag.

79 n1 n2 f "greater than"
Leave a true flag i f n1 i s greater than n2; otherwise
Leave a faLse fLag.

SYS 79 addr
A user variabLe containing the byte offset within the
current input text buffer (terminaL or bLock) from
which the next text wi LL be accepted. WORD uses and
moves the vaLue in IN.

SYS 79 n1
Remove a number from the data
the return stack. Use shouLd
the same definition.

"to r"
stack and push it onto
be baLanced with R> in

79 addr "question mark"
Print the value contained at the address in free
format according to the current base (same as 1 @ • I).

SYS
Issue error message if not in compiLe mode.

SYS
Issue error message if stack position differs from
vaLue saved in CSP.

C64 SYS f
Checks the variabLe SYSDEV# and returns d true flag
the 1/0 device number found there is a disk (d~v# >
otherwise returns a faLse fLag. Used by (R/W) for
forming fiLename, checking status, etc.

i f
3);

79 n1 n1 (i f zero) "query dupe"
n1 n1 n1 (non-zero)

DupLicate n1 onLy i f it is non-zero. This is usuaLLy
IJ sed to copy a vaLue just before IF, to eLiminate the
need for an ELSE part to drop it.

S Y S f n
Iss u e err 0 r m e s sag e n u m b ern i f the f l d 9 'J 'I t h ~ S t ,1 G :(

is true.

SYS
Issue an error message if not in execution mode.

E-9

J

?FILE

?LOADING

?PAIRS

?STACK

?TERMINAL

@

ABORT

ABORTIO

ASS

AGAIN

ALLOT

AND

E-10

C64 --- f
Returns flag true if fiLe exists on disk. First checks
the 1/0 status byte and aborts if error. Then, if the
system device is a disk (i.e. SYSDEV# >=4), ?FILE
reads the disk status and checks if file exists. (R/W)
calls this after attempting an open on a screen file
for reading. If file was not found (?FILE returns
false), a blank screen is created.

SYS
Issue an error message if not loading.

SYS n1 n2
Issue an error message if n1 does not equal n2. The
message indicates that compiled conditional control
directives do not match.

SYS
Issue an error message if the stack is out of bounds.

f
Tests to see if the C64 STOP key is depressed. Returns
true flag if it is; otherwise returns false flag.

79 addr n "fetch"
Leave the 16-bit contents found at specified address.

SYS 79
Clear the stacks and enter the execution state.
Return control to the operator's terminal, printing
a restart message.

C64 SYS
Close all open 1/0 fiLes. Used in event of an errUf.

79 n u "absolute"
Leave the absolute value of n as u.

addr n (when compiling)
Used in a colon definition in the form:

: <defname> •• BEGIN AGAIN ;
At run-time, AGAIN forces execution to return to
corresponding BEGIN. There is no effect on the
stack at run-time. Execution cannot leave this
loop.

79 n
Add the signed number to the dictionary pointer DP •
N is the number of bytes to offset the pointer to
reserve space in the dictionary or to re-origin
memory.

79 n1 n2
Leave the bitwise logical AND of n1 and n2 as n3.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I BIBUF

I
B/SCR

I
I
I BACK

I
BASE

I
BASIC

I
I BEGIN

I
I
I
I

BKGRND

I BL

I BLANKS

I BLK

I
I
I

S Y S n
This constant Leaves the number of bytes (1024.)
per disk buffer, which is the byte CQJnt read from
the disk by BLOCK.

S Y S n
This constant Leaves the number of bLocks per
editing screen (1). By convention, an editing
screen is 1024 bytes organized as 16 Lines of
64 characters. C64-FORTH however edits and dispLays
screens as 25 Lines of 40 characters and 1 Line of
24 charact~rs.

SYS addr
CaLcuLate the backward branch offset from HERE to
addr and compile into the next avai LabLe di ctionary
memory address.

79 addr
A user variabLe containing the current number base
used for input and output conversion.

C64
Exit to BASIC. Interrupts are pointed back to ROM
routines, and BASIC ROMs are re-enabLed.

79 addr n
Used in a coLon-definition

BEGIN UNTIL
BEGIN AGAIN
BEGIN WHILE

(when compiLing)
in the form:

REPEAT
At run-time, BEGIN marks the start of a sequence
that may be repetitiveLy executed. It serves as a
return point from the corresponding UNTIL, AGAIN,
or REPEAT. When executing UNTIL, a return to
BEGIN wiLL occur if the top of the stack is faLse;
for AGAIN and REPEAT a return to BEGIN aLways
occurs. Ther~ is no effect on the stack at run-time.

C64 addr
VariabLe that contains the coLor vaLue to which the
C64 background coLor is set upon entering FORTH or
executing COLD.

b "b L"
A constant that Leaves the ascii vaLue for a "blank".

SYS addr count
F iLL an area of memory beginning at addr with bLanks.

SYS 79 addr "b L k"
A user variabLe containing the bLock number being
interpreted. If zero, input is being taken from the
terminaL input buffer.

E -11

BLOCK 79 n addr
leave the memory address of the bLock buffer containing
bLock n. If the bLock is not aLready in memory, it is
transferred from disk to which ever buffer was Least
recentLy written. If the bLock occupying that buffer
has been marked as updated, it is rewritten to disk
before bLock n is read into the buffer. See aLso
BUFFER RIW UPDATE FLUSH

BLOCK-READ
BLOCK-WRITE SYS addr

BORDER

BRANCH

BUFFER

BUFFERS

C !

C,

C/l

E-12

Never used by the programmer.
These are internaL routines used by (R/W) to read in or
write out to disk or tape one 1024 byte bLock of data.

C64 addr
VariabLe that contains the coLor vaLue to which the
border on the C64 screen is set upon entry into FORTH
or execution of COLD.

SYS
Never used by the programmer.
The run-time procedure to unconditionaLLy branch. An
in-Line offset is added to the interpretive pointer IP
to branch ahead or back. BRANCH is compiLed by ELSE,
AGAIN , and REPEAT •

79 n addr
Obtain the next memory buffer, assigning it to bLock n.
If the contents of the buffer is marked as updated, it
is written to the disk. BLOCK N IS NOT READ FROM DISK.
BUFFER onLy reserves space for the bLock. The address
Left on the stack ~s the first ceLL withi~ the buffer
for data storage.

C64 SYS n
Changes the number of bLock buffers that memory is
aLLocated for. n must be >= 2, and the maximum n is
governed by how much free memory there is. Each
buffer takes 1028 bytes. Updated bLocks are written
out to disk before the number of buffers is changed.
C64-FORTH is shipped configured for 4 buffers.

79 b addr "c store"
Store the Lower 8-bits of b at address.

SYS b
Store Lower 8 bits of b into the next avai LabLe
dictionary byte, advancing the dictionary pointer.
This word is onLy avai LabLe in FORTH systems
impLemented on byte-addressing machines.

n
Constant that Leaves the number of characters per Line
that the terminaL is assumed to dispLay.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C@

CALL

CALLRC

CALLRS

79 addr b "c fetch"
Leave the 8-bit contents of memory address.

C64 addr
Used to call a machine language routine from high
level FORTH. addr may be a user generated subroutine
or a subroutine in the 1/0 ROM space. The called
subroutine must end with a RTS instruction. See CALLR

C64 y1 x1 a1 addr y2 x2 a2
Used to call a machine language subroutine, as in
CALL, however CALLR aLLows setting the Y, X, and A
6502 registers PLUS CLEAR THE CARRY BIT prior to
calLing the routine. The status of the three registers
upon return from the subroutine are left on the stack.
The called subroutine must end with a RTS instruction.

C64 y1 x1 a1 addr y2 x2 a2
Sames as CALLRC except the CARRY BIT IS SET before
the subroutine is caLLed.

CBMEXPECT C64 addr count

CFA

~:-jRCLR

CKTOP

CKRDSTAT

SimiLiar to EXPECT except aLlows use of the normaL
Commodore 64 line editing capabiLities. The line
is not input untiL the RETURN key is pressed. For
exampLe, HERE 9 CBMEXPECT wilL return the
first 9 characters found on the current display Line
when the RETURN key is pressed.

SYS pfa cfa
Convert the parameter fieLd address of a definition
to its code field address.

C64 addr
VariabLe that contains the color code to which the
C64 cursor color is set upon entry into FORTH or
execution of COLD.

C64 SYS f
CaLled by (R/W). If system device is a cassette, then
inquires the operator whether shouLd try searching for
a screen data fi Le on tape or just fi l L buffer in
memory with spaces. This saves going through a whoLe
cassette to learn that a screen has not yet been saved
on it. f = 1 if user responded to Look for file.

C64 f
Convenience word for checking disk status after a read.
If disk status indicates an error, the status is
printed, ABORTIO is executed, then ERROR is executed.
If no error occured, then flag f returns 0 if o.k.,
or = 1 if end-of-fiLe was encountered. UsefuLl after
a INPUT# or GET# is executed.

E-13

CKST

CKWRSTAT

CLOSCHN

CLOSE

CLRBUF

CMD#

CMOVE

CODE

COLD

COMPILE

E-14

C64 f
Convenience word for checking the 1/0 status variable
ST after an 1/0 transfer. If any status error other
than end-of-file indication, an error message is
printed; otherwise returns f = false if o.k.,
= true if end-of-file.

C64
Similar to CKRDSTAT except no flag is returned since
end-of-file condition does not occur when writing to
a device. Useful after a PRINT# is executed.

C64 SYS
Convenience word. If the SYSDEV# indicates 1/0 device
is a di sk, then CLOSCHN c loses the error channe l to the
disk. Used in conjunction with OPENCHN •

C64 f i l e#
Functions same as CLOSE in BASIC.
opened fi le referenced by fi le# •

Closes a previously

C64 SYS addr
Fi lls a 1K block of memory with spaces.
(R/W) to clear a screen buffer when file
on disk during a read.

C64 fi le#

Called by
is not found

Similar to CMD# in BASIC, except that the output is
directed to both the specified device and the terminal.
This allows another output channel to be open while
terminal output goes to a printer.

79 addr1 addr2 count
Move the specified quantity of bytes beginning at
address from addr1 to addr2. The contents of addr1
is moved first, then proceeding toward high memory.

C64
Used to credt~ ~ FORTH callable definition composed of
machine code. See ASSEMBLER glossary.

SYS
The cold start procedure to adjust the dictionary
pointer to the minimum standard and restart via
ABORT. May be called from the terminal to remove
application programs and restart.

SYS 79
When the word containing COMPILE executes, the
execution address of the word following COMPILE is
copied (compiled) into the dictionary. This allows
special situations to be handled while compiling.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CONSTANT

CONTEXT

CONVERT

COpy

COUNT

C R

CREATE

CSP

:::'JRRENT

D+

79 n
A defining word used to create a data type that
functions as a constant. Used in the foLLowing way:

n CONSTANT <constname>
<constname> is created with its parameter fieLd
containing n. When <constname> is Later executed,
the vaLue of n wiLL be pushed onto the stack.

SYS 79 addr
A user variabLe containing a pointer to the vocabuLary
within which dictionary seraches wiLL first begin.

SYS 79 d1 add r1
Convert to the equivaLent
beginning at addr1+1 with
vaLue is accumuLated into
Left as dZ. addr2 is the
convertibLe character.

C64 n1 nZ

d2 addrZ
stack number the text
regard to BASE. The new
doubLe number d1, being
address of the first non-

Copy the contents of screen n1 to screen n2 and mark
nZ as updated.

79 addr1 addrZ n
Leave the byte address addrZ and byte count n of a
text string beginning at addr1. It is presumed that
the first byte at addr1 contains the text byte count
and the actual t~xt starts at addr1+1. TypicaLLy
COUNT is foLLowed by TYPE.

79
Transmit a carriage return to the seLected output
devi ceo

79
A defining word used in the form:

CREATE <defname>
by such words as CODE and CONSTANT to create a
dictionary header for a new FORTH definition. The
code fieLd contains the address of its parameter
fieLd. The new word is created in the CURRENT
vocabuLary. Sometimes used with DOES> to create
a new defining word:

<typename> CREATE DOES> . ,

SYS addr
A user variabLe temporari Ly storing the stack pointer
position, for compiLation error checkin~.

79 addr
Leave the address of a user variabLe specifying the
vocabuLary into which new word definitions are to be
entered.

79 d1 dZ dsum
Leave the doubLe number sum of two doubLe numbers.

E-15

D+-

D-

D •

D • R

DO=

D<

D=

D>

DABS

DC

DECIMAL

SYS d1 n d2
AppLy the sign of n to the doubLe number d1 , Leaving
i t as d2.

d1 d2 d3
Subtract d2 from d1 and Leave the resuLt as d3.

d "d dot"
Print a signed doubLe number from a 32-bit two's
compLement vaLue on the stack. The high-order
16-bits are most accessabLe on the stack.
Conversion is performed according to the current
BASE. A bLank foLLows.

d n
Print a signed doubLe number d right justified in a
fieLd n characters wide.

d f
Leave a true fLag if doubLe number d
zero; otherwise Leave a faLse fLag.

79 d1 d2 f

is equaL to

Leave a true fLag if d1 is Less than d2; otherwise
Leave a faLse fLag.

d1 d2 f
Leave a true fLag if d1 = d2; otherwise Leave a faLse
f Lag.

d1 d2 f
Leave a true fLag if d1 is greater than d2; otherwise
Leave a faLse fLag.

d ud
Leave the absoLute vaLue ud of a doubLe number.

C64
Stands for "disk command". Used as foLLows:

DC "rO:prognew=progoLd"
Sends the string between the quote deLimiters to the
disk.

79
Set the numeric conversion BASE for decimaL input and
output.

DEFINITIONS 79

E-16

Used in the form:
<vocname> DEFINITIONS

Set the CURRENT vocabuLary to the CONTEXT vocabuLary.
In the exampLe, executing vocabuLary name <vocname>
made it the CONTEXT vocabuLary and executing
DEFINITIONS made both specify vocabuLary <vocname>.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DEPTH

DIGIT

DIR

DKFLAG

DLITERAL

D r~A X

DMIN

DNEGATE

DO

79 n
Leave the number of the quantity of 16-bit vaLues
contained in the data stack, before n was added.

SYS b n1 n2 tf (i f ok)
b n1 ff (i f bad)

Converts the ascii character b (using base n1) to its
binary equivaLent n2, accompanied by a true fLag. If
the conversion is invaLid, Leaves onLy a faLse fLag.

C64
DispLays the directory of drive 0 of the device
specified by SYSDEV#. If a duaL drive is the
configured on the system, the directory of that disk
may be obtained by: DC "$1"

C64 addr
VariabLe used as a fLag for disk type. DKFLAG is
normaLLy =0 for a 1541 type of disk. To use a 1540
1540 type disk without an upgrade ROM, set = 1.

SYS d d (when executing)
d (when compiling)

If compiLing, compile a stack doubLe number into a
LiteraL. Later execution of the definition
containing the LiteraL wiLL push it onto the stack.
If executing, the number wi LL remain on the stack.

d1 d2 dmax "d max"
Leave the Larger of tw 0 doubLe numbers.

d1 d2 dmin "d min"
Leave the smaLLer of tw 0 doubLe numbers.

79 d1 d2
convert d1 to its doubLe number 2 1 s compLement.

79 n1 n2 (when executing)
addr checkdigit (when compi Ling)

Used within a coLon definition as foLLows:
DO ••• LOOP
DO ••• n +LOOP

~O is used to mark the Loop back point of a program
Loop. When compiLing, DO compiLes the procedure
(DO) into the dictionary and pushes the :;:Jrrent
dictionary address and a check digit onto the stack.
When executing, (DO) takes the Limit n1 and the
starting Loop index n2 off the data stack, pushes them
onto the return stack. The FORTH words up the paint
marked by LOOP, ILOOP, or +LOOP are executed. Upon
reaching Loop point, the index is incremented by one
in the case of LOOP, or n is added to the index in the
case of +LOOP or ILOOP. Unti L the new index equaLs or
exceeds the Limit, execution Loops back to just after
the DO point; otherwise the Loop parameters are
discarded and execution continues ahead.

E-17

DOES>

DP

DPL

ORO

DROP

DU<

DUMP

E-18

Both n1 and n2 are determined at run-time and may be
the resuLt of other operations. Within a Loop,
executing III wiLL push the current Loop index onto
the data stack. IJI and IKI wiLL push the indexes of
the second and third outer Loops.
See I J K LOOP +LOOP ILOOP LEAVE

79
Used with CREATE to create a new word type:

<typename> CREATE
DOES> ,

"does"

Each time <typename> is executed, CREATE defines a new
word with a high-LeveL execution procedure. Executing
<typename> in the form:

<typename> <defname>
uses CREATE to create a dictionary entry for
<defname>. The FORTH definitions between CREATE and
DOES> are executed at this point, such as to reserve
memory for a data array, etc. When <defname> is Later
executed, its parameter fieLd address is pushed onto
the stack, and the FORTH definitions specified between
the DOES> and; portion of <typename> wiLL be executed.

SYS addr
A user variabLe, the dictionary pointer, which contains
the address of the next free memory space above the
dictionary. The vaLue may be read by executing HERE
and may be aLtered by ALLOT.

addr
A user variabLe containing the number of digits to the
right of the decim~L point on doubLe integ~r input. It
may aLso be used to hoLd coLumn Location of a decimaL
point, in user generated formatting. The defauLt
vaLue on singLe number input is -1.

Sets disk drive OFFSET to zero. ActuaL Ly the 1/0
routines in C64-FORTH donlt use the vaLue in OFFSET.
However, for compatibiLity OFFSET must be set to zero,
so ORO exists in the dictionary to do this.

79 n
Drop (remove and discard) the top vaLue on the stack.

ud1 ud2 f
FLag is Left true if ud1 is Less than ud2.
numbers are unsigned.

addr count

"d u Less"
30th

Print the contents uf count number of memory Locations
beginning at addr. Both addresses and contents are
shown in HEX to aLLow reasonabLe formatting on the
C64 screen.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DUP

DV1
DV2
DV3
DV4

EBUF

EDIT

ELSE

EMIT

79 n1 n1 n1
DupLicate the top vaLue on the stack.

C64 addr
VariabLes used to hoLd I/O unit characteristics.
C64-FORTH may have up to 4 I/O devices attached for
saving screens. These are actuaLLy doubLe variabLes
hoLding 4 bytes of information. The addr returned
when one of these variabLes is executed points to
a 16-bit vaLue indicating how may screens this device
is to hoLd. addr+2 contains the device # of the unit.
addr+3 contains the drive #, aLLowing access to the
second drive of a dual drive unit if attached.
See TECHNICAL INFORMATION section of manuaL.

C64 addr
A buffer of 30 bytes in Length which various I/O
routines in C64-FORTH use for saving disk status, etc.

C64 scr#
Used to enter editing mode on a screen.
section on EDITOR.

See manual

79 addr1 n1 addr2 n2 <when compi Ling)
Used within a coLon-definition as foLLows:

IF ELSE ENDIF
ELSE marks the end of the FORTH words that are executed
when the IF condition tests true, and the start of the
FORTH words that are executed when the IF condition
tests faLse. There is no effect on the stack at
(':J n- tim e •

At compiLe time, ELSE empLaces BRANCH reserving a
branch offset, leaves the address addr2 and n2 for
error testing. ELSE aLso resoLves the pending
forward branch from IF br calcuLating the offset from
addr1 to HERE and storing at addr1.

79 b
Transmit ascii character b to the selected output
device. OUT is incremented for each character
output.

EMPTY-BUFFERS 79

EMSGS

Marks aLL bLock-buffers as empty, not necessari Ly
affecting the contents. Updated bLocks are not
written to the disk.

C64 addr
Searched for by MESSAGE Contains aSCll error
messages. May be FORGOTten if neccessary. MESSAGE
automaticaLLy accomodates its absence. See MESSAGE.

E-19

ENCLOSE

END

ENDIF

ERASE

E-20

SYS addr1 b addr1 n1 n2 n3
The text scanning primitive used by WORD. From the
text address addr1 and an ascii deLimiting character
b, is determined the byte offset n1 to the first non
deLimiting character, the offset n2 to the first
deLimiter after the text string, and the offset n3
to the first non-deLimiter after that. This
proceedure wi LL not process past an aSCll 'nuLL'
treating it as an unconditionaL deLimiter.

This is an 'aLias' or dupLicate definition for UNTIL.

addr n (when compiLing)
Used in a colon-definition as foLLows:

IF ENDIF
IF ELSE ENDIF

At run-time, ENDIF serves onLy as the destination of
a forward branch from IF or ELSE. It marks the
concLusion of the conditional structure. THEN is
another name for ENDIF •

At compile-time, ENDIF computes the forward branch
offset from addr to HERE and stores it at addr. N
is placed on the stack for error checking.

addr count
CLear (filL with nuLL bytes) a region of memory
starting from addr for count number of bytes.

SYS Line# in bLk
Execute error notification and restart of system.
WARNING is first examined •. If WARNING = -1, the
definition (ABORT) is executed, which executes the
system word ABORT. The user may cautiously modify
this execution by aLtering (ABORT)

If WARNING didn't equal -1, (it is normally set to 1),
then MESSAGE is executed. However, the function uf
M~SS~GE ~i LL be described here:

If WARNING = 0, line# is just printed as a message
number. If WARNING = 1, then first MESSAGE checks to
see if a definition by the name of EMSGS exits in the
dictionary. EMSGS is comprised of ascii strings, each
one being preceeded by a number. The strings are
scanned searching for a number matching Line#. If one
is found, the that message is printed as the error. If
either EMSGS wasn't found, or a matching error number
wasn't found, then screen #4 is read in from disk or
tape (or screen #S if the Line# is > 24). The 40
c h a r act e r Lin ere fer,~ n c .. ~ j by Lin e # (0 r Lin e # - 2 S if> 24)
is output as the error message.

FinaL action of ERROR is the execution of QUIT.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EXECUTE

;:XIT

EXPECT

FENCE

FILL

FIND

FIRST

FLD

FORGET

FORTH

SYS 79 addr
Execute the definition whose code fieLd address is on
the stack. The code fieLd address is aLso caLLed the'
compiLation address.

79
Used within a coLon definition that at run-time wi LL
terminate execution of that definition at that point.
MAY NOT be used within a DO Loop.

79 addr count
Transfer characters from the terminaL to address addr,
unti L a "return" or the count number of characters
have been received. One or more nuLLs are added at
the end of the text.

addr
A user variabLe containing an address beLow which
FORGETting is prevented. To forget beLow this point
the user must aLter the contents of FENCE.

79 addr count b
Fi LL memory at the address with the byte vaLue b for
count number of bytes.

79 addr
Leave the compiLation address (CFA) of the next word
name found in the input stream. If that word cannot
be found in the dictionary after a search of CONTEXT
then FORTH then CURRENT vocabularies, a zero is
returned.

SYS n
A constant that Leaves the address of the first
(Lowest) bLock buffer.

SYS addr
A user variabLe for controL of number output fieLd
width.

79
Used as foLLows:

FORGET <defname>
DeLetes definition named <defname> from the dictionary
with ALL entries physicaLLy foLLowing it (defined after
it in ANY vocabuLary). See FENCE

79
The name of the primary vocabuLary. Execution makes
FORTH the context vocabuLary. UntiL additionaL user
vocabularies are defined, new user definitions become
a part of FORTH. FORTH is immediate, so it wi Ll
execute during the creation of a colon-definition,
to select this vocabulary at compile time.

E- 21

GET

GET#

GETDEV

HERE

HEX

HLD

HOLD

I

I D •

I F

E-22

C64 --- b
Reads keyboard and returns character pressed. Does
not wait for a key to be pressed, so returns a null
value if none is.

C64 fi Le# addr count
Used to input byt~s from an externaL fi Le. count
specifies a maximum number of bytes to input. Input
terminates onLy upon reaching that count or upon
error. The received bytes are stored at addr+1,
with the count of the number of bytes received Left
at addr.

C64 fi Le# dev#
Used by (R/W) to get the device # that the specified
fiLe# was opened with.

79 addr
Leave the address of the next avai LabLe dictionary
Location.

Set the numeric conversion base to sixteen
(hexadecimaL).

SYS addr
A user variabLe that hoLds the address of the Latest
character of text during numeric output conversion.

79 b
Used between <# and #> to insert an aSCll character
onto the text string being created during numeric
output conversion. e.g. 2E HOLD wiLL pLace a
decimal point character onto the string.

79 n
Used within a DO-LOOP to pLace the current Loop index
of the innermost DO loop onto the data stack.

SYS addr
Print a definition's name from its name fieLd address.

79 f
addr n

Used in a colon-definition
IF •• (tp) •• ENDIF

(at run-time)
(when compi Ling)

as foLlows:

IF •• (tp) •• r:1 SF •• Up) •• ENDIF
At run-time, IF selects execution based on a fLag on
the stack. If f is true (non-zero), execution
continues ahead thru the true part (tp). If f is
faLse (zero), execution skips tiLL just after the
ELSE (if one was specified) to the faLse part (fp),
or to just after the ENDIF part. In either case,
execution continues just after the ENDIF part.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ir~MEDIATE

INDEX

INPUT#

INTERPRET

J

K

KEY

KEYIN

SYS 79
Mark the most recentLy made definition so that when
encountered at compi Le time, it wi LL be executed,
rather than being compiLed into the definition. The
user may force compi Lation of a definition marked as
IMMEDIATE by preceeding it with [COMPILE]

scr1 scr2
Print the first Line of each screen in the range
starting with scr1 through scr2. TraditionaLLy,
the first Line of a text screen is used for comment
on the function of the code in that screen.

C64 fi Le# addr count
Transfers count maximum number of characters from
fi Le# to addr+1. Input is terminated upon reading
return or nuLL, reaching count, or error. Count
of actuaL number of bytes received is Left at addr.
If a nuLL or return terminated input, it is Left at
the end of the string in memory, but is not incLuded
in the count of bytes received.

SYS
The outer text interpreter which sequentiaLLy executes
o r com p i L est ext fro m the i n put S t rea m (f rom t e r' in ina L
or jisk) depending on STATE. If the word name cannot
be found after a search of the CONTEXT and then CURRENT
vocabuLaries, it is converted to a number according to
the current base. That aLso faiLing, an error message
wiLL be given. Text input wiLL be taken according to
the convention for WORD. If a decimaL point is found
as part of a number, a doubLe number vaLue wi LL be
Left on the stack. The decimaL point has no other
purpose than to force this action.

79 n
Return the index of the next outer DO Loop. May onLy
be used within a nested DO-LOOP in the form:

DO • DO ••• J • LOOP. • LOOP

C64 n
Return the index of the second outer DO Loop. May
onLy be used within a nested DO-LOOP in the form:

DO •• DO •• DO •• K •• LOOP •• LOOP •• LOOP

79 b
Leave the aSCll vaLue of the next key struck on the
terminaL keyboard.

C64 b
Waits for a key to be depresses on the keyboard. The
cursor is turned on whi Le waiting. As soon as a key
is depressed, the cursor is turned off and the routine
returns. Gives visuaL indication that the program is
waiting for one key to be pressed.

E-23

KEY RANGE

LATEST

LEAVE

LFA

LFFLG

LIMIT

LIST

LIT

LITERAL

LOAD

E-24

C64 b
Routine caLLed internaLLy by EXPECT to wait for a ~ey
to be pressed, and return with its vaLue onLy if it
was an ASCII character, the DEL key, or RETURN.

SYS addr
Leave the name fieLd address of the topmost word in the
CURRENT vocabuLary.

79
Force termination of a DO-LOOP at the next oppertunity
by setting the Loop Limit equaL to the current vaLue of
the Loop index. The index itseLf remains unchanged,
and execution proceeds normaLly untiL LOOP or +LOOP is
encountered.

SYS pfa Lfa
Convert the parameter fieLd address of a dictionary
definition to its Link fieLd address.

C64 addr
VariabLe used as fLag that controLs whether a LINE-FEED
character is sent to the current CMD# device foLLowing
any RETURN character. LFFLG = a disables Line-feed,
<> a enabLes Line-feed.

SYS n
A constant that Leaves the address just above the
highest memory address used for the disk buffers. This
is usuaLLy the start of the user variabLes area.

79 n
DispLay the aSCll text of screen n on the terminaL.
LIST sets the ~ariabLe SCR to the screen number
requested.

SYS n
Within a coLon definition, LIT is automaticaLLy
compiLed before each 16-bit LiteraL number encountered
in the input text. Later execution of LIT within a
definition causes the contents of the next dictionary
address to be pushed on the stack.

SYS 79 n (when compiLing)
If compiLing, then compiLe the stack value n as a
16-bit LiteraL. This definition is immediate so that
it wi LL execute during a coLon definition.

79 n
Read in screen n, and treat it as if it had been typed
in at the terminaL. LOAD is used to initiate compiLing
of source code on screens. Loading of a screen wi L L
terminate at the end of the screen or at ;S •
See ;S and -->

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LOOP

r·' *

MI

~·1A. X

MEMTOP

MESSAGE

MIN

MOD

79 addr n
Used in a coLon definition

DO LOOP

(w hen comp iL i ng)
as foLLows:

At run-time, LOOP seLectiveLy controLs branching back
to the corresponding DO based on the Loop index and
Limit. The Loop index is incremented by one and
compared to the limit. The branch back to DO occurs
until the index equaLs or exceeds the Limit; at that
time, the parameters are discarded and execution
continues ahead.

At compi Le-time, LOOP compi Les (LOOP) into the
dictionary and uses addr to caLcuLate an offset to DO.
n is used for error checking.

n1 n2 d
A ~ixed magnitude math operation which Leaves the
doubLe number product of two signed numbers.

d n1 n2 n3
A mixed magnitude math operator which Leaves the
signed remainder n2 and signed quotient n3, from a
doubLe number dividend and divisor n1. The remainder
takes its sign from the dividend.

ud1 u2 u3 ud4
An unsigned mixed magnitude math operation which
Leaves a doubLe quotient ud4 and remainder u3, from
a doubLe dividend ud1 and singLe divisor u2.

79 n1 n2 max
Leave the greater of two numbers.

C64 SYS addr
Changes the top of memory aLLowed for the FORTH system.
UsuaL top for FORTH is DOOO, which is the highest
aLLowabLe RAM address. If desired, the top may be
Lowered to reserve a section of RAM that the be out
of range of the FORTH system. addr must not push the
FORTH system too Low. Above HERE there must be room
Left for the text output buffer starting at PAD, the
bLock buffers, each of which consumes 1K, and the
user area (128 bytes Long). MEMTOP executes ~~~~QT,
then COLD to make the new vaLue permanent.

n
The operation of MESSAGE is fuL Ly described under ERROR.

n1 n2 min
Leave the smaLLer of two numbers.

n1 n2 mod
Leave the remainder of n1/n2, with the same sign as n1.

E-25

MOVE

NEGATE

NFA

NOT

NUMBER

OFFSET

OPEN

OPENCHN

OR

OUT

OVER

E-26

79 addr1 addr2 count
Move the contents of count number of 16-bit memory
Locations from addr1 to addr2. The contents of addr1
is moved first. count must be < 16K words (32K bytes).

79 n -n
Leave the two's compLement of a number.

SYS pfa nfa
Convert the parameter fieLd address of a definition
to its name fieLd address.

79 f f
Reverse the booLean vaLue of f.
0= •

addr d

This is identicaL to

Convert a character string Left at addr with a
preceeding byte count, to a signed doubLe number,
using the current numeric base. If a decimaL point
is encountered in the text, its position wiLL be
given in DPL, but no other effect occurs. If numeric
conversion is not possibLe, an error message wiLL be
given.

addr
A user variabLe which may contain a bLock offset to
disc drives. C64-FORTH does not use its contents to
determine which 1/0 unit a certain screen resides on,
however it must be kept = 0 since BLOCK adds it to
the requested bLock number.

C64 fiLe# dev# sa addr count
Open a fiLe to an externaL device. dev# is the device
number that the fiLe # wiLL be associated with, sa
is the secondary address that wiLL be sent to the
unit. addr and count specify the Location and Length
of a fiLename string to be sent to the device. If no
fiLename is to be sent, count shouLd equaL zero.

C64
Convenience word. Opens an error channeL to the device
in SYSDEV# onLy if it is a disk (i.e. SYSDEV# > 3).
Used with CLOSCHN •

79 n1 n2
Leave the bit-wise
vaLues.

addr

or
LogicaL or of two 16-bit stack

A user variabLe that contains a vaLue incremented every
time EMIT is caLLed. The user may initiaLize and
examine OUT to controL dispLay formatting.

79 n1 n2 n1 n2 n1
Copy the second stack vaLue, pLacing it as the new top.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PAD

PFA

PICK

PREV

PRINT#

79 addr
Leave the address of the text output buffer, which is a
fixed offset above HERE.

nfa pfa
Convert the name fieLd address of a compiLed definition
to its parameter fieLd address.

79 n1 n2
Return the contents of the n1-th stack vaLue, not
counting n1 itseLf. e.g. 2 PICK is eqivaLent to OVER.

SYS addr
A variabLe containing the address of the disk buffer
most recentLy referenced. The UPDATE command marks
this buffer to be Later written to disk.

C64 fiLe# addr count
Output count number bytes to the fiLe, starting from
addr.

QUERY 79

QUIT

R#

R/W

RO

R>

Input 80 characters of text (or unti L a "return") from
the terminaL. Text is positioned at the address
contained in TIB with IN set to zero.

79
CLear the return stack, stop compiLation, and return
controL to the operators terminaL. No message is
given •.

addr
A user variabLe which may be used to hoLd the position
of the edi.ting cursor, if a different editor is used,
or may be used for other fiLe reLated functions.

SYS addr bLk f
Used to read in or write out one screen bLock. addr
specifies the starting address of the bLock, bLk is
the bLock number, and f is a fLag that is set =0 to
write the bLock out to disk, or =1 to read in the
bLock. R/W automaticaLLy generates the proper
fi Lename for reading or writing the bLock to disk or
tape, transfers the data fi Le, and does error
checking.

addr "r zero"
A user variabLe containing the initiaL Location of the
return stack. Used for cLearing the return stack.

SYS 79 n
Remove the top vaLue from the return
it on the data stack. See >R and R

"r from"
stack and Leave

E-27

R@

ROROP

ROSTAT

REBOOT

REPEAT

ROLL

ROT

RP!

S->O

SO

79 n
Copy the top of the return stack to the data stack.

C64 SYS
Removes and discards the top value on the return stack.
Care must be used in the use of ROROP •

C64 fi le#
If system device is a disk (i.e., SYSOEV# > 3), reads
in the disk status and places it in EBUF •

C64
Updates the permanent boot-up values that specify the
system characteristics. -All new definitions defined
up to this point will be made a permanent part of the
system in memory. Called by SAVESYSTEM •

79 addr n (when compiling)
Used within a colon definition as follows:

BEGIN ••• WHILE •• REPEAT
At run-time, REPEAT forces an unconditional branch
back to just after the corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH and the offset
from HERE to addr. n is used for error checking.

79 n
Rotate the top n stack items.
same as ROT •

79 n1 n2 n3 n2
Rotate the top three values on
the third to the top.

SYS

e.g. 3 ROLL is the

n3 n1 "rate"
the stack, bringing

A procedure that initializes the return stack pointer
from the value in user variable RO •

n d
Sign-extend a single number to form a double number.

SYS addr "s zero"
A user variable that contains the initial value for
the data satck pointer.

SAVE-BUFFERS 79
Write all blocks to disk that have been marked as
updated.

SAVESYSTEM C64
Used to save the current FORTH system onto disk or
tape as follows:

SAVESYSTEM "filename"
All recently defined definitions are made a permanent
part of the FORTH system.

E-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

SAVETURNKEY C64

SCR

SETDEV#

SIGN

SMUDGE

SP!

SP@

SPACE

SPACES

Used to save an application program onto disk or tape
as folLows:

SAVETURNKEY "fi Lename"
The program saved is not a usabLe FORTH system. The
last word defined in the vocabuLary is executed
immediateLy upon booting up. Executing SAVETURNKEY
destroys the current FORTH system, so when done
saving onto disks, the FORTH system wi LL have to be
rebooted.

79 addr
A user variabLe containing the screen number most
recentLy referenced by LIST.

C64 bLk#1 bLk#2
TransLates bLk#1 into bLk#2 by doing a check of
variabLes DV1, DV2, DV3, and DV4. See technicaL
information section of manuaL.

79 n d d
Stores an ascii "-" sign just before a converted
numeric output string in the text output buffer when
n is negative. n is discarded, but doubLe number d
is maintained. Must be used between <# and #> •

SYS
Used during word definition to toggLe the "smudge bit"
in a definitions' name fieLd. This prevents an
uncompLeted definition from being executed, however
the name wiLL show up during a VLIST. If the most
recentLy created definition was not compLeted, and
cannot be FORGOTten, then execute SMUDGE. The header
of the unfinished definition can now be removed via
FORGET •

SYS
A procedure to initiaLize the data stack pointer from
SO.

addr
A procedure to return the data stack pointer <position
of the current data stack before the addr was added).
Used in the foLLowing way:

SP@

is usefuL in debugging a FORTH routine invoLving DO
Loops to see if stack is getting "over-fi lLed" or
"over-empty" from unbaLanced use of stack values.

79
Output an ascii bLank character to the terminaL.

79 n
Output n ascii blanks to the terminaL.

E-29

ST

STATE

SWAP

SYSDEV#

TAPEFLG

TASK

C64 addr
A variabLe into which the C64-FORTH I/O routines
pLace the I/O status byte after each operation. This
variabLe may be checked after an I/O operation the
same way it is done in BASIC.

SYS 79 addr
A user variabLe containing the compiLation state. A
non-zero vaLue indicates in compiLation mode.

79 n1 n2 n2 n1
Exchange the top two stack vaLues.

C64 addr
A variabLe that is set to the currentLy active system
I/O device. The reading or writing of bLocks wiLL
automaticaLLy set this variabLe. However, any user
use of data fiLes or executing the SAVESYSTEM or
SAVETURNKEY words must have SYSDEV# preset to the
proper I/O device number.

C64 addr
A variabLe used onLy for cassette I/O. If set =0,
then any bLock I/O automaticaLLy goes to the cassette.
If <>0, CKTOP wiLL, if a bLock is to be read in, ask
the user if shouLd Look for the bLock on tape or
create a new bLank one. This aLLows creating new
screens that don't aLready exist on tape.

A no-operation word which can mark the boundary between
appLications. By forgetting TASK and re-compi Ling, an
appLication can be discarded in its entirety.

THEN 79

TIB

TOGGLE

TON

E-30

See ENDIF •

SYS addr
A user variabLe containing the address of the terminaL
input buffer.

addr b
CompLements the contents of addr by the bit pattern b.
EffectiveLy an excLusive-or of b with the contents of
the Location.

C64
Sets a fLag so that FORTH TRACE mode turns on at the
start of the execution of the next word in the input
stream that is defined as a coLon definition.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TRAVERSE SYS addr1 n addrZ
Move across the name fieLd of a FORTH definition.
This accounts for the variabLe Length of definition
names.' addr1 is the address of either the Length
byte or the Last Letter. If n=1, the motion is
toward high memory; if n=-1, the motion is toward
Low memory. The addrZ resuLting is the address of the
other end of the name.

TYPE 79 addr count
Output count number of characters from memory starting
.from addr.

U* 79 u1 uZ ud
Leave the unsigned doubLe number product of two
unsigned numbers.

U. 79 u
Unsigned-number print.

U.R u n

U<

U /

U/MOD

UNTIL

UPDATE

Print unsigned-number right-justified in fieLd of n
characters.

79 u1 uZ f
Unsigned Less-than. f is true if u1 is Less than uZ.
Works correctLy even if numbers differ by more than
3ZK.

u d u1 uZ u3
Leave the unsigned remainder uZ and unsigned quotient
us from the unsigned doubLe dividend ud and unsigned
divisor u1.

79 ud u1 uZ u3
IdenticaL to U/ •

79 f (run-time)
addr n (when compiLing)

Used within a coLon definition as foLLows:
BEGIN ••• UNTIL

At run-time, UNTIL controLs the conditionaL branch
back to the corresponding BEGIN. If f is faLse,
execution returns to just after the BEGIN; if true,
execution continues ahead.

At compiLe-time, UNTIL compiLes OBRANCH and an offset
from HERE to addr. n is used for error checking.

79
Marks the most recentLy referenced bLock (pointed to
by PREV) as aLtered. The bLock wi LL subsequentLy be
written to disk automaticaL Ly shouLd its buffer be
required for storage of a different bLock.

E-31

UPPER

USE

USER

C64 addr count
Scans through byte string starting at addr for count
number of characters and converts any shifted (from
entering characters with the C64 SHIFT key heLd down)
characters to unshifted ones. Makes string matching
more user-forgiving.

SYS addr
A variabLe containing the address of the bLock buffer
to use next, i.e. the one Least recentLy used.

n
A defining word used to create a new user variabLe as
foLLows:

n USER <varname>
The parameter fieLd of <varname> contains n as a fixed
offset reLative to the start of the user area. When
<varname> is Later executed, it pLaces the sum of its
offset and the user area base address on the stack as
the storage address of that particuLar variabLe.

VARIABLE 79 addr
A defining word used to create a variabLe as foLLows:

VARIABLE <varname>
When VARIABLE is executed, it creates the definition
<varname> with its parameter fieLd not initiaLized to
to any particuLar vaLue. When <varname> is Later
executed, the address of its parameter fieLd is Left
on the stack so that a fetch or store may access this
Location.

VOC-LINK SYS addr
A user variabLe containing the address of a fieLd in
the definition of the most recentLy created vocabuLary.
ALL vocabuLary names are Linked by these fieLds to
aLLow controL for FORGETting through muLtipLe
vocabuLaries.

VOCABULARY 79

E-32

A defining word used as foLLows:
VOCABULARY <vocname> IMMEDIATE

A new vocabuLary named <vocname> is created. When the
vocabuLary name is executed, it becomes the CONTEXT
vocabuLary which is searched first by INTERPRET. The
sequence "<vocname> DEFINITIONS" wi LL aLso make
<vocname> the CURRENT vocabuLary into which new
definitions are pLaced.

<vocname> wiLL be chained as to incLude aLL definitions
of the vocabuLary in which <vocname> itseLf was
defined. ALL vocabuLarys uLtimateLy chain to FORTH.
By convention, vocabuLary names are to be decLared
IMMEDIATE. See VOC-LINK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VLIST

~J ARM

WARNING

WHERE

WHILE

WIDTH

WORD

List the names of the definitions in the context
vocabuLary. The C64 CTRL key wi LL sLow the Listing,
and the STOP key wiLL terminate Listing.

C64
Execute a WARM start - stacks are cLeared and controL
returns to the FORTH input interpreter, but the disk
buffers are NOT cLeared.

addr
A user variabLe containing a vaLue used to controL
error and informative message printing. See ERROR

C64 n bLk
If executed immediateLy after an error whiLe Loading
in a screen, wi LL show the Line and Location of the
error.

79 (run-time)
add r1

f
n1 add r1 n1 addr2 n2 (when compi Ling)

Used in a coLon definition as foLLows:
BEGIN WHILE •• (tp) •• REPEAT

At run-time, WHILE seLects conditionaL execution based
on the fLag f. If f is true (non-zero), WHILE
continues execution of the true part thru to REPEAT,
which then branches back to BEGIN. If f is faLse
(zero), execution skips to just after REPEAT, exiting
the structure.

At compi Le-time, WHILE compi Les OBRANCH and Leaves
addr2 of the reserved offset. The stack vaLues wi LL be
resoLved by REPEAT.

SYS addr
A user variabLe containing the maximum number of
Letters saved in the compilation of a definition's
name. It must be 1 thru 31, with a defauLt of 31.
The name character count and its naturaL characters
are saved, up to the value in WIDTH. The vaLue may
be changed at anytime within the above Limits.

79 b addr
Scan off the next text characters from the input
input stream, untiL a deLimiter b is found. The
string is stored starting at HERE+1, with the byte
count stored at HERE. The actuaL deLimiter encountered
(b or a nuLL) is stored after the string, but is not
included in the byte count. Leading occurances of the
deLimiter b are ignored. If BLK is zero, text is
taken from the teminaL input buffer, otherwise from
the disk bLock stored in BLK. The addr returned is
the address of HERE. See BLK IN

E-33

,

x

XOR

[

[COMPILE]

]

E-34

"nuLL"
This is a pseudonym for the "nuLL" definition. When
an ascii nuLL (byte = 0) is encountered in the input
stream whi Le interpreting, this definition is executed.
Interpretation of the text from the terminaL input
buffer or within a disk buffer is terminated, and
FORTH goes into the wait-for-input mode.

79 n1 n2 xor
Leave the bit-wise LogicaL excLusive-or of two vaLues.

SYS 79
Used within a coLon definition in the form:

<name> [words] rest of def ;
Temporari Ly turns off compiLe mode to aLLow using FORTH
words for caLcuLating an address, etc. to quaLify
the compiLation when turned back on by]. The words
between [and] are interpreted, not compi Led.

SYS 79
Used within a coLon definition as foLLows:

<name> [COMPILE] FORTH ,
[COMPILE] wiLL force compiLation of a definition
marked' as IMMEDIATE, that wouLd otherwise execute
during compiLation. The above exampLe wiLL seLect
the FORTH vocabuLary when <name> executes, rather
than at compiLe time.

SYS 79
Resume compiLation that was suspended by [• See [

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

