
BLITZ

INTRODUCTION

BLITZ is a versatile and easy to use compiler for Commodore
computers which makes BASIC programs run much faster. Most
programs can be compiled without any alteration whatsoever
(although you may wish to take advantage of some of the features
that BLITZ adds to standard BASIC), and the whole compiling
process usually takes no more than a few minutes!

Compiled BASIC programs cannot be listed or altered by users and
so compiling provides an element of protection against
unauthorised copying and alteration of programs.

BLITZ is available for the Commodore 64, 128, and PET
computers (2001/3000,4000 and 8000 series). Compiled programs
can be used with either disk or tape, but BLITZ 64 is the only
version of the compiler which is available on tape as well as disk.

The compiler translates BASIC programs into a far more efficient
form (called P-code), which can be executed much more Quickly
than the original program. Large BASIC programs also become
shorter and occupy less memory and disk space after compilation.

BLITZ can recognise most extensions to Commodore BASIC, so
you can compile programs which make use of them (the utility
supporting the extensions must be present when the compiled
program is run).

BLITZ works very well with a single disk drive, but if you have a
PET or a 128 with a dual disk unit or two single drives, there are
some more advanced compiling options that you can use.

The main part of this manual assumes that you are using BLITZ
64 or BLITZ 128. If you have purchased BLITZ for a PET
computer, you should also refer to the section at the back of the
manual which explains how your version of BLITZ differs.

- 1 -

GETTING STARTED

BLITZ for the 64 is available on disk or tape, but BLITZ for the
128 is for disk users only. If you have BLITZ 64 on disk type
LOAD".",8 followed by RUN. If you have the 128 version, or the
Commodore 64 version on tape, hold down the shift key and press
RUN/STOP.

When the menu appears remove the BLITZ disk or tape and insert
one containing the program to be compiled.

Using BLITZ is very simple (although on the 128 there are several
compiling options to choose between). Here's how to compile a
program in three easy steps:

Choose compile options
On a 64 all you need to do is press 1 or 2 to
specify disk or tape. On the 128 there are six
options to choose from - but normally you will
select option 1. The full range of options is
explained in the next section.

Enter Program Name
Enter in full the name of the program you wish to
compile, then press RETURN.

Compilation
Wait whilst BLITZ 64 loads the program, compiles
it in two passes, and reports any errors it finds.

When compilation is complete the compiled program will be in
memory (64) or on disk (128). If you are using a 64 don't forget
to save the compiled program before you run it - just in case!

- 2 -

COMPILING OPTIONS ON THE 128

There are six different options:

1. Single Drive
2. Dual Drive
3. 2 Single Drives

4. Single Drive
5. Dual Drive
6. 2 Single Drives

No COLLISION
RESUME with
line number only

RESUME and
COLLISION with
full syntax

The first three options are for programs which do not use the
COLLISION command, and which use RESUME followed by a
constant line number, and not an expression. Programs compiled
using options I, 2 and 3 will run approximately 15% faster, and
take up 20% less space than programs compiled under options 4, 5
and 6.

If you are using a dual disk drive such as the 4040, 8050, or 8250,
select option 2 or 4. Place the disk containing the program(s) to
be compiled in drive 0 (the source drive), and a disk for the
compiled programs in drive 1 (the destination drive).

If you have two single drives select option 3 or 6. Enter the
device numbers of the source and destination drives when
prompted.

If you are using two drives BLITZ will prompt you to insert the
source and destination disks - it is prudent to put a write protect
tab on the source disk in case you get them the wrong way round!
BLITZ will then ask whether you wish to format the destination
disk. Whenever possible use a newly formatted disk to ensure that
you have sufficient space for the compiled program and the files
that BLITZ creates during compilation.

Having chosen the appropriate option, there are five different
compiling modes to choose from on the 128. Mode 1 is selected
automatically if you have a single drive - other modes require two
drives.

- 3 -

MODE 1 - Single Program Compilation

Mode I compiles a chosen program from the source disk onto the
destination disk. If you have a single drive system, the source and
destination disk are one and the same so BLITZ prefixes the
finished compiled program with Cj. The compiler also generates a
second file with the prefix Zj containing cross references to the
line numbers in the original program for use when debugging.

During compilation, BLITZ uses two other files, prefixed P j and
Dj, which hold pure P-code and data. These files are scratched at
the end of pass 2, but may be present on the destination disk if
compilation is aborted for any reason.

MODE 2 - Batch Compilation

Mode 2 compiles all the programs on the source disk one at a time,
and writes them to the destination disk. The run-time routines
required to execute the P-code are incorporated in each program
so that they can be run independently. This means that you can
compile a batch of unrelated programs in one go.

To save time and disk space, no cross reference files are created,
and so, if an error occurs at run-time, you should compile the
offending program on its own using mode I. No prefixes are
added to the names of the compiled programs.

MODE 3 - Linking Programs; No Variable Passing

All programs on the source disk are compiled onto the destination
disk, but the run-time routines are included in the first program
only - this has the advantage that less disk storage is needed and
loading times are shorter. No cross reference file is created, so
mode I should be used to compile individual programs if run-time
errors occur.

- 4 -

Only the first program can be loaded and run (this would normally
be a menu program), but programs can be used to call each other -
this is called linking. All variables and arrays are cleared when a
new program is loaded, and if it is necessary to pass parameters
between programs you should use mode 4 instead.

MODE 4 - Chaining; Full Variable Passing

Mode 4 works in the same way as mode 3, except that BLITZ
inserts an additional pass at compile time which creates a list of all
variables and arrays from every program module. This enables
variables to be shared between programs - this is called chaining.
BLITZ takes account of the length of the longest module, thus
overcoming the problems usually encountered in passing variables
to a longer BASIC program.

All arrays must be dimensioned in the program module that will
reference them first - if this is not done then BLITZ will report a
BAD SUBSCRIPT ERROR at compile time. The simplest solution
is to dimension all arrays in the first program of the suite.

MODE 5 - Single Program; No Run-Time Routines

This mode is similar to mode I, however, no run-time routines are
incorporated in the compiled program. This mode can be used
instead of mode I to create a cross-reference file to trace run-time
errors. It can also be used to re-compile individual modules in a
suite compiled under mode 3.

- 5 -

ERROR CORRECTION AND DEBUGGING

If you have incorrectly entered details about your disk drives,
BLITZ may stop with a BASIC error message. If this happens,
you should enter RUN to start again.

During compilation, BLITZ checks for SYNTAX, TYPE
MISMATCH and UNDEFINED STATEMENT errors. Errors in
the logic of the program will be detected only when you run the
program, and these will be reported at run-time in the normal
way. However, since the compiler discards all line numbers, the
error is reported with a program counter value, not the original
BASIC line number. On the 64 no cross-reference files are
created, so the only way you can identify the source of the error is
by rechecking your program. It is particularly important,
therefore, to check your program thoroughly before compilation.

On the 128 the cross-reference file generated by modes 1 and 5
can be used to find the corresponding line in the original
(uncompiled) BASIC program. Suppose you have run a program
called C/TEST and the computer has replied with ILLEGAL
QUANTITY ERROR IN 5912. In this case you would load the
cross-reference file Z/TEST into memory and list the relevant
section. A cross-reference file consists entirely of lines of the
form program counter=line number, with one line (and one program
counter value) for each line in the original program.

The program counter references individual BASIC statements, not
entire lines, so there may not be a program counter value exactly
matching that at which the error occurred. To find the line
number where the error occurred list a range of lines in the cross
reference file, for example LIST 5900-5912. Look for the nearest
program counter value less than or equal to the one in the error ,
message and read the ,ine number from there. For example, if the
last line listed is 5909 = 620 then the error must have occurred
somewhere in line 620 of the original BASIC program. This may
seem complicated, but remember that compilation should be the
last stage in program development. If your program is fully
debugged, run-time errors should not occur.

- 6.-

BLITZ vs. COMMODORE BASIC

Although BLITZ is highly compatible with Commodore BASIC
there are some minor differences (and improvements). You will
find, however, that the vast majority of programs can be compiled
without any alteration whatsoever.

Variables and arrays
Variables and arrays are stored in the same way as they are under
the BASIC interpreter. However, they are positioned in the order
they are encountered at compile time rather than the order they
are encountered at execution time.

Integers
BLITZ uses true integer arithmetic whenever possible. This
produces considerable improvements in execution time, since
Commodore BASIC converts integers to floating point, does the
calculations, then converts back to integers! It is therefore worth
using integers where possible in order to save storage space and
improve execution time.

Arrays
Dynamically dimensioned arrays are not allowed (this is the case
with most compilers). For example, DIM A(200) is all right, but
X=200:DIM A(X) is not. In addition, only single dimension arrays
with a maximum of II elements (0 .. 10) may be left undeclared.
All multi-dimension arrays, and all arrays with more than II
elements must be dimensioned by a DIM statement.

RUN/STOP key
BLITZ disables the RUN/STOP key after RUN, LOAD and CLR.
There are two special REM statements which allow you to enable
and disable the STOP key as you require:

STOP

REM •• SE
REM •• SA

Enable STOP key
Disable STOP key

The STOP command is treated as if it were an END.

- 7 -

CONT
You cannot use CONT to restart a compiled program.

FOR ... NEXT
Commodore BASIC does not allow you to write FOR ... NEXT loops
using an integer as the control variable - but BLITZ does. For
example, FOR 1% = 1 TO 10: A = A+l: NEXT 1% would not be
valid in normal BASIC, but it is allowed by BLITZ. Integer loops
are executed faster and use up less space on the BASIC stack.

LIST
LIST is not recognised by the compiler as it serves no useful
purpose in a compiled program.

Machine code
The easiest way to combine a short machine code routine with a
BASIC program is to include it as data statements which are read
and poked into the appropriate area. Longer routines can be
loaded separately by the main program, though the normal practice
of using a variable as a flag to skip the LOAD statement the next
time through will not work because the variable will be cleared. A
simple alternative is to check whether the first one or two bytes of
the routine are correct, for example:

10 IF PEEK(49152)<>76 THEN LOAD "CODE",8,1
20 SYS 49152

Extensions
BLITZ will automatically identify most extensions to standard
Commodore BASIC and leave the relevant statements uncompiled.
Then, at run-time, BLITZ will pass those statements to the BASIC
interpreter for execution. Provided that the extension is installed
(and enabled if necessary) the statement should be executed
correctly. Extensions are indicated during compilation by the
message ?EXTENSION. If you find that BLITZ does not
recognise a particular extension, you can force the compiler to
ignore the statement by preceeding it with two colons (::). Note
that this will result in three colons where the statement is not the
first on the line.

- 8 -

FURTHER INFORMATION

The high speed P-code produced by BLITZ will generally be about
60% of the size of the original program. There is, however, a 6k
overhead (Ilk on the Commodore 128) of run-time routines
incorporated in all programs compiled using modes I and 2, and in
the first program compiled using mode 3 or 4.

During pass 1, the program is translated into P-code and checked
for SYNTAX and TYPE MISMATCH errors. The numbers of
erroneous lines are displayed as they are encountered - these lines
must be corrected and the program recompiled. BAD SUBSCRIPT
ERROR will be reported if you change the dimensions of an array
within a program, but since it is legal to CLR variables and then
re-dimension arrays that have previously been used this message
should be considered a warning only. OVERFLOW ERROR will
occur if a number greater than I E38 is encountered - if you run a
program with this error spurious results will occur. Extensions are
indicated by the ?EXTENSION message as they are encountered.

At the end of pass I, all multi-dimensional arrays are checked. If
any of these have not been declared by a DIM statement, the
message BAD SUBSCRIPT ERROR OF arrayname is displayed.
Single dimensional arrays which have not been dimensioned default
to II elements as they would in Commodore BASIC.

During pass 2, BLITZ replaces all variable and line references with
their exact locations in memory; if a referenced line has not been
found, the error UNDEFINED STATEMENT IN line number is
displayed. At the end of pass 2 the Work files (prefixed P / and
Dj) are scratched, and compilation ends.

When mode 4 is selected, an additional pass (pass 0) is inserted to
prepare a list of all the variables referenced by each program
module and find the length of the longest module.

Programs compiled using BLITZ use less stack space. For
example, each GOSUB or FOR~ .. NEXT loop uses two bytes less,
whilst integer FOR ... NEXT loops save a further 1 bytes.

- 9 -

SPECIAL FEATURES OF BLITZ 128

High Resolution Graphics
Whenever BLITZ meets a GRAPHIC command during compilation
it reserves 9k for the high resolution screen - at $ICOO, so the
program starts at $4000. Because a GRAPHIC S command does
not necessarily mean that you are using hi-res graphics, the
compiler could be misled. However, if you include the directive
REM • • NG in your program, BLITZ will drop the graphics
routines from the the run-time library and start the compiled
program from $ICOO.

If you use REM •• NG and graphics commands together the
compiled program will crash.

BASIC Input Buffer
BLITZ 128 has its own input buffer. The normal BASIC 7.0
buffer ($0200-$02AO) is used by BLITZ for bank switching
routines which must not be overwritten. If you have SYS calls or
extensions which need to use this area, you should mark them with
the double colon (::) and use the REM •• RI (restore input
buffer) directive at the beginning of the program.

Floating Point to Integer Conversion
The REM •• FI directive followed by a list of floating-point
variables will instruct BLITZ to treat the variables in the list as
integers wherever they are encountered. This is particularly useful
for changing the control variables of FOR ... NEXT loops. For
example:

100 REM •• FI I,J,K

Variables defined as integer in this way must not appear in
statements which contain extensions since they are not compiled.

No Extension Listing
The REM •• NE directive will suppress the ?EXTENSION
warning message which might otherwise obscure more serious
errors. The extension count will still appear at the end of
compilation.

- 10 -

TRAP
The TRAP statement must not be used with variables or
expressions, though it may appear alone or with a constant line
number. Unlike the BASIC interpreter, BLITZ 128 turns TRAP
off when a program is terminated by END or STOP, or when a
program is loaded from within another.

RESUME
Compiler options I, 2 and 3 support RESUME only when followed
by a constant line number. This gives an approximate 15% speed
gain and 20% size improvement compared to the full
implementation supported by options 4, 5 and 6.

COLLISION
The COLLISION statement is supported only by options 4, 5 and
6. The constraints which apply to TRAP also apply to
COLLISION.

GRAPHIC CLR
This is treated as if it were GRAPHIC O. The 9k block of RAM
reserved for high resolution graphics is not released.

LIST, DELETE, RENUMBER etc.
Commands of this type are not recognised by the compiler as there
is no use for them in a compiled program.

- 11 -

BLITZ ON THE COMMODORE PET

BLITZ is available for 2001/3000, 4000 and 8000 series PET
computers. To load BLITZ place the disk in drive 0 and type:

LOAD ".",8

On a 4000 or 8000 series computer you could alternatively hold
down the shift key and press RUN/STOP.

You can use a single drive (option 1) or a twin drive (option 2).
BLITZ for the PET does not allow you to use two single drives.

If you have an 8096 or 8296 computer there are four options in all
- the first two will locate arrays immediately after the table of
variables in the 32k of memory usually accessible to BASIC, but
extending if necessary into the 64k expansion memory.

If you select option 3 or 4 then the array table is located in the
expansion memory, starting at address $8000 (32768). This leaves
a useful gap for any machine code routines which reside at the top
of normal memory.

• • •

BLITZ is copyright. It is illegal to copy programs for any purpose
whatsoever without the permission of the copyright holder. Users
who wish to purchase multiple copies of BLITZ should contact
SUPERSOFT for details of the special terms available.

(c) SUPERSOFT 1986
Winchester House, Canning Road, Wealdstone,
Harrow, Middlesex HA3 7SJ Tel 01-861 1166

- 12 -

