
SOFTWARE
’Commodore is a registered tradem ark of Commodore Business Machines.

Table of Contents

INTRODUCTION TO BASIC, A TUTORIAL

GETTING STARTED
EQUIPMENT SET UP
LOADING THE PROGRAM

THE MAIN MENU
THE MAIN MENU . . AN OVERVIEW
START TUTORIAL FROM BEGINNING
GO TO A PARTICULAR LESSON
GO TO ALPHABETICAL INDEX

PACE

5
5
6

9
9

10
10
11

LESSON 1 - THE KEYBOARD 17
1 - 1. THE COMMODORE 64 KEYBOARD 17
1 - 2. KEYBOARD CONTROL KEYS 17
1 - 3. MAIN KEYBOARD 19
1 - 4. ALTERNATE KEYBOARD 20

LESSON 2 - FORMAT OF A BASIC PROGRAM 21
2- 1. D IRECT AND PROGRAM MODES 21
2- 2. KEYWORDS-THE BASIC BUILDING BLOCKS 21
2- 3. PUNCTUATION-SPECIAL MEANINGS

FOR PROGRAMMERS 22

LESSON 3 - ON SCREEN EDITING 25
3- 1. THE COMMODORE 64 EDITOR 25
3- 2. ENTERING A PROGRAM LINE 25
3- 3. LISTING A PROGRAM 25
3- 4. DELETING PROGRAM LINES 26
3- 5. ALTERING PROGRAM LINES 26
3- 6. COPYING PROGRAM LINES 26
3- 7. CLEAR/HOME 26
3- 8. THE NEW COMMAND 26

LESSON 4 - SIMPLE SCREEN PRINTING 27
4- 1. V IDEO SCREEN AS AN OUTPUT DEVICE 27
4- 2. THE PRINT STATEMENT 27
4- 3. SPACING WITH COMMAS 28
4- 4. SPACING WITH SEMICOLONS 28
4- 5. SPACING WITH TAB 29

TABLE OF CONTENTS II
LESSON 5 - THE VARIABLE 31

5- 1. VARIABLES 31
5- 2. INTEGER VARIABLES 31
5- 3. FLOATING-POINT VARIABLES 32
5- 4. STRING VARIABLES 32
5- 5. MIXING DATA TYPES IN

PRINT STATEMENTS 33

LESSON 6 - SIMPLE STRUCTURES 35
6- 1. THE GOTO STATEMENT 35
6- 2. SUBROUTINES 35
6- 3. THE LOOP 36
6- 4. NESTING LOOPS 37
6- 5. TERMINATING PROGRAMS 38

LESSON 7 - ARITHMETIC OPERATIONS 39
7 - 1. ADDITION 39
7 - 2. SUBTRACTION 39
7 - 3. MULTIPLICATION 39
7 - 4. DIVISION 40
7 - 5. EXPONENTIATION 40
7 - 6. HIERARCHY OF OPERATIONS 40
7 - 7. BEATING THE HIERARCHY 41
7 - 8. A PRACTICAL PROBLEM 42

LESSON 8 - RELATIONAL OPERATORS 45
8- 1. THE IF/THEN STATEMENT AND EQUALITY 45
8- 2. THE LESS THAN OPERATOR 46
8- 3. THE GREATER THAN OPERATOR 46
8- 4. INEQUALITY 46
8- 5. USING RELATIONAL OPERATORS WITH

STRING DATA 47
8- 6. THE ON/GOTO STATEMENT 48

LESSON 9 - LOGICAL OPERATORS 51
9- 1. THE AND OPERATOR 51
9- 2. THE OR OPERATOR 52
9- 3. THE NOT OPERATOR 52

LESSON 10 - KEYBOARD INPUT 55
10- 1. THE INPUT STATEMENT 55
10- 2. USE OF PROMPT MESSAGES IN INPUT

STATEMENTS 55
10- 3. THE GET STATEMENT 56
10- 4. THE FUNCTION KEYS 57
10- 5. MENUS 58

TABLE OF CONTENTS

LESSON 11 - STRING HANDLING
11 - 1. CONVERTING BETWEEN STRING AND

NUMERIC DATA
11 - 2. CONVERTING BETWEEN STRING AND

ASCII CODES
11 - 3. THE LEFTS STATEMENT
11 - 4. THE RIGHTS STATEMENT
11 - 5. THE MID$ STATEMENT
11 - 6. DETERMINING STRING LENGTH
11 - 7. STRING CONCATENATION

LESSON 12 - MATHEMATICS
12- 1. ABSOLUTE VALUE
12- 2. THE SQR FUNCTION
12- 3. TRIGONOMETRIC FUNCTIONS
12- 4. LOGARITHMS
12- 5. PI
12- 6. DERIVING TRIGONOMETRIC FUNCTIONS
12- 7. SCIENTIFIC NOTATION
12- 8. DEFINING FUNCTIONS
12- 9. THE INT FUNCTION
12-10. RANDOMIZATION

LESSON 13 - SYSTEM UTILITIES
13- 1. THE RUN STATEMENT
13- 2. THE CLR STATEMENT
13- 3. THE FRE STATEMENT
13- 4. THE REM STATEMENT
13- 5. KEEPING TIME

LESSON 14 - PROGRAM STORAGE
14- 1. SAVING PROGRAMS ON CASSETTE TAPE
14- 2. SAVING PROGRAMS ON DISC
14- 3. VERIFY ING PROGRAMS
14- 4. LOADING PROGRAMS FROM TAPE
14- 5. LOADING PROGRAMS FROM DISC

LESSON 15 - MORE SCREEN PRINTING
15- 1. CLEARING THE SCREEN
15- 2. CURSOR CONTROL
15- 3. PRINTING IN COLOR
15- 4. PRINTING IN REVERSE VIDEO
15- 5. SETTING BACKGROUND AND

BORDER COLOR
15- 6. THE SPC STATEMENT
15- 7. THE POS STATEMENT

61

61

62
64
64
64
65
65

67
67
68
68
69
69
70
70
71
71
72

75
75
75
75
76
76

79
79
80
81
81
82

85
85
85
86
87

87
89
89

TABLE OF CONTENTS

LESSON 16 - DATA HANDLING TECHNIQUES 91
16- 1. VARIABLE ARRAYS 91
16- 2. MULTIDIMENSIONAL ARRAYS 92
16- 3. READ AND DATA STATEMENTS 94
16- 4. SEARCHING AND SORTING ARRAYS 95

LESSON 17 - DISC FILES 99
17- 1. SENDING DATA TO SEQUENTIAL FILES 99
17- 2. READING DATA FROM SEQUENTIAL FILES 100
17- 3. UPDATING SEQUENTIAL FILES 101

LESSON 18 - DISC UTILITIES 103
18- 1. THE COMMAND CHANNEL 103
18- 2. FORMATTING NEW DISCS l()4
18- 3. ERASING FILES 104
18- 4. RENAMING FILES 104
18- 5. COPYING FILES 105
18- 6. COMBINING FILES 105
18- 7. VALIDATING DISCS 105

LESSON 19 - USING THE PRINTER 107
19- 1. OPENING PRINTER FILES 107
19- 2. PRINTING DATA 108
19- 3. UPPER CASE/GRAPHICS MODE 108
19- 4. UPPER/LOWERCASE MODE 109
19- 5. DOUBLE W IDTH MODE 109
19- 6. REVERSE FIELD MODE 110
19- 7. CONTROLLING PRINT POSITION 110
19- 8. LISTING PROGRAMS 111

LESSON 20- IMPROVING YOUR PROGRAMS 113
20- 1. USING MULTISTATEMENT LINES 113
20- 2. USING SUBROUTINES TO SAVE MEMORY 114
20- 3. OTHER MEMORY SAVERS 116
20- 4. ABBREV IATING KEYWORDS 116

APPENDIX A 119
LESSON 4 ASSIGNMENT 119
LESSON 7 ASSIGNMENT 119
LESSON 10 ASSIGNMENT 120
LESSON 11 ASSIGNMENT 121
LESSON 12 ASSIGNMENT 122
LESSON 16 ASSIGNMENT 123
LESSON17 ASSIGNMENT 128
LESSON19 ASSIGNMENT 131
LESSON 20 ASSIGNMENT 132

A LETTER FROM PROFESSOR ORBYTE 139
GLOSSARY 141

Introduction To Basic, A Tutorial

A Message From Professor Orbyte

Welcome to the exciting world of computer programming. Whether
you are a computer novice or whether you've already had ex
perience with programming, you will find that your new program
BASIC, A TUTORIAL by Orbyte Software will be an invaluable
asset for using your Commodore 64 to its fullest potential.

BASIC, A TUTORIAL is a program that instructs you — in a tutorial
manner — the computer language BASIC, Beginners All-purpose
Symbolic Instruction Code. This program covers in detail all the
basic aspects of this language including keywords, programming
punctuation, the format of a BASIC program, subroutines, data
handling techniques, setting up a program menu, improving your
programs, and even an index of BASIC terminology. This workbook-
style manual will also help you to follow along at your own pace
and try actual on-screen programming examples corresponding to
each lesson.

It is important to remember, however, that although BASIC, A
TUTORIAL is designed to help you learn to program by teaching
you the fundamentals of the BASIC language, your learning and
retention of this material will ultimately depend on the effort you
put into programming. If you seriously want to learn to program,
you will have to spend much time studying the lessons of BASIC,
A TUTORIAL again and again, and take the time to perform each
of the lesson assignments. Computer programming can not be
learned in one or two sittings.

In order to use this program effectively and reach your goal of
programming in BASIC, the following learning guide has been de
signed. You are strongly advised to use it .

1. Each time you use BASIC, A TUTORIAL you will need
to allow yourself at least two or three hours of non
interruption.

2. The BASIC lessons in this workbook-style manual are

1

INTRODUCTION

extremely similar to the lessons displayed on your
monitor screen. DO NOT avail this sim ilarity as rea
son to merely skim or entirely ignore the manual,
however. It has been specifically designed in this
format for two reasons. First, the repetition both on
screen and in-text will enhance your comprehension.
Secondly, the similarity enables you to study and re
view the lessons even when your computer is not
available (ie. when traveling, when relaxing, etc.).
Therefore, using your manual in conjunction with the
program is extremely important.

3. To properly study the BASIC lessons, read the first
screen of lesson text displayed on your monitor.
When finished reading that text, read the manual
text corresponding to the screen Go on to (he next
screen, read it, then follow with the appropriate text
in the manual. Continue in this way, while at the same
time executing each of the examples as they appear
in the lessons. We suggest that you work out these
examples prior to pressing f1 and having them dis
played on screen. It is also recommended to keep a
notebook and take notes on important or challenging
information in the lessons.

4. It is best to study only four lesson chapters at a time,
(as you advance to the more difficult lessons you may
wish to tackle them one at a time) then review them
before proceeding to the next chapters. Repetition of
the lessons will help to reinforce the topics covered
and keep them fresh in your mind as you continue.
Because the lessons progressively become more
challenging, be sure that you thoroughly understand
the lesson you are presently studying before proceed
ing to the next.

5. Be sure to do each of the assignments placed inter
mittently throughout the BASIC lessons in the man
ual. These assignments are more challenging than the
short examples in the text and require you to perform
actual programming steps. Through these assign
ments you will see how your knowledge of the BASIC
language has progressed.

To do these assignments, you will need to remove
the BASIC, A TUTORIAL program disk from the disk
drive, turn your computer off then on again, and
perform the assignments directly on screen with your

INTRODUCTION

computer. When you have successfully completed
the assignment, shut the computer off then turn it
on again. Reload BASIC, A TUTORIAL and continue
with the next lesson.

If you choose, instead of turning off the BASIC pro
gram to do the assignment, you can simply write the
assignment solution on paper. Then when you are
finished using BASIC, A TUTORIAL, you can remove
the disk, turn the computer off then on, and then
enter the solution to see your programs perform on
screen.

Sample solutions to the assignments are given in the
APPENDIX for further assistance. Remember, how
ever, that these are only sample solutions. In pro
gramming there are many means to the same result
and therefore there exists great opportunity for
creativity. Be innovative! Your solution may be differ
ent from the sample but still produce the same de
sired result.

6. When you feel you've learned enough for one sitting,
put BASIC, A TUTORIAL away. (However, you may
want to review the manual later in the day.) Take
BASIC out on the following day, review the lessons
you've already learned, and proceed to the next
lessons.

7. When all the lessons and assignments of BASIC, A
TUTORIAL have been completed, you will feel a
great sense of achievement. And you should! You
will have -- with thought-provoking challenge and
a lot of fun — successfully learned the basic con
cepts of the BASIC language and actually used them
in writing short programs.

If so desired, you may repeat the program again so
that the concepts are more thoroughly understood.
Keep in mind that the more times you review the
lessons and assignments, the more familiar and fluent
BASIC programming will become to you.

Programming your Commodore 64 is not only fun and challenging—
it gives you an uplifting feeling of self-esteem and achievement.
We at Orbyte Software hope that BASIC, A TUTORIAL will assist
you in reaching this goal

Getting Started

you will first have to set up all equipment in your computer system.
This equipment includes:

1. Commodore 64 Keyboard

2. Commodore VIC 1541 Single Disk Drive

3. TV or Monitor

4. Commodore VIC 1525 Printer (or other printer that
has been properly interfaced with the system*)

‘ IMPORTANT. BASIC, A TUTORIAL is designed to
operate with the Commodore 1541 disk drive and
the VIC 1525 printer. Other printers are also com
patible with BASIC, A TUTORIAL but these printers
must be set up with the proper Commodore inter
face. Due to the mass variety of printers and inter
faces now on the market, however, Orbyte Software
cannot guarantee this compatibility.

To set up your computer system's equipment, follow the instruc
tions in the Commodore 64 User's Manual

Lesson #19 of BASIC, A TUTORIAL concerns using a printer when
writing programs. Although it is not required to use a printer when
using BASIC, it is helpful in fully understanding printer techniques.
If you will be using a printer, hook it up to your computer system
at this time and insert computer paper (following the instructions
supplied with your printer).

Next, turn on all the equipment, making sure that the Commodore
64 keyboard is the last to be activated. Turning on the keyboard
before the other equipment may damage the system. Upon turning
on all the equipment, the following screen will appear

5

GETTING STARTED

**** COMMODORE 64 BASIC V2 ****

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

(If this screen doe not appear, check to see if the equipment h.is
been properly connected. Turn the computer off, then on again
Consult the Commodore 64 User's Manual for any d ifficu ltie s)

LOADING THE PROGRAM

When the above screen appears, insert BASIC, A TUTORIA I disk A
into the disk drive. The cursor on the screen will be flashing. In
dicating that the computer is waiting for a command from you I d
load the BASIC program from disk A, type in LOAD "PAR I ONI ".It
then hit the RETURN key. The computer will now scan h for and
load the program indicated by the message SEARCHING I OK CAR I
ONE LOADING.

When the word READY appears, type in RUN then hit Rl IIJKN
The title screen will then be displayed. At this time, press the I 7
function key located to the right of the keyboard I he first s< reen
of lesson text “ INTRODUCTION" will then appear It you wish to
continue reading the text, press f7 or if you prefer to go to the
MAIN MENU,press M. (The MAIN MENU allows you to skip to a
particular lesson, a particular BASIC keyword, or again st.irt from
the first screen of lesson text. This menu will be explained in greater
detail in the following section.)

If you decide to press f7 during the first screen of text (IN I RC)I)IJ(
TION) to continue with the lessons, go to the section of this manual
LESSON 1 and continue from there. If you decide to press M to go
to the MAIN MENU, continue with the following section

NOTES:

1. You will notice that at the bottom of each screen
displaying lesson text there is a message:

Press f7 to continue - f1 to go back

This notifies you that by pressing the f7 key you will
be brought to the next screen of lesson text If you
press the f1 key you will be brought back to the pre-
ceeding text screen. Pressing the M key when this

6

CETTINC STARTED

message is displayed will automatically access the
MAIN MENU.

2. Disk A contains your BASIC, A TUTORIAL lessons 1 -
12. Disk B contains lessons 13 - 20. If you wish to
continue with lesson 13 immediately after finishing
lesson 12, follow the directions at the end of lesson 12:
press f7 to load; remove disk A from the disk drive
and insert disk B; press f1 to load disk B. Lesson 13
will immediately begin after the program is loaded.

If you wish to turn off your computer after lesson 12
and continue with lesson 13 at another time follow
these instructions: When you are ready to load disk B
(lessons 13 - 20), insert disk B into the disk drive and
type LO AD "*",8 RETURN. When the word READY
appears, type RUN RETURN. Lesson 13 will auto
matically begin.

■I

Mi

■I

■i

■I

■i

The Main Menu

THE MAIN MENU . . . AN OVERVIEW

Upon pressing the M key in any of the
screens displaying lesson text,
the following screen will read:

Press f7 to load menu.

Press f1 to return to lesson.

If during this screen you press f1, you will automatically be brought
back to the first screen of the lesson you were currently studying.
If you press f7 while in the above screen, the screen will display
the message PLEASE STAND BY indicating that the MAIN
MENU is being loaded. After it is loaded, it will be displayed as
follows:

In using this BASIC TUTORIAL you may:

f1 START TUTORIAL FROM BEGINNING

f3 GO TO A PARTICIJI AR LESSON

f5 GO TO ALPHABETICAL INDFX

Press function key (right side of
keyboard) indicating choice.

The three options available in this menu are as follows:

f1- The f1 function key allows you to start BASIC, A TUTORIAL
from the first screen of lesson text.

f3- The f3 function key will call up the table of contents of
all the lessons in BASIC, A TUTORIAL. From this listing of
lessons, you can choose the one you want to study.

f5 - The f5 function key calls up an alphabetical listing of
keywords and techniques used in BASIC programming.

THE MAIN MENU

From this listing you can select a particular item and auto
matically proceed to the section of BASIC, A IU IO R IA L
that teaches you about it.

As indicated in the MAIN MENU screen, select the option you want
and press the corresponding function key (f 1 to S lA R I IU IO R IA I
FROM BEGINNING, etc.) Follow by reading the explanations of
each option below

f1 START TUTORIAL FROM BEGINNING

Upon pressing f i in the MAIN MENU, the screen will read I’l I ASI
STAND BY The program will then be loaded and the title s< reen
will be displayed. Press f7 and the first screen of lesson text will
begin

f3 GO TO A PARTICULAR LESSON

Upon pressing f 3 in the MAIN MENU, the table of contents will
immediately appear listing all the various lessons of MAS I (, A
TUTORIAL

TABLE OF CONTENTS

INTRODUCTION
LESSON 1 The Keyboard
LESSON 2 Format of a Basic Program
LESSON 3 On-Screen Editing
LESSON 4 Simple Screen Printing
LESSON 5 The Variable
LESSON 6 Simple Structures
LESSON 7 Arithmetic Operations
LESSON 8 Relational Operators
LESSON 9 Logical Operators
LESSON 10 Keyboard Input
LESSON 11 String Handling
LESSON 12 Mathematics
LESSON 13 System Utilities
LESSON 14 Program Storage
LESSON 15 More Screen Printing
LESSON 16 Data Handling Techniques
LESSON 17 Disc Files
LESSON 18 Disc Utilities
LESSON 19 Using The Printer
LESSON 20 Improving Your Programs

f5 to return to menu

10

THE MAIN MENU

As you will notice, the word INTRODUCTION appears in red
letters. As notified by the message at the bottom of the screen,
press the f7 key to move the red letters down or the f1 key to move
the red letters up until they are at the lesson you want to study.
When the lesson number and name appear in red, press the f3 key
to go to that lesson. Or, if you decide not to choose a lesson and
instead want to go back to the MAIN MENU simply press f5.

Upon selecting a lesson and pressing f3, the screen will read PLEASE
STAND BY. . while it is loading that particular lesson. Upon load
ing, the first screen of the lesson you chose will be displayed.

f5 GO TO ALPHABETICAL INDEX

Upon pressing f5 in the MAIN MENU, the screen will appear blank
for a moment, then the ALPHABETICAL INDEX will appear as
follows:

ALPHABETICAL INDEX
Abbreviating keywords
Addition
Arithmetic operations
ABS
AND
ASC
ATN
Background color
Basic keywords
Border color
Bubble sort example
Clearing the screen
Color printing
Combining disc files
Commas
Copying files
Cursor controls
CHR$
CLOSE
CLR
CMD

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

As you will notice, the first item in the index "Abbreviating key
words" appears in red. Use the f7 key to move the red letters down
or the f1 key to move the red letters up until the item you want to

1 1

THE MAIN MENU

select is in red. When it is in red, press f4 and the lesson containing
an explanation of the item you chose w ill be loaded and displayed
on screen. If the item you want to look up is not listed in this screen,
press f5 and the next screen of the ALPHABETICAL INDEX will
appear. Press f5 and the index listing will continue again. Pressing
f6 will bring you back to the previous index screen. Pressing the M
key will bring you back to the MAIN MENU.

The entire ALPHABETICAL INDEX consists of seven screens. The
first of these screens has been described above. The others are as
follows:

ALPHABETICAL INDEX

CMD
CONT
COPY
COS
Data Handling
Deleting program lines
Deriving trig functions
Digital clock example
Direct mode
Disc command channel
Disc files
Disc utilities
Division
Dominoe program example
DATA
DEF FN
DIM
Entering program lines
Erasing files
Exponentiation
END

f 7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

ALPHABETICAL INDEX

END
EXP
Floating-point variables
Format of Basic programs
Formatting new discs

THE MAIN MENU

Function keys
FOR/NEXT
FRE
Greater than (>)
GET
GOSBU
GOTO
Hierarchy of operations
Integer variables
Introduction
IF/THEN
INPUT
INPUT#
INT
Keyboard
Keyboard input

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

ALPHABETICAL INDEX

Keyboard input
Less than (<)
Loan payment calculator example
Logical operators
LEFT $
LIST
LISTing programs on printer
LOAD
LOG
Mathematics
Menus
Multiplication
Multistatement lines
MID$
NEW
NOT
On-screen editing
Opening printer files
ONGOTO
OPEN
OR

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

13

THE MAIN MENU

ALPHABETICAL INDEX

OR
Printer carriage return
Printer line feed
Printer Double Width mode
Printer Reverse Field mode
Printer TAB position
Printer Upper Case/Graphics mode
Printer Upper/Lower Case mode
Printing data on printer
Program mode
Program storage
Program structures
POS
PRINT
PRINT#
Reading data from sequential files
Relational operators
Renaming files
Reverse video printing
READ
REM

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

ALPHABETICAL INDEX

REM
RENAME
RESTORE
RETURN
RIGHTS
RND
RUN
Scientific notation
Semicolons
Sending data to sequential files
Sequential disc files
Simple screen printing
Sorting arrays
String concatenation
String handling
String variables

14

THE MAIN MENU

Subroutines to save memory
Subtraction
System utilities
SAVE
SCRATCH

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

ALPHABETICAL INDEX

SCRATCH
SCN
SIN
SPC
SQR
STEP
STOP
STR$
TAB
TAN
Tl
Tl$
Updating sequential files
Using the printer
Variable arrays
Variables
VAL
VALIDATE

f7 down - f1 up - f4 to select
f5 new page - f6 last page - M = menu

15

¥

LESSON

The Keyboard

1-1. THE COMMODORE 64 KEYBOARD
The Commodore 64 keyboard contains two character sets that you
can use from the keyboard or in your programs. The set that is active
when you first turn on your computer is the UPPER CASE/GRAPH
ICS set. In this set the upper case alphabet and the numbers 0-9
are available. Additionally, a large number of graphics characters
are provided on the front of many of the keys.

The second character set is called the UPPER/LOWER CASE char
acter set. It provides both capital and small letters and a few
graphics characters.

To switch between sets press the SHIFT and the Commodore logo
key C= at the same time. The rest of this lesson will describe
each of the two keyboards and the special control characters
such as SHIFT and C = that you just learned.

1 - 2. KEYBOARD CONTROL KEYS

There are 66 keys available on the Commodore keyboard. Of these,
12 keys do not actually produce characters. They are used to
control the computer or modify the other keys. These control
keys include:

CTRL RUN/STOP SHI FT/LOCK I
C = SHIFT CLR/HOME VO
INST/DEL RESTORE RE I URN 0
CRSR t CRSR«- SHIFT I

/

CTRL The CTRL key stands for CONTROL. This key is used mainly
to set the color of the screen text and reverse video characters.
Note that the numbered keys 0-8 have color abbreviations on the
front of them. By pressing the CTRL key and any one of these keys
at the same time, you can change the color of the text.

17

THE KEYBOARD

For example, if you press CTRL and the 3 key at the same time
and then type in some text, it will appear red.

Key 9 RVS ON causes text to appear in reverse video. If you
press CTRL and the 9 key at the same time and type in some text,
it w ill appear in reverse video.

Key 0 RVS OFF turns off the reverse video when used with the
CTRL key As you can see, the CTRL key has a great effect on the
function of the numeric keys.

RUN/STOP This key is used to start and stop program operation.
During the operation of a program if the RUN/STOP key is pressed,
the program will stop and an advisory BREAK IN X X X X READY
will appear on screen. If the SHIFT key is pressed at the same time
as the RUN/STOP key, the computer will attempt to load and run
a program from the cassette tape unit.

SHIFT LOCK This key simply latches the keyboard as if the SHIFT
key was being held down constantly. To release the shift mech
anism, simply press SHIFT LOCK again.

C AND SHIFT KEYS These two keys are mainly used to modify
the funt tions of the other keys. Their operation will be more fully
described in the discussion of the two keyboards coming up later
in this lesson

CIR/HOMI I his key has two related functions. Pressing the CRL/
IIOM I key by itself causes the text cursor to move to the first posi
tion <>l the top screen line. This is the HOME function By pressing
the SI III I key at the same time as the CLR/HOME key, you will
still (ause the cursor to home but you will also cause the screen
to (lear If you press the SHIFT key and the CLR/HOME key simul
taneously, the screen will go totally blank and any text you enter
afterward will appear on the top line of the screen.

INST/DLI I Ins key is used to INSERT or DELETE text from a screen
line one character at a time. To delete a single character, simply
press the INSI/DEL key and release. The cursor will backup one
space <ind the (haracter before the cursor will disappear. To insert
a charac ter, press SHIFT and INST/DEL at the same time. The text
following the cursor will move to the right allowing you a free
space to type in.

RESTORE This k ey is used to exit a program and restore the comp-
puter to the state it was in when it was first turned on. At times
this is the only way to get out of a program. To restore, simply press
and hold the RUN/STOP key and press the RESTORE key at the
same time

1H

THE KEYBOARD

RETURN This key is used just as the return key on a typewriter
is used. The only difference is that technically the RETURN key
on the Commodore 64 causes data or a program line to be entered
into memory rather than causing a mechanical carriage to return
as on a typewriter.

CRSR<-The farthest right key on the bottom row is the cursor left
or right key. By pressing this key alone you cause the blinking
cursor to move to the right. If you press the SHIFT key at the same
time as the CRSR key, you will cause the cursor to move to the
left.

CRSR /tv The next key to the left of the cursor left or right key
is the cursor up or down key. Pressing this key causes the cursor
to move down the screen. When shifted, this key causes the cursor
to move up the screen.

1-3. MAIN KEYBOARD
When the computer is first powered up the UPPER CASE/GRAPICS
character set is active. For ease of discussion we will call this
line the main keyboard. The main keyboard contains the pre
viously discussed control keys, the lettersA through Z, the numbers
0 through 9, four function keys, the usual punctuation characters
found on any typewriter, and some special math function keys.

ALPHABETICAL KEYS The alphabetical keys will produce the
normal alphabet as on a normal typewriter except they will be
all capital letters. The UPPER CASE/GRAPHICS mode is called
that because if you shift one of these alpha keys, or if you press the
C= key and an alpha key, you get one of a set of strange symbols
used as graphic characters. These symbols are combined to create
graphic pictures on screen

Notice that on the front edge of each alpha key there are two
graphic symbols. The symbol on the left front of each key is obtain
ed by holding down the C= key while pressing the desired alpha
key. To obtain the graphic character on the right side of the front
edge of any alpha key, simply press the SHIFT key at the same
time as the desired alpha key

NUMERIC KEYS The keys numbered 0 through 9 produce those
numbers when pressed in the UPPER CASE/GRAPHICS mode.
However, when the SHIFT key is held at the same time, they pro
duce the punctuation marks shown above the numbers(!"#$%&'()).
Along the front edge of each numbered key is an abbreviation
for a color. Recall from an earlier discussion that the color on
screen could be changed to any one of these eight colors by holding
the CTRL key down while pressing the desired color key. As it so

19

THE KEYBOARD

happens there are yet eight more colors available for use. By hold
ing the C= key and pressing the desired color key you may obtain
a slightly different shade of color.

FUNCTION KEYS On the far right hand side of the keyboard are
four keys labeled f1, f3, f5, and f7. These are special function keys
which you may define in your programs. Unless defined, these
keys have no effect. They will be described further in future lessons.

1-4 ALTERNATE KEYBOARD
The second character set available on the Commodore 64 computer
is the U l’PER/LOWER CASE set. This character set behaves much
more like a normal typewriter in that all the alphabetical keys
cause lower case letters when pressed and capital letters when
shifted I here are still some graphics characters available by hold
ing the (' key down but the graphics that were available from
the main keyboard when the SHIFT key was pressed are missing.
Ihe numbered keys and function keys operate in the alternate
keyboard exactly the same way that they did on the main keyboard.
Do not be concerned if you do not completely understand the
use of every key on the keyboard at this point in the tutorial. Each
of the keyboard functions introduced so far will be further de-
st ribed in lessons to come.

LESSON

Format of a Basic Program

2-1. DIRECT AND PROGRAM MODES
There are two primary program modes on the
Commodore computer - DIRECT and PROGRAM.

In the D IRECT mode, programming commands are entered from
the keyboard with no line numbers and the RETURN key is pressed.
This command is then executed (performed) immediately. For
example:

PRINT “ JOE"

This is a direct command to print the word JOE. To execute this
command after typing it in (entering) simply press the RETURN
key. Joe will then be immediately printed on screen.

In the PROGRAM mode, programming statements are entered with
line numbers in front of them When the computer notes a line
number, it places the statement in memory for later execution.
In this way a number of program commands can be stored and
so build a program line by line I or example:

10 A = 2
20 B = 9
30 PRINT A + B

Here are three program statements numbered 10, 20, and 30. When
this program is run, the program statements will be executed in
order and the result (11) will be printed on screen. In this way pro
grams of hundreds or even thousands of lines of Basic statements
can be written.

2-2. KEYWORDS-THE BASIC BUILDING BLOCKS
The Commodore 64 interpreter < ontains a list of 71 Basic keywords
that have special meanings for the1 computer. These keywords
can each be translated into a form of machine code that the com
puter can execute These keywords are the blocks with which you
can build a meaningful program.

21

FORMAT OF A BASIC PROGRAM

There are two types of keywords; those with arguments and those
without. The arguments represent data that the Basic keyword
can operate on. This data always appears immediately after the
keyword. An example of a Basic keyword with an argument would
be as follows:

SQR(25)

The SQR is the Basic keyword which stands for square root. The
25 is the argument. This line will take the square root of 25. The
result of this statement would of course be 5.

Many keywords do not have arguments. For example:

NEW

This keyword has no data following it. The keyword NEW causes
the program that is currently stored in the computer to be erased
so a new program may be entered.

Keywords .ire abbreviations. These abbreviations must be entered
exactly You cannot enter SQUAR in place of SQR to get a square
root.

Fhe table (right) lists all 71 keywords used in the Commodore
Basit language Do not be concerned if you do not understand
the purpose of each one of them. They will be discussed in future
lessons

2-3. PUNCTUATION-SPECIAL MEANINGS
In addition to the keywords, the punctuation symbols have special
me.imngs lor the computer. Often these symbols are used with
the keywords to perform a certain function.

I or example, the asterisk (*) is commonly used in English to indicate
a footnote But in the Basic language it is used as the mathematical
multiplication symbol instead of X . Other punctuation symbols
also have different meanings. These symbols will be introduced
as needed in future lessons.

FORMAT OF A BASIC PROGRAM

ABS
AND
ASC
ATN
CHR$
CLOSE
CLR
CMD
CONT
COS
DATA
DEF
DIM
END
EXP
FN
FOR
FRE

BASIC KEYWORDS

GET ON
GET# OPEN
GOSUB OR
GOTO PEEK
IF POKE
INPUT POS
INPUT# PRINT
INT PRINT#
LEFTS READ
LEN REM
LET RESTORE
LIST RETURN
LOAD RIGHTS
LOG RND
Ml D$ RUN
NEW SAVE
NEXT SGN
NOT SIN

SQR
STATUS
STEP
STOP
STR $
SYS
TAB
TAN
THEN
Tl
TI $
TO
USR
VAL
VERIFY
WAIT

23

LESSON

On Screen Editing

3-1. THE COMMODORE 64 EDITOR
The Commodore 64 editor controls the output to the screen and
allows you to edit Basic program text The editor monitors the
keyboard and determines whether the input should be acted upon
immediately or stored as part of a Basic program. This lesson tells
you how to use the editor to write Basic program text.

3-2. ENTERING A PROGRAM LINE
To enter a Basic program line, type in the assigned line number
and the desired program text and press the RETURN key. A Basic
program line may not be longer than 80 characters (two screen
lines). Any text entered after character 80 is lost.

3 -3. LISTING A PROGRAM
As you write a Basic program you obviously want to be able to
review the program lines you have written. The Commodore screen
can display 25 lines of text vertically

To list your program type LIST and press the RETURN key. The
program will printout on the screen. Each program line requires
at least one and sometimes two screen lines to display. Many
times your program is too long to display all of it on the screen at
the same time. The program will scroll up the screen until the last
line of program has been listed.

To list a select group of program lines, enter the following command
in D IRECT mode:

LIST 22000-22050

This causes all program lines between 22000 and 22050 to printout
on the screen. You may also list from a particular program line
to the end of program memory as follows:

LIST 22030-

25

ON SCREEN EDITING

This will cause all program lines numbered 22030 or greater to
print out. You may also list one single program line like this:

LIST 22030

This would list only Iine22030.

3 -4. DELETING PROGRAM LINES
To delete a program line entirely, simply type the program line
number and press the RETURN key. This causes that line to be
completely erased from the program.

3 -5. ALTERING PROGRAM LINES
To edit an individual program line you must first list the line on
screen Once it is on screen you may position the blinking cursor
over the text on that line using the cursor control keys (CRSR t' and
CRSR*).You may then edit that text by typing over existing text
and using the INST/DEL key to insert or delete characters, When
the line is corrected to your satisfaction, press the RETURN key
to enter the new program line in place of the old one.

3-6. COPYING PROGRAM LINES
At times you will find that the same program line is usee) at a
number of places in your program. Rather than retype the line*
eat h time i(is needed, it is much easier to recopy the line. Simply
list the desired line, type a new line number over the old one, and
press the Rl I URN key to enter the line. The original line will re
main un< hanged and the new line will be an exact duplic ate except
it will have a different line number.

3-7. CLEAR/HOME
The (IK/HOMI key is located in the upper right hand corner of
the keyboard I Ins key is used to reposition the cursor up to the
first (hara< ter of the top screen line. This is the HOMI position
When used with the SHIFT key, the home function is still per
formed but the s(reen is also cleared of all text and graphics.

3-8. THE NEW COMMAND
One Basil keyword that is almost never used in a program is the
NEW command By entering this command in the direct mode, all
Basic program lines are completely erased from the computer
memory I his is a quick way to clear the computer before you
start a new program thus it's name.

LESSON

Simple Screen Printing

4-1 . THE VIDEO SCREEN AS AN OUTPUT DEVICE

Your computer has the ability to send information to a number of
output devices such as printers, modems, disc drives, etc. The
video screen or television is by far the most used output device
in your system.

One of the reasons that home computers are so useful is that they
are interactive. Basically that is to say you can talk to them. Most
commonly the computer speaks through the video screen. In reply,
you may enter data using the keyboard Most popular programs
are based on this concept of communication. Because of this, one
of the most useful things you can learn in any computer language
is the technique for printing things on the screen. This lesson will
introduce some of those techniques

4-2. THE PRINT STATEMENT

The PRINT statement is used to send data to the screen. The data
may be a variable or a literal. I iterals are always enclosed in quotes
as in the following Basic Print statement:

PRINT "JOHN DOE"

Normally each time a PRINT statement is executed the data is
printed on the next available screen line A group of PRINT state
ments like those below would then print vertically down the screen.

100 PRINT 'JOHN DOE"
110 PRINT' JANE DOE"
120 PRINT 'DAVE DOE"
130 PRINT 'PHII. DOE"

Each name printed by the statement above would print starting at

27

the first character position of each line as shown below:

JOHN DOE
JANE DOE
DAVE DOE
PHIL DOE

There are no specific limits to the length of the data that is en
closed in quotes. However, keep in mind that the total line length
of the Basic statement can never exceed 80 characters (two screen
lines).

4-3 . SPACING WITH COMMAS

The comma is one of several punctuation symbols that can be used
to format PRINT statements. The comma causes the print cursor
to move to the next available preset tab position These preset
tab positions occur every ten characters across the line (1, 11, 21,
and 31). Using commas we could reformat the printing of our four
names as shown below:

100 PR IN T"JO H N ","JAN E","D AVE","PH IL"

Note that inour example statement each name is enclosed in quotes
and separated by commas. When executed, this statement will print
the names on screen much as shown below:

JOHN JANE DAVE PHIL

The four names are printed with each name beginning at one of
the1 preset tab positions on the same line. If we had printed five
names instead of four, the fifth name would have still been printed
■it the next available tab preset, in this case character 1 of the
next line

4 - 4. SPACING WITH SEMICOLONS

I he semicolon is used very much like the comma was used in the
last example In fact, the way it is used in a Basic print statement
is the same I he results are a bit different however

Semicolons are used to splice things together on a screen line
Any data listed after a semicolon will be printed at the next screen
position let's take- our previous example and insert semicolons
in place of the c ommas we used before.

100 PK IN T"JO H N ";"JAN E"; "D AVE"; "PH IL"

28

SIMPLE SCREEN PRINTING

This statement will cause all the names to be run together on one
screen line as shown below:

JOHNJANEDAVEPHIL

This can be quite useful particularly when dealing with more than
one program line. The example below illustrates this:

100 PRINT"JOHN

110 PR INT"DOE"

These print statements will cause both names to appear on the
same line as shown below. Note that a space is included after
the name JOHN in line 100

JOHN DOE

4 -5. SPACING WITH TAB

As you can see, commas and semicolons are quite useful for for
matting print statements. Unfortunately, they are not very flexible.
The TAB keyword does provide some flexibility. This keyword
allows you to advance the print cursor position by any number
of spaces up to 255. The argument for this keyword is the number
of spaces. Consider the following example:

100 PRINT TAB(20)"JOHN DOE"

This statement will cause JOHN DOE to be printed 20 spaces to
the right rather than at the first character position of the line.

Assignment:

Write a short program to print the names
and ages of each person in your family in
the center of the screen. Refer to Appendix A % \ f{Tl
for a sample solution.

--
--

--
--

LESSON

The Variable

5-1. VARIABLES

One of the reasons that computers can be so useful is that they
have the ability to remember a large number of bits of information
without error and update that information as needed. The concept
of the variable is key to using this ability

Variables can be thought of as storage spaces where your pro
grams can store data. You create these spaces by giving them a
name. You may then assign a value to these variables by setting
them equal to constants or as the result of calculations performed
in the program.

In the Basic language data must be one of three general types:

• INTEGER NUMBER
• FLOATING-POINT NUMBER
• STRING

Eash of these three data types and the variables used to store them
will be described in the remaining paragraphs of this lesson.

5-2. INTEGER VARIABLES

Integer variables can contain only whole numbers (numbers with
out decimal points) between —32768 and +32767. It should be
noted that when dealing with numerical data of any type NEVER
USE COMMAS inside a number As a matter of interest, integer
numbers are stored in memory as two-byte binary numbers.

The name of an integer variable can be any combination of the
alphabet and the numbers 0-9. The first character of the name
must be a letter of the alphabet and the name cannot contain
any of the Basic keywords

Actually, the Commodore 64 only recognizes the first two char
acters of the name. Naturally you would not want two different
variables to have the same first two letters. An integer variable

THE VARIABLE

should have a percent sign (%) as the last character This is called
a type designator and it shows'that the variable is an integer type
For example:

200 AB% = 127
210 PRINT AB%

In line 200 we are assigning the variable AB% A VALUI (127) I ine
210 prints whatever value is stored in variable AB% on the si reen
(127 in this case).

5 -3. FLOATING-POINT VARIABLES

Floating point variables are more powerful than integer variables
in that they can store any decimal number between
and F999999999 These number may include decimal fractions
and mixed numbers such as 127.786. However, floating point
variables use more memory than integer variables (r> bytes yersus
2 bytes) lo r this reason they should be used in place of integer
variables only where this precision is needed or where memory
capacity is not a concern.

floatingpoint variables are named in the same manner .is integer
variables except that the type designator (%) is left off I he follow
mg example shows this:

200 AB = 127.58
210 PRINT AB

ine 200 assigns the value 127.58 to the floating-point variable AB
I ine 2 I0 prints the value of AB to the screen.

Note th.it when the AB variable prints, it will appear in the set owl
space from the left side of the screen rather than the Inst space
When printed, all numeric variables carry one leading space and
one trailing space.

5-4. STRING VARIABLES

String variables are slightly different from our previous variable
types in that they are used to store alphanumeric data All the
letters of the alphabet, numbers and symbols can all be stored in
string variable's The only character you cannot store1 in a string
variable is the c|uotation mark. That is because the* quotation
symbol is used to define the string.

String variable's c an hold up to 255 characters but you must be-

32

THE VARIABLE

careful not to exceed the normal 80 character limit for the Basic
program line that assigns the string variable a value.

Like integer variables, string variables must have a type designator
as the last character of the name, l or string variables this type
designator is the dollar sign ($) I he following example shows the
use of the dollar sign and quote marks when assigning string vari-

300 AS = "CATERPII IA K TRACTOR CO."
310 PRINT A$

Line JUU assigns AS the value "CATERPILLAR TRACTOR CO.".
Line 310 will print the contents of AS on screen.

5 - 5. MIXING DATA TYPES IN PRINT STATEMENTS

At this point we know how to print literal data and how to print
variable data using the PRIN I statement In most programs it is
desirable to be able to print both types of data on one screen line
using one print statement I his is actually quite easy to do.

200 1 = 2217.75
210 PRINT"JANUARY INCOME = $";l

Note that in the above example the literal data JANUARY IN
COME = $ is separated from the variable I by a semicolon. As you
may recall from a previous lesson the semicolon is used to splice
two items together on a screen line These two print statements
would cause a display similar to th.it below:

JANUARY INCOME = $ 2217.75

Let's take a look at a bit longer example that illustrates the same
thing.

200 AS = "JANUARY "
210 1=2217.75
220 PRINT A$;7INCOME S";l
230 AS = "FEBRUARY "
240 J =2257.98
250 PRINT AS;"INCOME = S";J
260 AS = TOTAL "
270 PRINT AS ;"INCOM E=$"l + J

Note that in line 270 we have also performed a simple math func
tion within a print statement by adding variables I and J. The

33

THE VARIABLE

program lines above will produce a screen printout like th.
below:

JANUARY INCOME = $ 2217.75
FEBRUARY INCOME = $ 2257.98
TOTAL INCOME = $4475.73

Note that a space appears between the dollar signs and I
bers in this last example. This is because numeric vari.i
printed with a leading space and a trailing space I he
space appears between the dollar sign and the number

As you can see, mixing data types in print statements
easy. I he important thing to remember is to make sure 11
semicolon or a comma separating the data^Jem7'iits in t
statements.

it shown

he num-
bles are
leading

is quite
lere is a
lie print

LESSON

Simple Structures

6 -1. THE GOTO STATEMENT

As you have seen, the lines of a Basic program are normally ex
ecuted in the order of the line numbers. The GOTO statement
allows us to modify this action so that the program jumps to a
different line rather than the next line in sequence.

The argument for the GOTO statement is the number of the pro
gram line you want to jump to Consider the following example:

200 GOTO 250
210 PRINT"THRFE"
220 GOTO 270
230 PRINT''TWO''
240 GOTO 210
250 PRINT"ONE"
260 GOTO 230
270 PRINT"FIN ISHI I)"

This nonsensical bit of program simply illustrates how the GOTO
statement can be used to altei the order of execution in a Basic
program. This example will c ause a sc reen printout as shown below:

ONE
TWO
THREE
FINISHED

6-2. SUBROUTINES

Sometimes different parts of your program will have similar jobs
to do, and you will find yourself typing in the same program lines
several times. This is not necessary You may type the lines once
as a subroutine and then c .ill that subroutine from anywhere in
your program. This is accomplished using the GOSUB and RETURN
statements.

The GOSUB statement (GO to Subroutine) operates like the GOTO

. . . . f e j W /

SIMPLE STRUCTURES

statement in that it causes the program to jump to the line number
specified in the argument. This would be the line number of the first
line of the subroutine. The last line of the subroutine must be the
RETURN statement. This causes a jump back to the line after the
COSUB statement. You might say that the GOSUB statement is just
like a GOTO statement that remembers where it came from Let's
take a look at a short example.

200 A = 2000
210 GO SUB300
220 A = 3000
230 COSUB 300
240 A = 5000
250 GOSUB 300
260 STOP

300 PRINT A
310 A = A + 25
320 PRINT A
330 RETURN

This program sets the variable A to a series of values, i ailing the
subroutine at line 300 after each value. The subroutine at 100 prints
A, adds 25 to it, and prints the new value.

As you (an see, this technique can save a great deal of typing and
quite .i bit of memory space.

6-3 . THE LOOP

One ot the < omputer's handiest traits is that it just never gets bored
With nre.it patience it will perform the same task over and over

I lie loop is a programming technique that allows us to repeat a
section ot our program a specified number of times I he Hasi(
language really offers only one type of loop I hat is the I ()R/NI X I
loop In this form, we set a variable, run through the sec tion of
program we want to use, add 1 to the number in the variable, and
check to see it that number equals the number of times we want
that program section to run. If it does, we exit that section of
program.

I he statement that allows this is the FOR/NEXT statement Consider
the example below

200 I OR 1=1 TO 5
210 PRINT I
220 Nl XT I
2 H) I’RIN I "DONE"

0̂iL /is/cxT I —

SIMPLE STRUCTURES

Line 200 shows that we will use the variable I as our counter and
that we want to perform this loop 5 times. Line 210 is the portion
of the program that we want to repeat Here it is only one line,
but we could just as easily have a hundred lines of code in its place.

Line 220 is where the real work is done. First it checks to see if I
is equal to 5. If so it allows the program to go on to the next pro-
gram line. If I was not yet equal to 5, this line adds 1 to the number /
held in I and jumps back to line 210 for another repetition of this
program segment. The process of adding 1 to a number is called
an increment. Subtracting I from a number is called a decrement. Lc

Actually, we are not restricted to just incrementing our variable by
1 during the NEXT statement By adding a STEP statement to line
200 we can increment our variable by whatever value we like.
Consider the following example

200 FOR I =0 TO 10 STEP 2
210 PRINT I
220 NEXT I
230 PRINT"DONE"

The number following the S I I I’ statement can be any number up
to 255 except 0. If we did use 0 we would never increment our
variable and so we would be stuck in the loop forever. This is called
an endless loop. You can, however, break out of these sort of
situations using the RUN/STOP key

We can also count down through the loop by making the step in
crement negative.

200 FOR 1 = 10 TO 2 STI P 2
210 PRINT I
220 NEXT I
230 PRINT"DONE"

If this example we set the variable I to a value of 10 and counted
down to 2 in increments of 2.

6-4. NESTING LOOPS

It is possible to run two FOR/NI XI loops together, one inside the
other The important thing to remember here is that one loop is
entirely inside the other. What must be avoided is two FOR/NEXT
loops that overlap without either being entirely inside the other.

37

SIMPLE STRUCTURES

Consider the following example:

200 FOR A = 0 TO 6
210 FOR B = 0 TO A
220 PRINT A ;" :" ;B ;" " ;
230 NEXT B
240 PRINT
250 NEXT A

This example prints out a set of six-spot dominoes on screen, Note
that the B loop (lines 210-230) is held entirely within the A loop
(lines 200-250)

In the dominoe example we also introduce another concept of note
On line 210 we use the current value of the A loop as the limit
tor the B loop count. For example, during the third iteration of the
A loop the value of A would of course be 3. This would cause the B
loop to run ! times. The next iteration of the A loop would cause
the B loop to run 4 times and so on.

Note th.it in the printout caused by this example, the left side of
e.u li dominoe i1! the value of the A variable and the right side of
each dominoe is the value of the B variable.

6-5. TERMINATING PROGRAMS

When a Basic program runs it will stop automatically when it
runs out of lines to execute and will return to the direct mode
Many times you will have more than one program in memory and
it is c onvement to have each one stop on its own For these1 reasons
it's considered good form to terminate any program with a STOP
or I N !) c ommand.

I liese commands have no argument and they both do the* same
thing slop the program. The only difference between the two
commands is the message displayed on screen after the- program
stops

When a program is ended by a STOP command, the message
BRI AK IN I INI XXXX READY will appear on screen If the END
command is used, the- message will simply read READY

Interestingly, you can place STOP commands throughout a
program in ordei to c heck variables etc. When the program stops
you c an print variable's, examine program lines, or list the program.
As long as you do not edit any of the program text, you can restart
the progiam where it stopped by entering a CONT command in
the- direct program mode. This can be a very useful technique
when debugging (finding the errors in) troublesome programs.

LESSON

Arithmetic Operations

7-1. ADDITION (+)

Addition is performed on the Commodore computer just as it is in
normal arithmetic with the plus sign (+) indicating that the two
quantities are to be added together I he following example illus
trates this.

100 A = 3 + 2
110 B = 7+ II
120 C = A + B
130 PRINT A,B,C

Note that we have used an arithmetic operation in the statement
that assigns a variable I h is is allowed

7-2. SUBTRACTION (-)

The subtraction operation also functions like normal arithmetic
and the minus sign (—) is used to indic ate a subtraction. Consider
the following example:

100 A = 26
110 PRINT A
120 A = A -11
130 PRINT A

Note that in line 120 we used the1 variable A in the arithmetic
operation that assigned a value' to A Although this may seem a
bit odd, it is acceptable and a c ommon programming technique

7-3. MULTIPLICATION

In almost all computers today the asterisk (*) is used to indicate
a multiplication operation I his is to avoid confusing the letter X
with the multiplication symbol X . I he following example shows
the use of the asterisk as a multiplie ation symbol:

39

ARITHMI TICOPI RATIONS

100 A = 12
110 B=7 *A
120 PRINT A,B

7-4 . DIVISION (/)

The slash symbol (/) is used to indicate the division operation
The number to the left of the/is divided by the number to the
right.

100 AF = 25
110 D l) = AF/4
I 20 PRINT AF,DD,DD/2

Note that we c an include arithmetic operations in print statements
as w.is done in line 120.

7- r>. I XPONENTIATION

Multiplying any number by itself a given number ol times is known
as exponentiation For example: 2*2 is the same as 2 squared or
2 raised to the sec ond power. The Commodore 64 uses an up .mow
symbol (t) to indicate exponentiation. The number to the lett
ot the .mow is raised to the power indicated by the number to the
right ol the arrow. Consider this example:

100 A 2*2
110 B 3*3 + A * 2
120 PRINT A,B

Note that line 100 sets A equal to 2 squared (4) line III) sets B
equal to I < ubed (27) plus A squared (16). This equals 4 i

You may have noticed that in some of our examples we have
combined more than one arithmetic operation in an expression
A 20*4/1 t ti*4 would be a suitable example of this In order
to predic t what the c omputer will calculate this expiession to be
it is necessary to understand the hierarchy of operations this is
simply the order in which each operation will be performed I his
order is shown belc

7 - (>. Mil RARCHYOF OPERATIONS

I Xl’ONI N 11ATION (1s)
M ill HIM K ATION AND DIVISION (* /)
ADD II ION AND SUBTRACTION (+ -)

ARITHMETIC OPERATIONS

The system first goes through the entire expression and checks
for up arrows (*) indic ating numbers with exponents to be re
solved. In our example A 20*4/1 i 6 f 4, the 6 * 4 would be cal
culated to be 1296. The expression would then read:

A = 20*4/13-1296

The next thing checked for would be items that are to be multiplied
or divided. It does not matter whether the multiplication or division
is done first because the answer will be the same either way. Our
expression contains 20*4/1 I I his is calculated to be 6.15384615.
This causes our expression to be restated as:

A = 6 15384615 1296

Lastly, any instances of addition or subtraction are performed.
This would cause our expression to be; resolved into:

A = -1289.84615

7-7. BEATING THE HIERARCHY

There are times when the hierarc hy just discussed does not suit
our purposes. For example the expression 3*2 + 2 would normally
give 6 + 2 or 8 when calc ulated using the standard hierarchy. But
what if we acutally wanted to add the twos together before multi
plying by three. We would then get the answer 12. We can beat
the hierarchy through the use ol parenthesis

Any portion of an expression found within parenthesis () will be
reduced to a single value belore doing any work outside the paren
thesis.

This means that we can take the expression 3*2 + 2 and enclose
the 2 + 2 in a pair of parenthesis 1*(2 + 2). This will cause the 2 + 2
to be replaced by a 4 in the expression. The resulting answer will

When using parenthesis always make sure there are as many left
parenthesis as there are right parenthesis. If you don't-when the
program reaches the expression that contains the odd parenthesis,
it will stop all execution and print the error message ?SYNTAX
ERROR on the screen

Parenthesis can also be used inside of parenthesis. This is called
nesting. When the expression is evaluated, the subexpressions
inside parenthesis will be worked from the inside outward. That

be 12

ARITHMETIC OPERATIONS

is, the innermost set of parenthesis will be reduced to a single
value first. Consider the following example:

((3*(2 + 2) + 7)*4)

The 2 + 2 will be reduced first giving:

((3*4)+ 7)*4

The 3*4 will be reduced next giving:

(12 + 7)*4

The 12 + 7 will next be added giving:

19*4 or 76

The same expression with no parenthesis would equal)<>

ONE FURTHER NOTE ON EXPRESSIONS

You can use an expression any place in your program th.it the
computer would normally expect to see a number except .is a
program line number. Consider the following example

100 A = 2
110 FOR C = 1 TO 3*(4 — A)
120 PRINT C
1 10 NEXT C
140 STOP

7-H. A PRACTICAL PROBLEM

let's take a standard formula used in everyday business and con
vert it for use on the Commodore computer

In order to < al< ulate monthly mortgage payments on a home loan,
three figures must be known. They are: amount of loan, Interest
rate, and length of loan.

1 he formula is as follows:

Payment = Al

1 - (1 + U
- N

42

AKI I HMETIC OPERATIONS

Where: A = loan amount
I = monthly interest rate expressed as a decimal

(less than 1)
N = length of loan in months

Let's program this formula for a $44500 loan at 11.5% interest for
30 years.

100 A = 44500
110 1=115/12
120 N = 30*12

Note that interest is expressed in de(imal form and is divided by 12
to give monthly rather than annual interest rate The length of loan
is expressed in months (to years * 12 months per year)

In this formula, the part above the line is Al This indicates that A
should be multiplied by I lot the computer this is A *l. The hori
zontal bar of course indi< ales a division operation. On the com
puter we use the slash / to perform division. So the top part of this
formula is equivalent to A * I/

The bottom part of the formula is what A*l is to be divided by so
we will put the whole thing inside parenthesis Further, the (1 + I)
portion of the expression is raised to a negative power of N Recall
that the up arrow () is used to raise numbers exponentially. The
bottom portion of the formula is then equivalent to:

(1 - (1 + I) t - N)

The entire expression would then be

A* 1/(1 - (1 - I) t N)

We would then add this to our program storing the result of the
calculation in the variable I’M I (line I 50) and printing PMT on the
screen along with a dollar sign (line 140)

100 A = 44500
110 1=115/12
120 N = 30*12
130 PMT = A*I/(1 - (1 + l) t N)
140 PRINT"$",PM I

I his program then should calculate the monthly mortgage pay
ments on a $44500 loan and print the result on screen.

43

ARITHMETIC OPERATIONS

Assignment

After paying on a home loan for several years,
it might be nice to know how much is still
owed on the loan. The formula for calculating
loan balance is shown below.

LOAN BALANCE =

1
P

- N
(1 + 0 -1

> - N
(1 + I) I

— —

Where: A = original loan amount in dollars.
I = monthly interest rate expressed as a dec iiti.il

percentage.
N = total number of payments already made
P = monthly mortgage payment in dollars

Writ*' a program to calculate the loan balance on a V>(>000 loan
at 12% annual interest. Monthly payments of $514 50 lu v r been
made for nine years (108 months). Use the formula above to wntc
this program. A sample solution may be found in API’ I N I) IX A
of this manual

44

LESSON

Relational Operators

We have learned in previous lessons that computers can remember
fairly trivial bits of information quite <u (urately, and it can perform
boring repetitive tasks quite reliably I lowever, to do really useful
work it must be able to make biisi(decisions based on the data
contained in memory

Relational operators .illow the computer to make such basic
decisions as: which of two numbers is larger or whether or not two
numbers are equal I he < omputei .ilso has the ability to jump to a
particular section of the progiam it .1 (ertain condition is true. This
lesson describes these de< ision making abilities and how they can
be used in Basic language piogiams

8-1 . THE IF/THEN SI A l l Ml NT AND EQUALITY

The IF/THEN statement is probably the most powerful decision
maker in the Basic language arsenal Generally this statement is of
the form: IF condition X is true 11II N do operation Y . It can be used
in combination with almost any cither Basic keyword.

The IF portion of the statement is lollowed by an expression which
can include variables, string, numbers or logical or relational
operators. The word I HI N appears on the same line and is followed
by a line number or one or more Basic keywords. When the ex
pression following the II wonl is false, everything after the word
THEN is ignored and exe< utinti t ontinues with the next line number
in the program.

If the result of the expression following IF is true, the program
jumps to the line number that follows the THEN or performs what
ever Basic statements follow it Consider the following example:

RELATIONAL OPERATORS

100 A = 1
110 IFA = 2THEN150
120 PRINT "A DOES NOT EQUAL TWO"
130 A = 2
140 GOTO 110
150 PRINT "NOW IT DOES"

In this example, line 100 sets A equal to 1. Line 110 checks to see
if A equals 2, Since it does not, we continue at line 120 l>y printing
A DOE S NOI EQUAL TWO. Line 130 sets A equal to 2 and line 140
causes a jump back to line 110. This time A does equal 2 I he line
number after THEN is 150 so the program to line 150 and prints
NOW II DOES.

8 -2. THE LESS THAN OPERATOR

The shifted comma key prints the symbol (<) This symbol re
presents the I I SS THAN operation. This symbol is normally used
in I I111II N statements as follows:

10011 A<15THEN150

I he prouram will jump to ine 150 only if the value held in A is
less than I r>

8- I l l l C.REATER THAN OPERATOR

I he shilled period key produces the (>) symbol I Ins symbol is
used m II /I III N statements to determine if one number is lainei
than another

I00 II A>15 THEN 150

In the statement above, the program will jump to line ISO only
if A is Hi oi Kiealer

8 - 4 . INI Q I J A l ITY

It is also possible to determine that two numbers are simply not
equal by usiiiK the Irss than and greater than operators in < ombina
tlon

100 II A 0 3 4 THEN 150

I his statement will »*<> to line 150 if A is either greater than oi less

than M In elle< I, this determines that A is not equal to 14

4<>

RELATIONAL OPERATORS

We can carry this concept of combining relational operators such
as , and = a step further. We can combine any two relational
operators in a statement to obtain the desired result. The entire
range of relationships we can lest for is listed below:

Note that when combining two operators, it makes no difference
which comes first on the line I he relation will hold true if either
of the operators used holds true

USING RELATIONAL OPERATORS WITH STRING DATA

Relational operators c ,m also be used to compare two strings
of text. This may sound odd since we are not used to thinking
of one text word as being greater than, less than, or equal to an
other The computer has no trouble with this concept at all When
making a decision as to whi< h string is greater, the computer
compares each charac ter ol the two strings one character at a time
from left to right Letters at the beginning of the alphabet are
considered to be LESS 11 IAN the letters that occur later in the
alphabet. Under this system the letter A is considered to be less
than the letter B In this way text strings are compared alphabeti
cally much as numbers weie compared by numerical order in our
previous examples. Consider I he I ol lowing example:

100 A$ = "JACK"
110 B$ = "JASON"
120 IF B$<A$ THEN PRINT B$
130 IF A$<B$THE N PRINT A$

In line 120 of this example the computer compares the first char
acter of each string to determine whic h string is least Since the
first character of each string is the letter J the computer must try
another comparison with the second character. Both strings have
the letter A as the second i harac ter and so again no conclusion
can be reached. When the comparison is performed on the third
character, it is clear th.it I he* letter C in A$ is less than the letter
S in B$. Therefore, A$ is less than B$ and the IF/THEN statement

>< or <>
< = o r = <
> = o r = >

<
>

I QUAI TO
LESS THAN
CRI A l l R MIAN
CRI A l l R 11 IAN OR LESSTHAN
I I SS 11 IAN OR EQUAL TO
CRI A l l R 11 IAN OR EQUAL TO

8-5.

47

RELATIONAL OPERATORS

in line i 20 is untrue. The PRINT statement in line 120 would be
ignored and the program would continue at line 130 line 130
performs exactly the same comparison. Since the IF / t ll lN state
ment in line 130 is true in this case, the PRINT A$ statement is
performed.

It should be noted that for two strings to be considered equal
(A$ = B$), all characters must match exactly between the (wo
strings.

8 -6. THE ON GOTO STATEMENT

The IF/THEN statement is not the only decision making statement
in the Basic language. The ON GOTO statement can m.ike some
simple decisions based orPthe numerical value of a vana lilr I or
some operations it is even more efficient than the ll/ I III N state
ment

The ON portion of the statement is followed by a v .u i. 11>I«• oi
expression containing a variable. The GOTO portion of the state
ment is followed by a list of line numbers. The result of the variable
expression will indicate which program line number from the list
that the program will |ump to. Consider the statement: ON A C iO IO
100, 200, i()() If A equals 1, the program will jump to the Inst
number on the list (100) If A equals 2, the program would |timp
to the sec oncl number on the list (200) etc.

If A were greater than the quantity of line numbers contained in
the list or il A equals 0, the entire ON GOTO statement will be
ignored and the next line number in the program will be exe< uted
Note that all the line numbers in the ON GOTO statement are
separated by < ommas.

I he ON GO IO statement can replace a number ol 11111II N stale
ment lines with a single program line Consider the following ex
ample:

100 A = 2
110 II A 1 THEN 300
120 II A =2 THEN 400
1 !() II A - 3 THEN 500
>00 PRINT "ONE”
310 I Nl)
400 PR INI "TW O"
410 END
500 PRINT "T HREE'
510 I Nl)

48

1

RELATIONAL OPERATORS

This example executes a print statement determined by the value
held in A. We can replace lines 110, 120 and 130 with one ON
GOTO statement as follows

100 A = 2
110 ON A GOTO 300. 400, 500
300 PRINT "ONI "
310 END
400 PRINT " IW O "
410 END
500 PRINT " IH R I I
5T0 END

The two program examples nive ex,i< 11y the same result.

One final word on the ON GOTO statement. By replacing the
GOTO keyword with the GOSUB keyword you can create the ON
GOSUB statement It works the same way except that instead of
just jumping to program lines, the ON GOSUB statement calls
subroutines.

49

LESSON 9
Logical Operators

Logical operators (sometimes known as Boolean operators) are
most commonly used to modify the meaning of statements con
taining relational operators

There are three logical operators used in the Basic language:

AND
OR
NOT

This lesson will describe the use of these three operators.

9-1 . THE AND OPERATOR

The AND operator is used to combine two relational statements
and determine if they are both true. Consider the following ex
ample:

100 A = 4
110 B = 17
120 IF A = 4 AND B = 17 THEN 150
130 PRINT "NOT E Q U A L "

140 END
150 PRINT "BOTH A AND B ARE CORRECT"
160 END

In the above example, since both relational statements in line 120
are true, the IF/THEN statement will cause a jump to line 150 and
BOTH A AND B ARE CORRI (I will be printed on screen. If either
of the statements in line 120 had been false, line 130 would have
been executed instead

Let's try the same example with a different value in variable A:

51

L

LOGICAL OPERATORS

100 A = 2
110 B = 17
120 IF A = 4 AND B = 17 THEN 150
130 PRINT "NOT EQUAL"
140 END
150 PRINT "BOTH A AND B ARE CORRECT"
160 END

Since A does not equal 4 the entire IF/THEN statement in line 120
considered false. The AND operator requires that both relational
expressions in the statement be true.

9-2 . THE OR OPERATOR

The OR operator is used much like the AND operator was in the
last topic. However, the OR operator will recognize the statement
as true if either of the two expressions is true.

100 A = 20
110 FOR B = 1 TO 7
120 IF A <=15 OR B< = 3 THEN 200
130 PRINT "FALSE"
140 A = A - 1
150 NEXTB
160 END
200 PRINT "TRUE"
210 GOTO 140

I he first three times through this loop (lines 110 — 150) the M vari
able will be i or less causing a jump to 200 and TRUI to be printed.
During the next two times through the loop, neither expression in
line 120 will be true and FALSE will be printed During the sixth
and seventh iterations of the loop, the A variable will be 15 or
less causing I RUE to be printed again. This example demonstrates
that statements c ontaining OR will be true if either expression is
true.
NOTE: The- loop ends after 7 times because line 110 sets the vari
able B from the* 1 to 7.

9-3. THE NOTOPERATOR

I he NOT operator is used to reverse the normal true/false result
of relational expressions. Unlike the AND and OR operators which

52

LOGICAL OPERATORS

affect two expressions, the NOT operator only affects the ex
pression to the right of it. Consider this example:

IF NOT A < B O R C = > 7

In this example the expression A<B is modified by NOT so that
its result is true only if A is equal to or greater than B. The ex
pression C=>7 is not affected at all The overall statement will be
true if A is equal to or greater than B or if C is equal to or greater
than 7.

53

LESSON

Keyboard Input

Most programs require the user to enter information through the
keyboard in response to queries printed on the screen. This ability
to accept information on <1 more or less informal basis is a great
advantage over computers of earlier times that required all data
to be fed in batches on puni hed t ,irds or paper tape. This lesson
describes how to build programs that accept keyboard input.

10-1. THE INPUT STATEMENT

The easiest method of handling keyboard input is by using INPUT
statements to define variables When the program reaches a line
containing an INPUT statement, it stops any further program ex
ecution and prints a question mark (?) on the screen. This indicates
that the program is waiting lor data to be entered Data is entered
by typing in the number or text and pressing the RETURN key.
Program execution then continues with the next program line.
Consider the following example

100 PRINT "ENTI R YOUR NAME"
110 INPUT N$
120 PRINT "HELLO ";N$
130 END

fs example N$ was defined by keyboard input. In this case we
r^_.efined a string variable, but integer and floating-point variables

y r^ a re treated the same way However, if string text is entered in
■ -response to an INPUT statement lor a numeric variable, a data type
\i /^mismatch occurs. This is bet ause we cannot store string data in a

t^numeric variable. The advisory ?RI DO I ROM START will appear
\ . ,on screen and the data must be reentered

10 - 2.

USE OF PROMPT MESSAGES IN INPUT STATEMENTS

In the first line of our last example we printed the message "ENTER

M

55

KEYBOARD INPUT

YOUR NAME" on the screen so that the user would know wh.it he
was expected to enter in response to the question mark on the
screen Actually, it is not necessary to devote a progiam line to
this task We can combine this message with the input statement
as a prompt This statement would be of the form

100 INPUT "PROMPT";N$

Note that the prompt is enclosed in quotation marks .mil sepaiated
from the variable N$ by a semicolon. Let's take a look al anothei
example.

100 INPUT "ENTER FIRST NUMBER ";A
110 INPUT "ENTER SECOND NUMBER";!!
120 C = A*B
1 10 PRINT A ;"T IM ES";B ;" = ";C

I Ins example will input two numbers, calculate their produt I and
print the result

10-3. THE GET STATEMENT

I he INPU I statement works quite well for entering data but then*
aie times when we just want to monitor the keybo.ml to see il
any ol the keys have been pressed and if so, whi< h one I he <.l I
statement does this quite well.

I lie (omputei contains a specialized area of memory called the
keyboard buffer. This buffer will hold up to 10 keystrokes Ih eG I I
statement will go get the first key stored in this bullet and place
il in whatever variable you specify in the GET statement II Is best
to always use string variables for this purpose as they < .in stoic*
any < haia■ let that is available from the keyboard (onsldei the
following example

100 GI I A$
I It) II A$ = "" THEN 100
120 PRIN1 A$
I it) G O T O 100

In this example* line* 100 contains the GET statement I his line* will
retrieve the Inst character in the keyboard buffet and stoic* it in
the variable A1> I ine 110 checks to see if a key was in lac I pressed,
II not it jumps b.u k to line 100 In effect, this creates a small loop
that runs until a key is pressed. Once a key is pressed, we break

Mi

KEYBOARD INPUT

out to line 120 which prints whatever key is stored in A$. Line 130
causes a jump back to line !()() to net the next keystroke. In this
way, each key that is pressed is printed on screen.

10-4. THE FUNCTION KEYS

Along the right side of the keyboard .ire four keys which are marked
f1 through f8. These keys are < ailed function keys which is some
what comical since they have no func tion.

They are provided for you to use in your programs in any way that
you like. To use these keys you must first define them. In order to
define them you need to be able to tell when one of them was
pressed. To do that you need to know what character they produce.
Surprise - they don't produce any characters. Even stranger - none
of the other keys pro'diu e charm ters either

All the keys on the Commodore keyboard produce numbers. These
numbers represent characters in some cases and various computer
functions in others A table that lists these numbers and their mean
ings is provided in Appendix I of the Commodore 64 Users Guide
that came with your computer The function keys do have their
own numbers assigned to them but the numbers do not represent
any printable characters.

Notice that the top function key has two f numbers marked on it.
The top of the key is marked f1 and the front edge of the key is
marked f2. The key acts as f1 when pressed by itself and as f2 when
the SHIFT key is held at the same time The following table lists
the ASCI I numbers that correspond to each of the function keys.

f1 133 f2 137
f3 134 f4 138
f5 135 f6 139
f7 136 f8 140

The keyword CHR$ will convert any Commodore ASCII code
number to its character equivalent We can use this in conjunction
with the GET statement to define our function keys.

57

KEYBOARD INPUT

100 GET A$
100 IF A$ = " " THEN 100
120 IF A$ = CHR$(135) THEN GOTO 200
130 11 A$ = CHR$(136) THEN GOTO 300
140 GOTO 100
200 PRINT "F5 KEY PRESSED"
210 I ND
too PRINT "F 7 KEY PRESSED"
110 I ND

In this example, we monitored the status of function keys l'> ,md 17
by i bet king lo see if A$ was equivalent to CHR$(1 5r>) or (I IK1»(I W>)
While hi (Ins example we simply printed the name ol the key that
was pressed, we could have just as easily jumped to a set lion ol
program that performed a much more exotic func tion In this way
we i an use the function keys {or any other keys) lo allow the usei
lo seltM I the portion of the program he would like to run

10- 5. MINUS

W hfii w illing a computer program, the first thing you should
determine Is what you would like the program to do lake loi
i <.1 1npI■1 .i piogiam to maintain your checking account You would
probably waul the program to allow you to entei chei ks as you
wiHe them You might also want it to search for all < hei ks willten
lo i p*i1 11< ill.it person or business and list them out on the si ieen
l*i*i liaps \ i mi want to be able to categorize these diet ks .. i you i an
pnnl oul ill expenditures made in a particular talegoiy lor I.ik
pul pi ► s i • s Noii may even want this program to list oul ill i hei ks
w iH im in .i c erlain time period. Basically, you should list .ill the
gi in i.il linn lions you would like to program to perform 'm li .i list
might appeal like this

I WKITI (HECKS
' SI AI<(H CHECKS BY NAME
i M AKCH CHECKS BY CATEGORY
I SI AK(H CHECKS BY DATE

Wli.il s . n i ha\ i' i lea ted in making this list is a progiam menu You
i an v\ 1 11 ■ ■ M.ili piogram lines that will print this list on the
.is 1 1ii lii ,i ,n | ion peilorrned by your program

< i i i unis \ " l i t i hi Id be more creative by adding a title to t hi si ieen,
■ mi* i ol.n lions to your house or whatevei you like but

I' ' H »lls i menu is a list of functions that your progiam is i .ipah le
• ■I pci 11 nm iiig (oi w ill be when the program is com pleted)

KEYBOARD INPUT

The next section of the program would be a keyboard monitoring
routine such as that described in topic 10-3 or 10-4 of this lesson.
You could use the numbered keys 1 through 4, function keys, or
whatever keys you like to represent the items listed on your menu.
However, rather than just print the key that was pressed as we did
in our topic examples, use1 the keyboard monitor to branch to
widely separated program line numbers. Consider the following
example:

100 GET A$
110 IF A$ = " " T H E N 100
120 IF A$ = "1" T H E N 1000
130 IF A$ = "2" T H E N 2000
1 4 0 IF A$ = "3" T H E N 3000
150 IF A$ = "4" T H E N 4000
160 G O T 0 100

Once the menu is printed on the s< reen, the keyboard monitor
above will cause the computer to patiently wait until one of the
keys numbered 1-4 is pressed, I he program will then branch to
line 1000, 2000, 3000 or 4000, depending on which key is pressed.

You now have the bare* framework of a BASIC program. Line 1000
could be the beginning of a routine to enter new checks. Line 2000
could be the beginning of a routine to search the check file by
name and so on. In this way you can use menus to give your pro
grams some structure* and organization even before the bulk of it
has been written. While not al! programs lend themselves to a menu
format, (games for example) most do and you will find that many
business and home programs i urrently on the market use this
menu driven approach Most of all, by doing the menus first, you
will create a clear picture in your mind of what you want your
program to do.

A PRACTICAL PROBLEM

Recall from an earlier lesson that we had developed a program
to calculate monthly mortgage payments for a $44000 dollar 30
year loan at an 11.5% interest rate I his is fine as far as it goes, but
what if the loan we want to < a!c ulate is for a different amount.

We need to replace all those statements that assigned values to the
variables with statements that input the variable values from the
keyboard. In that way the program can be used to calculate any

59

KEYBOARD INPUT
il

mortgage value at any interest rate for any loan period. This is
shown in the example below:

100 INPUT"ENTER LOAN AMOUNT'';A
110 INPUT "ENTER ANNUAL INTEREST", I
120 I 1/1200
1 (0 INPUT"ENTER NO. OF YEARS";N
MON N *12
1,10 PMT = A* 1/(1 —(1 + 1)'!' —N)
I (>() PRINT"$";PMT

In the. example line 100 prints the query "ENTER LOAN AMI)UN I "
on s(1 1 'rii and waits for a keyboard input which is stored in variable
A Altei the loan amount has been entered, line 110 prints "I N 11 R
ANNUAI INTI REST" on screen and waits for a keyboard entry
defining the variable I Since I is used as monthly interest m the
pmgiam .mil must be expressed as a decimal percentage, line I20
• IivnIrs I by 11 (months) times 100 (to make a decimal pen enlage)
oi 1200

I Ini' I Id is used to input the number of years the loan will run
Iva iliih li’ N) ,md line 140 converts years to months I ine I r>() does
tin' i .ill illation and line 160 prints the resulting monthly payment
with ,i doll.u sign In this way we can use INPUI statements to
....... . i l l .i i al lief rigid one case program to an interactive program

A S S K iN M I N I

I ' i i ill I io iii lesson 7 the program you wrote to calc ulale the loan
I >a I a i i i i * uni,lin ing on an existing mortgage. Convert this program
In br Inleiat live muc h as we did in the last example

i >in e i he mi ii I ga ge p aym en t routine and
I " ' 1 1 11.11 .mi e unit me are working to your

ili ' lai lion, i ie, t ie ,i menu and key bo ard
tin a ii 11 a 111.11 will let you se lec t ei ther of
I lie | wo i on I Ine s from the keyboard . Ex am
ple ,11111111 nl', a i e p rov ided in Appendix A of
this manual

i.n ¥

— LESSON 11
String Handling

Up to this point you have learned that the STRING is the data type
used to store text information I ext storage and manipulation is
one of the most common uses lor the home microcomputer Word
processing programs, data base programs and really almost any
non-game application requires that text be stored, displayed,
copied, moved, sorted or rearranged to a greater or lesser degree.
This lesson will describe some of the Basic language techniques
commonly used to handle strings

CONVERTING BETWEEN STRING AND NUMERIC DATA

Numeric data items < an only be compared (or assigned) to other
numeric items Likewise string data items can only relate to string
type data items At times this can prove to be quite inconvenient
We may, at times, want to mix data from a numeric variable with
a message contained in a string variable In that case, we must first
convert one of the- data types to the other. If we do not, the pro
gram will stop with the Basic error message

We can convert numeric data to string data using the STR$ state
ment Likewise, the VAI statement < onverts string data to numeric
data

The STR$ statement simply takes the numeric data from a numeric
variable and assigns it to a string variable. Consider the example
below:

1 1 - 1 .

?TYPE MISMATCH

100 F = 27
110 PRIN l I
120 B$ = S I R1>(l)
130 PRIN l B$

b l

STRING HANDLING

Line 100 assigns the numeric floating-point variable I .1 value of 27
and line 110 prints the value of F on the screen I me 120 t onverts
the numeric variable F to string format and stores il tit I»1* Note
that in line 120 the F variable is contained within parenthesis im
mediately following the STR$ keyword. Both variable, appear the
same when printed on screen.

The value 27, which is now held in B$, can be combined with other
string data. However, we cannot perform any arithmetic turn tions
on it until we convert it back to a numeric data type

The VAL statement is used to convert numbers contained in '.limns
to a numeric data type as shown below.

100 F = VAL(B$)
110 PRINT F + 3
120 PRINT B$

Note that if the first non-blank character of the string e. not .1 plus
sign, a minus sign, or a numeric digit, the VAL statement will le
turn a value of zero. However, you can evaluate stung'. that ion
tain text as long as they start with a number. The VAI statement
will evaluate each character, from left to right until it iea< lies
either the end of the string or a non-digit charactei (onildei this
example:

100 B$ = "125 POUNDS"
110 F = VAL(B$)
120 PRINT F
130 PRINT B$

Note that the POUNDS text contained in B$ does not keep the VAI
statement from correctly deriving the number 125 from the siring
because it follows the number 125 rather than prei eding it

1 1 - 2 .

CONVERTING BETWEEN STRINGS AND ASC II C ODES
As we mentioned at the beginning of this tutorial, the micro
processor contained in the computer can only deal with numbers.
All characters contained in strings or entered from the keyboard
are actually numbers that represent characters. Normally, the Basic
language interpreter automatically converts these numbers to
character equivalents before displaying them on the s< leen At
times we need to determine what the numbers themselves .ire At
other times we may have a number but we need to know the char
acter equivalent.

62

STRING HANDLING

As a matter of interest, the number system that establishes the
relationship between numbers <md characters is called the ASCII
code. ASCII stands for American Standard Code for Information
Interchange. Since most computers use this system, it is possible
to send data between two < omputers of different manufacture.

On the Commodore < omputer we 1 an obtain the ASCII code for a
given character using the AS(statement I ikewise, we can translate
an ASCII code number to .1 character equivalent using the CHR$
statement.

The ASC statement is used to < (invert a string character to its ASCI I
code equivalent. Consider this example

This example converts the literal < hara< ter A to its ASCII equivalent
and stores the result 111 variable I Note that the A is in quote marks
indicating that it is ,1 literal < haiac ter I he A and its quote marks
are enclosed in parenthesis immediately following the ASC key
word Line 110 prints the AS< II code equivalent of the letter A
(in this case 65) on the sr reen

We can also obtain the AS(II < ode lor c haracters held in string
variables. Consider the following example

In this example, the AS(statement returns the code for the first
character of X$ I he t ode 77 represents the character M You will
find a complete table ol ASCII c odes in the back of the Commodore
64 User's Guide.

We can reverse the process ol ASCII conversions by using the
CHR$ statement The CHR$ statement gives us the character e-
quivalent for any given ASC II < ode I et's try another example:

100 X$ = CHR$(77)
110 PRINT X$

In this example, line 100 converts whatever number or numeric
variable is held inside the parenthesis to a character and stores
it in X$

100 F = ASC("A")
110 PRINT I

100 X$ = "M lI DRI I) ’
110 F = ASC (X$)
120 PRINT I

63

STRING HANDLING

11-3. THE LEFTS STATEMENT

At times it can be quite useful to be able to cut u|> .1 .lung v aiiable
and use part of it for something else The Lfcl 1$ statement allow,
us to remove a portion of a string starting from the I«• 11 unr.l 1 li.w
acter (beginning) of the string We must also spec 11y wli.it length
this substring we are removing is to be

I he I I I 1$ keyword is always followed by a set nl paienlhe'.e.
which contiiin the name of the string we arc1 cutting up .iltd the
length ot the substring Consider the following example

100 AS "PRODUCTION"
110 11$ Lt FT$(A$,7)
120 PRINT B$

In this example we copied the first 7 characters ol A$ Il'Ki)l MU II
into 11$ II we had specified a length greater than t h e le n g ih . it V|.
the entire (on tents of A$ would have been stored in 11$

Nolle e that the length (7) and the source string name I M l in held
111 lb.' paienthesis and are separated by a comma

11-4. IMF. RIGHTS STATEMENT

I lie KI <. 11 I $ statement functions almost exactly Ilk. the I I I I t
statement ex< ept that the substring is counted liom I lie iiglil
most lend ol string) character Again the numbei ot 1 liaiai ter, In
be used I mm t he original source string must be spec it led .1 In i n 11
in xample below

100 A$ "M ICROPROCESSOR"
1 !() (.$ RIGHT $(A$,9)
120 PRINT G$

In this example the last nine characters of A$ (PR()(I .1 M<l will
be 1 opied 11 0 m A$ into G$ and subsequently printed 1 m 1 M en

11-5. I l l l MID$ STATEMENT

II ie M il)$ linn I ion returns a substring which is taken 11 • >111 .1 lai gei
■■ 11 1 1 1>: 1 1 1st as I lie I I I 1$ and RIGHTS functions did 11 ■ •'' • • 1 while
the 1111$ luni lion counted out the substring length Imm the let!
and the RIG 11 I $ I mu t ion counted from the right 1 1 1 0 . 1 1 liai.ii lei
I lie Mil)$ tunc lion (ounts from any character position in the '.lilng
In this way the M11)$ function allows us to take a lung ol any
length Irom any section of a larger string But we nm I .pei lly

STRING HANDLING

both the starting position and substring length in the MID$ state
ment as shown in the following example:

100 A$ = "ACCOUNTING SO HW ARE"
110 G$ = MID$(A$,3,5)
120 PRINT G$

Note that in line 110, the first number to follow A$ in parenthesis (3)
specifies the starting position of the substring. The second number
(5) gives the length of the substring As a result, all characters from
the third to the seventh < har.n ter of A$ is copied into G$ and sub
sequently printed on screen

If the position numeric is greater than the total length of the source
string, or if the length numeric is zero, the resulting substring will
be empty. It is interesting to notr that the length numeric may be
left out. In that case, the substring will consist of all characters
from the specified starting position to the end of the source string.

11-6. DETERMINING S IR ING LENGTH

At times it can be very handy to know the number of characters
contained in a string I he I I N statement is used to determine the
length of a string. Using I his func lion is quite easy as shown below:

100 A$ = "SAIN I I OUIS M ISSOURI"
110 PRINT LEN(A$)

This example will count all < liaiai leis in A$, including punctuation
and spaces, and print the lesult (20) on sc reen

11-7. STRING CONCATENATION

We stated earlier th.il no arithmetic functions could be performed
on string data. That is not entirely true, As a matter of fact, strings
may be added together II is not handled exactly like a normal
arithmetic function however,

If we add one string to another using the plus sign (+), the second
string is simply appended lo the lust Ibis is called CONCATENA
TION. The process is more aking to linking two items than it is to
adding them together Considei the following example:

100 A$ = "CONCAT"
110 B$ = "ENATION"
130 C$ = A$ + B$
140 PRINT C5>

65

STRING HANDLING

I his example splices the ENATION STORED IN B$ onto the end
ot CONCAI in A$ and stores the result in C$. The CONCATENATION
string held in ($ is then printed on screen.

It is important to remember that when we use various string han
dling statements to remove sections of a string and store them in
another string variable, the source string is left unchanged We are
only < opying the section

ASSIGNMENT

WriU* a short program that will allow the user to type in a single
sentence nl text The program should then print on screen the
mimt’ei ol winds in the sentence, the number of nonspace < h<ir
.11 ter. m the sentence, and the average number of charac ters per
woid I Ise thr (.11 statement to input the sentence rather than the
INCH I statement Use the MID$ statement to do the counting A
sample solution may be found in Appendix A of this manual

LESSON

Mathematics

The Basic language supports .1 number of higher math functions
such as SIN, COS, IAN, etc Many other functions can be derived
using the functions supplied I his lesson describes each of these
functions as they are used in the Basic language but does not
attempt a course in higher m.it hein.it u s

A mastery of the Basic functions described in this lesson is not
required to write good Basic programs II you do not completely
understand all the1 m a lfiia l presented in this lesson, do not be the
slightest bit concerned lot those familiar with algebra and trigo
nometry, this lesson describes the Basic language elements nec
essary to do useful work in those disc iplines.

12-1. ABSOLUTE VALUE

The ABS statement is used to determine the absolute value of a
number. The absolute1 value ot any number is that number with
the signs removed Considei this example

100F= — 237(» 45
110 G = ABSO)
120 PRINT G

Although variable I is assigned .1 negative number in line 100, the
value assigned to G will appeal to be positive since it does not
carry a sign indicating whethei it is positive or negative

The SGN function does not .liter the value of a number Rather
it will return a value indie ating the sign of a number. The value
returned will be a I i! the nuinbei is negative, a +1 if the number
was positive, and 0 il the number was zero Consider the example
following:

67

MATHEMATICS

100 F= -385
110 ON SGN (F)-J- 2 GOTO 200,300,400
200 PRINT "N EGATIVE"
210 END
300 PRINT "ZERO "
310 END
400 PRINT "PO S IT IVE"
410 END

In this example we assign a negative number to variable I I ini’ I 10
is an ONGOTO statement that detects if a number is iii'w .illv
positive or zero and jumps to the appropriate print statement Note
that the result of the SGN statement in line 110 will be* I, (I <n
+ 1 by adding 2 to this result it will become 1, 2 or I with h is
usable in an ONGOTO statement.

12 -2. THE SQR FUNCTION

I he SQR function returns the square root of its numeric .uKiimml
Be .iware that if this function is applied to any negative numbe r
the Basic error message ?ILLEGAL QUANTITY will appiMi cm
sc reen. Consider this example:

100 F = SQR(25)
110 PRINT F

I me- 100 assigns the square root of 25 to the variable* I and line I 10
prints I (in this c .ise 5) on the screen.

I here .tie* four trigonometric functions for which a Basie ke-ywoid
e*xists as shown below:

I he value returned as a result of any of these functions is expresses!
in radians Consider the1 following example:

12 ». IRK iONOMETR IC FUNCTIONS

I UNC I ION KEYWORD

SINE
COSINE
TANGI NT
ARC IANG I N l

SIN
COS
TAN
ATN

100 F COS (14)
110 PRINT F

<>H

MATHEMATICS

Line 100 assigns the cosine of 14 to the variable F and line 110
prints F on screen

12-4. LOGARITHM

The Basic language used on the Commodore 64 computer contains
two statements that pertain to logarithmic calculations. They are
the LOG and EXP statements

The LOG statements will (ah ulate the natural logarithm (base
e - 2.71828) of any positive number greater than zero as shown
below:

100 F = LOC(32.H)
110 PRINT E

The natural logarithm of U H (t 49042852) will be stored in variable
F. If a LOG function is applied to a negative number or zero, the
Basic error message 'I l I I (, AI QUAN I 11 Y will appear

The EXP statement reverses this prcx ess by calculating the original
number given the natural logarithm Consider the example below.

100 F= EXP(3.490428.ri2)
110 PRINT F

Line 100 calculates the < onstant e (.' 71828) raised to the power of
3.49042852 and stores the result (12 8) in the variable F. Note that
applying the EXP furn lion to any number larger than 88.0296919
will cause the Basic erroi message fOVE Rl LOW to appear on
screen.

Many times mathematK al i ah illations are required using common
logarithms (base 10) rather than natural logarithms (base e -
2 71828). Common logarithms (.in be derived from the natural
logarithm function u s mt he following formula:

Common logarithm of X I ()G(X)/LOG(10)

12-5. PI

The number PI (i 1416) is available Irom the keyboard and may
be used in any arithmetic expression 1 he up arrow ('T') key
produces the PI numeric when shilled On screen, the normal PI
symbol will not appeal luil rather a graphic symbol (3H») This
symbol represents the numbei 1 141(> to the Commodore 64 com
puter.

MATHEMATICS

12-6. DERIVING TRIGONOMETRIC FUNCTIONS

In topic 12-3 we discussed the trigonometric function'. .u|
with the Basic language. Many other functions can be <l<
using different combinations of the functions provided I h*>
below gives formulas that may be used to product' .nidi
funtions.

FUNCTION BASIC EQUIVALENT

SEC(X) 1/COS(X)
CSC(X) 1/SIN(X)
COT(X) 1/TAN(X)
ARCSIN(X) ATN(X/SQR(— X*X +1))
ARCCOS(X) — ATN(X/SQR(— X*X + 1)) 1 1*1/
ARCSEC(X) ATN(X/SQR(X*X — 1))
ARCCSC(X) ATN(X/SQR(X*X — 1)) + (S (.N(\)
ARCOT(X) ATN(X) + PI/2
SINH(X) (EXP(X) — EXP(— X))/2
COSH(X) (EXP(X) + EXP(— X))/2
TANH(X) E X P(— X)/(EXP(X) + EXP(X)W
SECH(X) 2/(EXP(X)+EXP(-X))
CSCH(X) 2/(EXP(X) — E X P(— X))
COTH(X) EXP(-X)/(EXP(X)-EXP(X))* J
ARCSINH(X) LOC(X + SQR(X*X +1))
ARCCOSH(X) LOG(X+ SQR(X*X —1))
ARCTANH(X) LOC((1 +X)/(1 -X))/2
ARCSECH(X) LOG((SQR(—X*X + 1) + l/X)
ARCCSCH(X) LOG((SGN(X)*(SQR(X*X I I/Ml
ARCCOTH(X) LOG((X +1)/(X-1))/2

12 -7. SCIENTIFIC NOTATION

Scientific notation is a method of stating numbers th.it ,ne
very large (24385926) or very small (0.00000237) In s(ieitltllt
tion a number is made up of 3 parts: the mantissa the le
and the exponent.

Ihe mantissa is simply a floating-point number, the lettei
dicates that the number is in exponential form, and the ev|
is the power of 10 that the mantissa is raised to (onsid
number 28000 This number could be restated in scientist nu
as:

2.8E4

i p l i ed

■t Ivet l

I , t i t l e

I It tl l i i l

e i t he r

nota
Met I .

tonent
er the
l . t l ton

70

MATHEMATICS

This number would be read .is two point eight times ten to the
fourth power Basically what we have done is shift the decimal
point in 28000 four plat e-s to the loft

We can also use scientific notation to express numbers smaller
than one . For example the number 00025 would be expressed
as 2.5E-3 in scientific notation I he mantissa (2.5) is multiplied
times ten to the — i power Notic e that in this example the decimal
point was shifted 3 places to the- unfit

There is a limit to the si/e ot numbers that the Basic language can
handle even using scientific notation Any number larger than
1 70141183E38 will cause the* Basic error message ?OVERFLOW
ERROR to appear

12-8. DEFINING FUNCTIONS

In writing programs you may find that a particular mathematical
expression is repeated a number oi times in a program. To save
memory you can simply define this (unction one time and use it
thereafter. The Basic statements I li.it allow this are DEF and FN.
You must name the fune lion I hereafter you may call the function
by name much as you would a variable Consider this example:

100 DEF EN ((K) I I4*K*2
110 PRIN l I N ((2 I 54)

In this example we defined a tunc lion (to be equal to the formula
PI times R squared I Ins formula calculates the area of a circle
from a given radius (K) A lle i defining the function we can call it
as we did in line 110 We must supply the number in parenthesis (in
this case 23.54) that we want the tunc lion performed on.

In this way any mathematic al fune lion may be defined once and
called from anywhere in the* program as many times as needed.

12-9. THE INTFUNC NON

Most mathematics will be performed on floating-point numbers.
However, there are* times whe*ii integer numbers might be more
desirable in the result We c an e onvert floating-point numbers to
integer format using the INI fune tion This function rounds off a
number down to the neaiesl w h o l e number by dropping any frac
tional parts. Considei the* Inflowing example:

MATHEMATICS

100 F = 32.587
110 C = INT(F)
120 PRINT C

In line 110 the number 32.587 will be rounded down to Ih«• t n I '
value 32 which is stored in variable C. The contents ol (, nr then
printed on screen

12-10. RANDOMIZATION

One of the more popular uses for the Commodore l>l mmpiitei
is game playing. But up to this point nothing we have dr,, ir . d
would lead anyone to believe that computers were very c leatlve
How then, do the games keep from becoming repet it ive' I Ii .w due',
the computer avoid dealing the same Blackjack hand "vei .uni
over?

The RND function generates a random number between O and I
that may be used to determine what card is dealt <u wheie the
alien ships will show up next on the screen The KNI> .i.iiemenl
like many other Basic statements, is followed by <i numeiii uhw
ment in parenthesis. The important thing about this argument is in il
what number it contains but rather whether the numbei is prr.ihv ■
negative or zero.

NEGATIVE NUMBER: If the number in the argument Is nri;,itive it
is used to reseed the random number generator Hie seed Is the
number the computer performs calculations on to prodin e i md. hii
numbers. It is interesting to note that the number returned by the
RND statement will always be the same for a given m>;ati\ e nuiii
ber For example: the statement RND(—3) will alw.iys piodut e the
number 4.48217179E — 08. Obviously this is not veiy i.indum
Negative arguments are used mainly to reseed the random mimbei
generator.

POSITIVE NUMBERS: If the numeric argument is positive ,i
random number between 0.0 and 1.0 will be generated umiih the
stored seed. The interesting thing about positive number. Is that
by using the RND function several times, a sequent <■ nl number,
will be developed that has a repeatable pattern. All that Is needed
to repeat the sequence is to reseed with the same ne^atlv .■ number
and then use a positive argument to call up the random numbers
Consider this example:

MATHEMATICS

100 FOR N = 1 TO 2
110 X= RND(— 3)
120 FOR L = 1 TO 5
130 PRINT RND(+ 2)
140 NEXT L
150 PRINT
160 NEXTN

In this example the same random number sequence is run twice by
reseeding with —3 ea(h time (line 110) and calling a positive RND
STATEMENT FIVE 1 IMI S (line I 10) I he pattern sequence of five
numbers will be identical eat h time run

RND USING ZERO 1 he RND(0) statement operates a little bit
differently in that it uses a t lot k that is built into the Commodore
computer for the random number seed I his then is the only truly
random number function available There is no way to predict
what number will be generated I he only thing we can be assured
of is that the result will be between 0 0 and 1.0.

Rarely will you find a number that is between one and zero useful.
Usually you will want a random number that falls in a certain
range between two whole numbers The following formula will
generate a random number (N) between a lower limit (X) and an
upper limit (Y).

N = RND(0)*(Y — X)+ X

Let's use this formula to generate live numbers between 1 and
52 as shown in the example below

100 FOR L = 1 TO 5
110 N = RND(0)*(52 1)+1
120 PRINT N
130 NEXT L

This example will generate fivt* random numbers between 1 and 52
and print them on the screen I lowever, the numbers are all float-
ing-point numbers with long decimal fractions on them. We can
remove these fractions using the IN I function we learned earlier.

100 FOR L = 1 TO 5
110 N = INT(RND(0)*(53-1) + 1)
120 PRINT N
130 NEXT L

73

MATHEMATICS

This example generates five random whole numbers Wilh this
program we could build a primitive card game Note that in line
110 the upper limit was changed from 52 to 53 when the IN I him lion
was added This is because the INT function always rounds I >< >WN
to the next whole number. If the upper limit was lell ,il the
number 52 would never be generated.

ASSIGNMENT

Wrile a short program to calculate two random whole numheis
between I and 6 representing the roll of a pair of due I’nni the

numbers on the screen and allow the user to reroll the dli e .e. many
times .is he likes by pressing any key on the keyboard

LESSON 13
System Utilities

This lesson covers sonic odd Basic statements that really do not
fit with any of the other lesson topic s Most of these statements
do independant tasks sue h as (he< k the time or check how much
memory remains for use

There are two basic w.iys to start a program. Use of the GOTO
statement is one of them Simply enter a GOTO command with
the line number where you want (he program to begin execution.
The other means of starting a program is by entering the RUN
command This causes the- c ompuler lo go to the first program line
number in memory and begin exec ution

The main difference between the two methods is that the RUN
command resets all the variables lo zero Any data that was held
in a variable will be c leared oul and lost You may specify a line
number in a RUN command blit unlike the GOTO statement, it
will also work without one

The CLR statement has no argument It is used solely to clear
out all variables from the program Any data held in any variables
or variable arrays will be losi forever User defined functions are
erased. The CLR statement will fret1 up the memory used by the
variables for reuse.

There are 38911 bytes of memory in the Commodore 64 computer
available to hold Basic language programs If your program tries
to use more memory space than is available, the Basic error mes
sage OUT OF MEMORY will appear on screen and the program
will stop. The FRE statement allows you to find out how much
memory you have left at any one time

13-1. THE RUN STA11 Ml N I

13-2. THE CLR STATI Ml N I

13-3. THE FRE STATI Ml N T

75

J

SYSTEM UTILITIES

The FRE statement does have a numeric argument in parenthesis
but it does not matter what number you put into it The I R l state
ment will return either a positive number indicating remaining
memory, or a negative number to which you must add the number
65536 to determine remaining memory. The following example
program will always calculate remaining memory whethei the re
turned number is positive or negative.

100 X= FRE(0MFRE(0) <0)*65536
100 PRINT "MEMORY REMAINING = ";X
120 PRINT"MEMORY USED = ";38911 - X

Note in line 100 the expression X = FRE(0)-(FRE(0)<0)*(>'«'» l<> the
FRE (0 X 0 portion will equal —1 if the result is negative and 0 i!
thi' result is positive. So the result of multiplying 655 <6 by that
will equal 0 if the FRE(0) result was positive or —65536 it it was
negative Our original line 100 would then result in either I Rl (0)
(65536) it the result was negative or FRE(0) —0 if the result was
positive In this way we can determine remaining memory whethei
the I Rl (0) statement returns a negative or positive number

11-4. THE REINSTATEMENT

I lie R IM statement doesn't do anything at all R IM stands tin
Rl Milik .ind that is what this statement is used for You may eitlei
Rl M statements anywhere you like in your programs and they will
not altei the program a bit. However, by using Rl M statements
you i an make your programs much easier to read and understand
let s add one to the example from topic 13-3.

90 RE M PROGRAM TO CHECK MEMORY
100 X = FRE(0MFRE(0)<0)*65536
110 PRINT "MEMORY REMAINING = ";X
120 PRINT "MEMORY USED = ";38911 - X

You may type any text you like after the REM keyword and it will
be printed out whenever you list the program In this way Rl Ms
i an be used to serve as a reminder of what you had in mind when
you were writing each section of the program

I I - r>. KEEPING TIME

I he Commodore 64 computer contains an onboard clo< k railed
the pity < lor k I his clock is set to zero when the computet is
I n ,| powered up and is updated 60 times a second Howevei, it does
not run at all when loading from or saving to the cassette tape
devu i' or disk drive

7(>

SYSTEM UTILITIES

There are two Basic language statements that are used to get in
formation from this clcx k the 11 statement and the Tl$ statement.

The Tl statement simply returns the number of 1/60 of a second
intervals that have occurred sine e power up

The Tl$ statement is much more uselul than the Tl statement. The
Tl$ statement returns a string that contains the number of hours,
minutes and seconds th.it have <x < lined siru e power up

100 PRINT 11$

This example statement will print a six digit number on screen.
The left two digits of the number give the number of hours that
have passed since you tirst turned on your computer. The middle
two digits give the minutes and the Iin.il two digits give the seconds.
So there is actually a digital < lot k built into the computer In fact,
you can actually set this dock to any time you like by assigning
the string a value just as you would any other string The following
example will set the clo< k

100 INPUT "I N 11 R IK HI KS A*
110 INPUT"! N 11 R MINUTI S US
120 INPUT "I N 11 R SI ((>NI)S ,($
130TI$ = A$ + HS + (S
140 PRINT T l$

Once a numeric value is assigned to 111’ in this manner, the clock
will then update TIS on a regulat basis I he example below prints
Tl$ on screen along with the conventional colon between the
hours, minutes and seconds

140PRI NT LE FTS(TI$,2),' ,MII)$(I IS, 1,2);" ";RICHT$(TIS>,2)
150 TOR N = 1 TO l)()0
160 NEXT
170 PRINT [up]"
180 GOTO 140

Lines 150 and 160 make up a delay loop that keeps line 140 from
printing the time more- than once each second The loop will ex
ecute 900 times before going on to line I 70

77

SYSTEM UTILITIES

Line 170 is a major key to making this program work M lri pi ml mu
the time in line 140, the system naturally moves the c hi oi position
down one line. Since we want to print the time on I hr ..u iir line
repeatedly, we have to devise a means of moving thr i m m h.K k
up one line. This is not as hard as it sounds.

Recall that the cursor can be controlled using thr i liemliol
keys (bottom row - last two keys on the right) I hesr m i .1 n 1 m iliol
key commands can be embedded within quotes in .1 I*l<If 1 1 '.I.Hr
ment. Simply press the SHIFT key and the CRSR f K IY WHILI
INSIDE THE QUOTES WHEN YOU ENTER T il l I'R IN I .l .i lrm n il
I his will appear on screen as a reverse video (. 1p1l . 1 l t ; but 11 Will
cause the cursor to move up one line when thr proui.im in r . to
print it There will be a more detailed discussion ol 1 I1 1 . ■ "in rpl
in a later lesson

LESSON

Program Storage

Unfortunately, when you turn off the computer any programs you
have entered are lost Without some means of program storage
you would have to retype the entire program each time you used
it Fortunately, the Commodore M computer supports program
storage on either cassette tape or floppy disc This allows you to
SAVE programs on either of th e s e media and I OAD the programs
back into the computer later on

This lesson describes the basic language commands used to SAVE
and LOAD programs on c assette t.ipe or floppy disc.

14-1. SAVING PROGRAMS ON CASSETTE TAPE

The SAVE command copies the program < urrently in memory onto
the cassette tape or floppy disc Once the1 save is completed the
program remains in memory entirely unchanged. Programs are
usually given a name in order to make the program easier to find
later on The name can be up to l(> c bar at ters long

The SAVE command is usually entered m the direct program mode.
A simple SAVE command is shown below

SAVE "PROGRAM NAMI ', I

Note that the PROGRAM NAMI is enc losed in quotation marks
The number 1 is shown following the name and separated from it
by a comma This is the* device number I his number designates
which device the program will be saved to I he Datasette recorder
is device number 1 while* the* disc drive* unit is device number 8.

Actually the device number may be* le*tt out of the- statement In
that case the computer would automatically assume that the
Datasette recorder was the desired devie e*

Once the SAVE command has been entered the computer will
print the instruction PRI SS I’ l AY & Rl CORD ON TAPE. Press

PROGRAM STORAGE

both the play and record keys on the Datasette rec ordei I hr
screen will blank while the SAVE operation is performed I hr. may
take several minutes. When completed the READY advisory will
appear on the screen. At this point, the program is stoted on tape
and also still held in the computer memory.

A secondary address may be added to the SAVI command as
shown below:

SAVE A$,1,1

A secondary address of 1 will cause the program to save ... that
when reloaded it will load into the same memory locations it
occupied originally. A secondary address of 2 will c an .'' an end
of-tape marker to be stored on the tape after the pro^i im Win n
loading, this end-of-tape marker signals the computet that thru' an
no further programs on that tape. A secondary addrcv. ol i will
cause the actions of 1 and 2 to both be performed Not. ih.it m
tins example the program name was held in A$ rathei Ilian i|iiolc-.
I Ins is fine as long as A$ does not exceed the 1(> cha ia ile i limit
for program names.

14 -2. SAVING PROGRAMS ON DISC

Saving programs on disc is similar to saving them on tape I he
device number must be included in the SAVE command I lie tll-.<
drive unit is designated device number 8 A typical SAVI . ..mmand
would appear as follows:

One e this command is executed, the advisory SAVIN !. I'l<< " .H \M
NAMI will appear on screen while the program is In-Inn copied
onto the disc Once the save operation is completed I lie ,nh e.niy
Rl ADY appears on screen

Al times it may be desirable to save a program on din in plat e
ot a previous version of the same program The example In-low
adds the c liarac ters @0: as the first three charac teis ol I lie |ii.i|(iam

PROGRAM STORAGE

SAVE"@0:PROGRAM NAMI ",8

This causes the disc operating system (DOS) to erase the previous
version of the program with that name from the disc. The version
currently held in the computer is then saved in its place.

14-3. VERIFYING PROGRAMS

The advantage in saving programs on disc or tape is that you can
save your programs, shut off the computer, and come back days
or weeks later and load those programs back into the computer.
Most of the time this works quite well Magnetic recording is
not absolutely reliable howevei Sm a 11 inperfections in the disc
or tape material can cause some ol the saved program data to be
lost.

The VERIFY command allows you to < heck the recorded program
to make sure it was cotree tly storeel before* you shut off the com
puter. This command cause's a byte* by-byte comparison between
the program in the computer and the* program that is on tape or
disc. The example below will ve*i ily a program saved on disc:

VERIFY "PROGRAM NAMI

When this command is «*xe*e ule*d, the advisory SEARCHING FOR
PROGRAM NAME will appear on se ree*n Once the program is
found the check is performed II the* pmgram on disc matches
the program in the* computer exae tly, the* advisory OK READY will
appear on screen If the* programs dei ne>t match, the advisory
message ?VERIFY I RR()l< KI A I) V will appear. In the event of an
error, simply resave the* program

To verify programs save*e! on tape, simply drop the device number
from the disc example e ommanel I he instruction PRESS PLAY ON
TAPE will appear on se ree*n whe*n the command is executed The
resulting advisories will he the* same as those used when verifying
disc programs.

14-4. LOADING PROGRAMS I ROM TAPE

The LOAD command allows you to load programs from tape or
disc into the computer When leiaehng from tape it is important
to rewind the tape to .1 point be*fore* the* beginning of a program.
The command shown !>e*h)w will load .1 program by name:

LOAD "PROGRAM NAMI "

When this command is entered, llie* instruction PRESS PLAY ON

81

PROGRAM STORAGE

TAPE will appear on screen. Press the PLAY key on the Datasette
recorder The computer will scan the tape to find .1 pieplant by
the name specified in the LOAD command II an end ol lape
marker is found before the program is, the error mcs.aue (I II I
NOT FOUND will appear on screen.

Once the program is located, the advisory FOUND PROGRAM
NAMI will appear At this point, the program has been lot aled
but it has not been loaded. To load the program, press the (01 1 1

modore logo key (C =) on the keyboard. When the load ■ . « • « e
is c ompleted, the READY advisory will be displayed

You may also load programs without specifying a name i i s i i im t h e

command below This command will load the first pioni.nn lound
on the tape.

LO AD ""

I he same operation as LOAD' " may be accomplished hy pie int:
the SI III I and RUN/STOP keys at the same time

14-5. LOADING PROGRAMS FROM DISC

loading programs from disc is very much like loading Itoin tape
Again, the device number (8) must be added to the I O A I) 1 . 1 lenient
as shown below

I OAD "PROGRAM NAME",8

When this statement is executed the advisory SI Al<< H in t. I < »l<
PROGRAM NAMI will appear on screen If no progiam e. 1 • Kind
nndei that name, the ?FILE NOT FOUND error o(< urs

II the ptogtam is located, the LOADING advisory pnnts o n 1 teen
I i>1 lowed by Rl ADY when the loading is completed

I lie disc operating system does provide some capabilities that ueie
not available when using tape Most involve the ir.e ol |.. .ia l
1 ha 1 at lers in the program name contained in the I () AI > . 1 anl

I he disc contains an index of the name of all progiam. and lilcs
•.lined on the disc You can load this disc directory |nst 1 you
would a Basic program by using the LOAD 'S I In- d<. 11.11 ,inn ISI
tell tin' disc operating system to transfer the dm • 1 > to tin
computer I ntering the LIST command causes the diiei toiy to
pnnt out on sc reen showing the name of each progiam .lined on
the disc

PROGRAM STORAGE

The asterisk (*) is used to load programs by a partial name. For
example:

LOAD "TA *",8

This command will load the first program in the directory that
starts with a TA such as TAnk or 1 Aste When used alone, the
asterisk causes the last program <k i essed to be loaded. If no pro
grams have yet been loaded, the asterisk causes the first program
in the directory to load

The question mark (?) serves as a wild card character in program
names. When the question mark is used in the load command,
any program that matches the name spec ilied in the load command
except for the characters covered by the question mark will be
loaded For example:

LOAD "TA??",8

This command will load the programs IASK, TANK OR TAPS,
whichever is listed first in the program directory.

83

84

LESSON 15
More Screen Printing

Lesson 4 of this tutorial des< ribed some simple techniques to
print data on the screen I his lesson expands on that capability
by showing the techniques to add the use of color, control the
position of text on screen, and use the Basic PRINT statement to
design better screen displays.

The PRINT statement is probably the most powerful Basic com
mand available. It almost comprises a language of its own It is
possible to embed commands within the quote marks found in a
PRINT statement. These commands will be executed when the
PRINT statement tries to print them Many of the operations de
scribed in this lesson are based on this (o i k ept

15-1. CLEARING THE SCREEN

At times it is desirable to completely < lear the screen before print
ing text on it. This can be done by embedding a screen clear com
mand within quotes. This command is entered by pressing the
SHIFT key and the CLR/HOMi Key at the same time while typing
within the quote marks of a PRIN l statement. This will appear
on screen as an inverse video capital S character Consider the
example below:

100 PRINT "[clear]"
110 PRINT "SCREFN CLEARED"
120 END

Note that although we have simply written clear within brackets
in the print statement in line 100, this will appear on screen as a
reverse video graphics character inside quotation marks.

15-2. CURSOR CONTROL

Recall from an earlier lesson that there are two cursor control keys
located at the lower right-hand side of the keyboard. These keys

85

MORE SCREEN PRINTING

may be embedded in quotes just as the CLR/HOMI key v\,r, in
the previous example. These embedded cursor command', i .«11 be
used to move the print cursor left, right, up or down so lh.il I lie
next thing printed by your program can appear anywheie mi
screen that you like.

In the example below, the cursor is moved down two |>.i< < .diet
each word is printed. Keep in mind that the cursor will m<>\ < ■ l< »v% n
one space automatically after any PRINT statement th.it <I-•• uni
end in a semicolon Because of this, by embedding one down i m ini
control command, you will cause the cursor to skip a line I 11*«• lie
by embedding one up cursor control command you would . ,mse
the cursor to overprint the same line. Recall that line 10(1 i It h .
the screen.

100 PRINT "[clear]"
110 PRINT "FIRST PRINT[cursor down 1]"
120 PRINT "SECOND PRINT"
130 END

Again note that since the reverse video graphic char.u tel t .iniml he
reproduced inth is manual, we have simply spelled out (.............town
1 in brackets in line 110. When entering this line simply pie tin
CRSR /T' key once after entering the FIRST PRINT text

15-3. PRINTING IN COLOR

Recall that the numbered keys 1 through 8 cause the rnlu i ol
printed text to change when used with the CTRL key ot the (nm
modore logo key (C =) In this way up to 16 colors are possible

These color command may also be embedded in quote'. Simply
press the CTRL or C= key and the numbered key th.it < one.ponds
to the color of choice while typing within the quote iti.uk>. nl ,i
PRINT statement A reverse video symbol will appear in the stale
ment when listed but as in the previous examples in (his lesson
the symbol will be executed rather than printed (onsitlei the
following example:

100 PRINT "[ctrl/3]RED"
110 PRINT "[ctrl/7]BLUE"
120 PRINT "[ctrl/6]GREEN"'"

Once a color is set, printing will continue in that color until the
next color control command is encountered

86

MOKE SCREEN PRINTING

15-4 PRINTING IN REVERSE VIDEO

The numbered keys 0 and 9 control tin* reverse video function when
used with the CTRL key These commands can also be embedded
in quotes as shown in the example below

100 PRINT "NORMAI V IDEO"
110 PRINT "[ctrl/9] Rl VI RSI V IDEO "
120 PRINT "[ctrl/0]NC)RMAI AGAIN"

Note that CTRL9 activates reverse video and C I RLO turns it off.

15 -5. SETTING BACKGROUND AND BORDER COLOR

Notice that on the video screen the main portion of the screen
is white This area is termed the liAC KGKOUND. The edge of the
screen is called the BORDI R and throughout the Basic Tutorial
program it appears in a number ol different colors. The color of
each of these two areas c an he (hanged quite easily

The color of each area is determined by a number stored in a
memory address in the computer Address 53280 controls the
border color while address 5 !.’HI controls background color By
changing the number stored in either address you can change the
color

There are 16 colors available and eac h is represented by a number
as shown in the following table

MORI SCREEN PRINTING

COLOR NUME

BLACK 0
WHITE 1
RED 2
CYAN 3
PURPLE 4
GREEN 5
BLUE 6
YELLOW 7
ORANGE 8
BROWN 9
I IGHT RED 10
GRAY I 11
GRAY 2 12
I IGHT GREEN 13
I IGHT BLUE 14
GRAY 3 15

I he P()KI statement allows you to alter the content’, ol .in\ mem
ory lot .it ion I or example:

POKE 53280,2

I Ins statement pokes the number 2 into memory lot alum S 1,'IK)
Notl< 0 that thi' desired value (2) follows the address (5 I ’/lii| and
is separated from it by a comma This example would i haii|ie I he
border (olor to red since 2 is the number for red and 1,'MU r, the
address that (ontrols border color

In the example below, all the numbers representing < <11■ >is aie
poked into the border color address (53280) one at a lime lines
120 and 130 create a delay loop to allow enough time between
i olor i haii^es so that each color can be seen

100 I OR N = 0 TO 15
I K) POKE 53280,N
I 20 I OR P = 1 TO 500
130 Nl XI P
140 Nl XT N
1 50 t N D

lly (hanKiriK the address in line 110 to 52381 you < an i leate the
same cffee t on bac k^round color

MORE SCREEN PRINTING

100 FOR N = 0TO 15
110 POKE 52381,N
120 FOR P = 1 TO 500
130 NEXT P
140 NEXT N
150 END

15 -6. THE SPC STATEMENT

I he SPC statement allows you to print up to 255 spaces on screen.
This can be useful when formatting text for screen displays The
number of spaces to be printed is spec ified by the number held
in parenthesis following the SPC keyword Consider the example
below:

600 PRINT SPC(6) "NAMI ";SPC(16)"PHONE"
610 END

It is important to note that the (ursor will not merely skip 16 spaces
before printing PHONi as a I Alt statement would Blanks will
actually be printed in each ot (lie !(> spaces. Any text that might
be in those spaces will be overwritten and effectively erased.

15-7. THE POS STATEMENT

The POS statement returns a number between 0 and 79 indicating
where the cursor is located on the screen line If the value re
turned is greater than 40 il indie ates the next screen line POS, of
course, stands for position The argument of the POS statement
is a dummy This means that any number may be used in paren
thesis with no effect at all I he value returned will be the same
no matter what value is used in the argument. Consider the example
below:

100 FOR N = 1 TO 50
110 PRINT "A ",
120 IF POS(0)= 30 TUI N 140
130 NEXT N
140 PRINT "[ctrl/1) T ND"

In this example lines 100 130 set up a loop to print the letter A 50
times Line 120, however, breaks the loop when the print cursor
reaches position 30 Note also th.it a color control is used in line
140 to make END print in black

89

LESSON 16
Data Handling Techniques

One of the most useful capabilities of the personal computer is
its ability to deal with large amounts of data. This data can be
stored, sorted and searched in a number of ways to put this in
formation in a more useful format A common example of this
would be a mailing list. Names, addresses and phone numbers are
stored in the computer as data I his data can then be searched
for a particular name. Once the name is found, the associated
address and phone number < an be printed on the screen. This
lesson describes some of the more basic techniques involved in
storing and using data.

16-1. VARIABLE ARRAYS

An array is a list of data items referred to by a single variable name.
A list of phone numbers could he considered an array with each
number an element of the array

Individual elements of the array can be accessed by use of a sub
script. A subscript is a number in parenthesis following a variable
name. This number locates the element within the variable array.
For example:

A(1) = 4289239
A(2)= 3357765
A(3) = 4280754
A(4) = 4276880

In this case, there is an array of four numbers stored in variable A.
As long as the number of elements of an array does not exceed
10, these arrays can be specified by simple assignment statements
such as those shown following

DATA HANDLING TECHNIQUES

100 A(1) = 4289239
110 A(2)= 3357765
120 A(3) = 4280754
130 FOR N =1 TO 3
140 PRINT A(N)
150 NEXT N

lutes 100 120 assign numbers to each of three elements of the
variable A Lines 130-150 simply print out these numbers.

II there are more than 10 elements in an array, a DIM (dimension)
statement must be used to reserve space within memory for the
d.it,i I he largest number of elements possible is 32767 Ihe DIM
keywoid is followed by the variable name and the number of
elements to be reserved. The example below dimensions the vari
able A tor 20 elements.

100 DIM A(20)
110 FOR N = 1 TO 20
120 A(N)=N*15
I 10 NEXT N
I 15 PRINT “ [clear screen]"
140 FOR P = 1 TO 20
150 PRINT A(P);TAB(2);
I fit) NEXT P

In this example lines 110-130 fill the variable array with multiples
til r> I me I 15 clears the screen. Lines 140-160 print out the con
tent-, nl the array on a continuous line with 2 spaces between eat h
nunibor

An iiniiiiit.int characteristic of DIM statements is that they can
nnly he executed one time in a program. If the program attempts
to ■ him ute ,i DIM statement a second time, the Rl DIM ' I) ARRAY
emu me-.saue appears. DIM statements can be* reexecuted, if
nei ev„ny hy tirst executing a CLR statement Any data held in
the ui.iy would he lost however.

II.) MIJI MDIMENSIONAL ARRAYS

I In (nmmodore llasic language supports arrays of multiple* di
II if n . ii in •• I wo columns of 20 numbers is an example of a two

I)A I A HANDLING TECHNIQUES

dimension array. The DIM statement for such an array would look
like this:

DIM B(2,20)

The first number in parenthesis is the number of columns and the
second number indicates the number of elements in each column.
To access any element of the array, both the column and the
element in the column must be spe(ified The statement PRINT
B(2,17) would print out the seventeenth element in column two.

In the example below the variable B is set for two dimensions (3
columns of 20 elements). Lines 210-240 make up a loop to fill the
array with multiples of 15 in column one, 25 in column two, and
42 in column three. Line 250 clears the screen and lines 260-280
print out the three columns

200 DIM B(3,20)
210 FOR N = 1 TO 20
220 B(1,N)=N*15
230 B(2,N)= N*25
235 B(3,N)= N *42
240 NEXT N
250 PRINT"[clear screen]"
260 FOR L = 1 TO 20
270 PRINT B(1 ,L),B(2,L),B(3,L)
280 NEXT L

Arrays can be dimensioned for up to 255 dimensions. An example of
a three dimensional array might look like this

DIM B(5,3,20)

This example could be thought of as five pages of three columns
of 20 elements.

Arrays can also be used for string and integer variables by simply
adding the data type character $ or % to the DIM statement (DIM
A$(20)).

Although it is theoretically possible to DIM an array with 255
dimensions containing 32767 elements each, this array would
contain a staggering total of 8,355,585 elements Floating-point
variables require 5 bytes of memory to store each element of an
array. String variables require 3 bytes per character and integer
variables require 2 bytes to store oa< h element An array contain-

DATA HANDLING TECHNIQUES

ing 8,355,585 floating-point numbers would require 41,777,925
bytes of memory. Unfortunately, the Commodore 64 computer
only provides 38,911 bytes of memory. If a program attempts to
execute a DIM statement that exceeds the 38,911 byte limit, an
OUT OE MEMORY error message will appear on screen

16-3. READ AND DATA STATEMENTS

Arrays provide a powerful tool for handling data because they
are very easy to search through and because it is easy to assign
a value to any one element without disturbing any of the others.
Arrays do have a disadvantage however. Any time a Basic program
line is entered into the computer, all data held in any arrays is lost
Eor this reason, it is often useful to store data in DA I A statements
and load data from the DATA statements into the array using a
READ statement.

DATA statements are simply lists of data elements that follow a
DATA keyword. The data elements are separated from each other
by commas. Numbers, characters, even strings can be stored in
DATA statements. A typical DATA statement is shown below

DATA JOHN, MARY, BILL, JIM, KATHY

All DATA statements in a program are treated as one continuous
list starting with the first item in the lowest program line number
and continuing through the last item in the DATA statement with
the highest program linenumber.

DA IA statements are not actually executed like other types of
statements. They are referred to for information by other portions
of the program For this reason they are often found .it the very
end of a program although their location does not matter If the
data items are strings that contain punctuation such as commas,
periods or semicolons, each data item should be en< losed in quote
marks

The READ statement is used to fill variables from the list of items
held in the DATA statements. Each time a READ statement is
executed another item is pulled off the list held in the DA I A state
ments If a READ statement is executed after the hist item has
already been read from the list, the OUT OF DATA error will occur
The type of variable that the READ statement is filling must match
the type of data available from the list. If not, the error message
^SYNTAX ERROR will occur Consider the example below

94

DA I A HANDLING TECHNIQUES

100 DIM A$(20)
105 PRINT"[clear screen]"
110 FOR N = 1 TO 20
120 READ A$(N)
130 PRINT A$(N)
140 NEXT N
150 DATA JOHN, |AMI S, ROM RT, W ILLIAM , BETTY,
SUSAN, DOUGLAS, NAN(Y
160 DATA G EO RG I, KATHI RINF, JUANITA, HAROLD,
ARTHUR, DAVID, GRI GORY
170 DATA EVELYN, HI RBI R I , M ICHAEL, ELIZABETH , FR
ANCINE

In this example, each of the twenty names held in the DATA state
ments was read into the A$ variable array The A$ array is then
printed on the screen

A data pointer is used to locate whu h item from the data list is to
be read next. When this pointer reat lies the last item on the list
it will prevent any further Rl AD statements from executing In fact,
if another READ statement is attempted, the OUT OF DATA error
message will appear on screefi I his d.ita pointer can be reset to
the first item on the list by the Rl S IO R I < ommand The data can
then be reread by another segment ol the program. The RESTORE
command has no argument It is ,i simple one word command

16-4. SEARCHING AND SORTING ARRAYS

One of the disadvantages of storing data in DATA statements is
that there is no way to change any ol the data from within a pro
gram Any changes have to be made manually Data stored in
arrays can be changed quite easily however. Presented in this
topic is a program to sort names held in an array so that the names
are stored in alphabetic.il order I his particular sort routine is
commonly known as a BUBBI I soil

Recall from an earlier lesson th.it we (.in < ompare two strings using
relational operators such as < , and > One string is con
sidered to be less than another string il it would normally precede
the string in alphabetical order We will use this concept in our
bubble sort program which is shown below Assume that the names
loaded into the A$ array in the last topu are still there

DAIA HANDLING TECHNIQUES

100 FOR PASS = 1 TO 19
110 FLAG =0
120 PRINT"[home]"
130 FOR N = 1 TO 19
140 IF A$(N) > A$(N+1) THEN GOSUB 300
150 PRINT A$(N);"
1W) GOSUB 400
170 NEXT N
180 PRINT A$(20)
190 IF FLAG =0 THEN END
200 NEXT PASS
210 I ND

UK) BUFFERSS = A$(N)
)10 A$(N) = A$(N+1)
120 A$(N + 1) = BUFFERS
110 FLAG = 1
140 RETURN

400 FOR T = 1 TO 50
410 NEXT T
420 Rl TURN

I 11 1<■Kin 200 make up a PASS loop. This loop establishes the num-
l»i'i nl limes the program will cycle through the array to alphabetize
tile list nl names 1 he greatest number of passes required in a bub
ble miiI is always one less than the number of items in the list

I III'' I 10 /ernes the FLAG variable. The flag is used to detect when
.i pass is made where no names had to be swapped This would
II id i i ale that I he sort was completed and all names were in alpha-
helii al otlli't

I iiii I.M) i i m I a ins a HOME command within quotes so that for
e.n h p.iv, the print cursor is reset to the top of the screen

I iin . I 1(1 1/0 make up a compare loop which is nested within the
pass loop line 140 of this loop compares the name located at
element N ol the array with the name that immediately follows
it in the .may II the two names are already in alphabetical order
mi ,u In hi is taken If the names are not in order the exchange sub-
ii>i111ne i nnt,lined in lines 300-340 is called to swap the two names
and i I the I I A (. variable to 1

line IM) punts element N of the array along with some trailing
■ 1 1 ,n i■ ■■ In ei.ise any characters left behind by longer names pre

DAI A HANDLING TECHNIQUES

viously printed on that line The compare loop is repeated for
each of the items in the loop except the last one which has no
item following it.

Line 180 prints the last item in the array since the compare loop
only prints up to item 19.

Line 160 calls a simple time delay loop located in lines 400-420.
This loop along with all of the print statements in this program are
provided so that you can see this sort routine operate step by step.
They are unnecessary in a normal sort routine.

Line 190 ends the program if the flag is still 0. This would indicate
that no exchanges were made during this pass so all items in the
list must be in order If an exchange was made during each pass
the elements will all be in order alter 19 passes anyway and line
210 will end the program.

The exchange subroutine is contained in lines 300-340 Line 300
copies element N of the array into a buffer string The element
following N is copied into N by line 1I0 I ine 320 stores the con
tents of the buffer string in element N 11 I his effectively swaps
the two array elements. Line 110 sets the I I AG variable to 1 indi
cating that a swap has been performed

As this example makes apparent, the various names bubbled up the
list to their appropriate alphabetu al positions In actual use, this
routine would not contain print statements and time delay loops.
The computer is quite capable of sorting a list of several hundred
names in just a few seconds

ASSIGNMENT

Write a telephone directory program in live parts as follows:

Part One

Dimensions a two dimensional siring array to hold 50 names, 50
addresses and 50 phone numbers I ills entire array with zeroes.
This program section is contained in line numbers 100-199.

Part two

Clears the screen and prints a menu presenting four options:

1 ENTER NAMES
2. SEARCH NAMES
3. ALPHABETICAI SOR I
4 QUIT

97

DATA HANDLING TECHNIQUES

Keyboard is monitored and causes a jump to program line 1000
if ENTER NAMES is selected, 2000 if SEARCH NAMES is selected,
7000 if ALPHABETICAL SORT is selected and ends program if QUIT
is selected This section of program to occupy lines 200-499.

Part Three

ENTER NAMES- searches array to find first array element that does
not contain a name Allows continuous entry of names, addresses
and phone numbers into array beginning at first empty element
If MENU is entered as a name it is not stored in array but rather
causes a jump to the main menu section causing it to display
this program section may occupy any program lines from 1000
1999

Part Four

SEARCH NAMES- allows user to enter a name. Array is then searc h
ed for that name. If found, the corresponding address and phone
number, along with the entered name is displayed on si reen. If
the array search is not successful an advisory message to that effect
is displayed on screen. Use may then enter an alternate name If
Ml NU is entered as a name it will cause a jump to the main menu
I his section of program occupies lines 2000-2999

Part Five

ALPHABETICAL SORT- This section of the program clears the
screen and asks the user to standby while an alphabetical sort
of the array is performed A count is made to determine ho w many
names are contained in the array. Those names, along with their
corresponding addresses and phone numbers are then sorted into
alphabetical name order The user is then advised th.it the sort is
complete After a short delay, the main menu redisplays I his pro
gram section occupies lines 7000-7999

Once your program is working to your satisfaction, save il on disc
for later use A sample program solution may be found in Appendix
A of this manual

98

LESSON

Disc Files

Lesson 14 described the various methods of saving programs on
disc. While this works fine, it is often desirable to save data such
as that held in data statements or variable arrays on disc. The pro
gram can be contained in the computer and data can be moved
from disc to the program and from the program to disc as necessary.
By switching data in and out of the < omputer this way, extremely
large blocks of data can lie stored and used by a relatively small
program

I hese data files may be one of three types sequential, random or
relative This lesson describes the use of sequential files

Sequential files are somewh.it like data statements. Data must be
sent to sequential files one item at a time and data read from
sequential fil£s is read one item at a time from beginning to end
Ihe first item that was sent to the file will be the first one read
when the information is retrieved Sequential files can hold numbers
or string data [up to 80 char.u teis per item) Any number of items
can be sent to a file.

17-1. SENDING DATA TO S IQUt NTIAL FILES

Before sending data to the disc to be stored we must give the file
a name and open a channel of (ommumr ation to be the disc drive
The OPEN statement does just that

OPEN 1,8,8,"FILE NAMf ,S,W ,"

The first number (1) following the ()l’ l N keyword is the file number
This can be any number between I and 117 and it is used to identify
the file that is being used
The second number (8) is the devil e number and it will always be 8
for disc drives.
The third number (8) is the (hannel number For sequential files
this number can be anything from 1 to 14 I his is the channel used
to communicate with the disc drive

99

DISC FILES

Notice that these numbers are separated by commas. Immediately
following is a string held in quotes. This string contains a file name,
file type and direction. The file name can be up to 16 characters
and is used in the disc directory to identify the file The file type
in this case is S for sequential. The direction is W (write) when
sending data to the disc and R (read) when reading from the disc.

Once the file is opened, we can send data to the disc using the
PRINT# statement. This statement must call the same file number
as the OPEN statement did

PRINT#1 ,A$(7)

I Ins statement will send item 7 from the A$ array to disc file num
ber one.

I he example below assumes that the names stored in A$ array in
lesson 16 are still there. This example will send each of the twenty
names to a sequential file named FILE TEST and numbered 1

500 OPEN 1,8 ,8 ,"FILE TEST,S,W "
510 FOR N = 1 TO 20
520 PRINT#1 ,A$(N)
530 NEXT N
540 CLOSE 1
550 END

When executed this example will store all 20 names in disc file
#1 1 his file will be listed in the disc directory as FILE TEST In this
example line 500 opens the file to write Lines 510-530 make up a
loop that sends each of the 20 names in the A$ array to the disc.
I ine 540 closes the file This is very important. If files are left open
data < an be lost and other files may even be destroyed

17-2. READING DATA FROM SEQUENTIAL FILES

I he INPUI# statement is used to read an item from the disc file
Again the same file number used in the open statement must be
used in the INPUT# statement

INPUT#1,A$(7)

I Ins example would pull the next available item from the disc file
and store it in element 7 of the A$ array. The INPUT# statement
(an handle strings or numeric data up to 80 characters in length

I lies must be opened and closed when reading files just as they
were when writing files. However, the OPEN statement will have
the letter R (read) for the direction character.

11K)

DISC FILES

In the example below line 600 i lears all variables including the
A$ array. Line 610 dimensions the A1> array and line 620 clears
I he screen Line 630 opens the file I incs 640-670 make up a loop
to read each name from the disc file Into the A$ array and print
them on the screen.

600 CLR
610 DIM A$(20)
620 PRINT"[clear screen]"
630 OPEN 1,8,fi,"E ll I 11 SI.S .R
640 FOR N = 1 TO 20
650 INPUT#1,A$(N)
660 PRINT A$(N)
670 NEXT N
680 CLOSE !
690 END

Line 680 closes file number 1 Again, il is extremely important to
properly close all files accessed so that no disc files are damaged

17-3. UPDATING SEQUENTIAL FILES

Many times it is necessary to send data to a till' already created
If the OPEN statement given in topic 17 I is used again, a new
file will be created with the same name I his will cause two files
on the disc, both with the same name I his is very undesirable.

We can avoid this by adding the i haia< lers @0: to the file name
in the OPE N statement as shown below

OPEN 1,8,8,"@0 I II I II S I.S .W

Data can now be sent to the existing tile number 1 FILE TEST

ASSIGNMENT

Load the telephone directory progiam written for the lesson 16
assignment. Add program lines to this program to add sequential
disc filing capability to this program in live parts as follows

Part One

MENU- clears the screen and print a menu that presents four op
tions:

1 FILE ARRAY
2 LOAD ARRAY
3. UPDATE EXIST INC, I II I
4 RETURN TO MAIN Ml NU

DISC FILES

This section of program will monitor the keyboard and jump to the
appropriate section of program in response to menu selections
as follows:

This program section occupies lines 3000-3500.

Part Two

FILE ARRAY- This program section clears the screen and allows
the user to enter a file name and file number. The contents of the
array are then saved in a new sequential disc file under the entered
file name and number. An advisory message indicating that the
file operation is completed appears on screen after the file opera
tion has been performed. After a short delay, the file menu re
displays. This program section occupies lines 4000-4499

Part Three

LOAD ARRAY- This program section clears the screen and allows
the user to enter the name and number of an existing sequential
disc file. The specified file is loaded from disc into the array Once
loading is completed, an advisory to that effect appears on screen
After a slight pause, the file menu redisplays This program section
o(< upies lines 4500-4999.

Part Four

UPDATI I XISTINC FILE- This program section clears the screen
and allows the user to enter the name and number of an existing
sequential disc file. The contents of the array are then saved to
tli.it disc file- replacing whatever was stored there Once filing is
completed, an advisory to that effect appears on screen After
a slight delay the file menu redisplays. This program section oc-
c upies lines 5000-5499.

Part Five

Revise the main menu created in lesson 16 to list a FILE AREA
option on the menu If selected, this option should cause a |ump
to line 1000 of the program.

Once your updated program is working to your satisfaction, save
it on disc for later use. A sample solution is provided in Appendix A
ol this manual

FILE ARRAY
LOAD ARRAY
UPDATE EXISTING FILE
RETURN TO MAIN MENU

4000
4500
5000
200

LESSON

Disc Utilities

The disc drive unit contains a small computer of its own that per
forms all the necessary housekeeping functions required to store
programs and data files on the dis< By sending commands to this
computer we can cause it to perform a variety of different utility
functions. Programs or files (. 1 1 1 be erased, copied or renamed
quite easily

Although disc commands are not a< tually < onsidered a part of the
Basic language, a familiarity with these commands is an essential
part of programming the Commodore 64 (omputer. This lesson will
present those commands ne(essary to use the disc drive effectively.

18-1. THE COMMANDCHANNEL

Recall from an earlier lesson that there .ire 16 channels available to
communicate with the disc drive Channels 0 and 1 are reserved
for use by the system when loading or saving programs These two
channels should never be used in an OPE N statement Channels
2-14 may be used for sending data to and from the disc drive.
Channel 15 is the COMMAND c hannel All disc commands should
be sent to the disc drive using c hannel I 5

In order to send a command to the disc drive, channel 15 must first
be opened The easiest way to do this is with the statement:

OPEN 15,8,15

Recall that the first number following the OPEN keyword is the
FILE number For most disc commands which file number is used
is not important The second number is the DEVICE number This
is usually 8 for disc drives The last number is the channel number
This number is always 15 when sending disc commands.

Disc commands are sent to the disc drive using the Basic PRINT #
statement as shown :

103

DISC UTILITIES

100 OPEN 15,8,15
110 PRINT#15,"COMMAND"
120 CLOSE 15

Line 100 opens the command channel. Line 110 sends whatever
command is selected to the disc drive. The command is held within
quote marks following the PRINT#15,. Line 120 closes the file.

18-2. FORMATTING NEW DISCS

Before a disc can be used for the first time it must be FORMATTED.
The disc drive erases the entire disc, puts timing and block markers
on it, and creates the disc directory.

The NEW command is used to format discs. This command is not
the same as the Basic language statement NEW which erases all
programs in the computer. The NEW disc command appears below:

110 PRINT#15 ,"NEW0:NAME, ID CODE"

Note that the characters zero (0) and colon (:) follow the word NEW.
The zero is the drive number (usually zero). Any text put in as the
NAME will appear in the disc directory as the title of the disc. The
ID CODE can be any two characters. This code further identifies
the disc.

Once the command channel is opened and the NEW command sent,
the disc drive will format the new disc. This usually takes about
90 seconds. After the drive stops turning, make sure the file is
properly closed by a CLOSE 15 statement.

18-3. ERASING FILES

The SCRATCH command is used to erase unwanted files from the
disc. The SCRATCH command and the name of the file to be erased
are sent to the disc drive by a PRINT#15 statement. Consider the
example statement below:

100 PRINT#15,"SCRATCHO:NAME"

Again note that the SCRATCH command is followed by the drive
number (zero) and a colon. Once this statement is sent to the disc
drive, the file named will be erased and the area it occupied will
be made available for other programs or files.

18-4. RENAMING FILES

Renaming files is almost as easy as erasing them. The RENAME

104

DISC UTILITIES

command is used just as the SCRATCH command was except that
(wo names will follow it instead of |iisl one name.

110 PRINT#15,"RENAMI 0 Nl W NAME = OLD NAME"

Notice that the NEW NAME and the Ol 13 NAME are separated
by an equals sign (=). The file itsell will not be changed but the
file name will be changed to the text that immediately follows
the colon in the PRINT#15 statement

18-5. COPYING FILES

At times it might be desirable to copy a file so that two identical
files exist on the same disc. In this way if one area of the disc is
damaged there is still a chance th.it the backup version of the
program or file can be recovered

The COPY command allows you to make a copy of any program
or file on the disc. It will not copy programs from one disc to an
other. The COPY command is shown below:

110 PRINT#15,"COPY0 Nl W NAMI OOLD NAME"

Notice that like the RENAMI command the two names are sep
arated by an equal sign However, in this c ase a disc drive number
(0) and colon also appear with the equal sign This statement will
cause the file specified by OLD NAMI to be duplicated and stored
under NEW NAME.

18-6. COMBINING FILES

It is possible to splice files together using the COPY command
introduced in the last topic The format lor this command is shown
below:

110 PR I NT#1 5,"COPY0 Nl W I II I OFILE A,0:FILE B

This command will create a new file made by adding file B to the
end of file A. Up to four separate liles may be combined in this
way. Note that each file in the series must be separated by the
characters ,0: to keep the various file names straight.

18-7. VALIDATING DISCS

After a disc has been used to save*, scratch, rename and copy
programs and files a number of times, there are likely to be a num
ber of gaps of unused disc area s< attered in between files as a

105

DISC UTILITIES

result of the various operations performed. These gaps cannot be
used because they are usually too small to hold the amount of data
in most files.

The VALIDATE command will cause the disc drive to go through
the entire disc and clean house. All the files will be lined up in
order and any files that were never properly closed by a CLOSE
statement will be deleted As a result, more storage area will be
made available for files. The format for the VALIDATE command
is shown below:

100 PRINT#15,"VALIDATE"

10<>

While the video display normally does a good job of displaying
computer output, it does have a lew glaring shortcomings. Most
of these disadvantages have to do with the si/e limitations of the
screen. The video display of the Commodore (>4 computer is limited
to 25 lines of 40 characters In some applic ations this just won't do.

l or example, when reviewing a Basic program of several hundred
lines for errors, the 25 line display lorces you to constantly relist
various portions of the program By using a printer as an output
device you could print out the entire program and have it right
in front of you.

I he VIC-1525 graphics printer can print .my c h.iracter that can be
produced by the Commodore (>4 computer and displayed on
screen Additionally, it provides a line length ol 80 characters and
no vertical line limitations at all I Ins lesson describes some of
the Basic programming techniques required to print text on the
VIC-1525 graphics printer

19-1. OPENING PRINTER FILES

The printer is recognized as a peripheral device just as the disc
drive is Recall that the disc drive was usually device number 8
The printer is usually either device number 4 or number 5 de
pending on the position of the* sell diagnostic switch on the back
of the printer.

Recall also that in order to send dala lo a disc drive a file had to
first be established using an O l’l N statement Use of the printer
is pretty much the same in this respect I he format for opening
printer files is shown below

OPEN 8,4

The first number after the O l’ l N keyword is the file number (in
this case 8). The file number can be anything between one and 255

107

USING THE PRINTER

This number will be used in all subsequent commands to the printer.
Separated from the file number by a comma is the device number
(in this case 4). This number must correspond to the switch position
selected by the self-diagnostic switch located on the back of the
printer case.

After a file is OPENed, commands may be sent to the printer as
often as necessary to print whatever is desired. Always remember
to CLOSE the open print file when finished.

19-2. PRINTING DATA

The PRINL# statement is used to send data to the printer to be
printed much as the PRINT statement is used to print data on the
screen The file number must be specified in the PRINT# state
ment however. An example is shown below:

1000PEN 8,4
110 PRINT#8,"ORBYTE SOFTWARE"
120 CLOSE 8

This example will cause the printer to print ORBYTE SOFTWARE
one time starting at the left side of the paper.

String variables can be printed on the printer just as easily as literal
text ent losed in quote marks Consider the following example:

300 A$ = "W INSTON CHURCHILL"
310 OPEN 9,4
320 PRINT#9,A$
330 CLOSE 9

I his example will print WINSTON CHURCHILL on the paper

19-3. UPPER CASE/GRAPHICS MODE

Re< all th.it the Commodore 64 keyboard provides two character
sets tli,it (.in be printed on screen - UPPER CASE/GRAPHICS and
Ul’PI R/l ()WI R CASE These two modes are also available on the
V I(r>2'> printer along with two other modes - DOUBLE W IDTH,
and Rl VI RSI I IFLD Printer modes are selected by sending printer
control (odes to the printer via PR INT# statements Initially the
printer is In the UPPER CASE/GRAPHICS mode so there is no need
to send a < ontrol code to enter this mode when the equipment
is t i i st turned on In this mode all characters will be printed using
the UI’IM R CASE/GRAPHICS character set and will appear on
paper i i is t a s they would on screen

108

USING THE PRINTER

Printer control codes are always numbers contained in a CHR$
statement The numeric code lor the UPPER CASE/GRAPHICS
mode is 145. By sending a CHR$(145) to the printer this mode is
selected. Consider the example' below

200 A$ = "JOHN HANCOCK"
210 OPEN 7,4
220 PRINT#7,CHR$(145)A‘t>
230 CLOSE 7

Notice that there is no punt tuation between the CHR$(145) and
A$ in line 220 of this example I his hit of program will print the
name JOHN HANCOCK in upper < ase letters

19-4. UPPER/LOWER CASE MODE

Selecting the UPPER/LOWI R CASI mode is just a bit different
from selecting any of the other modes in tli.it a secondary address
of 7 must be added to the O l’l N statement to ensure proper opera
tion The control code for UP PI R/l OWI l< (ASE mode is CHR$(17)
The example below illustrates this

200 A$ = "JOHN IIANCOl K
210 OPEN 3,4,7
220 PRINT#3,CHR$(17)A$
230 CLOSE 3

Ihis example will print the name |ohn han< o< k in lower case letters

19-5. DOUBLE WIDTH MODE

The VIC-1 525 printer has the ability to print double wide characters
This can be very effective for titles, paragraph headings, or any
where a larger type can be used to attr.u t attention The DOUBLE
WIDTH mode is selected by sending a (I IR$(14) control code to
the printer

200 A$ = "JOHN HANCOCK
210 OPEN 3,4
215 PRINT#3,CHR$(14) NAMI S
220 PRINT#3,CHR$(15)(IIR$(17)A$
230 CLOSE 3

In this example line 215 causes NAMIS to print out double width
The name held in A$ will then print out in lower case letters

DOUBLE WIDTH mode can be used in (ombination with any of the

109

USING THE PRINTER

other modes. If in UPPER/LOWER CASE mode for example, upper
and lower case letters can still be printed but they will appear
double width DOUBLE WIDTH mode is turned off by sending the
control code CHR$(15) to the printer as shown in line 220 of the
example.

19-6. REVERSE FIELD MODE

Recall that when printing on screen characters may be printed
in reverse video. The VIC-1525 printer can do the same thing using
the Rl VERSE FIELD mode. Like DOUBLE WIDTH mode, REVERSE
I II LD also has two control codes. CFTR$(18) turns it on and CHR$
(14b) turns it off.

100 OPEN 6,4
110 PRINT#6,CHR$(18)''REVERSE FIELD ”
120 PRINT#6,CHR$(146)“ NORMAL"
130 CLOSE 6

I ine 110 prints REVERSE FIELD white on black while line 120
prints NORMAL as normal characters

19-7. CONTROLLING PRINT POSITION

I here are three more functions of the printer that can be controlled
by sending control codes to the printer All have to do with c ontrol
ling where on the paper the printer will print the data

I INE EEED Sending control code CHR$(10) to the printer causes
,i line feed to be performed The paper is moved up one line so
that the print head prints on the next line. The print head does NOT
return to the left margin of the paper however.

CARRIAGE RETURN Sending the control code CHR$(13) causes
,i carriage return to be performed In this case, the paper is also
moved up one line but the print head also returns to the left margin
of the paper. This function is actually exactly like a carriage return
on a normal typewriter

TAB POSITION The normal TAB function used when printing on
sc reen does not work on the printer However, the same thing can
be accomplished using the control code CHR$(16) followed by a
two digit number in quotes representing the number of spaces to
tab

USING THE PRINTER

200 A$ = "JOHN HANCOCK”
210 OPEN 7,4
220 PRINT# 7,CHR$(16)"20"A$
230 CLOSE 7

In this example line 220 will print the contents of A$ beginning
20 spaces from the left margin of the page

19 -8. LISTING PROGRAMS

One of the main advantages of having a printer is the ability to
print out entire programs on paper using the Basic LIST command.
However, this LIST command norm,illy < auses the program to print
out on the video screen In order to print out a program we must
first transfer control from the; computer to the printer.

The CMD command performs this transfer of control. Once it is
sent to the printer, the line to the printer is left open and the printer
is said to be listening. At that point the Basic commands LIST and
PRINT will be executed by the printer instead of the computer.

100 OPEN 3,4
110CMD3
120 PRINT“ PRINTER IN CON I ROL"
130 LIST

In this example line 100 opens tile number 3 to the printer. Line
110 transfers control to the printer using the same file number.
Line 120 is a single PRINT statement Normally it would cause
PRINTER IN CONTROL to be printed on screen Since control
was transferred to the printer, the statement is printed out on the
printer instead.

Eor the same reason, line 130 causes the program to list out on the
printer instead of on the screen. I lowever, when any LIST command
is executed the computer stops the program when the listing
function is completed and the system is loft in the direct mode.
This causes a problem because the lint's to the printer and file 3
are left open. The line can be closed by entering the statement
PR INT#3in direct mode. File ! can be dosed by entering the
statement CLOSE 3 in the direct mode

m

USING THE PRINTER

ASSIGNMENT

Load the telephone directory program developed in the assignments
for lessons 16 and 17. Add a program section that counts the
number of names in the array file. The program then prints those
elements of the array that contain names/addresses/phone numbers
out on the VIC-1525 printer in a double column format similar to
that below:

Name Name
Address Address
Phone number Phone number

Revise the main menu to add the PRINTOUT menu selection. Re
vise the keyboard monitor to jump to program line 6000 if printout
is selected from main menu. The printout section occupies program
lines 6000-6999.

When the program works to your satisfaction, save it on disc for
later use. It would be a good idea to printout a complete listing
of the program on the VIC-1525 printer at this time.

A sample program solution is provided in Appendix A of this
manual.

112

— LESSON

Improving Your Programs

When you write your first few programs it will seem that 38911
bytes of memory ought to be enough to satisfy the most industrious
programmer. Actually many of the most interesting programs
around are less than a hundred lines long Hut inevitably you will
start to write longer programs of ever increasing complexity. Soon
you will find that the 38911 byte limitation that seemed so generous
at first becomes a bit more restrictive lust a few more bytes would
allow you to add that one last funtion to make your program really
useful

l uckily those few more bytes are there. Scattered throughout your
program are hundreds of little two or three bytes inefficiencies
that added together can amount to several hundred bytes of wasted
memory space.

This lesson describes some of the ways you can save memory and
program more efficiently. Some of these techniques can save a lot
of memory and some save only a tew bytes. But many times a few
bytes are all that you need

20-1. USING MULTISTATEMENT LINES

Throughout this tutorial all program examples have been presented
with one Basic statement on each program line. As a rule this
makes programs easy to understand and easy to debug (find the
errors in).

Unfortunately, this is not very memory efficient. For one thing, line
numbers occupy space in memory If several Basic statements
could use the same line number, the memory that would have
been used for each line number could be saved Actually, several
Basic statements can be combined on a line by separating each
statement with a colon (:). The computer recognizes the colon as
the end of a Basic statement

113

IMPROVING YOUR PROGRAMS

Program lines cannot be longer than two screen lines (80 characters)
no matter how many statements are on the line. Consider the
following example:

100 REM LOAN PAYMENT CALCULATOR
110 PRINT''[clear screen]"
120 INPUT"ENTER LOAN AMOUNT";LN
130 INPUT"ENTER NUMBER OF YEARS";YRS
140 INPUT"ENTER INTEREST RATE";APR
150 I = APR/1200
160 N = YRS*12
170 B = 1/(1 - (1+ 1) t - N)
180 PY = (INT(LN* B*100))/100
190 PRINT"MONTHLY PAYMENTS = $";PY
200 END

I his program calculates monthly payments for a mortgage The
memory required to store this program could be reduced by simply
(ombining some of the statements as shown below:

100PRINT"[clear screen] ":REM LOAN PAYMENT CALCUL
ATOR
110 INPUT"ENTER LOAN AMOUNT ";LN
120 INPUT"ENTER NUMBER OF YE ARS";YRS
1 JO INPUT"ENTER INTEREST RATE ";APR
140 I = APR/1 200:N = YRS*12:B = 1/(1 - (l + 1) 4 - N)
150 PY = (INT(LN*B*100))/100:PRINT'MONTHLY PAYMF

NTS = $";PY:END

In this example the number of lines was reduced from 11 to 6 by
(ombining statements using the colon As far as program operation
is < o i k rmed nothing has changed

(>n<• (.uition when using multistatement lines - IF/THEN statements
do not exet ute anything on their line if the IF test is not true For
example

200 II A = 100 THEN B = 7:C = A*B:D = C*A

II A does not equal 100 the program will immediately go to the
next line number All other operations on line 200 will be ignored

20 2 . USING SUBROUTINES TO SAVE MEMORY

A lin .i program has been written and debugged to the point where

1 1 4

IMPROVING YOUR PROGRAMS

il operates to your satisfaction, il is .1 good idea to review the
program for recurring groups of Basi(statements.

If the same group of two or three (or more) Basic statements appears
several places in the program, you can save a good bit of memory
by placing those statements in a single subroutine and calling that
subroutine as needed. In this way <1 simple GOSUB statement can
entirely replace the group of statements at each place where they
appear in the program GOSUB statements require very little mem
ory. Consider the program below

100 PRINT"SCREEN ONI "
110 PRINT F7 FORWARD 11 BACK"
120 GET A$:IF A$ = "" 1 III N 120
130 IF A$ = CHR$(136) THEN 160
140 IF A$ = CHR$(133) I I I IN 100
150 GOTO 120
160 PRINT'SCREEN I WO"
170 PRINT"F7 FORWARD I 1 BACK"
180 GET AS:IF AS = "" 11II N 180
190 IF A$ = CHR$(136) I I I IN 220
200 IF A$ = CHR$(133) I I I IN 160
210 GOTO 180
220 PRINT 'SCREEN THRE I
230 END

I his program prints three different si reens I unction keys f1 and f7
are monitored and used to control whit h st reen is displayed. Lines
110-150 are virtually repeated in lines 170 210 I hese two line
groups could be replaced by one subroutine except for the fact
that they each call out different line numbers. It is possible to
work around this using a variable to < arry line numbers as shown
below:

100 PRINT 'SCREEN ONI
110 GOSUB 500: ON X GOTO 100,120
120 PRINT'SCREEN I WO"
130 GOSUB 500: ON X GOTO 100,140
140 PRINT"SCREEN THRE I
150 END

500 PRINT "F7 FORWARD 11 BACK"
510 GET AS:IF A$ = "" THE N 510
520 IF A$ = CHR$(136) 1 HI NX 2 RE FURN
530IFA$ = CHR$(133)THENX 1 RETURN
540 GOTO 510

115

IMPROVING YOUR PROGRAMS

Lines 110 and 130 call the subroutine at lines 500-540. This sub
routine will print F7 FORWARD-F1 BACK on the screen and then
monitor the keyboard. The variable X is set to 1 if f1 is pressed
and 2 if f7 is pressed. In either case a RETURN is performed. Line
110 or 130 then uses an ONGOTO statement to convert the value
held in X to a line number.

In revising this program, the total number of lines was reduced from
14 to 11 for a significant savings in memory used.

20-3. OTHER MEMORY SAVERS

The use of REM statements throughout a program while it is in
development can be a great aid in making the program more
understandable. Subroutines are easier to identify and it is good
practice to use REM statements to clarify your programs

Unfortunately, once the program is finished they are so much
excess baggage and can cause you to run out of memory space
before the program is completed Remove them

Another way to save a good bit of memory is to remove all spaces
from each program line. While spaces make the program listing
nun h easier on the eyes, they have no effect on program operation
and each of them uses 1 byte of memory.

20-4. ABBREVIATING KEYWORDS

It may come as a bit of a surprise but you do not actually have to
type each letter of a Basic keyword in order to enter it in a program.
Keywords may be abbreviated

lo r example, the abbreviation for the Basic keyword PRINT is the
question mark(?) If this symbol is entered where you would nor
mally type PRINT the computer will recognize it as the same thing
Most keywords are abbreviated by typing the first letter of the
keyword and then holding the SHIFT key while typing the second
letter

When a keyword abbreviation is typed it will appear on screen just
as you typed it However, if the line is later LISTed, the keyword
will appear on screen completely spelled out There is actually
no memory savings here, but you will find you can enter programs
muc h faster by using keyword abbreviations

PRINT''GEORGE WASHINGTON"
'"GEORGE WASHINGTON"

Ufa

IMPROVING YOUR PROGRAMS

>■

I ntering the text on the first line will have the same effect as enter
ing the text on the second line However, il you gave each a pro
gram line number and entered them, they would both look like the
first line when listed.

A complete listing of Basic keywords and their abbreviations may
be found in APPENDIX D of the Commodore 64 User's Guide that
came with your computer

ASSIGNMENT

load the telephone directory program developed in lessons 16,
17 and 19. Add a separate section to this program using the FRE
tunctiondesson 13) to calculate the amount of memory the entire
program uses and print the result on si reen Run this program
section and record the result

Revise the telephone directory program using multistatement lines
and subroutines to reduce memory requirements. Delete unnec
essary spaces from program lines M(ikr sure that the functional
operation of the program is not i hanged

Once the revised telephone directory program runs to your satis
faction, save it on disc for later use Run the memory calculator
on this revised version and compare the results to those obtained
from the original version How mui h memory was saved'

I xample solutions are provided in Appendix A of this manual

M L

u

11H u

APPENDIX A

I lus appendix provides sample solutions to the programming
assignments that occur throughout this tutorial For most pro
gramming tasks there is no one "right” way to accomplish a pro
gramming goal. Try to develop a program to accomplish the as
signed task on your own first. Then compare your solution to those
listed in this appendix.

Lesson 4 Assignment

I he assignment at the end of lesson 4 was to write a simple program
to print the names and ages of the members of your family in the
center of the screen A program su< h as tli.it shown below would
accomplish this.

100 PRINT TAB(15)"JOHN DOI 2 ir
110 PRINT TAB (15)" NANCY DOI (2"
120 PRINT TAB(15)"JOHN DO! IK 4"

By using the TAB function you can start printing any number of
spaces to the right of the left hand margin In this case about 15
spaces would cause the names to be centered since there are 40
spaces to a screen line.

Lesson 7 Assignment

The lesson 7 assignment asked that you write a Basic program
to calculate the loan balance on a $50000 loan at 12% interest
A total of 108 monthly payments of $514 10 have been made on
the loan Based on the formula given in lesson 7, the program below
will do this.

100 A = 50000
110 1= 12/12
120 P = 514.30
130 N = 108
140 BALANCE =(1/(1 + I) * N)*(P*(((1 + I)* — N - 1)/l) + A)
150 PRINT"BALANCE =$";BALANCE

APPENDIX A

Lesson 10 Assignment

I he assignment in lesson 10 consisted of two parts. The loan bal
ance program you wrote was to be made interactive and the loan
balance and loan payment programs were to be accessed from a
menu, The example below makes the loan balance payment in
teractive.

100 INPUT"ENTER LOAN AMOUNT";A
110 INPUT"ENTER INTEREST RATE";I
1 2 0 1 = 1/1200

130 INPUT"ENTER MONTHLY PAYMENT";P
140 INPUT''ENTER NUMBER OF PAYMENTS MADE";N
150 BALANCE =(1/(1 + I) f — N)*(P*(((1 + I) * - N - 1)/l) +
A)
160 PRINT"BALANCE = $";BALANCE
170 END

Note that line 120 divides the entered interest rate by 1200. This
allows interest to be entered in the normal whole number manner
(12 instead of 0.12) and as annual interest rather than monthly.

1 hr example below prints a menu on screen and includes the two
loan c <iI< ulation programs already written.

100 PRINT"PRESS KEY FOR DESIRED SELECTION"
110 PRINT TAB(10)"F1 CALCULATE LOAN PAYMENT"
120 PRINT TAB(10)"F7. CALCULATE LOAN BALANCE"
1 U) GET A$
140 IF A$ = ""THEN130
150 IF A$ = CHR$(133)THEN 1000
160 IF A$ = CHR$(136)THEN 2000
170 GOTOI 30

1000 INPUT"ENTER LOAN AMOUNT";A
1010 INPUT"ENTER ANNUAL INTEREST";!
1020 I = 1/1200
1030 INPUT"ENTER NUMBER OF YEARS";N
1040 N = N*12
1050 PMT = A* 1/(1 - (1 + I) ^ -N)
1060 PRINT"PAYMENT = $";PMT
1070 END

2000 INPUT"ENTER LOAN AMOUNT";A
2010 INPUT"ENTER INTEREST RATE";I

W0

APPENDIX A

2020 I = 1/1200
2030 INPUT"ENTER MON 11II V PAYMENT";P
2040 INPUT"ENTER NUMBI R OF PAYMENTS MADE'';N
2050 BALANCE =(1/(1 + I) * N)*(P*(((1 + I) * — N — 1)/l)
+ A)
2060 PRINT"BALANCE V',BALANCE
2070 END

In this example lines 100-170 contain the code for printing the menu
on screen and monitoring the keyboard I ines 1000-1070 contain
(he coding for the loan payment calculator and lines 2000-2070
calculate loan balances

Lesson 11 Assignment

I he lesson 11 assignment was an exercise in string handling The
assignment program was to allow the user to input a single sentence
using the GET statement The program was to then count the
number of words and characters in the sentence and calculate the
average number of words in the sentence. The example program
below would accomplish this

100 GET K i
n o IF K$ = " " THEN 100
120 IF K$ = "."THEN 200
130 PRINT K$;
140 A$ = A$+ K$
150 GOTO 100

200 PRINT K$
210 L = LEN(A$)
220 WD = 1
230 CHAR = 0
240 FOR N = 1 TO L
250 IF MID$(A$,N,1) = " " I I I I N 400
260 CHAR = CHAR+ 1
270 NEXT N
280 PRINT'NUMBER OF CHARACTERS = ";CHAR
290 PRINT 'NUMBER OF WORDS = ";W D
300 PRINT'AVERAGE CHARACTERS PER WORD =
CHAR/WD
310 END
400 WD = WD + 1
410 GOTO 270

Wl

APPENDIX A

In this example, lines 100-150 make up a keyboard monitor to in
put the sentence. Lines 100 and 110 loop until a key is pressed.
Line 120 causes a jump out of the monitor to line 200 if the period
key is pressed indicating the end of the sentence. If the key pressed
was not a period, line 130 prints the character on screen and line
I40 adds it to the string variable A$ Line 150 causes a jump back
to line 100 to get the next keystroke.

O i k c the sentence is completely entered into the A$ variable, line
200 prints the period on screen. Line 210 sets variable L equal to
the length of A$

I ine 220 sets the variable WD equal to 1. This variable will be used
to hold the number of words in the sentence. We will do this by
(minting the number of spaces in the sentence. Since the number
of words in the sentence will be one more than the number of
spat cs, WD is initially set to 1

I me 2 10 sets the variable CHAR to 0. This variable will be used to
hold the number of nonspace characters in the sentence.

I mi's 240 to 270 make up a FOR/NEXT loop that will operate from
1 to I Rn .ill that the variable L contains the number of characters
(ont.lined in A$

I me 250 i hec ks character N of A$ to see if it is a space If so, line
400 adds I to the WD variable and line 410 causes a jump to line
270 to iik rement the loop. If the character examined by line 250
was not a spa< e, line 260 increments the CHAR variable

Om e all < haracters have been examined by the loop in lines
240 .’ /(I the total number of words will be held in WD and the total
numliei ol nonspace characters will be held in CHAR Line 280
print'. (IIAR on screen and line 290 prints WD Line 300 calculates
the aveiage number of characters per word by dividing CHAR by
W l) I lie. lesult is also printed on screen. Line 310 ends the program

lesson 12 Assignment

I hr assignment in lesson 12 was to write a program that would
Hcneiate a i.indom result similating the roll of a pair of dice each
time any key on the keyboard was pressed The program example
helow should .ii c omplish this.

I00 PRINT
I K) COSUB 200
I 20 A = N
I)() GOSUB 200
140 B N

APPENDIX A

150 PRINT A,B
160 GET AS
170 IF A$ = "" THEN 160
180 GOTO 100

200 N = INT(RND(0)*(7 1) + 1)
210 RETURN

In this example line 100 prints a blank line on screen to separate
each dice roll result Line 110 calls the subroutine at line 200 This
subroutine calculates a random whole number between 1 and 6 and
stores the result in variable N I ine I 20 sets variable A equal to N
Variable A is used to store the value of di< e number one

I ines 130-140 call the subroutine again to (al< ulate the dice num
ber two result which is stored in variable B Line 150 prints the
contents of variables A and B on the s(reen

Line 160-180 make up a keyboard monitor loop. If any key is
pressed, line 180 causes a jump bac k lo line 100 to reroll the dice

Lesson 16 Assignment

I he assignment in lesson 16 was in live parts I he example solution
for each part is discussed separately below

Part One

The program below will accomplish part one of the assignment in
lesson 16:

100 DIM A$(3,50)
110 FOR N = 1 TO 50
120 A$(1 ,N)= "0"
130 A$(2,N) = "0"
140 A$(3,N) = "0"
150 NEXT N

I ine 100 dimensions the AS array for three columns of 50 strings
In our program A$(1 ,N) will hold names, A$(2,N) will hold addresses,
and A$(3,N) will hold telephone numbers

I ines 110-150 fill all elements of the array with zeroes. This is done
so that we can detect the first empty slot in the array by finding
the first zero

123

APPENDIX A
Ml

Part Two

In part two of the lesson 16 assignment a menu was to be printed
on screen and a keyboard monitor constructed. The program lines
below should accomplish this.

200 PRINT"[clear screen]"
210 PRINT TAB(15)"MENU"
220 PRINT
230 PRINT"PRESS NUMBER OF DESIRED FUNCTION"
240 PRINT
250 PRINT" 1. ENTER NAMES"
260 PRINT" 2. SEARCH NAMES."
270 PRINT" 3. ALPHABETICAL SORT."
280 PRINT" 4. QU IT ."

400 GET K$
410 IF K$ = " " THEN 400
420 K = VAL(K$)
430 ON K GOTO 1000,2000,7000,490
440 GOTO 400
490 END

Lines 200-280 simply print the menu on screen. Lines 400-410 make
up .1 keyboard monitor loop. It any key is pressed the loop is broken
and line 420 converts the keystroke stored in K$ into a numeric
value which is stored in variable K. This value is used in the ONGOTO
statement in line 430 to jump to the appropriate program section.

Line 440 causes a jump back to the keyboard monitor loop in lines
400 410 if the previous keystroke did not render a value of 1,2,3 or 4
whu h was usable by the ONGOTO statement. Line 490 ends the
program if the QUIT option was selected from the menu

Part Three

The program below allows the user to enter names into the array
as desc ribed in the lesson 16 assignment.

1000 PRINT"[clear screen]"
1010 FOR N=1 TO 50
1020 IF A$(1,N) = "0" THEN 1100
1030 NEXT N
1040 PRINT"ARRAY FULL."
1050 FOR N — 1 TO 2000
1060 NEXT N
1070 GOTO 200

II

Ml

124 Ml

APPENDIX A

1100 PRINT"[clear screen]"
1105 B$ = "0"
1110 INPUT"ENTER NAMI :";B$
1120 IF B$ = "MENU" THEN 200
1130 A$(1 ,N)= B$
1135 B$ = "0"
1140 INPUT"ENTER ADDRI SS:";B$
1150 IF B$ = "MENU" T HI N 200
1160 A$(2,N) = B$
1165 B$ = "0"
1170 INPUT"ENTER PHONI NUMBER:";B$
1180 IF B$ = "MENU" THEN 200
1190 A$(3,N)= B$
1200 IF N = 50 THEN 1040
1210 N = N + 1
1220 GOTO 1100

l ines 1000-1030 search through the name elements A$(1,N) to find
the first element that contains a zero I his would be the first empty
element suitable for storing a name I he number of this element is
stored in variable N and a jump is made to line 1100

If no element in the name array contains a zero, then it must be
completely filled with names I me I040 prints the advisory message
ARRAY FULL on screen Line's 1050 1060 make Lip a delay loop to
allow enough time for the advisory to be read before line 1070
causes the main menu to redisplay I he duration of this delay
can be adjusted by changing the value held in line 1050 (currently
2000).

Lines 1100-1190 clear the screen and input names, addresses and
phone numbers into the first empty slot in the array (element N
from lines 1000-1030). Note th.it eat h item is first stored in a buffer
string (B$) The B$ variable is chec ked to see if MENU was entered.
If so, a jump to the main menu is performed and no element of the
array is disturbed If B$ was not Ml NLJ it is stored in the appro
priate array element

I ine 1200 checks to see if the last element of the array (50) was
just filled. If so, a jump to line 1040 is performed to notify the
user that the array is full If not, line 1210 increments variable N
and line 1220 causes a jump ha< k to line 1100. Another name can
then be entered In this way the user can continue to enter names
until either the array is filled or Ml NIJ is entered as a name.

Note the relationship between the array elements for names,
addresses and phone numbers Pit ture the array as three columns

125

APPENDIX A

of 50 elements each. Column one contains the names, column two
contains the addresses and column three contains the phone num
bers. If the third element in column one contains the name HAROLD,
we want the third element in column two to contain HAROLD'S
address and the third element in column three to contain HAROLDs
phone number. In lines 1130, 1160 and 1190 we enter the data into
each array column specifying the same column element by using
the variable N. This relationship is important. It's O .K. to move
Harolds name from element three to element 25 for instance, but
his address and phone number must also move to element 25 of
their respective columns in order for the relationship to be main
tained

Part Four

Part four of the assignment in lesson 16 asked you to write a pro
gram section to search the array for a particular name. The example
solution below will do this.

2000 PRINT"[clear screen]"
2010 INPUT"ENTER NAME:";B$
2020 PRINT
2030 IF B$ = "MENU" THEN 200
2040 FOR N = 1 TO 50
2050 IF A$(1,N)=B$ THEN 2100
2060 NEXT N
2070 PRINT"NO SUCH NAME ON FILE"
2080 GOTO 2010

2100 PRINT A$(1,N)
2110 PRINT A$(2,N)
2120 PRINT A$(3,N)
2130 PRINT
2140 GOTO 2010

Lino 2000 clears the screen and line 2010 allows the user to enter
a name Line 2030 causes a jump to the main menu if the user
entered MENU as a name.

Linos 2040-2060 search the name column of the array for a match
between the entered name and the names on file. If an exact match
is found, a jump to line 2100 is performed. If no match is found,
lino 2070 prints the advisory message NO SUCH NAME ON FILE on
the sc reen Line 2080 then causes a jump back to 2010 allowing
the user to enter another name.

12b

APPENDIX A

I ines 2100-2120 print the name (It.it was found along with the
corresponding address and phone number When this is done line
2140 causes a jump back to 2010 allowing the user to enter the
next name.

Part Five

Part five of lesson 16 asked for a program section that would
perform an alphabetical sort of all the names in the array. The
example solution below will do this

7000 PRINT"[clear screen)"
7010 PRINT"STANDBY WII I I I SORTING"
7020 FOR S = 1 TO 50
7030 IF A$(1,S) = "0" THIN 7050
7040 NEXT S
7050 S = S — 1

7100 FOR PASS = 1 IO S I
7110 FLAG =0
7120 FOR C = 1 TO S- I
7130 IF A$(1.C)>A$(1,C + 1) I I I IN GOSUB 7500
7140 NEXT C
7150 IF FLAG = 0 I I I IN 7200
7160 NEXT PASS
7200 PRINT"ALPHABI I l(Al SORT COMPLETE"
7210 FOR N = 1 TO 2000
7220 NEXT N
7230 GOTO 200

7500 B$(1)= A$(1,C)
7510 B$(2)= A$(2,C)
7520 B$(3) = A$(3,C)
7530 A$(1,C) = A$(1,(' + I)
7540 A$(2,C) = A$(2,C + 1)
7550 A$(3,C) = A$(3,C + I)
7560 A$(1 ,C -F1)= B$(1)
7570 A$(2,C + 1)= B$(2)
7580 A$(3,C + 1)= B$(5)
7590 FLAG = 1
7600 RETURN

Since we do not want to sort the empty array elements up to the
beginning of the array, we need to count how many elements are
actually filled with names and limit our sort to just those elements

II 127

APPENDIX A

Lines 7000-7010 clear the screen and print a STANDBY WHILE
SORTING advisory message on screen. Line 7020-7050 calculate
the number of array elements that are filled by locating the first
element in the array name column that contains a zero (line 7030)
and then subtracting one (line 7050).

Lines 7100-7600 make up a bubble sort very similar to the one
illustrated in lesson 16. The only notable difference is that in this
sort when a swap is performed (lines 7500-7600), the addresses and
phone numbers must be swapped along with the names.

When the sort is completed, line 7200 prints the advisory message
ALPHABETICAL SORT COMPLETE on screen After a slight delay
(lines 7210-7220), line 7230 causes the main menu to redisplay.

Lesson 17 Assignment

The assignment given in lesson 17 was in five parts. Each part
will be described separately in the paragraphs below

Part One

Part one of the lesson 17 assignment asked for a program section
to be added to the telephone directory program that would print a
file area menu on screen and provide an accompanying keyboard
monitor The example solution below accomplishes this.

3000 PRINT"[clear screen]''
3010 PRINT TAB(1 3) "FILE MENU"
3020 PRINT
3030 PRINT' PRESS NUMBER OF DESIRED FUNCTION"
3040 PRINT
3050 PRINT" 1 FILE ARRAY."
3060 PRINT" 2 LOAD ARRAY."
3070 PRINT" 3. UPDATE EXISTING FILE"
3080 PRINT" 4 RETURN TO MAIN MENU."

3100 GET K$
3110 IF K$ = " " THEN 3100
3120 K = VAL(K$)
3130 ON K GOTO 4000,4500,5000,200
3140 GOTO 3100

This file menu and monitor is very similar to the main menu con
tained in lines 200-490 of the lesson 16 assignment.

128

APPENDIX A

Part Two

Part two of the lesson 17 assignment asked for the creation of a
program section that would store the contents of the array in a
new sequential disc file. The program below does this

4000 PRINT"[clear screen]"
4010 INPUT'ENTER Ell 1 NAME";N$
4020 N$ = "0:" + N$+",S ,W "
4030 INPUT"ENTER FILE NUMBER";F
4040 OPEN F,8,8,N$
4050 FOR N = 1 TO 50
4060 PRINT#I;A$(1,N)
4070 PRINT#F,A$(2,N)
4080 PRINT#I;A$(3,N)
4090 NEXT N
4100 CLOSE F
4110 PR IN T'FILING COMPI I I I "
4120 FOR N = 1 TO 2000
4130 NEXT N
4140 GOTO 3000

Line 4000 clears the screen and line 4010 allows the user to enter
the file name into variable N$ I ine 4020 adds the 0: and ,S,W
characters to this name to make up the proper disc command for
opening a new sequential file

Line 4030 allows the user to enter a tile number into variable F and
line 4040 opens the file using the I and Nt> variables in the OPEN
statement

Lines 4050-4090 send each element ot the array to the disc file Line
4100 closes the file Lines 4110-4140 print the advisory FILING
COMPLETED and after a short pause cause a jump to line 3000,
redisplaying the file menu

Part Three

Part three of the lesson 17 assignment asks for a program section
that will load the array from a sequential disc file

4500 PRINT"[clear screen]"
4510 INPUT'ENTER NAMI Ol I ILE TO LOAD";N$
4520 N$ = "0 :" + N$ -F ",S ,R"
4530 INPUT 'ENTER FILE NUMHER";F

APPENDIX A

4540 OPEN F,8, 8, N$
4550 FOR N=1 TO 50
4560 INPUT#F,A$(1,N)
4570 INPUT#F,A$(2,N)
4580 INPUT#F,A$(3,N)
4590 NEXT N
4600 CLOSE F
4610 PRINT"FILE LOADING COMPLETE"
4620 FOR N = 1 TO 2000
4630 NEXT N
4640 GOTO 3000

I ines 4500-4510 clear the screen and allow the user to enter the
name of the desired file into N$. Line 4520 adds to N$ the char-
ac ters required to make up a proper disc command for reading
<i sequential file Line 4530 allows the user to enter the desired file
number and line 4540 opens the file.

I ines 4550 4590 load the array from the specified sequential file
and line 4600 closes the file Lines 4610-4640 print the advisory
I II I IOADING COMPLETED and after a short delay cause the
file menu to redisplay

It should be noted that the file name and number entered by the
user must (orrespond to an exising disc sequential file

Part Four

Part four of the lesson 17 assignment called for a program segment
th.it would update an existing sequential file

5000 PRINT"[clear screen]"
5010 INPUT'ENTER NAME OF UPDATE FILE ";NS
5020 N$ = "@ 0:" + N$ + ",S ,W "
5030 INPUT'ENTER UPDATE FILE NUMBER ";F
5040 OPEN F,8,8,N$
5050 FOR N = 1 TO 50
5060 PRINT#F,A$(1,N)
5070 PRINT#F,A$(2,N)
5080 PRINT#F,A$(3,N)
5090 NEXT N
5100 CLOSE F
5110 PR IN T'FILE UPDATE COMPLETED''
5120 FOR N = 1 TO 2000
51 JO NEXT N
5140 GOTO 3000

II

I I

II

II

II

II

III

III

II

I I I

■I

Tm
■ i

APPENDIX A

I his program simply saves the data from the array into an existing
sequential disc file, replacing whatever was there. Note that this
program is virtually identical to the one created in part two of the
lesson 17 assignment. The primary difference is in line 5020 where
the at symbol (@) is added to N$ so that the open statement in
line 5040 will allow update of a file already on disc.

Part Five

Part five of the lesson 17 assignment simply asked that you revise
the main menu program contained in lines 200-490 to access the
filing features added in the lesson 17 assignment. One program line
must be added and another revised

Line 290 is added to the menu as follows:

290 PRINT" 5. FILE AREA"

Line 430 in the keyboard monitor sec tion must be revised to allow
access to the file area when the 5 key is pressed

430 ON K GOTO 1000,2000,7000,490,3000

Lesson 19 Assignment

The lesson 19 assignment called for the addition of a printout
feature to the telephone directory program that was developed
in the lesson 16 and 17 assignments I he sample solution program
shown below should accomplish this

6000 FOR S = 1 TO 50
6010 IF A$(1,S) = "0" THEN 6100
6020 NEXT S
6100 OPEN 4,4,7
6110 PRINT#4,CHR$(17)
6120 FOR N = 1 TOSSTEP2
6130 PRINT#4,A$(1 ,N)CHR$(16)"40"A$(1 ,N +1)
6140 PRINT#4,A$(2,N)CHR$(16)"40"A$(2,N +1)
6150 PRINT#4,A$(3,N)CHR$(16)"40"A$(3,N +1)
6160 PRINT#4
6170 NEXT N
6180 CLOSE 4
6190 GOTO 200

In this example we want to printout only those array elements that
contain names and addresses. Lines 6000-6020 determine the num
ber of elements that contain names

in

APPENDIX A
II

Line 6100 opens the printer file with a secondary address of 7 so
that the UPPER/LOWER CASE mode can be accessed. Line 6110
sends a CHR$(17) control code to the printer to put it in UPPER/
LOWERCASE mode.

Line 6120 sets the print loop to run from element 1 of the array
to the element determined by lines 6000-6020. This loop is in
cremented in steps of two so that we can achieve the double column
format desired.

Line 6130 prints the name element specified by variable N and the
following element as well on the same line. Note the CHR$ (16)
control code which tabs the print head to the fortieth space before
printing the second element. Lines 6140 and 6150 print the address
and phone elements respectively in a similar fashion. Line 6160
causes a blank line to be printed as a spacer.

Line 6180 closes the print file and 6190 causes a return to the main
menu

Ry adding a line 300 to the main menu as shown below, the PRINT-
OU I function will appear in the main menu.

300 PRINT" 6. PRINTOUT."

Additionally, line 430 must be revised so that when the 6 key is
pressed the printout function is performed.

430 ON K GOTO 1000,2000,7000,490,3000,6000

Lesson 20 Assignment

rhc programming assignment for lesson 20 included the creation
of .i memory calculator using the FRE function described in lesson
1 t I he program lines below will calculate how much memory the
program currently in the machine occupies.

8000 PRINT"[clear screen]"
8010 X = FRE(0)-(FRE(0)<0) *65536
8020 PRINT"MEMORY USED = " 38911 - X
8030 END

I lie lesson 20 assignment also asked that you revise the telephone
dir<‘< tory program using multistatement lines and subroutines to
save memory. The following pages contain a listing of the program
.is written in the sample solutions and a revised version that uses
these memory saving techniques. These two programs are exactly
equivalent as far as program operation is concerned. However, the
origin.d program is much easier to read and debug while the re
vised version uses 600-700 bytes less memory.

132

Ml

Ml

APPENDIX A

TELEPHONE DIRECTORY PROGRAM
99 REM DIMENSION ARRAY AND FILL W ITH ZEROES

100 DIM A$(3,50)
110 FOR N = 1 TO 50
120 A$(1,N) = "0"
130 A$(2,N) = "0"
140 A$(3,N) = "0"
150 NEXT N
199 REM PRINTMENU
200 PRINT
210 PRINT TAB(15)"MENU"
220 PRINT
230 PRINT"PRESS NUMBER OF DESIRED FUNCTION."
240 PRINT
250 PRINT" 1. ENTER NAMES."
260 PRINT" 2. SEARCH NAMES."
270 PRINT" 3. ALPHABETICAL SORT."
280 PRINT" 4. QU IT ."
290 PRINT" 5. FILE AREA ."
300 PRINT" 6. PRINTOUT."
399 REM KEYBOARD MONITOR
400 GETK$
410 IF K$ = " " THEN 400
420 K = VAL(K$)
430 ON K GOTO 1000,2000,7000,490,3000,6000
440 GOTO 400
490 END
499 REM ENTER NAMES PROGRAM SECTION
1000 PRINT
1010 FOR N = 1 TO 50
1020 IF A$(1,N) = "0" THEN 1100
1030 NEXT N
1040 PRINT"ARRAY FULL."
1050 FOR N = 1 TO 2000
1060 NEXT N
1070 GOTO 200
1099 REM ENTER NAMES, ADDRESSES, PHONE NUMBERS
1100 PRINT
1105 B$ = "0"
1110 INPUT"ENTER NAME:";B$
1120 IF B$ = "MENU" THEN 200
1130 A$(1,N}= B$
1135 B$ = "0"
1140 INPUT"ENTER ADDRESS:";B$
1150 IF B$ = "MENU" THEN 200
1160 A$(2,N)= B$
1165 B$ = "0"

1 11

APPENDIX A II
1170 INPUT'ENTER PHONE NUMBER:";B$
1180 IF B$ = "M ENU" THEN 200
1190 A$(3,N) = B$
1200 IE N = 50 THEN 1040
1210N = N + 1
1220 GOTO 1100
1999 REM SEARCH NAMES PROGRAM SECTION
2000 P R IN T 'D "
2010 INPUT'ENTER NAME:";B$
2020 PRINT
2030 If B$ = "MENU" THEN 200
2040 FOR N = 1 TO 50
2050 II A$(1,N)=B$ THEN 2100
2060 NEXT N
2070 PRINT'NO SUCH NAME ON FILE ."
2080 GOTO 2010
2100 PRIN l A$(1,N)
21 ID PRINT A$(2,N)
2120 PRINT A$(3,N)
21 10 PRINT
2140 GOTO 2010
2999 Rl M PRINT FILE MENU
1000 P R IN T 'D "
1010 PRINT TAB(13) "FILE MENU"
3020 PRINT ,
1030 PRINT'PRESS NUMBEROF DESIRED FUNCTION.
1040 PRINT
1050 PRINT" 1. FILE ARRAY."
1060 PRINT" 2. LOAD ARRAY."
1070 PRINT" 3. UPDATE EXISTING FILE ."
tono PR IN l" 4. RETURN TO MAIN MENU."
1099 Rl M 1ILE KEYBOARD MONITOR
1100 GE T K$
1110 II K$ = "" THEN 3100
1120 K VAL(K$)
11 10 ON K COTO 4000,4500,5000,200
1140 GOTO 3100
1999 Rl M SAVE ARRAY TO NEW SEQUENTIAL FILE
4000 PR IN T 'D "
4010 INPUT'ENTER FILE NAME:";N$
4020 NS - "0:" + N$ + ",S ,W "
4010 INPUT'ENTER FILE NUMBER:";F
4040 OP I N F,8,8,N$
4050 I OK N = 1 TO 50
40()0 I’RINT#F,A$(1,N)
4070 I’RIN 1#T,A$(2,N)
4080 PRINT#F,A$(3,Nj

m

ii

1)4

APPENDIX A

4090 NEXT N
4100 CLOSE F
4110 PRINT"FILING COMPLETED"
4120 FOR N = 1 TO 2000
4130 NEXT N
4140 GOTO 3000
4499 REM LOAD ARRAY FROM EXISTING SEQUENTIAL FILE
4500 PRINT 'D "
4510 INPUT"ENTER NAME OF FILL TO l OAD";N$
4520 N$ = "0 :" + N$ + ",S ,R"
4530 INPUT"ENTER FILE NUMHl R ";F
4540 OPEN F,8,8,N$
4550 FOR N = 1 TO 50
4560 INPUT#F,A$(1,N)
4570 INPUT#F,A$(2.N)
4580 INPUT#F,A$(3,N)
4590 NEXT N
4600 CLOSE F
4610 PRINT"FILE LOADING COMI’ I I 11 D"
4620 FOR N = 1 TO 2000
4630 NEXT N
4640 GOTO 3000
4999 REM SAVE ARRAY TO EXISTING SI QUI NTIAL FILE
5000 PR IN T 'D "
5010 INPUT"ENTER NAME OF UPDAI I I ILE",N$
5020 N$ = "@ 0 :"+ N$ + ",S,W "
5030 INPUT"ENTER UPDATE FILE NUMEil R ";F
5040 OPEN F,8,8,N$
5050 FOR N = 1 TO 50
5060 PRINT#F,A$(1 ,N)
5070 PRINT#F,A$(2,N)
5080 PRINT#F,A$(3,N)
5090 NEXT N
5100 CLOSE F
5110 PRINT"FILE UPDATE COMPLE II D"
5120 FOR N = 1 TO 2000
51 30 NEXT N
5140 GOTO 3000
5999 REM PRINTOUT ARRAY ON V I C - 1525 PRINTER
6000 FOR S = 1 TO 50
6010 IF A$(1,S) = "0" THEN 6100
6020 NEXT S
6100 OPEN4,4,7
6110 PRINT#4,CHR$(17)
6120 FOR N = 1 TO S STEP2
61 30 PRINT#4,A$(1,N)CHR$(16)"40"A$(1,N + 1)
6140 PRINT#4,A$(2,N)CHR$(16)"40"A$(2,N +1)

APPENDIX A
I I

61 50 PRINT#4,A$(3,N)CHR$(16)"40"A$(3,N +1)
6160 PRINT#4
6170 NEXT N

6999 REM SORT ARRAY ALPHABETICALLY
7000 PRINT 'D "
7010"STANDBY WHILE SORTING"
7020 FOR S = 1 to 50
7030 IF A$(1,S) = "0" THEN 7050
7040 NEXT S
7050 S = S - 1
7100 FOR PASS = 1 T O S - 1
7110 FLAG = 0
7120 FOR C = 1 T O S - 1
71 10 11 A$(1 ,C) > A$(1 ,C + 1) THEN GOSUB 7500
7140 NFXT C
7150 IF 11 AG = 0 THEN 7200
7160 Nl XT PASS
7200 PR I NT" ALPHABETICAL SORT COMPLETE"
7210 I OR N = 1 TO 2000
7220 Nl X I N
72 10 GOTO 200
7500 B$(1) = A$(1,C)
7510 ll$(2) = A$(2,C)
7520 B$(1)=A$(3,C)
75 H) A$(1,C)= A$(1,C + 1)
7540 A$(2,C)= A$(2,C + 1)
7550 A$(3,C) = A$(3,C +1)
7560A$(1,C + 1)=B$(1)
7570 A$(2,C + 1)= B$(2)
7580 A$(3,C + 1)= B$(3)
7590 F LAC = 1
7600 Rl I URN
7999 Rl M CALCULATE AMOUNT OF MEMORY USED
11000 PRINT a "
8010 X I Rl (O)-(FRE(O) < 0).65536
8020 PRIN l "MEMORY USED = " 38911 - X
80(0 I ND

Kl ADY.

6180 CLOSE 4
6190 GOTO 200 I I

I I

APPENDIX A

REVISED TELEPHONE DIRECTORY PROGRAM
100 DIMA$(3,50):FORN = 1T050:A$(1,N)= "0":A$(2,N) = "0":A$(3,
N) = "0":NEXTN
200 PR INT"D";TAB(15)"M ENU":PR INT:PR INT"PRESS NUMBER
OF DESIRED FUNCTION.":PRINT
210 PRINT" 1. ENTER NAMES."
220 PRINT" 2. SEARCH NAMES."
2 H) PRINT" 3. ALPHABETICAL SORT."
240 PRINT" 4. QU IT ."
250 PRINT" 5. FILE AREA ."
260 PRINT" 6. PRINTOUT."
400 GETK$:IFK$ = ""THEN400
410 K = VAL(K$):ONKGOT01000,2(XX),7000,490,3000,6000: GOT0400
490 END
1000 P R IN T 'D "
1010 FORN = 1T050:IFA$(1,N) = "0"THF N1100
1020 NEXTN
1040 PRINT"ARRAY FULL ':FORN = 1 102000:NEXTN:GOT0200
1100 PR IN T"Q ":B$ = "0":INPUT"ENTI R NAME:";B$:IFB$ = "MEN
U"THEN200
1130 A$(1 ,N) = B$:B$ = "0"
1140 INPUT'ENTER ADDRESS:";B$ II BS "MENU"THEN200
1160 A$(2,N) = B$:B$ = "0"
1170 INPUT'ENTER PHONE NUMBER ",B$:IFB$ = "MENU"THEN
200
1190 A$(3,N)= B$:B$ = "0"
1200 IFN = 50THEN1040
1210 N = N + 1 :GOTOHOO
2000 PRINT 'D "
2010 INPUT'ENTER NAME:";B$:PRIN I II B$ = "MENU"THEN200
2040 FORN = 1T050: IFA$(1,N)= B$THE N2100
2060NEXTN
2070 PRINT'NO SUCH NAME ON FILE ' :GOT02010
2100 PRINTA$(1,N):PRINTA$(2,N):PRINTA$(3,N):PRINT:GOT02010
3000 PRINT"Q";TAB(1 3)"FILE MENU" PRINT PRINT'PRESS NUM
BER OF DESIRED FUNCTION"
3040 PRINT
3050 PRINT" 1 FILE ARRAY "
3060 PRINT" 2. LOAD ARRAY "
3070 PRINT" 3. UPDATE EXISTING FILE."
3080 PRINT" 4 RETURN TO MAIN MENU."
3100GETK$:IFK$ = ""THE N3100
3120 K = VAL(K$):ON KGOTO4000,4500,5000,200:G 0T 03100
4000 PR I N T "Q " : IN PUT" ENTER FILE NAME";N$:N$ = "0 :" + N$ + "
,S,W"

1J7

APPENDIX A

4030 INPUT'ENTER FILE NUMBER:";F:COSUB9000:PRINT"FILINC
COMPLETED"
4120 FORN = 1 T02000:NEXTN:GOT03000
4500 PR I NT" Q " : INPUT'ENTER NAME OF FILE TO LOAD";N$:N$=
"0 :" + N$ + ",S ,R"
4530 INPUT"ENTER FILE NUMBER:";F:OPENF,8,8,N$
4550 FORN =1 T050:INPUT#F,A$(1,N):INPUT#F,A$(2,N):INPUT#F,A
$(3,N):NEXTN:CLOSE F
4610 PR IN T 'FILE LOADING COM PLETED ."TORN = 1 T02000:NEX
TN:GOT03000
5000 PRINT "Q ":INPUT"ENTER NAME OF UPDATE FILE:";NN =
"@0:" + N$ + ",S ,W "
5030 INPUT'ENTER UPDATE FILE NUMBER:";F:GOSUB9000:PRIN
T "f ILE UPDATE COMPLETED "
5120 FORN = 1T02000:NEXTN:GOT03000
6000 FORS = 1 T050:IFA$(1,S) = "0" THEN6100
6020 NEXTS
6100 OPEN4,4,7:PRINT#4,CHR$(17)
6120 FORN = 1TOSSTEP2
61 H) PRINT#4,A$(1 ,N)CHR$(16)"40"A$(1 ,N +1}
6140 PRINT#4,A$(2,N)CHR$(16)"40"A$(2,N +1)
6 1 50 PR INT#4,A$(3,N)CHR$(16)"40"A$(3,N + 1):PRINT# 4 : NEXTN:
Cl QSE4 GOT0200
7000 PR IN T 'D STANDBY WHILE SORTING":FORS = 1T050:IFA$(1
,S) "0"THEN7050
7040 NEXTS
7050 S = S —'1 FORPASS = 1TOS - 1 FLAG = O FORC = 1TOS - 1
71 !() II A$(1,C)> A$(1,C + 1)THEN GOSUB7500
7140 NEXTC:IFFLAG=0THEN7200
71(>0 Nf XI PASS
7200 PR I NT" ALPHABETICAL SORT COMPLETE " FORN = 1T0200
0 Nl X IN GOT0200
7500 B$(1) = A$(1,C)
7510 B$(2) = A$(2,C)
7520 BS(3) = A$(3,C)
7530 AS(1 ,C) = A$(1 ,C + 1)
7540 A$(2,C)=A$(2,C + 1)
7550 A$(3,C)= A$(3,C + 1)
7560 A$(1,C + 1)= B$(1)
7570 A$(2,C + 1)= B$(2)
7580 A$(3,C + 1)=B$(3)
7590 I LAG = 1:RETURN
8000 PRINT"□ ":X = FRE (O)-(FRE(O) < 0).65536 PRINT 'MEMORY
USI I) ";38911 —X:END
9000 OPI NF,8,8,N$
9010 FORN = 1 T050:PRINT#F,A$(1 ,N):PRINT#F,A$(2,N):PRINT#F,A
$(t,N) NEX1N CLOSEF
9030 Rl TURN
Rl ADY

A Letter From Professor O rby te

I o my students:

Congratulations! You have accepted the c hallenge of learning the
fundamentals of BASIC programming by completing BASIC, A
I UTORIAL. At this time you should have a good working knowledge
of the BASIC keywords, structures, format and techniques, as well
as a better understanding of your Commodore (>4 computer.

Because of the effort and time you have devoted to BASIC, A
TUTORIAL, I would like to award you with an honorary diploma
of achievement personally signed and c ertified To receive this
document, simply fill out the* form at the bottom of this page and
send it to:

I’rofessor Orbyte

__________________________________ _ _ C U T O N D O T T H > I INI

P L E A S E T Y P E O R P K I N I C l I A R L Y

N A M E ____ ___

A D D R E S S __

C I T Y ___

S T A T E _________ __ 7 IP __

To insure the receipt of your diploma your warranty/registration
card must be on file at Orbyte Software

I . ___ _ have completed BASIC,
S I C N A T U R E

A TUTORIAL and fulfilled the assignment requirements and would
like to receive an honorary diploma from Professor Orbyte.

139

■

■
■

I I

G lossary of Basic Terminology

I he following is an alphabetical list of the keywords, statements,
commands and functions discussed in BASIC, A TUTORIAL The
tunc tion type, format and purpose of each of these are included

ABS
TYPE: Function-Numeric
FORMAT: ABS (expression)
PURPOSE: The ABS function returns the absolute value of the
expression

AND
TYPE: Operator
FORMAT: (expression)AND(expression)
PURPOSE: AND tests the truth or falsehood of the two expres
sions and returns the logical value TRUE or FALSE.

ASC
TYPE: Numeric Function
FORMAT: ASC(string)
PURPOSE: ASC returns the ASCII value of the first character
of the string

ATN
TYPE: Function-Numeric
FORMAT: ATN (number)
PURPOSE: The ATN function returns the arctangent of the
number

CHR$
TYPE: String Function
FORMAT: CF)R$ (numeric expression)
PURPOSE: CHR$ returns a charat ter equivalent to the Commodore
AS(11 code of the numeric expression

141

CLOSSARY

CLO SE

TYPE: Statement
FORMAT: CLOSE file number
PURPOSE: CLOSE stops the datafile specified by the file number
from flowing to a device.

CLR

TYPE: Command
FORMAT: CLR
PURPOSE: CLR erases all variables from memory and avails space
for now variables.

C M D

FYPE: Statement
IORMAT: CMD file-number, [String]
PURPOSE: CMD switches the output device from the monitor
lo the specified file.

C O N T

IYP I : Command
FORMAT: CONT
PURPOSE: The CONT command re-starts a program that has been
stopped by either the STOP or END statements or the RUN/STOP
key

CO S

IYPI: Function
IORMAT: COS(number)
PURPOSE: The COS function calculates the cosine of the number.

D A TA

IYPI: Statement
IORMAT: DATA list
PURPOSE: DATA statements store information within a program.

DEF FN

IYPI: Statement
I <IRMA I : DEF FN name (variable) = expression
PURPOSE: DEF FN sets up a user-defined function. This function
..ivo’. piogram space.

D IM

IYPI: Statement
IORMAI: DIM variable (subscript), variable (subscript).
PUHPOSI : DIM allocates space for an array of variables.

END

IYPI: Statement
IORMAT: END

I I

m

ii

m

1 1

u

u

GLOSSARY

PURPOSE: The END statement halts execution of the program
and displays the READY message.

EXP

TYPE: Numeric function
FORMAT: EXP (numeric expression)
PURPOSE: EXP calculates the value of e (logarithmic base) raised
to the specified number.

FN

TYPE: Numeric Function
FORMAT: FN name (number)
PURPOSE: FN references the specified previously defined formula
name, substitutes the specified number in its place and calculates
the formula.

F O R . . T O . . [STEP . . .]

TYPE: Statement
FORMAT: FOR variable = starting expression TO limit expres
sion STEP increment expression
PURPOSE: FOR TO allows you to use a variable as a counter.

FRE

TYPE: Function
FORMAT: FRE (variable)
PURPOSE: The FRE function notifies of the amount of RAM avail
able to the program and its variables.

G ET

TYPE: Statement
FORMAT: GET variable list
PURPOSE: The GET statement reads each key typed by the user.
It is best to read the keys as strings

G ET #

TYPE: (Input/Output) I/O Statement
FORMAT: GET# file number, variable list
PURPOSE: GET# works as does the GET statement except it reads
< haracters from a device or file specified rather than from the key
board.

G O S U B

TYPE: Statement
FORMAT: GOSUB line number
PURPOSE: The GOSUB statement is similar to the GOTO state
ment except it remembers where it came from in the program and
returns to the next logical command following the GOSUB.

14 1

(i l O S S A R Y

G O T O

TYPE: Statement
FORMAT: GOTO line number
PURPOSE: The GOTO statement allows a program to execute
lines out of numerical order.

I F . . .TH EN

TYPI: Statement
FORMAT: IF expression THEN line#
II expression GOTO line#
II expiession THEN statements
PURPOSE: The IF THEN statement evaluates conditions and
takes different actions depending on the outcome of these condi
tions

IN PU T

TYPI: Statement
FORMAT: INPUT "PROMPT"; variable list
PURPOSE: The INPUT statement causes a "prompt" and ? to be
displayed on screen, allowing the user to enter information into
the (omputer.

IN P U I#
I YPI : (Input/Output) I/O Statement
IORMAI: INPUT#file number, variable list
PURPOSI: I he INPUT# statement retrieves file-stored data as a
whole variable of up to 80 characters in length rather than one at
.1 time as m the GET# statement.

INT

IYPI Integer Function
IORMAI: INT(numeric)
PURPOSI: I he INT function returns the integer value of the
expiession

LEFTS
I YI’ I Stung I unction
I < >KMA I I I 11 $ (string, integer)
PURP(>SI: I his function returns a string comprised of the left-
n in. i spe< If led number (integer) of characters of the specified string.

L IN
I YI’I Integer I unction
IORMAI: I I N (string)
PURPOSI: I his function returns a string comprised of the left-
mii'.i -.pei died number (integer) of characters of the specified string.

GLOSSARY

LIST

TYPE: Command
FORMAT: LIST first line - last line
PURPOSE: The LIST command allows you to look up lines in the
program currently in the computer's memory. If no specific line
numbers are given, the entire program is listed.

LO A D

TYPE: Command
FORMAT: LOAD"file name", device
PURPOSE: The LOAD command reads the contents of a program
from tape or disk into memory.

LO G

TYPE: Floating-Point Function
FORMAT: LOG (numeric)
PURPOSE: The LOG function returns the natural logarithm of the
numeric.

M ID $

TYPE: String Function
FORMAT: MID$(string, numeric, numeric)
PURPOSE: MID$ returns a sub-string taken from within a larger
string, the starting position of the substrings specified by the first
numeric and the length of the substring specified by the second
numeric.

NEW

TYPE: Command
FORMAT: NEW
PURPOSE: The NEW command clears all variables in the program
currently in memory, therefore deleting the program.

NEXT

TYPE: Statement
FORMAT: NEXT counter
PURPOSE: The NEXT statement is used to establish the end of a
FOR NEXT loop.

N OT

TYPE: Logical Operator
FORMAT: NOT expression
PURPOSE: The NOT operator is used to reverse the normal true/
false result of relational expressions, affecting only the expression
to the right of it.

145

(i lOSSARY

ON

TYPE: Statement
IORMAT: ON variable GOTO/COSUB line#, line#
PURPOSE: The ON statement is used to specify lines (s) depending
on thr value of the variable.

OPEN

IYP I : (Input/Output) I/O Statement
IORMAT: OPEN file-number, device, address, "file name, type,
mode" ■
PURPOSE: The OPEN statement opens a channel for input and/or
output to a peripheral device.

OR

TYPE: Logical Operator
IORMAT: operand OR operand
PURPOSE: The OR operator connects two or more relations and
returns a true or false value.

PEEK

TYPI: Integer Function
IORMAT: PEEK (numeric)
PURPOSE: The PEEK function returns in integer which is read
from .1 memory locator.

POKE
TYP I: Statement
IOKMAT: POKE location, value
PURPOSE: 1 he POKE statement writes a one-byte binary value
into .1 spe< ifird memory location or input/output register

POS

IYPI: Integer Function
IOKMAI: POS (dummy)
PURPOSE: I he POS function notifies of the current cursor posi
tion

PRINT

IYPI: Statement
IORMAI: PRINT variable
PURPOSI: Ihe PRINT statement is used to write data to the
s(leen

PRINT#
I YI’I (lnput/0utput)l/0 Statement
IOKMAI: PRINT# file number, variable
PURP(>SI : I he PRINT# statement is used to write data items to a
logit al tile Output goes to the device-number used in the OPEN
statement

GLOSSARY

READ
TYPE: Statement
FORMAT: READ variable, variable
PURPOSE: The READ statement is used to fill variable names
from constants in DATA statements.

REM
TYPE: Statement
FORMAT: REM remark
PURPOSE: The REM statement makes your programs more easily
understood when LISTed as it allows you to write remarks on what
each section of the program is about.

RESTORE
TYPE: Statement
FORMAT: RESTORE
PURPOSE: The RESTORE statement is used to begin reREADing
the first DATA constant of a program

RETURN
TYPE: Statement
FORMAT: RETURN
PURPOSE: The RETURN statement is used to exit from a sub
routine.

RIGHTS
TYPE: String Function
FORMAT: RIGHTS (string, numeric)
PURPOSE: The RIGHTS function returns a substring, the length
specified by the numeric, taken from the right most end of the
string argument

RND
TYPE: Floating-Point Function
FORMAT: RND(numeric)
PURPOSE: The RND function returns a random floating-point
from 0 to 1

RUN
TYPE: Command
FORMAT: RUN line number
PURPOSE: RUN is used to start the program currently in memory
If a line number is specified, the program will start from that line
It not, it will start from the beginning

147

GLOSSARY

SAVE

TYPE: Command
FORMAT: SAVE "file name", device number, address
PURPOSE: The SAVE command is used to store the program
currently in memory onto a tape or diskette file.

SGN

TYPE: Integer Function
FORMAT: SGN numeric
PURPOSE: The SGN function returns an integer value depending
on the sign of the numeric argument.

SIN

TYPE: Floating Point Function
FORMAT: SIN numeric
PURPOSE: The SIN function gives the sine of the numeric argu
ment.

SPC

TYPE: Special Function Format
FORMAT: SPC (numeric)
PURPOSE: The SPC function controls the format of the data by
printing the number of SPaCes specified by the numeric.

SQR

TYPE: I loating-Point Function
FORMAT: SQR (numeric)
PURPOSE: The SQR function returns the square root value of
the numeric.

STATU S

TYPE: Integer Function
FORMAT: STATUS
PURPOSE: Returns a completion STATUS for the last input/output
operation performed on an open file.

STEP

TYPE: Statement
FORMAT: STEP expression
PURPOSE: STEP defines an increment value for the loop counter
variable in a FOR statement.

STOP

TYPE: Statement
FORMAT: STOP
PURPOSE: The STOP statement is used to stop execution of the
current program and return to direct mode.

148

II GLOSSARY

m

m
i a

!■

m

n

STR$
TYPE: String Function
FORMAT: STR$ (numeric)
PURPOSE: STR$ gives string representation of the numeric value
of the argument

SYS
TYPE: Statement
FORMAT: SYS memory location
PURPOSE: The SYS statement allows you to mix a BASIC program
with a machine language program

TAB
TYPE: Special Function
FORMAT: TAB(numeric)
PURPOSE: The TAB function moves the cursor to a specified
screen position

TAN
TYPE: Floating-Point Function
FORMAT: TAN (numeric)
PURPOSE: The TAN function returns the tangent of the numeric
value.

TIME
TYPE: Numeric Function
IORMAT: Tl
PURPOSE: The Tl function reads the interval timer which starts
when the computer is powered

TIMES
TYPE: String Function
IORMAT: Tl$
PURPOSE: The TIS function acts as a real clock when the com
puter is powered

VAL
IYPE: Numeric Function
IORMAT: VAL (string)
PURPOSE: The VAL function returns a numeric value represent
ing the string argument

!■)<»

S M t -

1*184 A&M Productions Inc
()RHY 11 SOFTWARE div of A&M Productions, Inc

P C) lio* 2<>H<>, Waterbury, CT 0 6 7 2 0

All fights rrs<*rved

I or further details contact your local dealer or

O F f B Y T E
\ SOFTWARE

A TUTORIAL

