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Introduction 
 
There exists a considerable number of different types and revisions of 8-bit 

Commodore (aka CBM) machines. Back in the day, when we had only very few – and 
sometimes also very poorly written or erroneous – descriptions and limited experience on 
these computers, they seemed rather different from each other, and it consequently also 
seemed then not that much possible to write a program which could be run on all of them (or 
actually any random two or three of them at least). 

 
However, they are not so different in real: the main architecture of the CPU’s and their 

machine languages are mostly the same (apart from the illegal opcodes and some other 
extensions), as well as the core of Basic dialects, the memory organization and the most 
important Kernal calls etc. So thus it is possible to write such code; although it will not be too 
easy, and requires some knowledge about all of them and a very careful, quirky and neat 
design to fit everywhere… Since I have started to develop my Rosetta Interactive Fiction 
project in the last few years (2012-2017 when writing this; plus some 2020 fixes, see them at 
the very end, whereas being referred to as +note:***(…) inside the text) in my sparetime, I 
have slowly awoken to this, and decided to make it so. And then decided to also write this 
little guide (or programming handbook) formed out of my gained experiences, for making it 
much easier to others (who would later also decide to do so and begin this way). 

 
As a first step here, let us see the competitors, one by one: 
 
C64 
 
It has always 64K memory, and the 6510 CPU has two built-in I/O ports at $00 and 

$01 for paging some areas within (starting from $a000). The screen memory is at $0400 (and 
the colour memory at $d800), below which are system areas. The Basic memory starts at 
$0801 (2049), and a single file can even be loaded up to $d000. There are many different 
Kernal ROM’s (e.g. one for JiffyDOS), yet the last two bytes of them are always $ff48 (the 
jumping vector of the IRQ). Some important system variables can be found at $2b-$2c (43-
44) and $2d-$2e (45-46) for the Basic program starting and ending (and the starting of the 
Basic variables as well). These can be used for identification. 

 
C64 (Extensions and Clones or Variants) 
 
SuperCPU: an external card with 65816 CPU and onboard memory. The instruction 

set is quite different (no illegal opcodes can be used), with support for 24-bit native memory 
handling (up to 16 MB) and clock be switched over between 1 and 20 MHz. Some useful 
locations are at $d07a and $d07b (writing to here turns the turbo off and on), $d0b8 (the 
actual state of turbo setting can be read) or $d27b-$d27f (some parameters of the memory). 

 
Flash 8, Turbo Process and Turbo Master (aka Schnedler card): similar beasts, the 

former two use the same 65816 CPU at about 8 and 4 MHz, while the latter uses a 65C02 at 4 
MHz instead. All of these cards have similar (but actually different) switchover bits (either 
bit6 or bit7, i.e. $40 or $80) at either $00 or $01 in memory, and sometimes in reverse (so 
sometimes the set, while otherwise the reset state of the bit signs the turbo being on and off). 
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TDC (or Turbo Demo Card): an overclocking daughtercard for HMOS motherboards. 
It has two bits at $d030 for 2 and 4 MHz turbo modes (similarly to the C128). $d02f is 
supposed to contain $f0 (actually $ff in real) and $d031 a version number (usually $d1 in 
real). While in turbo mode, it accelerates everything, except for the VIC-II and SID: not only 
the CPU, but also including the CIA’s (so the interrupts get thicker and the cursor faster, and 
the disk operations not possible) and the memory, plus it has some other quirks. 

 
C64DTV (Direct-To-TV): also has a hidden turbo mode (if activated, the disk 

operations are not possible and there are no VIC-II badlines) and some RAM (up to 2 MB) 
accessible via DMA (controller at $d300), plus a blitter and screen modes (256 colours). A set 
of hidden registers can be made visible by writing $01 to $d03f (and invisible by $00). 

 
Turbo Chameleon: a flexible turbo mode from 2 even up to 14 MHz (be switched at 

$d030 like the C128 and TDC) and the widest scale of further expansions built in. Can be 
detected by writing $2a to $d0fe and reading back (any other value different from $ff which 
must normally be there), then writing $ff to there and reading back again (it must already give 
back $ff then). The first attempt makes visible, while the second invisible its hidden registers. 

 
1541 Ultimate (I, II or II+) or U64 +note:***(1): if the Command Interface is 

enabled, then it can be detected by reading from $df1d which must give back $c9 then. 
 
IDE64: the three bytes from $de60 through $de62 must contain the values of $49, $44 

and $45 (the letters of “ide”). 
 
Emulators: some C64 emulators (like the C64S and the v2.2 or older versions of 

VICE) make it possible to detect if it is not real hardware. The $dfff memory location at the 
I/O area oscillates between $55 and $aa at each and every read attempt in this case (some 
further and more advanced emulator detection techniques will be discussed later, too). 

 
Memory expansions: like REU or GeoRAM etc. (See the user manual of my 

independent MemTest64 project for them!) 
 
C128 
 
The big brother with 128K or 256K memory (in two or four 64K banks) and 8502 

CPU (switchable between its 1 and 2 MHz modes at $d030 or via the Basic commands 
SLOW and FAST), the VIC-IIe (a slightly modified VIC-II) and VDC video chips (with 16K 
or 64K separated video memory) and an additional Z80A processor (at effectively 2 MHz, 
too). The screen and colour memories are as the same as those of the C64 by default, while 
the last two bytes of Kernal are always $ff17. The Basic area starts from $1c01 (7169) and 
lasts till $feff. The system variables of the Basic starting can be found at $2d-$2e (instead of 
$2b-$2c which are not really used and generally may contain just zeroes or any other 
meaningless values). The Basic variables are stored in the second bank. (The VDC is 
accessible at $d600-$d601.) 

 
There are also some system variable areas from $0800 up to $12ff. From $1300 to 

$1bff the memory is not used (it is called as Application Program Area and free), so thus the 
Basic starting might even be set as low as this at any time as well. 
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The targeted memory bank (for PEEK and POKE) is selected by the BANK command: 
from BANK 0 to BANK 3, and also BANK 15 (the system bank, which basically equals to 
the first bank, but also with I/O and ROM areas mapped in, from $4000 onwards). The 
bottom 1K and the uppermost 256 bytes are common memory (included in every bank). In 
machine language, the $ff00 location is used for bank switching: the corresponding values of 
$3f/$7f/$bf/$ff do the same as BANK 0/1/2/3, and the value of $00 the same as BANK 15. 

 
You can switch to C64 mode by typing in the GO64 command (or by holding down 

the C= key at startup, or via the JMP $FF4D Kernal call). In this mode only the first bank can 
be accessed (and it also keeps its whole content from after the native mode except for the 
overwritten bytes). The VDC stays also accessible in this mode, as well as the locations at 
$d02f (has three bits for scanning the extended keyboard) and $d030 (has two bits, one for the 
fast mode and the other for the test bit). So these can be used for identification in C64 mode. 

 
When the 2 MHz fast mode is activated, the VIC-IIe screen seems garbled, so it must 

also be blanked. (Still you may apply the common trick by making two raster interrupts at the 
bottom and the top of the visible screen area, and turning it on and off, thus achieving some 
average of 30% speed gain over the normal operating mode.) 

 
C65 (or C64DX Prototypes) 
 
This “yet even more” big brother has 128K memory in two 64K banks, and a 4510 

CPU (which is a 65CE02 variant in real with different instruction set and some slightly faster 
timings that make it nearly 20% faster in advance, on top of that it can be switched over 
between its 1 and 3.5 MHz slow and fast modes, too), and a VIC-III (which has got no 
badlines, it makes it even faster, plus an integrated 80-column mode). The screen memory is 
at $0800 by default, and the Basic starting is at $2001 (8193). The system variables of the 
latter are also stored at $2d-$2e (as the same as those of the C128), and it also has a similar 
free memory block from $1300 to $1fff (so the Basic area may be expanded to here, too). 

 
The FAST and SLOW commands basically work the same (just without the screen 

blanking and considering that the fast mode is default), as well as those BANK 0 and BANK 
1, however the system bank is BANK 128 here. (The memory might be expanded even up to 
8 MB, thus up to BANK 127 might also be used.) BANK 2 and 3 are for the ROM’s. 

 
The last two bytes of Kernal may vary, since there are many different “half-made” 

(prototyped) revisions of them: at least six (or more) can be found on the internet, which have 
got these following values there: $fab1, $fb6a, $fb75, $fb80, $fb84 and $fb87. 

 
Turning into C64 mode goes similarly, more or less (the Kernal call is JMP $FF53 

here). The CPU is switched to 1 MHz mode in this case, otherwise its behaviour is not 
changed (the instruction set and the faster timing, and also the badlines) +note:***(2), so the 
real C64 compatibility will be rather limited just because of this. The extended registers of 
VIC-III stay hidden until you write two “magic bytes”: first $a5, then $96 into the location at 
$d02f (writing any other value makes them being hidden again). 

 
The machine has got an integrated DMA controller at $d700 (also hidden by default), 

which is somewhat similar to that of the REU (but much more capable). The bank switching 
method in Assembly is rather complicated (including a mapper function of the CPU). 
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C65 Emulator (MESS) 
 
This is the only (more or less) usable emulation of the original machine(s) up to here I 

know. Several things work slightly differently though (man needs to be aware of which): 
 
The $00 and $01 memory locations seem to do nothing here (in spite of that these 

ports must have been both to be used in C64 and C65 modes). Thus, some memory areas just 
cannot be moved away, and not even in C64 mode: the Basic, the Kernal and the I/O will 
always remain there, so the RAM under them cannot be accessed. 

 
Any writing into $d02f gains no effect, either (neither of the “magic bytes” nor any 

other value): so the “hidden” registers are also always there. 
 
The emulations always use an NTSC hardware (even if it is reported as “PAL”). 
 
In the C64 mode, the cursor is blinking (and the keys are repeating) way faster than 

normal (no idea why). On the real hardware, it works the same as on a C64 (here not). 
 
If you would like to also try it, then the MESS v0.111 version (from 2006) will be 

needed (and possibly its GUI extension, called MessGui, too). This is necessary unfortunately 
just because all newer versions of MESS have got their entire C65 emulations broken (thus 
totally useless). Once having the right version, it is recommended to be started with the 
v0.9.910111 (i.e. ‘91. January) Kernal ROM version (that originates from the earlier and 
probably the most common Rev2B motherboard); just because that same binary is used by the 
C65GS, too. (The MESS version has also got a lot of other flaws and quirks, and because of 
them the internal drive with device number 8 is not so usable. So must you then attach a D64 
image as an external drive with 10 or 11, and start it all from there.) 

 
Also, resetting the emulation is not always working properly (so you better quit and 

start it again if you need reset). 
 
MEGA65 (or C65GS) 
 
An FPGA re-implementation (or simply called a modern clone) of both the C65 and 

the C64 platforms (and both of them with better compatibility as well as with further feature 
sets). This has not yet been released when writing this, still already in the making for some 
years (2013-2020), so any of the information provided here might be wrong: 

 
It has got the same 128K main memory as the C65 prototypes, and over that some 

expanded memory, too (16 MB or 256 MB or even more, depending on the actual FPGA 
board being used). It can be built around a Nexys 4 or a custom-made own motherboard. 

 
It has got a brand-new VIC-IV video chip implementation: including the feature set of 

VIC-III (which can be activated by using the same above “magic bytes”), and on top of that, 
an even much more powerful new feature set – which can be activated by using two other 
“magic bytes”: $47 and $53 written into $d02f. 
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The C64 mode is promised to will have a far higher grade of backwards compatibility 
to the original platform: the instruction set be switched over to the 6510 one (with all the 
undocumented opcodes, too), as well as the timing be so accurate (including the badlines). 

 
Both C65/C64 modes to have some newer fast and turbo speeds: on top of the former 

normal 3.5 MHz, also 2 MHz (switchable at $d030 like the Turbo Chameleon and the C128) 
and a maximum of 40 MHz (or even more): can be used as POKE 0,65 and POKE 0,64. 

 
Any (or many) of the already existing C65 and C64 Kernal ROM’s might be used. 
 
And so on… Please see the complete and more actual information page here: 
 
http://mega65.org/  
 
VIC-20 
 
And this is the elder little brother of all the above ones. The system ROM’s (both the 

Kernal and the Basic ones) are very similar to (or almost the same as) those of the C64. The 
last two bytes are $ff72 though. However, there are many different memory configurations 
possible. The unexpanded stock machine has only 5K memory: 1K for the system variable 
area, and 4K starting at $1000 (so thus there is a “hole” in-between, from $0400 to $0fff in 
this case). The 8K machines fill in this hole with another 3K added. And then it can be further 
expanded up to 32K (up to $7fff) as a contiguous space, and even with another 8K (from 
$a000 to $bfff) apart. So it is a 40K in total. 

 
The Basic starting pointer is at $2b-$2c (and the ending pointer is at $2d-$2e), but 

there are three variations for the default Basic start: $1001 (4097) on a 5K (stock) machine, 
$0401 (1025) on 8K, and $1201 (4609) otherwise. There are also two variations for the 
default screen (and colour) data: either at $1e00 (colours at $9600) on the 5K/8K, or at $1000 
(colours at $9400) otherwise. 

 
The smaller configs can be “simulated” on a fully expanded machine (by manually 

being set), which is often needed when you want to run a program made (or optimized) for the 
other memory configs. Not only the Basic pointers must be altered in this case, but also the 
high byte of the screen at $288 (648), and then after having that finished, even done a Kernal 
init call by JSR $E518 (or SYS 58648), before performing the LOAD and RUN commands. 

 
Its 6502 CPU runs slightly faster than that of the C64 (1.1 MHz on PAL or 1 MHz on 

NTSC), and the VIC-I has no badlines (as neither can be blanked). The screen size is 22x23 
characters, which stays under 0.5K after all. 

 
TED Series 
 
Their 7501 CPU may have got a full speed at about 1.7 MHz (on screen blanked), but 

the TED video chip reduces that only to about 1.1 MHz in average (by clocking it down to 
0.89 MHz while within the visible screen area and turning back to 1.7 MHz on borders; which 
is somewhat similar to the software trick on C128, but here is being done by hardware). 
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Their memory can be 16K (C16 or C116), 32K (C232 prototype) or 64K (Plus/4). If it 
is not fully expanded, then the physical memory is also mirrored upwards in the address space 
(that means e.g. on a C16 the RAM location at $1000 equals to the locations at $5000, $9000 
and $d000). The Basic starts at $1001 (4097), and the pointers are the same as on the C64 and 
VIC-20. The screen memory is at $0c00 (and the colour memory at $0800). The Kernal and 
the Basic can be paged into the upper 32K address space in Assembly by writing anything to 
$ff3e, and be paged out by writing anything to $ff3f. 

 
The last two bytes of Kernal are $fcb3, but it can be only read in Assembly, because in 

Basic the PEEK command reads from RAM instead. 
 
LCD (Prototype) 
 
65C02 (or 65C102) CPU at 1 or 2 MHz, with 32K or 64K memory. The Basic is the 

most similar to that of the TED series (v3.6 vs v3.5), also starting at $1001 (4097), but the 
pointers are stored at $65-$66 (101-102). The screen memory is at $0800 (with no colours 
because it is monochrome), organized into 16 rows of 128 bytes size, of which only 80 bytes 
per line are used (80x16 characters). The last two bytes of Kernal are $fa0e here. 

 
PET Series 
 
6502 CPU at 1 MHz, from 4K to 32K contiguous memory, plus another 8K possible 

apart (like on VIC-20, but from $9000 to $afff instead). The Basic starts at $0401 (1025), the 
pointers at $28-$29 (40-41). The screen memory is at $8000 (either 1K or 2K depending on 
actual size of 40x25 or 80x25 in monochrome). The last two bytes of Kernal may vary among 
three values (depending on version): $e66b (rev. 1-2), $e61b (rev. 3) and $e442 (rev. 4). 

 
CBM-II Series 
 
Their rather special 6509 CPU is able to handle up to 1 MB memory via bank 

switching. The memory is organized in 64K banks, so thus up to 16 banks are possible. While 
it sounds well at first, it is even worse in real: just because the switching method is so 
primitive, that either the whole address space is switched over (including the zero page, the 
stack and even the running code itself), or we can be only cueing slowly, byte by byte. The 
CPU has two I/O ports at $00 and $01, each of which can hold a value between 0 and 15. The 
first one sets the program bank that is valid for everything, except for these two opcodes: LDA 
($xx),Y and STA ($xx),Y (the source or destination bank of which is specified by the other). 

 
Actually there are only fifteen banks, since the last one is the system bank. Similarly 

to the C128, but even worse again, as it neither has a single byte of memory being shared with 
any of the other banks… And that is why this architecture is referred to as a “bank switching 
nightmare”. The programming is complicated, clumsy. The system bank only has a few 
kilobytes of RAM (besides ROM and I/O), of which only 1K is free and usable (at $0400). So 
you can either run your machine language code from there, or in any of the separated other 
banks: with lots of free spaces, but also with losing connection with almost the whole system 
(including the Kernal calls and interrupts). Because of these circumstances, the CBM-II stays 
always an odd platform: a strange beast… that requires a raw deal (a special code). 
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While programming in Basic, it does not seem so tragic yet. The machines have 128K 
or 256K memory by default, one bank for the Basic program code, and the other(s) for the 
variables can be used. So the Basic area starts at $0003 here (and the pointers are at $2d-$2e 
like on the C128/65). The screen is mapped to $d000 in the system bank (either 2K for 80x25 
in monochrome, or 1K + 1K colour RAM at $d400 for 40x25 on having a VIC-II instead). 

 
There are also BANK commands for targetting for PEEK and POKE (similarly to the 

C128), but the applied bank numbers are slightly different: on the 5x0 line (P-series) BANK 0 
is the Basic program bank, and BANK 1 is the variable bank; while on the 6x0 line (B-series) 
the BANK 0 is not in use, and BANK 1 is the program bank, leaving three (BANK 2-3-4) 
being wasted for the variable area. In Assembly, the equivalent of this is to simply write the 
bank number into $01 (as the above-mentioned two opcodes are used for PEEK and POKE). 

 
The last two bytes of Kernal are $fbe5 (on the 5x0) and $fbd6 (on the 6x0). 
 
Summary and Comparison Tables 
 

Computer system identification: 
 

peek(65535) = 228/230 -> PET (rev.4/rev.1-3) 
250/251 -> C65 (Rev2B/other) 
250  -> LCD 
251  -> CBM-II 
255  -> (other) 

 
peek(65534) = 72  -> C64  ($ff48) 

23  -> C128  ($ff17) 
114  -> VIC-20 ($ff72) 
14  -> LCD  ($fa0e) 
n/a  -> TED (Plus/4) ($fcb3) 
107  -> PET (rev.1-2) ($e66b) 
27  -> PET (rev.3) ($e61b) 
66  -> PET (rev.4) ($e442) 
229  -> CBM-II (5x0) ($fbe5) 
214  -> CBM-II (6x0) ($fbd6) 

 
 

Start of BASIC memory: 
 

C64    2049   ($0801) 
C65    8193   ($2001) 
C128 (char/gfx)  7169/16385  ($1c01) 
Plus/4 (char/gfx)  4097/16385  ($1001) 
LCD (char/gfx)  4097/12289 
VIC-20 (stock/8kB/>8kB) 4097/1025/4609 
PET series   1025 
CBM-II (5x0/6x0)  3 (in memory bank 0/1) 
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Screen RAM: 
 

C64/128   1024   ($0400) 
C65/LCD   2048   ($0800) 
Plus/4 (TED series)  3072   ($0c00) 
VIC-20 (>8kB/<=8kB) 4096/7680  ($1000/$1e00) 
PET series   32768   ($8000) 
CBM-II (5x0/6x0)  53248   ($d000) in bank 15 

 
 

Colour RAM: 
 

C64/128/65   55296   ($d800) 
C65 (80-column mode) 63488   ($f800) in bank 1 
Plus/4 (TED series)  2048   ($0800) 
VIC-20 (>8kB/<=8kB) 37888/38400  ($9400/$9600) 
CBM-II (5x0)   54272   ($d400) in bank 15 

 
 

Maximal loadable file size: 
 

C64    51 kB   ($0400-$cfff) 
C65    <60 kB   ($1300-$feff) 
C128    <60 kB   ($1300-$feff) 
Plus/4    <62 kB   ($0800-$fcff) 
C232    <30 kB   ($0800-$7ff5) 
C16/116   <14 kB   ($0800-$3ff5) 
PET/VIC-20   31 kB   ($0400-$7fff) 
CBM-II   <64 kB   ($0003-$ffff) 

 
C64 (with $c000 used) 47 kB   ($0400-$bfff) 
C65 (with $d000 used) 47 kB   ($1300-$cfff) 

 
(after all)   <44 kB   ($1300-$bfff) 

<28 kB   ($1300-$7fff) 
 
 
So What Is the Least or Greatest Common Set? 
 
As for program space: as can be seen above, if you lean on the full-expanded 

machines, you may count on some 30-40 kilobytes of common space (or even more). Which 
is not so bad… However, if you really want to support all platforms, then it drastically 
shrinks, finally quite only to an innermost single 4K block (from $1000 to $1fff). Below that 
narrow slice some computers have no memory at all (the stock VIC-20) as neither have the 
others that much free space (since it is used for screen data or other things). Over $2000 some 
systems have nothing again (the 8K PET/VIC-20) and the C65 also has some problems there 
(as it is already covered by the system ROM and bank switching is not so easy in this case). 
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Even worse, on VIC-20 the screen is also there (either at the beginning or the end). 
The C128 and the C65 systems also use the first three pages there ($10xx holds the 
definitions of the function keys and $11xx/$12xx some other things). So thus you can only 
start your program exactly at $1301 (or $1401) and have only little more than 3 kilobytes. 
(And it is even not a 100% success then, because there still remain two exceptions: the 4K 
PET and the CBM-II series, for whom we should need to find some other solution.) 

 
As for variable space: there are many locations on the zero page that can be used. The 

first few ones are surely free on all machines (from $02 to $0f) and usually the last ones, too 
(from $fa to $ff). Also many in-between (but you must be hunting for them one by one). 

 
If you ever need more space, then bravely also think about the stack: the very most of 

which gets never used at all. As a matter of fact, only the uppermost one or two dozen bytes 
are frequently in use, and sometimes the bottom ones as well. So, say nearly from $0110 to 
$01c0 you may find a safe and solid contiguous block that never really should be overwritten 
by any of the operating systems on all machines. 

 
As for what to do: firstly try the jumping table of the common Kernal calls – because 

they had exactly been created for this purpose (e.g. JSR $FFD2 to print a character). 
 
And remember: this is just the very least (or in other words the bare minimum). You 

may have got infinite possibilities, albeit the more you want, the more (and more and more!) 
difficult and complicated your job will become. (And this is exactly what I am planning to do 
with Rosetta: a multi-player, MUD-like, real-time text IF to play on all CBM machines.) 

 
In the following sections, I will share and discuss some programming techniques and 

ideas. The examples are mostly taken from my MemTest64 and SDOS projects: both of them 
are Public Domain, open-source and freeware. (It is strongly recommended to download 
them and read along all the source files and the descriptions that they contain.) 

 
Let Us Start at $1301 (the Magical Address) 
 
Why exactly there? On one hand, just read it above (we cannot go below); on the other 

hand, we also need to stay compatible to the Basic conventions. The Basic area must always 
be preceeded by a single (otherwise not used) zero byte: hence the $xx01 ending everywhere. 
The Basic starting might be set to this position on each machine. For example in this way: 

 
POKE 44,19 : POKE 4864,0 : NEW (or using 46 instead of 44 if needed) 
 
A program can be basically loaded in two ways: either as an ML (i.e. machine 

language) code (by typing LOAD “filename” ,8,1 and an appropriate SYS command, like 
SYS 4865), or as a Basic code (by typing LOAD “filename” ,8 and RUN). Also there are 
further possibilities (e.g. DLOAD, BLOAD, RUN “filename”, BOOT “filename”, autoboot or 
autostart). And we need to try to satisfy as many of them as possible, in order to be perfect. 

 
That means we need a little Basic code to begin with; which is also necessary by the 

way, and even worse, this code portion must be prepared to be launched from all kinds of the 
different locations being used by all machines as Basic start – then be able to relocate itself to 
where we want it to really run. This is how my MemTest64 program starts: 
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*=$1301 
 
; 20 i=peek(65534)+peek(65535)*256:a=peek(45)+peek(46)*256: 
;      ifpeek(43)=1andpeek(45)=203thena=peek(44)*256+1 
; 20 ifi=64014thena=peek(102)*256+1 
; 20 b=i:s=a+3211:ifa=3thens=272:fori=sto315:bank-(b=64470): 
;      a=peek(i+5452):bank15:pokei,a:next 
; 20 ifa>4865thens=272:bank.:fori=sto402:pokei,peek(a+i+3068): 
;      next:bank128+113*(b=65303) 
; 20 syss 
 
byte    $4c,$0d,$14,$00,$49,$b2,$c2,$28,$36,$35,$35,$33,$34,$29,$aa,$c2 
byte    $28,$36,$35,$35,$33,$35,$29,$ac,$32,$35,$36,$3a,$41,$b2,$c2,$28 
byte    $34,$35,$29,$aa,$c2,$28,$34,$36,$29,$ac,$32,$35,$36,$3a,$8b,$c2 
byte    $28,$34,$33,$29,$b2,$31,$af,$c2,$28,$34,$35,$29,$b2,$32,$30,$33 
byte    $a7,$41,$b2,$c2,$28,$34,$34,$29,$ac,$32,$35,$36,$aa,$31,$00 
 
byte    $6c,$13,$14,$00,$8b,$49,$b2,$36,$34,$30,$31,$34,$a7,$41,$b2,$c2 
byte    $28,$31,$30,$32,$29,$ac,$32,$35,$36,$aa,$31,$00 
 
byte    $b4,$13,$14,$00,$42,$b2,$49,$3a,$53,$b2,$41,$aa,$33,$32,$31,$31 
byte    $3a,$8b,$41,$b2,$33,$a7,$53,$b2,$32,$37,$32,$3a,$81,$49,$b2,$53 
byte    $a4,$33,$31,$35,$3a,$dc,$ab,$28,$42,$b2,$36,$34,$34,$37,$30,$29 
byte    $3a,$41,$b2,$c2,$28,$49,$aa,$35,$34,$35,$32,$29,$3a,$dc,$31,$35 
byte    $3a,$97,$49,$2c,$41,$3a,$82,$00 
 
byte    $f8,$13,$14,$00,$8b,$41,$b1,$34,$38,$36,$35,$a7,$53,$b2,$32,$37 
byte    $32,$3a,$fe,$02,$2e,$3a,$81,$49,$b2,$53,$a4,$34,$30,$32,$3a,$97 
byte    $49,$2c,$c2,$28,$41,$aa,$49,$aa,$33,$30,$36,$38,$29,$3a,$82,$3a 
byte    $fe,$02,$31,$32,$38,$aa,$31,$31,$33,$ac,$28,$42,$b2,$36,$35,$33 
byte    $30,$33,$29,$00 
 
byte    $ff,$13,$14,$00,$9e,$53,$00 
 
byte    $00 
 
*=$1400 
 
; 0 sys5133 
 
byte    $00,$0b,$14,$00,$00,$9e,$35,$31,$33,$33,$00,$00,$00 
 
*=$140d 
 
As can be seen and thought, the actual main code will only begin here at $140d that 

equals to a SYS 5133 command, when loaded as an ML code. (Yet everything else before this 
point is also needed for getting here otherwise.) Now let us see the Basic lines explained: 
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  20 i=peek(65534)+peek(65535)*256:a=peek(45)+peek(46)*256: 
       ifpeek(43)=1andpeek(45)=203thena=peek(44)*256+1 
 
In the first Basic line, we read our system identifier. (The last two bytes of Kernal at 

$fffe-$ffff that is after all the IRQ vector of the CPU, and as we have seen before, fortunately 
unique for each system.) Then we decide which pair of the Basic pointers we need. (On those 
machines using 43-44, the low byte of them is normally 1, and then the other pair of pointers 
at 45-46 hold the ending of the program: of which, we also test the low byte, and that happens 
to be 203 here just because my MemTest64 ends there; so, once that end changes, then it must 
be altered here, too. On the other machines, the 43-44 pair is meaningless, and usually zero.) 

 
  20 ifi=64014thena=peek(102)*256+1 
 
In the second line, we also check it for the LCD (note that 64014 = $fa0e). 
 
  20 b=i:s=a+3211:ifa=3thens=272:fori=sto315:bank-(b=64470): 
       a=peek(i+5452):bank15:pokei,a:next 
 
The third line is mostly for the CBM-II. Note that 272 = $0110, so we shall use the 

stack here (as a temporary program space). The 3 value in the IF condition identifies that 
system (which is the Basic start, and not possible otherwise). The BANK switching is also 
tricky: 64470 = $fbd6 (for the 6x0), so as the embedded logical condition (b = 64470) is 
evaluated, it gives back -1 when true, and 0 when false: by multiplying it with another -1, we 
get the correct bank number of BANK 0 or 1 (where the Basic program is). 

 
  20 ifa>4865thens=272:bank.:fori=sto402:pokei,peek(a+i+3068): 
       next:bank128+113*(b=65303) 
 
In the fourth line, we do the same for the C128 and the C65 (similarly choosing 

between BANK 15 and BANK 128). Please note that the Basic dialects are not compatible 
here: while that BANK statement on CBM-II has a one-byte token ($dc), this “other” BANK 
statement on C128/C65 already has a two-byte length ($fe, $02). 

 
  20 syss 
 
Finally the fifth line jumps onto the ML code… 
 
…yet there are three variations where: normally to the Basic start + 3211 (if we 

assume the Basic start as $1301 = 4865, then it would be $1f8c = 8076), or otherwise to 272 
in the stack (where we have copied one of those two temporary codes right before). 

 
In the next sections, we inspect the three temporary ML codes. But before that, please 

recognize yet another beauty of my Basic gem: it is right exactly round 256 bytes (and it took 
so many iterations of bit hunting and optimizing until I managed to shrink that to this size). 
Moreover, still staying within that, the FOR-NEXT cycles are also optimized to be as fast and 
short as possible (even including to carefully choose the order of the variable declarations, 
since the earlier ones can a little bit quicker be accessed by the interpreter). 
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Oh, and yet another final note… the very first three bytes: $4c, $0d, $14. Which 
happens to be a JMP $140D command (SYS 5133) there, “hidden” in the Basic line (and yes, 
it is the cause of  that strange line number of 20). It was only needed for sake of supporting 
the BOOT command. (On some machines, if you type in BOOT “filename”, it loads the file 
as an ML code, and instantly starts that, too, by jumping to the first byte of the code.) 

 
Upward Relocation (on C64, VIC-20, TED, LCD and PET) 
 
This is called “upward” because the loaded Basic program resides below the target 

space (and so will be moved upwards in the memory). In such cases, if there may be any 
overlap possible between the source and destination areas, the copying of bytes has to be 
made in decreasing order (from up to down). (If we did it in the opposite direction, then it 
would overwrite itself somewhere, and so thus would get corrupted.) 

 
The following code part does this job, but first it repeats the same indentifications as 

the Basic lines before, and calculates the relative address, according to the Basic start. The 
cycle used for the relocation itself is also first copied into the stack and run from there (at 
$0110, the flp2 cycle). It is necessary because if we ran it from within the same space being 
copied momentarily, then it would overwrite itself, too (and crash). 

 
Downward Relocation (on C128 and C65) 
 
This part is already being run within the stack (so it needs not to be copied there). The 

main code will be moved downwards, so thus it must be made in increasing order now. And 
there is yet another difficulty: because it may (at least partly or even entirely) be covered by 
the Basic or the Kernal ROM, we first need to page the ROM out (and after the copying page 
back). On the C128, it occurs from $4000 onwards, and the solution is easy: just write $3f to 
$ff00 for paging it out (and then $00 for paging it back). On the C65, however, it is not so 
easy: we must use the MAP command of the processor (a special extension of the 4510 CPU), 
and it also occurs already from $2000 onwards then. (So normally the whole Basic program 
area is covered, and this is why it cannot be launched by using just a single SYS command.) 

 
Here follow both two parts together (once at $1f8c and then again at $200d, also with 

another Basic line inserted in-between which might be used if loaded with ,8,1 on C65): 
 
*=$1f8c 
 
; upward relocation (sys8076) <- Basic + 3211 
 
  sei 
  ldx $2b 
  lda $2d 
  ldy $2e 
 
  cmp #<ende 
  bne bex 
  dex 
  bne bex 
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  lda #$01 
  ldy $2c 
 
bex ldx $fffe 
  cpx #$0e 
  bne fex 
  ldx $ffff 
  cpx #$fa 
  bne fex 
 
  lda #$01 
  ldy $66 
 
fex sec 
  pha 
  sbc #$01 
  pha 
  tya 
  sbc #$13 
  tax 
  pla 
  php 
 
  adc #<flp2-1 
  sta $02 
  txa 
  adc #>flp2 
  sta $03 
 
  plp 
  pla 
  bcs und 
 
  adc #$ff 
  sta $04 
  tya 
  ldy #$1a 
  adc #$15 
  sta $05 
 
flp1 lda ($02),y 
  sta $010f,y 
  dey 
  bne flp1 
 
  lda #$29 
  ldx #$16 
  sty $02 
  sta $03 
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  jmp $0110 
 
flp2 dey 
  lda ($04),y 
  sta ($02),y 
  tya 
  bne flp2 
 
  dec $03 
  dec $05 
 
  txa 
  dex 
  bne flp2 
 
und cmp #$01 
  bne down 
  txa 
  bne down 
 
  jmp main 
 
*=$2000 
 
; 0 sys5133 
 
  byte $00,$0b,$20,$00,$00,$9e,$35,$31,$33,$33,$00,$00,$00 
 
*=$200d 
 
; downward relocation (sys8205) <- Basic + 3340 
; (copied to $0110 and started there) 
 
down sei 
  ldy $2b 
  lda $2d 
  ldx $2e 
 
  dey 
  bne xex 
  cmp #<ende 
  bne xex 
 
  ldx $2c 
  bcs smex 
 
xex ldy $ffff 
  cpy #$fa 
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  bne lex 
  ldy $fffe 
  cpy #$0e 
  bne kex 
 
  ldx $66 
  ldy #$00 
 
smex inx 
  sty $02 
  stx $03 
 
  php 
  bcs zyex 
 
kex ldy $ffff 
 
lex clc 
  adc #$ff 
  sta $02 
  txa 
  adc #$00 
  iny 
  sta $03 
 
  php 
  beq qyex 
 
  lda #$00 
  tax 
  tay 
 
; TAZ / MAP 
 
  byte $4b,$5c 
 
  lda #$07 
  ora $00 
  sta $00 
 
  lda #$f8 
  and $01 
  sta $01 
 
zyex lda #$14 
  ldx #$16 
  sty $04 
  sta $05 
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flp3 lda ($02),y 
  sta ($04),y 
  iny 
  bne flp3 
 
  inc $03 
  inc $05 
 
  dex 
  bne flp3 
 
  plp 
  bcs sjex 
  beq stex 
 
  lda #$07 
  ora $01 
  sta $01 
 
  tya 
 
; LDX #$E3 
; LDZ #$B3 
 
  byte $a2,$e3 
  byte $a3,$b3 
 
; MAP / TAZ 
 
  byte $5c,$4b 
 
sjex jmp main 
 
qyex ldx #$3f 
 
stex stx $ff00 
  bne zyex 
  beq sjex 
 
A little more about the C65 mapping: on this machine, the bank switching is done via 

its integrated mapper function, being invocated by the MAP command ($5c opcode). That 
needs all four registers being set before: one pair for the lower and the other pair for the upper 
32K (so both halves can be mapped to any extended memory location independently of each 
other; whether it be RAM or ROM). This method is rather flexible, albeit a bit complicated 
(and we must also be sure if the 4510 instruction set is at present). E.g. for BANK 0 (which is 
the same layout as that of the C64 mode by the way) all four registers need to be set to zero. 
Once a MAP is used, at any time later an EOM ($ea opcode, identical to that of the NOP) 
must also be applied (or else the interrupts will not work because of staying hung up for ever). 
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And a Third One for the Joker (on CBM-II) 
 
This third temporary code part (already copied to and running in the stack) copies its 

own main code (apart from the others) from the Basic bank (0 or 1) into the system bank (15) 
at $0400 (up to 1K of size at maximum) and jumps to there. (In Rosetta, I will rather make it 
in the other way around: I am running the common main code in the Basic bank. But that 
requires a very complicated bank switching environment implemented for the interrupts and 
Kernal calls… So we do not do so here.) 

 
*=$295a 
 
; CBM-II relocation (10586) <- Basic + 5721 
; (copied to $0110 in system bank and started there) 
 
  sei 
  lda $fffe 
  ldx #$01 
  cmp #$d6 
  beq cbm2 
  dex 
 
cbm2 ldy #<$1688 
  lda #>$1688 
 
  stx $01 
  sty $02 
  sta $03 
 
cbmy ldy #$00 
  ldx #$03 
 
cblp lda ($02),y 
  sta $0400,y 
  iny 
  bne cblp 
 
  inc $03 
  inc $012d 
 
  dex 
  bne cblp 
 
  jmp $0403 
 
*=$2986 
 
; (copied to $0400 in system bank and started there) 
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Another Relocating Method (Not Basic Dependent) 
 
The above-mentioned method with the Basic header and the corresponding temporary 

codes is well capable to launch your application on each system and (almost) from any Basic 
start address. But it has a weakness, too: it does need that Basic start. There might be a 
situation when you want to write a pure Assembly code which is similarly able to relocate 
itself. Here follows a theory on how to do it then. So the program has just begun, and it needs 
to find out where it is – but it cannot use yet any fix addresses until we do the relocation. 

 
We shall use the PC (Program Counter) register of the CPU; however, it is not directly 

accessible unfortunately. Still accessible indirectly: for example through a dummy call: 
 
  sei 
  lda #$60 
  sta $02 
  jsr $0002 
 
What happens here? We place an RTS opcode at $0002, and then call it, that 

immediately returns from the “subroutine”. What is interesting now, that is the side effect: the 
returning address still remains on top of the stack. (The SEI is needed to avoid that from 
being accidentally overwritten by an interrupt.) The following part reads it from there: 

 
  tsx 
  sec 
  dex 
  lda $0100,x 
  sbc #<addr 
  sta $02 
  lda $0101,x 
  sbc #>addr 
  sta $03 
 
And it also compares it (by making a 16-bit comparison via two subtractions) with 

another address (which we must already calculate before, at coding time, and write its low 
and high bytes in place of those “addr’s” above). We need to know that the address found on 
the stack will be one byte less than the real returning address: because all the 65xx CPU’s are 
working in this way. So it should be at the third byte of the JSR $0002 command exactly (that 
is $20, $02, $00 in the memory in real, and it should point to that last zero byte here). Thus, 
the absolute address of this position (in our actual code compiled) must be used as “addr”. 

 
In $02/$03, we have now got the difference (i.e. how many bytes away the relocation 

goes), and we also have a sign in the C flag. If C=0, we are at a lower address momentarily, 
so we need an upward relocation in this case. If C=1, we are at higher, so a downward 
relocation must be done (or the addresses could even be equal, and then no relocation is 
needed): 

 
  bcc upward 
  ora $02 
  beq ready 
  bcs downward 
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If we now add the absolute destination address of the main code (i.e. that part to be 

relocated and then be jumped onto later) to this difference, then we get the source address in 
$02/$03 (and the destination address in $04/$05 as well) for the relocating cycle: 

 
  clc 
  lda #<main 
  sta $04 
  adc $02 
  sta $02 
  lda #>main 
  sta $05 
  adc $03 
  sta $03 
 
This can be applied for the downward relocation (which is made in increasing order as 

we know). For the upward relocation, however, we rather need to calculate the ending of the 
main code part instead (since it is made in decreasing order). 

 
(If you want to see this method “in action”, you may find it in the SDOS, and later 

also in the Rosetta source code, when published.) 
 
A Platform Independent Autostart 
 
Autostart is generally meaning that you need no SYS nor RUN command to be typed 

in; but rather have another very little extra file (usually only one or two blocks of size on 
disk) which starts automatically right after having been loaded, and then also boots the main 
file in. There are many different well-known methods on the C64 to achieve this, but I have 
only found one of them, that can be also used as a platform independent one: the stack one. 

 
It relies on the circumstance that the stack is always in use, also during the LOAD 

routine, and it holds the returning address from there: although we do not exactly know 
where, but we do not need to know it, either, if we fill it with the same value (so the low and 
high bytes of the address are the same), thus redirecting it onto a fix, known address (where 
we place a special code be prepared to continue). There are basically two choices possible: 
either use the $01 or the $02 value everywhere. As we know it, the address found on the stack 
will be always one byte less than the real returning address (i.e. it is still incremented by one 
on RTS). So it means that we can do the redirection either to $0102 or $0203. 

 
In the first case, we can make an exactly one-block boot loader file on disk (which is 

252 bytes of size): at $0102-$01fd (which also means we lose control over the last two bytes 
of stack, but it is no problem as they do not really matter here). 

 
In the second case, a two-block sized boot loader is possible: at $0100-$02a8 (since 

$02a9 is already used by the operating system, so it is the maximum). 
 
The first case has a bit smaller size, yet better compatibility: it must work almost on 

all machines. The second case does not always work on all machines. It has two main causes: 
on one hand, the second block is loaded later than the stack is filled (so if it gets already fired 
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by an RTS, while the corresponding code is not loaded yet, then it may crash), and on the 
other hand, that area over $0200 may be used by some of the operating systems, too. 

 
In both cases, the ending of the stack must be filled with the same bytes (either $01’s 

or $02’s) at least from $01e0 (or earlier) until $01fd (or $01ff). And we must prepare a code 
part waiting to be fired off at $0102 or $0203 (when the LOAD routine gets to an RTS, it 
indirectly jumps to there, instead of the normal returning). 

 
Both SDOS and Rosetta make extensive use of this method (especially for the latter, 

you may find an entire series of such boot loaders, one for each system the best optimized). 
 
Boot or Autoboot 
 
Booting is possible on C128 and C65 systems (including the MEGA65). Yet the actual 

process is quite different on them. What the same is: it is executed either by manually typing 
in the BOOT command (without any specified filename), or by putting in the boot-capable 
medium (normally a floppy disk or SD card) and turning on or resetting the computer. 

 
On C128: the operating system looks for the first block, or called as the boot block 

(which is on the track 1 and sector 0) on the disk, and if it has some special content, then 
loads it at $0b00 and executes it from there. 

 
It is also emulated by the SD2IEC drives (even directly from the SD card without 

mounting a disk image) where a BOOTSECT.128 file must be placed into the root directory 
of the SD card (and it must be set to 8 as drive number). 

 
It may either contain a Basic line to be executed (which may load and run an 

application, or do any other things), or a little ML code. The official format of preparing a 
boot sector must look like the following (however you might also use up that whole space for 
your own program code at your will as well, of course): 

 
*=$0b00 
 
; “cbm” (autoboot signature) 
 
  byte $43,$42,$4d 
 
; load address for additional sectors (T1, S1) 
 
  word $0000 
 
; bank number for additional sectors 
 
  byte $00 
 
; number of sectors to load 
 
  byte $00 
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; boot message: “booting…” 
; (or a single zero byte for no boot message) 
 
  byte $42,$4f,$4f,$54,$49,$4e,$47,$2e,$2e,$2e,$00 
 
; program name to load on boot (a filename and/or just a zero byte) 
 
  byte $00 
 
; to execute a Basic command (as a string) 
 
  ldx #<cmd-1 
  ldy #>cmd 
  jmp $afa5 
 
; (here is the string) 
 
cmd byte $00 
 
; (finally filled with zeroes up to 256 bytes of size) 
 
*=$0c00 
 
On C65: it is much simpler there. The drive 8 will be searched by the operating system 

for a specific filename AUTOBOOT.C65*, and if found, then it will be loaded and run as a 
normal Basic program file. 

 
Detecting If PAL or NTSC System 
 
Some of the systems do not depend on the TV regulation as they have no TV output 

(PET, CBM-II and LCD). Some of them have two different Kernals hard-coded (VIC-20 and 
the TED series). And the remaining three (C64/128/65) have the same Kernal for both 
standards and make an autodetection at booting time to specify which one they are actually 
running on. You may read the result of that from a given space (at $02a6 on C64 where 0 
means the NTSC and 1 signs the PAL; or at $0a03/$1103 on C128/65 where 0 or $ff stands 
for the NTSC or the PAL). The problem with it is that these values are not reliable: the 
autodetection is faulty (so thus it is quite “normal” on C64’s with CPU accelerators like the 
SuperCPU or Chameleon, that a PAL machine is detected as NTSC by mistake), and even if it 
works well, the result in RAM might be overwritten by another application or the user. 

 
This is why you cannot lean on them, but rather make your own detection, by 

inspecting the physical hardware itself. That is quite easy as a matter of fact: you must only 
count the scanlines on the screen (by looking for a highermost value different from $ff in the 
raster counter). Normally a PAL screen has 312 scanlines, while an NTSC one has about 263 
lines (or plus/minus one or two sometimes). 

 
The following code part does this job for you (and gives back 0 or 1 in the X register 

for the NTSC or the PAL): 
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  sei 
  ldx #$00 
 
ntpx txa 
 
ntpl tay 
  sta $02 
ntpr lda $d012 
  cmp $02 
  bcs ntpl 
 
  iny 
  beq ntpx 
 
  inc $02 
ntpa bit $02 
  lda $02 
  cmp #$10 
  bcc ntsc 
 
pal  inx 
ntsc cli 
 
This works for the C64/128/65 in this way, and it can be made working for the VIC-20 

and the TED’s, too, by some self-modification: 
 
On TED machines: only the $d012 value at “ntpr” must be changed for $ff1d. 
 
On VIC-20: that same value must be changed for $9004 instead, and also the BIT 

opcode at “ntpa” must be changed for ASL (by writing $06 to “ntpa”). This latter 
modification is needed because the VIC-I chip only counts every second scanline in the raster 
counter (so it must be multiplied by two). 

 
Finally, two additional notes on this: 
 
Note 1: on C128, the VDC chip operates totally independently of the VIC-IIe timing: 

the VDC itself is the very same on both PAL and NTSC motherboards, and its timing will be 
only programmed by the operating system (to be the same as that of the VIC-IIe chip). You 
may even manually re-program it to have a different output (by specifying the screen size in 
some corresponding registers) if you want. (Even for a direct VGA or anything!) 

 
Note 2: on C64, it is often rather difficult (or even close to impossible) to make an 

NTSC version of a PAL game (or a demo effect), since those machines have considerably less 
computing time per frame (because of using 60 frames instead of 50 per second). If you are 
working on such a game or demo, and you do not want to sacrifice any of your features (nor 
simplify it in any other way) in order to make it NTSC compatible, just apply the well-known 
C128 trick of 30% CPU gain in C64 mode instead (by switching on and off the $d030 fast 
mode bit on raster interrupt). It fixes that for Turbo Chameleon (and MEGA65 and TDC), too. 
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Measuring the MHz of CPU 
 
Here follows a method (both used in MemTest64 and Rosetta) which is suitable for 

measuring the actually perceived speed of CPU. It is pretty exact on 65xx CPU’s, at least up 
to two decimal places (which is more than enough for any practical purpose). For example, 
the 6510 CPU of C64 is measured with screen enabled as 0.93 MHz on PAL and 0.96 MHz 
on NTSC machines; and with screen disabled as 0.98 MHz on PAL and 1.03 MHz on NTSC 
machines. (While the 8502 CPU of C128 in fast mode is measured as 1.88 MHz on PAL and 
1.97 MHz on NTSC machines.) 

 
The main principle is quite easy: exactly for 0.1 second, we are counting the executed 

cycles by the CPU. Whereas 100.000 cycles for this time period signs a “hypotetically” exact 
1 MHz clock. If we measure more or less, the clock is also proportionately more or less. 

 
To do it well, we need to rely on the result of the previous section code (Detecting If 

PAL or NTSC System, see before), and it is also strongly recommended to execute this code 
part right after the above. So it starts already with X register set to 0 or 1 (for NTSC or PAL): 

 
  sei 
  lda #$00 
  sta $02 
  sta $03 
 
  txa 
  clc 
  eor #$01 
  adc #$05 
 
; 0.1 sec = 5 x PAL or 6 x NTSC frames 
 
  sta $04 
 
; raster synchronization 
 
  jsr waitmp 
 
; The inner loop takes 99 cycles (from x00 to x09), so repeatedly 
; (2 + 99 x 10 - 2 + 9) x 100 = 99.900 cycles (from xxx to x99), 
; plus few (for a few times when a bit more because of branching) 
; that means just some hardly less than 100.000 cycles after all: 
 
; ...at least on a 65xx CPU (probably on C65 slightly less), 
; ...and with screen/sprites/interrupts completely turned off. 
 
; (This program takes only care about disabling the interrupts, 
; thus other things, like the screen and sprites, as well as the 
; fast mode and the turbo settings yet are waiting for the user!) 
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yyy ldy #$00 
 
xxx ldx #$00 
 
x00 lda $02 
  cmp ($03,x) 
  lda $03 
  cmp ($02,x) 
 
x01 lda $0100 
  cmp ($04,x) 
x02 lda $0201 
  cmp ($03,x) 
x03 lda $0302 
  cmp ($02,x) 
 
  inc x01+2 
  dec x02+2 
  inc x03+2 
 
  nop 
  nop 
  nop 
  nop 
  nop 
 
rllb lda $d012 
  and #$f0 
  beq xiux 
  nop 
  sta xiux+1 
 
xuix inx 
  cpx #$0a 
  bcs x09 
  jmp x00 
 
x09 iny 
  cpy #$64 
  bcs x99 
  jmp xxx 
 
x99 inc $02 
  bne yyy 
  inc $03 
  bcs yyy 
 
xiux cmp #$00 
  beq xuix 
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  sta xiux+1 
 
rlhb lda $d011 
rlhc and #$80 
rlhd beq xuix 
 
  dec $04 
  bne xuix 
 
  cpx #$05 
  ldx $02 
  lda $03 
  bcc roua 
  iny 
  cpy #$64 
  bcc roua 
  ldy #$00 
  inx 
  bne roua 
  adc #$00 
 
roua stx $02 
  sta $03 
  sty $04 
  cli 
 
It gives back the integer part of the MHz value in $02/$03 (as well as the X/A 

registers), and the fraction in $04 (as well as the Y register) from 0 to 99 (from $00 to $63). 
The integer part is a 16-bit number, because it is theoretically possible to be greater than 255 
MHz (although there has been no such precedent known yet). 

 
An additional code part: 
 
;  raster synchronization 
 
waitmp jsr wmpp 
  bne waitmp 
 
wmp jsr wmpp 
  beq wmp 
  rts 
 
wmpp lda $d011 
wmpa and #$80 
  rts 
 
This works for the C64/128/65 in this way, and it can be made working for the VIC-20 

and the TED’s, too, by some self-modification: 
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On TED machines: the $d012 value (at “rllb”) must be changed for $ff1d; the $d011 
values (at “rlhb” and at “wmpp”) must be changed for $ff1c; and the $80 values (at “rlhc” and 
at “wmpa”) must be changed for $01. 

 
On VIC-20: the $d012 value (at “rllb”) must be changed for $9004; the BEQ opcode 

at “rlhd” must be changed for AND ($29); and the JSR opcode at “waitmp” must be changed 
for RTS ($60). 

 
When compiling the above codes (and especially the inner loop), please pay attention 

to their alignment in memory (e.g. not to have a page boundary anywhere within), since a bad 
alignment might cause some false results (by altering the number of the executed cycles). 

 
Printing a 16-bit or 24-bit Integer on All Machines 
 
; printing 16-bit/24-bit number in $02/$03/$04 
 
  ldx #$00 
 
num16 stx $04 
num24 stx $05 
  ldx #$08 
  bne nlp0 
 
nlp1 lda $02 
  sbc ntab1-1,x 
  sta $02 
  lda $03 
  sbc ntab2-1,x 
  sta $03 
  lda $04 
  sbc ntab3-1,x 
  sta $04 
  iny 
 
nlp2 lda $02 
  cmp ntab1-1,x 
  lda $03 
  sbc ntab2-1,x 
  lda $04 
  sbc ntab3-1,x 
  bcs nlp1 
  tya 
  bne nlp3 
  ldy $05 
  beq nlpy 
 
nlp3 ora #$30 
  sty $05 
  jsr $ffd2 
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nlp0 ldy #$00 
nlpy dex 
  bne nlp2 
 
  lda #$30 
  ora $02 
  jmp $ffd2 
 
ntab1 byte $0a,$64,$e8,$10,$a0,$40,$80 
ntab2 byte $00,$00,$03,$27,$86,$42,$96 
ntab3 byte $00,$00,$00,$00,$01,$0f,$98 
 
Detecting the Instruction Set of CPU 
 
Also quite easy: just execute a few (but carefully chosen) opcodes that make different 

things on different CPU’s – and compare the results. There are basically four cases: 
 
0:  65xx (including 6502, 6509, 6510, 7501, 850x and 65DTV02 etc.) 
1: 65CE02 (or 4510 in the C65 and MEGA65) 
2: 65C02 (or 65C102 in the LCD) 
3: 65816 (on SuperCPU and other accelerator cards) 
 
The above value (0-3) will be given back by the next code part: 
 
  sei 
  lda #$00 
 
; $1A = INC A on newer CPU but only a NOP on 65xx 
 
  byte $1a,$ea,$ea 
  beq noxp 
 
; on 65CE02: ROW $EAA9 (a = $01) 
; on 65C02: NOP / LDA #$EA (a = $ea) 
; on 65816: XBA / LDA #$EA (a = $ea, b = $01) 
; (on 65xx: SBC #$A9 / NOP) 
 
 byte $eb,$a9,$ea 
 
  cmp #$01 
  beq nocp 
 
; (on 65CE02: LDA #$00 / ROW $1A1A) 
; on 65C02: LDA #$00 / NOP / INC A / INC A (a = $02) 
; on 65816: LDA #$00 / XBA / INC A / INC A (a = $03, b = $00) 
; (on 65xx: LDA #$00 / SBC #$1A / NOP) 
 
 byte $a9,$00,$eb,$1a,$1a 
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  cmp #$04 
  bcc nocp 
noxp lda #$00 
nocp cli 
 
It includes some surplus redundancies (like those two NOP’s following the INC A and 

so on) that are only left inside in order to stay absolutely safe and sure in all conditions. 
 
A note on MEGA65: this machine is promised to should be able to switch over the 

instruction set between the 4510 and the 6510 ones (e.g. when going to C64 mode), so the 
actual result will depend on this setting. +note:***(2) 

 
Fast and Slow (on C65, MEGA65 and DTV) 
 
MemTest64 provides some subroutines for them (can be called in C64 mode): 
 
*=$2800 
 
; MEGA65 = fast mode <- SYS 10240 
 
m65on sei 
  lda #$47 
  sta $d02f 
  lda #$53 
  sta $d02f 
  lda $d054 
  ora #$40 
  bne mfs 
 
*=$2812 
 
; MEGA65 = slow mode <- SYS 10258 
 
m65off sei 
  lda #$47 
  sta $d02f 
  lda #$53 
  sta $d02f 
  lda $d054 
  and #$bf 
mfs sta $d054 
  lda #$ff 
  sta $d02f 
  cli 
  rts 
 
*=$282c 
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; C65 = fast mode <- SYS 10284 
 
c65on sei 
  lda #$a5 
  sta $d02f 
  lda #$96 
  sta $d02f 
  lda $d031 
  ora #$40 
  bne cfs 
 
*=$283e 
 
; C65 = slow mode <- SYS 10302 
 
c65off sei 
  lda #$a5 
  sta $d02f 
  lda #$96 
  sta $d02f 
  lda $d031 
  and #$bf 
cfs sta $d031 
  lda #$ff 
  sta $d02f 
  cli 
  rts 
 
*=$2858 
 
; DTV = fast mode <- SYS 10328 
 
dtvon sei 
  lda #$01 
  sta $d03f 
  byte $32,$99 
  lda #$03 
  byte $32,$00 
  lda #$20 
  bne dts 
 
*=$2868 
 
; DTV = slow mode <- SYS 10344 
 
dtvoff sei 
  lda #$01 
  sta $d03f 
  byte $32,$99 
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  lda #$00 
  byte $32,$00 
  lda #$00 
dts sta $d03c 
  lda #$00 
  sta $d03f 
  cli 
  rts 
 
*=$2880 
 
A note on MEGA65 (again): the actual switchover between the fast and slow modes 

on this machine is identical to that of the C65 (as the FAST and SLOW commands in native 
mode are part of the same Kernal ROM code being used). Therefore the SYS calls should also 
be the same (changing $d031). 

 
The extra ones for MEGA65 here (changing $d054) are toggling the extra bit used for 

also switching over between the two kinds of fast modes: either 3.5 MHz (as the same as the 
normal C65 speed) or 40 MHz or more (the maximum of MEGA65). 

 
You may also use these two shortcuts: POKE 0,65 and POKE 0,64. 
 
A note on DTV: please only use these subroutines on DTV; they will crash for sure on 

stock C64 (the $32 opcode causes a CPU jam there). (The C65/MEGA65 ones are harmless.) 
 
Yet another note: the emulated C65 (in MESS) is measured (by the method that has 

been published a few sections earlier here) as 4.14 MHz in fast mode, and as 1.18 MHz in 
slow mode (also in the C64 mode). That is quite normal, as mentioned before: since the CPU 
is already some 20% faster in advance (because of the faster timing as well as the absence of 
the VIC-II badlines), and it also matters here. +note:***(2) 

 
The emulated DTV (in VICE) is measured as 1.75 MHz on PAL and 1.82 MHz on 

NTSC in fast mode; the emulated SuperCPU as 8.83 MHz on PAL and 9.22 MHz on NTSC. 
 
(There are no data at present on the MEGA65 yet, when writing this, nor about the 

original real hardware.) +note:***(3) 
 
Fast and Slow (on TED) 
 
Disabling the screen on C64 gives only about +5% gain (0.98 vs 0.93 MHz), whereas 

the same on the TED series is already near to +50% (1.70 vs 1.14 MHz) approximately. 
Which is thus strong enough to call it as a “fast mode”. You may achieve it in this way: 

 
  lda #$ef 
  and $ff06 
  sta $ff06 
 
And then back into the “normal mode” (enabling the screen): 
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  lda #$10 
  ora $ff06 
  sta $ff06 
 
(Simply at the Basic command prompt just use POKE 65286,11 and POKE 65286,27.) 
 
Other than that, they also have a specific “slow mode” (that is slower than the normal) 

at about 0.78 or 0.89 MHz (on screen enabled or disabled), which might be achieved this way: 
 
  lda #$02 
  ora $ff13 
  sta $ff13 
 
As a matter of fact, the normal operating mode consists of continually oscillating 

between the slow and fast modes (which is done automatically by the TED hardware), and the 
above commands disable this function. (This is the equivalent to that of the C64’s VIC-II chip 
“stealing away” some cycles from the CPU in badlines, however it is valid for the entire 
visible screen area here.) An unpleasant side effect of this is that in normal mode you can 
never know exactly on which speed the CPU at the moment is (as it is always being altered in 
the background), that makes it harder to write a cycle-exact timing hungry code (like e.g. a 
fast loader). So you better choose one of the fix (either fast or slow) speeds then. (And this is 
why, for example, the official TED version of JiffyDOS disables the screen, whereas it is not 
so necessary on the other CBM machines.) 

 
Furthermore, on top of that “fast mode” (aka screen disabling or blanking), these 

computers also have a so-called (unofficial, overclocking) “turbo mode”: at least on the PAL 
machines, where it means to turn over the TED video chip to NTSC mode, this way: 

 
  lda #$40 
  ora $ff07 
  sta $ff07 
 
On PAL machines, it has the side effect (except the display seeming rambled, and so 

needing to be blanked before) of CPU speed increasing near some 2 MHz or so (that is even 
faster than the fast mode of the C128!). Unfortunately, on NTSC it (i.e. turning to PAL mode) 
is rather counterproductive, as it works the other way around: decreasing to about 1.4 MHz. 
(My method is not suitable to see these given values as its reference of raster lines is also 
affected, so the results will be invalid. Rather use a benchmark test for this purpose.) 

 
The PAL/NTSC models have physically different clock generator chips (of about 17.7 

or 14.3 MHz) and their frequencies are divided back (by 20 or 16) to get the 0.89 MHz base 
clock: only the divisor is swapped on soft-switching, thus 1.11 or 0.72 MHz is got instead. 

 
This soft-switching of PAL/NTSC modes is not emulated by the VICE emulator, so it 

can be used for emulator detection here: by combining it with measuring the MHz both before 
and after, and comparing the results. (If it is not changed, then it is an emulation.) 

 
However, it is well emulated by the YAPE emulator (which is a far better one for this 

purpose, and strongly recommended to be used for TED code instead of the VICE). 
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Emulator Detection (on C128) 
 
The only emulation of the C128 suitable for normal everyday usage is the VICE 

emulator these days (and also the C64 Forever, of course, which is also compiled out of the 
VICE sources). Although the emulation is already quite advanced by now, it still lacks some 
features of, as well as has some differences compared to the real platform. So the situation is 
somewhat similar to that of the C65 and the MESS; however, the problems caused by this are 
minor and fortunately of not so significant importance. The most of them are around the VDC 
emulation: there are no interlace modes yet (so no IHFLI pictures, Basic 8 or Graphic Booster 
etc.), and the ready bit of VDC will never get busy. 

 
The latter might be rather better eventually this way (as the programs can run faster, 

smoother without waiting for that bit), yet it generates an indirect and not too pleasant side 
effect: if anyone develops a software only in the emulator (which depends on this feature even 
if he does not know of that), then it may happen to not run on the real hardware. 

 
There are some similar artifacts around the VIC-IIe emulation, too: the display output 

does not get garbled when turning on the fast mode (which is also better as a matter of fact 
this way, yet the above-mentioned side effect is especially not so lucky here), and the test bit 
does nothing in the emulator. (The test bit is neither considered too useful on the real 
hardware, although might be used for generating interlace.) 

 
Because of these circumstances, the emulation might even be considered as almost 

some kind of “new platform” apart from the hardware (at least by considering how many 
people use it who have no hardware) as well (like we do so in the case of C65, MESS and 
MEGA65), and at least when writing a new program, you always have to test it on a real 
machine; while it is also highly recommended to test in the emulator, too. Even better, if your 
program may be able to decide, and choose from both of them: then it may enjoy the 
advantages of the emulation as well (besides merely avoiding the problems). 

 
For example, if you know it is an emulation, you can use the fast mode all the time. 
 
That is why an emulator detection is a very useful thing. Whether the ready bit or test 

bit makes it possible; now let me show you my own solution built upon the latter. 
 
The test bit of the VIC-IIe (at $d030/$02) is a strange one: as it is not clear what the 

goal of the designers was with it. Once it is set, it first speeds up the raster counter, then stops 
it (the display output thus “flies away”). More exactly: the raster counter starts increasing 
very quickly (by one per each machine cycle), until it overflows to zero, and then stops: i.e. 
stays permanently zero (until the bit is cleared again). However, in the emulator, it does 
nothing at all. So we only need to set it for a while and check the behaviour of the raster 
counter. (And it has the same effect in C64 mode, too.) 

 
Some careful arrangements must be made before: 1.) the screen must already be 

blanked out (and the interrupts be disabled), 2.) we must know for sure if it is a C128 (even if 
in C64 mode), 3.) we better do the other emulator detection at first (by reading from $dfff as 
mentioned before), because if that one succeeds, we do not need this one. 
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The detection of C128 (whether in native mode or in C64 mode as well) can be done 
by writing zeroes to $d02f and $d030, and reading them back: the first one must give back $f8 
(as it has three bits for scanning the extended keyboard; or a value between $f8-$fe if such a 
key is pressed) and the second one $fc (as it has two bits, one for the fast mode, and the other 
is the test bit); since the unused bits always have a high state (like always being “set”). 

 
There are also further advantages of the emulator: for example, if you are about to 

write a mouse-driven application, then it can be integrated into the normal Windows 
environment, similarly to e.g. some such DOS applications that run also emulated in a DOS 
shell (like the Star Commander or the 64Copy). If the emulator is running in a window 
(instead of a full screen), then the Windows’ mouse-clicks upon that are translated to 
emulated lightpen events for the C64 program by VICE: and so thus the Windows’ mouse can 
be used instead of an emulated Commodore mouse (and you need no sprites on screen). 

 
Or another nice thing is to reach all files on your hard drive from within your C64 

program through the integrated virtual file system of VICE as a mass storage (which works 
more or less similarly like having an emulated 64HDD built in, but also much faster). Or to 
use the warp mode as a turbo… And so on. 

 
We do not need to fear, either, what happens if the emulators will be further developed 

in the uncertain future: the worst case scenario is only to “fall back” to the level of the real 
hardware later, when and if the emulation becomes indistinguishable from that, one day. 
(Also remember: if your program runs well on real hardware, but not in the emulator, then it 
is always the fault of the emulator, and not yours.) Here follows my code (as used in Rosetta): 

 
; (In earlier emulators, e.g. in VICE till v2.2, if the "Emulator 
; Identification" is enabled, $dfff toggles between $55 and $aa 
; whenever is being read. From v2.3 on, it works no more.) 
 
emu lda $dfff 
  sta $02 
  bpl ema 
  eor #$ff 
ema cmp #$55 
  bne xaft 
  lda $dfff 
  eor #$ff 
  inx 
  beq kamu 
  cmp $02 
  beq emu 
 
xaft ldx #$00 
  lda #$02 
 
; (In Rosetta, this variable has been used for machine detection 
; before, so we only check it here for having a C128.) 
 
  cmp $ff 
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  bne faft 
 
  sta $d030 
  lda $d030 
  cmp #$fe 
  beq xamu 
  bne kamu 
 
; Detecting emulator by using the test bit: 
 
; We are following the raster counter, and if it is incrementing 
; normally, then the test bit is not working at all: that must be 
; in VICE. However, if it suddenly jumps forward or stops, that 
; might be a real hardware as well (or a better emulator). 
 
; (On a real hardware, after the test bit is set, the raster 
; counter will be incremented by one in every cycle until its 
; next overflow: and then afterward it stays forever zero. Only 
; when the test bit is cleared, starts counting again.) 
 
xemu lda $d012 
  cmp $02 
  beq xemp 
  inc $02 
  cmp $02 
  beq xamp 
  cmp #$00 
  bne kaxt 
 
xamu lda $d012 
  sta $02 
xamp stx $03 
 
xemp inx 
  bne xemu 
 
  lda $03 
  bpl kaft 
 
  ; (In Rosetta, this variable bit is set to sign the emulator here.) 
 
kamu tya 
  ora #$10 
  sta $fe 
 
kaxt ldx #$00 
kaft stx $d030 
faft 
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Jumping from Native Mode to C64 Mode 
 
The C128, and the C65 (and of course the MEGA65) as well, can execute the GO64 

function also through a normal Kernal call, which can be simply called from Assembly (either 
by JMP or JSR, as there will be no return). That means it is possible to load a C64 application 
in the native mode, then jump over to C64 mode, and start it there. (It is also possible because 
the same BANK 0 is used for C64 mode, and its content is not cleared, only a few bytes will 
be overwritten by the operating system.) But what is the point of that? 

 
First, it is much faster in the native mode to load anything (both because of the fast 

mode of the CPU and the burst mode of the more advanced fast serial IEC protocol). 
 
Second, you may load a larger file in native mode. (Remember that it is possible from 

$1300 to $feff which is 59K, while in C64 mode only from $0800 to $cfff which is 50K.) 
 
And third: it can even be autobooted there (just see above for autoboot!). So you need 

to only turn the computer on, and wait while it does this all for you… like an Amiga. 
 
However, it needs some rather tricky and complicated programming. I will only 

describe the theory on how to do it now (step by step). But this method should be extensively 
used by SDOS, and would be a feature of my upcoming SDOS 2017 version +note:***(4); 
thus you will be able to find all the corresponding source codes together with the executables 
“in action” there – coming soon. (It has not been published yet, when writing this, but I make 
it later in this year.) In theory, the C65 version must work similarly to that of the C128, only 
with some minor modifications (actually self-modifications made by the code to itself). (Still, 
in practice, only the C128 version has been tested and implemented momentarily.) 

 
The main principle is that a C64 program normally starts at $0801: this must be first 

loaded on the “native side” at $1301 instead, and then the code must jump into the “C64 
side”, and make a downward relocation of the program to the original address ($0801, but it 
might be any other address as well, of course), and finally start it there (normally with RUN). 

 
Since we want to use the memory over $1301 for the program to be loaded, it means 

that our code must be somewhere below that. The $10xx page is one of the best places (as it 
contains the function key definitions, which will be no longer needed for sure, so it can be 
overwritten, and the system does not touch it otherwise), yet you may also use the most pages 
between $0bxx and $0fxx, too (on C65 this is the screen!), as well as the stack and zero page. 

 
The GO64 function makes a full cold reset on the C64 side: we actually lose control at 

this point… We can only get control over the system back again by making some dirty hack. 
 
Just place the following nine bytes starting at $8000: 
 
  word $1000 
  word $fe5e 
  byte $c3,$c2,$cd,$38,$30 
 
This simulates the presence of a cartridge for the C64 Kernal, which checks for the 

signature “CBM80” during the cold start (the last five bytes are actually these characters 
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above), and if found, that makes it jump to the custom cold start vector at $8000-$8001: so 
thus it will jump to $1000 in this case. 

 
Note: please do not forget to save the original nine bytes out of this space to a safe 

location before overwriting them, since they are also part of the loaded program, therefore 
must be restored later on the other side. It is also strongly recommended to save the last used 
device number (at $ba, the same on all three machines) and later to restore, since it holds the 
device number from where the program has been loaded, and the program may require that 
for further disk operations in the future. (It is only reset to zero by the operating system.) 

 
After having been everything prepared, we call the GO64 Kernal function on C128 by: 
 
  jmp $ff4d 
 
Or the same one on the C65 by: 
 
  jmp $ff53 
 
Another important difference between the C128 and the C65 versions is the handling 

of the memory paging – which we also need to do to reach the corresponding RAM on both 
machines. In order to be able to both read and write those nine bytes above at $8000, we need 
to page out the system ROM (and afterwards page it back), because that location is always 
covered by some of the system (either the Kernal or the Basic) ROM’s. 

 
On C128, we page the ROM out (which equals to a BANK 0 in Basic) by this: 
 
  lda #$3f 
  sta $ff00 
 
And page it back (aka BANK 15) by this: 
 
  lda #$00 
  sta $ff00 
 
On C65 in native mode, we must use some 4510 opcodes instead. And we also need to 

set the $00 and $01 ports like we do so in the C64 mode, moreover, to maintain the $d030 
register (since it also has some paging bits of ROM’s). To page it (all) out (aka BANK 0): 

 
  sei 
  lda #$a5 
  ldx #$96 
  ldy #$ff 
 
  sta $d02f 
  stx $d02f 
 
  lda $d030 
  sta rest+1 
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  and #$06 
  sta $d030 
  sty $d02f 
 
  lda #$07 
  ora $00 
  sta $00 
 
  lda #$30 
  and $01 
  sta $01 
 
  iny 
  tya 
  tax 
  taz 
  map 
 
And to page it back (aka BANK 128): 
 
  lda #$00 
  ldx #$e3 
  ldz #$b3 
  tay 
  map 
  taz 
 
  lda #$07 
  ora $01 
  sta $01 
 
  lda #$a5 
  ldx #$96 
  dey 
 
  sta $d02f 
  stx $d02f 
 
rest lda #$64 
  sta $d030 
  sty $d02f 
 
  eom 
  cli 
 
Other than that, we need to also prepare our code at $1000 to continue it on the other 

side. As the cold start vector redirects us here, first we need to go through some initial steps 
of the official cold reset sequence (so we are now already in C64 mode after the GO64 call): 
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  jsr $fda3 
  jsr $fd50 
  jsr $fd15 
  jsr $ff5b 
 
  jsr $e453 
  jsr $e3bf 
  jsr $e422 
 
  ldx #$fb 
  lda #$30 
 
  sei 
  txs 
  sta $01 
 
The last instruction also pages out everything here (including the I/O) as we need full 

access to the RAM again (even up to $feff) to do the relocation. 
 
Now it is the time to do the restoration of those nine bytes and the $ba value, too. 
 
After having that, we relocate the program from $1301 to $0801 (by a simple copying 

cycle). Also do not forget to set the end of Basic program pointer (at $2d-$2e) to the 
corresponding ending byte! 

 
Note: to do the relocation well, we firstly need to navigate to any other location 

(entirely out of the $0801-$feff area!) for the continuation of the remaining code parts (or 
otherwise the relocating cycle will overwrite itself, and crash!). It is therefore recommended 
to copy the remaining code parts (see below) into the stack, and jump to there. 

 
Then we page the system back: 
 
  lda #$37 
  sta $01 
  cli 
 
And we now have yet another job exactly at this point: to also do the rechaining of 

Basic lines (which should have normally been done by the Basic LOAD command): 
 
  jsr $a533 
 
We also need to copy the RUN + <CR> characters into the keyboard buffer (at 

$0277), more exactly these four bytes (it also requires to write $04 to $c6 of course): 
 
  byte $52,$55,$4e,$0d 
 
Finally we jump onto the warm start by: 
 
  jmp ($a002) 
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At this point, the operating system gets the control back from us, and displays the 

cursor prompt, at where the RUN command gets “magically” typed in… And the program 
starts (exactly as if it were normally loaded). 

 
Speeding Up the Memory Access 
 
As could be seen, the C64 is actually one of the slowest Commodore machines – at 

least just considering the CPU power. It is getting even worse once it comes to a memory 
block copy – which must be done by using the CPU power, in a normal cycle, byte by byte. 
Thus, such simple tasks, like scrolling the screen, may often mean a hard job for this machine. 

 
Normally, a typical inner loop of a copying cycle looks like this: 
 
loop  lda ($xx),y 
  sta ($zz),y 
  iny 
  bne loop 
 
If no page boundary is crossed, it means at least 5 + 6 + 2 + 3 = 16 machine cycles for 

each and every byte copied. (If any page boundary is crossed, that is +1 cycle for the LDA, so 
it may be up to 17 cycles in all.) 

 
A little bit better solution when using this: 
 
loop lda $xxxx,y 
  sta $zzzz,y 
  iny 
  bne loop 
 
That is 4 + 5 + 2 + 3 = 14 cycles with no page boundary (or up to 15 with it). 
 
So if 1K of data must be copied, then it needs some 14K-17K (or more) cycles. 
 
On a PAL machine, the time slice during one single frame on screen (both including 

the visible and non-visible areas) contains only about 1M / 50 = 20K machine cycles within; 
whereas on an NTSC machine, only about 1M / 60 = 16K cycles. That finally means that one 
such whole frame time period is only hardly enough to copy 1 kilobyte in memory. 

 
However, if we have (and can detect and use) any of those nice extensions to the stock 

system, then it can be dramatically sped up. Let us see a few such cases now: 
 
The 65816 block copy: if you have a 65816 CPU (for example on the SuperCPU), then 

you have already got two built-in commands for the automated block copy. They do the same 
as you would normally do in a cycle, but much faster, since hard-wired to the CPU. That more 
exactly means a 7 cycles per byte speed (i.e. more than twice as fast as the above examples). 
There are two of them: one for upward and the other for the downward direction (in case there 
would be an overlap between the source and destination blocks). 
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The upward one is called as MVP (aka “Block Move Positive” on $44 opcode), while 
the downward one as MVN (aka “Block Move Negative” on $54 opcode), and the syntax of 
both of them is the same as follows (where $xx is the source and $yy is the destination bank): 

 
MVP (or MVN) $xx, $yy 
 
X register = source address 
Y register = destination address 
A register = number of bytes to move -1 
 
All registers are the 16-bit ones (so it must be switched to native mode!), and also two 

things must be kept in mind: first, the Data-Bank-Register will be set to the destination bank, 
and second, that the above form is only for the Assembler, while it in the memory looks like: 

 
$44, $yy, $xx (the destination bank comes as first, and the source bank as second!) 
 
As can be seen, they are capable of copying data anywhere throughout the whole 24-

bit address space (up to 16 MB). Even further accelerated if the CPU is on the turbo speed. 
 
The ZP + SP method: this so-called name is the abbreviation of the Zero Page (that is 

sometimes also referred to as Base Page) and Stack Page. Some platforms have the ability to 
relocate these two pages into almost anywhere in memory (sometimes even in some other 
banks). After having done so, you may have a faster access to those spaces through the zero 
page and stack commands. At least these four platforms are capable of that: C128, C65, DTV 
and SuperCPU (although the actual settings and behaviours are different on all of them). 

 
This method has some drawbacks, too: on one hand, the zero page addressing still 

remains limited to 254 bytes instead of the full 256 bytes of the page (since the $00 and $01 
locations are part of the CPU itself); and on the other hand, the relocation of the stack makes 
it a little “dangerous” (thus the interrupts must be disabled for this while, and you should also 
think of the NMI besides the IRQ). 

 
However, a great advantage is that it can even be used for memory transfer between 

two banks (which would be especially slow and difficult to do in a normal cycle otherwise). 
 
Even nearly up to 6 cycles per byte speed can be achieved (or if doing e.g. on the 

C128 in fast mode, it can be counted as 3 cycles per byte because of the double speed, and so 
on). That is undoubtedly rather fast indeed. 

 
On C128, it works only in the native mode (as it is based on the MMU, which is not 

present in C64 mode). To relocate the zero page, first write the bank number (0-3) into $d508, 
then write the page number into $d507; to relocate the stack, first write the bank number (0-3) 
into $d50a, then write the page number into $d509. (These two pages will always use the 
RAM, and never interfere with ROM and I/O.) In order to perfectly use the ZP + SP method 
for accessing all memory in all banks, it is also recommended to temporarily disable the RAM 
sharing (the usage of the common memory portions among all separated banks) by writing 0 
into $d506; then after the operation to restore its value, too (the default value is 4 here for the 
1K common RAM usage at the bottom, and without that, the operating system sucks); or else 
only the page numbers will be applied (and bank numbers stay within the BANK 0 instead). 
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On C65, it is all part of the 4510 CPU. New registers are introduced: one called as 

Base Page register (or simply B), and the other called as Stack Pointer High Byte. The Base 
Page register can be accessed via two transfer commands in conjunction with the A register 
(Accumulator): TBA ($7b opcode) and TAB ($5b opcode). The Stack Pointer High Byte can 
be similarly accessed via two transfer commands in conjunction with the Y register: TSY 
($0b) and TYS ($2b). (The latter ones are also similar to the already well-known TSX and 
TXS commands, and these two pairs might even handle the low and high bytes of the stack 
pointer together, once it is switched over to 16-bit mode to use a larger stack; yet it is in 8-bit 
mode by default, and then behaves more or less like the C128 relocated one.) It seems that 
both of them are only possible to set within the BANK 0 on this machine. 

 
On DTV, also there are new registers (called Base Page and Stack Base) that can be 

set through some other special opcodes. (For changing the Base Page: $32 / $AA / LDA #$xx 
/ $32 / $AA; and for changing the Stack Base: $32 / $BB / LDA #$xx / $32 / $BB.) 

 
On 65816, the things are getting more complicated: for the relocation of the stack, it 

must firstly step into its own native mode again. (Which is not yet needed for the relocation of 
the ZP, or as called here, the Direct Page.) Thus, we have to temporarily switch to native 
mode, and then back to emulation mode after the operation (by using the XCE command). 

 
After all, once the ZP + SP pointers are set (according to the actual machine), copying 

254 bytes of data looks like this (where the source and destination blocks are page-aligned): 
 
  ldx #$ff 
  txs 
  dex 
 
loop lda $01,x 
  dex 
  pha 
  bne loop 
 
As can be seen, the inner loop is still 4 + 2 + 3 + 3 = 12 cycles per byte here. So it is 

not that much better… yet. Our final step will be to replace the above loop with speed code: 
 
loop lda $ff 
  pha 
  lda $fe 
  pha 
 
  (…) 
 
  lda $02 
  pha 
 
Which finally brings that 6 cycles per byte to here. (But do not forget that the $01 and 

$00 positions are not moved yet, so they still must be “manually” done, apart!) 
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The REU block copy: the REU (RAM Expansion Unit) has its separated external 
memory up to 16 MB as well as an integrated DMA controller chip (called REC), which can 
be used for transferring between the expanded and normal memories, back and forth. One 
such transfer may embody up to 64K at one go, and during that time the DMA controller 
replaces the CPU on the bus – which means that it can even be intercepted by a just incoming 
interrupt at any time (and after the interrupt request having been handled, passed back to the 
CPU and returning from that to DMA again, the intercepted transfer continues). +note:***(5) 

 
So it must be very friendly – and, even better, incredibly fast: only 1 cycle per byte! 
 
Nevertheless, if we want to to use it as a block copy method right within the normal 

memory space, for instance, then we need two transfers (once from main memory to REU 
memory, and once again, from REU memory back to main memory, at the new destination 
location): so it counts as double then, as 2 cycles per byte in all (but it is still not so bad). 

 
The REC controller must always be called at 1 MHz (any fast/turbo modes must be 

turned off before!). Any C64 or C128 machines may have got this expansion by the way. 
 
The DMA block copy: two platforms (the C65 and the DTV) have also got their own 

DMA controllers onboard, which work similarly to the REU, more or less. (The C65 may 
have this up to 8 MB, while the DTV up to 2 MB.) 

 
They are even better, since their address spaces embody the main memory, too, so 

they can do the same job in one single turn. (And they can be called in fast mode, too.) 
 
The VDC block copy: the C128 has its particular (16K or 64K) video memory 

dedicated for the VDC chip, too. While it is so painfully slow to send any data through its 
two-byte ports (at $d600-$d601), once the data have already entered the VRAM, then it can 
be much more quickly moved around within. This is also some kind of DMA transfer after all, 
but executed by the VDC chip on itself. That also means: it happens independently of the 
CPU – so you need not to wait for the result, but can do anything else meanwhile. 

 
As a most extreme example, it may even be possible to execute a VDC block copy in 

the VRAM, while doing an REU copy on the other side – in parallel. (But the VDC chip can 
only deal with 256 bytes maximum at one go, so it is a little bit complicated then to organize.) 

 
Programming the DMA (the REU and the DTV) 
 
These two ones are pretty well documented, and their programming is easy, so I only 

give some short summary on them: 
 
REU: it appears at either of the $dexx or the $dfxx I/O areas (depending on actual 

hardware), and has 11 registers ($dx00-$dx0a). For preparing a simple data transfer, you must 
first specify the main memory address as a 16-bit value ($dx02-$dx03), the REU memory 
address as a 24-bit value ($dx04-$dx06) and the transfer length ($dx07-$dx08). After having 
finished that, also write a command code into the command register ($dx01): generally 0 or 1 
(as for transferring to or from the REU memory; or 2 or 3 for comparing or swapping), but it 
must also be OR’ed with $80 for the execution (or else nothing will happen), and also with 
$10 for instant execution (or else it will be delayed until writing anything to $ff00). 
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The actual execution will either be started when writing the command register (if $10 

also specified), or when writing to $ff00 (if delayed). The delaying option can be used for 
changing the memory layout in the meantime (e.g. by paging in and out system ROM and I/O 
for the “hidden” RAM underneath or other spaces being accessed by the DMA). 

 
DTV: it appears at $d3xx with 32 registers ($d300-$d31f), which must be first made 

visible by writing $01 into $d03f (and after the operation having been finished, it is also 
recommended to make them hidden again, by writing $00 into there). 

 
For preparing a data transfer, you must first specify the source and destination 

addresses, both as 24-bit numbers ($d300-$d302 and $d303-$d305), and the highermost bytes 
of both of them OR’ed with $40 (as the two highermost bits are indicating 00 or 01 for ROM 
or RAM); and the transfer length ($d30a-$d30b). You can also specify a source step and a 
destination step ($d306-$d307 and $d308-$d309), which are normally both $0001; and some 
other things (like modulo and line length etc.), which are not so interesting now. 

 
The command register is $d31f, and you need to write a $0d command code there for 

instant execution (but it may also accept several options for delaying and direction changing 
etc.). It also acts as status register when being read (where bit0 aka $01 signs “DMA busy”). 

 
The DTV has got a separate and dedicated blitter, too, at $d320 with different and 

additional 32 registers ($d320-$d33f) specialized for graphical data manipulation. 
 
Programming the DMA (on C65) 
 
Well, this third one used by the C65 is still a kind of mystery. There can be only very 

little description found on the internet, which says unfortunately not too much. (Or at least I 
have not found the right ones yet…) That ominous writing from ’91 called “Preliminary” has 
got a short paragraph on this: it mentions the controller is called as DMAgic and it has only 
four registers (at $d7xx address space of I/O): $d700-$d702 write-only to specify an address 
for some table containing a to-do list (as LB/HB/bank number) and $d703 read-only as status 
register (where bit7 aka $80 is the “busy” bit). Yet it is not clear exactly what data in that 
table there must be, and what the controller will do with them at all. 

 
Luckily, we have got some other starting points: there is the DMA command in the 

C65 Basic v10 dialect, and the following three Kernal calls, all implemented in the system 
ROM’s somewhere (and eventually the POKE and PEEK functions are also implemented 
through the DMA) – at least some of the answers must be found there. So I sat before my PC 
running the MESS emulator, and started to make some disassembly by using the built-in 
monitor (as if it were done on a real C65 machine, yeah). 

 
The three Kernal calls are actually the same as those already found on the C128 (but 

for using in context of the DMAgic and with slightly different parametering, of course): 
 
jsr $ff74 lda (x),y from bank z 
jsr $ff77 sta (x),y to bank z 
jsr $ff7a cmp (x),y to bank z 
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From the virtual jumping table, their absolute addresses can be seen (whence, by 
withdrawal of the $f26a-$f2bd area, we get their codes): 

 
jsr $ff74 jmp $f26a 
jsr $ff77 jmp $f28e 
jsr $ff7a jmp $f2b5 
 
$f26a:  php 
  tya 
  clc 
  adc $00,x 
  sta $03d3 
  lda #$00 
  sta $d702 
  adc $01,x 
  sta $03d4 
  stz $03d5 
  lda #$03 
  sta $d701 
  lda #$d0 
  sta $d700 
  plp 
  lda $03cf 
  rts 
 
$f28e: php 
  sta $03cf 
  tya 
  clc 
  adc $00,x 
  sta $03e1 
  lda #$00 
  sta $d702 
  adc $01,x 
  sta $03e2 
  stz $03e3 
  lda #$03 
  sta $d701 
  lda #$db 
  sta $d700 
  plp 
  lda $03cf 
  rts 
 
$f2b5: pha 
  jsr $f26a 
  pla 
  cmp $03cf 
  rts 
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The very first thing to be noticed is that they are directly relying on those adresses at 

$d7xx: so it means that we should never forget to apply the two “magic bytes” at $d02f before 
calling them, or else they might not do anything. (The “danger” about it is the emulator usage 
for the development process, where the registers are always present at the I/O area.) 

 
The second is that they seem to use some already predefined table(s) “around” $03d0 

or so (including that $03cf where the controller must place the one-byte result in some way). 
 
The source of the DMAgic command lists can be found in the Kernal at $f252-f269 

(right before the above codes) from where it gets copied to $03ce-$03e5: 
 
$03ce: byte $00 
  byte $00 
 
$03d0: byte $00 
  byte $01,$00 
$03d3:  byte $00,$00,$00 
$03d6:  byte $cf,$03,$00 
  byte $00,$00 
 
$03db: byte $00 
  byte $01,$00 
$03de:  byte $cf,$03,$00 
$03e1:  byte $00,$00,$00 
  byte $00,$00 
 
If we carefully examine and compare the two lists byte by byte, then the structure can 

easily be recognized: the first byte is the command code (here is set to $00 for copying), 
followed by the two bytes of the 16-bit transfer length (here is set to $0001), then twice by the 
three bytes of the 24-bit source and destination addresses (where in both cases the “$03cf in 
bank 0” appears in context of the other being overwritten by the above subroutines). 

 
This order of the parameters right exactly matches that of the DMA Basic command, 

the brief description of which also mentions another command code: $03 for filling (where 
the low byte of the source address holds the value being used to fill the destination area). 

 
The DMAgic chip overview just shortly mentions a list of possible operations in the 

following order: “Copy (up, down, invert), Fill, Swap, Mix (boolean Minterms)”. (So, if the 
order matches again, should it mean that we could have three different Copy codes (0-2), then 
after the Fill (3) would come the Swap and probably some others, too…?) 

 
However, the “Preliminary” section on the DMAgic theme mentions these four 

provided commands in this following order: Copy (0), Mix (1), Swap (2), Fill (3). Now a little 
playing around with the Basic command in the emulator suggests this must be the right order. 

 
According to my testing in the emulator, it seems only the Copy (0) and Fill (3) 

functions are implemented after all; when trying the other two, just nothing happens there. 
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And yet another final (?) note (or appendix): the last sentence of the previous page 
would have been meant to be “the end of the story” here… but actually there is one more 
important thing about it to know. A little bit later (after a little bit more playing around with 
the disassembly) have I only realized that actually two versions of the above codes exist. 

 
And that can be because also there are two versions of the DMAgic chip itself. 
 
The above discussed withdrawal is based upon the earliest and the most common 

910111 version of the Kernal ROM (which is the most recommended version to be used, 
since the MEGA65 also leans upon this one!) that originates from the Rev2B motherboard. So 
that might be considered as some kind of “standard”. This one contains the F018A DMA. 

 
However, all of the other Kernal ROM’s (so the other five out of the six pieces can be 

found on the internet) have the other version, which is slightly different, since they originate 
from some newer revisions of the motherboard (up to Rev5) that contain the F018B DMA 
instead. This newer model uses one byte longer tables than the previous (so there will 
already be now three “meaningless” zeroes at the end of the data instead of two, which seem 
to be not really used by the software momentarily). 

 
Moreover, they are placed totally elsewhere in memory (at $0120 instead of $03d0, 

and $015c is used instead of $03cf), and even the sources of the data can be found elsewhere 
in the ROM. (The latter is even different in most versions…) Here follow the new tables first: 

 
$0120: byte $00 
  byte $01,$00 
$0123:  byte $00,$00,$00 
$0126:  byte $5c,$01,$00 
  byte $00,$00,$00 
 
$012c: byte $00 
  byte $01,$00 
$012f:  byte $5c,$01,$00 
$0132:  byte $00,$00,$00 
  byte $00,$00,$00 
 
In the latest Kernal known (as version 911001 from the Rev5 motherboard), this 

sequence can be found at $f29b-$f2b2, followed by the three absolute addresses of the calls: 
 
jsr $ff74 jmp $f2b3 
jsr $ff77 jmp $f2da 
jsr $ff7a jmp $f304 
 
$f2b3:  php 
  tya 
  clc 
  adc $00,x 
  sta $0123 
  lda #$00 
  sta $d702 
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  adc $01,x 
  sta $0124 
  bcc *+1 
  inz 
  stz $0125 
  lda #$01 
  sta $d701 
  lda #$20 
  sta $d700 
  plp 
  lda $015c 
  rts 
 
$f2da: php 
  sta $015c 
  tya 
  clc 
  adc $00,x 
  sta $0132 
  lda #$00 
  sta $d702 
  adc $01,x 
  sta $0133 
  bcc *+1 
  inz 
  stz $0134 
  lda #$01 
  sta $d701 
  lda #$2c 
  sta $d700 
  plp 
  lda $015c 
  rts 
 
$f304: pha 
  jsr $f2b3 
  pla 
  cmp $015c 
  rts 
 
Thus the final consequence is only that the new version of the table is one byte 

(actually one zero byte) longer: that is not so dangerous, when programming the DMA chip 
directly (and building your own tables for this purpose!), you only need to make it one byte 
longer, too, and therefore stay compatible with both versions at once. (Nevertheless it also 
means that the Kernal software versions are not interchangeable over the real hardware 
versions by the way, but it is no problem for the emulator, nor probably for the FPGA clone.) 

 
This newer version of DMAgic similarly only has the Copy (0) and Fill (3) functions 

implemented; and the other two command codes similarly do nothing. 
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TDC (and Other Turbo Cards) 
 
Okay, I am writing yet another final chapter here (just to make it be a round 50… er, 

sorry, 51 pages after all)… may be considered as Appendix (Two) or so. 
 
There exists the “traditional” way of C64 turbo cards, at least since ’90, when the first 

two ones had appeared: the Turbo Master CPU by Schnedler Systems in the USA (also 
called as “Schnedler cart”) and the Turbo Process in Germany (by Rossmöller) on 4 MHz. 
Then came the Flash 8 also in Germany in ’92 (as successor of Turbo Process) on 8 MHz. On 
top of this evolution sits the SuperCPU by CMD (Creative Micro Designs) in 1997-2001, 
both for the C64 and the C128 (as called as SuperCPU64 and SuperCPU128) on 20 MHz. 

 
All of them are based upon the same idea of changing the processor for another one 

(the first has got a 65C02, whereas the others have a 65816 CPU), together with their own 
additional RAM and ROM, and everything be placed onto an external cartridge for the 
expansion port. As a matter of fact, the Turbo Chameleon 64 is also based upon this idea 
(but using an FPGA re-implementation of the whole computer and some further extensions). 

 
And there is the TDC (or Turbo Demo Card), made by Kisiel in Poland 2011, that is 

an entirely different approach: it does not swap anything for something else, but rather makes 
an overclocking of the original motherboard. Or at least of the HMOS chipset of the newer 
mobos (C64E), since it fits there only, as being an internal daughterboard in the form factor 
so that can be placed between the sockets and the IC’s of the VIC-II and SID (the 85xx ones). 
These two latter are the bottleneck of Commodore design (also for the C128) that limits the 
system bus to 1 MHz, while most of the other chips could have been made much faster. And 
exactly this is what TDC does: it leaves these two at 1 MHz, while overclocks the other ones. 

 
Unfortunately, only a few pieces have been manufactured (although the maker states 

that he has yet some further future plans); but luckily, I managed to own one of them. 
 
It has got two switchover bits at $d030: bit0 and bit1 (aka $01 and $02). The first bit is 

for soft-switching between the normal and the turbo operating modes (i.e. in the same manner 
as the C128, the Turbo Chameleon and the MEGA65 do it, so they can be all programmed in 
a compatible way in C64 mode). The unit also has a manual switch for this purpose, which 
overrides the soft-setting when pressed. The machine is in normal 1 MHz mode on power-up, 
and the 2 MHz mode may be selected by either of these hardware/software ways. 

 
The other bit is for selecting an extra speed (so it only gains an effect once the turbo 

mode is set in any of the above-mentioned ways) of over 3 MHz, or when the screen is 
disabled at the same time, too (at $d011), then reaching near some 4 MHz after all. (Care 
should be taken of this setting, since the C128 has got the VIC-IIe test bit there!) 

 
Once in 2 MHz mode, the good old CPU of our favourite C64 will run a little bit faster 

than that of the C128 (see below the comparison table for the exact MHz!), but without the 
“VIC-IIe bug” in advance (no garbling artifacts on screen). Yet there are some side effects: 
everything else is accelerated, too (including the CIA’s etc.), thus the IRQ’s get more 
frequent (the cursor starts to blink faster), and disk operations not possible (still the manual 
switch makes a nice workaround for it somehow, even allowing for fast loaders, if pressed). 
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The 3 and 4 MHz modes are more quirky, with even more side effects: the $00 and 

$01 CPU ports are no longer accessible at these speeds, so you cannot change the memory 
layout until getting back to 2 MHz (which, as considering that the switchover bits are part of 
the I/O area, too, means that you cannot reach the RAM underneath while being at these 
higher speeds) and sometimes also artifacts on accessing the colour RAM are reported. 

 
Other than the turbo, the daughterboard has got a socket for a second SID (mapped to 

$d500 at the I/O) and as well a Covox (the audio outputs of both are redirected for the main). 
 
The $d031 register can be read for a version number (actually $d1), and be written for 

the Covox output. The $d02f is claimed to contain $f0 (albeit on my unit it is $ff instead). So 
the common combination of theirs can be used for detection, for example in this way: 

 
  lda $d02f 
  and $d031 
  and #$f0 
  cmp #$d0 
  beq tdc 
 
An important note: there is a serious hardware incompatibility between the fast mode 

and the presence of the 1541 Ultimate (I, II, II+ and probably some further cartridges alike, 
e.g. the Chameleon etc., although they have not yet been tested) that causes an instant crash 
on turning the fast mode on. (If you also detect any of them, please do not use the TDC.) 

 
And finally, as an Appendix (Three) or so, here follows a comparison table on speed 

among some turbos and the stock systems that I have already measured by now: 
 
The maximums I reached on these systems (with screens and IRQ’s turned off): 
 
C64, PAL / NTSC / NTSC (old) / PAL (Drean): 0.98 / 1.03 / 1.01 / 1.01 MHz 
SuperCPU (VICE), (everything else as above) (*): 8.83 / 9.22 / 9.04 / 9.11 MHz 
SuperCPU128 (real), PAL, in C64 / C128 mode: 8.37 / 8.73 MHz 
VIC-20 (VICE), PAL / NTSC:   1.11 / 1.02 MHz 
TED (YAPE), PAL / NTSC:    1.70 / 1.71 MHz 
DTV (VICE), PAL / NTSC (*):   1.75 / 1.82 MHz 
C128, PAL / NTSC:     1.88 / 1.97 MHz 
TDC, set to 2 MHz / 4 MHz:    1.91 / 3.71 MHz 
Turbo Chameleon, set to 6 MHz / maximum: 5.90 / 14.47 MHz 
C65 (MESS), slow mode / fast mode:  1.18 / 4.14 MHz 
C65 (XEMU), slow mode / fast mode (**):  1.20 / 4.19 MHz (before 2020 fix) 
C65 (XEMU), slow mode / fast mode (**):  1.03 / 4.19 MHz (after 2020 fix) 
C65 (real machine), in slow mode:   1.02 MHz +note:***(2) 
MEGA65, in fastest mode (**):   (between 36 and 56 MHz or so) 
 
(*) Note (1): as can be seen, the SuperCPU is far below its “nominal” 20 MHz in 

real… as well as the DTV is so below (in this special case at least). (However, I have only 
checked for the SCPU and the DTV emulations can be found in VICE v2.4 and v3.0, thus on 
some other real hardware it might be slightly different…) +note:***(3) 
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(**) Note (2): Measuring for MEGA65 in 40 MHz (or before called as 48 MHz) fast 

mode varies between 36 and 56 MHz, depending on actual revision or version (as well as the 
different versions of the XEMU emulator included here). That is a matter of development 
still, so it might be changing on in future. +note:***(3) 

 
The above list is far from being final or complete at the moment, but I will not be 

refreshing it here any more, as it is meant indicative only. (A more recent and updated list 
should be found in the Rosetta user manual later and be maintained there.) 

 
About the Author 
 
This writing can be found on my website on the internet: 
 
http://istennyila.hu/dox/cbmcode.pdf
 
This entire programming guide or handbook, in conjunction with my MemTest64 and 

SDOS projects, initially started as an independent part of my Rosetta Interactive Fiction 
project. (As I needed some kind of utilities, and since I had not found any, I have had to make 
it by myself.) However, you can also freely use or apply it, of course. 

 
The MemTest64 and SDOS codes are Public Domain: open-source and freeware. 
 
Here are some direct downloading links to them: 
 
http://istennyila.hu/stuff/memtest.zip
 
http://istennyila.hu/stuff/sdos.zip
 
MemTest64 project homepage: 
 
http://istennyila.hu/memtest64
 
SDOS project homepage: 
 
http://istennyila.hu/sdos
 
Rosetta Interactive Fiction project homepage: 
 
http://istennyila.hu/rosetta
 
(On opening them please click onto the greeting images for entering the main page!) 
 
 

Robert Olessak (2012-2017) 
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As Epilogue: There have been some fixes since 2017 (being made in 2020 when I 

slightly revised my article) and signed as +note:***(…) inside the text: 
 
+note:***(1): The “Ultimate family” was completed with the Ultimate-64 

(abbreviated as U64 here) in 2018 (also there is a new Turbo Chameleon V2). 
 
+note:***(2): It is already documented in the “C65 Preliminary” that the 4510 CPU 

in slow mode applies a kind of “dummy cycles” as a compensation for a better 65xx 
compatibility, so the actually measured value must be about 1.02 MHz in real. Seemingly this 
feature is not emulated by the MESS emulator (and hence the 1.18 MHz), but it has been 
fixed in MEGA65 and the XEMU emulator since then. 

 
+note:***(3): There have been some speed measurements being done on some of the 

above-mentioned hardware since then (like SuperCPU128, MEGA65 and even a real C65 
prototype machine!), thus the table of results has been slightly changed. 

 
+note:***(4): SDOS 2017 has not been made (as under this name never will). Instead, 

what formerly was SDOS 2016 is renamed now as SDOS v1.0, and newer versions have been 
made (up to v1.3 momentarily). V2 is under development (maybe coming soon this year). 

 
+note:***(5): Unfortunately, this seems containing some false info here, as IRQ is not 

able to intercept an actual DMA operation in transfer (but rather is delayed until the operation 
ends); I still don’t know what the case on an NMI is (probably related to IRQ). 

 
There has been an upload made at CSDb.dk out of this text (still before these 

annotations being made) that can be found here: 
 
http://csdb.dk/release/?id=155862
 
Have a good fun! 
 
 

Robert Olessak (2012-2020) 

 52

http://csdb.dk/release/?id=155862

