

Writing Platform Independent Code on CBM Machines

Table of Contents

Table of Contents 1
Introduction 2
C64 2
C64 (Extensions and Clones or Variants) 2
C128 3
C65 (or C64DX Prototypes) 4
C65 Emulator (MESS) 5
MEGA65 (or C65GS) 5
VIC-20 6
TED Series 6
LCD (Prototype) 7
PET Series 7
CBM-II Series 7
Summary and Comparison Tables 8
So What Is the Least or Greatest Common Set? 9
Let Us Start at $1301 (the Magical Address) 10
Upward Relocation (on C64, VIC-20, TED, LCD and PET) 13
Downward Relocation (on C128 and C65) 13
And a Third One for the Joker (on CBM-II) 18
Another Relocating Method (Not Basic Dependent) 19
A Platform Independent Autostart 20
Boot or Autoboot 21
Detecting If PAL or NTSC System 22
Measuring the MHz of CPU 24
Printing a 16-bit or 24-bit Integer on All Machines 27
Detecting the Instruction Set of CPU 28
Fast and Slow (on C65, MEGA65 and DTV) 29
Fast and Slow (on TED) 31
Emulator Detection (on C128) 33
Jumping from Native Mode to C64 Mode 36
Speeding Up the Memory Access 40
Programming the DMA (the REU and the DTV) 43
Programming the DMA (on C65) 44
TDC (and Other Turbo Cards) 49
About the Author 51
Epilogue (some 2020 notes) 52

Introduction

There exists a considerable number of different types and revisions of 8-bit

Commodore (aka CBM) machines. Back in the day, when we had only very few – and
sometimes also very poorly written or erroneous – descriptions and limited experience on
these computers, they seemed rather different from each other, and it consequently also
seemed then not that much possible to write a program which could be run on all of them (or
actually any random two or three of them at least).

However, they are not so different in real: the main architecture of the CPU’s and their

machine languages are mostly the same (apart from the illegal opcodes and some other
extensions), as well as the core of Basic dialects, the memory organization and the most
important Kernal calls etc. So thus it is possible to write such code; although it will not be too
easy, and requires some knowledge about all of them and a very careful, quirky and neat
design to fit everywhere… Since I have started to develop my Rosetta Interactive Fiction
project in the last few years (2012-2017 when writing this; plus some 2020 fixes, see them at
the very end, whereas being referred to as +note:***(…) inside the text) in my sparetime, I
have slowly awoken to this, and decided to make it so. And then decided to also write this
little guide (or programming handbook) formed out of my gained experiences, for making it
much easier to others (who would later also decide to do so and begin this way).

As a first step here, let us see the competitors, one by one:

C64

It has always 64K memory, and the 6510 CPU has two built-in I/O ports at $00 and

$01 for paging some areas within (starting from $a000). The screen memory is at $0400 (and
the colour memory at $d800), below which are system areas. The Basic memory starts at
$0801 (2049), and a single file can even be loaded up to $d000. There are many different
Kernal ROM’s (e.g. one for JiffyDOS), yet the last two bytes of them are always $ff48 (the
jumping vector of the IRQ). Some important system variables can be found at $2b-$2c (43-
44) and $2d-$2e (45-46) for the Basic program starting and ending (and the starting of the
Basic variables as well). These can be used for identification.

C64 (Extensions and Clones or Variants)

SuperCPU: an external card with 65816 CPU and onboard memory. The instruction

set is quite different (no illegal opcodes can be used), with support for 24-bit native memory
handling (up to 16 MB) and clock be switched over between 1 and 20 MHz. Some useful
locations are at $d07a and $d07b (writing to here turns the turbo off and on), $d0b8 (the
actual state of turbo setting can be read) or $d27b-$d27f (some parameters of the memory).

Flash 8, Turbo Process and Turbo Master (aka Schnedler card): similar beasts, the

former two use the same 65816 CPU at about 8 and 4 MHz, while the latter uses a 65C02 at 4
MHz instead. All of these cards have similar (but actually different) switchover bits (either
bit6 or bit7, i.e. $40 or $80) at either $00 or $01 in memory, and sometimes in reverse (so
sometimes the set, while otherwise the reset state of the bit signs the turbo being on and off).

 2

TDC (or Turbo Demo Card): an overclocking daughtercard for HMOS motherboards.
It has two bits at $d030 for 2 and 4 MHz turbo modes (similarly to the C128). $d02f is
supposed to contain $f0 (actually $ff in real) and $d031 a version number (usually $d1 in
real). While in turbo mode, it accelerates everything, except for the VIC-II and SID: not only
the CPU, but also including the CIA’s (so the interrupts get thicker and the cursor faster, and
the disk operations not possible) and the memory, plus it has some other quirks.

C64DTV (Direct-To-TV): also has a hidden turbo mode (if activated, the disk

operations are not possible and there are no VIC-II badlines) and some RAM (up to 2 MB)
accessible via DMA (controller at $d300), plus a blitter and screen modes (256 colours). A set
of hidden registers can be made visible by writing $01 to $d03f (and invisible by $00).

Turbo Chameleon: a flexible turbo mode from 2 even up to 14 MHz (be switched at

$d030 like the C128 and TDC) and the widest scale of further expansions built in. Can be
detected by writing $2a to $d0fe and reading back (any other value different from $ff which
must normally be there), then writing $ff to there and reading back again (it must already give
back $ff then). The first attempt makes visible, while the second invisible its hidden registers.

1541 Ultimate (I, II or II+) or U64 +note:***(1): if the Command Interface is

enabled, then it can be detected by reading from $df1d which must give back $c9 then.

IDE64: the three bytes from $de60 through $de62 must contain the values of $49, $44

and $45 (the letters of “ide”).

Emulators: some C64 emulators (like the C64S and the v2.2 or older versions of

VICE) make it possible to detect if it is not real hardware. The $dfff memory location at the
I/O area oscillates between $55 and $aa at each and every read attempt in this case (some
further and more advanced emulator detection techniques will be discussed later, too).

Memory expansions: like REU or GeoRAM etc. (See the user manual of my

independent MemTest64 project for them!)

C128

The big brother with 128K or 256K memory (in two or four 64K banks) and 8502

CPU (switchable between its 1 and 2 MHz modes at $d030 or via the Basic commands
SLOW and FAST), the VIC-IIe (a slightly modified VIC-II) and VDC video chips (with 16K
or 64K separated video memory) and an additional Z80A processor (at effectively 2 MHz,
too). The screen and colour memories are as the same as those of the C64 by default, while
the last two bytes of Kernal are always $ff17. The Basic area starts from $1c01 (7169) and
lasts till $feff. The system variables of the Basic starting can be found at $2d-$2e (instead of
$2b-$2c which are not really used and generally may contain just zeroes or any other
meaningless values). The Basic variables are stored in the second bank. (The VDC is
accessible at $d600-$d601.)

There are also some system variable areas from $0800 up to $12ff. From $1300 to

$1bff the memory is not used (it is called as Application Program Area and free), so thus the
Basic starting might even be set as low as this at any time as well.

 3

The targeted memory bank (for PEEK and POKE) is selected by the BANK command:
from BANK 0 to BANK 3, and also BANK 15 (the system bank, which basically equals to
the first bank, but also with I/O and ROM areas mapped in, from $4000 onwards). The
bottom 1K and the uppermost 256 bytes are common memory (included in every bank). In
machine language, the $ff00 location is used for bank switching: the corresponding values of
$3f/$7f/$bf/$ff do the same as BANK 0/1/2/3, and the value of $00 the same as BANK 15.

You can switch to C64 mode by typing in the GO64 command (or by holding down

the C= key at startup, or via the JMP $FF4D Kernal call). In this mode only the first bank can
be accessed (and it also keeps its whole content from after the native mode except for the
overwritten bytes). The VDC stays also accessible in this mode, as well as the locations at
$d02f (has three bits for scanning the extended keyboard) and $d030 (has two bits, one for the
fast mode and the other for the test bit). So these can be used for identification in C64 mode.

When the 2 MHz fast mode is activated, the VIC-IIe screen seems garbled, so it must

also be blanked. (Still you may apply the common trick by making two raster interrupts at the
bottom and the top of the visible screen area, and turning it on and off, thus achieving some
average of 30% speed gain over the normal operating mode.)

C65 (or C64DX Prototypes)

This “yet even more” big brother has 128K memory in two 64K banks, and a 4510

CPU (which is a 65CE02 variant in real with different instruction set and some slightly faster
timings that make it nearly 20% faster in advance, on top of that it can be switched over
between its 1 and 3.5 MHz slow and fast modes, too), and a VIC-III (which has got no
badlines, it makes it even faster, plus an integrated 80-column mode). The screen memory is
at $0800 by default, and the Basic starting is at $2001 (8193). The system variables of the
latter are also stored at $2d-$2e (as the same as those of the C128), and it also has a similar
free memory block from $1300 to $1fff (so the Basic area may be expanded to here, too).

The FAST and SLOW commands basically work the same (just without the screen

blanking and considering that the fast mode is default), as well as those BANK 0 and BANK
1, however the system bank is BANK 128 here. (The memory might be expanded even up to
8 MB, thus up to BANK 127 might also be used.) BANK 2 and 3 are for the ROM’s.

The last two bytes of Kernal may vary, since there are many different “half-made”

(prototyped) revisions of them: at least six (or more) can be found on the internet, which have
got these following values there: $fab1, $fb6a, $fb75, $fb80, $fb84 and $fb87.

Turning into C64 mode goes similarly, more or less (the Kernal call is JMP $FF53

here). The CPU is switched to 1 MHz mode in this case, otherwise its behaviour is not
changed (the instruction set and the faster timing, and also the badlines) +note:***(2), so the
real C64 compatibility will be rather limited just because of this. The extended registers of
VIC-III stay hidden until you write two “magic bytes”: first $a5, then $96 into the location at
$d02f (writing any other value makes them being hidden again).

The machine has got an integrated DMA controller at $d700 (also hidden by default),

which is somewhat similar to that of the REU (but much more capable). The bank switching
method in Assembly is rather complicated (including a mapper function of the CPU).

 4

C65 Emulator (MESS)

This is the only (more or less) usable emulation of the original machine(s) up to here I

know. Several things work slightly differently though (man needs to be aware of which):

The $00 and $01 memory locations seem to do nothing here (in spite of that these

ports must have been both to be used in C64 and C65 modes). Thus, some memory areas just
cannot be moved away, and not even in C64 mode: the Basic, the Kernal and the I/O will
always remain there, so the RAM under them cannot be accessed.

Any writing into $d02f gains no effect, either (neither of the “magic bytes” nor any

other value): so the “hidden” registers are also always there.

The emulations always use an NTSC hardware (even if it is reported as “PAL”).

In the C64 mode, the cursor is blinking (and the keys are repeating) way faster than

normal (no idea why). On the real hardware, it works the same as on a C64 (here not).

If you would like to also try it, then the MESS v0.111 version (from 2006) will be

needed (and possibly its GUI extension, called MessGui, too). This is necessary unfortunately
just because all newer versions of MESS have got their entire C65 emulations broken (thus
totally useless). Once having the right version, it is recommended to be started with the
v0.9.910111 (i.e. ‘91. January) Kernal ROM version (that originates from the earlier and
probably the most common Rev2B motherboard); just because that same binary is used by the
C65GS, too. (The MESS version has also got a lot of other flaws and quirks, and because of
them the internal drive with device number 8 is not so usable. So must you then attach a D64
image as an external drive with 10 or 11, and start it all from there.)

Also, resetting the emulation is not always working properly (so you better quit and

start it again if you need reset).

MEGA65 (or C65GS)

An FPGA re-implementation (or simply called a modern clone) of both the C65 and

the C64 platforms (and both of them with better compatibility as well as with further feature
sets). This has not yet been released when writing this, still already in the making for some
years (2013-2020), so any of the information provided here might be wrong:

It has got the same 128K main memory as the C65 prototypes, and over that some

expanded memory, too (16 MB or 256 MB or even more, depending on the actual FPGA
board being used). It can be built around a Nexys 4 or a custom-made own motherboard.

It has got a brand-new VIC-IV video chip implementation: including the feature set of

VIC-III (which can be activated by using the same above “magic bytes”), and on top of that,
an even much more powerful new feature set – which can be activated by using two other
“magic bytes”: $47 and $53 written into $d02f.

 5

The C64 mode is promised to will have a far higher grade of backwards compatibility
to the original platform: the instruction set be switched over to the 6510 one (with all the
undocumented opcodes, too), as well as the timing be so accurate (including the badlines).

Both C65/C64 modes to have some newer fast and turbo speeds: on top of the former

normal 3.5 MHz, also 2 MHz (switchable at $d030 like the Turbo Chameleon and the C128)
and a maximum of 40 MHz (or even more): can be used as POKE 0,65 and POKE 0,64.

Any (or many) of the already existing C65 and C64 Kernal ROM’s might be used.

And so on… Please see the complete and more actual information page here:

http://mega65.org/

VIC-20

And this is the elder little brother of all the above ones. The system ROM’s (both the

Kernal and the Basic ones) are very similar to (or almost the same as) those of the C64. The
last two bytes are $ff72 though. However, there are many different memory configurations
possible. The unexpanded stock machine has only 5K memory: 1K for the system variable
area, and 4K starting at $1000 (so thus there is a “hole” in-between, from $0400 to $0fff in
this case). The 8K machines fill in this hole with another 3K added. And then it can be further
expanded up to 32K (up to $7fff) as a contiguous space, and even with another 8K (from
$a000 to $bfff) apart. So it is a 40K in total.

The Basic starting pointer is at $2b-$2c (and the ending pointer is at $2d-$2e), but

there are three variations for the default Basic start: $1001 (4097) on a 5K (stock) machine,
$0401 (1025) on 8K, and $1201 (4609) otherwise. There are also two variations for the
default screen (and colour) data: either at $1e00 (colours at $9600) on the 5K/8K, or at $1000
(colours at $9400) otherwise.

The smaller configs can be “simulated” on a fully expanded machine (by manually

being set), which is often needed when you want to run a program made (or optimized) for the
other memory configs. Not only the Basic pointers must be altered in this case, but also the
high byte of the screen at $288 (648), and then after having that finished, even done a Kernal
init call by JSR $E518 (or SYS 58648), before performing the LOAD and RUN commands.

Its 6502 CPU runs slightly faster than that of the C64 (1.1 MHz on PAL or 1 MHz on

NTSC), and the VIC-I has no badlines (as neither can be blanked). The screen size is 22x23
characters, which stays under 0.5K after all.

TED Series

Their 7501 CPU may have got a full speed at about 1.7 MHz (on screen blanked), but

the TED video chip reduces that only to about 1.1 MHz in average (by clocking it down to
0.89 MHz while within the visible screen area and turning back to 1.7 MHz on borders; which
is somewhat similar to the software trick on C128, but here is being done by hardware).

 6

http://mega65.org/

Their memory can be 16K (C16 or C116), 32K (C232 prototype) or 64K (Plus/4). If it
is not fully expanded, then the physical memory is also mirrored upwards in the address space
(that means e.g. on a C16 the RAM location at $1000 equals to the locations at $5000, $9000
and $d000). The Basic starts at $1001 (4097), and the pointers are the same as on the C64 and
VIC-20. The screen memory is at $0c00 (and the colour memory at $0800). The Kernal and
the Basic can be paged into the upper 32K address space in Assembly by writing anything to
$ff3e, and be paged out by writing anything to $ff3f.

The last two bytes of Kernal are $fcb3, but it can be only read in Assembly, because in

Basic the PEEK command reads from RAM instead.

LCD (Prototype)

65C02 (or 65C102) CPU at 1 or 2 MHz, with 32K or 64K memory. The Basic is the

most similar to that of the TED series (v3.6 vs v3.5), also starting at $1001 (4097), but the
pointers are stored at $65-$66 (101-102). The screen memory is at $0800 (with no colours
because it is monochrome), organized into 16 rows of 128 bytes size, of which only 80 bytes
per line are used (80x16 characters). The last two bytes of Kernal are $fa0e here.

PET Series

6502 CPU at 1 MHz, from 4K to 32K contiguous memory, plus another 8K possible

apart (like on VIC-20, but from $9000 to $afff instead). The Basic starts at $0401 (1025), the
pointers at $28-$29 (40-41). The screen memory is at $8000 (either 1K or 2K depending on
actual size of 40x25 or 80x25 in monochrome). The last two bytes of Kernal may vary among
three values (depending on version): $e66b (rev. 1-2), $e61b (rev. 3) and $e442 (rev. 4).

CBM-II Series

Their rather special 6509 CPU is able to handle up to 1 MB memory via bank

switching. The memory is organized in 64K banks, so thus up to 16 banks are possible. While
it sounds well at first, it is even worse in real: just because the switching method is so
primitive, that either the whole address space is switched over (including the zero page, the
stack and even the running code itself), or we can be only cueing slowly, byte by byte. The
CPU has two I/O ports at $00 and $01, each of which can hold a value between 0 and 15. The
first one sets the program bank that is valid for everything, except for these two opcodes: LDA
($xx),Y and STA ($xx),Y (the source or destination bank of which is specified by the other).

Actually there are only fifteen banks, since the last one is the system bank. Similarly

to the C128, but even worse again, as it neither has a single byte of memory being shared with
any of the other banks… And that is why this architecture is referred to as a “bank switching
nightmare”. The programming is complicated, clumsy. The system bank only has a few
kilobytes of RAM (besides ROM and I/O), of which only 1K is free and usable (at $0400). So
you can either run your machine language code from there, or in any of the separated other
banks: with lots of free spaces, but also with losing connection with almost the whole system
(including the Kernal calls and interrupts). Because of these circumstances, the CBM-II stays
always an odd platform: a strange beast… that requires a raw deal (a special code).

 7

While programming in Basic, it does not seem so tragic yet. The machines have 128K
or 256K memory by default, one bank for the Basic program code, and the other(s) for the
variables can be used. So the Basic area starts at $0003 here (and the pointers are at $2d-$2e
like on the C128/65). The screen is mapped to $d000 in the system bank (either 2K for 80x25
in monochrome, or 1K + 1K colour RAM at $d400 for 40x25 on having a VIC-II instead).

There are also BANK commands for targetting for PEEK and POKE (similarly to the

C128), but the applied bank numbers are slightly different: on the 5x0 line (P-series) BANK 0
is the Basic program bank, and BANK 1 is the variable bank; while on the 6x0 line (B-series)
the BANK 0 is not in use, and BANK 1 is the program bank, leaving three (BANK 2-3-4)
being wasted for the variable area. In Assembly, the equivalent of this is to simply write the
bank number into $01 (as the above-mentioned two opcodes are used for PEEK and POKE).

The last two bytes of Kernal are $fbe5 (on the 5x0) and $fbd6 (on the 6x0).

Summary and Comparison Tables

Computer system identification:

peek(65535) = 228/230 -> PET (rev.4/rev.1-3)
250/251 -> C65 (Rev2B/other)
250 -> LCD
251 -> CBM-II
255 -> (other)

peek(65534) = 72 -> C64 ($ff48)

23 -> C128 ($ff17)
114 -> VIC-20 ($ff72)
14 -> LCD ($fa0e)
n/a -> TED (Plus/4) ($fcb3)
107 -> PET (rev.1-2) ($e66b)
27 -> PET (rev.3) ($e61b)
66 -> PET (rev.4) ($e442)
229 -> CBM-II (5x0) ($fbe5)
214 -> CBM-II (6x0) ($fbd6)

Start of BASIC memory:

C64 2049 ($0801)
C65 8193 ($2001)
C128 (char/gfx) 7169/16385 ($1c01)
Plus/4 (char/gfx) 4097/16385 ($1001)
LCD (char/gfx) 4097/12289
VIC-20 (stock/8kB/>8kB) 4097/1025/4609
PET series 1025
CBM-II (5x0/6x0) 3 (in memory bank 0/1)

 8

Screen RAM:

C64/128 1024 ($0400)
C65/LCD 2048 ($0800)
Plus/4 (TED series) 3072 ($0c00)
VIC-20 (>8kB/<=8kB) 4096/7680 ($1000/$1e00)
PET series 32768 ($8000)
CBM-II (5x0/6x0) 53248 ($d000) in bank 15

Colour RAM:

C64/128/65 55296 ($d800)
C65 (80-column mode) 63488 ($f800) in bank 1
Plus/4 (TED series) 2048 ($0800)
VIC-20 (>8kB/<=8kB) 37888/38400 ($9400/$9600)
CBM-II (5x0) 54272 ($d400) in bank 15

Maximal loadable file size:

C64 51 kB ($0400-$cfff)
C65 <60 kB ($1300-$feff)
C128 <60 kB ($1300-$feff)
Plus/4 <62 kB ($0800-$fcff)
C232 <30 kB ($0800-$7ff5)
C16/116 <14 kB ($0800-$3ff5)
PET/VIC-20 31 kB ($0400-$7fff)
CBM-II <64 kB ($0003-$ffff)

C64 (with $c000 used) 47 kB ($0400-$bfff)
C65 (with $d000 used) 47 kB ($1300-$cfff)

(after all) <44 kB ($1300-$bfff)

<28 kB ($1300-$7fff)

So What Is the Least or Greatest Common Set?

As for program space: as can be seen above, if you lean on the full-expanded

machines, you may count on some 30-40 kilobytes of common space (or even more). Which
is not so bad… However, if you really want to support all platforms, then it drastically
shrinks, finally quite only to an innermost single 4K block (from $1000 to $1fff). Below that
narrow slice some computers have no memory at all (the stock VIC-20) as neither have the
others that much free space (since it is used for screen data or other things). Over $2000 some
systems have nothing again (the 8K PET/VIC-20) and the C65 also has some problems there
(as it is already covered by the system ROM and bank switching is not so easy in this case).

 9

Even worse, on VIC-20 the screen is also there (either at the beginning or the end).
The C128 and the C65 systems also use the first three pages there ($10xx holds the
definitions of the function keys and $11xx/$12xx some other things). So thus you can only
start your program exactly at $1301 (or $1401) and have only little more than 3 kilobytes.
(And it is even not a 100% success then, because there still remain two exceptions: the 4K
PET and the CBM-II series, for whom we should need to find some other solution.)

As for variable space: there are many locations on the zero page that can be used. The

first few ones are surely free on all machines (from $02 to $0f) and usually the last ones, too
(from $fa to $ff). Also many in-between (but you must be hunting for them one by one).

If you ever need more space, then bravely also think about the stack: the very most of

which gets never used at all. As a matter of fact, only the uppermost one or two dozen bytes
are frequently in use, and sometimes the bottom ones as well. So, say nearly from $0110 to
$01c0 you may find a safe and solid contiguous block that never really should be overwritten
by any of the operating systems on all machines.

As for what to do: firstly try the jumping table of the common Kernal calls – because

they had exactly been created for this purpose (e.g. JSR $FFD2 to print a character).

And remember: this is just the very least (or in other words the bare minimum). You

may have got infinite possibilities, albeit the more you want, the more (and more and more!)
difficult and complicated your job will become. (And this is exactly what I am planning to do
with Rosetta: a multi-player, MUD-like, real-time text IF to play on all CBM machines.)

In the following sections, I will share and discuss some programming techniques and

ideas. The examples are mostly taken from my MemTest64 and SDOS projects: both of them
are Public Domain, open-source and freeware. (It is strongly recommended to download
them and read along all the source files and the descriptions that they contain.)

Let Us Start at $1301 (the Magical Address)

Why exactly there? On one hand, just read it above (we cannot go below); on the other

hand, we also need to stay compatible to the Basic conventions. The Basic area must always
be preceeded by a single (otherwise not used) zero byte: hence the $xx01 ending everywhere.
The Basic starting might be set to this position on each machine. For example in this way:

POKE 44,19 : POKE 4864,0 : NEW (or using 46 instead of 44 if needed)

A program can be basically loaded in two ways: either as an ML (i.e. machine

language) code (by typing LOAD “filename” ,8,1 and an appropriate SYS command, like
SYS 4865), or as a Basic code (by typing LOAD “filename” ,8 and RUN). Also there are
further possibilities (e.g. DLOAD, BLOAD, RUN “filename”, BOOT “filename”, autoboot or
autostart). And we need to try to satisfy as many of them as possible, in order to be perfect.

That means we need a little Basic code to begin with; which is also necessary by the

way, and even worse, this code portion must be prepared to be launched from all kinds of the
different locations being used by all machines as Basic start – then be able to relocate itself to
where we want it to really run. This is how my MemTest64 program starts:

 10

*=$1301

; 20 i=peek(65534)+peek(65535)*256:a=peek(45)+peek(46)*256:
; ifpeek(43)=1andpeek(45)=203thena=peek(44)*256+1
; 20 ifi=64014thena=peek(102)*256+1
; 20 b=i:s=a+3211:ifa=3thens=272:fori=sto315:bank-(b=64470):
; a=peek(i+5452):bank15:pokei,a:next
; 20 ifa>4865thens=272:bank.:fori=sto402:pokei,peek(a+i+3068):
; next:bank128+113*(b=65303)
; 20 syss

byte $4c,$0d,$14,$00,$49,$b2,$c2,$28,$36,$35,$35,$33,$34,$29,$aa,$c2
byte $28,$36,$35,$35,$33,$35,$29,$ac,$32,$35,$36,$3a,$41,$b2,$c2,$28
byte $34,$35,$29,$aa,$c2,$28,$34,$36,$29,$ac,$32,$35,$36,$3a,$8b,$c2
byte $28,$34,$33,$29,$b2,$31,$af,$c2,$28,$34,$35,$29,$b2,$32,$30,$33
byte $a7,$41,$b2,$c2,$28,$34,$34,$29,$ac,$32,$35,$36,$aa,$31,$00

byte $6c,$13,$14,$00,$8b,$49,$b2,$36,$34,$30,$31,$34,$a7,$41,$b2,$c2
byte $28,$31,$30,$32,$29,$ac,$32,$35,$36,$aa,$31,$00

byte $b4,$13,$14,$00,$42,$b2,$49,$3a,$53,$b2,$41,$aa,$33,$32,$31,$31
byte $3a,$8b,$41,$b2,$33,$a7,$53,$b2,$32,$37,$32,$3a,$81,$49,$b2,$53
byte $a4,$33,$31,$35,$3a,$dc,$ab,$28,$42,$b2,$36,$34,$34,$37,$30,$29
byte $3a,$41,$b2,$c2,$28,$49,$aa,$35,$34,$35,$32,$29,$3a,$dc,$31,$35
byte $3a,$97,$49,$2c,$41,$3a,$82,$00

byte $f8,$13,$14,$00,$8b,$41,$b1,$34,$38,$36,$35,$a7,$53,$b2,$32,$37
byte $32,$3a,$fe,$02,$2e,$3a,$81,$49,$b2,$53,$a4,$34,$30,$32,$3a,$97
byte $49,$2c,$c2,$28,$41,$aa,$49,$aa,$33,$30,$36,$38,$29,$3a,$82,$3a
byte $fe,$02,$31,$32,$38,$aa,$31,$31,$33,$ac,$28,$42,$b2,$36,$35,$33
byte $30,$33,$29,$00

byte $ff,$13,$14,$00,$9e,$53,$00

byte $00

*=$1400

; 0 sys5133

byte $00,$0b,$14,$00,$00,$9e,$35,$31,$33,$33,$00,$00,$00

*=$140d

As can be seen and thought, the actual main code will only begin here at $140d that

equals to a SYS 5133 command, when loaded as an ML code. (Yet everything else before this
point is also needed for getting here otherwise.) Now let us see the Basic lines explained:

 11

 20 i=peek(65534)+peek(65535)*256:a=peek(45)+peek(46)*256:
 ifpeek(43)=1andpeek(45)=203thena=peek(44)*256+1

In the first Basic line, we read our system identifier. (The last two bytes of Kernal at

$fffe-$ffff that is after all the IRQ vector of the CPU, and as we have seen before, fortunately
unique for each system.) Then we decide which pair of the Basic pointers we need. (On those
machines using 43-44, the low byte of them is normally 1, and then the other pair of pointers
at 45-46 hold the ending of the program: of which, we also test the low byte, and that happens
to be 203 here just because my MemTest64 ends there; so, once that end changes, then it must
be altered here, too. On the other machines, the 43-44 pair is meaningless, and usually zero.)

 20 ifi=64014thena=peek(102)*256+1

In the second line, we also check it for the LCD (note that 64014 = $fa0e).

 20 b=i:s=a+3211:ifa=3thens=272:fori=sto315:bank-(b=64470):
 a=peek(i+5452):bank15:pokei,a:next

The third line is mostly for the CBM-II. Note that 272 = $0110, so we shall use the

stack here (as a temporary program space). The 3 value in the IF condition identifies that
system (which is the Basic start, and not possible otherwise). The BANK switching is also
tricky: 64470 = $fbd6 (for the 6x0), so as the embedded logical condition (b = 64470) is
evaluated, it gives back -1 when true, and 0 when false: by multiplying it with another -1, we
get the correct bank number of BANK 0 or 1 (where the Basic program is).

 20 ifa>4865thens=272:bank.:fori=sto402:pokei,peek(a+i+3068):
 next:bank128+113*(b=65303)

In the fourth line, we do the same for the C128 and the C65 (similarly choosing

between BANK 15 and BANK 128). Please note that the Basic dialects are not compatible
here: while that BANK statement on CBM-II has a one-byte token ($dc), this “other” BANK
statement on C128/C65 already has a two-byte length ($fe, $02).

 20 syss

Finally the fifth line jumps onto the ML code…

…yet there are three variations where: normally to the Basic start + 3211 (if we

assume the Basic start as $1301 = 4865, then it would be $1f8c = 8076), or otherwise to 272
in the stack (where we have copied one of those two temporary codes right before).

In the next sections, we inspect the three temporary ML codes. But before that, please

recognize yet another beauty of my Basic gem: it is right exactly round 256 bytes (and it took
so many iterations of bit hunting and optimizing until I managed to shrink that to this size).
Moreover, still staying within that, the FOR-NEXT cycles are also optimized to be as fast and
short as possible (even including to carefully choose the order of the variable declarations,
since the earlier ones can a little bit quicker be accessed by the interpreter).

 12

Oh, and yet another final note… the very first three bytes: $4c, $0d, $14. Which
happens to be a JMP $140D command (SYS 5133) there, “hidden” in the Basic line (and yes,
it is the cause of that strange line number of 20). It was only needed for sake of supporting
the BOOT command. (On some machines, if you type in BOOT “filename”, it loads the file
as an ML code, and instantly starts that, too, by jumping to the first byte of the code.)

Upward Relocation (on C64, VIC-20, TED, LCD and PET)

This is called “upward” because the loaded Basic program resides below the target

space (and so will be moved upwards in the memory). In such cases, if there may be any
overlap possible between the source and destination areas, the copying of bytes has to be
made in decreasing order (from up to down). (If we did it in the opposite direction, then it
would overwrite itself somewhere, and so thus would get corrupted.)

The following code part does this job, but first it repeats the same indentifications as

the Basic lines before, and calculates the relative address, according to the Basic start. The
cycle used for the relocation itself is also first copied into the stack and run from there (at
$0110, the flp2 cycle). It is necessary because if we ran it from within the same space being
copied momentarily, then it would overwrite itself, too (and crash).

Downward Relocation (on C128 and C65)

This part is already being run within the stack (so it needs not to be copied there). The

main code will be moved downwards, so thus it must be made in increasing order now. And
there is yet another difficulty: because it may (at least partly or even entirely) be covered by
the Basic or the Kernal ROM, we first need to page the ROM out (and after the copying page
back). On the C128, it occurs from $4000 onwards, and the solution is easy: just write $3f to
$ff00 for paging it out (and then $00 for paging it back). On the C65, however, it is not so
easy: we must use the MAP command of the processor (a special extension of the 4510 CPU),
and it also occurs already from $2000 onwards then. (So normally the whole Basic program
area is covered, and this is why it cannot be launched by using just a single SYS command.)

Here follow both two parts together (once at $1f8c and then again at $200d, also with

another Basic line inserted in-between which might be used if loaded with ,8,1 on C65):

*=$1f8c

; upward relocation (sys8076) <- Basic + 3211

 sei
 ldx $2b
 lda $2d
 ldy $2e

 cmp #<ende
 bne bex
 dex
 bne bex

 13

 lda #$01
 ldy $2c

bex ldx $fffe
 cpx #$0e
 bne fex
 ldx $ffff
 cpx #$fa
 bne fex

 lda #$01
 ldy $66

fex sec
 pha
 sbc #$01
 pha
 tya
 sbc #$13
 tax
 pla
 php

 adc #<flp2-1
 sta $02
 txa
 adc #>flp2
 sta $03

 plp
 pla
 bcs und

 adc #$ff
 sta $04
 tya
 ldy #$1a
 adc #$15
 sta $05

flp1 lda ($02),y
 sta $010f,y
 dey
 bne flp1

 lda #$29
 ldx #$16
 sty $02
 sta $03

 14

 jmp $0110

flp2 dey
 lda ($04),y
 sta ($02),y
 tya
 bne flp2

 dec $03
 dec $05

 txa
 dex
 bne flp2

und cmp #$01
 bne down
 txa
 bne down

 jmp main

*=$2000

; 0 sys5133

 byte $00,$0b,$20,$00,$00,$9e,$35,$31,$33,$33,$00,$00,$00

*=$200d

; downward relocation (sys8205) <- Basic + 3340
; (copied to $0110 and started there)

down sei
 ldy $2b
 lda $2d
 ldx $2e

 dey
 bne xex
 cmp #<ende
 bne xex

 ldx $2c
 bcs smex

xex ldy $ffff
 cpy #$fa

 15

 bne lex
 ldy $fffe
 cpy #$0e
 bne kex

 ldx $66
 ldy #$00

smex inx
 sty $02
 stx $03

 php
 bcs zyex

kex ldy $ffff

lex clc
 adc #$ff
 sta $02
 txa
 adc #$00
 iny
 sta $03

 php
 beq qyex

 lda #$00
 tax
 tay

; TAZ / MAP

 byte $4b,$5c

 lda #$07
 ora $00
 sta $00

 lda #$f8
 and $01
 sta $01

zyex lda #$14
 ldx #$16
 sty $04
 sta $05

 16

flp3 lda ($02),y
 sta ($04),y
 iny
 bne flp3

 inc $03
 inc $05

 dex
 bne flp3

 plp
 bcs sjex
 beq stex

 lda #$07
 ora $01
 sta $01

 tya

; LDX #$E3
; LDZ #$B3

 byte $a2,$e3
 byte $a3,$b3

; MAP / TAZ

 byte $5c,$4b

sjex jmp main

qyex ldx #$3f

stex stx $ff00
 bne zyex
 beq sjex

A little more about the C65 mapping: on this machine, the bank switching is done via

its integrated mapper function, being invocated by the MAP command ($5c opcode). That
needs all four registers being set before: one pair for the lower and the other pair for the upper
32K (so both halves can be mapped to any extended memory location independently of each
other; whether it be RAM or ROM). This method is rather flexible, albeit a bit complicated
(and we must also be sure if the 4510 instruction set is at present). E.g. for BANK 0 (which is
the same layout as that of the C64 mode by the way) all four registers need to be set to zero.
Once a MAP is used, at any time later an EOM ($ea opcode, identical to that of the NOP)
must also be applied (or else the interrupts will not work because of staying hung up for ever).

 17

And a Third One for the Joker (on CBM-II)

This third temporary code part (already copied to and running in the stack) copies its

own main code (apart from the others) from the Basic bank (0 or 1) into the system bank (15)
at $0400 (up to 1K of size at maximum) and jumps to there. (In Rosetta, I will rather make it
in the other way around: I am running the common main code in the Basic bank. But that
requires a very complicated bank switching environment implemented for the interrupts and
Kernal calls… So we do not do so here.)

*=$295a

; CBM-II relocation (10586) <- Basic + 5721
; (copied to $0110 in system bank and started there)

 sei
 lda $fffe
 ldx #$01
 cmp #$d6
 beq cbm2
 dex

cbm2 ldy #<$1688
 lda #>$1688

 stx $01
 sty $02
 sta $03

cbmy ldy #$00
 ldx #$03

cblp lda ($02),y
 sta $0400,y
 iny
 bne cblp

 inc $03
 inc $012d

 dex
 bne cblp

 jmp $0403

*=$2986

; (copied to $0400 in system bank and started there)

 18

Another Relocating Method (Not Basic Dependent)

The above-mentioned method with the Basic header and the corresponding temporary

codes is well capable to launch your application on each system and (almost) from any Basic
start address. But it has a weakness, too: it does need that Basic start. There might be a
situation when you want to write a pure Assembly code which is similarly able to relocate
itself. Here follows a theory on how to do it then. So the program has just begun, and it needs
to find out where it is – but it cannot use yet any fix addresses until we do the relocation.

We shall use the PC (Program Counter) register of the CPU; however, it is not directly

accessible unfortunately. Still accessible indirectly: for example through a dummy call:

 sei
 lda #$60
 sta $02
 jsr $0002

What happens here? We place an RTS opcode at $0002, and then call it, that

immediately returns from the “subroutine”. What is interesting now, that is the side effect: the
returning address still remains on top of the stack. (The SEI is needed to avoid that from
being accidentally overwritten by an interrupt.) The following part reads it from there:

 tsx
 sec
 dex
 lda $0100,x
 sbc #<addr
 sta $02
 lda $0101,x
 sbc #>addr
 sta $03

And it also compares it (by making a 16-bit comparison via two subtractions) with

another address (which we must already calculate before, at coding time, and write its low
and high bytes in place of those “addr’s” above). We need to know that the address found on
the stack will be one byte less than the real returning address: because all the 65xx CPU’s are
working in this way. So it should be at the third byte of the JSR $0002 command exactly (that
is $20, $02, $00 in the memory in real, and it should point to that last zero byte here). Thus,
the absolute address of this position (in our actual code compiled) must be used as “addr”.

In $02/$03, we have now got the difference (i.e. how many bytes away the relocation

goes), and we also have a sign in the C flag. If C=0, we are at a lower address momentarily,
so we need an upward relocation in this case. If C=1, we are at higher, so a downward
relocation must be done (or the addresses could even be equal, and then no relocation is
needed):

 bcc upward
 ora $02
 beq ready
 bcs downward

 19

If we now add the absolute destination address of the main code (i.e. that part to be

relocated and then be jumped onto later) to this difference, then we get the source address in
$02/$03 (and the destination address in $04/$05 as well) for the relocating cycle:

 clc
 lda #<main
 sta $04
 adc $02
 sta $02
 lda #>main
 sta $05
 adc $03
 sta $03

This can be applied for the downward relocation (which is made in increasing order as

we know). For the upward relocation, however, we rather need to calculate the ending of the
main code part instead (since it is made in decreasing order).

(If you want to see this method “in action”, you may find it in the SDOS, and later

also in the Rosetta source code, when published.)

A Platform Independent Autostart

Autostart is generally meaning that you need no SYS nor RUN command to be typed

in; but rather have another very little extra file (usually only one or two blocks of size on
disk) which starts automatically right after having been loaded, and then also boots the main
file in. There are many different well-known methods on the C64 to achieve this, but I have
only found one of them, that can be also used as a platform independent one: the stack one.

It relies on the circumstance that the stack is always in use, also during the LOAD

routine, and it holds the returning address from there: although we do not exactly know
where, but we do not need to know it, either, if we fill it with the same value (so the low and
high bytes of the address are the same), thus redirecting it onto a fix, known address (where
we place a special code be prepared to continue). There are basically two choices possible:
either use the $01 or the $02 value everywhere. As we know it, the address found on the stack
will be always one byte less than the real returning address (i.e. it is still incremented by one
on RTS). So it means that we can do the redirection either to $0102 or $0203.

In the first case, we can make an exactly one-block boot loader file on disk (which is

252 bytes of size): at $0102-$01fd (which also means we lose control over the last two bytes
of stack, but it is no problem as they do not really matter here).

In the second case, a two-block sized boot loader is possible: at $0100-$02a8 (since

$02a9 is already used by the operating system, so it is the maximum).

The first case has a bit smaller size, yet better compatibility: it must work almost on

all machines. The second case does not always work on all machines. It has two main causes:
on one hand, the second block is loaded later than the stack is filled (so if it gets already fired

 20

by an RTS, while the corresponding code is not loaded yet, then it may crash), and on the
other hand, that area over $0200 may be used by some of the operating systems, too.

In both cases, the ending of the stack must be filled with the same bytes (either $01’s

or $02’s) at least from $01e0 (or earlier) until $01fd (or $01ff). And we must prepare a code
part waiting to be fired off at $0102 or $0203 (when the LOAD routine gets to an RTS, it
indirectly jumps to there, instead of the normal returning).

Both SDOS and Rosetta make extensive use of this method (especially for the latter,

you may find an entire series of such boot loaders, one for each system the best optimized).

Boot or Autoboot

Booting is possible on C128 and C65 systems (including the MEGA65). Yet the actual

process is quite different on them. What the same is: it is executed either by manually typing
in the BOOT command (without any specified filename), or by putting in the boot-capable
medium (normally a floppy disk or SD card) and turning on or resetting the computer.

On C128: the operating system looks for the first block, or called as the boot block

(which is on the track 1 and sector 0) on the disk, and if it has some special content, then
loads it at $0b00 and executes it from there.

It is also emulated by the SD2IEC drives (even directly from the SD card without

mounting a disk image) where a BOOTSECT.128 file must be placed into the root directory
of the SD card (and it must be set to 8 as drive number).

It may either contain a Basic line to be executed (which may load and run an

application, or do any other things), or a little ML code. The official format of preparing a
boot sector must look like the following (however you might also use up that whole space for
your own program code at your will as well, of course):

*=$0b00

; “cbm” (autoboot signature)

 byte $43,$42,$4d

; load address for additional sectors (T1, S1)

 word $0000

; bank number for additional sectors

 byte $00

; number of sectors to load

 byte $00

 21

; boot message: “booting…”
; (or a single zero byte for no boot message)

 byte $42,$4f,$4f,$54,$49,$4e,$47,$2e,$2e,$2e,$00

; program name to load on boot (a filename and/or just a zero byte)

 byte $00

; to execute a Basic command (as a string)

 ldx #<cmd-1
 ldy #>cmd
 jmp $afa5

; (here is the string)

cmd byte $00

; (finally filled with zeroes up to 256 bytes of size)

*=$0c00

On C65: it is much simpler there. The drive 8 will be searched by the operating system

for a specific filename AUTOBOOT.C65*, and if found, then it will be loaded and run as a
normal Basic program file.

Detecting If PAL or NTSC System

Some of the systems do not depend on the TV regulation as they have no TV output

(PET, CBM-II and LCD). Some of them have two different Kernals hard-coded (VIC-20 and
the TED series). And the remaining three (C64/128/65) have the same Kernal for both
standards and make an autodetection at booting time to specify which one they are actually
running on. You may read the result of that from a given space (at $02a6 on C64 where 0
means the NTSC and 1 signs the PAL; or at $0a03/$1103 on C128/65 where 0 or $ff stands
for the NTSC or the PAL). The problem with it is that these values are not reliable: the
autodetection is faulty (so thus it is quite “normal” on C64’s with CPU accelerators like the
SuperCPU or Chameleon, that a PAL machine is detected as NTSC by mistake), and even if it
works well, the result in RAM might be overwritten by another application or the user.

This is why you cannot lean on them, but rather make your own detection, by

inspecting the physical hardware itself. That is quite easy as a matter of fact: you must only
count the scanlines on the screen (by looking for a highermost value different from $ff in the
raster counter). Normally a PAL screen has 312 scanlines, while an NTSC one has about 263
lines (or plus/minus one or two sometimes).

The following code part does this job for you (and gives back 0 or 1 in the X register

for the NTSC or the PAL):

 22

 sei
 ldx #$00

ntpx txa

ntpl tay
 sta $02
ntpr lda $d012
 cmp $02
 bcs ntpl

 iny
 beq ntpx

 inc $02
ntpa bit $02
 lda $02
 cmp #$10
 bcc ntsc

pal inx
ntsc cli

This works for the C64/128/65 in this way, and it can be made working for the VIC-20

and the TED’s, too, by some self-modification:

On TED machines: only the $d012 value at “ntpr” must be changed for $ff1d.

On VIC-20: that same value must be changed for $9004 instead, and also the BIT

opcode at “ntpa” must be changed for ASL (by writing $06 to “ntpa”). This latter
modification is needed because the VIC-I chip only counts every second scanline in the raster
counter (so it must be multiplied by two).

Finally, two additional notes on this:

Note 1: on C128, the VDC chip operates totally independently of the VIC-IIe timing:

the VDC itself is the very same on both PAL and NTSC motherboards, and its timing will be
only programmed by the operating system (to be the same as that of the VIC-IIe chip). You
may even manually re-program it to have a different output (by specifying the screen size in
some corresponding registers) if you want. (Even for a direct VGA or anything!)

Note 2: on C64, it is often rather difficult (or even close to impossible) to make an

NTSC version of a PAL game (or a demo effect), since those machines have considerably less
computing time per frame (because of using 60 frames instead of 50 per second). If you are
working on such a game or demo, and you do not want to sacrifice any of your features (nor
simplify it in any other way) in order to make it NTSC compatible, just apply the well-known
C128 trick of 30% CPU gain in C64 mode instead (by switching on and off the $d030 fast
mode bit on raster interrupt). It fixes that for Turbo Chameleon (and MEGA65 and TDC), too.

 23

Measuring the MHz of CPU

Here follows a method (both used in MemTest64 and Rosetta) which is suitable for

measuring the actually perceived speed of CPU. It is pretty exact on 65xx CPU’s, at least up
to two decimal places (which is more than enough for any practical purpose). For example,
the 6510 CPU of C64 is measured with screen enabled as 0.93 MHz on PAL and 0.96 MHz
on NTSC machines; and with screen disabled as 0.98 MHz on PAL and 1.03 MHz on NTSC
machines. (While the 8502 CPU of C128 in fast mode is measured as 1.88 MHz on PAL and
1.97 MHz on NTSC machines.)

The main principle is quite easy: exactly for 0.1 second, we are counting the executed

cycles by the CPU. Whereas 100.000 cycles for this time period signs a “hypotetically” exact
1 MHz clock. If we measure more or less, the clock is also proportionately more or less.

To do it well, we need to rely on the result of the previous section code (Detecting If

PAL or NTSC System, see before), and it is also strongly recommended to execute this code
part right after the above. So it starts already with X register set to 0 or 1 (for NTSC or PAL):

 sei
 lda #$00
 sta $02
 sta $03

 txa
 clc
 eor #$01
 adc #$05

; 0.1 sec = 5 x PAL or 6 x NTSC frames

 sta $04

; raster synchronization

 jsr waitmp

; The inner loop takes 99 cycles (from x00 to x09), so repeatedly
; (2 + 99 x 10 - 2 + 9) x 100 = 99.900 cycles (from xxx to x99),
; plus few (for a few times when a bit more because of branching)
; that means just some hardly less than 100.000 cycles after all:

; ...at least on a 65xx CPU (probably on C65 slightly less),
; ...and with screen/sprites/interrupts completely turned off.

; (This program takes only care about disabling the interrupts,
; thus other things, like the screen and sprites, as well as the
; fast mode and the turbo settings yet are waiting for the user!)

 24

yyy ldy #$00

xxx ldx #$00

x00 lda $02
 cmp ($03,x)
 lda $03
 cmp ($02,x)

x01 lda $0100
 cmp ($04,x)
x02 lda $0201
 cmp ($03,x)
x03 lda $0302
 cmp ($02,x)

 inc x01+2
 dec x02+2
 inc x03+2

 nop
 nop
 nop
 nop
 nop

rllb lda $d012
 and #$f0
 beq xiux
 nop
 sta xiux+1

xuix inx
 cpx #$0a
 bcs x09
 jmp x00

x09 iny
 cpy #$64
 bcs x99
 jmp xxx

x99 inc $02
 bne yyy
 inc $03
 bcs yyy

xiux cmp #$00
 beq xuix

 25

 sta xiux+1

rlhb lda $d011
rlhc and #$80
rlhd beq xuix

 dec $04
 bne xuix

 cpx #$05
 ldx $02
 lda $03
 bcc roua
 iny
 cpy #$64
 bcc roua
 ldy #$00
 inx
 bne roua
 adc #$00

roua stx $02
 sta $03
 sty $04
 cli

It gives back the integer part of the MHz value in $02/$03 (as well as the X/A

registers), and the fraction in $04 (as well as the Y register) from 0 to 99 (from $00 to $63).
The integer part is a 16-bit number, because it is theoretically possible to be greater than 255
MHz (although there has been no such precedent known yet).

An additional code part:

; raster synchronization

waitmp jsr wmpp
 bne waitmp

wmp jsr wmpp
 beq wmp
 rts

wmpp lda $d011
wmpa and #$80
 rts

This works for the C64/128/65 in this way, and it can be made working for the VIC-20

and the TED’s, too, by some self-modification:

 26

On TED machines: the $d012 value (at “rllb”) must be changed for $ff1d; the $d011
values (at “rlhb” and at “wmpp”) must be changed for $ff1c; and the $80 values (at “rlhc” and
at “wmpa”) must be changed for $01.

On VIC-20: the $d012 value (at “rllb”) must be changed for $9004; the BEQ opcode

at “rlhd” must be changed for AND ($29); and the JSR opcode at “waitmp” must be changed
for RTS ($60).

When compiling the above codes (and especially the inner loop), please pay attention

to their alignment in memory (e.g. not to have a page boundary anywhere within), since a bad
alignment might cause some false results (by altering the number of the executed cycles).

Printing a 16-bit or 24-bit Integer on All Machines

; printing 16-bit/24-bit number in $02/$03/$04

 ldx #$00

num16 stx $04
num24 stx $05
 ldx #$08
 bne nlp0

nlp1 lda $02
 sbc ntab1-1,x
 sta $02
 lda $03
 sbc ntab2-1,x
 sta $03
 lda $04
 sbc ntab3-1,x
 sta $04
 iny

nlp2 lda $02
 cmp ntab1-1,x
 lda $03
 sbc ntab2-1,x
 lda $04
 sbc ntab3-1,x
 bcs nlp1
 tya
 bne nlp3
 ldy $05
 beq nlpy

nlp3 ora #$30
 sty $05
 jsr $ffd2

 27

nlp0 ldy #$00
nlpy dex
 bne nlp2

 lda #$30
 ora $02
 jmp $ffd2

ntab1 byte $0a,$64,$e8,$10,$a0,$40,$80
ntab2 byte $00,$00,$03,$27,$86,$42,$96
ntab3 byte $00,$00,$00,$00,$01,$0f,$98

Detecting the Instruction Set of CPU

Also quite easy: just execute a few (but carefully chosen) opcodes that make different

things on different CPU’s – and compare the results. There are basically four cases:

0: 65xx (including 6502, 6509, 6510, 7501, 850x and 65DTV02 etc.)
1: 65CE02 (or 4510 in the C65 and MEGA65)
2: 65C02 (or 65C102 in the LCD)
3: 65816 (on SuperCPU and other accelerator cards)

The above value (0-3) will be given back by the next code part:

 sei
 lda #$00

; $1A = INC A on newer CPU but only a NOP on 65xx

 byte $1a,$ea,$ea
 beq noxp

; on 65CE02: ROW $EAA9 (a = $01)
; on 65C02: NOP / LDA #$EA (a = $ea)
; on 65816: XBA / LDA #$EA (a = $ea, b = $01)
; (on 65xx: SBC #$A9 / NOP)

 byte $eb,$a9,$ea

 cmp #$01
 beq nocp

; (on 65CE02: LDA #$00 / ROW $1A1A)
; on 65C02: LDA #$00 / NOP / INC A / INC A (a = $02)
; on 65816: LDA #$00 / XBA / INC A / INC A (a = $03, b = $00)
; (on 65xx: LDA #$00 / SBC #$1A / NOP)

 byte $a9,$00,$eb,$1a,$1a

 28

 cmp #$04
 bcc nocp
noxp lda #$00
nocp cli

It includes some surplus redundancies (like those two NOP’s following the INC A and

so on) that are only left inside in order to stay absolutely safe and sure in all conditions.

A note on MEGA65: this machine is promised to should be able to switch over the

instruction set between the 4510 and the 6510 ones (e.g. when going to C64 mode), so the
actual result will depend on this setting. +note:***(2)

Fast and Slow (on C65, MEGA65 and DTV)

MemTest64 provides some subroutines for them (can be called in C64 mode):

*=$2800

; MEGA65 = fast mode <- SYS 10240

m65on sei
 lda #$47
 sta $d02f
 lda #$53
 sta $d02f
 lda $d054
 ora #$40
 bne mfs

*=$2812

; MEGA65 = slow mode <- SYS 10258

m65off sei
 lda #$47
 sta $d02f
 lda #$53
 sta $d02f
 lda $d054
 and #$bf
mfs sta $d054
 lda #$ff
 sta $d02f
 cli
 rts

*=$282c

 29

; C65 = fast mode <- SYS 10284

c65on sei
 lda #$a5
 sta $d02f
 lda #$96
 sta $d02f
 lda $d031
 ora #$40
 bne cfs

*=$283e

; C65 = slow mode <- SYS 10302

c65off sei
 lda #$a5
 sta $d02f
 lda #$96
 sta $d02f
 lda $d031
 and #$bf
cfs sta $d031
 lda #$ff
 sta $d02f
 cli
 rts

*=$2858

; DTV = fast mode <- SYS 10328

dtvon sei
 lda #$01
 sta $d03f
 byte $32,$99
 lda #$03
 byte $32,$00
 lda #$20
 bne dts

*=$2868

; DTV = slow mode <- SYS 10344

dtvoff sei
 lda #$01
 sta $d03f
 byte $32,$99

 30

 lda #$00
 byte $32,$00
 lda #$00
dts sta $d03c
 lda #$00
 sta $d03f
 cli
 rts

*=$2880

A note on MEGA65 (again): the actual switchover between the fast and slow modes

on this machine is identical to that of the C65 (as the FAST and SLOW commands in native
mode are part of the same Kernal ROM code being used). Therefore the SYS calls should also
be the same (changing $d031).

The extra ones for MEGA65 here (changing $d054) are toggling the extra bit used for

also switching over between the two kinds of fast modes: either 3.5 MHz (as the same as the
normal C65 speed) or 40 MHz or more (the maximum of MEGA65).

You may also use these two shortcuts: POKE 0,65 and POKE 0,64.

A note on DTV: please only use these subroutines on DTV; they will crash for sure on

stock C64 (the $32 opcode causes a CPU jam there). (The C65/MEGA65 ones are harmless.)

Yet another note: the emulated C65 (in MESS) is measured (by the method that has

been published a few sections earlier here) as 4.14 MHz in fast mode, and as 1.18 MHz in
slow mode (also in the C64 mode). That is quite normal, as mentioned before: since the CPU
is already some 20% faster in advance (because of the faster timing as well as the absence of
the VIC-II badlines), and it also matters here. +note:***(2)

The emulated DTV (in VICE) is measured as 1.75 MHz on PAL and 1.82 MHz on

NTSC in fast mode; the emulated SuperCPU as 8.83 MHz on PAL and 9.22 MHz on NTSC.

(There are no data at present on the MEGA65 yet, when writing this, nor about the

original real hardware.) +note:***(3)

Fast and Slow (on TED)

Disabling the screen on C64 gives only about +5% gain (0.98 vs 0.93 MHz), whereas

the same on the TED series is already near to +50% (1.70 vs 1.14 MHz) approximately.
Which is thus strong enough to call it as a “fast mode”. You may achieve it in this way:

 lda #$ef
 and $ff06
 sta $ff06

And then back into the “normal mode” (enabling the screen):

 31

 lda #$10
 ora $ff06
 sta $ff06

(Simply at the Basic command prompt just use POKE 65286,11 and POKE 65286,27.)

Other than that, they also have a specific “slow mode” (that is slower than the normal)

at about 0.78 or 0.89 MHz (on screen enabled or disabled), which might be achieved this way:

 lda #$02
 ora $ff13
 sta $ff13

As a matter of fact, the normal operating mode consists of continually oscillating

between the slow and fast modes (which is done automatically by the TED hardware), and the
above commands disable this function. (This is the equivalent to that of the C64’s VIC-II chip
“stealing away” some cycles from the CPU in badlines, however it is valid for the entire
visible screen area here.) An unpleasant side effect of this is that in normal mode you can
never know exactly on which speed the CPU at the moment is (as it is always being altered in
the background), that makes it harder to write a cycle-exact timing hungry code (like e.g. a
fast loader). So you better choose one of the fix (either fast or slow) speeds then. (And this is
why, for example, the official TED version of JiffyDOS disables the screen, whereas it is not
so necessary on the other CBM machines.)

Furthermore, on top of that “fast mode” (aka screen disabling or blanking), these

computers also have a so-called (unofficial, overclocking) “turbo mode”: at least on the PAL
machines, where it means to turn over the TED video chip to NTSC mode, this way:

 lda #$40
 ora $ff07
 sta $ff07

On PAL machines, it has the side effect (except the display seeming rambled, and so

needing to be blanked before) of CPU speed increasing near some 2 MHz or so (that is even
faster than the fast mode of the C128!). Unfortunately, on NTSC it (i.e. turning to PAL mode)
is rather counterproductive, as it works the other way around: decreasing to about 1.4 MHz.
(My method is not suitable to see these given values as its reference of raster lines is also
affected, so the results will be invalid. Rather use a benchmark test for this purpose.)

The PAL/NTSC models have physically different clock generator chips (of about 17.7

or 14.3 MHz) and their frequencies are divided back (by 20 or 16) to get the 0.89 MHz base
clock: only the divisor is swapped on soft-switching, thus 1.11 or 0.72 MHz is got instead.

This soft-switching of PAL/NTSC modes is not emulated by the VICE emulator, so it

can be used for emulator detection here: by combining it with measuring the MHz both before
and after, and comparing the results. (If it is not changed, then it is an emulation.)

However, it is well emulated by the YAPE emulator (which is a far better one for this

purpose, and strongly recommended to be used for TED code instead of the VICE).

 32

Emulator Detection (on C128)

The only emulation of the C128 suitable for normal everyday usage is the VICE

emulator these days (and also the C64 Forever, of course, which is also compiled out of the
VICE sources). Although the emulation is already quite advanced by now, it still lacks some
features of, as well as has some differences compared to the real platform. So the situation is
somewhat similar to that of the C65 and the MESS; however, the problems caused by this are
minor and fortunately of not so significant importance. The most of them are around the VDC
emulation: there are no interlace modes yet (so no IHFLI pictures, Basic 8 or Graphic Booster
etc.), and the ready bit of VDC will never get busy.

The latter might be rather better eventually this way (as the programs can run faster,

smoother without waiting for that bit), yet it generates an indirect and not too pleasant side
effect: if anyone develops a software only in the emulator (which depends on this feature even
if he does not know of that), then it may happen to not run on the real hardware.

There are some similar artifacts around the VIC-IIe emulation, too: the display output

does not get garbled when turning on the fast mode (which is also better as a matter of fact
this way, yet the above-mentioned side effect is especially not so lucky here), and the test bit
does nothing in the emulator. (The test bit is neither considered too useful on the real
hardware, although might be used for generating interlace.)

Because of these circumstances, the emulation might even be considered as almost

some kind of “new platform” apart from the hardware (at least by considering how many
people use it who have no hardware) as well (like we do so in the case of C65, MESS and
MEGA65), and at least when writing a new program, you always have to test it on a real
machine; while it is also highly recommended to test in the emulator, too. Even better, if your
program may be able to decide, and choose from both of them: then it may enjoy the
advantages of the emulation as well (besides merely avoiding the problems).

For example, if you know it is an emulation, you can use the fast mode all the time.

That is why an emulator detection is a very useful thing. Whether the ready bit or test

bit makes it possible; now let me show you my own solution built upon the latter.

The test bit of the VIC-IIe (at $d030/$02) is a strange one: as it is not clear what the

goal of the designers was with it. Once it is set, it first speeds up the raster counter, then stops
it (the display output thus “flies away”). More exactly: the raster counter starts increasing
very quickly (by one per each machine cycle), until it overflows to zero, and then stops: i.e.
stays permanently zero (until the bit is cleared again). However, in the emulator, it does
nothing at all. So we only need to set it for a while and check the behaviour of the raster
counter. (And it has the same effect in C64 mode, too.)

Some careful arrangements must be made before: 1.) the screen must already be

blanked out (and the interrupts be disabled), 2.) we must know for sure if it is a C128 (even if
in C64 mode), 3.) we better do the other emulator detection at first (by reading from $dfff as
mentioned before), because if that one succeeds, we do not need this one.

 33

The detection of C128 (whether in native mode or in C64 mode as well) can be done
by writing zeroes to $d02f and $d030, and reading them back: the first one must give back $f8
(as it has three bits for scanning the extended keyboard; or a value between $f8-$fe if such a
key is pressed) and the second one $fc (as it has two bits, one for the fast mode, and the other
is the test bit); since the unused bits always have a high state (like always being “set”).

There are also further advantages of the emulator: for example, if you are about to

write a mouse-driven application, then it can be integrated into the normal Windows
environment, similarly to e.g. some such DOS applications that run also emulated in a DOS
shell (like the Star Commander or the 64Copy). If the emulator is running in a window
(instead of a full screen), then the Windows’ mouse-clicks upon that are translated to
emulated lightpen events for the C64 program by VICE: and so thus the Windows’ mouse can
be used instead of an emulated Commodore mouse (and you need no sprites on screen).

Or another nice thing is to reach all files on your hard drive from within your C64

program through the integrated virtual file system of VICE as a mass storage (which works
more or less similarly like having an emulated 64HDD built in, but also much faster). Or to
use the warp mode as a turbo… And so on.

We do not need to fear, either, what happens if the emulators will be further developed

in the uncertain future: the worst case scenario is only to “fall back” to the level of the real
hardware later, when and if the emulation becomes indistinguishable from that, one day.
(Also remember: if your program runs well on real hardware, but not in the emulator, then it
is always the fault of the emulator, and not yours.) Here follows my code (as used in Rosetta):

; (In earlier emulators, e.g. in VICE till v2.2, if the "Emulator
; Identification" is enabled, $dfff toggles between $55 and $aa
; whenever is being read. From v2.3 on, it works no more.)

emu lda $dfff
 sta $02
 bpl ema
 eor #$ff
ema cmp #$55
 bne xaft
 lda $dfff
 eor #$ff
 inx
 beq kamu
 cmp $02
 beq emu

xaft ldx #$00
 lda #$02

; (In Rosetta, this variable has been used for machine detection
; before, so we only check it here for having a C128.)

 cmp $ff

 34

 bne faft

 sta $d030
 lda $d030
 cmp #$fe
 beq xamu
 bne kamu

; Detecting emulator by using the test bit:

; We are following the raster counter, and if it is incrementing
; normally, then the test bit is not working at all: that must be
; in VICE. However, if it suddenly jumps forward or stops, that
; might be a real hardware as well (or a better emulator).

; (On a real hardware, after the test bit is set, the raster
; counter will be incremented by one in every cycle until its
; next overflow: and then afterward it stays forever zero. Only
; when the test bit is cleared, starts counting again.)

xemu lda $d012
 cmp $02
 beq xemp
 inc $02
 cmp $02
 beq xamp
 cmp #$00
 bne kaxt

xamu lda $d012
 sta $02
xamp stx $03

xemp inx
 bne xemu

 lda $03
 bpl kaft

 ; (In Rosetta, this variable bit is set to sign the emulator here.)

kamu tya
 ora #$10
 sta $fe

kaxt ldx #$00
kaft stx $d030
faft

 35

Jumping from Native Mode to C64 Mode

The C128, and the C65 (and of course the MEGA65) as well, can execute the GO64

function also through a normal Kernal call, which can be simply called from Assembly (either
by JMP or JSR, as there will be no return). That means it is possible to load a C64 application
in the native mode, then jump over to C64 mode, and start it there. (It is also possible because
the same BANK 0 is used for C64 mode, and its content is not cleared, only a few bytes will
be overwritten by the operating system.) But what is the point of that?

First, it is much faster in the native mode to load anything (both because of the fast

mode of the CPU and the burst mode of the more advanced fast serial IEC protocol).

Second, you may load a larger file in native mode. (Remember that it is possible from

$1300 to $feff which is 59K, while in C64 mode only from $0800 to $cfff which is 50K.)

And third: it can even be autobooted there (just see above for autoboot!). So you need

to only turn the computer on, and wait while it does this all for you… like an Amiga.

However, it needs some rather tricky and complicated programming. I will only

describe the theory on how to do it now (step by step). But this method should be extensively
used by SDOS, and would be a feature of my upcoming SDOS 2017 version +note:***(4);
thus you will be able to find all the corresponding source codes together with the executables
“in action” there – coming soon. (It has not been published yet, when writing this, but I make
it later in this year.) In theory, the C65 version must work similarly to that of the C128, only
with some minor modifications (actually self-modifications made by the code to itself). (Still,
in practice, only the C128 version has been tested and implemented momentarily.)

The main principle is that a C64 program normally starts at $0801: this must be first

loaded on the “native side” at $1301 instead, and then the code must jump into the “C64
side”, and make a downward relocation of the program to the original address ($0801, but it
might be any other address as well, of course), and finally start it there (normally with RUN).

Since we want to use the memory over $1301 for the program to be loaded, it means

that our code must be somewhere below that. The $10xx page is one of the best places (as it
contains the function key definitions, which will be no longer needed for sure, so it can be
overwritten, and the system does not touch it otherwise), yet you may also use the most pages
between $0bxx and $0fxx, too (on C65 this is the screen!), as well as the stack and zero page.

The GO64 function makes a full cold reset on the C64 side: we actually lose control at

this point… We can only get control over the system back again by making some dirty hack.

Just place the following nine bytes starting at $8000:

 word $1000
 word $fe5e
 byte $c3,$c2,$cd,$38,$30

This simulates the presence of a cartridge for the C64 Kernal, which checks for the

signature “CBM80” during the cold start (the last five bytes are actually these characters

 36

above), and if found, that makes it jump to the custom cold start vector at $8000-$8001: so
thus it will jump to $1000 in this case.

Note: please do not forget to save the original nine bytes out of this space to a safe

location before overwriting them, since they are also part of the loaded program, therefore
must be restored later on the other side. It is also strongly recommended to save the last used
device number (at $ba, the same on all three machines) and later to restore, since it holds the
device number from where the program has been loaded, and the program may require that
for further disk operations in the future. (It is only reset to zero by the operating system.)

After having been everything prepared, we call the GO64 Kernal function on C128 by:

 jmp $ff4d

Or the same one on the C65 by:

 jmp $ff53

Another important difference between the C128 and the C65 versions is the handling

of the memory paging – which we also need to do to reach the corresponding RAM on both
machines. In order to be able to both read and write those nine bytes above at $8000, we need
to page out the system ROM (and afterwards page it back), because that location is always
covered by some of the system (either the Kernal or the Basic) ROM’s.

On C128, we page the ROM out (which equals to a BANK 0 in Basic) by this:

 lda #$3f
 sta $ff00

And page it back (aka BANK 15) by this:

 lda #$00
 sta $ff00

On C65 in native mode, we must use some 4510 opcodes instead. And we also need to

set the $00 and $01 ports like we do so in the C64 mode, moreover, to maintain the $d030
register (since it also has some paging bits of ROM’s). To page it (all) out (aka BANK 0):

 sei
 lda #$a5
 ldx #$96
 ldy #$ff

 sta $d02f
 stx $d02f

 lda $d030
 sta rest+1

 37

 and #$06
 sta $d030
 sty $d02f

 lda #$07
 ora $00
 sta $00

 lda #$30
 and $01
 sta $01

 iny
 tya
 tax
 taz
 map

And to page it back (aka BANK 128):

 lda #$00
 ldx #$e3
 ldz #$b3
 tay
 map
 taz

 lda #$07
 ora $01
 sta $01

 lda #$a5
 ldx #$96
 dey

 sta $d02f
 stx $d02f

rest lda #$64
 sta $d030
 sty $d02f

 eom
 cli

Other than that, we need to also prepare our code at $1000 to continue it on the other

side. As the cold start vector redirects us here, first we need to go through some initial steps
of the official cold reset sequence (so we are now already in C64 mode after the GO64 call):

 38

 jsr $fda3
 jsr $fd50
 jsr $fd15
 jsr $ff5b

 jsr $e453
 jsr $e3bf
 jsr $e422

 ldx #$fb
 lda #$30

 sei
 txs
 sta $01

The last instruction also pages out everything here (including the I/O) as we need full

access to the RAM again (even up to $feff) to do the relocation.

Now it is the time to do the restoration of those nine bytes and the $ba value, too.

After having that, we relocate the program from $1301 to $0801 (by a simple copying

cycle). Also do not forget to set the end of Basic program pointer (at $2d-$2e) to the
corresponding ending byte!

Note: to do the relocation well, we firstly need to navigate to any other location

(entirely out of the $0801-$feff area!) for the continuation of the remaining code parts (or
otherwise the relocating cycle will overwrite itself, and crash!). It is therefore recommended
to copy the remaining code parts (see below) into the stack, and jump to there.

Then we page the system back:

 lda #$37
 sta $01
 cli

And we now have yet another job exactly at this point: to also do the rechaining of

Basic lines (which should have normally been done by the Basic LOAD command):

 jsr $a533

We also need to copy the RUN + <CR> characters into the keyboard buffer (at

$0277), more exactly these four bytes (it also requires to write $04 to $c6 of course):

 byte $52,$55,$4e,$0d

Finally we jump onto the warm start by:

 jmp ($a002)

 39

At this point, the operating system gets the control back from us, and displays the

cursor prompt, at where the RUN command gets “magically” typed in… And the program
starts (exactly as if it were normally loaded).

Speeding Up the Memory Access

As could be seen, the C64 is actually one of the slowest Commodore machines – at

least just considering the CPU power. It is getting even worse once it comes to a memory
block copy – which must be done by using the CPU power, in a normal cycle, byte by byte.
Thus, such simple tasks, like scrolling the screen, may often mean a hard job for this machine.

Normally, a typical inner loop of a copying cycle looks like this:

loop lda ($xx),y
 sta ($zz),y
 iny
 bne loop

If no page boundary is crossed, it means at least 5 + 6 + 2 + 3 = 16 machine cycles for

each and every byte copied. (If any page boundary is crossed, that is +1 cycle for the LDA, so
it may be up to 17 cycles in all.)

A little bit better solution when using this:

loop lda $xxxx,y
 sta $zzzz,y
 iny
 bne loop

That is 4 + 5 + 2 + 3 = 14 cycles with no page boundary (or up to 15 with it).

So if 1K of data must be copied, then it needs some 14K-17K (or more) cycles.

On a PAL machine, the time slice during one single frame on screen (both including

the visible and non-visible areas) contains only about 1M / 50 = 20K machine cycles within;
whereas on an NTSC machine, only about 1M / 60 = 16K cycles. That finally means that one
such whole frame time period is only hardly enough to copy 1 kilobyte in memory.

However, if we have (and can detect and use) any of those nice extensions to the stock

system, then it can be dramatically sped up. Let us see a few such cases now:

The 65816 block copy: if you have a 65816 CPU (for example on the SuperCPU), then

you have already got two built-in commands for the automated block copy. They do the same
as you would normally do in a cycle, but much faster, since hard-wired to the CPU. That more
exactly means a 7 cycles per byte speed (i.e. more than twice as fast as the above examples).
There are two of them: one for upward and the other for the downward direction (in case there
would be an overlap between the source and destination blocks).

 40

The upward one is called as MVP (aka “Block Move Positive” on $44 opcode), while
the downward one as MVN (aka “Block Move Negative” on $54 opcode), and the syntax of
both of them is the same as follows (where $xx is the source and $yy is the destination bank):

MVP (or MVN) $xx, $yy

X register = source address
Y register = destination address
A register = number of bytes to move -1

All registers are the 16-bit ones (so it must be switched to native mode!), and also two

things must be kept in mind: first, the Data-Bank-Register will be set to the destination bank,
and second, that the above form is only for the Assembler, while it in the memory looks like:

$44, $yy, $xx (the destination bank comes as first, and the source bank as second!)

As can be seen, they are capable of copying data anywhere throughout the whole 24-

bit address space (up to 16 MB). Even further accelerated if the CPU is on the turbo speed.

The ZP + SP method: this so-called name is the abbreviation of the Zero Page (that is

sometimes also referred to as Base Page) and Stack Page. Some platforms have the ability to
relocate these two pages into almost anywhere in memory (sometimes even in some other
banks). After having done so, you may have a faster access to those spaces through the zero
page and stack commands. At least these four platforms are capable of that: C128, C65, DTV
and SuperCPU (although the actual settings and behaviours are different on all of them).

This method has some drawbacks, too: on one hand, the zero page addressing still

remains limited to 254 bytes instead of the full 256 bytes of the page (since the $00 and $01
locations are part of the CPU itself); and on the other hand, the relocation of the stack makes
it a little “dangerous” (thus the interrupts must be disabled for this while, and you should also
think of the NMI besides the IRQ).

However, a great advantage is that it can even be used for memory transfer between

two banks (which would be especially slow and difficult to do in a normal cycle otherwise).

Even nearly up to 6 cycles per byte speed can be achieved (or if doing e.g. on the

C128 in fast mode, it can be counted as 3 cycles per byte because of the double speed, and so
on). That is undoubtedly rather fast indeed.

On C128, it works only in the native mode (as it is based on the MMU, which is not

present in C64 mode). To relocate the zero page, first write the bank number (0-3) into $d508,
then write the page number into $d507; to relocate the stack, first write the bank number (0-3)
into $d50a, then write the page number into $d509. (These two pages will always use the
RAM, and never interfere with ROM and I/O.) In order to perfectly use the ZP + SP method
for accessing all memory in all banks, it is also recommended to temporarily disable the RAM
sharing (the usage of the common memory portions among all separated banks) by writing 0
into $d506; then after the operation to restore its value, too (the default value is 4 here for the
1K common RAM usage at the bottom, and without that, the operating system sucks); or else
only the page numbers will be applied (and bank numbers stay within the BANK 0 instead).

 41

On C65, it is all part of the 4510 CPU. New registers are introduced: one called as

Base Page register (or simply B), and the other called as Stack Pointer High Byte. The Base
Page register can be accessed via two transfer commands in conjunction with the A register
(Accumulator): TBA ($7b opcode) and TAB ($5b opcode). The Stack Pointer High Byte can
be similarly accessed via two transfer commands in conjunction with the Y register: TSY
($0b) and TYS ($2b). (The latter ones are also similar to the already well-known TSX and
TXS commands, and these two pairs might even handle the low and high bytes of the stack
pointer together, once it is switched over to 16-bit mode to use a larger stack; yet it is in 8-bit
mode by default, and then behaves more or less like the C128 relocated one.) It seems that
both of them are only possible to set within the BANK 0 on this machine.

On DTV, also there are new registers (called Base Page and Stack Base) that can be

set through some other special opcodes. (For changing the Base Page: $32 / $AA / LDA #$xx
/ $32 / $AA; and for changing the Stack Base: $32 / $BB / LDA #$xx / $32 / $BB.)

On 65816, the things are getting more complicated: for the relocation of the stack, it

must firstly step into its own native mode again. (Which is not yet needed for the relocation of
the ZP, or as called here, the Direct Page.) Thus, we have to temporarily switch to native
mode, and then back to emulation mode after the operation (by using the XCE command).

After all, once the ZP + SP pointers are set (according to the actual machine), copying

254 bytes of data looks like this (where the source and destination blocks are page-aligned):

 ldx #$ff
 txs
 dex

loop lda $01,x
 dex
 pha
 bne loop

As can be seen, the inner loop is still 4 + 2 + 3 + 3 = 12 cycles per byte here. So it is

not that much better… yet. Our final step will be to replace the above loop with speed code:

loop lda $ff
 pha
 lda $fe
 pha

 (…)

 lda $02
 pha

Which finally brings that 6 cycles per byte to here. (But do not forget that the $01 and

$00 positions are not moved yet, so they still must be “manually” done, apart!)

 42

The REU block copy: the REU (RAM Expansion Unit) has its separated external
memory up to 16 MB as well as an integrated DMA controller chip (called REC), which can
be used for transferring between the expanded and normal memories, back and forth. One
such transfer may embody up to 64K at one go, and during that time the DMA controller
replaces the CPU on the bus – which means that it can even be intercepted by a just incoming
interrupt at any time (and after the interrupt request having been handled, passed back to the
CPU and returning from that to DMA again, the intercepted transfer continues). +note:***(5)

So it must be very friendly – and, even better, incredibly fast: only 1 cycle per byte!

Nevertheless, if we want to to use it as a block copy method right within the normal

memory space, for instance, then we need two transfers (once from main memory to REU
memory, and once again, from REU memory back to main memory, at the new destination
location): so it counts as double then, as 2 cycles per byte in all (but it is still not so bad).

The REC controller must always be called at 1 MHz (any fast/turbo modes must be

turned off before!). Any C64 or C128 machines may have got this expansion by the way.

The DMA block copy: two platforms (the C65 and the DTV) have also got their own

DMA controllers onboard, which work similarly to the REU, more or less. (The C65 may
have this up to 8 MB, while the DTV up to 2 MB.)

They are even better, since their address spaces embody the main memory, too, so

they can do the same job in one single turn. (And they can be called in fast mode, too.)

The VDC block copy: the C128 has its particular (16K or 64K) video memory

dedicated for the VDC chip, too. While it is so painfully slow to send any data through its
two-byte ports (at $d600-$d601), once the data have already entered the VRAM, then it can
be much more quickly moved around within. This is also some kind of DMA transfer after all,
but executed by the VDC chip on itself. That also means: it happens independently of the
CPU – so you need not to wait for the result, but can do anything else meanwhile.

As a most extreme example, it may even be possible to execute a VDC block copy in

the VRAM, while doing an REU copy on the other side – in parallel. (But the VDC chip can
only deal with 256 bytes maximum at one go, so it is a little bit complicated then to organize.)

Programming the DMA (the REU and the DTV)

These two ones are pretty well documented, and their programming is easy, so I only

give some short summary on them:

REU: it appears at either of the $dexx or the $dfxx I/O areas (depending on actual

hardware), and has 11 registers ($dx00-$dx0a). For preparing a simple data transfer, you must
first specify the main memory address as a 16-bit value ($dx02-$dx03), the REU memory
address as a 24-bit value ($dx04-$dx06) and the transfer length ($dx07-$dx08). After having
finished that, also write a command code into the command register ($dx01): generally 0 or 1
(as for transferring to or from the REU memory; or 2 or 3 for comparing or swapping), but it
must also be OR’ed with $80 for the execution (or else nothing will happen), and also with
$10 for instant execution (or else it will be delayed until writing anything to $ff00).

 43

The actual execution will either be started when writing the command register (if $10

also specified), or when writing to $ff00 (if delayed). The delaying option can be used for
changing the memory layout in the meantime (e.g. by paging in and out system ROM and I/O
for the “hidden” RAM underneath or other spaces being accessed by the DMA).

DTV: it appears at $d3xx with 32 registers ($d300-$d31f), which must be first made

visible by writing $01 into $d03f (and after the operation having been finished, it is also
recommended to make them hidden again, by writing $00 into there).

For preparing a data transfer, you must first specify the source and destination

addresses, both as 24-bit numbers ($d300-$d302 and $d303-$d305), and the highermost bytes
of both of them OR’ed with $40 (as the two highermost bits are indicating 00 or 01 for ROM
or RAM); and the transfer length ($d30a-$d30b). You can also specify a source step and a
destination step ($d306-$d307 and $d308-$d309), which are normally both $0001; and some
other things (like modulo and line length etc.), which are not so interesting now.

The command register is $d31f, and you need to write a $0d command code there for

instant execution (but it may also accept several options for delaying and direction changing
etc.). It also acts as status register when being read (where bit0 aka $01 signs “DMA busy”).

The DTV has got a separate and dedicated blitter, too, at $d320 with different and

additional 32 registers ($d320-$d33f) specialized for graphical data manipulation.

Programming the DMA (on C65)

Well, this third one used by the C65 is still a kind of mystery. There can be only very

little description found on the internet, which says unfortunately not too much. (Or at least I
have not found the right ones yet…) That ominous writing from ’91 called “Preliminary” has
got a short paragraph on this: it mentions the controller is called as DMAgic and it has only
four registers (at $d7xx address space of I/O): $d700-$d702 write-only to specify an address
for some table containing a to-do list (as LB/HB/bank number) and $d703 read-only as status
register (where bit7 aka $80 is the “busy” bit). Yet it is not clear exactly what data in that
table there must be, and what the controller will do with them at all.

Luckily, we have got some other starting points: there is the DMA command in the

C65 Basic v10 dialect, and the following three Kernal calls, all implemented in the system
ROM’s somewhere (and eventually the POKE and PEEK functions are also implemented
through the DMA) – at least some of the answers must be found there. So I sat before my PC
running the MESS emulator, and started to make some disassembly by using the built-in
monitor (as if it were done on a real C65 machine, yeah).

The three Kernal calls are actually the same as those already found on the C128 (but

for using in context of the DMAgic and with slightly different parametering, of course):

jsr $ff74 lda (x),y from bank z
jsr $ff77 sta (x),y to bank z
jsr $ff7a cmp (x),y to bank z

 44

From the virtual jumping table, their absolute addresses can be seen (whence, by
withdrawal of the $f26a-$f2bd area, we get their codes):

jsr $ff74 jmp $f26a
jsr $ff77 jmp $f28e
jsr $ff7a jmp $f2b5

$f26a: php
 tya
 clc
 adc $00,x
 sta $03d3
 lda #$00
 sta $d702
 adc $01,x
 sta $03d4
 stz $03d5
 lda #$03
 sta $d701
 lda #$d0
 sta $d700
 plp
 lda $03cf
 rts

$f28e: php
 sta $03cf
 tya
 clc
 adc $00,x
 sta $03e1
 lda #$00
 sta $d702
 adc $01,x
 sta $03e2
 stz $03e3
 lda #$03
 sta $d701
 lda #$db
 sta $d700
 plp
 lda $03cf
 rts

$f2b5: pha
 jsr $f26a
 pla
 cmp $03cf
 rts

 45

The very first thing to be noticed is that they are directly relying on those adresses at

$d7xx: so it means that we should never forget to apply the two “magic bytes” at $d02f before
calling them, or else they might not do anything. (The “danger” about it is the emulator usage
for the development process, where the registers are always present at the I/O area.)

The second is that they seem to use some already predefined table(s) “around” $03d0

or so (including that $03cf where the controller must place the one-byte result in some way).

The source of the DMAgic command lists can be found in the Kernal at $f252-f269

(right before the above codes) from where it gets copied to $03ce-$03e5:

$03ce: byte $00
 byte $00

$03d0: byte $00
 byte $01,$00
$03d3: byte $00,$00,$00
$03d6: byte $cf,$03,$00
 byte $00,$00

$03db: byte $00
 byte $01,$00
$03de: byte $cf,$03,$00
$03e1: byte $00,$00,$00
 byte $00,$00

If we carefully examine and compare the two lists byte by byte, then the structure can

easily be recognized: the first byte is the command code (here is set to $00 for copying),
followed by the two bytes of the 16-bit transfer length (here is set to $0001), then twice by the
three bytes of the 24-bit source and destination addresses (where in both cases the “$03cf in
bank 0” appears in context of the other being overwritten by the above subroutines).

This order of the parameters right exactly matches that of the DMA Basic command,

the brief description of which also mentions another command code: $03 for filling (where
the low byte of the source address holds the value being used to fill the destination area).

The DMAgic chip overview just shortly mentions a list of possible operations in the

following order: “Copy (up, down, invert), Fill, Swap, Mix (boolean Minterms)”. (So, if the
order matches again, should it mean that we could have three different Copy codes (0-2), then
after the Fill (3) would come the Swap and probably some others, too…?)

However, the “Preliminary” section on the DMAgic theme mentions these four

provided commands in this following order: Copy (0), Mix (1), Swap (2), Fill (3). Now a little
playing around with the Basic command in the emulator suggests this must be the right order.

According to my testing in the emulator, it seems only the Copy (0) and Fill (3)

functions are implemented after all; when trying the other two, just nothing happens there.

 46

And yet another final (?) note (or appendix): the last sentence of the previous page
would have been meant to be “the end of the story” here… but actually there is one more
important thing about it to know. A little bit later (after a little bit more playing around with
the disassembly) have I only realized that actually two versions of the above codes exist.

And that can be because also there are two versions of the DMAgic chip itself.

The above discussed withdrawal is based upon the earliest and the most common

910111 version of the Kernal ROM (which is the most recommended version to be used,
since the MEGA65 also leans upon this one!) that originates from the Rev2B motherboard. So
that might be considered as some kind of “standard”. This one contains the F018A DMA.

However, all of the other Kernal ROM’s (so the other five out of the six pieces can be

found on the internet) have the other version, which is slightly different, since they originate
from some newer revisions of the motherboard (up to Rev5) that contain the F018B DMA
instead. This newer model uses one byte longer tables than the previous (so there will
already be now three “meaningless” zeroes at the end of the data instead of two, which seem
to be not really used by the software momentarily).

Moreover, they are placed totally elsewhere in memory (at $0120 instead of $03d0,

and $015c is used instead of $03cf), and even the sources of the data can be found elsewhere
in the ROM. (The latter is even different in most versions…) Here follow the new tables first:

$0120: byte $00
 byte $01,$00
$0123: byte $00,$00,$00
$0126: byte $5c,$01,$00
 byte $00,$00,$00

$012c: byte $00
 byte $01,$00
$012f: byte $5c,$01,$00
$0132: byte $00,$00,$00
 byte $00,$00,$00

In the latest Kernal known (as version 911001 from the Rev5 motherboard), this

sequence can be found at $f29b-$f2b2, followed by the three absolute addresses of the calls:

jsr $ff74 jmp $f2b3
jsr $ff77 jmp $f2da
jsr $ff7a jmp $f304

$f2b3: php
 tya
 clc
 adc $00,x
 sta $0123
 lda #$00
 sta $d702

 47

 adc $01,x
 sta $0124
 bcc *+1
 inz
 stz $0125
 lda #$01
 sta $d701
 lda #$20
 sta $d700
 plp
 lda $015c
 rts

$f2da: php
 sta $015c
 tya
 clc
 adc $00,x
 sta $0132
 lda #$00
 sta $d702
 adc $01,x
 sta $0133
 bcc *+1
 inz
 stz $0134
 lda #$01
 sta $d701
 lda #$2c
 sta $d700
 plp
 lda $015c
 rts

$f304: pha
 jsr $f2b3
 pla
 cmp $015c
 rts

Thus the final consequence is only that the new version of the table is one byte

(actually one zero byte) longer: that is not so dangerous, when programming the DMA chip
directly (and building your own tables for this purpose!), you only need to make it one byte
longer, too, and therefore stay compatible with both versions at once. (Nevertheless it also
means that the Kernal software versions are not interchangeable over the real hardware
versions by the way, but it is no problem for the emulator, nor probably for the FPGA clone.)

This newer version of DMAgic similarly only has the Copy (0) and Fill (3) functions

implemented; and the other two command codes similarly do nothing.

 48

TDC (and Other Turbo Cards)

Okay, I am writing yet another final chapter here (just to make it be a round 50… er,

sorry, 51 pages after all)… may be considered as Appendix (Two) or so.

There exists the “traditional” way of C64 turbo cards, at least since ’90, when the first

two ones had appeared: the Turbo Master CPU by Schnedler Systems in the USA (also
called as “Schnedler cart”) and the Turbo Process in Germany (by Rossmöller) on 4 MHz.
Then came the Flash 8 also in Germany in ’92 (as successor of Turbo Process) on 8 MHz. On
top of this evolution sits the SuperCPU by CMD (Creative Micro Designs) in 1997-2001,
both for the C64 and the C128 (as called as SuperCPU64 and SuperCPU128) on 20 MHz.

All of them are based upon the same idea of changing the processor for another one

(the first has got a 65C02, whereas the others have a 65816 CPU), together with their own
additional RAM and ROM, and everything be placed onto an external cartridge for the
expansion port. As a matter of fact, the Turbo Chameleon 64 is also based upon this idea
(but using an FPGA re-implementation of the whole computer and some further extensions).

And there is the TDC (or Turbo Demo Card), made by Kisiel in Poland 2011, that is

an entirely different approach: it does not swap anything for something else, but rather makes
an overclocking of the original motherboard. Or at least of the HMOS chipset of the newer
mobos (C64E), since it fits there only, as being an internal daughterboard in the form factor
so that can be placed between the sockets and the IC’s of the VIC-II and SID (the 85xx ones).
These two latter are the bottleneck of Commodore design (also for the C128) that limits the
system bus to 1 MHz, while most of the other chips could have been made much faster. And
exactly this is what TDC does: it leaves these two at 1 MHz, while overclocks the other ones.

Unfortunately, only a few pieces have been manufactured (although the maker states

that he has yet some further future plans); but luckily, I managed to own one of them.

It has got two switchover bits at $d030: bit0 and bit1 (aka $01 and $02). The first bit is

for soft-switching between the normal and the turbo operating modes (i.e. in the same manner
as the C128, the Turbo Chameleon and the MEGA65 do it, so they can be all programmed in
a compatible way in C64 mode). The unit also has a manual switch for this purpose, which
overrides the soft-setting when pressed. The machine is in normal 1 MHz mode on power-up,
and the 2 MHz mode may be selected by either of these hardware/software ways.

The other bit is for selecting an extra speed (so it only gains an effect once the turbo

mode is set in any of the above-mentioned ways) of over 3 MHz, or when the screen is
disabled at the same time, too (at $d011), then reaching near some 4 MHz after all. (Care
should be taken of this setting, since the C128 has got the VIC-IIe test bit there!)

Once in 2 MHz mode, the good old CPU of our favourite C64 will run a little bit faster

than that of the C128 (see below the comparison table for the exact MHz!), but without the
“VIC-IIe bug” in advance (no garbling artifacts on screen). Yet there are some side effects:
everything else is accelerated, too (including the CIA’s etc.), thus the IRQ’s get more
frequent (the cursor starts to blink faster), and disk operations not possible (still the manual
switch makes a nice workaround for it somehow, even allowing for fast loaders, if pressed).

 49

The 3 and 4 MHz modes are more quirky, with even more side effects: the $00 and

$01 CPU ports are no longer accessible at these speeds, so you cannot change the memory
layout until getting back to 2 MHz (which, as considering that the switchover bits are part of
the I/O area, too, means that you cannot reach the RAM underneath while being at these
higher speeds) and sometimes also artifacts on accessing the colour RAM are reported.

Other than the turbo, the daughterboard has got a socket for a second SID (mapped to

$d500 at the I/O) and as well a Covox (the audio outputs of both are redirected for the main).

The $d031 register can be read for a version number (actually $d1), and be written for

the Covox output. The $d02f is claimed to contain $f0 (albeit on my unit it is $ff instead). So
the common combination of theirs can be used for detection, for example in this way:

 lda $d02f
 and $d031
 and #$f0
 cmp #$d0
 beq tdc

An important note: there is a serious hardware incompatibility between the fast mode

and the presence of the 1541 Ultimate (I, II, II+ and probably some further cartridges alike,
e.g. the Chameleon etc., although they have not yet been tested) that causes an instant crash
on turning the fast mode on. (If you also detect any of them, please do not use the TDC.)

And finally, as an Appendix (Three) or so, here follows a comparison table on speed

among some turbos and the stock systems that I have already measured by now:

The maximums I reached on these systems (with screens and IRQ’s turned off):

C64, PAL / NTSC / NTSC (old) / PAL (Drean): 0.98 / 1.03 / 1.01 / 1.01 MHz
SuperCPU (VICE), (everything else as above) (*): 8.83 / 9.22 / 9.04 / 9.11 MHz
SuperCPU128 (real), PAL, in C64 / C128 mode: 8.37 / 8.73 MHz
VIC-20 (VICE), PAL / NTSC: 1.11 / 1.02 MHz
TED (YAPE), PAL / NTSC: 1.70 / 1.71 MHz
DTV (VICE), PAL / NTSC (*): 1.75 / 1.82 MHz
C128, PAL / NTSC: 1.88 / 1.97 MHz
TDC, set to 2 MHz / 4 MHz: 1.91 / 3.71 MHz
Turbo Chameleon, set to 6 MHz / maximum: 5.90 / 14.47 MHz
C65 (MESS), slow mode / fast mode: 1.18 / 4.14 MHz
C65 (XEMU), slow mode / fast mode (**): 1.20 / 4.19 MHz (before 2020 fix)
C65 (XEMU), slow mode / fast mode (**): 1.03 / 4.19 MHz (after 2020 fix)
C65 (real machine), in slow mode: 1.02 MHz +note:***(2)
MEGA65, in fastest mode (**): (between 36 and 56 MHz or so)

(*) Note (1): as can be seen, the SuperCPU is far below its “nominal” 20 MHz in

real… as well as the DTV is so below (in this special case at least). (However, I have only
checked for the SCPU and the DTV emulations can be found in VICE v2.4 and v3.0, thus on
some other real hardware it might be slightly different…) +note:***(3)

 50

(**) Note (2): Measuring for MEGA65 in 40 MHz (or before called as 48 MHz) fast

mode varies between 36 and 56 MHz, depending on actual revision or version (as well as the
different versions of the XEMU emulator included here). That is a matter of development
still, so it might be changing on in future. +note:***(3)

The above list is far from being final or complete at the moment, but I will not be

refreshing it here any more, as it is meant indicative only. (A more recent and updated list
should be found in the Rosetta user manual later and be maintained there.)

About the Author

This writing can be found on my website on the internet:

http://istennyila.hu/dox/cbmcode.pdf

This entire programming guide or handbook, in conjunction with my MemTest64 and

SDOS projects, initially started as an independent part of my Rosetta Interactive Fiction
project. (As I needed some kind of utilities, and since I had not found any, I have had to make
it by myself.) However, you can also freely use or apply it, of course.

The MemTest64 and SDOS codes are Public Domain: open-source and freeware.

Here are some direct downloading links to them:

http://istennyila.hu/stuff/memtest.zip

http://istennyila.hu/stuff/sdos.zip

MemTest64 project homepage:

http://istennyila.hu/memtest64

SDOS project homepage:

http://istennyila.hu/sdos

Rosetta Interactive Fiction project homepage:

http://istennyila.hu/rosetta

(On opening them please click onto the greeting images for entering the main page!)

Robert Olessak (2012-2017)

 51

http://istennyila.hu/dox/cbmcode.pdf
http://istennyila.hu/stuff/memtest.zip
http://istennyila.hu/stuff/sdos.zip
http://istennyila.hu/memtest64
http://istennyila.hu/sdos
http://istennyila.hu/rosetta

As Epilogue: There have been some fixes since 2017 (being made in 2020 when I

slightly revised my article) and signed as +note:***(…) inside the text:

+note:***(1): The “Ultimate family” was completed with the Ultimate-64

(abbreviated as U64 here) in 2018 (also there is a new Turbo Chameleon V2).

+note:***(2): It is already documented in the “C65 Preliminary” that the 4510 CPU

in slow mode applies a kind of “dummy cycles” as a compensation for a better 65xx
compatibility, so the actually measured value must be about 1.02 MHz in real. Seemingly this
feature is not emulated by the MESS emulator (and hence the 1.18 MHz), but it has been
fixed in MEGA65 and the XEMU emulator since then.

+note:***(3): There have been some speed measurements being done on some of the

above-mentioned hardware since then (like SuperCPU128, MEGA65 and even a real C65
prototype machine!), thus the table of results has been slightly changed.

+note:***(4): SDOS 2017 has not been made (as under this name never will). Instead,

what formerly was SDOS 2016 is renamed now as SDOS v1.0, and newer versions have been
made (up to v1.3 momentarily). V2 is under development (maybe coming soon this year).

+note:***(5): Unfortunately, this seems containing some false info here, as IRQ is not

able to intercept an actual DMA operation in transfer (but rather is delayed until the operation
ends); I still don’t know what the case on an NMI is (probably related to IRQ).

There has been an upload made at CSDb.dk out of this text (still before these

annotations being made) that can be found here:

http://csdb.dk/release/?id=155862

Have a good fun!

Robert Olessak (2012-2020)

 52

http://csdb.dk/release/?id=155862

