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January—February, 1987
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[last essential modification on December 22, 1999]*

Commodore 64 becomes remarkably more efficient by adding memory to it. Then the worst slow-down, incredibly
slow disk drive, can be worked around by using a part of the memory as a RAM disk.

In 1986, when the original article was written, there were no commercial memory extensions for sale in Finland 0
Of course there were some in the USA, but they were quite useless, as they had only 64 kB of memory, and the
price v;as high as well. When built by oneself, the following memory expansion should have costed 300—400 Finnish
marks 2

Many goals were set to the expansion. As many programs as possible should work also with it installed. This
means that there could not be any radical changes to the memory map.

The address space of an expanded machine really remains same for a usual programmer. After reset, the computer
doesn’t differ from an unexpanded one practically at all.

Even taking a look at the machine from outside doesn’t reveal the expansion, as Pekka needed the expansion port
for his IEEE-488 interface cartridge, also designed by himself.

The memory expansion is built in the machine on an add-on card. As the mother board remains the same — no
traces are cut — the expansion can be removed without a soldering iron.

The design aimed to a hardware that supports programming. While making the RAM disk program, Pekka changed
the hardware several times, until he was satisfied with it.

*This document is based on Pekka Pessi’s two articles describing an 256 kB internal memory expansion for the Commodore 64. The articles
were originally published in the largest Nordic and Finnish home computer users’ magazine, MikroBITTI, in its first two issues in the year 1987.
Six years later, they were translated to English and edited by Marko Mikel4, with help from Pekka Pessi. This is a fourth, corrected and improved
version of the document.

T August 1996: Thanks to Wolfgang Scherr from Austria, who noticed my mistake in the schematic diagram. The inputs of the 74LS153 chip
were mixed, which caused the address block decoding to fail.

“December 1999: By now, I know of two 64s and four 128s where this expansion has been built. The expansion never became a success,
although the banked concept is technically better than the Commodore REU.

§ January 2006: Thanks to Marco van den Heuvel, who implemented the expansion in the emulator VICE 1.19, for pointing out errors in the first
sample code for initializing the PIA.

! Commodore’s RAM Expansion Units came to our market in the year 1987.

2 One American dollar (USD) is equivalent to five or six Finnish marks (FIM). I constructed my expansion in 1993 March, and it costed 111 FIM.
It could easily have been about 20 FIM cheaper.
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Figure 1: Memory mapping right after power-up

1 Some basics

1.1 Expansion memory in 16 kB blocks

The processor of Commodore 64, MOS 6510, has an 8-bit data bus, and its address bus is 16 bits wide. Like other
8-bit processors, it can address only 64 kB of memory at a time. In most 8-bit computers, the memory is limited to
these 64 kilobytes. How could one add memory above this limit?

The solution is simple: the memory is divided into banks of no more than 64 kB, which are switched on and off.
Some processors have been added a special circuit for this purpose, in which case the executing program can be in its
own 64 kB bank and the processed data in another bank. For example, MOS 6509, a fellow processor of MOS 6510,
works in this way, enabling access to one megabyte. The Commodore 128 uses a sophisticated chip, MOS 8722 MMU
(Memory Management Unit), which lets you to activate one 64 kB memory bank of a total of two memory banks at a
time.

Our expansion divides the 256 kB of memory to sixteen blocks of sixteen kilobytes each. The processor can
address up to four of them at a time. Every four 16 kB segment of the address space can be mapped to any 16 kB
block. Figure [Tlshows the mapping right after startup.

However, the video chip VIC-II — MOS 65693 — retrieves its data from the memory outside the normal bus. The
internal address registers of VIC-II are 14 bits wide, so it can address only 16 kB without external logic. The required
two extra bits for accessing the whole 64 kB video bank are provided from the second CIA chip. Our extra logic
provides additional two address bits for accessing the whole 256 kB of video memory.

36567 for NTSC



4164 41256

NC{'1 16 |FVss MA8'1 “~ 16 |-Vss
D 2 15 CAS D 2 15 CAS
W 3 14 Q W 3 14 Q
RAS 4 13 FMA6 RAS 4 13 MAG6
MAO- 5 12 FMA3 MAO- 5 12 MA3
MA2- 6 11 FMA4 MA2- 6 11 FMA4
MA1- 7 10 FMAS MA1- 7 10 -MAS
Vpp—{ 8 9 MA7 Vpp— 8 9 MA7

Figure 2: The Dynamic Random Access Memory Chips 4164 and 41256

1.2 Memory chips

Commodore 64 uses 64 kb dynamic RAM chips of JEDEC standard. In 1982, when the computer was introduced,
they were most modern technology, they needed only one operating voltage supply instead of traditional three.

The semiconductor memories have developed fast, however, and now a chip in a DIP of equal size can hold 256
kilobits. The pinout of these 256 kb chips differs minimally from the 64 kb ones. The smaller 64 kb chips, at least the
ones used in C64 and C128, have one unused contact. The address line to handle three times bigger memory is tied to
this pin. In the DRAMs the address lines are multiplexed: two address bits use the same pin successively.

In the MikroBITTI article Pekka wrote that 256 kb chips are rather cheap, and the price would lower as the
production rate increases. Nowadays the production must have almost stopped. When Pekka bought his chips between
March and April of 1986, they costed about 50 FIM each. When the original article was published, they costed less
than 20 FIM. After that the prices rose due to a memory shortage. But nowadays the chips don’t cost practically
anything, if you’re lucky. Many users of IBM PC compatibles want to upgrade their system memory with 1 Mb chips
or alike and would like to get rid of their old 256 kb chips. I bought eight second-hand chips with total 35 FIM, and
later 36 chips with 117 FIM, including shipping. The lowest price of unused chip I encountered was 13 FIM a piece
and the highest was 30 FIM, almost 10 times the price I paid!

The 256 kb chips don’t consume significantly more power, so there is no need for a bigger power supply. However,
devices that take their power directly from the computer can cause problems. You can find this out by experimenting.

The speed of the chips doesn’t prevent the replacement either. According to its schematics diagram, Commodore
64 can use chips with access time of 200 nanoseconds@ Even the slowest 256 kb dynamic RAMs are not that slow.

It might be wise to replace the bypass capacitors near the memory chips with bigger ones. On the other hand, my
machine works well with the default 10 nF capacitors. If your computer starts to work unreliably, too small bypass
capacitors could be the culprit.

1.3 Dynamic headaches

The dynamic RAM chips are organized in rows and columns. In 64 kb chips, a row is 256 bits wide, and in 256 kb
ones it is 512 bits wide. Also the memory address is divided into row and column addresses. When a bit is being
accessed in the dynamic RAM, the row address is asserted before the column address.

First the interfacing circuitry puts the row address on the Multiplexed Address bus, while the video chip asserts the
RAS (Row Address Select) signal for a short period. After that, the video chip pulls the CAS (Column Address Select)
line low, and the interfacing circuitry places the column address on the bus. After all this, the bits in that position can
be read or written.

The computer has two circuitries that take care of this multiplexing. The multiplexers U13 and U25 form the
address when the processor has the bus, whereas the video chip produces the row and column addresses itself when it
needs its screen data.

You could access a set of nearby locations faster, if you specified the row address only once, and then produced
only the column addresses for each location. This technique is supported in the Acorn Archimedes computer on the
processor level, and some other computers utilize it with external circuitry as memory interleaving. The Commodore,

4Besides, the oldest Commodore 64 I have uses 300 ns chips housed in ceramic packages.



however, does not have to hassle with this, as its system clock rate is so slow. As a matter of fact, it actually uses the
least significant processor address bits (AO—A7) as a row address and the most significant bits (A8—A15) as the column
address.

1.4 Memory refresh

A dynamic memory chip stores the data bits as charged tiny capacitors, which discharge among the time. The data
must be refreshed periodically, every 2—4 milliseconds, by recharging the capacitors.

If the whole contents of the memory was refreshed simultaneously, the power peak would cause enormous prob-
lems. Only a block of one or two rows can be refreshed at a time. The 64 kb chips have 128 blocks to be refreshed,
which implies a 7-bit refresh counter (27 equals 128).

In order to avoid disturbance, 256 kb chips must have more blocks. Thus they require a longer refresh counter (8
bits). As the amount of refresh cycles has increased, the capacitors’ ability of keeping charge has been improved. The
64 kilobit DRAMs required 128 refresh cycles every 2 milliseconds, now the 256 kb chips need 256 cycles but every
4 ms.

Whenever you select a row address S the block to which the row address belongs gets refreshed. As the 64 kilobit
chips have a 7-bit refresh counter, the lowest seven row address bits specify the row address, and the highest bit is
ignored. The 256 kilobit memory chips have an 8-bit counter, so they ignore the 9th row address bit and determine the
block to be refreshed by the eight lowest bits.

The VIC-II chip refreshes the memory systematically, 5 rows in the end of each screen scan line. It does this
by selecting a row address determined by its internal counter, and then increases this counter by one. The video chip
could have only 7-bit refresh counter, and it would still operate with 64 kb chips, but fortunately it has an 8-bit counter,
so all of the 256 kb chips get refreshed.

Newer memory chips can be refreshed using a CAS-before-RAS technique. In this technique, you pull first the
CAS signal low, and then the RAS signal. The memory chips recognize this as a memory refresh condition, and
they refresh a block and increase their internal refresh counter. However, this technique was not available when the
Commodore 64 and its video chip were designed.

2 Building the expansion

2.1 Disclaimer

Although this procedure worked perfectly for me, I cannot guarantee that anyone else can perform this upgrade without
damaging their computer. I therefore disclaim any responsibilty for any damage that may occur as a result of attempting
this upgrade. It will also void any warranty on your computer.

On a more positive note, there is no reason why someone who is experienced in wielding a soldering iron, and has
done some electronic construction or troubleshooting, should not be able to perform this upgrade successfully.

2.2 Getting started

A termostate soldering iron, desoldering pump or other desoldering tool, a screwdriver, a spoon and a continuity
tester are the only tools needed. The spoon is for removing the chips. A bottle top remover is not suitable for that @
The continuity tester is vital for checking suspicious connections. If your tester does not automatically select proper
measuring range, use the coarsest (M) range, as it uses smallest current, which shouldn’t damage any chips on the
board.

The installation begins of course by opening the machine and removing the keyboard and LED cables. It is useful
to memorize, photograph or draw how the parts were initially connected.

After removing the cables, remove the aluminum cardboard shield and open the screws that hold the motherboard
with the case, and remove the board.

5See Section[T3

6 A tiny screwdriver is equally good. Just insert the screwdriver tip under one end of the chip and wound it a bit in upward angle so that the chip
moves slightly. Then insert it to the other end of the chip and try to lift it a bit. You may have to repeat this procedure. Be careful not to wound the
pins too much.
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Figure 3: The schematics diagram of the expansion. See text.

The expansion consists of one daughter board, which contains most of the added logic, one piggy-backed chip,
and a spaghetti of wires.

In Figure[3] there is a schematics diagram of the daughter board for the expansion. There are some signals that you
must wire to the mother board. You can take the I/O2 and A7 signals from the cartridge port, or from some through-put
location near the daughter board. The I/O2 signal should be on the pin 9 of the chip U15 (74LS139). The A7 can also
be taken from the 6510’s pin 14, or from the multiplexor U13 (74LS257), pin 10.

The MAS signal is the new Multiplexed Address line for the memory chips and should be soldered to the pin 1 of
each chip. All the remaining five signals on the right edge of the diagram interface to the multiplexor chip U13. The
CAS signal goes to pin 1. To interface the address lines A14, A15, B14 and B15, you have to desolder two pins of the
multiplexor, 11 and 2. The signal A15 should then be wired to the mother board contact under the multiplexor pin 11,
or to the 6510’s pin 23, and the signal B15, the relocated address line should be soldered to the multiplexor’s pin 11.
Similarly, the contacts A14 and B14 should be connected to the system bus line A14 and the U13’s pin 2, respectively.
Figure [ shows the pinout of the multiplexor chip U13.

2.3 Removing the old memory chips

First you have to remove the memory chips U9-U12 and U21-U24. If you look at the mother board from the front of
the computer as if you were typing, the chips are on the front left in two rows of eight chips. They are of type 4164
(or 3164 or 6665 or 6664 or 8064 or...). You could install the new chips into sockets, but I thought that it is a waste
of money.
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Figure 4: Pin-out for the multiplexer chip U13

Electronic Components

Symbol Description
IC1 MC 6821
IC2 74LS153 (or 74LS253)
IC3 74LS151 (or 74LS251)
IC4 74L.S05
U9-U12, .
U2l_U4 80256 or compatible
Cl1 100 nF polyester capacitor
R1 33 Q resistor
R2 4.7 kQ resistor
Other Parts
Quantity Quality
2 pes 20-pin through-put connectors (halves of
piggyback socket)
1 pc 40-pin socket (if U2 is not socketed)
1 pc 16-pin socket
plenty of | connection wire

Table 1: Parts list for the expansion




MOS 6526 CIA MC 6821 PIA

Vss—" 1 N 40 -CNT Vss—{" 1 N 40 |-CA1
PAO— 2 39 -SP PAO— 2 39 HCA2
PA1 3 38 RSO PA1 3 38 HRQA
PA2— 4 37 RS1 PA2— 4 37 HIRQB
PA3— 5 36 RS2 PA3— 5 36 RSO
PA4— 6 35 RS3 PA4— 6 35 RSI
PAS— 7 34 RESET PAS— 7 34 RESET
PAG 8 33 DO PAG 8 33 DO
PA7- 9 32 D1 PA7- 9 32 D1
PBO-{ 10 31 D2 PBO-{ 10 31 D2
PB1- 11 30 D3 PB1-{ 11 30 D3
PB2— 12 29 D4 PB2-{ 12 29 D4
PB3—| 13 28 D5 PB3—{ 13 28 D5
PB4— 14 27 +D6 PB4—{ 14 27 D6
PB5-{ 15 26 D7 PB5-{ 15 26 (D7
PB6—{ 16 25 b, PB6—{ 16 25 E
PB7— 17 24 FLAG PB7-{ 17 24 CS1
PC 18 23 —CS CB1- 18 23 -CS2
TOD- 19 22 FR/W CB2-{ 19 22 CSO
Vop—{ 20 21 HRQ Vop—{ 20 21 FR/IW

Figure 5: The CIA and the PIA

If these memory chips are already on sockets, the most of the work is done for you. It helps a lot, if you remove
the bypass capacitors before removing the chips. Removing the components is easiest with a desoldering pump. It
becomes even easier, when you first solder the pins with fresh solder, so that the hartz from it makes the removal of
old solder easier.

Using much power is questionable, as the copper folio comes off the board in a surprisingly easy way. As usual,
I used a screwdriver like a crowbar, and the through-coppering got lost from several places. This was not crucial, as
those pins were connected only to the down side of the board. However, three or four routes broke on the top side also.
This made it far more difficult (and slower) to solder the new chips in, but I succeeded on the first try.

After you have removed the 4164s, you can solder the 16-pin sockets (or the 41256 memory chips) into their
places. You can solder the capacitors back as well, if you removed them.

2.4 Adding the new address line

You must connect the pin 1 of each memory chip (or socket). It is the extra address line (MAS) to the switcher. The
best way is to solder a Wire-Wrap wire to each contact under the mother board, but any thin and pliable uni-strand
wire should do. The wire does not affect in any way the computer’s operation with 64 kb chips.

After the pins have been connected together, they must be temporarily connected to +5 V, which is in the pin 8 of
the memory chips. Comparing to TTL chips, the operating voltages are ‘reversed’ in dynamic memories.

Now the new 256 kb memory chips can be installed to the sockets (preferably right-side forward), and you can try
switching the power on. You do not have to connect anything except the power cable and the cable to the TV set or
monitor. It is a good idea to turn on the monitor first and let it warm up, so that it will show the picture from the very
beginning.

If the screen shows up normally, you may not (yet) have made any mistakes. If it does not show up at all, you
have to find possible cut-outs and shorts. Multi-colored ‘@’s show up usually because of too small bypass capacitors.
Another cause is that the pin 1 is not connected to +5 V. In this case the screen may come up normally, but a little dis-
turbance in the operating voltage locks the computer up. Now the computer should operate exactly like an unexpanded
C64, so any previously working program should work with it.



2.5 Prepare for the final step

Next you remove U13 (74LS257, to the right of the memory chips) and U2 (MOS 6526, near the keyboard connector).
Either or both of these chips may already be on sockets, and you must remove the rest. Reinsert the chips and check if
the machine boots up.

If the computer does not work on first try, remember to disconnect any cables from it before trying to fix the
problem. The soldering iron may occasionally give little electric pulses to the computer, and this might burn some
expensive chips, especially if the computer is hooked to a wall outlet or a television set.

When you have completed the preparations, you can start building the control logic. You could build the whole
expansion by piggy-backing chips, that is, by soldering new chips on the top of old ones, bending some feet to the side,
and connecting messy wires all over your computer. However, the best way is to put most of the chips on a daughter
board. I used only a small daughter board, and piggy-backed two or three chips, but you can be wiser and put all new
chips on the daughter board.

My daughter board interfaces the heart of the expansion, MC 6821 PIA, to the bus of the computer through the
pins of U2, the MOS 6526 CIA near the keyboard connector. The CIA is raised on the board on a normal socket,
whose pins are lenghtened with two through-put socket halves, so that they can reach the socket on the mother board.
I built the daughter board on an uncoppered prototype board, a plastic board with holes punched in it at a 1/10 inch
grid.

After raising the CIA on the daughter board, it is a very good idea to insert the board to the socket and check if
the machine boots up. The next step is to add the PIA on the board. The contacts from the CIA except the operating
voltages may be difficult to route. I solved the problem by putting the wires through the small holes that were left
between the biggy-back socket halves and the down surface of the daughter board. It was very painful, but the design
is very compact. After soldering all CIA contacts to the PIA, I wired the inverter and the rest of the chips. To increase
reliability, [ used thin multi-strand wire, as uni-strand wire gets easily loose when you push it.

Since I had finished the daughter board, I bent up the pins 2 and 11 of the U13 multiplexer chip, and connected its
pins 1, 2, 10 and 11 to the daughter board with wires. First I inserted the wires for A14 and A15 directly to the chip
socket, but as it turned out to be unreliable, I located a through-put place for each line, and soldered the wires there
instead.

When you have wired the multiplexer U13, remove the jumper wire between MAS8 and +5 V and connect that
address line to the daughter board. Then connect the PIA’s CS line to /02, which is in U15’s pin 9 (or one of the
through-put places along the trace’s path to the cartridge port), and insert the daughter board to the socket. Switch the
power on and pray that your dear computer works.

If you get only crap consisting of @s or some randomly changing graphics, check that all CIA pins have a good
contact to the piggy-back socket, and that the wires from U13 and its socket are firmly connected. If it doesn’t help,
you have to check all daughter board connections with the continuity tester. Don’t panic, you can ensure that the
computer works by connecting the MAS line back to +5 V, by bending the U13 lines back down, and by inserting the
CIA directly on the motherboard.

2.6 Testing

After you have installed the boards to your machine, it is time to test the connections. You can connect LED, keyboard
and probably disk drive in addition to the power cable and the TV cable, but do not fasten the mounting screws yet. If
the screen shows up and if the machine seems to operate, input the following test program:

10 PB=57282

20 POKE PB,255:POKE PB+1,4:POKE PB, 255

30 PRINT"PRESS A KEY AFTER THIS HAS DISAPPEARED":
FOR I=0 TO 3000:NEXT

40 POKE PB,14:WAIT 198,15:GET AS$:POKE PB, 255

On the line 10 a variable PB is set up. It is the address of the peripheral and data direction registers for the 6821
port B, and the block selection register of the segments 2 and 3 and the VIC-II.

The line 20 contains initialization of PIA: the lines PBO-PB7 are set outputs, the data direction register is switched
to data register with ‘POKE PB+1, 4’, and the PB lines are set high.



On the line 40 VIC-II is given block 0 ($00000-$OFFFF), and then the program waits for a keypress and restores
the block F ($30000-$3FFFF).

If this test program works as expected, the screen will be filled with ‘@’s and other random characters.

At this point, you may want to run the TEST program, which is among the distribution files?

3 Using the expansion

3.1 The operation of the block switcher

There are four new micro chips in the expansion. The most important of them is the PIA chip MC 6821, which holds
the values of the block selections. The PIA has two 8-bit ports set up in the addresses 57280 and 57282. The upper
and lower four bits (nybbles) of each port determine which 16 kB block is mapped to each 16 kB segment of the
processor’s address space. IC2 and IC3 participate in forming the memory block control signals.

There is a chip equivalent to the PIA even in Commodore’s own 6500 series, but it is not suitable for this con-
nection, as it is not TTL compatible. The 6821 from Motorola 6800 series, which contains also processors reminding
those in the CSGE 6500 and 8500 series, is bus compatible and suitable for this purpose.

Commodore 64 asserts the 16 bit addresses to the original 64 kb chips in two parts. First it asserts the lower eight
bits, then the higher eight. The 256 kb chips require two additional address bits, so the chips are given nine bits at a
time. Due to this address multiplexing, the block selection bits cannot be directly input to the memory chips, but they
must be lead through the multiplexer circuitry of IC2, IC3 and U13.

IC4 contributes to the operation during power-up. It ensures that the C64 gets reasonable memory blocks to its
different segments. In the beginning the segments are filled with four upmost memory blocks.

3.1.1 PIA’slocation in address space

The PIA’s data bus and E, RESET and R/W signals have been connected directly to the 6526 chip. Similarly are the
RSO and the RS1, which select a PIA register, connected to AO and Al.

The I/0 block decoder (U15) tells us when the second I/0 block is selected. This block resides in the area SDF00—
SDFFF. The signal 1/02 is connected to the PIA’s chip selection pin CS, and it forms most of its addressing. The
address line A7 limit PIA’s area in I/O2 to $DF80—$DFET, because it will be tied to the CS pin.

3.1.2 Block selection

As the address space has been divided to four segments of 16 kB, the A14 and A15 cannot be lead directly to the
memory chips, but they participate in the block selection. These two address bits determine which of the four blocks
is in use. For each segment, the PIA ports tell which memory block to map. Original A14 and A15 are connected to
IC2 and IC3, which select the right output lines of PIA. For each 16 kB segment there are 4 output lines which form
the block address for the segment.

IC2 selects two lowest bits of the block address and feeds them to the address multiplexer chip U13 as B14 and
B15. They are practically equivalent to the A14 and A1S5 signals. After the address bits AO—A7 have been asserted
during the first addressing cycle, IC2 asserts B14 and B15 during the second (CAS) cycle.

The 256 kb memory chips still need two extra address bits. The expansion must multiplex them with IC3, which
is a ‘one-of-eight’ multiplexer. Its eight inputs are tied to the two upmost bits of the four block addresses. A14 and
A1S are connected to the IC3, but it needs yet another control signal to handle all eight input bits. This signal is CAS,
which controls multiplexing other address bits (MAO-MA7) as well.

While the CAS signal is low and the memory chips are fed the lowest bits (AO-A7) of the address, the IC3 selects
the third bit of the block address determined by A14 and A15. This bit is called address bit A16, and it is asserted to
the ‘extra’ address line MAS simultaneously with the lowmost bits. When CAS is high, the upper address bits are fed,
and IC3 selects the fourth bit of the block address determined by A14 and A15. It corresponds to the address bit A17
and is fed through the same MAS& with all the other upmost bits.

When the video chip accesses the bus, the address and data lines from the processors are in high-impedance state,
driven to logical ‘1’ level with very weak current, so that the video chip can change their state easily. As the address

7See Section[5.1]
8Commodore Semiconductor Group; former Mostek or MOS Technologies

10



lines A14 and A15 are not connected to the VIC-II, they remain as logical ‘1’ whenever the video chip has the bus.
Thus, the switcher logic ‘thinks’ that the address range $COO0—SFEFF is being addressed, and it selects the block for
that segment also for the VIC-II.

The resistor on the MAS line protects the IC3, because the inputs of dynamic memories are not fully TTL compat-
ible.

3.1.3 Startup settings

In order to enable the operation of the machine, each of the four segments must be mapped to a unique memory block.
The Commodore 64 Kernal tests the lowmost continuous area of writeable memory and would hang up, if the same
block was mapped to both $0000 and to $4000, for instance. Modifying the startup routines would cure this problem,
but in that case the Kernal ROM chip should be changed.

The bootup state can be achieved otherwise. The RESET signal sets all the PIA port lines to inputs. As input a
line has an impedance of several megaohms. A TTL chip reads such a signal as a logical ‘1’. IC4 can force four block
selection pins (PAO, PA1, PAS and PBO) low, so that the memory segments of C64 point to the four upmost memory
blocks in ascending order. The port A contains the bits 1101 1100 and the port B 1111 1110. As the IC4 has open
collector outputs, it doesn’t disturb the port’s operation when outputting high state. That is why the initialization
routines? write the value 52 to the address 57281, which forces the IC4 outputs high by lowering the CA2 line.

3.2 Segmented memory

The address space of Commodore 64 consists of four 16 kB segments which are at the address ranges $0000—-$3FFF,
$4000—$7FFF, $8000—$BFFF and $CO00—SFFFE. An expanded C64 uses the topmost four 16 kB blocks of the memory
after startup. It considers them as its whole world and does not know anything of the other memory blocks. Figure[Tl
describes the situation. A total of twelve memory blocks are left out of the C64’s world.

With expanded memory we can cheat the C64 by writing a suitable number to a known address, in order to make
it consider the lowmost block as the second segment, for example. Then all operation that the C64 does at the second
segment’s area alter in fact the lowmost block, although the computer has no idea of it. This is the idea behind the
whole expansion circuit.

What is the benefit of it? The second segment (segment 1) is actually a good example of the function, because it
resides in the middle of the RAM reserved for C64 BASIC programs. If we make a little C64 BASIC program that
holds an array exactly in the third segment, we can switch another memory block to that area while the program is
running, and we have another 16 kilobytes to expand our table. In this manner all unused memory blocks (12 x 16
kilobytes) can be taken in use, and the memory is able to hold enormous arrays, which can be accessed simply by
switching the memory block. See Example for an example of this technique.

Another and more useful way to exploit the extra blocks is to use them as a RAM disk. A RAM disk means that
you can copy even a whole disk to these blocks and consider it as a new disk drive, from which you can load program
and data at a very fast speed. For a RAM disk you need a smart program that redirects disk commands and executes
them on the expanded memory.m

3.3 Critical addresses

The critical addresses of the device are 57216-57343 ($DF80—$DFFF). There is the PIA chip to which you POKE the
values to switch memory blocks. The PIA does not have 128 registers, as one might think. There are sixteen copies
of its 4 addresses in that memory area. For instance, the addresses 57216, 57284, 57288 and 57340 are equivalent to
each other.

57280 is a memory place whose lowmost four bits (bits 0-3, low nybble) determine, which of the sixteen memory
blocks is accessed through the lowmost segment (segment 0) of Commodore 64. The upper four bits (bits 4-7, high
nybble) specify, which of the blocks show up at the second segment (segment 1). In a similar manner the low nybble
of the address 57282 determines which block resides at segment 2, and the high nybble tells the block addressed via
the upmost segment.

9See Section 341
10See Section 5.4

11



These addresses have even another function. They can act as data direction registers as well, i.e. tell if the port lines
are inputs or outputs. However, this application uses only some of the PIA’s characteristics. For normal operation, all
the port lines should be set to outputs. The function of these addresses depend on the bit 2 of the next address. For
instance, the function of 57280 is defined with the address 57281. If you POKE there a value with its third bit set, the
values written to 57280 will go to the data direction register. Inputs have the corresponding data direction register bits
reset, and outputs have them set. See Tables 2H3l for a complete description of PIA registers.
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3.4 Initializing the expansion

Before using the expansion memory, you have to first initialize the PIA. Every time when a RESET is issued, the PIA
registers change to the default state™ In the beginning of your program you will initialize the PIA registers so that the
default block division of memory remains:

pia .equ $DFCO

IDA piatl ; Select Peripheral Registers
ORA #4

STA pia+l

TAX

LDA piat3

ORA #4

STA pia+3

TAY

IDA #SFE ; Set the default memory block data
STA piat2

LDA #SDC

STA pia

TXA ; Select Data Direction Registers
AND #SFB

STA piatl

TYA

AND #SFB

STA piat3

IDA #SFF ; Set the ports to output
STA pia
STA pia+2

TXA

AND #3SC7

ORA #$30 ; Set CAl and

STA piatl ; select Peripheral Registers
STY piat3

HSee SectionB1.3
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You may want to use an array instead. That will save both space and processing time but lose generality. Someone
may have CB1 or CB2 in use @ and changing all the command register bits causes side effects on these pins. Anyway,
here is a BASIC example of using an initialization table:

10 PIA=57280
20 FOR I=11 to 1 STEP —-1:READ A:POKE PIA+I,A:NEXT
30 DATA 4,254,4,220,0,255,0,255,4,254,52

Many Commodore 64 games do not like any extra hardware in the area SDE00-SDFET, as it is used by many
“freezer” cartridges and alike. If you need to use such software with the memory expansion, you can completely
disable the PIA from the address space until a system RESET occurs. To do this, change the last DATA value on the
line 30 from 52 to 53. By the way, the expansion can be easily enhanced to be the most powerful freezer cartridge.
See Section [6.T]if you are interested in this.

3.5 Programming the PIA in machine language

Think it in hexadecimal numbers. There are sixteen memory blocks, numbered from 0 to F. The address $DFCO
holds two hexadecimal digits. The less significant digit, the one at right, selects the memory block for the segment 0
($0000-$3FFF), whereas the other digit is for segment 1. The other important PIA address, SDFC2, selects the blocks
for segments 2 and 3 with is low and high nybble, respectively.

For instance, if you want to switch block E ($38000-$3BFFF) to segment 1, initialize the PIA and execute the
following. Note that your program must run outside segment 1 ($4000-$7FFF), or otherwise the next instruction will
be fetched from the new block, thus probably crashing the processor.

pia .equ SDFCO

LDA pia ; Segments 0 and 1

AND #S$SOF ; Preserve segment 0

ORA #SEO ; Select block E for segment 1
STA pia

If you used our initialization routine before this, the memory areas $4000-$7FFF and $8000—S$BFFF should now
mirror each other. This is an easy way to peek under ROMs and I/O with a simple machine language monitor that does
not play with the 6510’s I/O registers to switch ROMs and I/O temporarily out.

3.5.1 An exception: video memory

As the video chip’s address bus is only fourteen bits wide, it can access only sixteen kilobytes directly. The two
additional lines needed to address 64 kB are provided by the second CIA. Its lines PA1 and PAO are the inverse of the
VIC-II's address lines VA15 and VA14.

The VIC-II needs another two address lines to see full 256 kB of memory. The PIA lines PB7 and PB6 (the uppest
two bits of $DFC2) serve as VA17 and VA16. So, the VIC-II memory does not necessarily have to be accessible to
6510, but there is a restriction: As the block selector for the upmost segment uses the same two lines, both the VIC
block and the block for segment 3 cannot be chosen freely.

For instance, if you want the VIC to ‘see’ its RAM at $04000, the lines VA17-VA14 must be ‘0001’. You can
select only blocks 0-3 for segment 3 to fulfill this condition. Let’s assume that you want block 2 to be mapped there:

125ee Section[G
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Peripheral Register A
(Peripheral Lines PA7—-PAQ)

Bits | Description
7-4 | Block Selection, Segment 1
3-0 | Block Selection, Segment 0

Data Direction Register A

Bits | Description
7-0 | Data Direction of Peripheral Lines PA7-PAQ

When a bit is set, its corresponding Port A line is an output. Otherwise it is an
input.

Table 2: The PIA address SDFCO (57280)

cia2 .equ S$DD00
pia .equ $DFCO

IDA cia2+1 ; First set the CIA2 lines
ORA #3503 ; PAO and PAl to output.

STA cia2+1

IDA cia2 ; Then set PAl and reset PAO.

AND #SFC ; Remember, the lines VAl5 and VAl4
ORA #3502 ; are the inverse of them.

LDA piat2 ; Segments 2 and 3

AND #SOF ; Preserve segment 2
ORA #520 ; Select block 2 for segment 3
STA piat2

If you want the video bank selection to work exactly like in a stock computer, you have four alternative memory
block configurations. The addresses $DFC2 and $DFCO must contain one of the following bytes: SFE and $DC, SBA
and $98, $76 and $54, or $32 and $10. You can use the expansion to debug or examine programs that occupy full 64
kilobytes of normal memory. When you issue a RESET, the program’s memory will remain totally unaltered, if it is
outside the topmost four blocks. There is no need for a ‘freezer’ cartridge!

4 Programming the expansion in BASIC

With BASIC the use of the extra memory is a bit limited. In the upmost segment (segment 3) there is operating system
ROM, under which you can place different memory blocks, but reading them with BASIC is naturally impossible.
However, in some cases writing data to this segment partially under Kernal ROM and I/O area may be a working
solution. The lowmost kilobytes are free RAM, and it can be utilized by switching memory blocks. But the benefit of
the extra memory decreases, as you can use only the lowmost four kilobytes of each block I

The highest segment but one, segment 2, is halfly under BASIC ROM, and only its lower half can be freely used 3
When utilizing it, you have to take in consideration that those 8 kilobytes can be under a ROM cartridge, if one is
connected, or they could hold some of the variables and tables that are stored in the top of the BASIC memory. You
have to construct your programs so that they do not collide with the segment’s area.

The lowmost segment, segment O, contains Kernal’s and BASIC interpreter’s system variables. Normally you
cannot change its contents, since the operating system would not find its status information. This can be worked

13See Section[6.1)

14 You can read and write the area SCO00—SDEFFF of this segment using BASIC. Accessing the area SDO00—SDFFF without machine language is
tricky but possible.

15 You can always write under ROM (except in the UltiMax game cartridge configuration).
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Control Register A

Bit(s)

Description

IRQAT1 Interrupt Flag

Goes high on active transition of CA1; Automatically cleared by MPU read of
Peripheral Register A. May also be cleared by hardware RESET.

IRQAZ2 Interrupt Flag

When CA2 is an input, IRQA?2 goes high on active transition of CA2; Automat-
ically cleared by MPU read of Peripheral Register A. May also be cleared by
hardware RESET.

5-3

CA2 Control
00x Input, triggered on falling edge
01lx Input, triggered on rising edge

When xis 1, IRQA Interrupts by CA2 active transition are enabled.
10x  Output, Read Strobe for Peripheral Register A
CA2 goes low on first high-to-low E transition following a read of Pe-
ripheral Register A. When x is 0, it remains low until next active CA1
transition. When x is 1, CA2 remains low for one E cycle.
110 Reset CA2
111 Set CA2

Register in address $DFCO
0  Data Direction Register
1 Peripheral Register

Determine Active CA1 Transition
0  IRQALI set by high-to-low transition on CA1
1 IRQALI set by low-to-high transition on CAl

CA1 Interrupt Request Enable/Disable
0  Disable IRQA Interrupt by CAl active transition.
1 Enable IRQA Interrupt by CA1 active transition.

Table 3: The PIA address SDFC1 (57281)

Peripheral Register B
(Peripheral Lines PB7—-PB0)

Bits

Description

74
3-0

Block Selection, Segment 3
Block Selection, Segment 2

Data Direction Register B

Bits

Description

7-0

Data Direction of Peripheral Lines PB7-PB0

When a bit is set, its corresponding Port B line is an output. Otherwise it is an
input.

Table 4: The PIA address $SDEC2 (57282)
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Control Register B

Bit(s)

Description

IRQB1 Interrupt Flag

Goes high on active transition of CB1; Automatically cleared by MPU read of
Peripheral Register B. May also be cleared by hardware RESET.

IRQB2 Interrupt Flag

When CB2 is an input, IRQB2 goes high on active transition of CB2; Automat-
ically cleared by MPU read of Peripheral Register B. May also be cleared by
hardware RESET.

CB2 Control
00x Input, triggered on falling edge
01lx Input, triggered on rising edge

When xis 1, IRQB Interrupts by CB2 active transition are enabled.

10x  Output, Read Strobe for Peripheral Register B
CB2 goes low on first high-to-low E transition following a read of Pe-
ripheral Register B. When x is 0, it remains low until next active CB1
transition. When xis 1, CB2 remains low for one E cycle.

110 Reset CB2

111 Set CB2

Register in address $SDFC2
0  Data Direction Register
1 Peripheral Register

Determine Active CB1 Transition
0  IRQBI set by high-to-low transition on CB1
1 IRQBI set by low-to-high transition on CB1

CB1 Interrupt Request Enable/Disable
0  Disable IRQB Interrupt by CB1 active transition.
1 Enable IRQB Interrupt by CB1 active transition.

Table 5: The PIA address SDFC3 (57283)
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around by copying those vital bytes to the new memory block and switching the block with a machine language
routine.

The only segment that can be wholly used with plain BASIC is the segment 1, the second one from the bottom
($4000-$7FFF). It resides in the middle of the space reserved for BASIC programs. If you construct your BASIC
programs wisely, that is short enough, and ensure that the information used by BASIC are located exactly on this area,
you can switch the blocks in this segment freely and exploit all the twelwe extra blocks as a huge data storage.

Example[.Ilshows how you can create a table on this area and hold its data simultaneously in all the extra memory
blocks.

4.1 Processing a huge array

10 I=0:J=0:K=0:A=0
20 DD=56576:PIA=57280
30 FOR I=11 TO O STEP —-1:READ A:POKE PIA,A:NEXT
31 DATA 4,254,4,220,0,255,0,255,4,254,52,220
40 K=16384-7:POKE 47,K AND 255:POKE 48,K/256:
POKE 49,K AND 255:POKE 50,K/256
50 DIM A% (8191)
60 FOR I=0 TO 15:POKE PIA, I*16+12
70 PRINT I":";:FOR J=0 TO 9:PRINT A% (J), :NEXT:PRINT:NEXT
80 POKE PIA,220:END

The program displays ten first integers of each memory block. The table it reserves fills the whole segment 1,
because each integer (notice the % sign) takes two bytes and 8192 of them are reserved. The contents of the table A%
can be changed to another memory block by simply POKEing PIA’s corresponding register. On the line 40 the table is
ensured to start at $4000 by changing the start and end addresses of tables in the addresses 47-50. Saving the name,
size and dimensions of the table takes the seven bytes, which are subtracted from the start address.

Reserving the table to an arbitrary address has its drawbacks. The size of the program and its variables may not
exceed 14 kilobytes so that they could fit to the memory before the beginning of the table. All variables must definitely
be declared before allocating the table. If you do not declare them by giving them a value, the interpreter finds really
exotic values for them or transfers the table off its position.

4.2 Storing graphics

10 I=0:J=0:A=0:A%=""
20 DD=56576:PIA=57280:V=53248:COLOUR=50176
30 FOR I=11 TO 0 STEP —1:READ A:POKE PIA,A:NEXT
31 DATA 4,254,4,220,0,255,0,255,4,254,52,220
40 POKE V+24,16+8:POKE V+17,59
50 FOR I=0 TO 11:POKE PIA+2,I*16+14:
POKE DD, PEEK (DD) AND 252 OR (NOT I AND 3)
60 FOR J=0 TO 999:POKE J+COLOUR, 3:NEXT
70 GET AS:IF A$="" THEN 70
80 NEXT I
90 POKE PIA+2,254:POKE DD,PEEK (DD) OR 3:
POKE V+24,23:POKE V+17,27

The extra memory can be used as a store of high resolution pictures as well. This program shows all twelve
memory areas that could contain reasonable pictures. The pictures can be created with a BASIC extension that resides
in RAM and saves its graphics under Kernal ROM. In those memory blocks that contain no pictures, you see random
memory contents.

High resolution graphics is enabled on the line 40. The beginning of the line 50 switches block I to the segment 3
and switches the VIC chip to the same memory area. The second POKE statement selects the block for the video chip.
‘(NOT I AND 3)’ filters the extra bits off and inverts the essential ones so that they can be stored to the lowmost two
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bits of $DD00. The line 60 sets the picture’s colour to black-cyan. The next line waits for a keystroke before showing
another picture. After all blocks have been shown, the original state of the I/O chips will be restored on the line 90.

5 RAM disk and other programs

As memory expansions are expensive, programs making use of extra memory are rare. Besides, different expansions
are not compatible with each other. However, it does not mean that you could not fully utilize the expansion. The most
obvious utilization method is a RAM disk. When using VC-1541, it is not only luxury but almost vital condition.

Pekka Pessi has made a couple of programs that utilize the expansion. The software is distributed in two self-
extracting archive files (SFXes).

The file ROS-V1.SFX (for RAM Operating System) holds the source code of the RAM disk program, and some
miscellanous files. To load the archive file, use the command “LOAD"ROS-V1.SFX",device”. Then change a blank
disk to the drive before RUNning. The second archive file, UTIL256.SFX, contains the following software:

5.1 Memory test

The program TEST tests the block selection and the whole memory. If it jams before reporting “Test passed’,
something has gone wrong. Its source code is in the file TEST.A, which requires a library STRING.A. I translated the
executable to English by patching the binary file.

5.2 Poor man’s multitasking

With the MULTI51200 program you can run four different programs. The program does no multitasking, it only holds
four environments in the memory, each in its own memory block. MULTI.A is the source code. After loading it with
“LOAD"MULTI51200",device,1” and initializing the BASIC pointers with “NEW’, you can switch the environments
with “SYS51200,f,b”. The parameter f is a flag determining if the current block should be copied to the destination
block (0) or not (1). The b selects the destination block (0-3). The initial block is 3.

5.3 Machine language monitor

If you don’t like to switch the memory blocks manually in your favourite machine language monitor, the MON256 utility
is for you. The memory is again divided to four 64 kB blocks, numbered from 0 to 3. The commands are explained in
Table 0]

The source code for the monitor is split in the files MON.A, CONSOLE . A, COM. A, ROUTINES.A and TABELS.A.

5.4 RAM disk

The most important utility is a RAM disk program, which occupies about 9 kilobytes of memory. It transfers Kernal
and BASIC interpreter to RAM and patches the serial bus routines. The actual program is in the area $00800-$03FFF.

It emulates all VC-1541 functions except relative files. For example, the commands U1, U2, B-A etc. work. UI+
and UI- make no difference. The program also detects some fast loaders and works with them installed.

The loader is called R2M DISC, and the patched Kernal is in RAM.K. You need only patches to the low-level serial
bus routines, so you may want to restore the original colors and keyboard definitions. To minimize incompatibility
problems, you should replace the ROM chip that holds the BASIC and Kernal ROMs with an EPROM containing the
patched Kernal. The RAM disk routines are in RAM. C.

5.4.1 Disk copiers

The program RAM DISC COPY copies a regular 1541 disk to RAM. It utilizes the slow Ul command, and it is included
as an example only. The source code DUP . A exposes the RAM disk’s storage format.

A faster and more useful tool is FDUPLICATE. Using it, you can copy a regular disk to the RAM disk or vice versa.
You can make multiple copies of a disk easily. This program’s fast transfer routines are designed for PAL systems,
and the utility cannot be used in NTSC machines without little modification. Its source code is in the two files S/SUCK
and S/DSUCK.
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a nnnn cmd or

Assembles instruction cmd to memory address

. nnnn cmd nnnn.
Selects a block. The bb holds the block number,
b bb ff and ff is a flag. If it is 1, it directs all memory

accessing to RAM. If it is 0, you can access the
ROMs and I/O.

Compares the memory area hhhh—iiii with the area
beginning from jjjj.

d [hhhh [iiii]]

Disassembles memory.

£ hhhh iiii nn

Fills the memory between hhhh and iiii with the
byte pattern nn.

g [hhhh]

Executes program until a BRK is encountered.

h hhhh iiii nn mm. .. or
h hhhh iiii ' text

Hunts the memory area hhhh—iiii for the byte se-
quence nn mm. .. or for text.

3 [hhhh]

Calls a subroutine.

1 "filename"[,n)

Loads a program. Default device number is 8.

m [hhhh [iiii]]

Hexadecimal dump of memory.

>hhhh nn mm. . .

Stores bytes in memory.

r Dumps the registers (for g and 3j).

; Modifies the register values.

s "filename" ,n, hhhh, jjjj Saves the memory area hhhh—jjjj.

t hhhh iiii jjjj Copies the memory area hhhh—iiii to jjjj.

v "filename"[,n] Verifies a program. Default device number is 8.
X Exits the monitor.

@ [command)

Sends command to device 8. If it begins with $,
the disk directory will be read. If no command is
given, the disk drive’s status will be displayed.

Table 6: Commands for the MON256 utility
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6 Enhancing the expansion

There are a couple of unused contacts in the PIA. In addition to that, two 7405 ports are not connected. The extra PIA
lines include an input, CB1, an input/output line CB2, and the Interrupt Request line IRQB.

If you connect the IRQB line to the IRQ or NMI input of your system, you can have one or two new interrupt
sources, useful for interfacing your custom hardware. And if you are running out of User Port pins, the lines CB1 and
CB2 can save you from designing an I/O cartridge. Besides, you can use the IRQB as an output if you wire the CB1
line to something that you can control with software, CA2 for instance. Just remember to add a pull-up resistor to the
IRQB line if necessary.

6.1 Built-in freezer

For the Commodore 64, there are several ‘freezer’ cartridges that let the user to halt theoretically any program (game)
to alter it (make the player immortal), or more often merely to make a ‘back-up copy’ of it. Alas, anything cannot be
frozen with these cartridges. If the programmer of the game is clever enough to inhibit IRQ and NMI interrupts in his
program, and if the code runs at the area $0000-$OFFF, no external cartridge will be able to halt it without asserting
the RESET signal, which would lose most status information of the computer.

This freezer expansion will let you to replace the program’s memory with previously initialized RAM by pressing
the Restore key. If the NMI interrupts are disabled, freezing will be done with the BRK instruction. As the circuit
forces the HIRAM line to logical zero, the interrupt vectors will always be fetched from RAM. All of the freezer
software can be stored to RAM, so it is easy to change, and no EPROM programming devices are needed. Another
advantage is that the freezer software may freely use 128 kilobytes of memory, and there are 64 kilobytes of working
storage, way more than in the best freezer cartridges.

For this expansion, you need a double ON-OFF or ON-ON switch, four 1N4148 diodes and two 10 k€ resistors.
First do some preparations. Break the connection between the PIA’s RESET input (pin 34) and the system RESET,
and replace it with a diode with the marked end towards the system bus, so that the pass direction is from the PIA to
the system RESET. Then you have to solder a pull-up resistor between the PIA’s RESET line and the +5 V power
outlet. Locate the U8 chip (7406) on the motherboard and desolder its pin 6. Solder a diode between the motherboard
connection and the pin with the mark pointing to the chip. Finally, solder the other pull-up resistor between the U8’s
pin 6 and +5 V. After these modifications, the PIA should continue to reset normally, and the Restore key should
remain functional.

Now you can mount the switch to the system. If you have an ON-ON switch, hold it in your hand in such an angle
that you see two rows of three pins. Solder two diodes from the right-hand contacts of the switch to the U8’s pin 6,
with the mark pointing to the U8. Solder the PIA’s RESET line (pin 34) to either middle contact of the switch, or to
either free contact if you have an ON-OFF switch. Finally, mount the HIRAM line, which is on the 6510’s pin 28, to
the remaining middle contact.

The switch affects in the operation of the Restore key. When it is open, the Restore key operates normally. When
the switch is closed, the Restore key also resets the PIA, switching the default memory blocks in, and forces the
HIRAM line low, so that the interrupt vectors will always be fetched from RAM. The idea of the expansion is that the
program runs in some other memory blocks, say 3-0, with the PIA totally disabled from the address space. The default
memory blocks ($F—5C) will be initialized mostly with null bytes, which is the opcode of the BRK instruction. You also
need the freezer interrupt vectors (SFFFA-SFEFFF) and a small interrupt handler that stores the processor registers and
switches the main freezer program into the address space.

If you want to freeze hanged programs, too, you can do it without losing the state of the I/O chips. By using a
custom Kernal ROM, you could even store all 6510 registers except the Program Counter. You just have to be able
to reset the 6510 without resetting the rest of the chips. To do this, desolder the RESET signal, pin 40 on the 6510.
Connect a 1N4148 diode between the system RESET signal and the 6510, with the mark pointing away from the
processor. Add a pull-up resistor to the signal, and a switch between the logical ground and the signal.

Now, whenever you push the switch, only the 6510 will be reset. You should then use the Autostart code ($C3
$C2 $CD $38 $30 at $8004-5$8008), and the Kernal will jump to the vector ($8000). Unfortunately it will destroy
all registers except the Y register when searching for that code. You could make a slight modification to the ROM that
first saves all registers on some memory area, like somewhere in $90-$FF. There are some S$SAA bytes in the Kernal
ROM that you can take into use. Just relocate the RESET vector (SFFFC) to your routine, and remember to jump to
SFCE2 at end.
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Alas, I just have invented a software hack that cannot be frozen with this circuit. If a program runs on the I/O area
(SDEOO-SDETFF except the range where the PIA is mapped to while the I/O is switched on) and has disabled the NMI
interrupts, the program will continue running even if you have activated the freezer and hit the Restore key. Should
you ever encounter this type of a software hack, you can use a triple switch and add the LORAM signal (6510’s pin 29)
to one extra contact. Connect the remaining contact to the U8’s pin 6 through a diode with the mark pointing to the
US. This will disable the I/O area for the time the Restore signal is active, so the processor can fetch a BRK from the
memory underneath, and will always freeze correctly.

I haven’t completed the freezer expansion yet, as the daughter-board in my faithful C64 stopped working when
I opened the cover to start the surgery operation. My first attempt of rebuilding it did not succeed, and now I am in
Germany, more than one megameter away from the computer. When returning to Finland in August 1994, the freezer
expansion will be one of my first projects I am going to finish 18

Naturally you also need a program to utilize the freezer circuitry. You don’t need to code so much, only the routine
to jump back to the freezed program and the routine that saves all registers upon freezing need to be written from
scratch. You can patch existing machine language monitors, sprite editors and utilities like that, only the data fetch
and data store subroutines must be rewritten. Developing the freezer software is very simple, since you can access the
frozen program through a 16 kB window, and you can use the Kernal routines all the time.

6.2 New operating system

I had purchased a PC board that allows you to choose between the Kernal ROM and a custom 8 kB EPROM (2764).
I never added a fastloader or other useful routines to the Kernal, since I should have deleted some routines, i.e. the
Datassette and RS-232 handling.

But if you had more ROM, you could keep your new Kernal fully compatible with the old Kernal while adding new
features to it. A 32 kB EPROM would easily hold the RAM disk routines, the disk copier and routines for adequately
fast loading and saving. Still you would have plenty of space for controlling your own expansions, like a IEEE-488
interface or a SCSI bus.

2364 27256
AT 1 - 24 FVee Vpp—" 1 - 28 Ve
A6 2 23 |-A8 Al2- 2 27 Al4
A5 3 22 -A9 AT 3 26 |-A13
Ad— 4 21 A2 A6 4 25 |-A8
A3 5 20 -CS1 A5 5 24 A9
A2 6 19 A10 Ad 6 23 A1l
Al 7 18 A1l A3 7 22 |-OE
A0 8 17 D7 A2 8 21 FA10
DO 9 16 |-D6 Al 9 20 +CE
DI 10 15 D5 A0 10 19 D7
D2 11 14 D4 DO 11 18 [-D6
GND-{ 12 13 |-D3 DI 12 17 D5
D2 13 16 [-D4
GND- 14 15 (D3

Figure 6: The Read-Only Memory Chips 2364 and 27256

Figure [6] shows the pinouts for the original Kernal ROM (2364) and the replacement chip (27256). Connect the
address lines AO—A12, the data bus (D0-D7) and the power supply lines (Vcc and GND) together, and connect Vpp
to Vcc.

16 S0 T thought at that time—as of December 1999, I have neither fixed that particular C64 nor completed the freezer expansion. Besides, the
expansion would not have much advantage over freezer cartridges or the features present in some emulators.
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The signals CS, CE and OE are for chip selection. Connect CE and OE together, and add 4.7 k< resistors between
both chips’ VCC and chip selection lines. Then add a ON-ON switch between 2364’s CS, 27256’s CE and OE, and
the KERNAL line that comes from the motherboard originally to 2364’s CS pin.

Now you have only the lines A14 and A13 left. PIA’s CB2 can control one of them, but what about the other? No
problem, the IRQB line can be used as an output if the CB1 is connected to CA2 or CB2. Add 4.7 kQ pull-up resistors
from CB2 and IRQB to +5 V, and lead the signals to the EPROM’s free address lines.

Now those A14 and A13 lines are high upon start-up, and the computer will see the EPROM area $6000-$7FFF
instead of the original Kernal ROM, if the switch is in correct position. That part of the EPROM should initialize the
PIA. Note that altering the CB2 or the IRQB lines immediately causes a jump to another EPROM bank.
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