G-PASCAL NEWS

Registered by Australia Post - Publication Number VBG 6589

Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal News, P.O. Box 124, Ivanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria

VOLUME 2, NUMBER 4 — October 1985

Annual Subscription $12

WHAT'S IN THIS ISSUE

This issue has two main programs - an
arcade game, and an adventure melee
adjudicating game. Also on this page we
describe the final techniques for customising
your G-Pascal compiler by adjusting symbol

ble and stack sizes. This is the final issue
<« G-Pascal News — we are not publishing it
in 1986. Thank you for your support. This
magazine's contents are Copyright 1985
Gambit Games.

INCREASING SYMBOL TABLE SIZE

Page 38 of the G-Pascal Manual states

that the maximum size of the symbol table
used by the G-Pascal compiler is 4K bytes
(4096 bytes). As each symbol used (i.e. each
programmer-defined PROCEDURE, VAR,
FUNCTION, or CONST) takes up 10 bytes in
the symbol table, plus the length of the name
of the symbol, you may conceivably fill up
the symbol table if you have a program with
a lot of symbols (although this has never
happened to us with the Commodore 64
- “rsion of G-Pascal).
—f you want to increase the size of the
symbol table then you must move it to
somewhere else in memory (for example, to
the 8K block of memory between addresses
$2000 and $4000). To do this, run the
following program:

BEGIN

MEMC [$9A3D]

MEMC [$800B]

END.

The byte at $9A3D controls where the
symbol table ends (high-order byte of
address) — the byte at $800B controls the
number of 256-byte 'pages' in the symbol
table (the figure 32 represents 32 times 256
= 8192 bytes, or 8K).

The normal figures for the symbol table
are: end of symbol table = $D000, iength of
symbol table = 16.

1}

$40; (* end of table ¥)
32 (* size of table *)

i

INCREASING THE SIZE OF THE STACK

Page 39 of the G-Pascal manual states
that the stack size used by the G-Pascal
interpreter is 3,790 bytes (1,263 integers or
3,790 CHAR variables). A larger stack may
be useful if you want to use large arrays (e.g.
an array of 10,000 CHARs for a word-
processor written in G-Pascal). If you want
to have a larger run-time stack then you can
run the following program:

BEGIN

MEMC [$A002] := $00; (* start stack - LSB *)
MEMC [$AD0B] := $40; (* start stack - MSB *)
MEMC [$B1C3] := $20 (* bottom stack - MSB *)

END.

MSB and LSB refer to Most Significant
Byte, and Least Significant Byte,
respectively.

This program makes the run-time stack
start at address $4000, and finish at $2000
(an attempt to go below $2000 would cause a
'stack full' error message). This program
would give you an 8K stack, but you can
make the stack even larger by making the
bottom of the stack as low as $800. It is
permissable to overlap the stack and the
symbol table (described above) as one only
applies at compile time, and the other at run
time. You cannot however overlap the stack
or the symbo! table and your P-codes.

Note that the program described above
patches the interpreter for the next program
executed — the current one (with the patches
in it) already has the stack defined, and will
not change in the middle of execution.

The corresponding addresses when using
the Run-Time System are: start of stack —
low-order byte: $8277; start of stack — high-
order byte: $827D; bottom of stack: $95AS5.
Once again, these changes will only take
effect for the next program run - you would
need to use the 'chain' option to make the
patches in one program, and then execute
the 'main' program that needs the larger
stack.

i

ARCADE GAME — 'BALLS UP'

We are very pleased to present in this
issue a complex arcade-style game which we
have named 'Balls Up' (the name derives
from the action of the game, which involves
coloured balls bouncing around the screen).

This game illustrates many of the
advanced techniques of programming an
arcade game in G-Pascal, such as:

a) Using the hardware clock to time
segments of a game (SETCLOCK and
CLOCK).

b) Using sprites as the name of the game
(see lines 250 to 285 to define the name, and
377 to 398 to display it).

¢) Using sprites to hold score numbers (see
lines 242 to 249 where score is defined, and
lines 689 to 695 where it is displayed).

d) Checking for sprite collising by using
SPRITEFREEZE and FREEZESTATUS.

e) Allowing input from keyboard, paddles
or joystick (see lines 309 to 329).

f) Allowing user-defined direction keys if
input is from keyboard (see lines 331 to 359
for asking player which one to use, lines 641
to 661 to move base depending on input
mode).

g) Using ANIMATESPRITE to make the
moving aliens (balls) look more interesting
(see lines 537 to 540).

h) Using ANIMATESPRITE to draw an
explosion automatically (see lines 710 to 715
and lines 731 and 732).

i) Using SPRITEX and SPRITEY to check
which sprites have collided (see lines 745 to
754).

j) Automatic 'attract' mode between
games.

k) When using paddles, game
automatically selects correct paddle
depending on which fire button is pressed
(see lines 452 to 470).

1) Using RANDOM function to make
games unique.

m) Nested PROCEDURES, CASE
statements, and other interesting Pascal
programming techniques.

How to play

Balls Up is a fast-moving arcade game.
The player controls a 'defending base' using
the keyboard, joystick or paddles. When the
game first starts running select the input
mode by pressing the appropriate function
key as directed by the game. If you select
keyboard input you will then be asked to

Page 2

press your choice of 'left', 'right' and 'fire'
keys. Choose any keys that you find
comfortable with (for example 'A' for left,
'L' for right and 'H' for fire). If you choose
paddles then there are two paddles-
connected to the one gameport. The paddle
used for a particular game is selected by
pressing the appropriate 'fire' button when
prompted by the game. This is so that two
players can play alternate games, holding
one paddle each.

The object of the game is to stay alive as
long as possible, accumulating as high a
score as possible. You initially start with
three defending bases (playing with one at a
time) — a base is destroyed if it collides with
a 'ball'. Each 'attack wave' starts with six
balls placed randomly on the screen. They
then start moving, bouncing off the walls of
the screen similarly to billiard balls. You
must dodge out of their way, and shoot them
as quickly as possible. Unlike ordinary
billiard balls, the balls in this game speed v~
slightly each time they bounce off a wal._

You gain bonus points for clearing an
attack wave quickly (in less than 15, 30 and
45 seconds respectively for levels 1, 2 and 3).

You also gain bonus points for accurate
shooting, no matter how long it takes to
clear the attack wave. Provided your
shooting accuracy is greater than 66 percent
(in other words, if at least two-thirds of your
shots hit a target) then you gain an accuracy
bonus.

Balls on the first wave are first level balls,
are coloured white and black, and only need
one hit to kill them. They are worth 50
points each.

Balls on the second wave are level two
balls, are coloured yellow and black, and
need two' hits to kill them (the first hit
makes them change colour to a 'level one'
ball for identification purposes). They a
worth 100 points each.

Balls on the third wave are level three
balls, are coloured cyan and black, and need
three hits to kill them (the first two hits
make them change colour to the next lower
level). They are worth 200 points each.

Balls on subsequent waves are a random
mixture of level one to three balls
(identifiable by their colours). They need
the appropriate number of hits to kill them
that their colours indicate. They are worth
500 points each, regardless of colour.

When a ball is hit but not killed (i.e. a ball
at a higher level than level one is hit) then it
immediately reverses direction. You must

be cautious when sitting underneath a ball
travelling away from you, as hitting it will
make it come towards you. On the other
hand, if it is in a collision course with you
then hitting it will make it go away.

Your base can only fire one missile at
once. When your base is ready to fire you
will see the missile in place at the top of it
as a white square. If there is no white
square on the top of the base you cannot fire
yet. You can however fire repeatedly by
holding down the fire button (this will make
a missile fire as soon as it is available).

If a base is destroyed then the wave
recommences after a short pause with the
remaining balls for that wave repositioned on
the screen. It is possible to finish a wave by
the kamikaze technique of colliding with the
last ball (this is wasteful of bases of course).
Nevertheless, if your base collides with the
last ball then that particular wave is over,
and the game continues if you have some
remaining bases.
~ When your score reaches 10, 50 and 100

thousand points, then an extra base is
awarded.

Programming notes

First, if you are planning to add more
features to this game you will need to be
aware of a potential conflict between
DEFINESPRITE statements and the
program's P-codes. If compiled as listed,
the program should end at P-code 2070 (as

displayed at the end of the compile). The
first DEFINESPRITE position used in the
game is 130 (at lines 178 to 181). This
represents memory address 2080 in hex.

(130 times 64 8320 in decimal, 2080 in
hex). Therefore the program can only have
16 bytes of P-codes added to it before this
DEFINESPRITE statement will overwrite
some P-codes. To make more room than
that, renumber some sprite positions from
130 upwards to higher, unused, numbers (such
as 250 to 255). For the game to still work
you will then need to locate references to
that sprite position (in ANIMATESPRITE
statements or SPRITE statements with the
'POINT' option). For example, sprite
position 130 is referred to in lines 711 and
732. Then change the original number to the
new sprite number that you allocate. (E.g.
change '130' to '250', if '250' is the new
number you used in line 178).

You can use the 'Find' command in the
Editor to easily locate occurrences of such

Page 3

numbers. Check, however, the context in
which the number appears — sometimes the
right number might be there but in a
different context. For example, the number
130 occurs on line 549 but in this case it
refers to the x-coordinate of sprite number
eight.

Every sprite position that you renumber to
further up in memory will free up 64 bytes of
P-codes for program expansion.

Changes you could make to the game

a) Change the game port from 2 to 1 (see
line 31).

b) Change the number of bases you are
allocated (see line 35).

c) Change the rate at which the base
moves in response to the keyboard or
joystick (see line 34).

d) Allocate more bases when higher scores
are reached or change the threshhold points
for the current scores (see lines 125 to 134).

e) Change the colours of the ships and
screens (various places in the program).

f) Change the bonus calculation rules
(lines 821 to 906).

g) Add sound effects.

Understanding how the game works

Thanks to Pascal's modularity it is easy to
follow how the game works. Extensive use
is made of constants to make the program
more readable. Each procedure has a simple
function to perform (indicated by its name)
and can generally be studied in isolation.
For example DISPLAY_ SCORE displays the
current game score at the bottom of the
screen, and checks for a bonus base
allocation.

INIT does the sprite shape initialisation
(DEFINESPRITE statements) and asks for the
input mode (keyboard, joystick or paddles).

NEW_GAME sets up various variables for a
new game (level and wave number etc.) and
runs the ‘'attract' mode. When 'f1' is
pressed to start a game, it then asks for a
paddle button to be pressed to identify which
paddle is in use.

NEW_LEVEL is used at the start of each
attack wave. It redraws the screen in the
correct colour for that wave and positions
the balls in their initial (random) position.
There is a deliberate delay of a quarter of a
second between drawing each ball on the
screen so as to make the game start more

dramatically (see line 547).

GAME is the main game loop — it:is called
repeatedly from the 'mainline' (lines 941 to
943) until the player runs out of bases. It
checks for the end of a wave, moves the
base, moves the balls around the screen,
checks the 'fire' button, checks for collisions
and displays the score.

CHECK_STATUS is used to replace the
'‘explosion’ sprite with the appropriate
'score' sprite at the right time.

SPRITE_ACTIVE is a function that tests
the 'display enable' bit in the VIC chip to see
whether that sprite is being displayed at the
time.

MOVE_BALLS checks to see if a ball has
hit the border - if so it makes it 'bounce' off
the wall and come back in the other
direction (by reversing its X and Y
coordinates). It also make the balls speed up
at each bounce.

CHECK_BUTTON tests the 'fire' button
on the joystick or paddle, or the nominated
keyboard 'fire' key. |If it is pressed, and a
missile is not already in flight, it fires one.

MAKE MOVE moves the base depending
on which input mode is in operation
(keyboard, joystick or paddle).

CHECK_COLLSN handles collisions
between balls and the missile or base. It
first tests FREEZESTATUS and if non-zero
proceeds to isolate which sprites were really
involved in the collision. To draw an
explosion an ANIMATESPRITE command is
given, followed by a MOVESPRITE with a
Jero X and Y increment (so the explosion
stays in one spot) — see lines 731 and 732,
and lines 757 and 758 for the 'base' explosion
logic. If a ball is hit but not killed then this
procedure reverses its direction and changes
its colour. The nested procedure
KILL_SPRITE is used to draw the explosion
of a ball, and add in the appropriate score.

CALC_BONUS does the bonus calculations
at the end of each wave.

Keying in the game

Typing in this game into your Commodore
64 should not be very difficult. Once again
we have used our special 'printing' program
to type the game out direct from the disk
file. This program 'slashes' zeroes to
distinguish them from the letter '0', and
types reserved words in upper case to make
the program easier to read. DO NOT
BOTHER to type in the reserved words in
upper case — they are converted to lower

case anyway internally. As mentioned in
previous, issues the 'underscore’ character is
entered as a 'left-arrow' above the 'CTRL'
key. Also be careful to distinguish between
the letter 'I' and the number '1' (they look
somewhat different in the listing).

Lines 511 and 512 have 20 spaces between
the quote symbols.

As mentioned earlier in this article, if you
have typed in the program correctly it should
compile with the P-codes ending at address
2070, as displayed at the end of the compile.
As a general rule the exact number of spaces
entered on a line will not matter (except
between quotes of course), but in certain
cases it will. For example, in line 158 there
must be a space between the '+' and the '1',
otherwise you will get a compile error. Itis
preferable to type in the program exactly as
shown. |f you get a compile error check
carefully the line in error (and the previous
line — you may have omitted a semicolon).
If you get an 'Undeclared Identifier' message
you may have mis-spelled a variable o
constant near the start of the program.

Line 1 of the program is important as it
forces the P-codes to be placed at address
$800, thus allowing a larger program than
would fit without it.

The only really tedious part of the
program to key in is the DEFINESPRITE
statements — it is helpful to have a friend
read the code back to you after you have
entered it to check for transposed numbers
etc. If your sprites look a bit strange when
the game runs, check the DEFINESPRITE
statements.

Credits

This game was largely written by Sue
Gobbett, with the bonus calculation section,

. and multiple input mode (keyboard, joystic’

paddlies) added by Nick Gammon.

Permission to distribute

Copies of this game in writing or on disk
may be given away free to your friends,
provided the original credits in the game are
retained (lines 3 to 9) and with this
paragraph accompanying the copy, however
the game in its original or modified forms
remains the property of Gambit Games. We
expressly forbid the game (or one similar) to
form a part of any commercial enterprise,
without our written authorisation.

Page 4

1 (*x %a $800 [P-codes at $800]1 x) 59 red = 2

2 60 cyan = 3;
3 (+x Balls Up! - Game for Cé4 61 purple = &4;
4 Written in G-Pascal 62 green = 5;
5 by Sue Gobbett and 63 blue = 6;
6 Nick Gammon. 64 yellow = 7;
7 65 orange = 8;
8 Copyright 1985 Gambit Games. 66 brown = 9;
9 %) 67 Llight_red = 10;
10 68 dark_grey = 11;
11 CONST 69 medium_grey = 12;
12 70 Light_green = 13;
13 (*x general *) 71 Light_blue = 14;
14 true = 1; 72 Light_grey = 15;
15 false = 0; 73
16 on = true; 74 (x function keys *)
17 off = false; 75 f1 = $85;
18 home = 147; 76 f3 = $86;
19 inverse = 18; 77 f5 = $87;
20 normal = 146; 78 f7 = $88;
21 alive = 1; 79
22 angry = 2; 80 (* input modes *)
23 killer = 3; 81 joystick input = f1;
24 exploding = 4; 82 paddle_input - = f3;
25 dead = 5; . 83 keyboard input = f5;
26 hours = 4; 84 .
27 minutes = 3; 85 (* sound effects *)
28 seconds = 2; 86 frequency = 1;
29 tenths = 1; : 87 delay = 3;
30 disable case = 8; 88 pulse = 13;
31 gameport = 2; (x which game port *) 89 noise = 14;
32 keypress = $c5; 90
33 no_key = 64; 91 VAR
34 response = 150@0; (x kbd speed *) 92 input_mode,
35 initial_bases = 3; 93, paddleno,
36 sprite_display_enable = $d015; 94 wave,
37 95 extra_ship,
38 spritey8 = 224; 96 shots,
39 starty7 = 218; 97 hits,
40 98 bonus,
41 (* graphics *) 99 time_taken,
42 display = 6; 100 bases,
43 charcolour = 10; 101 Level,
44 spritecolour® = 16; 102 end_game,
45 spritecolourl = 17; 103 game_score,
46 colour = 1; 104 hi_score,
L7 point = 2; 105 killed
48 multicolour = 3; 106 :INTEGER ;
49 expandx = 4; 107 left_key, right_key,
50 expandy = 5; 108 fire_key : CHAR ;
51 behindbackground = 6; 109 score,points,
52 active = 7; 110 clr,ptri,ptr2,ptr3,ptr4,ptr5
53 border = 11; 111 :ARRAY [5] OF INTEGER ;
54 background = 12; 112 status,
55 113 xinc,yinc
56 (* colours *) , 114 :ARRAY [1@] OF INTEGER ;
57 black = 0; 115
58 white = 1; 116 FUNCTION sprite_active(i);

Page 5

17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

BEGIN

sprite_active :=

MEMC [sprite display_enablel
AND (1 SHL (i - 1))

END

PROCEDURE display_score;
BEGIN
IF ((game_score >= 10000)
AND (extra_ship = @)
OR ((game_score >= 50000)
AND (extra_ship = 1))
OR ((game_score >= 100000)
AND (extra_ship = 2)) THEN
BEGIN
bases := bases + 1;
extra ship := extra_ship + 1
END ;
IF game_score > hi_score THEN
hi_score := game_score;
WRITE (CHR (normal));
CURSOR (25, 1);
WRITE ("Score '",game_score,
" ll);
CURSOR (25, 15);
WRITE ("Bases: ',bases);
CURSOR (25, 24);
WRITE ("Hi-Score ",hi_score)
END ;

PROCEDURE init;
VAR i, j
:INTEGER ;

PROCEDURE set ptrs(a,b,c,d,e);
BEGIN

ptr1lil == a;
ptr2Lil := b;
ptr3Cil == c;
ptr4lil == d;
ptr5Cil == e;
io= i+
END ;
BEGIN
VOICE (
3,frequency, 10000,
3,noise,on);
DEFINESPRITE (174, (% defender *)

$0,%0,%c00,
$00ccc@,$03ccfD, $0ffffc,
$3fFfff,$3ff3ff,$0fcBfc);

DEFINESPRITE (150, (* defendr 2 *)

$0,%0,%400,
$00c4tcD,$03ccf0,30ffffc,
$3fffff,$3ff3Ff,$0fcBfc);

DEFINESPRITE (175, (* missile *)

$1000,$1000,$1000,

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

$1000,%1000,%1000,
$1000,%$1000,%1000,
$1000,%$1000,%$1000) ;

DEFINESPRITE (130, (* explsn
,0,0,0,0,0,0,0,0,
$3300,%$3300,%c00,%$c00,
$3300,%$3300) ;

DEFINESPRITE (131, (* explsn
e,0,0,0,0,0,0,
$c@c@,$c0c0,$3300,$3300,
0,0,
$3300,%$3300,%c0cd,$cOcO) ;

DEFINESPRITE (132, (* explsn
0,0,0,0,0,
$30030,%$30030,0,0,
$18060;%$18060,%$1000,%$1b00,
$18060,%18060,0,0,
$30030,%30030) ;

DEFINESPRITE (152, (* explsn
0,0,0,
$0c000c ,$0c000c,0,0,
$180006,%$180006,0,0,
$60c0,%$60c0,00,
$180006,%$180006,0,0,
$0c000c,$0c@00c) ;

DEFINESPRITE (151, (* explsn
$c00003,%$c00003,0,0,
$600000,%600006,%6,0,0,
$60030,%$60030,0,0,0,0,
$6,%$60006,%$600000,0,0,
$c00003) ;

DEFINESPRITE (133,
$002800,%03fa80,%308feal,
$0abfald,$3eafe8d,$3fabf8,
$2feafc,$2bfabc,$2afeac,
$3abfa8,%3ecafe8,$0fabfd,
$0feafd,$03fa80,$003c00) ;

DEFINESPRITE (134,
$003800,%3021e80,%0abf80,
$0eafed,$3fabf8,$2feafc,
$2bfabc,$2afeac,$3abfa8,
$3eafe8,$3fabf8,%$0feafl,
$0bfab0,$02fe80,$003c00) ;

DEFINESPRITE (135,
$003c00,302bf80,%0eafed,
$0fabfd,$2feafc,$2bfabc,
$2afeac,$3abfa8,$3eafe8,
$3fabf8,$2feafc,$0bfabld,
$0afeald,$02bf80,$002c00) ;

DEFINESPRITE (136,
$003c00,%$02afc0,3$0fabfld,
$0feafld,$2bfabc,$2afeac,
$3abfa8,$3eafe8,$3fabf8,
$2feaf8,$2bfabc,$0afeald,
$0abfad,$02afc0d,$002800) ;

DEFINESPRITE (137,
$002c00,303abc0,30feafd,
$0bfab0,$2afeac,$3abfa8,

(x balls *)

*)

*)

*)

*)

*)

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
2re
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

$3eafed,$3fabf8,%2feafc,
$2bfabc,$2afeac,$0abfald,
$0eafed,$03abcld,$002800) ;
DEFINESPRITE (138,
$002800,%03eac@,$0bfabd,
$Pafeald,$3abfa8,%$3eafe8,
$3eabf8,%2feafc,$2bfabc,
$2afeac,$3abfa8,$0eafald,
$0fabf@,$03eachd,$003800) ;
DEFINESPRITE (139, (*x scores *)
$e700,%$8500,%e500,%$2500,%e700) ;
DEFINESPRITE (140,
$9celd,$94a0,%$94a0,%$94a0,%$9ced) ;
DEFINESPRITE (141,
$e738,$2528,%e528,%$8528,%e738) ;
DEFINESPRITE (142,
$e738,$8528,%e528,%2528,%e738) ;
DEFINESPRITE (168, (x "b' %)
$ff0,$138,%$f1c,
$f1c,$138,%ff0,
$f38,%f1c,$f1c,
$f3c,$f7c,$f7c,
$e78,%c70) ;
DEFINESPRITE (169,
$020,%070,30f8,
$178,%23¢c,%43¢c,
$c3c,$ffc,$c3c,
$e3c,$fbc,$fbc,
$7bc,$3bc) ;
DEFINESPRITE (170,
$100,%100,$700,
$f00,$1f00,$f00,
$f00,$1f00,%$e38,
$c78,$878,%878,
$c38,31f8) ;
DEFINESPRITE (171,
$3fc,$71c,%e3c,
$e3c,$f1c,$fcO,
$7f8,%3fc,%$07c,
$e3c,$f3c,$f3c,
$e78,$11@) ;
DEFINESPRITE (172,
$f1e,$f1e,$fe,
$fle,$f1e,$f1e,
$fle,$f1e,%f1e,
$fle,$fle,$f3e,
$7de,$39e);
DEFINESPRITE (173,
$c70,%e78,%f7c,
$f7¢,%f1c,$f0c,
$f0c,$198,%f70,
$f00,$f00,$f00,
$f00,$00) ;
i=1;
FOR §j == 1 T0 5 DO
set ptrs(133,134,135,136,137);
clrl1] cyan;
clrl2] yellow;

(x 'a' *)

(x

*)

(x 's!

*)

(* Iul

*)

*)

ihn

Page 7

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

clrl3] := white;
clrf4] := red;
scorel1] == 50;
scorel2] :=100;
scorel3] :=200;
scorel4] := 500;
pointsC1] := 139;
points[2] := 140;
points[3] := 141;
pointsL4] := 142;
GRAPHICS (charcolour,yellow);

WRITE (CHR (disable_case));
hi_score := 0;
game_score := 0;
bases := @;
GRAPHICS (background, dark_grey,
border, dark_grey);
WRITE (CHR Chome));
CURSOR (7, 10);
WRITELN ("=——--
CURSOR (1@, 1@ ;
WRITELN (CHR (inverse), "f1",
CHR (normal),
" Joystick - port ",
gameport);
CURSOR (12, 1@);
WRITELN (CHR (inverse), "f3",
CHR (normal),
" Paddles - port ",
gameport) ;
CURSOR (14, 10 ;
WRITELN (CHR (inverse), "f5",
CHR (normal),
" Keyboard'");

BALLS UP ====="");

REPEAT

input mode := GETKEY

UNTIL Cinput_mode =

OR (input_mode
OR (input_mode
fire_key := 255;
IF input_mode =

joystick_input)
paddle_input)
keyboard_input);
(* none yet *)

I ni

keyboard_input THEN

BEGIN
REPEAT

UNTIL MEMC [keypressl =
CURSOR (16, 1@ ;
WRITE ("Press LEFT key: '");
REPEAT

left_key := MEMC [keypress]
UNTIL left_key <> no_key;
REPEAT

UNTIL MEMC [keypress] =
CURSOR (18, 10);
WRITE ("Press RIGHT key: '");
REPEAT

right_key := MEMC [keypress]
UNTIL C(right_key <> no_key)

AND (right_key <> Lleft_key);
REPEAT

no_key;

no_key;

349 UNTIL MEMC Ckeypressl = no_key; | 407 OR C(reply = f1);
350 CURSOR (20, 10); j 408 FOR i =1 TO 7 DO

351 WRITE ("Press FIRE key: "); ; 409 SPRITE (i, colour, yellow);

352 REPEAT 410 IF reply <> f1 THEN

353 fire key := MEMC [keypressl ‘ 411 BEGIN

354 UNTIL (fire_key <> no_key) 412 CURSOR (9, 13);

355 AND (fire key <> left_key) 413 WRITE ("by Sue Gobbett");

356 AND (fire key <> right_key); 414 CURSOR (11, 13);

357 REPEAT 415 WRITE ("and Nick Gammon');

358 UNTIL MEMC [keypressl = no_key 416 CURSOR (18, 1);

359 END 417 WRITE ("Extra base at 10,000 ');
360 END ; 418 WRITE (50,000 and 100,000");
361 419 CURSOR (16, 10 ;

362 PROCEDURE new_game; 420 WRITE ("Press f1 to start game');
363 VAR 1 421 SPRITE (8, multicolour, on,

364 :INTEGER ; : 422 8, colour, white,

365 reply = CHAR ; 423 8, expandx, off,

366 BEGIN 424 8, behindbackground, on,
367 FOR i == 1 TO 8 DO 425 8, expandy, off);

368 BEGIN 426 POSITIONSPRITE (8, 120, 120);
369 STOPSPRITE (i); 427 xinc [81 == 512;

370 SPRITE (i,active,off) 428 yinc [8] == 512;

371 END ; 429 ANIMATESPRITE (8, 3, 133, 134,
372 end game := false; 430 135, 136, 137
373 level == 0; 431 REPEAT -
374 wave := 0; 432 IF SPRITEX (8) < 28 THEN

375 killed = 6; 433 xinc [81 := 512

376 WRITE (CHR (home)); 434 ELSE

377 SPRITE (1, point, 168, 435 IF SPRITEX (8) > 317 THEN

378 2, point, 169, 436 xinc [81 := =512

379 3, point, 170, 437 ELSE

380 4, point, 170, © 438 IF SPRITEY (8) < 58 THEN

381 5, point, 171, 439 yinc [8] == 512

382 6, point, 172, 440 ELSE

383 7, point, 173); 441 IF SPRITEY (8) > 220 THEN

384 GRAPHICS (border, orange, 442 yinc [8]1 := -512;

385 background, orange, 443 MOVESPRITE (8, SPRITEX (8),
386 charcolour, brown); L4 SPRITEY (8),
387 SPRITEFREEZE (@); 445 xinc [8],

388 FOR i 2= 1 T0 7 DO 446 yinc [81, 500)
389 BEGIN 447 UNTIL GETKEY = f1

390 SPRITE (448 END ;

391 i, expandx, off, 449 game_score := 0;

392 i, expandy, off, 45@ bases := initial_bases;

393 i, multicolour, off); 451 extra_ship := 0;

394 MOVESPRITE (i, 139, 230, 452 IF input_mode = paddle_input THEN
395 (107 + G + (G >= 6)) * 15) 453 BEGIN

396 - 150) * 256 / 400, 454 WRITE (CHR Chome));

397 -128 x 300 / 400, 400) 455 FOR i = 1 TO 8 DO

398 END ; 456 SPRITE (i,active,off);

399 display_score; 457 GRAPHICS (border, Llight_grey,
40@ REPEAT 458 background, Light_grey,
401 i= i+ 1; 459 charcolour, blue);

4@2 SPRITE (i MOD 7 + 1, colour, 460 CURSOR (15, 1);

403 i); 461 WRITE ("Press fire button to '");
LD4 WALIT (260); L62 WRITELN ("select paddle ...");
405 reply == GETKEY ' 463 paddleno := @;

4@6 UNTIL (NOT SPRITESTATUS (1)) 464 REPEAT

Page 8

465
466
467
468
469
470
471
472
473
L4
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

CASE JOYSTICK (gameport) OF
4: paddleno := 1;
8: paddleno := 2
END
UNTIL paddleno > @
END
END ;-

PROCEDURE new_level;
VAR i,j,k
:INTEGER ;
BEGIN
FOR i == 1 TO 8 DO
SPRITE (i,active,off);
SPRITEFREEZE (@) ;
GRAPHICS (display, off);
CASE Llevel OF
1: BEGIN _

GRAPHICS (
charcolour, Llight _green,
background, green,
border, green)

END ;
2: BEGIN

GRAPHICS (
charcolour, Llight _blue,
background, blue,
border, blue)

END ;
3: BEGIN

GRAPHICS (
charcolour, orange,
background, brown,
border, brown)

END ELSE
BEGIN

GRAPHICS (
charcolour, Llight_red,
background, red,
border, red)

END
END ; (* of case *)
FOR i := 1 TO 24 DO
BEGIN

CURSOR (i, 1);
WRITE (CHR (inverse),

V4
" ll)

END ;
GRAPHICS (
charcolour,white,
display,on);
display_score;
IF killed = 6 THEN
IF level < 4 THEN
FOR i := 1 TO 6 DO
statusCil = 4 - level
ELSE

Page 9

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579

580

FOR i := 1 T0 6 DO
statusl[il :=
(RANDOM MOD 3) + 1;
status[7] := dead;
GRAPHICS (
spritecolourl,black,
spritecolour®@,white);
FOR i := 1 TO 6 DO
IF status [i] <> dead THEN
BEGIN
STOPSPRITE (i);
POSITIONSPRITE (i,
(RANDOM MOD 22@) + 40,
(RANDOM MOD 50) + 8@);
ANIMATESPRITE (3,3,
ptri1llevell,ptr2llevell,
ptr3Clevell,ptr4llevell,
ptr5Clevell);
SPRITE (
i,multicolour,on,
i,colour,clristatusCill,
i,expandx,off,
i,expandy,off,
i,active,on);
SOUND (delay, 25)
END
POSITIONSPRITE (8,13@,spritey8);
SPRITE (
7,p0int 175,
7,colour,white,
7,expandx,on,
8,point,150,
8,colour,white,
8,multicolour,on,
8,expandx,on,
8, behindbackground, off,
8 ,expandy,on,
8,active,on);
FOR i := 1 TO 6 DO
IF status [i]l <> dead THEN
BEGIN
IF killed
BEGIN
xinclLil =
yinclil =
END ;
IF (RANDOM MOD 1@@) > 49 THEN
xincLil == - xinclil;
IF i MOD 2 = @ THEN
yinc[il := - yinclil;
MOVESPRITE (i,
SPRITEX (i) ,SPRITEY (i),
xincCil,yinclil,50@
END ;
SPRITEFREEZE ($c@®);
end game := false;
IF killed >= 6 THEN
killed := @

>= 6 THEN

15 = i) * 20;
7+ 9) x 20

nu

(
(

581

582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601

602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

END ;

PROCEDURE move balls;
VAR i,]
:INTEGER ;
BEGIN
FOR i 2= 1 TO 6 DO
IF statusCi] <> dead THEN
IF statuslCil <> exploding THEN
IF SPRITESTATUS (i) <> @ THEN
BEGIN
"IF SPRITEX (i) < 28 THEN
IF xincCil < @ THEN
xinclil == 10 - xincCil
ELSE
ELSE ,
IF SPRITEX (i) > 317 THEN
IF xinc[il > @ THEN
xinclil := =10 - xincliJ;
IF SPRITEY (i) < 58 THEN
IF yinc[il < @ THEN
yincLil == 10 - yinclCil
ELSE
ELSE
IF SPRITEY (i) > 220 THEN
IF yinc[il > @ THEN
yinclil := =10 - yincl[il;
IF SPRITESTATUS (i) <> @ THEN
MOVESPRITE (1,
SPRITEX (i) ,SPRITEY (i),
xincCil,yinc[il,500)
END
END ;

PROCEDURE check button;
BEGIN
IF (status[7] = dead) OR
(SPRITEY (7) < 3(0) THEN
BEGIN
SPRITE (8,point,15@);
IF (JOYSTICK (gameport) > 15) OR
(Cinput_mode = paddle_input) AND
(JOYSTICK (gameport) <> @)) OR
(MEMC [keypress] = fire_key) THEN
BEGIN (* fired it! *)
SPRITE (8,point,174);
MOVESPRITE (7,SPRITEX (8),
(spritey8 - 120,
0,-1000,5® ;
statusC7] := alive;
shots := shots + 1
END
END
END ;

PROCEDURE make_move;
VAR 1i,move
:INTEGER ;

Page 10

639 BEGIN ;

640 move := 0;

641 CASE input_mode OF
642 paddle_input:

643 CASE paddleno OF

644 1: move :=

645 (289 - (PADDLE (gameport) AND $ff))
646 - SPRITEX (8);

647 2: move :=

648 (289 - (PADDLE (gameport) SHR 8))
649 - SPRITEX (8)

650 “END ;

651 joystick _input:

652 CASE JOYSTICK (gameport) AND 12 OF
653 4: move := = response; (*x left *)
654 8: move := response (* right *)
655 END ;

656 keyboard_input:

657 CASE MEMC [keypress] OF

658 left_key: move := = response;

659 right_key: move := response

660 END

661 ~ END ;

662 IF ABS (move) < 3 THEN
663 move := 0

664 ELSE

665 BEGIN

666 IF move < @ THEN

667 move := move - 30

668 ELSE

669 move := move + 30;
670 IF ABS (move) > 36 THEN
671 move := move * 6

672 END ;

673 IF (FREEZESTATUS AND $80) = @ THEN
674 MOVESPRITE (8,

675 SPRITEX (8) ,spritey8,

676 move,@,100) ;

677 check_button

678 END ;

679

680 PROCEDURE check_status;

681 VAR i

682 :INTEGER ;

683 BEGIN.

684 FOR i =1 TO 7 DO

685 IF sprite_active(i) THEN

686 IF (status[i] = exploding) AND

687 (SPRITESTATUS (i) = @) THEN
6388 BEGIN

689 SPRITE (

690 i,colour,white,

691 iy,multicolour,off,

692 i,expandx,on,

693 i,point,pointsllevel]);
694 MOVESPRITE (i,SPRITEX (i),
695 SPRITEY (i),0,0,60);

696 statusCil := dead

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

END
ELSE
IF (statusCil = dead) AND
(SPRITESTATUS (i) = @) THEN
SPRITE (i,active,off)
END ;

PROCEDURE check_collsn;
VAR i,j,k,endloop,collision
:INTEGER ;

PROCEDURE kill_sprite(i);
BEGIN
ANIMATESPRITE (i,
12,130,131,132,152,151) ;
SPRITE (i, multicolour, off,
i, colour,black);
MOVESPRITE (4,

SPRITEX (i),SPRITEY (i),0,0,50);
statuslil := exploding;
game_score :=

game_score + scorellevell;
killed := killed + 1
END ;

BEGIN
IF FREEZESTATUS <> @ THEN
BEGIN
IF (FREEZESTATUS AND $8@)
THEN
BEGIN
STOPSPRITE (8);
SPRITE (8, multicolour, off,
8, colour, black);
ANIMATESPRITE (8,
24,130,131,132,152,151) ;
FOR i := 1 TO 8 DO
IF status [iJ <> exploding THEN
STOPSPRITE (i);
SPRITEX (8);
j SPRITEY (8);
k == 1;
endloop := false;
REPEAT
IF NOT endloop THEN
IF (statusl[k] <> dead) AND
(statuslkl <> exploding)
THEN
IF (FREEZESTATUS AND
(1 SHL (k = 1)) <> @ THEN
IF § >= SPRITEX (k) - 45 THEN
IF i < SPRITEX (k) + 25 THEN
IF j >= SPRITEY (k) - 15 THEN
IF j < SPRITEY (k) + 15 THEN

.i

BEGIN
kill_sprite (k);
endloop := true
END ;

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
7re
773
74
775
776
e
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

Page 17

k == k +1
UNTIL (k > 6) OR endloop;
MOVESPRITE (8,SPRITEX (8),
spritey8 - 20,0,0,100);
CURSOR (12, 15);
IF bases = 1 THEN
WRITE ("GAME OVER');
REPEAT
check_status
UNTIL NOT SPRITESTATUS (8);
SPRITE (8, active, off);
end_game := true
END
ELSE
BEGIN
j = SPRITEX (7);
j := SPRITEY (7);
k == 1;
endloop := false;
REPEAT
IF NOT endloop THEN
IF (statusCk] <> dead) AND
(statuslCk] <> exploding)
THEN
IF (FREEZESTATUS AND
(1 SHL (k = 1))) <> @ THEN
IF i >= SPRITEX (k) - 25 THEN
IF i < SPRITEX (k) + 5 THEN
IF j >= SPRITEY (k) - 15 THEN
IF j < SPRITEY (k) + 25 THEN
BEGIN
SPRITE (7,active,off);
status[7] := dead;
hits 2= hits + 1;
IF statusCk] = killer THEN
kill_sprite(k)
ELSE
BEGIN
statusCk] :=
statusCkl + 1;
SPRITE (k,colour,
clrCstatusCkl1]);
xinclLk] ==
xinclkl * 5 / &4;
yinclk] ==
-yinclkl * 5 7/ 4;
MOVESPRITE (k,
SPRITEX (k),SPRITEY (k),
xinclCkl,yinclCk1,500)
END ;
endloop := true
END ;
STARTSPRITE (k);
k := k + 1
UNTIL k > 6;
STARTSPRITE (7)
END ;
SPRITEFREEZE ($c@);

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

832
833
834
835
836
837
838
839
840
841

842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858
859
860
361

362
863
864
865
866
867
868
869
870

IF NOT end_game THEN
BEGIN
make move;
move balls
END
END
END ;

PROCEDURE calc_bonus;
VAR i, ratio : INTEGER ;
BEGIN
IF Level > 1 THEN
BEGIN
FOR i := 1 T0 8 DO
SPRITE (i, active, off);

WRITE (CHR Chome));

GRAPHICS (border, orange,
background, orange,
charcolour, brown);

i 1= CLOCK (hours); (* freeeze

time_taken := CLOCK (minutes)

* 60 +
CLOCK (seconds);
:= (15 * (level = 1)
- time_taken)
* 100 * (Level - 1);
IF bonus < @ THEN
bonus := 0;

bonus

*)

game_score := game_score + bonus;

CURSOR (4, 7);

WRITELN ("Wave ",wave,".");
CURSOR (6, 7);

WRITELN

("Time to complete this wave');

CURSOR (8, 10);

WRITE ("was');

IF CLOCK (minutes) > @ THEN

BEGIN

WRITE (" ",
CLOCK (minutes),
" minute");
IF CLOCK (minutes) > 1 THEN
WRITE ('"s')

END ;

IF CLOCK (seconds) > @ THEN
BEGIN
WRITE (" ",

CLOCK (seconds),

" second");

IF CLOCK (seconds) > 1 THEN
WRITE ("s')

END ;

WRITELN (".");

CURSOR (10, 7);

IF bonus = @ THEN
WRITELN ("No time bonus.")

ELSE
BEGIN

Page 12

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

GRAPHICS (charcolour, red);
WRITELN ("Time bonus is ",
bonus,
points.");
GRAPHICS (charcolour,brown)
END ; '
i = CLOCK (tenths);
ratio := hits * 100 / shots;
CURSOR (12, 7);
WRITELN ("Hits scored: ",hits);
CURSOR (14, 7);
WRITELN ("Shots
CURSOR (16, 7);
WRITELN ("Hit/Shot ratio: ",
ratio,"%");
IF ratio < 67 THEN

fired: ",shots);

ratio := 0;
bonus := ratio * 10 * (level - 1);
game_score := game_score + bonus;

CURSOR (18, 7);
IF bonus = @ THEN
WRITELN ("No accuracy bonus.')
ELSE
BEGIN
GRAPHICS (charcolour, red),_
WRITELN ("Accuracy bonus is ",
bonus," points.'");
GRAPHICS (charcolour,brown)
END ;
display_score;
SOUND (delay, 80@)
END ;
SETCLOCK (0,0,0,0);
shots = @;
hits := @
END ;

PROCEDURE game;

VAR 1i,j,k

:INTEGER ;

BEGIN

IF killed > 5 THEN

BEGIN
IF level < 4 THEN

level := level + 1;
IF level <> 1 THEN
FOR i =1 T0 6 DO
REPEAT UNTIL SPRITESTATUS (i)

calc_bonus;
wave := wave *+ 1

END ;

IF (killed > 5)

OR ((bases > @) AND end_game) THEN
new_Llevel;

make_move;

move_balls;

check_button;

check_collsn;

@;

929 check _button;

930 check_status;

931 IF end _game THEN
932 bases := bases - 1;
933 check _button;

934 display_score

935 END ;

936

937 BEGIN

938 init;

939 REPEAT

940 new_game;

941 REPEAT

942 game

943 UNTIL bases <= 0
944 UNTIL false .

945 END .

ADVENTURE GAME — 'MELEE'

If you are fond of role-playing games, such
as 'Dungeons and Dragons', or their various
computer equivalents ('Adventure', 'Zork'
and so on) then the program over the page
may interest you.

It is not a full-scale game as such, but
shows a method of adjudicating fights that
may occur within a dungeon (known as
'melees').

Most role-playing games involve the use of
multi-sided dice to provided probability rolls
(probability that a blow connects, or causes
damage etc.). This is simulated in this
program by the function ROLL, which rolls
the specified type of dice the specified
number of times. For example, if a game

alls for 2d8 (2 rolls of an 8-sided die) then
you would use ROLL (2, 8).

The procedure GENERATECHAR uses the
dice rolls to generate a character with
random characteristics, the same as in the
preparation for a real game. |t makes
various adjustments to characteristics
depending on other, related, characteristics.
For example, characters with high dexterity
gain an increase in their 'attack adjustment'.

Lines 118 to 126 demonstrate how to pass
many arguments to a procedure — it is not
necessary to put each 'dummy' argument on
a new line, as we have done here, but doing
that allows the use of comments to show
what each argument means.

Page 13

The procedure DISPLAYCHAR just
displays a character's characteristics. Some
of them, such as 'gold' are not used further
in this program, but could be mcorporated in
a more elaborate game that youvcould write
yourself.

The procedure GENERATEMONSTER just
creates a 'monster' of a random type. It
supplies parameters such as Ievel hit die,
armour class and so on to the
GENERATECHAR procedure for the actual
monster generation. If you want to' generate
different monsters then just change the
appropriate parameters.

The constant SHOW_MONSTERS controls
whether the newly generated monsters are
displayed at the start of the game.

Lines 19 to 40 of the program all define
characteristics for each character, and are
all integer arrays. The constant
MAXCHARS defines the maximum number
of array elements (and therefore the
maximum number of characters).

The procedure MELEE actually conducts
one round of fighting. It uses the sub-
procedure HIT to actually calculate the
outcome and amount of damage caused by a
single blow. In one round, however, both
characters might hit each other, or only one
character might hit the other, depending on
whether one of them was surprised. |If
neither is surprised then the first blow is
governed by their respective dexterity. (The
order of hits is important of course — a
character might not survive the first blow in
order to retaliate).

The procedure ENCOUNTER adjudicates
the whole encounter with the monster. It
calculates the initial surpriseé factor, then
allows the human player to decide whether
to fight, parry or run away. Using the 'Info'
selection allows inspection of both the
human's and monster's characteristics as the
fight progresses.

The main program just generates the
characters (the human gets to choose his/her
"level') and then keeps generating encounters
until the human dies (a bit one-sided, this.)

You could adapt this program to assist in a
real role-playing game by making slight
changes so that at the start of the program
you specify the actual characteristics of the
players and monsters in your game, and then

conduct a melee whenever the real game
calls for it. This could save rolling a lot of
dice.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
419
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

(» Melee adjudication game.
Written by Nick Gammon.

May be copied for non-profit

*)

CONST

VAR
hp,
ac,
hitd
dext
tohi
dama
dama
dama
Lleve
maxh
cons
hp_a
atta
defe
expe
stre
iq,
wisd
char
type
gold

: ARRAY [maxchars] OF INTEGER ;

i,]
repl

PROCED
BEGIN

CASE
1.2
10:
11
12:
13:
14:
15:
16:
17:
18:
19:

making purposes.

true = 1;
false = 0;
maxchars = 20;
cr = 13;

home = 147;

show monsters = false;

maxlevel = 9,

(* hit points *)
(* armour class *)
ie,
erity,
t,
getimes,
gedie,
geplus,
L,
P,
titution,
djustment,
ck_adjustment,
nce_adjustment,
rience,
ngth,

om,

isma,

4

: INTEGER ;
y : CHAR ;

URE name (x);

type [x1 OF
WRITE ("Human");

WRITE ('"Berserker');

WRITE ("Bandit');

WRITE ("Black Pudding');

WRITE ("Bugbear');
WRITE ("Chimera');

WRITE ("Cockatrice');
WRITE ("Doppleganger');
WRITE ("White Dragon');
WRITE ('"Black Dragon');
WRITE ("Red Dragon'™)

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

END (% of case *)
"END ;
FUNCTION roll (times, die);

VAR cumulative, i : INTEGER ;
BEGIN
cumulative = 0;
FOR i = 1 TO times DO
cumulative := cumulative +
(RANDOM MOD die + 1);
roll := cumulative
END ;

PROCEDURE displaychar (x);
BEGIN
WRITE (CHR (home) ,'"===—===—m=—n ") ;
name (x);
WRITE (" ");
REPEAT

WRITE (''-")
UNTIL CURSORX >= 40;
WRITELN ;
WRITELN ;
WRITELN
("Strength: ", strength [x1);
WRITELN
("1Q: ", diqg [x1);
WRITELN
("Wisdom: ", wisdom [x1);
WRITELN
("Constitution: » constitutionix1);
WRITELN
("Dexterity: ", dexterity [x1);
WRITELN
("Charisma: , charisma [x1);
WRITELN
("Max. hit points: » maxhp [x1);
WRITELN

("Hit points: ", hp [x1);
WRITELN

("Level: ; ", Llevel [x1);
WRITELN , :
("Armour class: ", ac [x1);
WRITELN

("Roll to hit AC @: ", tohit [x1);

WRITE
(""Damage: ,

damagetimes [x1,"d",damagedie [x1);
IF damageplus [x1 > @ THEN

WRITE (" + ", damageplus [x1);
WRITELN ;
WRITELN
("Experience:
WRITELN
("Gold: ", gold [x1);
WRITELN ;
WRITELN
END ;

», experience [x1);

Page 14

17
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174

PROCEDURE generatechar

(x,

typ,
Lvi,

hd,

ar
dt

dd,
dp) ;

VAR i, j :
BEGIN

RE

(*x
(*
(*
(%
(%
(*
(*
(*

character number *)
type of character *)
level *)

hit die *)

armour class *)
damage times *)
damage die *)

damage plus *)

mour,

4

INTEGER ;

PEAT
type [x] = typ;
damagetimes [x] := dt;
damagedie [x] := dd;
damageplus [x1] dp;
ac [x] armour;
tohit [x1 := 12 - Lvi;
IF tohit [x] < @ THEN
tohit [x] = @;
experience [x] := 0;
dexterity [x]1 = roll (3, 6);
attack_adjustment [x1 := @;
CASE dexterity [xJ] OF
18: attack_adjustment
17: attack adjustment
16: attack_adjustment

[x]
[x]
[x]

5:
4z
3:
END ;
defen
CASE
18:
17:
16:
15:
6:
5:
4
B
END ;

attack_adjustment
attack_adjustment
attack_adjustment
(x of case *)
ce_adjustment [x]
dexterity [x] OF
defence_adjustment
defence_adjustment
defence_adjustment
defence_adjustment
defence_adjustment
defence_adjustment
defence_adjustment
defence_adjustment
(*x of case *)

Cx]
Cx1 =
Cx]1 =

a8
wononononon

0;
[x1
[x3
Cx1]
[x1 :
[x1]
[x1]
[x] =
Cx1 =

L1 T T VR B | B 1

constitution [x1 := roll (3, 6);

hp_ad
CASE
18:
17:
16:
15:
6:
5:
4
3:
END ;
iq [x

justment [x]1 := 0;

constitution [x1 OF

Cx3
CxJ
Cx]
[x]
[x]
[x3J

hp_adjustment
hp_adjustment
hp_adjustment
hp_adjustment
hp_adjustment
hp_adjustment
hp_adjustment [x]
hp_adjustment [x]
(* of case *)
1 == roll (3, 6);

I =N WS
Ne Yo N

[
N = =3 - N

\Ne Neo N

won o nonnu

strength [xJ := roll (3, 6);

Page 15

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

END ;

wisdom [xJ roll (3, 6);
charisma [xJ := roll (3, 6);

gold [xJ := roll (3, 6) * 10;
hitdie [x] := hd;

level [x1 := Lvi;

maxhp [x] == 0;

FOR i := 1 TO Lvl DO
BEGIN
j == roll (1, hitdie [x1);

j =

j + hp_adjustment [x1;
IF j < 1 THEN
i=1
maxhp [xJ == maxhp [x] + j
END

hp [xJ == maxhp [xJ;
IF x = 1 THEN
BEGIN
displaychar (x);
WRITELN ;

WRITE ("Keep this character?

WRITE (" Y = Yes ona

READ (reply);

"WRITELN (CHR (reply))
END ELSE

ll);

reply = "y
UNTIL Creply = "y")
OR (reply = "Y¥Y")

PROCEDURE generatemonster (x);
VAR y, z : INTEGER ;
BEGIN
z = roll (1, 8);
(x for dragon's hit dice *)
y = roll (1, 10) + 9;
(* monster type *)

CASE y OF

10: generatechar

(X, Ys 1’ 81 71 11 81
11: generatechar

(X, Ys 1, 8; 61 1' 6'
12: generatechar

(x, y, 1@, 8, 6, 3, 8,
13: generatechar

(X, Yo 3, 8, 5’ 21 4'
14: generatechar

(X, Yo 9' 81 41 3/ 41
15: generatechar

(x, y, 5, 8, 6, 1, 6,
16: generatechar

(x, vy, 4, 8, 5, 1, 12,
17: generatechar

(x, Y, 5, 2, 2, 4, 6,
18: generatechar

(x, vy, 6, z, 2, 4, 6,
19: generatechar

(x, vy, 11, 2z, 2, 4, 6,

END (* of case *)

ll);

233 END ; . ; 291 END ;

234 : 292

235 PROCEDURE melee (x, y, action); 293 (* *** Startof melee procedure **xx x)
236 (* character x fights character y *) 294

237 (% action: 1 = x surprises y 295 BEGIN

238 2 =y surprises x 296 IF action = @ THEN (* no surprise *)
239 3 = x parries 297 BEGIN

240 4 = X runs away *) 298 bonus := 0;

241 299 i := dexterity [xJ1;

242 VAR i, j, bonus : INTEGER ; 300 j = dexterity Lyl;

243 ‘ 301 IF ABS (i - j) < 3 THEN

244 PROCEDURE hit (x, y);: 302 BEGIN

245 (* character x attacks character y *) 303 i = roll (1, 6);

246 304 j = roll (1, 6

247 VAR i, j : INTEGER ; 305 END ;

248 : 306 IF i > j THEN (* first blow? *)
249 BEGIN 307 BEGIN

250 WRITELN ; 308 hit (x, y); (* x hits first *)
251 WRITELN ; 309 IF hp Lyl > @ THEN

252 name {x); 310 hit (y, x) (* y retaliates *)
253 WRITE (" attacks '); 311 END

254 name (y); 312 ELSE

255 WRITE (" and "); 313 BEGIN

256 j =9 = 314 hit (y, x); (*x y hits first *)
257 ac [yl + defence_adjustment L[yJ; 315 IF hp [x]J > @ THEN

258 j =3 + tohit [x1; 316 hit (x, y) (* x retaliates *)
259 i = roll (1, 20); 317 END

260 IF i >= j = bonus THEN 318 END

261 . BEGIN 319 ELSE

262 IF CURSORX > 27 THEN 320 IF action = 1 THEN

263 BEGIN 321 BEGIN (* x surprises y *)

264 WRITELN ; 322 bonus := 2; .

265 WRITE (" ") 323 hit (x, y)

266 END 324 END

267 WRITE ("hits "); 325 ELSE

268 IF damagetimes [xJ] > 1 THEN 326 IF action = 2 THEN

269 WRITELN (damagetimes [x1J, 327 BEGIN (% y surprises x *)

270 " times.'") 328 bonus = 2;

271 ELSE 329 hit (y, x)

272 WRITELN ("once."); 330 END

273 i := roll (damagetimes [xJ, 331 ELSE

274 damagedie [x1) 332 IF action = 3 THEN

275 + damageplus [xJ; 333 BEGIN (* x parries *)

276 name (y); 334 bonus = =2;

277 WRITELN (" takes ",i, 335 hit (y, x)

278 " points damage."); 336 END

279 hp Lyl := hp [yl - i; 337 ELSE

280 IF hp Lyl < @ THEN 338 IF action = 4 THEN

281 hp Lyl ::= @; 339 BEGIN (* x runs *)

282 name (y); 340 bonus := 2;

283 IF hp Lyl = @ THEN 341 hit (y, x)

284 WRITELN (" dis killed!!'!") 342 END

285 ELSE 343 END ;

286 WRITELN (" has ", hp L[yl, 344

287 " hp remaining!'"); 345 PROCEDURE encounter (y);

288 END 346 VAR action, ok_reply : INTEGER ;
289 ELSE 347

290 WRITELN ("misses!™) 348 BEGIN

Page. 16

349 IF hp Lyl > @ THEN

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

BEGIN
WRITELN ;
WRITELN ;
WRITE (%% ',
"An encounter with a '");
name (y);
WRITE (" ");
REPEAT
WRITE ("'*'")
UNTIL CURSORX >= 40;
WRITELN ;
WRITELN ;
action = 0;
i = roll (1, 6); (*x x surprise y? *)
IF i <= 2" THEN
action := 1;
i = roll (1, 6); (* y surprise x? *)
IF i <= 2 THEN
IF action = 1 THEN
action := 0
(* cannot both be surprised *)
ELSE
action :=
IF action =1
WRITELN
("You surprised the monster!')
ELSE
IF action = 2 THEN
WRITELN
(""The monster surprised you!');
REPEAT
IF action = @ THEN
BEGIN
REPEAT
WRITELN ;
WRITELN ;
WRITE ("<F>ight, ",
”<I>n.f0, ll’
"<P>arry, ",
"<R>un ... ")
READ (reply);
IF reply < " " THEN
reply == " ";
WRITELN (CHR (repLy))'
IF reply = "I" THEN

2;
THEN

reply == "i";
IF reply = "4" THEN
BEGIN

displaychar (1);
WRITELN ("Press a key ...'");
REPEAT UNTIL GETKEY ;
displaychar (y)
END
CASE reply OF
ll.fll’ IIFII llp'l’ llPll,
"r', "R" : ok _reply := true
ELSE

407 ok_reply := false

408 END (* of case *)

409 UNTIL ok reply;

410 CASE reply OF ="

411 ", "F" s action := 0}

412 "p'", "P" : action := 3;

413 "r', "R" : . action := 4

414 END (* of case *)

415 END ;

416 melee (1, y, action); ’*

417 IF action <> 4 THEN

418 action := 0 ' _

419 UNTIL (action = 4) (* ran away *)
420 OR ¢hp [11 = @) (*x player dead *)
421 OR (hp Lyl = @) (*x monster dead *)
422 END ;
423 END ;

424

425 . ;

426 (*x START of MAIN PROGRAM *)

427

428 BEGIN

429 REPEAT

430 (* prime random numbers %)
431 VOICE (3, 1, 10000,

432 3, 14, 1;

433 REPEAT

434 WRITE (CHR (home));

435 WRITE ("What Llevel for human? ")
436 READ (i)

437 UNTIL (i >= 1) AND (3 <= maxleveL);
438 generatechar (1,1,1,6,9,1,6,0);
439 WRITE (CHR (home)

440 "Generat1ng monsters ...");
441 FOR i := 2 TO 10 DO

442 generatemonster (i);

443 IF show_monsters THEN

L44 FOR i := 2 TO 1@ DO

445 BEGIN

446 displaychar (i);

447 WRITE ("Press a key ... ");
448 REPEAT UNTIL GETKEY

449 END ;

450 WRITE (CHR (home))"

451 REPEAT

452 encounter (roll (1, 9 + 1)

453 UNTIL hp [1]1 <= 0;

454 WRITELN ;

455 WRITE ("<@>uit or <N>ext game: ');
456 READ (reply)

457 UNTIL C(reply = "q") OR (reply = "Q");
458 WRITE (CHR Chome))

459 END .

Page 17

