G-PASCAL NEWS

Registered by Australia Post - Publication Number VBG 6589

Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal News, P.O. Box 124, lvanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria.

VOLUME 2, NUMBER 2 — April 1985

Annual Subscription $12

WHAT'S IN THIS ISSUE

This month we have two main articles — a

G-Pascal tutorial for readers who would like
to know more about Pascal programming,
and a spelling checking program submitted
by a reader. We also describe on this page a
simpler method of backing up and
customising your G-Pascal compiler, and
there is a small program on page 9 which
prints dollars and cents right justified.

NEXT ISSUE

Next issue we intend to proceed with the
G-Pascal tutorial, print the syntax diagrams
for G-Pascal, describe how to properly use
the Debug and Trace feature, and describe
Independent Modules in greater depth. Any
suggestions for other articles, or questions to
be answered are welcome.

CREDITS

Material in this issue by Nick Gammon, Sue

Gobbett and Adrian Winn. Edited by Nick
Gammon. Assembled by Cynthia Gammon.
Typeset on a Brother EM-100 typewriter
using 'Lori', 'OCR-B', and 'Script' daisy
wheels. Typesetting software written in
G-Pascal to bhandle proportional space
typefaces. Written and printed in April
1985.

COPYRIGHT

Concept and articles Copyright 1985 by
Gambit Games. Please contact Gambit
Games for permission in writing to reproduce
articles if desired. Program listings are
pubiic domain and may be reproduced for non
profit-making purposes.

BACKING UP YOUR G-PASCAL

Since our last issue was published a number

of readers have written in to point out a
simpler method of backing up your copy of
G-Pascal. This method involves:

— Turn on your Commodore 64 and load
G-Pascal as usual, but do not type RUN yet.
— Insert a new disk or cassette as
appropriate.

— Use the Basic POKE command to make
any changes (such as printer seconday
address) that you normally make.
(CAUTION: see below for address offset.)
— Type: SAVE "GPASCAL",8

to save your new copy.

(For cassette, leave out the ',8').

Backing up using this method means that
the new copy will still auto load, the same as
the original copy.

If you want to 'patch' your new copy then
you must take into account the fact that the
G-Pascal that you have just loaded from disk
or cassette has not yet been relocated to its
'running' address. You must subtract
hexadecimal $77C7 from any addresses
suggested in earlier copies of G-Pascal
News. To summarise the most useful ones:

Background colour: $23B1 (9137)
Foreground colour: $1512 (5394)

Printer secondary address: $2696 (9878)
Source start address: $843 (2115)

Default disk/cassette access: $249F (9375)

Decimal addresses are given in parentheses.
Refer to the earlier issues of G-Pascal news
to see the meanings of these locations. For
example, to change the background screen
colour to black, and your printer secondary
address to 7, you wouid type:

POKE 9137,86 : POKE 9878,7
before saving your new copy of G-Pascal.

G-PASCAL TUTORIAL - PART 1
Author: Nick Gammon
Fundamentals

Getting started with G-Pascal is easy — the
simplest programs are ones that don't use
variables, procedures or functions.
(However, such programs are not as powerful
as those that use these facilities). The only
'required' words in a G-Pascal program are
the BEGIN and END that surround the main
program, and the period following the final
END. For example, this simple program will
print out the results of an arithmetic
calculation:

1 BEGIN
2 WRITELN (5 + 20 * &
3 END.

Line 1 signals the start of the 'executable
statements'. Line 2 multiplies 20 by 6 and
then adds 5, and writes the result to the
screen using the ‘'write iine' (WRITELN)
statement. Line 3 indicates the end of the
program, and as such must end with a period.

The reason that G-Pascal does the
multiplication before the addition is because
the 'precedence' of multiplication is higher
than addition. The precedence sequence for
all of the arithmetical operations is
described on page 25 of the G-Pascal
Manual.

If you want to have more than one
statement between the words BEGIN and
END then they must be separated by
semicolons. Notice the distinction between
separating statements by semicolons, and
ending them with semicolons. Statements
are not ended with a semicolon, just
separated by them.

For example, to add another line to our
example program, we could say:

1 BEGIN

2 WRITELN ("Here is a test program');
3 WRITELN (5 + 20 * 6)

4 END.

Notice the semicolon at the end of the new
line 2. Also notice how the editor has
renumbered what was previously lines 2 and
3 to be lines 3 and 4, as we inserted a new
line 2 (using the Editor 'tnsert' command).

Page 2

Constants

A useful aspect of Pascal is the ability to
declare constants at the start of a program
(or the start of a procedure or function).
Constants are values that will never change
during the execution of a program, but which
can be assigned meaningful names. For
example, if you want to have the maximum
number of ships in a game to be three, then
declare:

CONST maximum_ships = 3;

The constant declarations consist of the
word CONST (this only appears once for a
group of constants), then the name you
choose — in this example it is
MAXIMUM_SHIPS, then the "=" sign, then
the value you are assigning to this constant,
and lastly a semicolon. The value of the
constant is usually represented by a number
(such as 3), but can also be the name of a
previously defined constant. Constant
declarations appear before VAR,
PROCEDURE and FUNCTION declarations
(described later). A series of constant
declarations would look like this:

1 CONST green = 5;

2 initial_colour = green;
3 true = 1;

4 false = 0;

5 BEGIN

6 END.

The above example is a complete program,

although it does not 'do anything' because
there are no statements between the BEGIN
and END, Declaring TRUE and FALSE as
above is useful in most programs so as to
make Boolean variables work the same as in
full Pascal. Notice how in line 2 the
constant INITIAL_COLOUR is assigned the
value GREEN which is itself a constant.
Using constants carefuily makes programs
more readable (referring to GREEN and
INITIAL_COLOUR later on in the program is
more meaningful than writing "5"). Also, if
you decide to change the initial colour
(whatever that is) you only need to change
one spot near the start of the program,
rather than hunting through the program
looking for the number 5.

Variables

To use the full power of the Pascal

language we can use variables — these are
named locations in the computer's memory
that we use to hold data that varies during
the execution of the program, hence their
name. The names of variables are at the
sole discretion of the programmer —
yourself, (The same applies to naming
constants, procedures and functions). You
can choose a name of any length, to make
the variable as descriptive as you like. All
the characters in the variable name are
'significant' which means that, even using
long variable names which differ only at the
end, G-Pascal can tell the difference
between them.

The only restriction in choosing your own
names is that you cannot use a 'reserved'
word — that is, one that G-Pascal already
uses for its own use, and the variable name
must start with a letter (A to Z), and then
consist only of letters, numbers, or the
underscore character. This means that you
can choose names such as:

NUMBER_OF_KLINGONS_LEFT_IN THE_GALAXY
TAX_RATE_FOR_1985

Of course really long names are a bit
tedious to type in every time, but they do
make the program easy to follow. One trick
that you can use to reduce typing time is to
initially use a short variable name (such as
NKL) and then use the (R)eplace command in
the Editor to expand the short name to a
longer one once you have finished typing in
the program. Just make sure that your short
names are not ambiguous if you try this
trick.

To use variables in your program you must
first 'declare' them — this means telling
G-Pascal that you are planning to use the
name you have chosen as a variable, and in
the process tells G-Pascal what sort of
variable it is. A simple program with a
variable declaration looks like this:

1 VAR number : INTEGER;

2 BEGIN

3 WRITE ("Enter a number: ");
4 READ (number);

5 WRITELN ("Twice ", number,
6 " is ", number * 2)
7 END.

in this example program we place our
declaration before the initial word BEGIN, as

Page 3

declarations are not part of our executable
statements, but merely impart information
to the G-Pascal compiler. The example also
illustrates the use of the READ statement to
read information into a variable while the
program is running. As is usual practice the
program first prompts the person running the
program by preceding the READ statement
(on line 4) with a WRITE statement (on line
3), asking for a number.

Note also the use of commas in the
WRITELN statement on line 5. Whilst
semicolons are used to separate statements,
commas are used to separate parameters
which are part of a single statement. In this
case the WRITELN statement on lines 5 and
6 is a single statement, but it actually writes
to the screen four separate items, namely
the word "Twice", the value contained in
NUMBER, the word "is", and the result of
computing NUMBER times 2. Commas are
used to separate these individual items. The
use of commas in this way occurs frequently
in G-Pascal.

The other data type supported by G-Pascal

is the CHAR type. The only difference
between INTEGER and CHAR is that
integers are three bytes long, and can hold a
value roughly between plus and minus eight
million (in fact, +/- 8,388,607), however a
CHAR variabie only holds one byte, and thus
can hold a value from 0 to 255. CHAR
variables also behave differently when used
in READ statements, as they accept
characters from the keyboard rather than
numbers.

Loops

The fundamental feature of computer
programming that makes computers a
powerful tool is the ability to execute the
same pieces of code repetitively — this is
called 'looping'. There are three major
types of loops in computer programming in
general, and in Pascal in particular, namely:

1. Looping a pre-defined number of times.

2. Repetitively testing a condition and
then executing some code if the condition is
true (pre-loop test).

3. Repetitively executing some code and
then testing a condition, until the condition
is true (post-loop test).

The first technique, looping a pre-defined

number of times, is usefui if the program
knows in advance of executing the loop how
many times to go through the loop. This is
implemented in Pascal with the FOR
statement, as follows:

1 VAR counter : INTEGER;

Z2 BEGIN

3 FOR counter := 1 TO 10 DO

4 WRITELN (counter, " squared is ",

5 counter * counter)
6 END.

In this case the WRITELN statement is
executed 10 times, with the value of
"counter" starting at 1 and incrementing by 1
each time through the loop until it reaches
the value 10.

The number of times the FOR loop is
executed does not necessarily have to be
known when the program is actualily written,
as this example shows:

1 VAR counter, times : INTEGER;

2 BEGIN

3 WRITE

4 ("Enter number of times to do it: '");
5 READ (times);

6 FOR counter := 1 TO times DO

7 BEGIN

8 WRITE (counter, " times 8 is ");
9 WRITELN (counter * 8)

10 END

11 END.

This last example also illustrates a couple
of other interesting points, one being the
multiple declarations of variables in the
single VAR declaration. In this case, both
COUNTER and TIMES are declared as
integers. In fact, any number of variables
can be declared in this way — they are just
separated by commas.

What happens if you have too many to fit on
one line, you ask? Well, this is one of the
wonderful things about Pascal — program
lines are "free format", you can start a new
line or add extra spaces (within reason)
whenever you want. To iliustrate with an
extreme example:

Page 4

BEGIN

WRITELN

(

"hello there"
)

END

~NOoOUVMTEWN -

In this example, each line has exactly one
Pascal "symbol" on it (as recognised by the
compiler). This program could not be broken
down any more, although extra blank lines
could be inserted. You cannot, for example,
break up the word BEGIN into BEG IN as
the compiler would recognise BEG and IN as
two separate words. Similarly, a guoted
string (as in line 4) must start and end on the
same line, otherwise the compiler thinks you
must have left out the closing quote symbol
and would give you an error message.

The next sort of loop mentioned earlier is
the "pre-loop test" loop, implemented in
Pascal with the WHILE statement. In this
case, the program tests the condition at the
start of the loop, and then performs the loop
if the condition is true. Then the condition
is tested again, and so on. The foilowing
program illustrates this point:

1 BEGIN

2 WHILE MEMC L6531 = 1 DO
3 WRITE ("hello '™

4 END.

The contents of location 653 will be "1" if

the SHIFT key is pressed, so when you run
this program the screen will quickly fill up
with the word "hello", providing you hold
down the SHIFT key as you press "R" to
(R)un the program. As soon as you let go of
the shift key the program will stop running.
This is because the statement following the
word "DO" is repeatedly executed while the
condition (MEMC [653] = 1) is true. If you
are not holding down the SHIFT key when
you run the program then the word "hello"
will not appear at all. This is because the
condition test is done before the loop is
executed. Contrast this to the REPEAT
statement discussed below, in which the loop
is always executed at least once.

Pascal uses the REPEAT statement to
repetitively execute a loop, with the test for
exiting the loop at the end of the loop — this
is called the "post-loop test". Here is an
example:

1 BEGIN

2 REPEAT

3 WRITE ("hello ™)

4 UNTIL MEMC L[6531 = 0
5 END.

In this example also, the word "hello"
appears as fong as you hold down the SHIFT
key. However, unlike the earlier example
using the WHILE statement, the word "hello"
will always appear at least once, even if you
are not holding down the SHIFT key at all.
This is because the test for leaving the loop
is done at the end of the loop, not the start.

Here is another example:

BEGIN
REPEAT
WRITE ("hello ");
WRITE ("there ")
UNTIL @
END.

VTS W =

The example above illustrates using the
REPEAT statement to create an infinite
loop. The value "@" in line 5 will never
become true (the number zero is considered
equivalent to the logical value "false" by
G-Pascal) so the program will run
indefinitely until you press the RUN/STOP
key.

The example above also illustrates that you
can have as many statements as you like
between REPEAT and UNTIL, providing you
separate them by semicolons, in a similar
way to putting multiple statements between
BEGIN and END to form a compound
statement.

If you want to use multiple statements with
a WHILE loop however, you must use BEGIN
and END to indicate the extent of the loop,
for example:

1 VAR number : INTEGER;

2 BEGIN

3 number := 1;

4 WHILE number <= 10 DO

5 BEGIN

6 WRITE (number, " squared is: '");
7 WRITELN (number * number);

8 number := number + 1

9 END
10 END.

In this example the semicolons at the ends
of lines 6 and 7 are statement separators.

Page 5

The entire compound statement bracketed by
the BEGIN and END (in lines 5 and 9) is
executed repetitively by the WHILE
statement. f

Procedures and Functions

The use of procedures and functions greatly
adds to the power and flexibility of
programming in Pascal. Broadly speaking,
both procedures and functions allow blocks
of code to be separated from the 'main'
program, assigned a name, and executed
when and where desired. There are two
main reasons for doing this:

— To allow the same piece of code to be
called (that is, executed) from more than one
place in the program, thus saving
unnecessary repetition; and

— To break the logical functions of a
program up into named blocks of code, thus
making the program easier to follow, and
making debugging easier.

For example, in a game program you might

have procedures called DISPLAY_SCORE
and SHOOT_ MISSILE. This means that if
you want to display the game score from
more than one place in the program, you only
have to catll the procedure
'DISPLAY_SCORE', rather than repeating
the code in many different places. Also, the
names 'DISPLAY_SCORE' and
'SHOOT_MISSILE' (if chosen carefully) imply
what the procedure is attempting to do,
without the need for further comments.
This make the program easier to read and
understand. '

There are two steps to using procedures and
functions.

The first is to 'declare' the procedure or
function — that is, to tell the compiler what
the procedure or function is going to do.
This must be done before attempting to use
it.

The second step is to 'invoke' the procedure
or function. ('Invoke' literally means to
'‘call by name'). As the word ‘invoke'
implies, this is done by simply naming the
procedure or function. The following
example should make this clear:

PROCEDURE say hello;
BEGIN

WRITELN ("HELLO'")
END;

1

2

3

4

5

6 BEGIN
7 say_hello;

8 WRITELN (""HAVE A NICE DAY");
9 say_heltlo

@ END.

1

The BEGIN on line 6 signals the start of the
"'main' program. The procedure
'SAY HELLQ' is declared before the main
program by writing the word PROCEDURE
followed by the procedure name, in this case
SAY HELLO. The BEGIN on line 2 signals
the start of the code for the procedure, and
the END on line 4 indicates the end of the
procedure.

Although the procedure is declared first, it
does not actually execute until it is invoked
— this is done at both lines 7 and 9 by simply
writing its name.

Functions

The difference between procedures and
functions is simply that a function returns a
value and must be used in an expression,
whereas a procedure does not return a value,
and cannot be used in an expression. To
illustrate this point, the following program
calculates a table of Fahrenheit to Celsius
temperatures, using an appropriate function:

1 VAR temperature : INTEGER;

2

3 FUNCTION celsius (fahrenheit);

4 BEGIN

5 celsius := (fahrenheit - 32) * 5/ 9
6 END;

7

8 BEGIN

9 FOR temperature := 68 TO 80 DO
1@ WRITELN (temperature, "F =",
11 celsius (temperature), "C'")
12 END.

This program illustrates a number of

interesting points:

— Any CONST or VAR declarations that
belong to the main program must appear
before function and procedure declarations.
— A function or procedure may have
parameters (numbers) passed to it — this is
done by putting the parameters in

Page 6

parentheses both when the function or
procedure is declarared (i.e. in line 3 above),
and when the function or procedure is
invoked (i.e. in line 11 above).

— The parameters do not have to have the
same name - if there is more than one then
they are matched by position, not name. In
this case, the parameter is called
TEMPERATURE in line 11, but inside the
function it is referred to as FAHRENHEIT.

— As CELSIUS is a function it can appear
inside a WRITELN statement, as in lines 10
and 11 above. A procedure invocation on
the other hand can only appear on its own,
not inside an expression.

— The function CELSIUS 'returns' the value
that it has calculated in its own name. In
the example above this happens on line 5.

LLocal variables

One of the very useful aspects of using
procedures and functions is the ability to
declare 'local' wvariables — these are
variables that are only active while the
procedure or function is exeucting.
Variables which are declared inside a
procedure or function take precedence over
a variable of the same name declared outside
that procedure or function. This means that
even if you use a variable name inside a
procedure or function that is the same as one
outside that procedure or function then you
do not change the contents of the outer
variable when executing inside that
procedure or function.

This will be iliustrated in the following
program:

VAR x, y : INTEGER;
PROCEDURE calculate (a, b, ©);

VAR x : INTEGER;
BEGIN

Neolio BLNe RV, N B

1@ BEGIN

1M1 x = 1;

12 calculate (5, 6, 7);

13 WRITELN ("X =", x, " Y =", y)
14 END.

If you compile and run the above program
you will see that it will display:

X=1Y =77

This proves that the 'global' variable X

declared on line 1 is still containing the
value 1 which it was given on line 11.
The variable X used in the procedure was
declared on line 4 and is completely
different from the variable X declared on
line 1.

This program also illustrates that
procedures can refer to variables which are
already declared outside themselves. In the
example above the procedure CALCULATE
uses the local variable X (because there was
a local declaration for X), but uses the
'global' variable Y (because there was no
local declaration for Y).

The normal practice is to use global
variables (that is, ones that are declared at
the start of the program) for values that are
to be shared between procedures, functions
and the 'main' program. On the other hand,
you would use local variables for
intermediate results such as counters and
other temporary values that are only needed
while a procedure or function is executing.
By doing this, the placement of a variable
declaration immediately implies to the
reader what type of use the program is
putting it to.

Local Procedures and Functions

It is also possible to declare procedures and
functions within other procedures and
functions — again this makes the inner
procedure 'focal' to the outer one. This
would normally be done if the inner
procedure or function performed a task
directly related to the outer procedure and
could therefore be logically part of the outer
procedure. The reason for doing this would
basically be to make the purposes and inter-
relationships between the procedures more
obvious. For example:

1 PROCEDURE type hello_there;
2

3 PROCEDURE type_hello;
4 BEGIN

5 WRITE (""Hel lo')

6 END;

2

8 PROCEDURE type_there;
9 BEGIN

10 WRITELN (" there')
11 END;

12

-
W

BEGIN (* 'type_hello_there' *)
14 type_hello;
15 type_there

Page 7

16 END;

17

18 BEGIN (* "main' program *)
19 type_hello_there

20 END.

Anything between '(*' and "*)' is considered
a comment and ignored by the compiler.
Although the example above is rather
trivial it does illustrate the mechanics of
defining procedures within other procedures.
In fact the same concept can be taken
further by nesting procedures even more
deeply. For example, between lines 8 and 9
above, other CONST, VAR, PROCEDURE
and FUNCTION deciarations can appear,
these being local to the ‘'type_ there'
procedure.

Making decisions — the IF statement

Most programs would not be interesting if
they did not make at least some decisions —
the fundamental decision-making statement
in Pascal is the 'IF' statement. (Other ones
are the CASE statement — discussed next,
also decisions about loops are made by
REPEAT and WHILE).

The simplest form of the IF statement is:

IF condition THEN stctement

The 'condition' can be any legal Pascal
expression — if the expression evaluates to
zero it is considered 'false', if the condition
evaluates to non-zero it is considered 'true'.
if the condition is true then the statement
following the word THEN is executed. For
example:

1 VAR number : INTEGER;
2 BEGIN
REPEAT
WRITE ("Enter a number: ');
READ (number);
IF number = 5 THEN
WRITELN ("You entered S5!')
UNTIL number = 99
END.

O 00NNV N

Conditions are frequently expressed using
the relational operators: = (equal), <> (not
equal), < (less than), > (greater than), <= (less
than or equal) and >= (greater than or equal).
The result of using a relational operator is
always 1 (true) or O (false). Conditions can
be expressed in other ways, however — for

example the statement:
IF 1 THEN WRITE ("hi!'™
would always execute, or the statement:
IF a + b - ¢ THEN

WRITE ("Result is non—zero')
would do the WRITE if the result of the
arithmetic was not zero.

A more advanced form of the IF statement
includes an ELSE clause, as follows:

IF condition THEN
statement?

ELSE
statementd?

In this case 'statement1' (the first
statement) is executed if the condition is
true, and 'statement?2' (the second
statement) is executed if the condition is
false. Obviously the two statements are
mutually exclusive, that is, they won't both
be executed, but one of them will be
depending on the condition evaluation.

In both cases the 'statement' can be a
compound statement — namely a block of
statements delimited by BEGIN and END, for
example:

1 VAR number : INTEGER;

2 BEGIN

3 REPEAT

4 WRITE ("Enter a number: '");

5 READ (number);

6 IfF number = 5 THEN

7 BEGIN

8 WRITELN ("You entered 5!");
9 WRITELN ("Try again ...")
10 END

11 ELSE

12 BEGIN

13 IF number < 5 THEN

14 WRITELN

15 ("Your number was < 5')

16 ELSE

17 WRITELN

18 ("Your number was > 5')

19 END

20 UNTIL number = 99

21 END.

In the example above both the 'true' and
'false' portions of the first IF statement are
compound statements (using BEGIN and
END). The second IF statement (line 13)
does not use compound statements, and thus
only a single statement is executed for the
'true' and 'false' portions.

Page &

It is interesting to see how it is possible to
'nest' a second IF statement inside another
one.

The CASE statement

The CASE statement is a very powerful way
of selection a course of action out of a list
of possibilities. The CASE statement is a
sort of 'extended IF'. It is particularly
useful if you want to decide on a different
course of action for a series of possibilities.
An example of this might be a 'Star Trek'
game, where you might enter M (Move), T
(Torpedo), P (Phasor), S (Shields) and E
(Energy). This could be coded as follows:

WRITE ("Enter action: ');
READ (action);
WRITELN (CHR(action)); (% echo it *)
CASE action OF
"M", "m" : move_enterprise;
T : fire_torpedo;

"p" : fire_phasor;

"s" : set_shields;

"E" : change_energy
ELSE

WRITELN ("Enter M, T, P, S or E'™
END

The above is not a complete program — it
assumes that procedures have been declared
to accomplish the various actions (for
example, MOVE_ENTERPRISE). It also
assumes that ACTION has been declared as a
variable of type CHAR,

The above example illustrates a number of

points:
— More than one choice can be associated
with a particular action — in the example

above both 'M' and 'm' would invoke
MOVE_ENTERPRISE. if more than one
'selector' is used they are separated by
commas.

— Each choice executes a single statement,
which must be followed by a semicolon,
except for the last one. To do more than
one thing, either use a compound statement
or call a procedure.

— An ELSE clause can be optionally used to
accomplish a default action if none of the
previous selections are met.

— The final END is part of the CASE
statement and is required, either after the
statement following the ELSE, or following
the final selection if ELSE is not used.

Obviously the CASE statement used in this
way is very flexible — adding more
commands to this game would be a simple
exercise, namely writing the procedure to
handle the command, and adding the
command letter to the CASE statement.

Notice the (reasonably) helpful error
message displayed if you choose an invalid
action. Programs should always attempt to
help the person running them as much as
possible. Saying "Enter M, T, P, S or E" is
more helpful than saying "Invalid action", but
is less helpful than (for example): "Enter M —
Move, T — Torpedo, P — Phasor, S — Shields
or E — Energy". As far as practical the
program should let the user know what is
expected of him or her, detect invalid
responses, and reply where appropriate with
a suitably helpful response.

Next Issue . . .

Next issue we intend to cover more
complex aspects of G-Pascal programming,
such as independent modules, use of Trace
and Debug, and any other areas that readers
enquire about over the next month.

USING G-PASCAL TO PRINT DOLLARS
AND CENTS

Although G-Pascal does not have a
'floating-point' data type as such, it is
possible to utilise the fairly long integer size
to simulate numbers with decimal points, as
the program on the right iltustrates.

Let us assume that you want to use
G-Pascal to store some financial data
(balance the cheque book perhaps?). By
storing values internally as cents, and using
the PRINT_AMT procedure on the right you
can print out your results, including the
decimal point, right-justified to a specified
column width (LENGTH) — so that columns
of figures will line up.

The procedure PRINT_AMT is self-
contained, apart from assuming that TRUE
and FALSE have been declared at the start
of the program in the usual way.

Lines 49 to 58 in the program are just an
example of using this procedure.

Page 9

VOONNON S NN -

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

(x

(* Prints a right justified
(* dollar amount.

(*

(* Written by Sue Gobbett.
(x

CONST
true=1; false=0;
clear_screen = 147;
VAR i :INTEGER ;

PROCEDURE print_amt (amount,
(K*kkxkkkkkkkkkkkxkx) length);

VAR i,j,print_sign : INTEGER ;

*)
*)

*)
*)

result : ARRAY [20] OF CHAR ;
BEGIN
IF amount < @ THEN

print_sign := true;
FOR i == @ TO length - 1 DO
BEGIN
IF (ABS (amount) = 0) AND
(i > 3) THEN
IF print_sign THEN
BEGIN
result[i] = "-";
print_sign :
END
ELSE
resultCi] =" "
ELSE
IF 7 = 2 THEN
resultli] = "."
ELSE
IF 1 = 6 THEN
resultCi] == " "
ELSE
BEGIN
resultli] := "@" +
ABS (amount MOD 1@ ;
amount := amount / 10
END
END ;

FOR i := length = 1 DOWNTO @ DO

WRITE (CHR (resultlil))
END ;

BEGIN
WRITE (CHR (clear_screen));
REPEAT
WRITELN ;
READ (i);
CURSOR (CURSORY - 1,1@);
IF i <> @ THEN
print_amt(i,15)
UNTIL i = @
END .

SPELLING CHECKER by Adrian Winn 1 (* spelling program *)

2 (% *)
[This program and its operating instructions 3 (* author: Adrian Winn %)
was submitted by a G-Pascal owner from 4 CONST
New South Wales, Adrian Winn. We are 5 color=1; point=2;
pleased to reprint it as an example of a 6 multi=3; expandx=4;
useful program, and also to demonstrate how 7 expandy=5; behind=6;
to do string handling in G-Pascal. — Ed.] 8 active=7;on=1;0ff=0;
9 areg=%$2b2;
This spelling program was only written for 10 xreg=%$2b3;
practice at Pascal programming, but it might 1 yreg=$2b4;
help people struggling with programs using 12 cc=$2b1;
disk access and strings. 13 setlfs=$ffba;
14 setnam=%ffbd;
Operating options: 15 Ltoadrout=8ffd5;
16 saverout=$f{d8;
(A)dd tlist — 17 register=%6a;
18 (* graphics symbols used *)
This option will clear any previous lists in 19 bar = $c0;
memory and replace with your new list. 20 inv = $12;
Enter your words when prompted. Enter a 21 norm = $92;
"*!' when finished. 22 cnrl = $b@;
23 cnr2 = %ae;
(E)dit list — 24 cnr3 = $ad;
25 cnrhd = $bd;
This option will present you with your 26 hbar = $dd;
current list to correct mistakes, add words 27 clear_screen = 147;
and delete words. When the word appears 28 VAR
make any changes to the word and hit 29 temp_word,
RETURN, Clear the word and hit RETURN 30 next_word : ARRAY [20] OF CHAR ;
to delete it. Type a '"*' when finished. 31 word_List : ARRAY [410]1 OF CHAR ;
32 medium,
(S)ave list — 33 i,
34 temp_score,
Saves current list to disk or cassette using 35 score,
the supplied filename. 36 hiscore : INTEGER ;
37 t : CHAR ;
(L)oad list — 38
39 PROCEDURE sprite_setup;
Loads a previously saved list from disk or 40 (kxkrkkkkkrhkkhkkkhkkrk)
cassette using the supplied filename. Y
42 BEGIN
(Test — 43 DEFINESPRITE (135,
44 $0fc3f0, $186618, $102408,
This option tests you on the words of the 45 $000000, $0781e0, $0fc3f0,
current list. By pressing any key a word 46 $0fc3f@, $@ec3b@d, $Bcc330,
from the list will flash on the screen. After 47 $048120, $0300c0, $000000,
you type in your guess either 'right' or 48 $000000, $100008, 3080010,
'wrong' will appear. The program will go 49 3060060, $0300cD, 301e780,
onto the next word if your guess was right. 50 $003800) ;
If your guess was wrong you will be asked the 51 DEFINESPRITE (136,
word again — this will repeat until you get it 52 $000000, $00DODO, $0731€0,
right or it takes you more than three tries. 53 $000000, $0781e@, $0fc3f0,
Your score and high score are displayed at 54 $0fc3f0, $0fc3f0, $@cc330,
the top of the screen. 55 $048120, $0300c0, $000000,
56 $000000, $003800, $00ee(0,
(P)rintout list — 57 $030180, $0600cD, $080020,

58 $10001@ ;
This gives a hard copy of the current list.

Page 10

59 SPRITE (1,expandx,on, 117

60 1,expandy,on); 118 BEGIN

61 POSITIONSPRITE (1,200,180 119 MEMC [Laregl := 1;

62 END ; 120 MEMC [xregl := medium;

63 121 MEMC Cyreg] := 0;

64 PROCEDURE menu; 122 CALL (setlfs);

65 (kkkkkkkkkkkkk) 123 MEMC Lareg] := len;

66 124 MEMC [xregl :=

67 VAR i : INTEGER ; 125 ADDRESS (temp_wordLllenl);
68 BEGIN 126 MEMC [yregl :=

69 WRITE (CHR (clear_screen)); 127 ADDRESS (temp_wordl[len])SHR 8;
70 CURSOR (1,13); 128 CALL (setnam);

71 WRITELN ("Pascal Speller'); 129 MEMC [aregl := 0;

72 CURSOR (2,13); 130 MEMC [xregl := addr;

73 FOR i = 1 T0 14 DO 131 MEMC [yreg] := addr SHR 8;

74 WRITE (CHR (bar)); 132 CALL (loadrout)

75 CURSOR (5,5); 133 END ;

76 WRITELN ("<A>dd List™); 134

77 CURSOR (7,5); 135 PROCEDURE saveit (len,start,
78 WRITELN ("<S>ave List'"); 136 finnish);
79 CURSOR (9,5); 137 (Fekkkddkdkhkdddodkhhhkdkkhkddosk)
80 WRITELN ('"<L>oad Llist'); 138

81 CURSOR (11,5); 139 BEGIN

82 WRITELN ("<T>est'); 140 MEMC Caregl := 1;

83 CURSOR (13,5); 141 MEMC [xregl := medium;

84 WRITELN ("<E>dit Llist'"); 142 MEMC Lyregl := 0;

85 CURSOR (15,5); 143 CALL (setlfs);

86 WRITELN ("<@Q>uit program"); 144 MEMC Laregl := len;

87 CURSOR (17,5); 145 MEMC [xregl :=

88 WRITELN ("<P>rintout List'"); 146 ADDRESS (temp_wordLllenl);
89 CURSOR (20,3); 147 MEMC Lyregl :=

90 WRITELN (''>"); 148 ADDRESS (temp_wordLten])SHR 8;
91 REPEAT 149 CALL (setnam);

92 CURSOR (20,4 ; 150 MEMC [registerl] := start;

93 READ (t) 151 MEMC [Cregister + 1] := start SHR §;
94 UNTIL (t="a") 152 MEMC [aregl := register;

95 OR (t="s") 153 MEMC [xregl := finnish;

96 OR (t="1L") 154 MEMC Lyregl := finnish SHR 8;
97 OR (t="qg") 155 CALL (saverout)

98 OR (t=""p " 156 END ;

99 OR (t="e'") ‘ 157

100 OR (£="t") 158 PROCEDURE load_init;

101 END ; (*x of menu *) 159 (Fedesdod e e e do oo e e ook)

102 160

103 PROCEDURE press_any key; 161 VAR Len,i,addr :INTEGER ;

104 (Frkkkhkkkrkkkrkkxhkidkddkk) 162 BEGIN

105 163 WRITE (CHR (clear_screen));
106 VAR i :CHAR ; 164 CURSOR (5,1);

107 BEGIN 165 WRITE ("Filename>*");

108 CURSOR (22,14); 166 CURSOR (7,1);

109 WRITE (CHR (1nv) "Press Any Key ; 167 WRITELN ("<return> to abort...");
110 WRITELN (CHR (norm))' 168 CURSOR (5,1@);

111 REPEAT 169 READ (next_word);

112 UNTIL GETKEY 170 IF next_yord[@] <> "%'" THEN
113 END ; 171 BEGIN

114 172 len := 0;

115 PROCEDURE loadit (len,addr); 173 REPEAT

116 (Fhkkkkhkkkhkhkhkkkkkkkhkkhkk) 174 len == len + 1

Page 17

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

UNTIL (next_wordClen]=13)
OR (len=15);
FOR i := @ TO Len DO
temp_wordLi]
next_wordllen - iJ;

addr
ADDRESS (word List[4001);
loadit(len,addr) ;
hiscore := 0
END ;
press_any_ key
END ;

PROCEDURE save_init;
(Fhhkddkhhkkkhkhkkkkkk)

VAR len,i,start,finnish :INTEGER ;
BEGIN
WRITE (CHR (clear_screen));
CURSOR (5,1);
WRITE ("Filename>x");
CURSOR (7,1);
WRITELN ("<return> to abort...");
CURSOR (5,10) ;
READ (next_word);
IF next_word[@I<>"*" THEN
BEGIN
len :
REPEAT
len = len + 1
UNTIL (next_word[len]=13)
OR (Len=15);
FOR i == @ TO Llen DO
temp_wordli]
next_werdllen = i];
start :=
ADDRESS (word List[4001);
finnish :=
(ADDRESS (word List[01) + 1);
saveit (len,start,finnish)
END ;
press_any_key
END ;

2;

PROCEDURE clear_mem;
(hhkkhkkhkhkhkkkhkhkkkkkik)

VAR i :INTEGER ;
BEGIN
FOR i := @ TO 400 DO

word Llist [i]
FOR i := @ TO 40 DO

next_word [il := 0
END ; (% clear mem *)

0;

PROCEDURE print_word;
(ke sk ok ok ok ok ok ok ok ok ok ok ok ook ok ok)

Page 12

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2v7
278
279
280
281
282
283
284
285
286
287
288
289
290

VAR i
BEGIN
i=0;
REPEAT
WRITE (CHR (next_wordlil));
i=9+1
UNTIL next_word[iJ=13
END ;

:INTEGER ;

PROCEDURE input;
(hhkkhkhkkhkkkhkkkkk)

BEGIN
READ (temp_word)
END ;

PROCEDURE pull_word(w);
(Fek sk e e e ek k ok kAR k k&)

VAR
i :INTEGER ;
BEGIN
FOR i := 0@ TO 19 DO
next_wordCil :=
word_ListL(wx20) + i]
END ; (* pull word *)

PROCEDURE push_word(w) ;
(Fk ke e ke ok ok kkk ok)

VAR

i :INTEGER ;
BEGIN
FOR i := 0@ TO 19 DO

word ListL(w*20) + il
temp_wordlil
END ; (* pull word *)

PROCEDURE printout;
(Fkkk ok sk ko ok k ke kkkkkk)

VAR
i :INTEGER ;

BEGIN
i=0;
OPEN (2,4,0," ™);
IF INVALID THEN
BEGIN
CLOSE (2);
WRITE (CHR (clear_screen));
CURSOR (10,1);
WRITELN ("error on opéen...'");
press_any_key
END
ELSE
BEGIN
PUT (2);

291
292
293
294
295
296
297
298
299
300
30

302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348

WRITELN ("Spelling List.'");
WRITELN (M===—s—mmmmmoee ")
WRITELN ;
pull_word(i);
REPEAT
WRITE ((i + 1),">"™);
print_word;
WRITELN ;
=i+ 1;
pul l_word(i)
UNTIL (next_wordl@1="x'")
OR (i>19);
WRITELN ;
WRITELN ("=m==——mmmeeee——e ");
PUT (@);
CLOSE (2
END
END ;

PROCEDURE delete(word);
(Fhkkkkkdkkhkkhhddkkhk)

VAR
i,t :INTEGER ;
BEGIN
i 2= word;
REPEAT
FOR t := @ TO 19 DO
word ListL(i*2@) + t] :=

word List[CGi + (1))*20)+ t1;

i=4+
UNTIL (i=2@)

OR (word_ListL(i*2@)] = "*");
word ListL(i - 1)*20] = "x"
END ;

PROCEDURE add_Llist;
(*kkkkkhkkkhhxkhkkkk)

VAR
i,counter :INTEGER ;
BEGIN
WRITE (CHR (clear_screen));
counter := 0;
clear_mem;
REPEAT
CURSOR (8,1);
WRITE ("input word ",
counter + (1)," >");
input;
CURSOR (8,12);
WRITELN
("[26 spaces]');
push_word(counter);
counter := counter + 1
UNTIL (counter=20)
OR (temp_word[@1="x");
hiscore := @;

Page 13

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

press_any_key
END ;

PROCEDURE edit_Llist;
(kkkkkkhhkkhkhhkkkhkhkk)

VAR exflg,i,t,counter :INTEGER
BEGIN
counter := @;
WRITE (CHR (clear_screen));
CURSOR (1,8);
WRITELN ("Edit List");
CURSOR (2,8);
FOR i := 1 T0 9 DO

WRITE (CHR (bar));
WRITELN ;
exflg := 1;
WHILE exflg DO

BEGIN

CURSOR (5,1);

WRITELN ("word ",counter + (1));

CURSOR (6,1);
WRITELN ("[15 spacesl');
CURSOR (6,1);
pull_word(counter);
IF (next_word[@1<>@) AND
(next_wordL@I<>"*") THEN
print_word;
CURSOR (6,1);
input;
IF counter=19 THEN
exflg == 0 ;
CASE temp_wordl@] OF
" " :delete(counter);
"x" sexflg 1= @
ELSE
BEGIN
push_word(counter);
counter := counter + 1
END
END
END ;
press_any_key
END ;

PROCEDURE right;
(Fkkkkkkkkhkhkhkk)

VAR t :INTEGER ;

BEGIN

SPRITE (1,point,135,

1,color,1);

FOR t := 1 TO 4 DO
BEGIN
SPRITE (1,active,on);
SOUND (3,10);
SPRITE (1,active,off);
SOUND (3,10);

’

407 END ; 465 END

408 CURSOR (18,1); 466 END ;

409 WRITELN ("Right.'"); 467

410 SOUND (3,90); 468 FUNCTION checkit;

411 CURSOR (18,1); 469 (Fhkkkdkkkkhkkdkhk)

412 WRITELN ("[6 spacesl]"); 470

413 score := score + 1; 471 VAR

414 CURSOR (6,12); 472 i :INTEGER ;

415 WRITE (score); 473 BEGIN

416 temp_score := 0; 474 3 = 0;

417 i 2= i + 1 475 WHILE (temp_word[il

418 END ; 476 =next_word[il)

419 477 AND (next_word[il <> 13) DO
420 PROCEDURE wrong(t); 478 i = i+ 1;

421 (Kxkkkkkhkkkkhkkkkk) 479 IF (next_word[il=13) AND
422 480 (temp_word[i1=13) THEN
423 VAR counter :INTEGER ; 481 checkit := 255

424 BEGIN 482 ELSE

425 SPRITE (1,point,136, 483 checkit == 1

426 1,color,1); 484 END ;

427 FOR counter := 1 TO 4 DO 485

428 BEGIN 486 PROCEDURE scr setup;

429 SPRITE (1,active,on); 487 (HAFAkAKAKKKKKKK KKK)

430 SOUND (3,10); 488

431 SPRITE (1,active,off); 489 VAR 1 : INTEGER ;

432 SOUND (3,10 490 BEGIN

433 END ; 491 WRITE (CHR (clear_screen));
434 CURSOR (18,1); 492 CURSOR (1,14);

435 WRITELN ("wrong"); 493 WRITE (CHR (cnr1));

436 CURSOR (20,1); 494 FOR 1 2= 1 T0 6 DO

437 WRITE ("Word was>"); 495 WRITE (CHR (bar));

438 print_word; 496 WRITE (CHR (cnr2));

439 CURSOR (17,12 + t); 497 CURSOR (2,14);

440 WRITE ("4™); 498 WRITE (CHR (hbar),” Test ');
441 SOUND (3,200); 499 WRITELN (CHR (hbar));

442 CURSOR (18,1); 500 CURSOR (3,14);

443 WRITELN ({5 spacesl'™); 501 WRITE (CHR (cnr3));

444 CURSOR (20,1); 502 FOR i := 1 T0 6 DO

445 WRITELN 503 WRITE (CHR (bar));

446 (""[20 spacesl”, 504 WRITE (CHR (cnré4));

447 "[19 spacesl"); - 505 CURSOR (5,17);

448 CURSOR (17,1); 506 WRITE (CHR (cnr1));

449 WRITELN 507 FOR 1 := 1 70 19 DO

450 ('""{20 spaces]", 508 WRITE (CHR (bar));

451 "[19 spaces]"); 509 WRITE (CHR (c¢cnr2));

452 temp_score := temp_score + 1; 510 CURSOR (6,17);

453 IF temp_score=3 THEN 511 WRITE (CHR C(hbar));

454 BEGIN 512 WRITE (" Previous Best >[3 spacesl');
455 temp_score := 0; 513 WRITELN (CHR (hbar));

456 ie= 4+ 1; 514 CURSOR (7,17);

457 END 515 WRITE (CHR (cnr3));

458 ELSE 516 FOR i =1 TO 19 DO

459 BEGIN 517 WRITE (CHR (bar));

460 CURSOR (19,1); 518 WRITE (CHR (cnr&));

461 WRITELN ('"TRY AGAIN'); 519 CURSOR (5,2);

462 SOUND (3,95); 520 WRITE (CHR (cnr1));

463 CURSOR (19,1); 521 FOR i := 1 TO 12 DO

464 WRITELN ("[9 spaces]') 522 WRITE (CHR (bar));

Page 14

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

WRITE (CHR (cnr2));
CURSOR (6,2);
WRITE (CHR (hbar));

WRITE (" Scorel2 spaces]>L3 spaces]");

WRITELN (CHR (hbar));

CURSOR (7,2);

WRITE (CHR (cnr3));

FOR i = 1 TO 12 DO
WRITE (CHR (bar));

WRITE (CHR (cnré));

CURSOR (14,1);

WRITE ("Word is>'")

END ;

PROCEDURE test;
(Khkkkhkhkhkhkhkdkkkk)

VAR
t :INTEGER ;
BEGIN
i = 0;
temp_score := 0;
pull_word(i);
score := @;
scr_setup;
CURSOR (6,34);
WRITE (hiscore);
REPEAT
CURSOR (16,12);
WRITELN ("[13 spacesl™);
CURSOR (10,10 ;
WRITELN ("Press any key for'");
CURSOR (12,13);
WRITELN ("Word > ",i + 1);
REPEAT
UNTIL GETKEY ;
CURSOR (10,1@) ;
WRITELN ("[17 spacesl'™);
CURSOR (12,13);
WRITELN ("[10 spacesl");
CURSOR (14,1);
WRITE ("Word is>'");
print_word;
SOUND (3,42);
CURSOR (14,9 ;
WRITELN ("[19 spaces]");
CURSOR (16,1);
WRITE ("Your guess>'");
input;
t := checkit;
IF t=255 THEN
right
ELSE
wrong(t);
pull_word(i)
UNTIL (next_word[@1="x")
OR (i=2®);
IF score > hiscore THEN

581 hiscore := score;

582 CURSOR (6,34);

583 WRITE (hiscore);

584 press_any_key

585 END ;

586

587 (* MAIN PROGRAM ****************)
588

589 BEGIN

590 sprite_setup;

591 hiscore := 0;

592 WRITE (CHR (clear_screen));
593 CURSOR (10,1);

594 WRITELN ("Using disk (Y/N)?");
595 REPEAT

596 CURSOR (10,18);

597 READ (t)

598 UNTIL (t="y'")

599 OR (t='"n");

600 IF t= "y'" THEN

601 medium := 8

602 ELSE

603 medium = 1;

604 REPEAT

605 menu;

606 CASE t OF

607 "a'" :add_Llist;
608 "e" :edit_list;
609 "t" :test;

610 "U" :load_init;
611 "s" isave_init;
612 "o'" :printout
613 END

614 UNTIL t="g"

615 END .

Please note that on lines that have a space
count inside quote symbols (for example line
343, where the listing says [26 spaces]) you
should type the nominated number of spaces.
This is done to save you the trouble of trying
to count the number of spaces that appear
within the quotes.

As mentioned in the previous issue, do not
bother typing in reserved words in upper case
— they are printed that way to make the
program easier to read. Also be careful to
distinguish between the letter 'O' and the
number zero.

The symbol on line 440 is the 'up-arrow', on
the keyboard to the left of the RESTORE
key.

Page. 15

