Gee, Pascal’s not bad...

Inrecent years, EF Schumacher’s
statement that ‘small is beautiful’
has resonated throughout the
computer world. In the third quar-
ter of the seventies, a rash of Tiny
BASICs cropped up in the US
and, recently, many have been
turning their eyes to useful tiny
versions of other languages. Les
Bell reports on an Australian ‘Tiny’
Pascal...

THERE IS A great deal to be said for
languages which are small enough to do
sensible things in an efficient and elegant
way. Just as the energy crisis convinced
Americans that compact cars aren't so
bad after all, so the microcomputer has
led to a realisation amongst computer pro-
fessionals that big isn’t always better.

While the earliest BASIC interpreters
for microcomputers were small, they rap-
idly grew into the Microsoft and similar
software packages we know today. Other
language systems followed a similar
trend, and today’s FORTRAN, Pascal,
COBOL and C compilers are as big as, if
not bigger than, many minicomputer
packages.

On the other hand, one area which has
given a lot of people a lot of pleasure and
education is the implementation of so-
called ‘tiny’ languages. Doctor Dobbs’
Journal started it all in 1976 with its series
of Tiny BASIC articles and listings (all
around 2K in size), and subsequently tiny
packages for other languages, such as
Pascal and C, have appeared.

Gammon & Gobbett's G-Pascal follows
in the tradition of being an interesting and
extremely useable small Ilanguage
package, in this case for the Apple Il com-
puter. lts originator, Nick Gammon, was
inspired by the originali Tiny Pascal
published in Byte magazine, but not hav-
ing a North Star computer (for which it was
written), he decided to use the articles as
the basis for his own Appie-based Pascal
compiler.

The result is a compiler which imple-
ments a useful subset of the Pascal
language. While it does not have all the
bells and whistles of a full Pascal compiler
(user-defined types, for example, are mis-
sing), it is still a good tool for writing
system utilities.

Simplicity ltself

G-Pascal is simplicity itself to install,
particularly if you have an Apple Il with
48K and DOS 3.3 — then it’s just a matter
of inserting the disk and booting.

your computar

SOFTWARE REVIEW

RAMCard users will find a larger version
of the Pascal on the disk, and this can be
set up to automatically foad and run by
making a loader program the ‘HELLOC’
program on the disk.

The system is also available on cas-
sette, and by changing only one location
in memory, can be switched between cas-
sette and DOS 1/0O. G-Pascal actually
consists of a compiler, p-code interpreter
and a text editor, ali combined into one
program which occupies 12K of memory.

Once the program has loaded, it will ask
the user ‘DISPLAY LOWER CASE? Y/N'.
This allows use of lower case adapters.
After this, the system is operational, and
will sign on with a short copyright mes-
sage and the main menu.

The main menu offers the user access
to a number of subsystems, in much the
same way as Apple Pascal ‘proper’:

(E)dit, (C)ompile, (D)ebug, (Files,
(R)un, (S)yntax, (T)race, (Q)uit ?

The Files subsystem allows source files
to be ioaded, saved or merged. It also
offers control of the printer, so that a ses-
sion can be recorded on hard copy, and
allows DOS commands to be executed.

The editor is a fairly simple-minded but
effective line-oriented type. Its commands
are Compile, Delete line number range,
Insert line number, List line number range,
Modify line number range, Quit and
Syntax, where line number is what you
would expect and line number range is a
pair of line numbers.

The compile option is the same as en-
tering (C) from the main menu. Delete
removes one or more lines from your
program, with a query for more than five
lines to prevent accidental grief. Insert
adds lines after the line specified.

List works like you would expect, with
the ability to ‘freeze’ and release the listing

by hitting the space bar. Modify works by
listing the lines requested, then deleting
them and entering insert mode 1o allow
replacement. Minor changes can be
made by using the Apple’s cursor control
codes to edit erroneous fines.

Quit returns the user to the main menu,
while the Syntax option works the same
way as from the main menu.

The compiler first asks the user if he/
she wants a p-code listing; normally, this
is not required. Next it asks if a listing is
required. After this, it will go ahead and
compile the program.

If the user does not want to generate
code, but simply check for errors (useful
when first writing a program) he can
specify the ‘Syntax’ command as an al-
ternative. This is identical to the compiler,
but generates no p-codes.

Catching Sioppy Programming

if an error is found, the compiler will halt
with an arrow pointing to the symbol being
processed when the error was dis-
covered, the word ‘Error' and an error
message. It then returns you to the editor
to fix up your sloppy programming!

The output of the compiler is p-code
(pseudo-code) which is then interpreted
at run time. Each p-code is up to four bytes
long, and the manual contains an expla-
nation of what the p-codes mean. This,
together with a trace mode of execution
and a listing which has p-code addresses,
means that it is possible to track down
particularly recalcitrant bugs without too
much difficulty.

The run-time interpreter also supports a
debug mode, which shows the p-code be-
ing executed and its operands, the top
eight bytes of the stack and the stack
frame linkage data used to manage the
data on the stack as procedures are called
and exited.

G-Pascal is a subset of standard Pas-
cal. While it omits some of the most pow-
erful features of Pascal (for example, run-
time range error checking), what remains
is still powerful enough to be usefui and to
demonstrate the principles of structured
program design.

Integers are stored as three-byte
signed values and range from -8388608
1o 8388607, constants may be expressed
in either decimal or hexadecimal format.
Char variables occupy a single byte, so
that arrays of char are much more space-
efficient than arrays of int. Other data
types are not supported, nor is the type
statement.

However, with some ingenuity, types
can be simulated, as in the following
example.

Reprinted with permission Your Computer magazine, August 1982,

In fuii Pascal:
type

colour = (red, green, blue);

var

fred : colour;
begin

fred := green
end.
in G-Pascal:
const

red = 0; green = 1; blue = 2;
var

fred : integer;
begin

fred := green
end.

Both of these will have the same effect.
String constants are supported, up to
three letters in length, basically by storing
them in an int variable. Of course, arrays
of char are possibie, and these would be
the best way of dealing with strings where
more than three letters are required.

Arrays can only be single-dimensional,
and there is no run-time checking of sub-
script bounds. That's not really as serious
a problem as it sounds, as it is possible to
write checks into a program (good defen-
sive programming!), and there are ways to
simulate two dimensional arrays when
only a single dimension is available (a
computer's memory is only a single di-
mension anyway; all languages have to
‘fake’ multiple dimensions).

Identifiers can be any length, with all
characters significant. One up for sensible
programming. At last | can have a variable
called hereisalongvariable and know the
compiler knows it's different from
hereisalongvariabul!

In order to support recursion, G-Pascal
passes all arguments by value on the
stack. This has the side effect of prevent-
ing a procedure returning a result by alter-
ing one of its arguments, as is possible in
standard Pascal. On the other hand, it
allows recursive calling of functions indefi-
nitely or at least until the stack overfiows.

G-Pascal supports a default extension
to the case statement, through the use of
an else clause at the end of the list of case
selectors.

A Useful Extension

A useful extension is the MEM array,
which is a pre-declared array of memory
locations starting at zero. By using this
array in assignment statements, peeking
and poking are effectively emulated. A
similar array, MEMC, is an array of char.

G-Pascal can read and write disk files
using the same conventions as Applesoft
BASIC and DOS. For example, the state-
ment WRITE (4, “CATALOG”, 13); will do

Software Report Card
Unit: G-Pascal
Made By: Gammon & Gobbett Computer Services
Useful for: System utilities, games, education, Pascal
Hardware Reqd: Apple li, disk drive
Ratings: excellent very good good poor
Documentation: »
Ease of Use: »
Speed: v
Functionality »
Support: ¥
Value-for-money: »e

Extras Inciuded: N/A

Price: $40

Review Unit from:

Gammon & Gobbett Computer Services, PO Box 124,
lvanhoe, VIC 3079

a catalogue of the disk.

Other exiensions include the pre-
declared integer RANDOM, the CURSOR
statement, which is equivalent to the Ap-
ple Pascal GoToXY procedure, and the
function ADDRESS(identifier) which re-
turns the address of a variable.

G-Pascal also includes three built-in
procedures for high-res graphics: HGR,
which sets graphics mode and clears the
screen, HPLOT(colour, column, row),
which plots a point, and TEXT, which re-
turns to text mode. The low-resolution
graphics modes in the Apple monitor can
be called from G-Pascal to do low-res
plotting.

There is also a built-in procedure
MUSIC(pitch, duration) which will gen-
erate tones.

The G-Pascal manual gives some use-
ful addresses inside the system which al-
low the user to customise it. For example,
normally the compiler generates code
starting immediately after the source code
in memory. This makes for quick recompi-
lation when bugs are found.

With large programs, however, there
might not be enough memory left over
after the source has been loaded for the
program to be compiled into. By changing
two memory locations, the compiler can
be set up to allow the p-code to overlay the
source, thus permitting much larger prog-
rams to be compiled.

Similarly, the symbol table size can be
altered, the right and left brackets
changed from ‘() to ‘[T, the printer slot
altered and so on.

The manual is well-written and informa-
tive, with plenty of examples of programs.
Special sections outiine the unique G-
Pascal statements such as the high-res
graphics functions, and there is particu-
larly useful information on converting from
other Pascals and debugging.

The reference information towards the
back of the manual covers configuring the
system, machine language subroutines
and meanings of p-codes.

Amazing Value

G-Pascal is a compact but particularly
potent package. It is especially useful for
writing system utilities, as well as games,
where its performance would be consider-
ably faster than BASIC.

As an example of the kind of work that
can be done in G-Pascal, Nick Gammon
has written a complete Adventure game,
and we hope to feature this in a future
issue. After seeing the program, we can
only say that once you know how it's done,
you'll be surprised how simple it is (the
same could not be said of a BASIC Ad-
veniure, howeverl).

We played around extensively with G-
Pascal and found no bugs — however,
Gammon & Gobbett did issue a bug fix
sheet for early versions of G-Pascal (the
fixes have been applied to later versions).

Not only does G-Pascal work well, it
also represents amazing value for money,
at only $40 for the diskette and 58-page
user manual. Contagt Gammon & Gob-
bett Computer Services, PO Box 124

lvanhoe VIC 3078. O

