G-PASCAL NEWS

Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal News, P.O. Box 124, lvanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria.

VOLUME 1, NUMBER 2

NEWS

Welcome to the second edition of
G-Pascal News. We hope that you are
enjoying using G-Pascal and find some
helpful hints in this newsletter. We hope to
be able to answer some of the queries we
have received in the mail recently.

G-Pascal is now being sold in Australia,
New Zealand and Norway. We have also
recently received an order from the
Netherlands. This is a pleasing illustration
that Australian software can be successful
on the international market.

If there is something you like or dislike
about this newsletter (or G-Pascal) please
send us a note in the mail, so we know
whether we are on the right track or not.

CONTENTS

- Guessing Game

- Hints / modem program
- G-Pascal products

- Printing your programs
Stand-alone print program
-~ REAL numbers

- Mixed text and graphics
- Entering semicolons

SOODUVT B LWN
I

[y

CREDITS

Newsletter edited by Nick Gammon.
Assistance with 'printing' programs from
Steven Szczurko, Chris Brittain and
Malcolm McMahon. Letters and queries
from Don Colquhoun, J. Lockwood, Vladimir
Vasylenko, Graham Whybrow, Mario Zolin,
Tore Ostensen (Norway), Peter Macdonald,
lan Williams, Gavin Murray, Rohan Parker,
P. Taylor, D. Smythe, D. Gates, Andrew
Brown. Typeset on a Brother EM-100
typewriter. This page heading typeset by
Hughes Phototype, 2 Spit Rd., Mosman NSW
2088. Printed by Print Mint, 18-20 Bank
Place, Melbourne, Vic. Printed in January
1984.

CONTRIBUTIONS WELCOME

If you have a question about G-Pascal (or
the Commodore 64), a program that you
have developed that might interest other
G-Pascal users, or something else
interesting to say please write to us, so
that we can publish it in the next issue.

GUESSING GAME

As we have been asked for more
examples of how to program in G-Pascal
we include a game written in G-Pascal
(over the page). This is a "no-frills' guessing
game - the computer thinks of a 4-digit
random number and you have to guess what
the number is.

For each guess you will be told how
many digits you got in the right spot
(white), and how many were right but in
the wrong spot (black).

For example, if the number is 1234 and
you guess 1543 you will get 1 white (the
'1') and 2 black (the '3' and '4').

For brevity's sake the game does not
have any fancy options - you could easily
modify it to stop after a pre-determined
number of guesses (say 10) and say what
the correct answer was.

You could also get it to actually display
white or black shapes rather than just
saying 'white' or 'black'.

By changing 'numdigits' (line 10) you can
alter the number of digits to be guessed
(from 1 to a lot). Also by changing
'largestdigit' (line 11) you can vary the
range of numbers in each digit (from 1 to
9). For example, if 'largestdigit' is 5 then
it will only generate numbers in the range
0 to 5.

W oo~ W

ot
- (3

42
43
44
45
4B
47
48

50

(* 'Guess the numbers' game
Authore Nick Gammon
for Commodore 64 G-Pascal *)

const

9

home = 1473
numdigits = 43
largestdigit = 93
var ch : char 3

number ¢ array [numdigits]
of char
number_black,
number_white,
guesses : integer ;

procedure initializes;
(%%%*%*%*%*%%%%%%%%*)
const frequency = 13
noise = 143
begin
voice (3, noise, true,

3, freguency, 50000)
end 3 (* initialize *)
procedure create_number;
(e ¢ % E)
var 1 : integer 3
begin

for 1 := o numdigits do

,:imﬂv+

random mod

(largestdigit + 1)
(* create number *)

1t
number [i]

end

procedure plays

(330N

var user ¢ array [numdigits]

of char

rnotbad,

i,

j @ integer ;

s array [numdigits]
of integer ;

used

begin
number_white
number_black @
write ("Your
user)s
notbad := user [numdigits] =
i 2= 0s
while notbad and (i < numdigits)
begir
notbad = (user [i] >= "O") and
(user [i] <= "0" +
largestdigit):

1}

ae we

8]
8]
quess? ")

read (

CIrg

ie=1i+ 1

do

Page 2

61
62
63
84
65
66
67
68
B9
70
71
72
73
74
75

1386
107
108
109
110
1M1
112
113
114
115
116
117
118
119

end
if not
begi
writ
play
end
else
begi
for
be
if

en
end

end 3 (¥
begin {
initia
repeat
writ
crea
numb

?

notbad then

n

eln ("Illegal inmput, try again™)s

n

1 :=1 to numdigits do

gin

number [i] = user [1 - 1] then
begin

number_white := number white + 13

to numdigits do

i
o

ile j

“

<= numdigits do

begin

if {user [i - 1] =

and (i <> j).

and not used [3] then
begin

number [i)

number_black := number_black + 13
used [3] 2= true:

j = numdigits
end 3

Jes= 3+ 1

end

d

play *)

* main program *)

lizes

g (chr (home))s
te numbers
er_white s= O3

guesses := (03

while number white <> numdigits do
begin
plays
writeln (number white, " white, "

¥
number_black, " black.");

guesses := guesses + 1

end

writeln g

writeln ("Correct!™):

writeln ("You took ",guesses,
" guesses."):

writeln 3

write ("Try again? ")

read (ch)

until ch <> "y™

120 end . (* main program *)

DETECTING END-OF-FILE

When reading data {rom disks, you need
to be able to tell when you have reached
the end of the disk file. To do this, include
the following function in your program.
When EGF (End Of File) is true, you have
reached the end of the f{ile.

function eofs
begin

eof := memc [$90] and $40 < 0
end 3

AUTO-REPEAT ON ALL KEYS

To make all keys on the Commodore 64
auto-repeat (if you hold them down), run
the following program:

begin memc [B50] := 128 end .
TESTING THE SHIFT KEY

If you want to see if someone is pressing
the SHIFT key, just AND loccation 653 with
1. To see if someone is pressing the
COMMODORE key, just AND location 653
with 2. e.g.

shiftkey := memc [653] and 1;
commodorekey := memc [653] and 2 <> O

For example, if you want to make your
program pause until someocne presses the
SHIFT key (e.g. if you are displaying
instructions} you would say:

writeln ("Press <SHIFT> key ...")s
repeat until memc [653] and 13

DEMO PROGRAM ON CASSETTE

Purchasers of G-Pascal on disk will have
found that there is a 'demo’ program and a
'sub hunt' game included free on the disk.
These programs were not inciuded on the
cassette versions because of the extra time
needed to dump them, and the difficulty of
locating a file halfway through the
cassette,

If vou would like a copy of ‘demc’ and
'sub hunt' on cassette however, we will be
happy to supply it, if you send us a suitable
blank cassette, plus $2 for postage and
packaging (remember to include your name
and address).

a

Page 3

PROGRAMS AVAILABLE DIRECT FROM
GAMBIT GAMES

The Gambit Games products described in
this newsletter (adventure game, sprite
editor and so on} are now available directly
rom Gambit Games if you have difficulty
purchasing them from your local dealer. If
your dealer does not have them in stock,
please send a cheque, money orcer or your
Bankcard number to Gambit Games (P.O.
Box 124, Ivanhoe, Victoria 3079, Australia)
and we will be happy to supply vyou
promptly. Prices include postage.

Adventure game: $29.50
Scund Editor: $25
Sprite Editor: $25
Runtime System: $39.50
Modem program: $20

PROGRAM FOR TRANSMITTING FILES

We have developed a program for
transmitting files by modem. It uses the
Christensen protocol and is compatible with
YAM and MODEM7 and similar programs
that run on CP/M systems. The program is
directly compatible with the format used
by the Mi Computer Club in Sydney.

This program will be featured
article in 'Your Computer'
March 1984 (we expect).

The program allows files to be sent or
received by Commodore 64 owners to each
other or tc any other computer that uses

in an
magazine in

the Christensen protocol (such as Mi
Computer Club). It features full error
checking sc that file transfer is very

reliable, even if there are temporary line
problems with the phone. It transfers 'prg'
files from disk or cassette, which includes
G-Pascal files and Basic files.

It also features full and half-duplex
terminai mode for accessing Bulletin
Boards, the Source and so on.

The program is 956 lines long, and
demonstrates how to load and save files
with ‘variable' pames {i.e. as typed in by
the user when the program is running). It
also demonstrates how to read the ‘error
channel’ from the disk drive. For a copy of
the program on disk or cassette send us
$20.

To use the program you need an RS232
interface (VIC-1101A), a modem and a
cable connecting them (and a phone!).

Sound
Editor

For

Commodore 64

Produced by:

Gambit Games

Experiment with different sound effects
using the Sound Editor! Play three voices
at once, change filtering, ADSR envelope,

voice type, frequencies, sync and ring
modulation. Full G-Pascal socurce code
supplied. $25.00 recommended retail.

Disk or cassette.

o R TR Y
T, T

Own Pascal

ENTURe

Play this 784 line adventure game for fun,
or modify it to your own ideas! Currently
implements 21 rooms, TAKE, DROP,
INVENTCRY, SCORE, INSPECT, WAVE,
EAT, QUIT, LOOK as well as movement
verbs (north, south etc.). Includes full
source listing, description of how program
works and hints for modifying it. Full
G-Pascal source code supplied. $29.50
recommended retail. Disk or cassette.

Your

-

Sprite
~ Editor

| for
Commodore 64

Produced by:

Gambit Games
N J

Create sprite shapes and save to disk for
re-editing later! Large grid makes changing
sprites easy. Uses joystick or keyboard.
Outputs DEFINESPRITE statements to disk
or cassette for direct inclusion in G-Pascal

programs. Full G-Pascal source code
supplied. $25.00 recommended retail.
Disk or cassette.

RUN-TMIE SYSTEM

FOR COMMODORE 6‘4

Gambit Games

J

Write your own programs for sale! The

Runtime System will combine your P-codes
with the G-Pascal interpreter to create a
single auto-load program. $39.50
recommended retail. Disk only.

All of these products are available from your local dealer or direct from Gambit Games. To
purchase direct send cheque, money order or Bankcard number to Gambit Games.

Page 4

PRINTING YOUR PROGRAMS

We have had varicus requests from users
to explain how to print their G-Pascal
programs using different types of printers
and connection technigues. It is difficult
when developing software to cater for all
possible types of printers, especially on the
Commodore 64 where a printer can be
connected by serial bus, RS$232 serial or
parallel (Centronics}. The last two attach
via the user port using special interfaces.
Also, different printers need different
control codes to do lower case, graphics
and so on. 7

In order to solve some of these problems
we present here a few different ways of
getting your printer to work with G-Pascal,
starting with a simple MEMC to change the
way G-Pascal opens the printer file, to a
complete program that will read in a
G-Pascal file and print it.

Changing the secondary address

Some printers apparently need tc be
opened with a secondary address of 7 in
order for them to print in upper and lower
case. If your printer is working properly
apart from the fact that it is not printing
upper and lower case properly just try
running the following program before using
the printer:

begin memc [$QEBD] := 7 end.

Note: this patch applies to G-Pascal
versions 3.0 and 3.1 only.

Fixing strange behaviour

When G-Pascal displays its 'Main Menu'
it includes two ‘control' characters which
may adversely affect your printer if you
are in print mode. These are:

$8CD9: 5 {(White letters)
$8CDA: 14 (Switch to lower case)

You may want to try changing the
contents of these locations to zero if you
are about to print a program. If you do
this, however, you will find that the
compiler itself no longer displays in lower
case, or with white letters f(on the
screen).

Note: these patches apply to G-Pascal
versions 3.0 and 3.1 only.

Writing a printer setup program

The next simplest solution to printer

Page 5

problems is to write a small 'setup'
program that conditions the printer. In this
case you would just run the setup program
prior to using the printer. The following
program was submitted by Steven Szczurko
for initializing a 1526 printer:

1 (* program Printer_init;
2 Setup program for Commodore 1526 printer
3 *)
4 const printer_channel = 43
5 home = 147¢
6 begin
7 (% put printer into upper/lower case mode *)
8 open (7, printer_chanmel, 7, " ");

9 put (7)3

10 close (7)3

11
12 (* set printer paging on *)
13 open (4, printer_channel, 0O,
14 put (4):

15 write (chr (home));

16 put (0);
17 close (4)3
18 writeln (chr (home),"Printer initialized.™)
18 end.

1 n),
9

Using a stand-alone print program

The ultimate solution to catering for all
printers .is the following stand-alone print
program. This program reads a G-Pascal
program from disk or cassette and prints it.
It has provision for expanding multiple
space codes and reserved words. It also
prints the line number at the start of each
line. You could easily change it to also
start a new page after every 55 (or so)
lines. Another useful enhancement would be
to print the name of the file and the page
number at the top of each page.

In its current form the program outputs
data to a 'parallel' (Centronics) type
printer, however it can easily be adapted to
any other sort of printer. If you have a
serial bus printer then the procedure
'INIT_PRINTER' (lines 114 to 117 would
just consist of an OPEN statement, e.g.:

OPEN (2,4,0," M)

If you have an RS232 interface then
INIT_PRINTER would consist of a Kernal
Open similar to '"OPEN_RS232 FILE' from
the program on the back of the previous
edition of G-Pascal News,

In both of these cases the PRINT CHAR
routine in the program would be simplified,
as lines 181 to 187 would just be:

PUT (2)s WRITE (CHR (X)) PUT (0);
Also, WRAP UP would just consist of:

CLOSE (2)3

If you have a parallel interface you may
be able to omit lines 1i5 to 117, and lines
183 to 185, depending on which signal line
the printer uses to tell it that data is
present,

You may alsoc be able toc omit lines 175
to 180 depending on whether upper and
lower case prints correctly or not.

(* program to print a g-pascal file
via the parallel port

Author: Nick Gammon of Gambit Games

Public Domain.

@~ MU PN

w

%a $800 *)

if you have a cassette player rather than 10
a disk drive change line 14 to read: 11 const
medium = cassette: 12 disk = 83
13 cassette = 13
Testing the program 14 medium = disk;
15
Once you have typed in the program, 16 strobereg = $dd00; (* strobe register ¥)
save it to disk or cassette before testing it, 17 ddra = $dd02; (* data direction registers *
just in case something drastic goes wrong. 18 ddrb = $dd03;
Then run the program, and initially 19 start_address = $4000;
answer 'Y' when it asks: 'Reprint same 20 true = 13
file?' The program will just attempt to 21 false = O3
print itself. Then answer 'Y' when it asks: 22 cr = 13;
'"Output to screen only?' This will just 23
display the program on the TV screen. If all 24 yar reprint,

is well, run the program again and answer 25 screen_only : integer ;
'N' to: 'Output to screen only?' and it 26
should print on your printer. If not, change 27 procedure init;

the procedures INIT_PRINTER and
PRINT CHAR until everything prints
properly.

Then save the program to disk or

Ny
@

(%***%%*****%*)

N
w

const home = 1473

[N
- O

procedure load nominated_file;

cassette again, and answer 'N' when it 32 (FRIBHEHEHHEOERERRHEHHHEHO0HE)
asks: 'Reprint same file?' It will then ask 33
for the name of the file that it is to print. 34 var
Enter the file name, and you will now get a 35 i,
listing of your program. Once the program 36 got_cr,
is printed you will find it in memory ready 37 erToT,
for editing. Alternatively, (R)un the 38 length : integer 3
program again and you can print another 39 namel, name2 : array [20]
file. 40 of char i
41
42 procedure get_file name;

I~
[N}

(*%****%*********%**%%%)

=
il

begin

=~
m

repeat

46 writeln ;

47 write ("File name? ");
48 read (namel);

49 got _cr := false;

50 for i :=0 to 20 do

51 if not got_cr then

52 begin

53 name2 [20 - i] := namel [i]s
54 if namel [i] = cr then

55 begin

56 length = i

57 got_cr := true

58 end

59 end

60 until length <> O

Page 6

61 end 3
62

63 procedure load files
64 (**%*******%*******)

B5 const

66 areg = $2b2;

67 xreg = $263;

68 yreg = $2b4;

69 cc = $2b13

70 loadit = $ffd5;

71 setlfs = $ffbag

72 setnam = $ffbd;

73 readst = $ffb7;

4

75 begin .

76 memc [areg] := 13

77 memc [xreg] := medium;

78 memc [yreg] := O3 (* relocate *)

79 call (setlfs);

80 memc [areg] := length:

81 memc [xreg] := address (name2[20]):

82 memc [yreg] := address (name2{20]) shr 8

83 call (setnam);

84 memc [areg] := 0; (* load *)

85 memc [xreg] := start_address;

86 memc [yreg] := start_address shr 8;
)

87 call (loadit
88 if memc [cc] and 1 then

83 error := memc [areg] (¥ got error *)
80 else

91 begin

92 call (readst);

93 error := memc [areg] and $bf

94 end 3

95 writeln 3 writeln 3

96 if error then

g7 writeln ("Load error, code: ",
98 error)

893 else

100 writeln ("Loaded ok.")

101 end 3

102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
118
120

(##xx¥ start of
begin
repeat
get_file name;
load file
until not error
end ;

load_nominated file ##%)

procedure init_printer;
(%***%%%%**%*%*%***%%*)
begin
memc [ddrb] s:= $ff; (¥ output *)
memc [strobereqg] :=
memc [strobereg] or 43 (* no data *)
memc [ddra] := memc [ddra] or 4
end s

function yes nos

121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
148
147
148
149
150
151

182
153
154
155
156
157
158
158
160
161

162
163
164
165
166
167
168
163
170
171

172
173
174
175
176
177
178
179
180

(FEH IR)
var reply :
begin
repeat
read (reply)
until (reply = "y")
or {reply = '"n")
writeln (chr (reply
writeln 3

char 3

))s
yes_no s= reply = "y"
end 3

(¥03% gtart: init oo

begin
writeln (chr (home),
"Centronics G-Pascal File Print");
writeln g
write ("Reprint same file? <Y>es/<N>o ... ")
reprint := yes nos
if not reprint then
load_nominated_file;
writeln 3

write ("Output to screen only? <Y>es/<N>o ... ")

screen_only 3= yes noj
if not screen_only then
init_printer
end 3

procedure print file;
(*******************)
var
line,
pointer,
limit,
count ¢ integer
ch ¢ char ;

procedure next_charj
(***%********%****)
begin
ch := memc [pointer];
pointer := pointer + 1
end 3

procedure print_char (x);
(\Ly v, LYaRY3 63 33633t ******)

3676 3636 3¢ 1

const
flag = $ddOd;
datareg = $dd01;
begin
write (chr (x)); (* echo on screen *)
if not screen only then
begin
(* convert x to ASCII *)
if x >= 192 then
X = x and $7f
else
if (x

v
A

> 64) and ({x and $5F) < 91) then
= x xor %203

Page 7

“e

(* swap upper/lower case

s

3

)

181 (* send data to printer *) 241 leading_zero := trues

182 memc {datareg] = x3 242 print_power {(1000);

183 (* tell printer data there *) 243 print_power (100)s

184 memc [strobereg] 3= memc [strobereg] and $fb; 244 print power (10):

185 memc [strobereq] := memc [strobereg] or 43 245 print_char (line mod 10 + "0'");

186 (* wait until acknowledge *) 246 print_char (":");

187 repeat until memc [flag] and $10 247 print_char (" ")

168 end 248 end

189 end 3 249

130 250 (s starts print file *

191 procedure print reserved word {x)j 251 beqin

182 (% G K e) 252 pointer 3= start address;

183 const table = $81b5; 253 line s= 03

184 var position, - 254 print lines

185 length 255 next _chary (* get first character *)

198 : integer ; 256 if ch <> 0 then (¥* not blank file ¥)

197 257 repeat

198 begin 258 if ch = $10 then (* space count *)

189 position := tables 259 begin

200 while {memc [position + 1] < %) 260 mext_chars

201 and {memc [position] <> 0) do 261 limit s= ch and $7f;

202 position 3= position + 262 for count := 1 to limit do

203 memc [position] + 23 263 print_char (")

204 if memc [position + 1] <> x then 264 end

205 print_char {x) 265 else

206 else 266 if ¢h > $80 then

207 begin 267 print_reserved_word (ch)

208 length := memc [position]; 263 else

209 repeat 269 print_char (ch};

210 print_char (memc [position + 21): 270 if ch = cr then

211 position := position + 13 271 print_lines

212 length := length - 1 272 next_char (* next character if any *)

213 until length <= 03 273 until ch =

214 print_char (" ") 274 end

215 end 275

216 end 3 276 procedure wrap_ups

217 DT (k)

218 procedure print_lines 278 begin

219 (HOEREROOaHEINNE) 279 memc [ddrb] s= O

220 var i, 280 end 3

221 leading_zero s integer ; 281

222 282 (®wxu% program starts here ®er)

223 procedure print_power (which)s 283 begin

204 (it BRI IR R) 284 inits

225 begin 285 print_files

228 if (i / which > Q) 286 wrap_up

227 or not leading_zerc then 287 end «

228 begin

229 leading zero := falses

230 print_char (i / which + "C™) ENTERING UNDERSCORES

231 end)

232 else The ‘underscore' character in the above
33 print _char (" "); listing {shown as ' '} is entered by typing
234 1 3= 1 - line / which * which the fleft-arrow’ key on the Commodore 84,

235 end ¢ This is on the top left hand side of the
236 keyboard (above the CTRL key).

237 (#B0¥% starts print_line #¥#eex)

238 begin

239 line := line + 13

240 1 s= lines

Page 8

REAL NUMBERS

We have had a number of queries about
the absence of REAL (floating-point)
numbers in G-Pascal. The reasons are as
follows ...

A design criteria of G-Pascal was that
the compiler should fit intc 16K of
memory, so that is could eventually be
placed into a plug-in cartridge. It presently
uses all but a few bytes of that 6K,
leaving very littie room for any additional
features,

in fact, a lot of effort has gone into
packing as much into G-Pascal as s
presently there - for example the full

English error messages, helpful menu-driven
operation, and HELP facility in the Editor,
are all accomplished by tokenizing all the
words used in messages.

The Commodore 64 has a lot of powerful
features ~ sprites, SID chip, hardware clock
and timer, bitmapped graphics and so on.
We wanted to support all of these features

so that G-Pascal truly was a useful
programming tool. Each feature that is
supported takes room, leaving less room for
'standard' Pascal features, such as REAL
numbers and TYPE declarations.

You will find that most other Pascal
compilers on microcomputers provide

support for REAL numbers and so on at the
expense of being very siow to use. Most
compilers are disk based, meaning that
during the compilation process parts of the
compiler are read into memory from the
disk. Also these compilers usualiy read the
program to be compiled from disk as they
go. The overall effect of all of this is that
such compilers compile at ({(say} 200 lines
per minute, not 6,000 lines per minute as
G-Pascal does.

It quickly becomes very frustrating
attempting to get rid of syntax errors and
debug programs if you have to wait 15
minutes for your program to compile each
time. We firmly believe that G-Pascal users
would be happy to forge some of Pascal's
more esoteric features, in return for a fast,
easy to use system. Also a memory-resident
compller is feasible to supply on cassette,
making it available to a wider range of
users,

By providing 3-byte integers in G-Pascal
it is possible to obtain a reasonable degree
of precision in arithmetic operations
{(almost 7 significant digits). This is ample
for many applications.

Page 9

WRITING TEXT IN BITMAP MODE

if you are writing a program that
displays in bitmap mode (high-resolution
graphics) you may find the need to put text
on the screen as well, For example, you
may be drawing a graph and want to label
the axes, or you may be doing a game that
uses bitmapped graphics and need to dispiay
the game score or other textual
information.

The easiest way to accomplish this is to

the technique presented in the
ollowing program. The program that
follows is a demonstration of mixing text
and bitmapped graphics - in your program
you merely need to include the procedure
INIT _BITMAP WRITING and call it once at
the start of the program.

INIT_BITMAP_ WRITING places a
machine-code routine at address $1F00 and
links it inte the Kernal output routines (this
is commonly called a 'wedge'). From then
on any WRITE or WRITELN statements will
function normally if the computer is in
‘normal’ display mode, but in 'bitmap' mode

use

b'h [

the machine-code routine will map the
appropriate character shapes onto the
bitmap screen at the current cursor
position,

The only control character supported is
'carriage return' - others will be ignored.
Key in the program, taking care with the
machine-code constants. Then save it to
disk or cassette before testing it! Once the
program tests OK, vyou «can use the
INIT_BITMAP_ WRITING procedure in your
other programs.

The routine displays characters in upper
and lower case - it is not really designed to
display 'graphics' characters but may work
with some of them. If there is enough
interest shown by readers we will publish
the assembler listing of the machine code
portion next time.

1 (* bitmap mode writing program

2 demonstration *)

3

4 (* Author: Nick Gammon.

5 Uses $1f00 to $1fed

B for machine code subroutine *)
7

8 const bitmap = 13

g chargenbase = 83

10 black = O3

11 yellow = 7¢

12 =13

13 home = 1473

14 var x : integer 3

15

16 procedure init bitmap writings
7 (OO KR n)

18
19
20
21

22
23
24
25
26
27
28
28
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
477
48
48
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
7

72
73
4
75
6
7
78
79

var m ¢ integer ;

procedure x(i,j.k)

s se ws
1}

]
X

e we

begin

m = $1F02;

x($0327AD, $FD1FCI, $018D13
x($26AD1F ,$008D03, $1DATTF
($03268D, $8D1F AT, $600327
$11AD48,$202300, $660400
$1F0O0BC, $208568, $4868A48
$384898, $FFF020, $9028C0
$389805, $AB2BE9, $841£86
$20A51F , $380310, $C960E9
$74F 00D, $B060CY, $40C908

.
?
-
y
o
9
»
5
-
k2
.
b

X
X
X
X
X
X
X

)
)
)
()
()
()
()
()
()
x{$380A90, $D04OEY, $03F005)
x($20E938,$782085,$DCOEAD)
x($8DFE29, $ASDCOF , $FB2901)
($A30185, $5FB500, $OA20AS)
($0A5F 26, $0ASF 26, $855F 26)
($5FASSE, $850809, $00AISF)
()
()
()
()
()
()
()
()
()
()
()

°
s
°
?
°
9
.
b
°
2
°
?

$A54B85, $664A1E , $664A4B) 5
$651848, $4C851E, $CATFAS
$080A0A, $4B6518, $A54885
$00634C, $284C85, $6520A3
x($4CB854C, $B107A0, $4B915E
x($F91088, $AS1FER, $28Ca1F
x($A906390, $1F8500, SAS1EED

X
X
X
X
X
X
X

$19C91E,$AS0490, $1E8500
$0901A5,$018504, $OCOEAD
$800109,$58DC0E, $1FA418
$201EAG, $68FFFO0, $AAGBAB
x($006068,0,0);

X
X

X
X

.
b4
°
9
°
?
°
b4
.
7
-
?
-
3
-
9
'
y
°
s

call ($1F02) (* set up vector *)

end 3

(*%%%%*** main program *%*%%%%%%)

begin
init_bitmap writings;
writeln (chr (home),

"Testing ... this is written in");
writeln ("normal (not bitmap) mode™);

writeln

writeln ("Press a key for next part ..."):

repeat until getkey ;
graphics (bitmap, on,
chargenbase, 4)3
clear (yellow, black)s
for x ¢= 1 to 190 do
plot (on, x, x);
cursor (10, 10)3

writeln ("Hi there - this is written")

writeln ("in bitmap mode.")
end .

ENTERING SEMICOLONS

Some readers are mystified about when it is
necessary to use a semicolon in Pascal programs.
We hope to be able to clear this up now ...

Semicolons are used as statement separators -
in other words, when two statements appear in
sequence they are separated by a semicolon.
Semicolons are not needed at the end of a
statement (unless another statement follows).

Semicolons are also used:

1) Following the final END in a procedure or
function.

2) Following a CONST declaration (e.g. cr =
13;).

3) Following the data type in a VAR
declaration.

4) As part of a procedure or function
declaration (e.g. procedure fred;).

Here is a simple example which illustrates the
use of semicolons:

1 var a, b, ¢ ¢ integer;

2 begin
3 a =13
4 b o= 2;
5 if a =1 then
6 begin
7 c s=b * 23
8 b =4
g ends;
10 a =5
11 end.

There is no semicolon on line 2 because 'begin'
is not a statement. Lines 3 and 4 are followed by
statements and so end with semicolons. Line 5
does not end with a semicolon because the word
'then' is not a statement itself, but is to be
followed by a statement, in this case the
compound statement at lines 6 to 9.

Line 8 has no semicolon because it is followed
by the word 'end' which is not a statement - the
same applies to line 10.

In some cases an extra semicolon does no harm
- for example, if line 8 had a semicolon at the
end it would not change the execution of the
program. In this case it would create a ‘'null'
statement at the end of line 8 which would not
have any effect.

However if the 'then' in line 5 was followed by
a semicolon then that would terminate the 'if’
statement (so that the only thing executed
conditionally would be the null statement between
the 'then' and the semicolon). In this case the
extra semicolon would change the execution of
the program from what would be intended.

Perusal of the programs in the issue will help
appreciation of where semicolons should be used.

Page 10

