G-PASCAL NEWS

Registered by Australia Post - Publication Number VBG 6589

Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal News, P.O. Box 124, lvanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria.

VOLUME 2, NUMBER 3 — July 1985

Annual Subscription $12

WHAT'S IN THIS ISSUE

Page Contents

2 G-Pascal Tutorial Part 2
3 Using Debug mode

5 Centronics printer handling
8 Printer interface program
9 Machine code for interface
12 Example printing program
13 Using sprites

14 G-Pascal customisation

15 Bug-free programming
NEXT ISSUE

Our fourth (and finat) issue will contain
articles about other subjects that readers
indicate are of interest. Any suggestions for
other articles, or questions to be answered
are welcome. Please write if you have a
comment — do not assume that 'someone
else' will. We in fact get very little mail,
favourable or otherwise, about the contents
of G-Pascal News.

CREDITS

Material in this issue by Nick Gammon and
Sue Gobbett. Edited by Nick Gammon.
Typeset on a Brother EM-100 typewriter
using 'Lori', 'OCR-B', and 'Script' daisy
wheels. Typesetting software written in
G-Pascal to handle proportional space
typefaces. Written and printed in July 1985.

COPYRIGHT

Concept and articles Copyright 1985 by
Gambit Games. Please contact Gambit
Games for permission in writing to reproduce
articles if desired. Program listings are
public domain and may be reproduced for non
profit-making purposes.

CUSTOMER RECORDS

Our mailing list for G-Pascal News is now
fully computerised on a single disk file.
Please let us know if we have made an error
in your name or address and we will correct
it for the next issue. Please indicate the
name and address we used on the address
label (attach it if possible), and what the
correct name and address should be.

If you have not received either the first or
second issue this year please let us know
also.

Also please let us know if you have
ordered a disk or cassette and it hasn't
arrived.

We apologise for the late arrival of this
issue, but we are suffering from somewhat of
a staff shortage, resulting in it taking longer
to do things such as preparing address lists
than it should. We hope the next issue will
arrive in a more timely fashion.

PRINTOUT OF PROGRAMS

We have used a new technique to print
some of the example programs in this issue —
namely wusing the 'Centronics interface'
program presented on pages 5 to 12. As a
result, the listings appear identically to how
they would on the screen (without the screen
wrap-around of course). Because of this, the
number zero is no longer printed with a slash
through it — be careful not to confuse it with
the letter 'O".

We have also made use of the printer
interface to print some compiler output
(with P-codes along the side), and to
demonstrate Debug mode in operation.

We hope this is helpful, and that you can
use the printer interface yourself if you have
a Centronics interfaced printer.

Because space in the next issue will be
short we would like to devote it to the issues
you think are most important — please write
and let us know.

G-PASCAL TUTORIAL — PART 2
Author: Nick Gammon
Arrays

If you have read the previous part of our
G-Pascal tutorial (published in the April 1985
issue) you have probably noticed the absence
of an explanation about the word ARRAY
which appears in most of our published
programs.

Arrays are a very powerful way of dealing
with logically related groups of information,
as the following introductory example will
show.

Suppose that you are writing a program to
process scores for a test from a classroom of
students. We will start by writing a simple
program that will read in five scores, store
them in the computer's memory, display
them back onto the screen, add them up and
take an average.

First we'll try doing this without using
arrays:

1 VAR scorel, score2, score3,
2 score4, score5, total,
3 average : INTEGER;

4 BEGIN

5 WRITE ("Enter score 1: '");
6 READ (scorel);

7 WRITE ("Enter score 2: ");

8 READ (score?);

9 WRITE ("Enter score 3: '");

10 READ (score3);

11 WRITE ("Enter score 4: '");

12 READ (score4);

13 WRITE ("Enter score 5: '");

14 READ (score5);

15 WRITELN;

16 WRITELN ("Scores were:');

17 WRITELN ("Score 1: ", scorel);

18 WRITELN ("Score 2: ", score?2);

19 WRITELN ("Score 3: ", score3);

20 WRITELN ("Score 4: ', scored);

21 WRITELN ("Score 5: ", score5);

22 total := scorel + score?2 + score3 +
23 score4 + scoreS5;

24 average := total / 5;

25 WRITELN;

26 WRITELN ("Total: ", total,

27 " Average: ", average)

28 END.

Page 2

This program is clearly a bit tedious, and
would become impossible if we wanted to
deal with, say, 100 students rather than five.
Using arrays, however, we can 'subscript' a
variable by placing a number at the end in
square brackets (for example, 'score [5]'),
rather than actually defining lots of slightly
different variable names.

Now here is a program that achieves the
same end result, but using an array:

1 CONST students = 5;
2 VAR score
: ARRAY [students] OF INTEGER;
total, average, count : INTEGER;
BEGIN
FOR count := 1 TO students DO
BEGIN
WRITE ("Enter score " ,count,”: '");
READ (score Lcountl)
10 END;
11 WRITELN; _
12 WRITELN ("Scores were:');
13 FOR count := 1 TO students DO
14 WRITELN ("Score ", count, ": ",
15 score [countl);
16 total := 0;
17 FOR count := 1 TO students DO
18 total := total + score L[count];
19 average := total / students;
20 WRITELN;
21 WRITELN ("Total: ", total,
22 " Average: ", average)
23 END.

Voo ~NONV W

The example above is not only shorter but
more general — by changing the constant
'STUDENTS' on line 1 the program will
automatically process any number of
students, from one to thousands — whereas
the first program will only work for exactly
five students without major changes.

The array declaration on lines 2 and 3 telis
the compiler that you wish to declare an
array (group) of variables which share the
name 'SCORE' but are subscripted by a
number — the maximum number is specified
in brackets. In this example the maximum
size of the array is 'STUDENTS' (which is
equivalent to 5, as it is a constant, declared
to be equal to 5 in line 1).

In fact, in this case six variables are
reserved by the array declaration, not five,
as subscripted variables always start at
subscript zero, rather than one. (So the six
subscripts would be [0], [1], [2], [3], [4] and
[5].) You may choose to ignore this and just

start at subscript one (as in the example
program above), but in certain circumstances
it is important to realise that the array
really starts at subscript zero.

Another major use of arrays in G-Pascal is
for the storage of 'strings' — that is,,
alphanumeric characters, such as a person's
name. G-Pascal does not have a 'string'
type as such, but by using arrays of type
CHAR very useful effects can be obtained.
The spelling checker program in the last
issue is an example of this.

Let us try a simple program that will read
in a person's name from the keyboard and
echo it on the screen. To read a whole line
of text at a time we must declare an array
of type CHAR, and then use that array in a
READ statement without specifying a
subscript. This tells G-Pascal to filt the
whole array with whatever is typed in before
the user presses the RETURN key. So that
you know where the end of the input text is,
G-Pascal puts a carriage return (the number
13) at the end of the text.

The example below illustrates this:

VAR name : ARRAY [40] OF CHAR;
count : INTEGER;
BEGIN
WRITE (CHRC147),
"What is your name? ');
READ (name);
WRITELN;
WRITE ("Hello there, "J);
count = -1;
10 WHILE name Lcount + 1] <> 13 DO
" BEGIN

VOO NOUVTSANN -

12 count := count + 1;
13 WRITE (CHR (name [countl))
14 END;

15 WRITELN (", I hope you are well.")
16 END.

Use of the reserved word 'CHR' inside a
WRITE or WRITELN statement outputs the
contents of CHR's argument as a character
rather than a number (hence its name). So
on line 4 writing CHR(147) actually clears
the screen, as 147 is the 'clear screen'
character for the Commodore 64. On line
13 the use of CHR results in the contents of
the array 'NAME' being written as
characters rather than as numbers. To see
what we mean, try the program without the
word CHR on line 13 and you will see the
decimal equivalents of whatever name you
type in being displayed on the screen.

This program also iltustrates the
importance of realising that arrays start at
subscript zero. On line 13 the first subscript
displayed will be subscript zero (because
'COUNT' starts at -1, and has 1 added to it
before the WRITE statement). If line 9 set
COUNT to zero rather than minus 1, then
you would lose the first character typed in —
try it and see.

Using Debug Mode

As promised in the last issue, we will
describe how to use the Debug Mode of
G-Pascal.

In order to keep the amount of print-out to
a manageable level we will choose a very
simple example. [If you want to try it
yourself, key in the following small program:

1 (x %p *)

2 begin

3 writeln (5 + 6 * 7)
4 end .

If you compile this, you will get something
similar or identical to the following (the %p
on line 1 tells G-Pascal to 'display P-codes
as they are generated'):

G-Pascal compiler Version 3.1 Ser# 8374
Written by Nick Gammon and Sue Gobbett
Copyright 1983 Gambit Games

P.0. Box 124 Ivanhoe 3079 Vic Australia

(4010 1 (x %p *)

(4010 2 begin

(401C) 3C 00 00

(401F) 3 writeln (5 + 6 * 7)

Jump at 401C changed to 401F
(401F) 3B 06 00

(4022) 85
(4023) 86
(4024) 87
(4025) 08
(4026) 04
(4027) 1E
(4028
(4028) SE
(4029 1

4 end .

P-codes ended at 402A
Symbol table ended at C100
<C>ompile finished: no Errors

<gE>dijt, <C>ompile, <D>ebug, <F>iles,
<R>un, <S>yntax, <T>race, <@>uit ?

Page. 3

Referring to pages 79 and 80 of the
G-Pascal Manual you can interpret the
P-code meanings. The '3C' at 401C is an
'unconditional jump' which G-Pascal always
inserts at the start of a program, procedure
or function to 'jump over' any nested
procedure or function declarations which\
might follow. In this case there aren't any,
so the jump is subsequently patched to jump
to the next sequential address (401F) as soon
as the compiler realises this, and a message
to this effect is displayed.

Then at address 401F the compiler
generates an 'increment stack pointer’
instruction (3B) with an operand of 0006.
This reserves space for the 'stack frame
linkage data' which is needed at the start of
each program, procedure or function. The
meaning of these six bytes is explained on
page 76 of the Manual.

Then the compiler generates three 'load
short literal' instructions for '5', '6' and '7'
respectively, as described on the bottom of
page 80 of the Manual. The addition of the
'5' and the '6' is deferred because the
multiplication of '6' and '7' has higher
precedence.

Then at address 4025 the compiler
generates a multiply (08) which will multiply
the top two items on the stack.

At address 4026 the compiler generates an
add (04) which will add the top two items on
the stack.

At address 4027 is 'output a number' (1E)
which will print the resuits of the
computation.

At address 4028 is 'output a carriage
return' (5E) as required by the 'writeln'
statement, and finally at address 4029 is
'stop run' (11) which will cause the program
to stop running.

Notice how most of the P-codes are only
one byte long — this makes G-Pascal P-codes
quite compact.

Having got this far, try running this
program using Debug mode (by entering 'D'
at the Main Menu), and you will see the
following:

d

Running

(401¢) 3C 03 00 3B

Stack: CEDO = 00 00 00 00 00 00 00 00
Base: CEDO = 00 00 00 0C 00 0O
(401F) 3B 06 00 85

Stack: CEDO = (0 00 00 00 00 00 00 00
Base: CEDO = 00 00 00 00 00 00
(4022> 85 86 87 08

Stack: CECA = 00 00 00 00 0O 00 00 0O
Base: CEDO = 00 00 00 00 00 00

wou

Page 4

(4023) 86 87 08 04

Stack: CEC7 = 05 00 00 00 00 00 00 00
Base: CEDO = 00 00 00 00 00 00
(4024 87 08 04 1E

Stack: CEC4 = 06 00 00 0S5 00 00 00 0O
Base: CEDO = 00 00 00 00 00 0O
(4025) 08 04 1E 5E

Stack: CEC1 07 00 00 06 00 00 05 00
Base: CEDO = 00 00 00 00 00 00
(4026) 04 1E 5E 11

Stack: CEC4 = 2A 00 00 05 00 00 00 00
Base: CEDO = 00 00 00 0O 00 00
(4027) 1E 5E 11 00

Stack: CEC7 2F 00 00 00 00 00 00 00
Base: CEDO = 00 00 00 00 00 00
47(4028) 5E 11 00 3C

Stack: CECA = 00 00 00 00 00 00 00 00
Base: CEDO = 00 00 00 00 00 00

(4029) 11 00 3C 03
Stack: CECA = 00 00 00 00 00 00 0C 00
Base: CEDO = 00 00 00 00 00 00

HH

run finished - press a key ...

In the listing above, we have underlined
both the P-code currently being executed,
and the current data at the top of the
'stack'. The 'stack frame linkage data'
(identified as 'Base:') is always zero as no
procedures or functions are currently active.

The display of the top of the stack is the
stack contents prior to the P-code being
executed, so you can see the effects of each
P-code's execution four lines below where it
appears.

For example, at P-code address 4022 is the
P-code to push '5' onto the stack, and at the
top of this column you can see the '5' on the
stack. Numbers are always stored in reverse

"order, which is why the '5' appears as

05 00 00. Further on, you can see the
resuits of the multiplication of 6 by 7
(decimal 42, hex 2A) on the top of the stack.

Then the results of the addition appear
(decimal 47, hex 2F). Then the 'writeln'
statement outputs the '47' which appears at
the start of the line for P-code 4028. Then
the 'SsE' P-code causes a blank line to
appear.

Finally the '11' P-code causes the program
to stop running.

We hope this little example clarifies the
use of Debug mode, and how to interpret the
P-codes. You may want to examine your
own programs and see how they work.

Trace mode is similar to Debug, except
that neither the contents of the stack nor
the linkage data is displayed.

IMPROVED PRINTER HANDLING

We are pleased to be able to present
improved methods of using/G-Pascal to print
your programs, particularly if you are using a
non-standard (i.e. non-Commodore) printer.

A problem in the past has been that not all
G-Pascal owners have used the standard
Commodore printers connected via the serial
bus. (The serial bus is the same one which is
used to connect to the disk drive, if you have
one.)

In earlier issues of G-Pascal News we have
described a stand-alone printing program
which you could tailor to your needs. This is
not completely satisfactory however as it
does not allow you to easily print a program
the moment you have typed it in, or during a
compilation so as to get the P-code
addresses printed alongside the source code.

MACHINE-CODE INTERFACE

In this article we describe a special
machine-code interface which can be
installed so that the 'Print' option in the
Files Menu will cause printing to occur if you
are using a Centronics type printer. The
techniques described could be modified if
necessary to be used with other printer
types, for example an RS-232 oprinter
connected via the VIC-1011A serial
interface.

The interface routine described in this
article consists of a 256-byte machine code
routine (the assembly listing is provided)
which will open, print to, and close a printer
connected via the user port. This interface
is specifically designed for a 'parallel'
interface (commonily known as a Centronics
interface).

HARDWARE REQUIREMENTS

The hardware is connected by using a
suitable cable which connects the output of
the 6526 chip (Complex Interface Adapter)
number 2, which is addressed at addresses
$DDO0 to $DDOF and which is connected
internally to the 'User Port'. We purchased
a standard cable to do this from a local
microcomputer dealer. One end of the cable
plugs into the user port, and the other end
has a Centronics connector which is plugged
into your printer. In our case the printer is
a Brother EM-100, but as the Centronics
standard is pretty consistent this cable, and
our printing routine, should work with any

Page 5

Centronics interfaced printer.
TYPING IN THE PROGRAM

To make the printer work with G-Pascal
you will need to type in the G-Pascal
program which follows. This includes the
machine code routine as a series of hex
constants, and also 'patches' G-Pascal using
a number of MEM and MEMC statements to
install suitable links from G-Pascal to the
printer routine.

The G-Pascal program has a built-in sum
check which should detect most keying
errors you might make when entering the
machine code constants, however you should
still check the program carefully before
running it, as the sum check will not be
foolproof. Also, save the program to disk or
cassette before running it, because an error
could cause your Commodore 64 to 'lock up'.

PRINTING OPTIONS

We have endeavoured to make the printing
routine as versatile as possible, so we have
built in provision for automatically starting a
new page after a specified number of lines,
and automatically wrapping the printout
around after a specified number of columns
— in case your printer is narrower than what
you are trying to print. There is also an
'echo' flag which you can set or disable so
that what is printed is echoed on the screen
as well, or not, as the case may be.

There is provision for manual intervention
at the end of a page (by pressing a key) .for
use with 'cut sheet' printers such as daisy
wheel printers, or the routine can
automatically send a 'form feed' or other
character if desired.

The machine code routine attempts to
convert Commodore ASCII to standard ASCII
as required by most non-Commodore
printers. This is done in lines 104 to 119 of
the machine code listing. The swapping of
upper and lower case is controlled by a flag
at address $C010 - make this zero if you are
in 'upper case only' mode, and non-zero for
normal upper and lower case mode. You may
wish to adjust this part if your printer is not
printing upper and lower case correctly,
although it works perfectly on the printer we
have here.

LOCATION OF ROUTINE IN MEMORY

Examination of how the routine works may

assist those users who do not actually have a
Centronics type printer, but who can use the
background information to develop
something similar for their own printers.

In order to place the printing routine at an
address that would be the least disruptive we
have chosen to use the first 256 bytes of
what is used by G-Pascal for: a) the compiler
symbol table; b) doing a disk catalogue and
c) the run-time stack. This is addresses
$C000 to $COFF. Lines 13 to 15 of the
procedure patch G-Pascal so that it no
jonger uses that 256-byte block of memory.
A side effect of this is that there is slightly
iess room available for the compiler symbol
table and the run-time stack, but this would
not affect most programs. If this is a
problem you can place the routine at another
address that you are not using, for example
$2000 (if you are not using it for sprites
etc.). To do this, once you have entered the
program use the Replace command in the
Editor to change each occurence of 'c0O' to
'20', by typing:

r.c0.20.g

The 'g' is very important as it tells the
Editor to replace all occurences of 'cO' to
'20" if there are more than one on a line (as
there are in some cases). As the routine
does not use hex 'cO' for other than
references to addresses in the $COxx range
then this technique is simple and effective.

{f you change the running address then you
should delete lines 13 to 15 from the
procedure as you no longer need to reserve
space in the symbol table. Also the sum
check will no longer work. We suggest you
run the program in its original form first to
confirm the sum check, and then make the
modification described above.

'HOOKS' INTO G-PASCAL

Lines 48 to 51 of the G-Pascal program
instatl the 'hooks' into the machine code
routine — these consist of 'JSR' (Jump to
Subroutine) instructions, referring to $C000
(open), and $C003 (close), which replace the
buitt-in 'Commodore' open and close
instructions originally in place in G-Pascal.
Each '"JSR' instruction which is patched in is
followed by an 'RTS' (Return from
Subroutine - hex $60) which causes the
remainder of the original code in G-Pascal to
be bypassed.

Page 6

CHANGING PRINTING OPTIONS

Lines 55 to 59 are examples of how to
control the printing characteristics, you can
modify or omit them as you wish. Lines 55
and 56 control the page length and width
respectively, alter these to suit your printer.
if either are set to zero then that disables
any automatic handling for that parameter.
For example, a page width of zero means
'never send an automatic carriage return no
matter how wide the page is', similarly a
page length of zero will disable all automatic
form feeds.

Line 57 controls the 'echo to screen flag'
— this should be 'true' (non-zero) to cause
printed material to echo to the screen as
well as print, and 'false' (zero) to cause
printout to only appear at the printer.

Line 58 specifies which character will
cause a new page — it is currently set to 147
— the normal 'clear screen' character. Line
59 specifies which character will be sent to
the printer when the routine receives either
the character specified in line 58, or when
the maximum page length has been reached.
In other words, as the program is currently
set up, if you 'print' a 'clear screen'
(CHR(147)) then the program will send a
'form feed' (CHR(12)) to the printer. If the
value in line 59 set to zero then special
processing occurs — a zero is not sent to the
printer, rather the program waits for the
[SHIFT] key to be pressed and released. This
is so that a new page can be inserted into
'single sheet' printers, such as daisy wheels.
No warning message occurs while the
program is waiting for the [SHIFT] key to be
pressed, so try pressing [SHIFT] if the
program seems to have gone dead whilst
printing.

You can also patch address $CO010, as
mentioned previously, depending on whether
you want upper and lower case reversed or
not.

TESTING THE PROGRAM

Once you have typed in this program and
adjusted it for your requirements (and saved
it to disk or cassette before testing it), you
should just Run it. After a second it will
just finish normally (unless there is a sum
check error). If it finishes normally then
you can enter the 'Files' menu and select
'"Print' — you should then see the Files Menu
being echoed on your printer. Then select
'Edit' and type 'L' followed by [RETURN]

and your program should list on the printer.
To turn the printer off, return to the Files
Menu and select '"Noprint', or atternatively

press RUN/STOP and RESTORE
simultaneously which will perform a 'warm
start' and cancel any printing. If the

program seems to go dead, try pressing the
SHIFT key — you may have reached the end
of the current page.

if your printer is not operational and
G-Pascal 'hangs' just press RUN/STOP and
RESTORE together to recover.

Once you have got the program working to
your satisfaction save a copy on various disks
or cassettes, ready for easy use at the start
of the session. You will need to recompile
and re-run the program for each session of
G-Pascal as the machine code routine is lost
once the power is turned off, but once it is
instalied it will stay operational for the
entire session.

PRINTING FROM WITHIN PROGRAMS

Once you have instalied this routine you
can also call it from within your own
programs, which provides a very powerful
capability. You only need to CALL ($C000)
to turn the printer on, and CALL ($C003) to
turn it off again. With the printer on, all
output from WRITE and WRITELN
statements will go to the printer. You will
probably want to turn off the 'echo' flag
when using the routine from within a
program. There is a small demonstration
program showing how to use the printer
routine from within your program in the
following pages. Once the printer has been
turned on once, you can just activate or
deactivate it by changing location $CO11
(PFLAG in the assembly listing). By doing
this you will preserve the current line and
column counters that the printer routine
refers to.

When wusing the printing routines from
inside your programs it is probably a good
idea to check that the printing routine has
been installed prior to running the program
(by checking the first three bytes with a
MEM statement). Our sample printing
program does this at lines 12 and 13. In both
programs we use the 'divide by zero' error to
force a program abort.

Page 7

PRINTING WITH THE RUNTIME SYSTEM

If you want to use the printing routine
from a program written for use with the
Runtime System then the printing routine
will have to be installed as part of the
program that you are running (because a
program running under the Runtime System
must be self-contained).

To do this you would just use the
procedure INSTALL PRINTER_INTERFACE
which would be called at the start of your
program, with the following changes:

1) Change line 13 to read:
memc [$95a5] := $C1; (* stack Limit *)

2) Delete lines 14 and 15 (doing a
catalogue, and the size of the symbol table
do not appiy to the Runtime System).

3) Delete lines 48 to 51 as the Runtime
system does not have a 'print' option. (You
will open and close print files manually from
within your program).

The corrections described above apply to
the line numbers as printed over the page —
as you delete some of the lines described
above then the ones further down will be
renumbered — it would be best to start at the
highest numbered lines and work backwards
that way the line numbers you are
correcting will be the same as those printed.

NEXT ISSUE
We hope this article is helpful for
customising your printing requirements. We

may show in the next issue how to change
the routine to bandle RS-232 printers if
there is enough interest shown by readers.

NN SN =

(*x Program to install G-Pascal Centronics interface *)

procedure install_printer_interface;

var i, sum_check :

procedure x (a, b, ¢);

begin
mem [i]
mem [i + 3]

e
I nH

mem [i + 6] :
sum_check := sum check + a + b + ¢;

i:=1i+9
end ;

AT

T
~

Cs

integer ;
(* install 9-byte patch *)

begin (* install _printer_interface *)
memc [$b1c3] 1= $c¢1;

memc [$9d02]
memc [$800b3J
i 2= $c000;

sum_check :=

0;

(*
(x
(*
(%
(*

stack Llimit *)

catalogue *)

sym table size *)
address *)
keying errors *)

patch
catch

x($13b038,%44b038,$47b038) ; (*
x($37c006,%$930150,$000100); (*
x($000000,%$27ad00,%$c0c903); (*
x($a211f0,%$26bd01,$fe9d03); (*
x($09bdc0,$269dc0,$10ca03); (*
x($ffa9f1,$dd038d,$dd02ad); (*
x($8d0409,%$8ddd02,%adc011); (*
x($a9dd0d,$128d01,$138dc0); (*
x($a960c0,%$118d00,%$4860c0); (*
x($c0148e,%c00dae,$ae05d0); (*
x($d0c011,%$20480a,%$68c0f9); (*

x($c011ae,$cdbcf0,$f0c00e)

; O

x($c1c¢970,%$c90690,%02b0db) ; (*
x($ae5fe9,$f0c010,%$41¢912); (*
x($c90e90,308905b,%$9061¢9); (*
x($7bc906,3$4902b0,$712920); (*
x($c0158d,$dd018d,$dd00ad) ; (*
x($8dfb29,%$48dd00,$684868) ; (*
x ($8d0409,%addd00,$29dd0d) ; (*
x($f9f010,%$c015ad,$c00fcd) ; (*
x($c93df0,$11f00d,$c013ee); (*
x($c00cad,$cd31f0,$b0c013); (*
x($0da%92c,%$a9c3d0,$138d01); (*
x($12eec0,%0badc0,$1bf0c0) ; (*
x($c012cd,$a916b0,%$128d01); (*
x($0fadc0,%$a7d0c0,$028dae) ; (*
x($d001e0,%$8daef9,$fbd002); (*
x($c014ae,$601868,%c0febec); (*

if sum_check <> -5037022 then

mem [$9e55]
memc [$9e58]
mem [$9e661]
memc [$9e69]
end ;
begin

= $60;

= $c00320; (* close routine *)

:= $60

$c000
$c009
$c012
$c01b
$c024
$c02d
$c036
$c03f
$c048
$c051
$c05a
$c063
$c06¢c
$c075
$cO7e
$c087
$c090
$c099
$c0a2
$c0ab
$c0b4
$c0bd
$clcb
$cOct
$c0d8
$cOe
$clea
$c0f3

(* detect keying errors *)
writeln ("Sum check error in machine code.", 1 /7 O);
:= $c00020; (* open routine *)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(* return %)

(* return *)

install_printer_interface;

memc [$c00b]
memc [$c00c]
memc L[$c00d]
memc [$c00ed
memc [$c00f]
end .

1= 62;
80;
1;
= 147;
=12

(* main program %)

(* page length *)

(x page width *)

(* echo to screen flag *)

(* character to cause form feed *)
(x form feed to printer *)

(* install_printer_interface *)
(* main program *)

Page 8

€000:
€001:
€003:
C004:
C006:
c007:
c009:

c0o0B:
c00ocC:
co0D:
COOE:
COOF:
c010:
C011:

c012:
c013:
C014:
€c015:

c016:
c019:
c01B:
C01D:

38
BO
38
BO
38
B0
06

37
50
01
93
00
01
00

00
00
00
00

AD
c9
FO
A2

13
44

47
co

27 03
co
11
01

NVOO~NOUVISS W =

Author:

* % o * ¥

*/

*

ORG

Nick Gammon

Version 9 — JULY 1985

$€000

'4

Routine to send data to Centronics printer
connected to Commodore 64 using G-Pascal.

WHERE SYMBOL TABLE WAS

* Below are the three entry points: open, close and
* Open and close are called by the user to turn the

* or off.
OPEN SEC
BCS
CL.OSE SEC
BCS
PRINT SEC
BCS
PRINTADR DA
* Below are
DATA:A EQU
DATA:B EQU
DDR:A EQU
PDR:B EQU
ICR EQU
IBSOUT EQU
SHFLAG EQU
CR EQU

PAGELLEN DFB
PAGEWID DFB
ECHOFLAG DFB
FFIN DFB
FFOUT DFB
CASESWAP DFB
PFLAG DFB

LINES DFB
coLs DFB
XSAVE DFB
CHAR DFB

OPEN THE PRINTER FILE.

OPENIT
CLOSEIT

PRINTIT
PRINT

$0DO0
$0D01
$DD02
$DDO3
$DDOD
$326
$28D
13

Print is called from the

YCHROUT' output

HERE TO OPEN PRINTER
HERE TO CLOSE THE PRINTER
HERE TO PRINT A CHARACTER

ADDRESS OF 'PRINT' ABOVE

DATA REGISTER A (USED FOR
DATA REGISTER B (USED FOR
DATA DIRECTION REGISTER -
DATA DIRECTION REGISTER -
INTERRUPT CONTROL REGISTER
KERNAL OUTPUT VECTOR

1 = SHIFT KEY PRESSED
CARRIAGE RETURN CHARACTER

print.
printer on
vector.

STROBE)
PRINTED DATA)
A

B

PAGE LENGTH

PAGE WIDTH

NON-ZERO MEANS ECHO TO SCR
'CLEAR SCREEN' WILL CAUSE
MAKE 12 FOR FORM FEED, O F
1 = SWAP UPPER/LOWER CASE
PRINTING IN PROGRESS FLAG

EEN ALSO
FORM FEED
OR PAUSE

LINE COUNT
COLUMN COUNT
SAVE AREA FOR X-REGISTER

THE CHARACTER WE ARE PRINTING

can be re-opened by simply moving non-zero to PFLAG.

*
* Once the printer has been opened from within a program it
*
*

Doing this would preserve current line and column counters.

EQU
LDA
CcMp
BEQ
LbX

*
IBSOUTH+1
H>PRINT
OPENZ2

#1

r

s N

Page 9

ALREADY INSTALLED?

YES

NO - COPY VECTOR/INSTALL NEW ONE

CO1F: BD 26 03 60 OPEN1 LDA IBSOUT,X OLD VECTOR

’
€c022: 9d FE CO 61 STA QUTVEC,X ;> MAKE A COPY OF IT
€C025: BD 09 CO 62 LDA PRINTADR,X ; NEW OUTPUT ROUTINE ADDRESS
C028: 9D 26 03 63 STA IBSOUT,X
c02B: CA 64 DEX
€02C: 10 F1 65 BPL OPEN1
66 OPEN2 EQU * 2 ON WITH OPEN
CO2E: A9 FF 67 LDA HS$FF ; SET PORT B DATA DIRECTION TO QUTPUT
C030: 8D 03 DD 68 STA DDR:B
C033: AD 02 DD 69 LDA DDR:A ; AND BIT 4 OF PORT A
C036: 09 04 70 ORA #4
€038: 8> 02 DD 71 STA DDR:A
C03B: 8> 11 CO 72 STA PFLAG ;5 SET PRINTING FLAG
CO3E: AD OD DD 73 LDA ICR ; CLEAR ANY OUTSTANDING INTERRUPT FLAG
C041: A9 DM T4 LbA #1
C043: 8D 12 CO 75 STA LINES ;> SET LINE COUNT TO 1
C046: 8D 13 CO 76 STA COLS ; DITTO FOR COLUMN COUNT
C049: 60 77 RTS ; AND RETURN
T8 ke e e e
79 * CLOSE THE PRINTER FILE
80 A e e e e
81 CLOSEIT EQU =*
CO04A: A9 00 82 LDA #0
C04C: 8D 11 CO 83 STA PFLAG ; CLEAR PRINTING FLAG
CO4F: 60 84 RTS ; ALL DONE
85 e e o o e e e e e
86 * Print a character (in A-Register). ALl registers preserved.
87 hkmmm—mmmmmm— e —_—— ————— e
88 PRINTIT EQU *
C0s50: 48 89 PHA ;s SAVE A-REGISTER
C051: 8t 14 CO 90 STX XSAVE ;5 SAVE X-REGISTER
C054: AE OD CO 91 LDX ECHOFLAG 3 ECHO ON SCREEN?
C057: b0 05 92 BNE PSCREEN 5> YES
C059: AE 11 CO 93 LDX PFLAG ;s PRINTING?
€05C: b0 OA 94 BNE PRINTNOW ; YES — SO PRINT ONLY
95 PSCREEN EQU * ;> HERE TO OUTPUT TO SCREEN
CO5E: 48 96 PHA ; SAVE THE CHARACTER FOR LATER
COS5F: 20 F9 CcO 97 JSR OUTPUT > USE NORMAL KERNAL OUTPUT ROUTINE
C062: 68 98 PLA ; BACK TO OUR ORIGINAL CHARACTER
C063: AE 11 CO 99 LDX PFLAG ; PRINT ALSO?
C066: FO 4C 100 BEQ PFINISHJ ; NOPE - FINISH VIA PFINISHJ
1017 PRINTNOW EQU * ; HERE TO PRINT THE CHARACTER
C068: CD OE CO 102 CMP FFIN ;> FORM FEED?
c06B: FO 70 103 BEQ GOTFF ; YES - SPECIAL HANDLING
co6d: €9 C1 104 CMP #"A" ; UPPER CASE (8-BIT ON)?
CO6F: 90 06 105 BLT PRINT1
c071: €9 DB 106 CMP #"Z71"+1
€073: BO 02 107 BGE PRINT1
€075: E9 SF 108 SBC #35F
C077: AE 10 CO 109 PRINT1 LDX CASESWAP ; CASE SWAP REQUIRED?
CO7A: FO 12 110 BEQ PRINT3 ;5 NO
CO07C: C9 41 11 CMP #'A ; REVERSE CASE OF LETTERS
C07e: 90 OE 112 BLT PRINT3
c080: C9 5B 113 CMP #'1'#1
€082: 90 08 114 BLT PRINT2
C084: C9 61 115 CMP #'a!
C086: 90 06 116 BLT PRINT3
C088: (€9 7B 117 CMP #'2'+1
C08A: BO 02 118 BGE PRINT3
c08C: 49 20 119 PRINTZ2 EOR #320 ; CONVERT TO NORMAL ASCII

Page 10

CO8E:
€090:
C093:
C096:
€099:
co9B:
CO9E:
CO9F:
COAQ:
COAT:
COA2:
COA4:
COA7:
COAA:
COAC:
COAE:
c0B1:
COB4:
cOB6:
c0BS8:
COBA:
c0BD:
c0cO:
coce:
c0C5:
coc7:
c0Co9:

cocB:
CcOCD:
con0:
cOD3:
COD6:
con8:
CODB:

cODD:
CODF:
COEZ:
COES:
COE7:
COEA:
COEC:
COEE:
COF1:

COF3:
COFé6:
COF7:
COF8:

COF9:

--End

29
8D
8D
AD
29
8D
48
68
48
68
09
8D
AD
29
FO
AD
)]
FO
c9
FO
EE
AD
FO
cb
BO
A9
DO

A9
8b
EE
AD
FO
()
BO

A9
8D
AD
DO
AE
EOQ
DO
AE
DO

AE
68
18
60

6C

7F
15
01
00
FB
00

04
00
0D
10
F9
15
OF
3D
0b
11
13
0c
31
13
2cC
0D
€3

01
13
12
0B
1B
12
16

01
12
OF
A7
8D
01
F9
8b
FB

14

FE

co
DD
DD

DD

DD
DD

co
€0

co
co

c0

co
co
co

co

€0

co

02

02

co

co

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

assembly, 252

PRINT3 EQU
AND
STA
STA
LDA
AND
STA
PHA
PLA
PHA
PLA
ORA
STA
PWAIT L.DA
AND
BEQ
LDA
CMp
PFINISHJ BEQ
CMP
BEQ
INC
LDA
BEQ
CMP
BGE
LDA
BNE
GOTCR EQU
LDA
STA
INC
LL.DA
BEQ
cmp
BGE
GOTFF EQU
LDA
STA
LDA
BNE
SHWAIT LDX
CPX
BNE
SHWAITZ2 LDX
BNE
PFINISH EQU
LDX
PLA
CLC
RTS
*

OUTPUT JMP
*

OUTVEC EQU

*

HSTF
CHAR
DATA:B
DATA:A
#$FB
DATA:A

#H
DATA:A
ICR
#3$10
PWAIT
CHAR
FFOUT
PFINISH
#CR
GOTCR
CoLsS
PAGEWID
PFINISH
COLS
PFINISH
#CR
PRINT3
*

#1

COLS
LINES
PAGELEN
PFINISH
LINES
PFINISH
*

#1
LINES
FFOUT
PRINT3
SHFLAG
#1
SHWAIT
SHFLAG
SHWAIT?2
*

XSAVE

(OUTVEC)

OPEN+254

bytes, Errors: 0O

Page 17

Ne %o

Ne N2 e We Mo Ne Ns N3 N Ne N2 Ve Yo N

“s % Ne No N2 Vo ~s

e %o wa N

e

Ne Ne Wi N N LT}

e

A Y]

NOW STRIP HIGH-ORDER BIT
SAVE OUR CHARACTER
Send data to printer

STROBE PRINTER

GIVE PRINTER TIME TO NOTICE IT

WAIT FOR ACKNOWLEDGE

CHECK 'FLAG" BIT

NOT SET YET

SEE IF IT WAS <RETURN> OR FORM FEED
FORM FEED?

YES -~ DON'T COUNT AS A COLUMN
WAS IT A CARRIAGE RETURN?

YES - SPECIAL PROCESSING
COUNT COLUMNS

GET PAGE WIDTH

ZERO MEANS IGNORE WIDTH

PAST WIDTH?

NOT YET

SEND A CARRIAGE RETURN

HERE WHEN WE GOT A CARRIAGE RETURN

COLUMN COUNT IS BACK TO 1
AND COUNT LINES

UP TO MAXIMUM?

ZERO MEANS ANY LENGTH OK

NOT YET
HERE WHEN NEW PAGE WANTED

LINE COUNTER BACK TO 1
SEND FORM FEED?

YES - DO IT

WAIT FOR SHIFT KEY

NOT YET
NOW WAIT FOR THEM TO LET GO

FINISHED PRINTING

RESTORE X-REGISTER

RESTORE A-REGISTER

KEEP KERNAL HAPPY (CLC = NO ERROR)
RETURN TO CALLER

INDIRECT JUMP TO KERNAL OUTPUT

USE LAST 2 BYTES IN THIS PAGE

G-Pascal compiler Version 3.1 Ser# 8374
Written by Nick Gammon and Sue Gobbett
Copyright 1983 Gambit Games

P.0. Box 124 Ivanhoe 3079 Vic Australia

(42F1) 1 (% %LIST - give us a compile listing *)
(42F1) 2 (*x Printer demonstration program *)
(42F1) 3 const openprint = $c¢000;

(42F4) 4 closeprint = $c003;

(42F4) 5 echoflag = $c00d;

(42F4) 6 printflag = $c011;

(42F4) 7 false = 0;

(42F4) 8 true =1;

(42F4) 9 var i,

(42F4) 10 number : integer ;

(42F4) 11 begin
(42F4) 12 if mem Copenprintl <> $13b038 then (* check machine code *)

(4301 13 writeln ("Printer routine not installed.”, 1 / 0);
(4329) 14
(4329) 15 call Copenprint); (* open print file *)

(432E) 16 memc [Cprintflagl := false; (* don't print yet *)
(4334) 17 memc [echoflagl := false; (* no echo to screen *)
(433R) 18

(433A) 19 write ("Which multiplication table? ");

(4358) 20 read (number);

(435D) 21 memc Lprintflag] := true;

(4363) 22 writeln ;

(4364) 23 writeln ("Multiplication table for ', number);
(4385) 24 writeln ;

(4386) 25 for i := 1 to 12 do

(4395) 26 writetn (i, " times ", number, " =", number * i);
(43C7) 27 writeln ;

(43C8) 28 memc [printflagl := false;

(43CE) 29

(43CE) 30 writeln ("ALL finished!");

(43DE) 31 memc Lechoflagl := true; (* echo to screen *)
(43E4) 32 call (closeprint)

(43E8) 33 end .

P-codes ended at 43EA
Symbol table ended at C184
<C>ompile finished: no Errors

<E>dit, <C>ompile, <D>ebug, <F>iles,
<R>un, <S>yntax, <T>race, <Q>uit ? r
Running

Multiplication table for 7

1 times 7 = 7

2 times 7 = 14

3 times 7 = 21

4 times 7 = 28

5 times 7 = 35

6 times 7 = 42

7 times 7 = 49

8 times 7 = 56

9 times 7 = 63

10 times 7 = 70
11 times 7 = 77
12 times 7 = 84

Page 12

USING SPRITES FROM G-PASCAL

The example program on the right
demonstrates the use of various aspects of
sprite handling within G-Pascal. it is a bit
more elaborate than the example in the
G-Pascal Manual on page 46, but is still
reasonably simple.

Lines 3 to 15 are CONST declarations of
various constants needed by the SPRITE,
SOUND and GRAPHICS commands, as
suggested in the G-Pascal Manual to make
the program more readable.

Line 16 declares three variables for use
within the program.

Lines 18 to 21 define the shape of the
sprites. This definition was set up using the
SUPERSPRITE EDITOR written by Craig
Brookes (sold separately by Gambit Games).
You could also edit the sprite using the
SPRITE EDITOR supplied on later G-Pascal
disks, and the G-Pascal Update Disk.

Line 22 clears the screen by writing the
Commodore 'clear screen' character
(decimal 147).

Lines 23 to 28 set up all eight sprites to
have the same characteristics. Notice that
they all share the same sprite shape (placed
at sprite location 128) so only one
DEFINESPRITE statement is necessary.

The 'sprite' statement can accept an
indefinite number of arguments, provided
they are given in groups of three, namely:
1] Sprite number; 2] What 'command
number' to do to that sprite (e.g. EXPANDX)
and 3] the 'argument' to that command (e.g.
ON or OFF).

Lines 29 to 32 use the GRAPHICS
statement to change screen colours, and set
up the multi-coloured sprites second and
third colours.

Lines 33 to 45 use the MOVESPRITE
statement to automatically move the sprites
across the screen in three 'waves' (run the
program and you will see what we mean).

The arguments to 'movesprite' are:
1] sprite number; 2] initial X position;
3] initial Y position; 4] increment in X

direction (-512 means two pixels per frame
backwards); 5] increment in Y direction (0
means 'fly horizontally') and 6] number of
frames to move.

Line 44 waits for 0.35 seconds before
bringing in the next wave.

Lines 46 and 47 just wait for the sixth
sprite to have stopped moving before
allowing the program to end.

Page 13

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

(* sprite movement demo program.
Written by Sue Gobbett. *)
const
blue = 6; red = 2;
black = 0;
multicolour = 3;
spritecolour0 = 16;
spritecolourl = 17;
on = 1; off = 0;

' 4
expandx = 4;
point = 2;
active = 7;
background = 12;
delay = 3;
clearscreen = 147;
var i, j, spnum : integer ;
begin
definesprite (128, v
$00050, $001f4, $007fc,
$01ffc, $1fff5, $01ffc,
$007fc, $001f4, $00050);
write (chr (clearscreen));
for 1 := 1 to 8 do
sprite (
i, point, 128,
i, multicolour,
i, expandx, on,
i, active, on);
graphics (
background, black,
spritecolour0, red,

on,

spritecolouri, blue);
spnum = 0;
for i := 1 to 3 do
begin
for j =1 to i do
begin
sphum := spnum + 1;
movesprite (spnum,
(350 - (spnum * 4)),
(150 - (3 * 20) + (5 * &40),
-512, 0, 200
end ;
sound (delay, 35)
end ;
repeat
until spritestatus (6) =20
end .

PROGRAMMING WITHOUT BUGS

Programming in Pascal can be a rewarding
experience because it is generally possible to
write programs that do not suffer from
major, unexplainable bugs — unlike
programming in unstructured languages like
Basic.

There are a couple of reasons for this, one
is the ability to use 'local' variables in
procedures, thus isolating unexpected side-
effects. Another is the absence of the
'GO TO' instruction which, when foolishly or
carelessly used, can cause major debugging
headaches. .

For example, suppose you are writing an
Adventure game and you want to write a
procedure to describe the contents of a given
room. If you declare the procedure as:
PROCEDURE describe_room (room_number);
and use local variables for any internal
processing that is required within the
procedure, then DESCRIBE _ROOM has got
very clearly defined inputs and output — its
input is the 'room _number' argument, and its
output is a room dszscription on the screen.
Any other processing necessary is confined
to local variables and cannot have side-
effects in the rest of the program.

If you program like this then you can
debug individual procedures simply (for
example, by writing a test program that just
calls that procedure with nominated
arguments), and once they are debugged they
can be forgotten.

Unlike Basic, you cannot 'accidentally’
jump into the procedure, or jump out of it.
The procedure itself cannot do anything
except start at the start, and procede in an
orderly fashion to the last statement in it (it
can, of course, loop by using DO, REPEAT
and WHILE statements, but these have a
straightforward operation).

You are also free of the restrictions
imposed by line numbers in Basic — as the
G-Pascal editor allows you to insert an
indefinite number of lines between two
consecutive lines, you can code a 'skeleton'
program initially, and easily 'flesh it out'
later on.

For example, a skeleton adventure game
might look like this initially:

CONST true = 1;
false = 0;

VAR room, game_over : integer;
input_Lline : array [803 of char;

PROCEDURE describe_object (which _one);
BEGIN
END;

PROCEDURE describe_room (which_room);
BEGIN
END;

PROCEDURE get_Lline_from player;
BEGIN

READ (input_Lline)

END;

PROCEDURE take_object (which_object);
BEGIN
END;

PROCEDURE drop_object (which_object);
BEGIN
END;

BEGIN (* main program *)

room = 1;

game_over := false;

REPEAT
get_line_from_player;
describe_room (room)

UNTIL game_over

END.

Whilst this simple example won't play a
very exciting game, it gives you the basis for
building up the program in manageable steps,
and can actually be compiled and tested even
in its skeleton form.

A few useful debugging tips can make
programming easier, too. One idea is to test
a key on the keyboard (such as the
'Commodore' key) and if it is down, display
debugging information which would
otherwise not appear. To do this you could
say:

IF MEMC [653] = 2 THEN

WRITELN ("You are currently in room ",

room) ;

Another way of handling debug
information is to have a 'start debug’
command. For example, if the adventure
game player typed in 'START DEBUG' the
program could start outputting debugging
information. (I have noticed that entering
'T' to Scott Adams' adventures seems to
have this effect).

In conclusion, Pascal allows you to write
and debug programs with a minimum of
frustration, thus making programming an
enjoyable and rewarding activity.

Page 15

