C64 Communications

in this article Nick Gammon de-
scribes his modem communica-
tion program for the Commodore
64. It is written in G-Pascal for
the Commodore 64, and uses
the Christensen protocol.

USING THE Christensen Protocol (de-
scribed in Your Computer — May and
June 1983) has several advantages —
one of which is that it is already widely
in use for data transmission. The pro-
tocol itself, and various implementations
(such as YAM on CP/M systems), are
in the public domain, making them read-
ily available.

This program is directly compatible
with the Mi-Computer Club (MiCC) bul-
letin board. Once you have typed in the
program, you can directly access public
domain software (if you are a member
of MIiCC) with minimum effort and
maximum reliability.

You can also use it to converse with
any other remote computer, have con-
versations between two Commodore 64
owners, or transfer programs between
one Commodore 64 and another Com-
modore 64 or any other computer which
has a program using the Christensen
protocol.

What You Need

To use this program you will need:

a) A Commodore 64

b) An RS232 serial interface plugged
into the user port (these are priced at
about $50).

¢) A modem connected to your tele-
phone. (There was an article on mod-
ems in November 1983 Your Com-
puter). You can use a ‘direct coupled’ or
an ‘acoustically coupled modem.
Modem prices vary; however, you could
expect tc get a cheap but satisfactcry
one for under $200.

d) A cable between the modem and
the RS232 interface. As far as the Com-
modore 64 is concerned you only need
to connect to pins 2, 3 and 7 (transmit
data, receive data and ground).

e) A copy of G-Pascal — currently
available for $79.50 from Commodore
dealers.

'"Your Computer' - March 1884

Program

Other Computers

If you don’t have a Commodore 64,
this program will not be of direct use to
you. However, as it is written in Pascal
it is relatively easy to follow — you
should find the general methods used
helpful in developing a similar program
for your own computer.

Why Use A Protocol
For Transferring Files?

While it is possible to write a simple
‘dumb terminal’ program in about ten
lines of code, transferring files is a littie
more complicated. The reason for this is
occasional noises on the telephone line
may introduce errors, which might be
acceptable if you are just having a con-
versation with someone at the other end
of the line, but can cause irritating and
hard-to-find errors if embedded in the
middle of a program.

Data integrity (correct transmission of
files) is not just ‘handy’, it is essential if
you are to have any confidence in using
your telephone for sending programs
back and forth.

The Christensen protocol provides
this integrity in a number of ways:

1. The sender and receiver ‘syn-
chronise’ by using an agreed sequence
of characters to start things rolling. This
provides proper synchronisation even if
the sender and receiver request trans-
mission at different times (within no
more than 60 seconds of each other).

2. Data is broken into 128-byte blocks
so that if an error occurs it is only neces-
sary to re-transmit 128 bytes, not the
whole file.

3. Each block is numbered to ensure
data is received in the correct sequence.

4. Each block has a sum check (op-
tionally a cyclic redundancy check), to
confirm that the data in that biock is cor-
rect.

5. The program has provision for han-
dling ‘timeouts’ — in other words, if no
data at all is received within a predeter-
mined time, the sending end re-trans-
mits the block so that the program
doesn’t ‘hang’ indefinitely.

6. The program also performs a cyclic
redundancy check on the whole file (as
well as on individual blocks), to further
ensure that the file was transmitted cor-
rectly.

Cyclic Redundancy Checks

The program uses cyclic redundancy
checking for ensuring the integrity of
both individual blocks of transmitted
data and the whole file. A cyclic redun-
dancy check (CRCK for short) is an en-
hanced method of doing a ‘sum check’
on a block of data. A sum check is per-
formed by adding up each byte of data
and retaining the low-order byte. A
CRCK is performed in a more compii-
cated way: in fact, there are various
CRCK algorithms. The modem program
uses two different methods in order to
be compatible with YAM. Both methods
involve calculating a two-byte result, by
shifting the previous result left one bit
and adding in the new bit (or byte), to
provide the new result. However, unlike
a simple sum check, the CRCK routines
have provision for not losing the carry bit
when the shift is performed. If the shift »

67

left produces a carry, the whole sum is
exclusively OR’ed with a constant value.

A simple sum check will not distin-
guish, for example, between 5 4 3 2 and
2 3 4 5 — both will provide the same re-
sult. The cyclic redundancy check would
provide a different result in this case,
making it more reliable.

For the sake of speed, the CRCK al-

gorithms in this program are im-
plemented as machine-code sub-
routines.

The Protocol

For more details on the Christensen
protocol, see Your Computer, June
1983. Briefly, however, data is transmit-
ted in 128-byte blocks. Each block starts
with an SOH (hex 01), followed by the
block number, followed by the 1s com-
plement of the block number (for integ-
rity checking). Then follow exactly 128
bytes of data — all eight bits are trans-

mitted, so object files or data of any kind -

can be transmitted. Then, there is either
a single byte simple sum check, or two
bytes of cyclic redundancy check data.
The receiving end sends an ACK (hex
06) if it received the block correctly, or
a NAK (hex 15) if it didn’t. After the last
block, the sender transmits an EOT (hex
04) to indicate end of transmission.

Files are transferred at a rate of about
1K per 45 seconds. «

What The Program Will Do
The program has the
capabilities:
Full-duplex terminal
Half-duplex terminal
Transmit a file
Receive a file
Analyse a file
Type the last file
Cancel a transmission
These are explained below:
‘Full-duplex terminal’ is the default
mode when the program first com-
mences. It is the correct mode for con-
versing with a remote bulletin board —
such as the MiCC bulletin board. Since
Commodore 64s use a non-standard

following

code set (not ASCll), the program auto-
matically converts -data typed at the
keyboard to standard ASCIl. This basi-
cally involves reversing upper/lower
case, and changing certain control
codes (such as backspace, clear
screen) to standard ASCIl. The only
control codes supported are RETURN,
clear screen (press SHIFT and CLR/
HOME), backspace (press INST/DEL),
and the left/right arrow key. To leave ter-
minal mode, press the ‘Commodore
logo’ key.

The ‘half-duplex terminal’ mode
should be used if you are conversing
with another Commodore 64 owner. in
this case, what you type appears on the
screen in light blue; what the other per-
son types appears on the screen in
white.

‘Transmit’ a file initiates transmission
of a file to the other end of the line. Be-
fore transmitting you should ensure that
the other end is about to enter ‘Receive’
mode (within 60 seconds) or you will get
a timeout and the transmission will be
aborted. After selecting ‘transmit’, you
will be asked if the file is on disk or cas-
sette, and what its name is. The file will
then be loaded, an estimated transmis-
sion time (and the number of blocks in
the file) will be displayed, and transmis-
sion will commence. An asterisk will be
displayed as each block is transmitted.
Any transmission errors will be dis-
played in red. if the words ‘File transmit-
ted successfully’ appear, the file was
transmitted correctly. Once the file has
been transmitted, the program automati-

cally re-enters terminal mode so you’

can talk to the other end again.

‘Receive a file’ initiates reception of a
file from the other end of the line. You
should ensure the other end is about to
transmit a file before entering this mode.
In the case of remote CP/M systems
(such as the MICC bulletin board), you
should call up XYAM and command it to
send the file you want like this:

XYAM S filename
As soon as you have done that, press
the Commodore key (to return to the

Main Menu) and enter ‘R’ (for Receive).

Following reception of a file, the pro-
gram displays a ‘file cyclic redundancy
check’. This should agree with the valte
displayed at the sender's end prior to
transmission (or, if the other end is
using YAM they should type: CRCK file-
name). If these figures agree, you can
be pretty certain that the file was re-
ceived correctly.

Once the file has been successfully
received, you will be asked whether to
save it to disk or cassette and to enter
its file name. When the file is saved, the
program automatically verifies it to make
sure that it saved correctly. At the end
of this procedure, the program automati-
cally re-enters terminal mode and you
can talk to the other end again.

‘Analyse a file’ loads a specified file
into memory and displays its file size
(number of transmission blocks), mem-
ory size (in K), file cyclic redundancy
check, and the estimated transmission
time.

‘Type last file’ types on the screen the
last file that was sent, received or
analysed. (So, to display the contents of
any file, just Analyse and Type it). Press
the SHIFT key to temporarily halt the
display, and the Commodore logo key to
abort the display and return to the Main
Menu. Files which are ‘tokenised’ or not
stored as straight ASCII text files (such
as BASIC or G-Pascal files) may display
a little strangely.

‘Cancel a ftransmission’ cancels a
transmission that you commenced in
error. First, abort the transmit or receive
function by pressing RUN/STOP, then
re-run the program and select the ‘can-
cel’ function. This will transmit three
CAN (hex 18) characters to the other
end which should cause the program to
abort its transmission/reception.

Colours
The program uses colour coding to
identify the different messages and gen-
erally avoid confusion. The codes are as
follows:
Grey and green — messages (not
errors) from the program.
Red — error messages from the
program.
Light-blue — data typed by the user
at this end.
White — data sent from the other
end. ' '

Limitations

The program cannot handle files
greater than 24K in length, as it has to
load the whole file into memory at once.
Files larger than this wiil corrupt the G-
Pascal compiler.

The program can only handle ‘pro-
gram’-type files (that is, files of type ‘prg’
on disk). This includes BASIC, G-Pascal »

69

and machine-code files in general. With
a bit of work you could change from
loading files to opening them and read-
ing a byte at a time. This would remove
both these restrictions.

The program will not transfer in ‘batch’
mode (multiple files at one time), unlike
YAM.

Future Enhancements

The program could have further fea-
tures added, but what is presented here
is certainly adequate for transferring
files backwards and forwards. Once you
have this version operational, you can

always download improved versions -
from bulletin boards as they are made S— ——
available. 39 setnam = $ffbd; 126 end -
Possible enh t id be: 2 o
0ssible enhancements wou e: al soh = §13
‘ 5 . " _ N 131 begin (¥ init *)
1. Implement a ‘batch’ mode compati- i et = 132 write (chr (home));
. . S L. 133 graphics (charcolour, light_grey);
ble with YAM. Zi‘ ZSE - 5;;: 134 meme [650] i= 128; (* all kevs aulo-repeat *)
2. Transfer all file types (not just pro- p e 135 writeln ("YAM-compatible Hoden Program for C64.");
N X \ o peersies 136 writeln ("Written by Nick Gammon in G-Pascal.");
grams) by opening a disk file and read- 8 pry =5 137 writeln ("Wersion 1.2 - PUBLIC DOMAIN.");
N . 29 var 138 writeln ("G-Pascal is produced by Gambit Games -");
ing a byte at a time. S var ed i char 139 writeln (" enquiries: Gambit Games, P.O. Box 124,");
. A ‘ ’ 140 ritel v I , Vicw a 3079. Australia.');
3. Save conversations in memory for 51 o 130) of e 19 el (" Tvanhoe, Vicioria 3079. hustralia.”)
. . . 52 buffer : array [130] of char ; : ns
later review, with an option to dump a 3 namel, name? : array [20] of char ; T b e revtine for transmission #)
conversation to disk. % esrgermmalede, PPN Eris s B oS el
- . 145 insert ($08a207,5260726,$5F265e);
. ;g’ %:;g‘i‘;d“’m' 146 insert($a50c90,$104950,$a55E85);
: : : 167 insert($521495e, Sca3e85, $8829d0);
Public Domain 5 badreauic, 148 insert(5600040,0,0):
Readers are encouraged to give away o finl sdirees 149 crek routine for file ©)
3 a g . g Yy 2(1) final_address, 150 insert($8500a9, $068505, $0506a8) ;
copies of this program to fnendS, as we 62 ot S 151 insert($080626,5184bb1,$850565);
. 63 abo;t 152 insert($902805,$97490a, $350585);
would like to promote the use of the b3 abomy, o 153 insert(3a04906, $e60685, 502406b) 5
H R - ’ 134 i t($adbceb, $5cc34b, $a5dhd0);
Christensen protocol for data transmis- o5 scqerror; 155 ineert($5icouc. 505020, 54b8505) |
sion. Do not give away the G-Pascal & o 136 Insert($8306a5, §1£604c,0);
: , 157 buffer [128] = 0;
; ; 68 block_no, Son
compiler however, as that is a commer €9 inverse block_no, 198 buffer 1129 2= 03
cial product and subject to copyright. 70 expected block, 160 definesprice (32,
72 ast_block, 161 SLE,$E0, 06, $F6,SFE, 566, $EF,$(0);
; want_crck, i g B
If you want to save the effort of typing 1 ek received 162 sprite (1, point, 32,
. . . 74 Teheck . d’, 163 1, colour, light_grey,
in the program, copies on disk may be 74 suncheck received 2, 164 1, behindbk, true);
. N 1 ¢ , . 165 t_medium := falsc;
obtained by sending $20 (for postage 76 e’z mser R e
. . B . routine : array [35] of integer ; 2 T PUDE R !
and duplication costs) to: Gambit 1ok endIATIR e
79 function commodore logo; X ;
Games, P.O. Box 124, Ilvanhoe 3079. 80 (HHFRIHRE AR ARR TR | 169
7 . 170 procedure start_error;
Computer clubs are encouraged to ob- 81 begin 171 (mrrsmmesscseoTom
tai . d K furth N 82 commedore_logo := memc [653] and 2 <> O 172 begin
ain a copy angd make turther copies 83 end ;
3 173 graphics (charcolour, light red);
. . 84 . ’ — ’
available to members. An Apple version s runction shife_key pressed; 176 amiret
i . - B ARSI IR RIS ’
of the program is also available, at the 27 {7) 176
. " procedure error;
same pnce, from the same address- D Sg jhlft_key_pressed := memc [653] and 1 <> 0 178 (¥ EAREER)
’ end ; .
; 179 begin
o . 252 (i les 180 if expecled block <> -1 then
I YAM-compat ihle modem communicat ion prograe 92 E;gii*iii*gﬁigﬁi%“@;*j3 181 write (" on block ",
2 93 182 expected_block)
3 written in G-Pascal for the Commodore 64 9 const . o 183 else
4 o openit = $ffcO; . 184 write (" on EOT");
S Author: Nick Gammon. Fublic Demain Program. gg por name : array [1] of char ; 185 writeln (" retry ", retries);
6 97 (23;’,‘ X) 186 retries := retries + 1;
7 Za SHA0 (Pecodes start al $840) irst set up the file name 187 graphics (charcolour, green):
g * gg as per the RS232 paramters *) 188 1¢ rotries > max_retries then
q 18 bort := -
1()1 const 100 name B 5 (% 300 baud *) 193 Png f" true
It ; 101 name : (* 3~line *) 191 !
. 102 memc $cl; (* buffer *) .
12 192 o ;
13 igz memc $;Z; (* buffer *) 123 Eiiiifiiii*iifriii;ﬂi“:i)
14 memc H 194 a s c i .
I 105 menc 2; (% RS232 %) Toa ver 1, gober ¢ integer
16 18(7) mer{\i % 196 begin ' '
17 log e 2 197 if not got_medium then
18 ; 198 begi
b 109 memc address (name[1]); 190 wevtein
20 1y file = false; 116 memc := address (name[1]) shr 8; 200 write ("%D>isk or <Crassette? ");
21 receive with crek = Lrue; L call (setnam); 201 graphics (charcolour, light blue);
22 max_retries = (2 call (openit) 202 repeat -
23 charcolour = 103 L3 end 5 203 read (ch);
24 white = 1; 114 204 ch := ¢ch and $7f
25 green = 5; 115 procedure init; 205 until (ch = "d")
26 light_red = 10; 116 (206 or (ch = "c");
27 light_green = 13; 117 const colour s 207 writeln (chr (ch));
28 Light_blue = 14; 118 point = 2; 208 graphics (charcoleur, green);
29 light_grey = 15; 119 behindbk = 6 209 if ch = "d" then
30 120 210 begin
31 _address = $1e00; 121 var 1 @ integer ; 211 medium := disk;
32 sette = 1; 122 212 open (15, disk, 15, "i')
33 8; 123 procedure Jnsert(x, y, 2); 213 end
34 $2b2; 124 begin 214 else
35 $2b3; 125 routine [i] := 215 medium := cassette;
|
36 $2b4; 120 routine (i~ 1] := yv; 216 got_medium := truc
37 cc = $2bl1; 127 routine i - 2] := 7 217 end ;
38 setlfs = $ffha; 128 i=i -3 218 repeat
219 writeln ; »

Continued from page 72

write ("File name? ");

aeaphies (eharenlour, tight_bluc):
read (nsmel s
grapnics {(chareoiour, green)s
aot _or falees
for i := 0 to 20 do
it onot gol_cr then
begin
aame {20 - 0] samel [
if namel [1) = or then
begin
tength
grot_cr
ong
234 end
235 unt i1 jength [l
26 end

Blal
19

procedure check_ee

(%

(% got crror %)

240 const readst = ${{b7;
241
242 var i, ervor_code @ integer
243 result s arrav [80] of rhar ;
264 begin
245 i1 memc [cc] and 1 then
246 ervor_cade := meme [areg)
else
begin
call (readst);

313
314
315
a6
11
318
319
320
321
322
323
324
325
326
327
328
329
330

TR RN R R T

error_code 1=
end
bad_result :=
if medium =
begin
get (15);
read {(result)s
get (M
result [BO] =
if (result [0
or {result |1
begin
bad_result =
~13
start_error;
repeat
i

meme | aregl

crror_codes
disk then

=
| oy
| ey

true;

i+
write (chr (result [1i
until resuit (1] = cv
end
end
writeln ;
i error _code then
bogin
start_error;

writeTn ("File ervor, coder U,

nrror_code)

end 3
graphics {crharcalour, green
if not bad_t It then
writeln ("MOk."
LT

procedure land

wninated file (1

$bf

and

then

1

)3

{

procedure toad

const
toadit = $F{d5;
begin
menc (arcg) B
meme {xreg] i= medimmg
meme {vreg] r= 03 (% reloca
call (setifs);

meme [areg] lengthy

Le #)

)
= address (name2[201) she 8;

(* load /verify)

weme {xreg] address (name2[20]
meme | vreg

cull (setnam)y;

meme [areg | flag:

meme [xreg | start_address;
meme [yreg]

call (loadit);
check_result
end

(#5855 siact of
begin
repear
i flag = 0 then (%
get_file name;

Joad_nomina

load *

load_file

until (bad resalt = 0)
or {flag)

end

procedure save_nominated

(

procedure save {ile;
(*%%%%%%*% F*%%*%*%%)

tart_address shr 8;

Led_file %)

i

const saveit = $f£d8;
register = 56a;
begin
mene [arep] 1 (% file no %)
memc [xreg] i= medium;
meme [yreg) 0;
call {setlfs
meme [areg] lengtb;

meme [xreg)

'

tin o _addres

|
|-
|
sl s
check_ros

Pinai_aldres

I

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

5 (wex

5 timeout

end

¢ srart of : save_nominated_file *¥%)

begin

7 repeat

get_file_names;
save_file;
if not bad_resuit then
begin
if medium =
bogin
writeln
writeln ("Rewind cassette to save point for');
writeln ("verification - press <SHIFT» when ready.");
repeat until shift_key_pressed
end
load_nominated_file (1)
end
until not bad_result
end

cassctte then

(* verify save ¥)

function from :

odem;

begin
get (2);
from modem :=
got (D)

gotkey

O end 3

procedure

begin

< and $71;

(* Roverse upper/lower case *)

i (x>

{x

‘o

clse

it (x 3
(% <= "2") then
x 1= x + 5203

$61) and
7a) then
5o~ $20

o= "a') and

(% Onty display if printable ¥)
i(x =)
or {x = ¢r) then

weite (chr (x))
else

if x = bs then

write (chr (157))

else
ts then
(29))

if x =
write (chr
else
if x = {f
write {chr

then
(home))
end 3

dure

proc to_modem (x);
e ‘

put (2);
write (chr (x));
put {0)

end

function calc_crek;

(mwrr Hns

begin
weme [34b) 1= address {buffer [130]);
meme [$4c) address (buffer [130]) shr 8;
menc {yreg] 130;
call (address (routine[35]});
cale_crek mem [$5e] and SEfEf

end ;

procedure cale file crek;
TR)

begin

meme [$4b] := start_address;

meme [$4e | start_address shr 8;

meme [$5¢] final_address;

meme [$5[] final_addre shr 85

call (addr (routine[20]));

writeln ("Cyclic redundancy check = $™,

hex (mem [S4b] and $FFFL));

end 3

function next_char (period);

(e)
consl count_per_sccond = 145;
var ch char ;
counter : integer ;
begin
counler := period * count_per_sccond;
repeat

ch 1= from modem;
counter := counter - 1
until (not (memec [rs232 status] and empty))
or (counter <= 0);
memc [rs232_status] and empty <> 0;
ch

next_char
end ;

procedure purge;
(R RN)
var discard
begin
repeat
discard :=
until timeout
end ;

char 3

next_char (1)

procedure send_nak;
<%%*&****%%%%%%%*%)
begin
purge;
if (expected black = 1)
and want_crck then
to_modem ("c')
else

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

507
508
509
510
511

514
515
516
517
518
519
520

6572
573
574
375
376
577
578
3749
580
581

552
R
N84
GH5
86
HT
KB

to_modem (nak)
end ;

procedurc cancel_trans;
(FRRIIRHIAKS)
begin

purge;

to_medem (can);

to_modem (can);

to_modem (can);

start_error;

writeln ("Transmission aborted")
end ;

procedure receive_block;
(FHFRR IR RRR IR IR ETIRIAS)
var ch : char ;
i : integer ;
begin
bad_block := false;
block _no := next_char (1);
if not timeout then
inverse_block_no := next_char (1);
if (block_no + inverse block no + 1)
and 3ff < O then
begin
start_error;
write ("Bad block no.™);
error;
send_nak;
bad_block :=
end
else
if ((block_no = last_block and $If)
and (expected block <> 1))
or (block_no = expected_block and $ff) then
seq_error := flalse
else
begin
seq_crrar =
stari_error;

true

Lrue;

writeln ("Block number sequence error'
end ;
if not (bad_block or seq errer) then
begin
sum_check := 03
for i := 0 to 127 do
if not timeout then

ch := next_char (1);
buffer [i] ch;
sum_check := sum_check + ch
end ; -
if not timcout then
sum_check_received i=
if wanl_crek then
if not timeout then
sum_check_received 2 :=
if timeout then -
begin
start_error;
write ("Timeout on receive);
error;
send_nak
end
else
begin
bad_sum_check :=
if want_crek then
if calc_crek = sum_check received shl
or sum_check_received_2 then
bad_sum_chcck = fal:
else -
else
i sum_check and $ff =
sum_check_received then
sum_chack
» check theo

next_char (1);

next_char (1}

true;

false

false;

start_errors
write ("sSum check error);
crror;
send_nak
end
QT
begin
to_modem (ack);
retries 1= 0;
if block_no =
begin
last_block := expected_block;
expected_block := expected block + 1;
if display_file then -
for i 0 to 127 do
display_char (buffer [i])
else
write ("#");
for i 1= 0 1o
begin
meme [next_address]
buffer [i];
next_address :=
end
end
cnd
end
end
end ;

expected block and $ff then

127 do

next_address + 1

procedure receive _block_can_cot;

(v
var c¢h char ;
begin
repeat
¢h := next_char ()0)
until (ch soh)
or (ch = eot)
or (ch = can)
ot timeout;
il timeoui then
bogin
start_error;
write ("Timcout at start"”); ‘

589 error;

590 send_nak

591 end

592 clse

593 case ch of

584 soh: receive_block;

595 can: begin

596 start_error;

597 writeln ("Sender CANcelled transmission');

598 abort := true

599 end ;

600 col: begin

601 eof = truc;

602 to_modem (ack)

603 end

604 cnd (¥ of case *)

605 end

606

607 procedure receive_file;

608 (i ST R)

609 begin

610 writeln ;

611 graphics (charcolour, light green);

612 writeln (M-- Receive o File ———-m ");

613 graphics (charcolour, green);

614 writeln ;

615 expected block := 1

616 last_block := 05

617 retries. ¢H

618 abort false;

619 cof := false;

620 scq_error := false;

621 next_address := start_addres

622 want_crc receive_with crck;

623 send_nak; (¥ get things going *)

624 repest -
receive_block_can_cot

626 until abort or eof or seq error;

627 writeln ;

628 if cof then

629 begin

630 final_address next_address;

631 writelo ;

632 writelo ("File received successfully');

633 cale_file_cre

634 save_nominated file

635 end

636 elac

637 begin

638 final_address := start_address;

639 cancel_trans (¥ stop other end #)

640 end

641 end

642

6473

644

645 var

646 file_length, blocks, ming integer ;

H47 begin

HAR writeln

649 load_nominated file (0);

650 final_address ceme [xreg) + meme [yreg] shl 8;

631 File_length final_address - start_address;

632 while [ile_Teagth and 7€ ¢ do T

631 begin

654 file_leagth = file_length + 13

655 meme [Final_address] := ciriag

656 firal_address = final_address + 1

657 end -

65 Blocks Ctinal _addr = stari_address)

659 Sl

OO mins 1= blocks SH1 S b

661 writeln (blocks, " blacks, ",

662 1480,

663

664 10 / 8 mad 10,

665 K"

666 calc_file crek;

667 writeln ("Transmission time: ",

668 mins / 10, "."

669 ming mod 10,

670 " minutes.")

671 end ;

672

673 procedure process_can;

B74 (FHRBEEERR IR RIS)

675 begin

676 start_error;

677 writeln ("Receiver CANcelled transmission”);

678 graphics (charcolour, white);

679 abort := true

680 end ;

681

682 procedure transmit block;

B83 (HHIHIHIHEHSIIR H AT IS 20K)

684 var ch : char

685 discard,

686 i : integer ;

687

688 procedure get_ack;

689 (FHEERFHIHR R)

690 begin

691 ch 1= next_char (10); (¥ wait for ack *)

692 if timeout then

693 begin

694 start_error;

695 write ("Timeout on ACK");

696 error

697 end

698 else

699 if ch = can then

700 process_can

701 else

702 if ch < ack then

703 begin

704 start_crror;

705 write ("Got ",ch,” for ACK™);

706 error

707 end

708 end ; (* of get_ack ¥)

709

710 begin

711 sum_check := 0;

712
713
714
715
716
717
718
719
720
721

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

802
803
804
805
806
807
308
809
810
811
812

for i := 0 to 127 do
ch i= memc [next_address];
next_address := next_address + 1;
sum_check sum_check + ch;
buffer [i] ch
end ;

if display_file then

for 1 := 0 to 127 do
display_char (buffer [i])

else
write (M*™);

if want_crck then
begin
sum_check 2 := calc_crck;
sum_check := sum_check 2 shr 8;
sum_check_2 := sum check_2 and S$ff
end ;

retries := 0;

inverse_block_no block_no xor $ff;

expected_block := block no;

repeat
to_modem (soh); (* start block *)
to_modem (block no);
to_modem (inverse_block no);
for 1 := 0 to 127 do
begin
discard := from_modem; (¥ ignore any spurious glitches %)

to_modem (buffer[i])
end ;
to_modem (sum check);
if want_crck then
to_modem (sum _check 2);
get_ack
until abort or {(not timeout) and (ch =
if next_address >= final_address then
if not abort then
begin
retries := 0;
expected_block
repeat
to_modem (eot);
get_ack
until abort or ((not timeout) and (ch =
if not abort then

ack));

~1;

ack));

eof := true
end ;
block_no := block no + 1
end ;

procedure send_file;
(FRHIR KRR HTHR I)
var ch :
begin
writeln ;
graphies (charcolour, 1ight_green);
writeln (Me——— Send a File —---x");
graphics (charcolour, green);
analyse file;
next_address
block_no
expect o
abort
vof :=
retrivs
purges;
writeln j writeln
writeln (MAwaiting i
repeat
ch = next_char (60);
if timeout then
begin
start_error;
writeln ("No response from other end™)
end
else
begin
if ch = nak then
want_crck := false
else
if ¢k = "¢" then
want_crck = true
else
if c¢h = can then
process_can
else
begin
start_error;
write ("Got
error
end

char ;

fal NAK'M);

(% wait a minute *)

',ch," for NAK");

end
until (ch = nak) or (ch = "¢")
or timeout or abort;
if not (timeout or abort) then
repeat
transait_block
until abort or cof;
if eof then
begin
writeln
writela ("File transmitted successfully")
end
else
cancel _trans
end

(* stop other end *)

procedure terminal_mede (half_duplex);
(e ~)
const active = 73
var input char ;
x i integer

begin
lest_terminal_mode :=
graphics (charcolour,
writeln ;
graphics (charcolour, light green);
write ("Terminal Mode - ')
if half_duplex then

write ("Half")
aise

write ("Full");
(" duplex™);

command;
green);

writeln {

35

836

837

838

839

840
841

842
843
844
845
846
847
848
849
8350
831

852
853
854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870
871

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901
902
903
9204
905
906
907
908
909

911
912
913
914
913
916
917
918
919
G20

924
925
926
G927
G928
929
930
931
9132
9743
G4
939
936
937
938
934y
940
ag)
G942
G4
Q44
945
G4t
0L
945
G949
s
931

G952
g
954
a5y

%t

writeln ("Press <Commodore> key for Main Menu');
writeln ;
graphics (charcolour, white);
sprite (1, active, true);
repeat
X 1= cursorx ;
if x > 40 then

X = x - 40;
positionsprite (1,
x * 8,

cursory % 8 + 42);
input := from_modem;
if input <> O then
display char (input);
input := getkey
if input <> O then
begin
if (input >= $cl) and
(input Sda) then
input := input - $60;
if input $8d then
input := ¢r
else
if (input = $9d)
ar (input = $14) then
input := bs
else
if input = 29 then
input := fs
else
if input =
input :=

home then

£f;

(* Reverse upper/lower case *)

if (input >= $61) and
{input $7a) then
input input - $20

else
if (input >= "a") and
{input <= "z") then
input input + $20;
to_modem (input);
if half duplex then
begin
graphics (charcolour, light_blue);
display_char (input);
graphics (charcolour, white)
end
end
until commodore_logo;
sprite (1, active, falsc)
end

procedure type file;
(AR R RHXTRIR R)
begin
next_address :=
writeln ;
writeln ("Press <Commodore> key Lo abort list");
writeln (" <SHIFT> key to pause list™)
writeln ;
graphics (charcolour, light green);
while (next_address < final_address)

and not commodore_loge do

begin

repeat

until not shifi_key pressed;

display_char (memc [next_address]);

next_address := next_address + 1

end ; -
writeln
end ;

start_address;

ready for crck %)
repeat
graphics (charcolour, green);

case command of

Ya's analyse_file;

"e'": cancel Trans;

VE": terminal_mode (false);
Yh'": terminal_mode {truc);

t': receive Tile;
send_files
type_file
end 3 (% of case *)
if (command = "='")
or (command = "r
command =
else

wot

Tast_terminal_mode

begin

graphics (charcolour, grecn);
writeln (chr (14) lower
writeln (M Anal a file'yy
writeln ("-() tranamission');

case)

anc

writeln (F il duplex terminal™):
weiteln CUlalf dupley serminal™);
writeln (" Recceive a Cile™);
writelo ("<8 ond o file);
weitele (T oype last fiie");
writeln (" 00 uit program”);
writeln
write ("Command? el (157),chr (1573)
araphics (charcolour, Tight bluel;
repeat -

read (command):

command command and $7(
until {co nd = "

or (command = "s™)

or (Command = gy

or {command = "'

or {eammand = ")

oy (command = "h''
ar (comand =)
ar {eommand = ")

writeln (chr (command))
o
until

ol

Comnd = "

[‘

79

T

end

