G-PASCAL NEWS

Registered by Australia Post - Publication Number VBG 6589

Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal News, P.O. Box 124, Ilvanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria.

VOLUME 2, NUMBER 1 - January 1985

Annual Subscription $12

WHAT'S IN THIS ISSUE

This issue contains quite a few interesting
and useful programs in G-Pascal:

° A name and address filing program for
disk drives - this program illustrates how to
access random disk files.

° A "pretty-print" program for G-Pascal
source programs - this program will take any
procgram and properly indent it.

° An updated version of MODEM®64 - this
version is now over 1100 lines long and has
many useful additions - it can even be used
as a file utility (examine and copy disk files)
if you don't have a modem.

° Instructions on how to back up your
G-Pascal compiler.

° How to compile programs over 16K in
size.

° How to automatically default to loading
from disk or cassette.

TYPING IN PROGRAMS

All of the programs in this issue have been
printed on a daisy-wheel printer direct from
G-Pascal programs on disk. They should all
work properly if keyed in exactly as shown.
Please note that the special printing program
we use shows reserved words in upper case,
to aid in reading and understanding
programs. It is not necesssary to key
reserved words (such as BEGIN, END) in
upper case - in any event they will be
displayed in lower case on your screen.
Also, be careful with the following
characters:

Number one.

Lower case letter 'L'.

Upper case letter 'lI'.

Number zero.

Upper case letter 'O,

Press SHIFT and :

Press SHIFT and ;

Press SHIFT and 8

Press SHIFT and 9
Underscore (above CTRL key).

AL O

BACKING UP YOUR G-PASCAL

To back up your copy of G-Pascal, load
G-Pascal as usual, make any 'patches' that
you normally make (such as changing the
printer secondary address, or the screen
colour), and then enter, compile and run the
following program:

1 BEGIN

2 SAVE (8, $8PPA, $bfff, "gpascal backup")
3 END .

If you want to save to cassette rather than
disk then the first '8' on line 2 should be a
"'

When you run the program it will create a
file called "gpascal backup" on your disk or
cassette. This is your backup copy. As this
copy does not have any 'auto-load' program
at the front of it you will have to load it
slightly differently from the usual method.
To load and run the backup copy (from Basic,
after turning on the power to the C64) enter:

LOAD "GPASCAL BACKUP",8,1
SYS 32768

Once again, if you are loading from
cassette the '8' will be a '1'.

This information is given so you can make
backup copies for your own personal use -
please do not give away (or sell) copies to
other people. The G-Pascal compiler is
copyright.

YOUR PROGRAMS SOLICITED

If you have developed a nifty program or
subroutine in G-Pascal that you would like to
share, please send it in to us. We are also
interested in hearing about programs written
in G-Pascal that are suitable for sale.

MODEM64 - VERSION 1.6

This previously unpublished listing of
MODEM®64 features a number of
enhancements to earlier versions. In
particular it now has the capability to:

° Optionally save conversations in
memory.

° Display a previous conversation or file
on the screen.

° Print a previous conversation or file on
the printer.

° Save a conversation to disk or cassette.

° Analyse the current status (length etc.)
of the current contents of the memory
buffer.

° Loading and transmitting files are now
separate functions, so you can load a file,
display its contents and then optionally
transmit it to the other end.

° The program checks whether you want to
go ahead before allowing you to do anything
which will clobber any existing contents of
memory (i.e. quit, load or receive).

° The file reception code has been tidied
up slightly to improve its response to
timeout situations.

° Verification of saves to disk or cassette
is now optional.

° It is possible to display on the screen
each block of a file that is being transmitted
or received during transmission.

° Certain aspects are more user-friendly.

Entering MODEMG64

You will need to key in the program from
the listing. If you have an earlier version
you can save a lot of effort by loading your
version and (using the editor List command)
compare it to this listing, altering, deleting
or adding lines where necessary. Please
note that some comments, particularly the
lines of asterisks below procedure
declarations, have been removed so that the
program will fit into 16K. Also, some of the
changes between versions are purely
'cosmetic', so that the listing is reasonably
narrow for inclusion in this magazine - for
example, splitting a statement over two or
more lines. Such changes are optional, of
course. You may wish to make them in any
case so that your {ine numbers agree with
our listing.

You can 'tailor' the program to your
requirements by changing the constants at
lines 19 to 24. For example, you can change
the printer channel and secondary address.
If you make 'display_ file' true then each
block of data will be displayed on the screen
during transmission and reception. By
changing 'max_retries' you can alter the
program's tolerance to timeouts etc. If you
make 'verify wanted' false then saves to

disk or cassette will not be verified. If you
make 'receive_with_crck' false then each
block of data during reception will only have
a simpte sum check rather than a cyclic
redundancy check. This is not recommended
in general. (During transmission this option
is controlled by the other end.)

if you are using a printer you may also
need to add extra code at lines 983-984,
instead of the comments that are there now,
depending on your printer type.

USING MODEMG64 Version 1.6

First load, compile and run MODEM®&4.
The program automatically enters full duplex
terminal mode, ready for communicating
with a bulletin board or another computer
(you can change this by changing line 174).

To select the main menu just press the
Commodore key on its own.

To converse with another Commodore 64
owner you will need to select half-duplex
mode ('H') so that you can see what you are
typing.

Conversations are automatically saved in
memory (and appended to a previous
conversation or file). To toggie capture of
conversations into memory press 'M' at the
main menu - this will toggle the current
memory-capture state, and inform you of
what the new one is. To erase the last
conversation and start afresh, enter 'E' - you
will be told the size of the conversation and
asked to confirm the erasure (unless there is
nothing there).

For any option that requests a file name
you can now press RETURN on its own to
escape from that option (without loading or
saving the file).

To send a file, first load it into memory if
necessary, using the 'L' (Load) option. You
will be told how big it is and how long
(roughly) it will take to transmit. At this
stage it would be wise to make sure that
conversation capture is off, so that anything
you type now does not get appended to the
file - use the 'M' option described above if
necessary. Then synchronise with the other
computer (by voice or by typing a message).
When the other end is ready to receive press
'S' (Send file). You should see an asterisk as
each block is transmitted, or if you have
selected the 'display' option then you will
see the contents of the block itself. Initial
synchronisation may take a minute, so be
patient. After the file is transmitted (you
will get a message to this effect) you are
automatically returned to terminal mode.

As each block of data has a cyclic
redundancy check (CRCK) appended to it the
likelihood of a mis-transmission is very low.
You <can further check by manually
comparing the 'file' CRCK figure which is

displayed when the file is transmitted or
received, to the figure that the person at the
other end got.

To see what the current status of the
contents of the memory buffer is, press 'A' -
Analyse Memory.

To type the contents of the memory

buffer, press 'T' then press SHIFT to
temporarily halt the display (press
SHIFT/LOCK for a longer pause). To abort

the listing press the Commodore key.

To print the contents of memory select 'P!
- this works the same as 'T' except that
output is directed to your printer.

To receive a file, just synchronise with the
other end - when they are ready to transmit
just press 'R' for Receive. You will see an
asterisk as each block is received, or an
error message after 10 seconds if nothing is
happening. When the file has been received
you will be asked for the name to save it
under. You can just press RETURN at this
stage if you like, and save it later using the
'D' option.

The 'D' option (Dump conversation to
disk/cassette) saves the current contents of
the memory buffer (conversation or file) to
disk or cassette. You can actually use
MODEMG64 as a file copying utility by just
loading a file (using 'L') and then saving it to
another disk using 'D'. You can also use it
to download programs or data from another
computer that doesn't support the
Christensen protocol. Just save the
conversation in memory and dump it to disk
at the end.

The 'C' (Cancel transmission) option is for
aborting a transmission currently in progress.
In this case you will need to first abort your
end of the transmission by pressing
RUN/STOP. This will take you to the
G-Pascal Main Menu. Re-run MODEMG64 by
pressing 'R'. Then press the Commodore
key to get the MODEMG64 menu. Then select
'C' - this will transmit three 'CAN'
characters (hex 18) to the other computer,
telling it to cancel sending or receiving the
file. This option would not normally be
used, but is included as a means from
escaping from a long transmission started in
error - the wrong file name perhaps?

Another enhancement to this version is the
provision of a 'break’ capability.
Transmitting a break involves sending at
least 10 consecutive zero bits to the other
computer.

To transmit a break with MODEMG64 just
press [f1] - that is, function key 'f1' on the
right hand side of the keyboard. The 'break’
is implemented by closing the RS232 file,
bringing the output port to zero for 1/10th of
a second, and re-opening the file - see lines
937 to 944, ‘

Page 3

1 (* MODEM64 -~ January 1985 Version
2
3 Author: Nick Gammon.
4 Public Domain Program.
5
6 %a $84@ (P-codes start at $84Q)
7 %)
8
9 CONST
10 bs = B;
11 ff =12;
12 cr = 13;
13 fs = 28;
14 ctriz = $1a;
15 home = 147;
16 true = 1;
17 false = @;
18
19 printer_channel = 4;
20 printer_sec_addr = 0;
21 display file = false;
22 receive_with_crck = true;
23 max_retries = 6;
24 verify wanted = true;
25 B
26 charcolour = 10;
27 white = 1;
28 green = 5;
29 Light_red = 10;
30 light_green = 13;
31 Light_blue = 14;
32 light_grey = 15;
33
34 start_address = $2100;
35 cassette = 1;
36 disk = 8;
37 areg = $2b2;
38 xreq = $2b3;
39 yreg = $2bs4;
40 cc = $2b1;
41 setlfs = $ffba;
42 setnam = $ffbd;
43
44 soh = $1;
45 eot = $4;
46 ack = $6;
47 nak = $15;
48 can = $18;
49 rs232 status = $297;
50 empty = 8;
51
52 VAR
53 command : CHAR ;
54
55 buffer : ARRAY [1307 OF CHAR ;
56 namel, name2 : ARRAY [20] OF CHAR ;
57 last_terminal_mode,
58 medium,
59 got_medium,
60 length,
61 bad_result,
62 next_address,
63 final_address,
64 retries,
65 capture,
66 eof,
67 abort,
68 bad block,
69 seq_error,
0 bad_sum_check,
71 timeout,
72 block_no,
73 inverse block_no,
74 expected_block,
75 last_block,
76 want_crck,
77 sum_check_received,
78 sum_check_received 2,
79 sum_check,
80 sum_check_2 : INTEGER ;
81 routine : ARRAY (351 OF INTEGER
82
83 FUNCTION commodore_ togo;
84 BEGIN
85 commodore _logo :=
86 MEMC [£653] AND 2 <> @
87 END ;

’

89 FUNCTION shift_key pressed;

99 BEGIN

91 shift_key pressed :=

92 MEMC [6531 AND 1 <> @
93 END ;

94

95 PROCEDURE ink (colour);

96 BEGIN

97 GRAPHICS (charcolour, colour)
98 END ;

99

100 PROCEDURE open_rs232_file;
101 CONST

102 openit = $ffcd;

103 VAR name : ARRAY [13 OF CHAR ;

104 BEGIN

105 (* first set up the file name

106 as per the RS232 paramters *)
107

108 name [13 := 6; (& 300 baud *)
109 name [B) := 0; (x 3-Lline *)
110 MEMC [$f81 1= $ct; (* buffer *)
(BRI MEMC [$fal 1= $c¢2; (* buffer *)
112 MEMC [aregl := 2;

113 MEMC [xregl == 2; (% RS232 *)
114 MEMC [yregl := 2;

115 CALL (setlfs);

116 MEMC Laregl := 2;

117 MEMC [xregl := ADDRESS (namel11);
118 MEMC [yregl := ADDRESS (nawmel11) SHR 8;
119 CALL (setnam);

120 CALL (openit)

121 END ;

122

123 PROCEDURE init;

124

125 CONST colour = 1;

126 point = 2;

127 behindbk = 6;

128

129 VAR i INTEGER ;

130

131 PROCEDURE insert(x, y, z);

132 BEGIN

133 routine L[il 1= x;

134 routine [i = 11 := y;

135 routine Ci - 2] == z;

136 i :=i-3

137 END ;

138

139 BEGIN (*x init *)

140 WRITE (CHR (home));

141 ink (Light_grey);

142 MEMC [6503 := 128;

143 (x all keys auto-repeat *)

144 WRITELN

145 ("YAM-compatible Modem Program for €64.");
146 WRITELN

147 ("Written by Nick Gammon in G-Pascal."');
148 WRITELN

149 ("Version 1.6 =~ PUBLIC DOMAIN.');

150 WRITELN

151 ("G-Pascal is produced by Gambit Games -");
152 WRITELN

153 (" enquiries: Gambit Games, P.0. Box 124,");
154 WRITELN

155 (" Ivanhoe, Victoria 3@79. Austratia.");
156 WRITELN ;

157 i o= 35;

158 (* ¢rck routine for transmission *)

159 insert ($8500a9,%$51855¢,%854bb1);

160 insert(308a207,%$260726,351265¢€);

161 insert($a50c90,$10495f,%a55f85);

162 insert($21495e,%ca5e85,$88e9d0) ;

163 insert($60e040,0,0);

164 (* crck routine for file *)

165 insert($8500a9,%068505,30506a8) ;

166 insert(3080626,3184bb1,$850565);

167 insert($902805,%97498a,%$a50585) ;

168 insert($a04906,%e60685,302d04b) ;

169 insert($aS4ce6,%5ec54bh,$a5dbdd) ;

170 insert($5fc54c,%a5d5d0,$4b8505) ;

171 insert($8506a5,$ff604c,0);

172 buffer £128] := 0;

173 buffer 1291 := @;

174 command 1= "{';

Page

175

177
178
179
180
181
182
183

194

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

2/02
243

DEFINESPRITE (32,
$Ef,86f,801,80f,867,8fF,8¢f,81¢);
SPRITE (1, point, 32,
1, colour, Llight_grey,
1, behindbk, true);
got_medium := false;
capture = true;
final_address := start_address;
open_rs232 file
END ; (% of init #)
PROCEDURE start_error;
BEGIN
ink (tight_red);
WRITELN
END ;
PROCEDURE error;

BEGIN
IF expected block <> -1 THEN
WRITE (" on block ",
expected block)
ELSE -

WRITE (" on EOT');
WRITELN (" retry ", retries);
retries := retries + 1;
ink (green);

IF retries > max_retries THEN

abort = true
END ;
PROCEDURE get_file name;

VAR i, got_cr INTEGER ;
ch : CHAR ;
BEGIN
IF NOT got_medium THEN
BEGIN
WRITELN ;
WRITE (""<D>isk or <(>assette? ');
ink (Light_blue);
REPEAT
READ (ch);
ch = c¢h AND $7f
UNTIL (ch = "d")
OR (ch = "¢™);
WRITELN (CHR (ch));
ink (green);
IF ch = "d" THEN
BEGIN
medium := disk;
OPEN (15, disk, 15, "i'D
END
ELSE
medium := cassette;
got_medium := true
END
WRITELN ;
WRITE ("File name? ");

ink (Light_blue);
READ (namel);
ink (green);

got_cr := false;
FOR i = @ TO0 20 0O
IF NOT got_cr THEN
BEGIN
name2 (20 - 31 := name? (il;"
1F namel £il1 = ¢r THEN
BEGIN
length := i;
got_cr := true
END
END

END

;
PROCEDURE check_result;
CONST readst = $ffb7;

VAR i, error_code : INTEGER ;
result : ARRAY [8@] OF CHAR
BEGIN
IF MEMC Ccc) AND 1 THEN

error_code := MEMC [areg]
ELSE

BEGIN

’

262
263
264

303

317
318
319
320

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

CALL (readst);
error code := MEMC [aregl AND $bf
END ;
bad result := error_code;
IF medium = disk THEN
BEGIN
GET (15);
READ (result);
GET (@);
result [8@] := cr;
IF (result [@1 <> "0"™)
OR (result £11 <> "@") THEN
BEGIN
bad result := true;
o= -1
start_error;
REPEAT
i=d4+;
WRITE (CHR (result £il))
UNTIL result [i] = cr
END
END ;
WRITELN ;
IF error_code THEN
BEGIN
start_error;
WRITELN ('File error, code: ",
error_code)
END ;
ink (green);
IF NOT bad result THEN
WRITELN ("Ok.™
END ;

PROCEDURE load nominated file (flag);
PROCEDURE load file;

CONST
loadit = $ffd5;

BEGIN
MEMC Caregl := 1;
MEMC [xregl := medium;

MEMC Cyreg]

= @; (* relocate *)
CALL (setlfs);

MEMC [xregl start_address;

’
MEMC Laregl := Llength;
MEMC [xregl := ADDRESS (name2[201);
MEMC [yregl := ADDRESS (name2(201) SHR 8;
CALL (setnam);
MEMC Caregl := flag; (* load /verify *)

MEMC Cyregl

CALL (loadit);

check_result
END ;

start_address SHR 8;

BEGIN
REPEAT
IF flag = @ THEN
get_file_name;
IF tength <> @ THEN
load file
UNTIL (bad_result = @)
OR (flag = 1)
OR (length = @)
END ;

(* Lload *)

PROCEDURE save_nominated file;

PROCEDURE save_file;

CONST saveit = $ffd8;
register = $6a;
BEGIN

MEMC L[aregl] := 1; (* file no *)

MEMC [xregl := medium;
MEMC [yregl := Q;

CALL (setlfs);

MEMC Caregl := length;

MEMC Cxreg]
ADDRESS (name2 [201);
MEMC Lyregl :=
ADDRESS (name2 [201) SHR 8;
CALL (setnam);

MEMC [register] := start_address;

Puge

5

349 MEMC Cregister + 1] :=

35Q start_address SHR 8;
351 MEMC Caregl := register;

352 MEMC [xregl := final_address;
353 MEMC Lyregl := final_address SHR 8;
354 CALL (saveit);

355 check_result

356 END ;

357

358 BEGIN

359 REPEAT

360 get_file_name;

361 IF length <> @ THEN

362 BEGIN

363 save_file;

364 IF (NOT bad result)

365 AND verify wanted THEN

366 BEGIN

367 IF medium = cassette THEN
368 BEGIN

369 WRITELN ;

370 WRITELN

37 ("Rewind cassette to save point for");
372 WRITE

373 ("verification ~ press <SHIFT>");
374 WRITELN (" when ready.");
375 REPEAT UNTIL shift_key pressed
376 END ;

377 Load nominated file (1) (x verify *)
378 END

379 END

38@ UNTIL (NOT bad result) OR (tength = @)
381 END ;

382

383 FUNCTION from modem;

384

385 BEGIN

386 GET (2);

387 from_modem := GETKEY ;

388 GET (B

389 END ;

390

397 PROCEDURE display_char (x);

392

393 BEGIN

394 x 1= x AND $7f;

395

396 (* Reverse upper/lower case *)

397

398 IF (x >= $61) AND

399 (x <= $7a) THEN

400 x 1= x - $20

401 ELSE

402 IF (x >= "a") AND

403 (x <= "2") THEN

404 x = x + $80;

405

406 (x Only disptay if printable *)
407

408 IF (x >='"")

409 OR (x = cr) THEN

410 WRITE (CHR (x))

411 ELSE

412 IF x = bs THEN

413 WRITE (CHR (157))

414 ELSE

415 IF x = fs THEN

416 WRITE (CHR (29))

417 ELSE

418 IF x = ff THEN

419 WRITE (CHR (home))

420 END ;

421

422 PROCEDURE to_modem (x);

423

424 BEGIN

425 PUT (2);

426 WRITE (CHR (x));

427 PUT (@

428 END ;

429

430 FUNCTION calc crck;

431 -

432 BEGIN

433 MEMC [$4b] := ADDRESS (buffer £1301;
434 MEMC [$4c] := ADDRESS (buffer £1301) SHR 8;
435 MEMC [yregl := 13Q;

CALL (ADDRESS (routinel351));

calc_crck := MEM [$5e] AND 3ffff
END ;
PROCEDURE calc_file_crck;
BEGIN
MEMC [$4b] := start_address;
MEMC [$4c] := start_address SHR 8;
MEMC [$5el := final_address;
MEMC [$5f] := final_address SHR 8;
CALL (ADDRESS (routinel201));
WRITELN ("Cyclic redundancy check = $",
HEX (MEM [$4b] AND $ffff))
END ; V
FUNCTION next_char (period);

CONST count_per_second = 145;
VAR ch : CHAR ;
counter : INTEGER ;
BEGIN
counter := period * count_per_second;
REPEAT -
ch := from_modem;
counter = counter - 1
UNTIL (NOT (MEMC [rs232_status] AND empty))
OR (counter <= @);
timeout := MEMC [rs232 status] AND empty <> @;
next_char := ch
END

PROCEDURE purge;

VAR discard :

BEGIN

REPEAT
discard := next_char (1)

UNTIL timeout

END ;

CHAR ;

PROCEDURE send nak;

BEGIN
purge;
If (expected_block = 1)
AND want_crck THEN
to_modem ("'c")
ELSE
to_modem (nak)
END ;

PROCEDURE cancel_trans;

BEGIN
purge;
to_modem (can);
to_modem (can);
to_modem (can);
start_error;

WRITELN ("Transmission aborted")
END

;
PROCEDURE receive_block;

VAR ch : CHAR ;
i : INTEGER ;
BEGIN
bad block := false;
block_no := next_char (1);
IF NOT timeout THEN
inverse_block_no := next_char (1);
IF NOT timeout THEN
IF (block_no + inverse block_no + 1)
AND $ff <> @ THEN -
BEGIN
start_error;
WRITE ("Bad block no.™);
error;
send_nak;
bad block = true
END
ELSE
IF ((block no = last_block AND $ff)
AND (expected block D1
OR (block_no = expected_block AND $ff) THEN

seq_error := false
ELSE

Page

611

BEGIN
seq_error I true;
start_error;
WRITELN ("Block number sequence error');
error;
send_nak
END ;
IF NOT (bad block OR seq_error) THEN
BEGIN
sum check := @;
FOR i 2= Q@ TO 127 00O
If NOT timeout THEN

BEGIN

ch := next_char (1);

buffer [il := ch;

sum_check := sum_check + ch
END ;

If NOT timeout THEN
sum_check_received := next_char (1);
IF want_crck THEN
If NOT timeout THEN
sum_check_received 2 := next_char Q]
END ;
IF timeout THEN
BEGIN
start_error;
WRITE ("Timeout on receive");
error;
send_nak
END
ELSE
If NOT (bad block OR seq error) THEN
BEGIN
" bad_sum_check := true;
IF want_crck THEN
1fF calc_crck = sum_check received SHL 8
OR sum _check_received 2 THEN
bad_sum_check := false
ELSE
ELSE
IF sum_check AND $ff =
sum_check_received THEN
bad_sum check := false;
IF bad _sum_check THEN
BEGIN
start_error;
WRITE ("Sum check error™);
error;
send_nak
END
ELSE
BEGIN
to_modem (ack);
retries = §;
IF block_no = expected block AND $ff THEN
BEGIN
Last_block := expected_block;
expected block := expected block + 1;
IF display_file THEN
FOR i := @ TO 127 DO
display_char (buffer i
ELSE
WRITE ("'*');
FOR i := @ TO 127 0O
BEGIN
MEMC [next_address] :=
buffer [il;
next_address := next_address + 1
END
END
END
END
END ;

PROCEDURE receive_block_can_eot;

VAR ch : CHAR ;
BEGIN
REPEAT
ch := next_char (10)
UNTIL (ch soh)
OR (ch eot)
OR (ch can)
OR timeout;
IF timeout THEN
BEGIN
start_error;
WRITE ("Timeout at start'');

wonon

error;
send_nak
END
ELSE
CASE ch OF
soh: receive_block;
can: BEGIN
start_error;
WRITELN ("Sender CANcelled transmission');
abort := true
END ;
eot: BEGIN
eof := true;
to_modem (ack)
END
END (* of case *)
END ;

PROCEDURE receive file;

BEGIN

WRITELN ;

ink (tight_green);

WRITELN ("[Receive a Filel™);
ink (green);

WRITELN ;

expected_block := 1;
last_block := @;
retries := @;
abort := false;
eof := false;
seq_error := false;
next_address := start_address;
want:crck := receive_with_crck;
send nak; (* get things going *)
REPEAT
receive _block_can_eot
UNTIL abort OR eof OR seq error;
WRITELN ;
IF eof THEN
BEGIN
final_address := next_address;
WRITELN ;
WRITELN ("File received successfully'™);
calc_file_crck;
save_nominated file
END
ELSE
BEGIN
final_address := start_address;
cancel_trans (* stop other end *)
END
END ;
PROCEDURE analyse file (loadit);
VAR
file_length, blocks, mins : INTEGER ;
BEGIN
WRITELN ;
IF Loadit THEN
BEGIN
load_nominated_file (@);
IF length <> @ THEN
BEGIN
final_address := MEMC [xreg] + MEMC [yregl SHL 8;
file_length := final_address - start_address;
WHILE file_length AND $7f <> @ DO
BEGIN
file_length = file length + 1;
MEMC [final_address] := ctrlz;
final_address := final address + 1
END
END
END ;
blocks := (final_address -
start_address + 127) / 128;
IF blocks <> @ THEN
BEGIN
mins := blocks * 561 / 600;
WRITELN (blocks, " blocks, ',
blocks * 1@ / 80,
- 7
btocks * 10 / 8 MOD 10,
"KM ;
calc_file_crck;
WRITELN ("Transmission time: ',

Page 7

699
700
701
702
703
704
705
706
707
708
709
710

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

782
783
784
785

mins / 10, “.",
mins MOD 10,
" minutes.')
END
END ;

PROCEDURE process_can;

BEGIN
start_error;
WRITELN ("Receiver CANcelled transmission);
ink (white);
abort := true
END ;

PROCEDURE transmit_block;

VAR ch : CHAR ;
discard,
it INTEGER ;

PROCEDURE get_ack;

BEGIN
ch = next_char (10);
If timeout THEN
BEGIN
start_error;
WRITE ("Timeout on ACK'");
error
END
ELSE
IF ch = can THEN
process can
ELSE -
IF c¢ch <> ack THEN
BEGIN
start_error;
WRITE ("Got ",ch," for ACK'™);
error
END
END ; (x of get_ack *)
BEGIN
sum_check := @;

FOR i := @ TO 127 DO
BEGIN
ch := MEMC [next_addressl;
next _address := next_address + 1;
sum_check := sum_check + ch;
buffer [i1 := ch
END ;

If display file THEN

FOR i 2= @ TO 127 DO
display_char (buffer [il)

ELSE
WRITE (''+");

IF want_crck THEN
BEGIN
sum_check 2 := calc_crck;
sum_check := sum_check_2 SHR 8;
sum_check_2 := sum_check_2 AND $ff
END ;

retries := @;

inverse_block_no = block_no XOR $ff;

expected block := block_no;
REPEAT
to_modem (soh); (% start block #)
to_modem (block_no);
to_modem (inverse block no);
FOR i := @ TO 127 b0
BEGIN
discard := from_modem;
to_modem (bufferlil)
END ;
to_modem (sum_check);
IF want_crck THEN
to_modem (sum_check_2);
get_ack
UNTIL abort
OR ((NOT timeout) AND (ch = ack));
IF next_address >= final_address THEN
IF NOT abort THEN
BEGIN
retries := @;
expected block := -1;
REPEAT

to_modem (eot);
get _ack
UNTIL abort OR ((NOT timeout) AND (ch = ack));
IF NOT abort THEN
eof = true
END ;
block_no := block_no + 1
END ;
PROCEDURE send_file;
VAR ch : CHAR ;
BEGIN
WRITELN ;
If final_address = start_address THEN
BEGIN
start_error;
WRITELN ("No file loaded.");
command := " '; (% menu again *)
END
ELSE
BEGIN
ink (light_green);
WRITELN ("[Send a Filel™);
ink (greemn);
analyse file (false);
next_address := start_address;
block_no = 1;
expected _block = 1;
abort := false;
eof := false;
retries := @;
purge; (* empty buffer *)
WRITELN ; WRITELN ;
WRITELN ("Awaiting initial NAK'");
REPEAT
ch := next_char (6@); (x wait a minute *)
IF timeout THEN
BEGIN
start_error;
WRITELN ("No response from other end'™)
END
ELSE
BEGIN
If ch = nak THEN
want_crck := false
ELSE
If ch = "c¢" THEN
want_crck := true
ELSE
IF ch = can THEN
process_can
ELSE
BEGIN
start_error;
WRITE (“Got ",ch," for NAK");
error
END
END
UNTIL (ch = nak) OR (ch = "¢'")
OR timeout OR abort;
IF NOT (timeout OR abort) THEN
REPEAT
transmit_block
UNTIL abort OR eof;
IF eof THEN
BEGIN
WRITELN ;
WRITELN ("File transmitted successfully')
END
ELSE
cancel_trans
END
END ;
PROCEDURE save_in_memory (x);
BEGIN
IF capture THEN
BEGIN
IF final_address = $7c0@ THEN
BEGIN ’
WRITELN ;
WRITELN ;
start_error;
WRITELN
("+%x Memory Buffer Almost Full *x");

Page 8

WRITELN ;
WRITELN ;
ink (white)
END ;

IF final_address < $8Q@@ THEN
BEGIN
MEMC [final_address] := x;
final_address := final_address + 1
END

END

END ;

PROCEDURE terminal_mode (half_duplex);

CONST active = 7;
VAR input : CHAR ;
x : INTEGER ;
BEGIN
last_terminat_mode := command;
WRITELN ;
ink (light_green);
WRITE ("Terminal Mode - ");
IF half_duplex THEN
WRITE ("Half™)
ELSE
WRITE ("Full'™);
WRITELN (" duplex");
WRITELN
("Press <Commodore> key for Main Menu');
WRITELN ;
ink (white);
SPRITE (1, active, true);
REPEAT
x = CURSORX ;
IF x > 4@ THEN
X 1= x = 4@;
POSITIONSPRITE (1,
x * 8,
CURSORY * 8 + 42);
input := from_modem;
IF input <> @ THEN
BEGIN
display_char Cinput);
save_in_memory (input)
END ;
input := GETKEY ;
IF input <> @ THEN
BEGIN
IF (input >= $c1) AND
(input <= $da) THEN
input = input - $60;
IF input = $8d THEN
input := cr
ELSE
IF (input =
OR (input =
input := bs
ELSE
IF input =
input :=
ELSE
IF input
Cinput ¢
ELSE
IF input = 133 THEN
BEGIN
CLOSE (2);
MEMC ($dd@@] := @;
SOUND (3, 1Q);
open_rs232_file;
input = cr
END ;

9d)
14) THEN

& B

29 THEN
fs

home THEN
ff

(x Reverse upper/lower case %)

IF CGinput >= $61) AND
(input <= $7a) THEN
input = input - $20

ELSE

IF Ginput >= "a'") AND
Cinput <= “z") THEN
input := input + $20;

to_modem Cinput);

IF half_duplex THEN

BEGIN
save_in_memory (input);
ink (light_blue);

960
961
962
963
964
965
966
967
968
969
970
971

972
973
974
97S
976
977
978
979
980
981

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1806
1007
1008
1009
1210
1011
1012
1013
1814
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1825
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

display_char (input);
ink (white)
END

END

UNTIL commodore logo;

SPRITE (1, active, false)

END

PROCEDURE type_ file (printit);
BEGIN

next_address := start_address;
WRITELN ;

WRITELN

("Press <Commodore> key to abort List");
WRITELN

! <SHIFT>
WRITELN ;
IF printit THEN
BEGIN
OPEN (4, printer_channet,
’ printer_sec_addr,

key to pause Llist");

ey,
(* 4% special printer stuff
goes here *** *)
PUT (4)
END ;

ink (light_green);

WHILE (next_address < final_address)
AND NOT commodore logo DO
BEGIN h
REPEAT
UNTIL NOT shift_key pressed;
display_char (MEMC [next_address]);
next _address := next_address + 1
END ;

IF printit THEN
BEGIN
PUT (@) ;
CLOSE (4)
END ;

WRITELN

END

PROCEDURE erase buffer;

VAR reply :
BEGIN

CHAR ;

IF final_address <> start_address THEN
BEGIN
start_error;
WRITE ("Erase conversation? (",
final_address - start_address,
" bytes) Y/N ');
REPEAT

READ (reply);
reply := reply AND $7f
UNTIL (reply = "y™)
OR (reply = '"n');
WRITELN (CHR (reply));
IF reply = "y" THEN
final_address := start_address
ELSE
command ==
END
END

PROCEDURE memory_on off;

BEGIN
WRITELN ;
ink (Light_green);
capture := NOT capture;
WRITE ("Conversations now '');
IF NOT capture THEN
WRITE ("not '");
WRITELN ("saved in memory.")
END ;

BEGIN
init;
REPEAT
ink (green);

Page 9

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1893
1094
1095
1896
1097
1098
1099
1100
1101
1182
1183
1104
1105
1106
ez
1108
1109
1110
1111
112
1113
1114
1115
1116
1117
1118 END

CASE command OF

"a": analyse_file (false);

"U'": analyse_file (true);

"c": cancel_trans;

"y

IF final_address <> start_address
THEN save_nominated file;

"e'': erase buffer;

"f": terminal_mode (false);

"m': memory on off;

"h'": terminal_mode (true);

“r'': receive_file;

"s': send file;

"p": type file (true);

"t": type_file (false)
END ; (% of case *)
1f (command = "s'")
OR (command = "r") THEN
command := last_terminal_mode
ELSE
BEGIN

ink (green);

WRITELN (CHR (14)); (% lower case *)

WRITELN

("'<A>nalyse memory');
WRITELN

("<C>ancel transmission'");
WRITELN

("<D>ump conversation to disk/cassette');

WRITELN

("<E>rase last conversation");
WRITELN

("<F>ull duplex terminal');
WRITELN

("<H>alf duplex terminal™);
WRITELN

("<L>oad fite™);

WRITELN

(""<M>emory capture off/on");
WRITELN

("<P>rint last fite');
WRITELN

("<R>eceijve a file™);
WRITELN

(""<S>end a file");

WRITELN

("<T>ype last file™;
WRITELN

("<@>uit program”);

WRITELN ;

WRITE ("Command? < >",CHR (157),CHR
ink (lLight_blue);

REPEAT
READ {(command);
command := command AND $7f
UNTIL (command = "{')
OR (command = "'s")
OR (command = "q")
OR (command = "L')
OR (command = "m')
OR (command = "e'")
OR (command = "c'')
OR (command = "h'")
OR (command = "t")
OR {(command = "a'")
OR (command = "p'")
OR (command = "d'")
OR (command = "r'");

WRITELN (CHR (command))

END ;
CASE command OF

"q", "Ll", "r'" : erase_buffer
END (* of case *)

UNTIL Ccommand = "q');
CLOSE (2

1573 ;

PRETTY-PRINT PROGRAM

inti i DURE (x);
"Pretty-printing" is the (rather strange) 27 PROCEDURE autput (0
name given to programs which read in a 29 VAR i : INTEGER ;
source program and format them in a 30 BEGIN

31 MEMC Cnewl := x;

standard way. In our case the G-Pascal 32 new :=

= new t+ 1;

pretty-print program will read in any gz IFnghdle THEN
reasonable size G-Pascal program and output 35 got_dle := false;
a properly formatted version (BEGINs and 36 FOR i := 1 TO (x AND $7f) DO
ENDs lined up under each other, IFs indented 3 amTE
and so Oﬂ). 39 ELSE

The program loads the original source file 2? IF *:dfée T”i':ue

. go =
at address $1200, and puts the converted file 42 ELSE
at address $4000, so that the converted 43 WRITE (CHR (x));

. . . . 4 =
version can be examined in memory using the 25 IFB;GIN” THEN
editor, and then saved to disk if desired, in 46 WRITE (line,": ™);
the normal way. : 47 line := line + 1
B 48 END

Because of this, the largest program that 49 END ;
can be converted is 11.5K - farger programs 2? PROCEDURE aet ch

. . . ar;
will behave strangely during the conversion D2 (ARAAAARANARAT hrn]
process. 53 BEGIN

The converted program is displayed on the o M oLl
screen at the same time as it is being 56 REPEAT
written to memory, so you can watch the 57 MEMC ES‘(@J)F 12;
(rather slow) process as it goes, and halt it 22 :gtpui cg? Y1;

(by pressing RUN/STOP) if something looks 60 otd := old + 1;
61 ch = MEMC [old]
wrong. . 62 UNTIL (ch = """ OR (ch = cr);

The program assumes the file name of the 63 IF (ch = " (")
program to be converted is "filename" - to 2’50 A;‘gpéi’:?”c Cold + 11 = "#") THEN
change this alter line 88 before compuhqg. 66 newline := true;

You can of course change the conversion 67 MEMC [$491 := 12;
parameters by examining and altering the & output (chy;
program to your own requirements. The 70 old := old + 1;
main design criteria of the converter was to n ch := MEMC Cold]

. ick) 72 UNTIL (MEMC [old =~ 13 = "))
allow it to quickly and easily format large, 73 AND (MEMC [old = 21 = ") ;
badly laid-out programs. You may wish to 74 WHILE ch = cr DO
add a bit of 'customised' formatting to the oa BreIn old + 15
final version before saving it to disk. 77 ch := MEMC [old]

The pretty-print program is also ;g NHEEE = dle b0
. Cc =
interesting as it illustrates the internal 80 BEGIN
format of G-Pascal programs, and gives the g; otd = old + 1;
equivalent token values of most of the 83 END'T
G-Pascal reserved words. 84 MEMC [$49] := @

85 END ;
1 (x G-Pascal Pretty-Print program 86
2 87 BEGIN
3 Author: Nick Gammon 88 LOAD (8, start_address, @, "filename');
4 89 final_address := MEMC [xregl
5 *) 90 + MEMC L[yreg] SHL 8;
6 91 WRITELN ;
7 (» %a $810 *) 92 WRITELN ("End address was: ",
8 93 HEX (final_address));
9 CONST dle = $10; 94 WRITELN ;

10 start_address = $1200; 95 old := start_address;

1" cr = 13; 96 new := $4000;

12 true = 1; 97 dindent := @;

13 false = @; 98 col := @;

14 xreg = $2b3; 99 WRITE ("1: ™);

15 yreg = $2b4; 100 Line := 2;

16 VAR old, 181 got_dle := false;

17 new, 102 temp_indent := false;

18 indent, 103 newline := false;

19 temp_indent, 104 WHILE MEMC [otdl <> @ DO

20 col, 105 BEGIN

21 got_dle, 106 get_char;

22 final_address, 197 IF ch <> @ THEN

23 Line, 108 BEGIN

24 newline : INTEGER ; 109 CASE ch OF

25 ch : CHAR ; 110 $84, (* array *)

26

Page 10

1M1

190
191
192

385, (* of *)
$8a, (* or)
$8b, (* div *)
$8c, (* mod *)
$8d, (* and *)
$8e, (* shl *)
$8f, (*x shr *)
$90, (% not *)
$91, (x mem *)
$93, (* then *)
397, (x do *)
$9b, (x to *)
$fe, (* integer *)
$at, (x char =)
$a2, (* memc *)
$a4, (*x xor %)
$a7, (*x getkey *)
$a9, (* address *)
$eb, (* spritecollide *)
$e?, (* groundcollide *)
$e8, (* cursorx *)
$e9, (* cursory *)
$ea, (x clock *)
$eb, (* paddle *)
$ec, (* spritex %)
$ee, (* spritey)
$ef, (*x random *)
$@, (* envelope *)
$f1, (* scrollx *)
$f2, (% scrolly *)
$f3, (* spritestatus %)
$f8, (x abs *)
$f9, (* invalid *)
$fd @ (* freezestatus *)
BEGIN END
ELSE

IF ((ch < $b@) OR (ch > $de))

AND (ch > $81) THEN
newline := true
END ; (* of case *)
IF ch = $88 (% begin *)
THEN
temp_indent := false;
CASE ¢h OF
$89, (* end *)
$99 O untit *)
indent := indent - 2;
$86, (% procedure *)
$87, (* function *)
$82, (* const *)
$83 (*x var #*)

indent := @
END (* of case *) ;
CASE ch OF

$82, (* const %)
$83, (* var x)
$86, (* procedure *)
$87 (* function)
: output (cr)
END ; (% of case *)
If newline THEN
BEGIN
output (cr);
col = 1;
WHILE ch = ' " DO
BEGIN
old := old + 1;
get_char
END ;
IF temp_indent THEN
indent := indent + 2;
IF indent > @ THEN
BEGIN
output (dle);
output (indent OR $80)
END ;
cot := col + indent;
IF temp_indent THEN
indent := indent - 2
END ;
newline := false;
output (ch);

Page 17

193 CASE ch OF

194 $85, $8a, $92, 397, $9b:

195 col = col + 2;

196 $83, $89, $8b, $8c, $8d, $8e,
197 $8f, $90, 391, $9a, %a4, $f8:
198 cot = col + 3;

199 $93, $94, 395, $9e, $9f, $al,
200 $a2, %$a6, %$aa, $fa, $fb:

201 col = col + 4;

202 $82, $84, %83, %96, $99, $9d,
203 $a8, 3el, $e3, sea:

204 col := col + 5;

205 $98, $9c, %$a3, $a7, 3df, $eS,
206 eb, Sef:

207 col := col + 6;

208 $fe, $a9, $e8, $e9, %ec, See,
209 $f1, $f2, $f9:

210 col := col + 7;

21 $87, $e2, $e4, %ed, $f0:

212 col :=cot + 8;

213 $86: col = col + 9;

214 $f4, $f5: col := col + 10;
215 $f6: col == col + 11;

216 $a5, $f3, $fc, $fd:

217 col = col + 12;

218 $e6, %e?, $f7: col := col + 13;
219 $e@: cot := col + 14

220 ELSE

221 col = col + 1

222 END ; (* of case *)

223 CASE ch OF

224 $88, (* begin *)

225 $95, (* case *)

226 $98 (* repeat %)

227 indent := indent +'2

228 END (% of case *) ;

229 IF indent < @ THEN

230 indent := @;

231 CASE ch OF

232 e,

233 388, (* begin *)

234 $89, (x end *)

235 393, (* then *»)

236 $94, (* else)

237 $85, (x of *)

238 $98 (*x repeat *)

239 s newline := true

249 END ; (% of case *)

241 IF (ch = $89) (* end *)

242 AND (MEMC (old + 1] = ;") THEN
243 newline := false;

244 IF (ch = $85) (x of *)

245 AND ((MEMC [old + 11 = $fe) (* integer *)
246 OR (MEMC [old + 1] = $a1)) (* char *)
247 THEN newline := false;

248 temp_indent := false;

249 IF (ch = $93) (% then %)

250 OR (ch = $97) (% do *)

251 OR (ch = $94) (% else *x)

252 THEN temp_indent := true;

253 old := old + 1;

254 IF (NOT newline)

255 AND (col > 7@®) THEN

256 CASE ch OFf

257 R A

258 R P R

259 ll>ll, H]Vl:

260 BEGIN

261 newline := true;

262 CASE MEMC foldl OF

263 N R R

264 newtine := false

265 ELSE

266 temp_indent := true
267 END (% of case *)

268 END

269 END (* of case x)

270 END

271 END ;

272 output (cr);

273 output (@);

274 WRITELN ;

275 WRITELN ("Final address = " ,HEX (new))
276 END .

ADDRESS LIST PROGRAM

In response to a number of requests from
G-Pascal owners we have produced a random
disk file accessing program. This program
illustrates: ‘

® Modular coding techniques.

° How to open and read a random file.

® How to read and write strings.

° How to read the disk error channel.

° Displaying a 'default' reply and
accepting a response.

° Random disk accessing.

° Using the CURSOR statement for full-
screen displays.

When you have keyed in the program,
compiled and run it, it will open the file and
display:

<R>ead, <C>hange, <N>ext or <Q>uit?

As currently set up the program will allow
you to read and change any one of 100
records, numbered from 1 to 100. The
current record number is displayed near the
top of the screen. Initially all records are
set to blanks (in effect). To change a
record, first read it in. When you select 'R’
(for Read) the program will ask:

Record number?

Enter a record number from 1 to 100 and
press RETURN. The current contents of
that record (if any) will be displayed. To
alter it select 'C' (for Change). The cursor
will be positioned successively over the 4
lines of the record. Each line is 30
characters long. Under the line being
changed will be displayed 30 hyphens to help
you visualise how much space you have. To
accept the current entry just press RETURN.
Otherwise key in a new line and press
RETURN, or make alterations to the existing
one (using the cursor control keys) and press
RETURN.

Once you have changed all four lines the
new record will be written back to disk.
You can now read and possibly change a new
record.

Entering 'N' (for Next) will just step
sequentially through the file.

You must exit from the program in an
orderly fashion by pressing 'Q' (for Quit),
otherwise the last disk buffer will not be
written back to the disk file, and some of
your changes will be lost.

You can change the size of each line by
altering 'entry_length' (line 12) but you must
also make a corresponding change to
'record_length' (line 10). Record length is
equal to ((entry length + 1) * 4) + 1,

You can change the number of lines in a

record by making straightforward changes to
the appropriate parts of code. The contents
of each line is free-format - that is, up to
you. We suggest, for example, that line 1
would be a name, lines 2 and 3 the address,
and line 4 a phone number, birthdate etc. .

You will probably be able to think of
simple improvements to the program - for
example an ability to search each record for
a particular name, or to print a record on
your printer.

By changing 'max_record' (line 17) you can
alter the maximum size of your file. Be
careful if you make the value large, as the
disk drive takes quite a while to initialise
your file when you first access records at the
end of the file. The main reason for having
'max_record' is to catch keying errors when
entering the record number.

The file name on disk will be
'0:mailing list' - you can change this by
changing lines 78 to 87. The reason the file
was opened this way was because of the need
to include the record length as a binary
number, rather than as ASCIl characters.

1 (* G-Pascal Mailing List

2 using relative files.

3 Author: Nick Gammon

4 (Gambit Games) - January 1985 #*)

5

6 CONST true = 1;

7 false = 8;

8 cr = 13;

9 clearscreen = 147;

190 record_length = 125;

11 name_length = 17;

12 entry_length = 30;

13

14 (x if entry length changes,

15 also adjust record _tength *)
16

17 max_record = 100;

18

19 VAR file : ARRAY [name_lengthl OF CHAR ;
20 result : ARRAY [88] OF CHAR ;

21 namel, namel, name3, name4

22 : ARRAY [entry lengthl OF CHAR ;
23 reply @ CHAR ;

24 error,

25 result_code,

26 record_number : INTEGER ;

27

28

29 PROCEDURE read_error_channel;

TO (AhAAKAKKAKRRRKAAKKRAK KKK AKRK)

31 BEGIN

32 GET (15);

33 READ (result);

34 GET (@);

35 result_code := (result [@] - "@") * 1@
36 + (result [13 - @)

37 END ;

39 PROCEDURE display_array (addr);
LO (KA hhkkAKhkAKkhkAKRKKAAARKKAKR KK KK)

41 BEGIN

42 REPEAT

43 WRITE (CHR (MEMC Caddrl));

44 addr = addr - 1 (*x next *)
45 UNTIL MEMC Caddr + 11 = c¢r

46 END

47

48 PROCEDURE change (col, old data);
L9 (FhkkhhkhkARRARKKAANKARK A AR kKA AK)

5@ VAR i : INTEGER ;

51 BEGIN
52 CURSOR (col + 1, 1);
53 FOR i := 1 T0 entry_length DO

Page 12

54 WRITE ("-"); 142 BEGIN

55 CURSOR {(col, 1); 143 IF (result code = @) THEN
56 display_array (old data); 144 BEGIN
57 CURSOR (col, 1) 145 GET (2);
58 END ; 146 READ (namel);
59 147 GET (@)
60 PROCEDURE open_relative file; 148 END ;
61 (*********************{I****) 149 IF (result code <> @) OR
62 CONST 150 (name1 T@) = 255) THEN
63 areg = $2b2; 151 BEGIN
64 xreg = $2b3; 152 namel [@1 := cr;
65 yreg = $2b4; 153 name2 [@] := cr;
66 cc = $2b1; 154 name3 [@1 := cr;
67 openit = $ffc@; 155 name4 (@3 := cr
68 setlfs = $ffba; 156 END
69 setnam = $ffbd; 157 ELSE
' readst = $ffb7; 158 BEGIN
71 BEGIN 159 GET (2);
72 (* open error channel *) 160 READ (name2, name3, nameé);
73 161 GET (@
74 OPEN (15, 8, 15, "i'"); 162 END
75 163 END ;
76 (* set up file name %) 164
77 165 PROCEDURE display_record;
78 file £17] := "@"; file [8] = " v, 166 (hkkkkkkkhhkkhhkhkhhhkrkhhx)
79 file (161 = ":"; file [73 := "U''; 167 BEGIN
83 file [151 := "m"; file [6] = "i"; 168 WRITELN (CHR (clearscreen),
81 file [141 := “a"; file [5] := "s"; 169 "~---Name and Address Filing System----");
82 filte [13] = "i"; file [4] := "y"; 170 CURSOR (4,1);
83 file £121 := "t"; file [3] := s 171 WRITELN (""Record number: ",
84 file [111 = "i"; fite [2] := "U'; 172 record_number);
85 fite [10] := "n"; file [1] := ","; 173 CURSOR (8, 1);
86 file L 91 := "g"; file [0] := 174 display_array (ADDRESS (namel [01));
87 record_tength; 175 CURSOR (10, 1);
88 - 176 display_array (ADDRESS (name2 [01));
89 (* open file *) 177 CURSOR (12, 1);
90 178 display_array (ADDRESS (name3 [@1));
91 MEMC [aregl := 2; (*x file *) 179. CURSOR (14, 1);
92 MEMC [xregl) := 8; (* disk *) 180 display _array (ADDRESS (nameé4 [01))
93 MEMC [yregl := 3; (x channel *) 181 END ;
4 CALL (settfs); 182
95 MEMC [aregl] := name_length + 1; 183 PROCEDURE get record _key;
96 MEMC [xregl := ADDRESS 184 (hkkkkhkhhhhkkhkkhhkhkhkkhk)
97 (file [name_lengthl); 185 BEGIN
98 MEMC [yreg] := ADDRESS 186 REPEAT
99 (fite [name_lengthl) SHR 8; 187 CURSOR (22, 1);
100 CALL (setnam); 188 WRITE ("Record number? ");
101 CALL (openit); 189 READ (record_number);
102 190 If (record_number < 1)
183 (x check result of open *) 191 OR (record_number > max_record) THEN
104 192 WRITELN
185 IF MEMC [Cccl AND 1 THEN 193 (""Record number must be from 1 to ",
106 error := MEMC [areg] 194 max_record)
107 ELSE 195 UNTIL (record number >= 1)
18 BEGIN 196 AND (record number <= max_record)
109 CALL (readst); 197 END ;
10 error 1= MEMC [areg) AND $bf 198
111 END ; 199 PROCEDURE change_record;
112 read_error_channel; 200 (Frakkhxh A Ak kA kX Kk AAKHK)
113 IF Cerror <> @) 201 BEGIN
114 OR (result_code <> @) THEN 202 change (8, ADDRESS (namel [01));
115 BEGIN 203 READ (namel);
116 WRITELN ("Error code: “,error); 204 namel Lentry lengthl := cr;
117 displtay_array (ADDRESS (result [@1)); 205 change (1@, ADDRESS (name2 [01));
118 WRITELN ("Error on Open.'); 206 READ (name2);
119 CLOSE (2); 207 name2 [entry lengthl := cr;
120 CLOSE (15); 208 change (12, ADDRESS (name3 [01));
121 error := error / @ (* force abort *) 209 READ (name3);
122 END 210 name3 Lentry length] := cr;
123 END ; 211 change (14, ADDRESS (name4 [01));
124 212 READ (named);
125 PROCEDURE position file; 213 name4 Centry lengthl := cr;
126 (Fhdkkkkhhkhkhkkkhhkkrkdkhh) 214 position_file;
127 BEGIN 215 PUT (2);
128 CURSOR (25, 1); 216 display_array (ADDRESS (namel [01));
129 WRITE ("Please wait ...'"); 217 disptay_array (ADDRESS (name2 [01));
130 CURSOR (1, 1); 218 display_array (ADDRESS (name3 [01));
131 PUT (15); 219 display_array (ADDRESS (name4 [01));
132 WRITE ("p",CHR (3), (% channel *) 220 PUT (B
133 CHR (record number AND $ff), 2271 END ;
134 CHR (record_number SHR 8), 222
135 CHR (@)); (* position in record *) 223 (*
136 PUT (®); 224 **k%Hkx MAIN PROGRAM STARTS HERE *xakx*
137 read_error_channel 225 *)
138 END ; 226 BEGIN (% main program *)
139 227 WRITE (CHR (clearscreen),
140 PROCEDURE read_record; 228 "Opening maiting list file.");
147 (hhkkhhkhkhkhkhkkhhkhhkhkkx) 229 open relative file;

Page 73

230 record number := 1;

231 REPEAT

232 position_file;

233 read record;

234 display_record;

235 CURSOR (208, 1);

236 WRITE

237 ("<R>ead, <C>hange, <N>ext or <Q>uit? ");
238 REPEAT

239 READ (reply);

240 (* convert to lower case *)
241 reply := reply AND $7f

242 UNTIL (reply = "r')

243 OR (reply = '"n")

244 OR (reply = "¢")

245 OR (reply = "q");

246 WRITELN (CHR (reply));
247 WRITELN ;

248 CASE reply OF

249 "r": get_record_key;

250 ''n": (* read next record *)

251 IF record_number < max_record THEN
252 record number := record number + 1;
253 "c¢": change_record

254 END ; (x of case *)
255 UNTIL reply = "gq';

256 CLOSE (2);

257 CLOSE (15

258 END .

QUADRANTIAN FIGHTER

As mentioned in an earlier letter to
customers, Gambit Games is marketing an
arcade game - Quadrantian Fighter - written
entirely in G-Pascal without using MEM,
MEMC, or CALL. Quadrantian Fighter
makes extensive use of sprites including
MOVESPRITE and ANIMATESPRITE and the
other sprite-handling -statements. it also
incorporates sound effects, and smooth-
scrolling instructions.

It is supplied in two forms - a compressed
one for fast. loading and playing, and an
uncompressed form (one statement per line)
for easier examination and changing. Both
function identically. The uncompressed
form consists of 1,283 source statements.

The game is a good illustration of how to
program an arcade game entirely in a high-
level language. Its presentation and
execution speed are comparable to machine-
code games.

Quadrantian Fighter is available from
Gambit Games for $9.95 plus $2 postage and
packaging. Full source code is supplied.

Quadrantian Fighter is written by Wayne
Morellini - a G-Pascal owner from
Queensland.

Page T4

STORING LARGER PROGRAMS

It is possible to store a larger G-Pascal
source program than the maximum of 16K
mentioned on page 77 of the G-Pascal
manual. To do this, you alter the lower
limit of the G-Pascal source code from
$4000 (which is its normal position) to
anywhere below that, down to $800 which is
just past where screen memory ends. If you
change the start address of the program to
$800 then your program can be up to 30K in
fength.

There are some restrictions, however.
The area of memory between $800 and $4000
was set aside for sprite definitions, bit-
mapped graphics, machine code, P-codes (if
required), extra screen pages (for page
flipping) and user-defined character sets. |f
you make the source start at $800 then none
of those other uses are available to you - this
may be alright if you are just writing, say, a
text-only adventure game, or some text-only
educational software. Otherwise you will
need to compromise. For example, if you
make the source start at address $2000 then
you still have from address $800 to $2000 for
sprites etc., and your program can now be
24K in length.

To change the source start address enter,
compile, and run the following program (or
similar):

1 BEGIN MEMC [$800al := 3$@8 END .

The '$08' could be any value from 08 to 40
(the low order byte is assumed to be zero, so
'$08' represents address $0800 in this case).
To change back to normal operation, run the
program with the value being $40.

After running this program you may see
rubbish on the screen if you do an editor
List. To get rid of that, just enter:

d 1,9999

in the Editor - this will give you an empty
source file.

If you have saved to disk or cassette a
program larger than 16K in length, then
make sure that you patch the source start
address (as above) before reloading the
program in a subsequent session of G-Pascal.
Loading a program larger than 16K to an
unpatched version of G-Pascal will clobber
the compiler.

HOW TO QUICKLY LOAD G-PASCAL

The smallest number of keystrokes needed
to load G-Pascal from disk (after turning on
your C64's power) is:

L <SHIFT>0 "*",8

Typing L followed by SHIFT/O is a
standard Basic abbreviation for LOAD.
Using an asterisk for the filename tells the
disk drive to load the first file found on the
disk (""" is actually a 'wild-card'
specification). As the compiler is the first
program on the disk {at least on the ones
Gambit Games supply) then this loads
G-Pascal with only 8 keystrokes (including
RETURN). Once it has loaded you can type
RUN, or to save one keystroke, R SHIFT/U
which is the abbreviation for RUN (followed
by RETURN of course).

PROGRAMS AVAILABLE ON DISK

As a service to readers Gambit Games will
make available a disk containing the three
major programs in this issue (MODFEM64
version 1.6, Pretty-print, and Mailing List)
for $10 including postage. These programs
between them consist of 1,652 source
statements which will take a while to key in
from scratch. If you are interested send a
cheque, postal order or credit card number
to Gambit Games requesting the disk for the
January 1985 issue of G-Pascal News.

NEXT ISSUE

In our next issue (April) we plan to include
further program listings, syntax diagrams,
and start our G-Pascal tutorial. We would
appreciate hearing from readers who would
like to see particular subjects discussed, or
who can suggest the 'level' at which tutorial
material should start. There is still time to
influence the next issue (until the middle of
March, 1985) so write now.

COPYRIGHT

Concept and articles copyright 1985
Gambit Games. Computer clubs and others
wishing to reproduce articles please contact
Gambit Games for permission. Program
listings are public domain and may be
reproduced for non profit-making purposes.

Page 75

DEFAULT DISK OR CASSETTE ACCESS

In normal operation G-Pascal always asks
you whether to load or save a file from/to
disk or cassette, and then asks the file name.
If you are always planning to use either disk
or cassette (but not both), and find always
answering the question 'Disk or Cassette'
irritating, you can make a small 'patch' that
will bypass the question and set up the
correct default. The program to achieve
this is:

Disk
BEGIN MEM [$9¢661 := $eat4a9 END .

Cassette
BEGIN MEM [$9c66] := $eat3a9 END .

Note the use of the word MEM rather than
MEMC as three bytes are being patched.
The actual code being generated here is:

LDA #'D' Cor 'C")
NOP

which replaces a subroutine call to 'get a
reply' and return with the value entered.

SUPERSPRITE EDITOR

SuperSprite Editor is a useful and powerful
sprite editing tool. It can hold many sprite
shapes in memory simultaneously for
comparison, copying and editing. You can
easily animate (sequence) through series of
sprite shapes to test animation effects.
There are 22 sample sprites supplied with the
editor.

SuperSprite Editor is available from
Gambit Games for $11.95 plus $2 postage
and packaging. Full source code is supplied.

SuperSprite Editor is written by Craig
Brookes - a G-Pascal owner from Western
Australia.

CREDITS

Material in this issue by Nick Gammon.
Typeset on a Brother EM-100 typewriter.
Typesetting software specially written in
G-Pascal to handle ‘'proportional space'
typefaces. Editorial assistance from Sue
Gobbett and Cynthia Gammon. Written and
printed in January 1985.

