The OTHERS

‘DATA’ statements in G-Pascal

by David Roth

One of the major drawbacks with G-Pascal
is the awkwardness of setting up tables of
numbers or characters. It can be done by
tediously assigning data to arrays, e.g.

a[1] ;= 40;
a[2] .= 20;
..... and so on
or

alphal1] := “abc”;
alpha[2] := “def” ;

But there is a better way. The following
technique provides a useful way of setting
up BASIC-like DATA statements in a G-
Pascal program. it allows tables of strings or
numbers to be more easily set up.

1. Numbers

The following program sets up the ‘DATA’ at

the start of the program as‘comments’. Each

data element must be 3 digits, i.e. 1 = 001.

1: (*

2: 001002003004

3: 095160160186186186186186186186
186186186160105CLLL*)

:varj : char;
:z:array [80] of char;
: (* read the data lines *)
. procedure read data;
: const start source = $4000;
10: var i, ptr : integer;
11: begin
12:fori:=01to 79 do
z[i} := O ; (* clr array *)
12:1:=0;
13: ptr ;= start source ~ 1;
14: repeat
15: ptr:=ptr + 1
»until memcptr] = “(”;
17: ptri=ptr + 3;
: repeat
19: z[i] ;== (memc|ptr] - $30) * 100;
2 z[i] := z[i] + ((memc[ptr + 1] - $30) * 10);
21: z[i] .= z[i] + memc][ptr + 2] - $30;
=1 ptri= ptr + 3;
: until (memc[ptr] = “
:end;
: {(* mainline — display the data *)
: begin
: read datg;
. (* display the data *)
cforj:=01to0 74 do
: writeln(z]j]);
31: end.

This technique takes advantage of the G-
Pascal standard that source code starts at
$4000. Therefore, if the program starts with
a ‘comment area’, that area can be used to
store data. The first ‘data’ line must start with
the “(*”. The first data element can from one
toany numbers of blanks after the “(*”, since
the editor tokenises the blanks so that two
blanks take up as much space as four
blanks. The end of the data is marked by a
row of pound signs (or whatever delimiter
you prefer). Extra protection could be added
to check that the index for the receiving
array does not exceed the array bounds. No
check is made that each element does not
exceed 255. If numbers larger than 255 are

OCO~NOOO N

; (% delimiter ? %)

required, then the receiving array must be
defined as INTEGER.

2. Strings

The following program handles string data.
(*

: Mary had a little lamb, its fleece

: was white as snow.££2£8)

var j, k : char;
: z : array {80] of ¢har;
: (* read the data lines *)
: procedure read data;
: const start source = $4000;
s var i, ptr : integer;
11: begin
cfori:=01to79 do
z[i] :=“*"; (* clr array *)
= 0;
: ptr = start source - 1;
: repeat
cptri=ptr+ 1
:until memc(ptr] = “(”;
. ptr:=ptr + 3;
. repeat
. z[i] == memc[ptr] ;
21:i:=i+1; ptri=ptr + 1;
s until (memclptr] = ¢
: end;
: (* mainline — display the data *)
: begin
: read data;
: (* display the data *)
cforj:=0to 79 do
s write(z[jl);
cwriteln
31: end.

©CONDUTD WN 2

Notice that the use of “*)"as a delimiterfor
the ‘DATA' rather than looking for the ending
“*)” for the comment allows “*”s to be
included in the ‘DATA’.

© David Roth 1985

REVIEW

Commodore 64 Graphics with
COMAL

Author: Len Lindsay
Publisher: Prentice Hall (Aust)
Price: R.R.P.$33.95

This book follows the excellent example of
Len Lindsay's “COMAL Handbook”. Each of
the graphics control commands (including
TURTLE graphics) built into COMAL is
explained by a working example. The
discussion of each command is an object
lesson to the writers of computer manuals -
a clear, low-jargon explanation, notes on its
correct use and syntax, and a sample
program. The sample programs are for the
most part easy to follow and are good
examples of sound structured programming
style. They can also be readily incorporated
as useful subroutines in your own COMAL

programs. If you don’t have the COMAL
handbook, appendices are provided explain-
ing COMAL structured programming, COMAL
keywords and useful functions and proced-
ures.

The book is, | think, pitched towards the
‘practicall programmer or student, rather
than the technical theorist. The book is
basically a manual of graphics commands
and does not attempt to give a full
explanation of Commodore 64 graphics
concepts. Each category of graphics
command (TURTLE, GRAPHICS and
SPRITES isintroduced by a clear and simple
explanation of the concepts used. If these
explanations and the examples are followed
through carefully, you will gain a good basic
knowledge of graphics and a sound
understanding of structured programming.

Some of the examples are a little complex -
the sample program for SPRITECOLOR has
too many ELIFs (ELSE IFs) when a CASE
construct would have been simpler. But
perhaps this is an implied invitation to the
reader to improve the program as a learning
exercise. But most of the sample programs
are quite well thought out and present
interesting ideas for the reader to build on.
They could be improved if they were tied
together by a common theme. If each
sample program was a ‘building block’ in a
bigger program then you would have a
clearer idea of how the commands fit in
together. For example, in a ‘shoot ‘em up’
game, SPRITECOLLISION could be used to
detect hits, PLOTTEXT to give the score, the
TURTLE to draw a landscape, and so on.
Having completed the examplesin the book,
you would then have a completed project to
fiddle with, modify and learn from, rather
than a disconnected set of examples,
however excellent in themselves.

The book could also be improved by the
inclusion of pictures or diagrams of the
screen when the sample program is run. It is
far easier to check a program from a picture
than from a verbal description. And it seems
strange that a book on graphics should have
no pictures.

Onedrawback for users of the public domain
COMAL version 0.14 is the limited memory
available for user programs - 6 to 8K. |
understandthatthe new COMAL version 2.0
forthe 64 - now available from COMAL User
Groups in the UK or USA - has over 100K
available tothe user, butitis expensive (over
$100 for the cartridge). The graphics
commands available do get around the
memory limitation to some extent, since
they condense agood deal of powerinto one
simple statement (imagine the number of
BASIC lines required to implement a
TURTLE). If you are too lazy to type in the
examples, you can send away for a
companion disk. | don’t recommend this,
since you canlearn far more by typing in and
debugging the programs (and hopefully
modifying them to try out your own ideas).
The disk is also rather pricy, at $20 (US).

On the subject of price, | am very critical of
Australian publishers’ pricing policy for

Continued overleaf

Commodore Magazine Volume 5 Number 4, 37

