
INSTA-SPEED TM
BY DAVID HUGHES

A HIGH SPEED COMPIL ER SYSTEM FOR
THE COMMODORE 64 COMPUTER

CIMA~~ON
1083 C,mO ' fon Coroo roToon

COMMODORE 64 IS A TRADEMARK OF COMMOOORE

INSTA-SPEED
T.M.

HIGH-SPEED COMPILER SYSTEM
FOR THE COMMODORE 64 COMPUTER

BY
DAVID HUGHES

CIMA~~ON
Copyright © Drive Technology Ltd.

TABLE OF CONTENTS

1.

2.

3.

4.

5.

CONTENTS

Introduction

1.2 Purpose of this manual
1.3 How to use this manual
1.4 Major benefits of Insta-Speed

Installation

2.1 Contents
2.2 The security key
2.3 Making backup copies

2.3.1 Disk versions
2.3.2 Tape version

Main features of Insta-Speed

3.1 Requirements
3.2 The compilation process
3.3 The run-time library
3.4 Combining Basic and machine code
3.5 Extensions to Basic
3.6 Insta-Speed - facilities avail.

Operations of Insta-Speed

4.1 How to run the compiler
4.2.1 Disk versions
4.2.2 Tape version

4.2 Compilation options
4.3 Function keys
4.4 Compilation

4.4.1 All versions
4.4.2 Tape versions

4.5 Compilation statistics
4.6 Termination Options
4.7 Operation of compiled programs
4.8 Making copies of compiled programs
4.9 Special operation features
4.10 Trouble Shooting

Making the most of Insta-Speed

5.1 Acheiving the best performance
5.2 High speed sprite movement
5.3 Improved programming style
5.4 Utilizing the extra memory

INST A-SPEED

Page

1

2
2
3

4

4
4
4
4
5

6

6
6
7
7
8
9

10

10
10
11
12
13
13
13
14
15
16
17
17
18
19

22

22
23
24
25

TABLE OF CONTENTS

6.

7.

8.

Compiler directives

6.1 List of directives
6.2 Integer conversion directives
6.3 Special integer mode
6.4 Variable list positioning
6.5 Disabling the stop key
6.6 Special POKE mode
6.7 Inhibiting warning messages

Chaining and Overlaying programs

7.1 Chaining without sharing variables
7.2 Chaining with sharing variables

Information for users of machine code with Basic

26

26
26
28
28
29
30
31

32

32
32

35

8.1 Variable list and array list formats 35

9. Errors

Appendices

8.2 Memory Map 36
8.3 Garbage Collection 36
8.4 Types of extension handled by the compiler 37

9.1 Pass 1 errors
9.2 Pass 2 errors
9.3 Run-time errors
9.4 Warnings

38

38
38
39
40

41

A. What is a compiler? 41

B. Error numbers 43

INST A-SPEED

NOTICE OF INTERNATIONAL COPYRIGHT AND LICENSING DTL-COMPILER

COPYRIGHT

(c) Copyright by Drive Technology Ltd. All rights reserved.

This manual contains proprietary information which is protected by
copyright. Copying of this manual or the transmitting of information
contained herein by any means whatsoever whether mechanical, electrical or
electronically is strictly forbidden. Users are reminded that a condition
of purchase is the acceptance that copyright rests with Drive Tehnology
Ltd. and that full responsibility rests with the registered user to
protect such copyright.

UCENSING POUCIES

Orive Technology Lts. grants the registered user the right to distribute
the compiled programs produced by INSTA-SPEED (DTL-BASIC 64) without
payment of royalties provided that the following copyright notice is
clearly included in the distribution media:

"parts of this product are copyrighted by Drive Technology Ltd., 1983"

A further condition of license is that INSTA-SPEED (DTL-BASIC 64) may
only be used in conjunction with the security key supplied with the
product or with additional keys supplied by Dataview Ltd. or Cimarron
Corporation at a fee.

For parties interested in high volume distribution of proprietary programs
compiled under INSTA-SPEED (DTL-BASIC 64), contact Cimarron
Corporation for further information.

NOTICE

Drive Technology Ltd. shall not be liable for any loss or damage resulting
from the use of INSTA-SPEED (DTL-BASIC 64) or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this product.

Drive Technology Ltd.
notice and without
alterations.

u.s. DISTRIBUTION

Cimarron Corporation
Micro-Sci Marketing

reserves the
the obligation

Division of Standun Controls, Inc.
2158 S. Hathaway Street
Santa Ana, Ca. 92705
Telex 910-346-6739

right
to

to alter this product without
notify any person of such

WORLD WIDE PUBUSHERS

Dataview Limited
Radix House
East Street, Colchester
Essex, COl 2XB, England
Telex 987562 COCHAC

INST A-SPEED CIMARRON CORPORATION

COPYRIGHT

This software product is copyrighted and all rights reserves by CIMARRON
CORPORATION.

The distribution and sale of this product are intended for the use of the
original purchaser only. Lawful users of this program are hereby licensed
only to read the program from its medium into memory of a computer solely
for the purpose of executing the program. Duplicating, copyingm selling or
otherwise distributing this product is a violation of the law.

This manual is copyrighted and all rights reserved. This document may not,
in whole or in part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from the author or its agents.

DISCLAIMER

Cimarron Corporation makes no warranties, either express or implied,
with respect to the program described herein, its quality, performance,
merchantability, or fitness for any particular purpose. This program is
sold nas is". The entire risk as to its quality and performance is with
the buyer. Should the program prove defective following its purchase,
the buyer (and not the creator of the program, Cimarronm, their
distributors, or their retailers) assumes the entire cost of all
necessary servicing, repair or correction and any incidental or
consequential damages.

In no event will Cimarron Corporation be liable for direct, indirect,
incidental or consequential damages resulting from any defect in the
program even if it has been advised of the possibility of such damages.
Some laws do not allow the exclusion or limitation of implied warranties
or liabilities for incidental or consequential damages, so the above
limitation or exclusion may not apply.

INST A-SPEED

1. Introduction

Versions Available

1

INST A-SPEED is a BASIC compiler for the CBM 64.
The programs originate in the United Kingdom and are
improved and upgraded versions of DTL BASIC COMPILER,
developed for Commodore business computers.

The function of a compiler is to convert a program from
its source form (ie. the form in which it is written)
into a more efficient form that can run much faster
than the original.

INST A-SPEED has been specially optimized for the CBM 64
and it not only makes every BASIC program a lot faster
but will also make each program significantly smaller,
except for programs with only a few lines.

INST A-SPEED is 100% compatible with CBM 64 BASIC. This
means that any existing 8ASIC program can be compiled
without any alteration, to produce a program that
peforms exactly the same, and yet is much faster and
requires less memory and disk space.

INST A-SPEED is designed so that it can be
people with no programming knowledge to
existing programs. Yet for more experienced
range of facilities is provided to enable
potential of the CBM 64 to be realized.

used by
compile

users, a
the full

Note: A more detailed description of the differences
between a compiler and an interpreter is given in
Appendix A.

F or the CBM 64 there are three versions

INST A-SPEED 64 T (OTL BASIC 64T)
INST A-SPEED 64 (DTL BASIC 64)
II\lST A-SPEED 64 PROTECTOR(OTL BASIC 64 PROTECTOR)

The T version is for use on CBM 64 machines without a
disk drive, i.e. with only a cassette tape unit for
program storage.

The other two versions are for machines with a disk
drive and are identical except that the PROTECTOR
version is for use by software houses and provides
protection for compiled programs against illegal
copying.

This manual applies to all versions
explicitly stated, otherwise the three
identical.

except where
versions are

INST A-SPEED 2

1.2 Purpose of this manual.

This manual describes how to use and operate all the
versions of INST A-SPEED.

No attempt is made to teach BASIC programming or to
define the BASIC language. This is not necessary due to
the high level of compatability with the BASIC
interpreter in the CBM 64.

1.3 How to use this manual.

Important
Note

Standard
Programs

Chaining

This manual is intended for use both by programmers and
by non-programmers.

Before using the
chapters 2, 3, and
features and operation.

compiler,
4 which

all users should
cover installation,

read
main

The operation of INST A-SPEED 64 T is slightly different
from the disk-based versions. There are separate
sections within chapters 2, 3, and 4 especially for the
tape-based version. This version also has some
limitations when compared to the disk versions and
these are identified in section 3.6

It is especially important that the user notes the
potential problem of disk corruption that can occur
when the re lace 0 tion is used with the SAVE command
(see section 4.10. This is a problem in the DOS in the
disk drive and has nothing to do with the compiler.
However, if the compiler is used on a corrupt disk then
it may appear that the compiler is not working
correctly. Therefore, avoid using the replace option
with SAVE.

If the program to be compiled is a single program
consisting solely of standard BASIC, i.e. not involving
any machine code and does not chain to any other
program then the remaining chapters can be left until
they are required.

If two or more programs
chapter 7 should be read
if extentions to BASIC or
then refer to chapter 8.

are chained together then
before compiling; similarly,
machine code are involved

Chapter 5 explains how to get the greatest benefit from
INST A-SPEED.

SPEED It is important to realize that, whatever SPEED
Improvements improvement is achieved by compiling a program without

any alteration, it is almost certain that significant
additional improvements can be gained by making slight
changes. Often, this only involves the addition of a
single compiler DIRECTIVE at the front of the program.
The reasons for this are given in chapter 5. Chapter 6
describes directives that are available. A compiler
directive is an instruction to the compiler stored
within the source program.

INST A-SPEED

Errors

3

If any errors occur while compiling or running compiled
programs then refer to chapter 9.

1.4 Major benefits of INST A-SPEED

Fast

Compact

Protection

Compatible

Arithmetic

* Compiled programs can run to up 55 times faster in
ideal situations - typical improvements are normally in
the range of 5 to 30 times faster.

* Compiled programs are between 50% and 80% of the
size of uncompiled programs which means not only that
there is more space for variables and arrays but that
programs will load faster and will need less disk
space.

* Compiled programs cannot be listed or altered.

* The compiler is totally compatible with all the
features of CBM 64 BASIC meaning that a BASIC program
can be compiled without alteration.

* The compiler provides true integer arithmetic as
well as floating point arithmetic.

Machine Code * The compiler is compatible with existing machine
code routines, ie. where a BASIC program uses separate
machine code then that code should work with the
compiled BASIC program without alteration.

Extensions

Games and
Sprites

Professional

Garbage
Collection

Migration

* The compiler can compile programs incorporating
extensions, to BASIC; ie. additional BASIC statements
implemented by machine code in ROM or RAM.

* The compiler is especially effective for compiling
games programs involving graphics. This is because
special attention has been paid to making the
statements used to control sprites as fast as possible.
A special directive is available to facilitate fast
sprite movement (see sections 5.1 and 5.2).

* Great flexibility is offered to the programmer who
produces sophisticated suites of programs. For example,
the start address of the variable list can be defined
by the programmer, and, when chaining several programs
the variables may, or may not be, shared between the
separate programs as required by the programmer. By
sharing variables time can often be saved by not having
to re-Ioad information from disk.

* INST A-SPEED has its own garbage collection routine
which takes less than a second (on the interpreter)
progr~ms involving a lot of string processing can
experience long delays due to the slow garbage
collection routine).

* A facility is provided to ease the transportation of
programs from other machines to the CBM 64. This
enables PEEK/POKE addresses to be automatically
adjusted without changing situations, e.g. when a
program POKEs data directly to the screen.

INST A-SPEED 4

2. Installation of INST A-SPEED

2.1 Contents

Your copy of INST A-SPEED should consist of

- an INST A-SPEED compiler disk/tape
- this manual
- a security key

2.2 The security key.

The security key is a device used to protect Drive Technology
Ltd.'s copyright. It is only by protecting the product well
that such a sophisticated product can be made available at
such a low price.

The key must be fitted to the cassette port with the lettered
side (a serial number) facing upwards. If the key is not
present, or is not fitted correctly when the compiler is run,
the machine will reset itself, i.e. *****COMMODORE 64 BASIC
v2 ******* etc. will be displayed.

2.3 Making backup copies

Before using the compiler for the first time it is essential
to make at least two backup copies. This protects you in case
your disk or tape becomes damaged for any reason.

Always clearly label backup copies and store in a safe place.

2.3.1 Disk versions

The procedure for making a copy of the compiler disk is

- format a space disk by means of a NEW command, e.g.

OPEN 15,8,15
PRINT II 15, "nO:INST A-SPEED,C1"

Note: make sure that the identifier ("C1" in this example)
is not the same as the compiler disk identifier, i.e. is not
"64".

- copy the six files from the compiler disk to the backup
disk; the six files are-

DTL-BASIC-E
DTL-BASIC-MCE
DTL-BASIC
RTL-64
DTL-BASIC-MC
ERROR LOCATE

INST A-SPEED 5

The procedure for copying a file from one disk to another is-

1. Insert the diskette containing the file in the disk unit.
2. Load the file to be copied with a LOAD command, e.g.

LOAD"DTL-BASIC",8

3. Remove the diskette and insert your new diskette.
4. Save the file with a SAVE command, e.g.

SA VE"D TL -BASI C" , 8

2.3.2 Tape version

NOTE

The procedure for making a copy of the compiler tape is-

1. Obtain a spare tape.
2. Copy the four files from the compiler tape to the backup
tape; the four files are -

DTL-BASIC
RTL-64
DTL-BASIC-MC
ERROR LOCATE

Note that the files must be on the tape in the above order.

The procedure for copying a file tape to tape is -

1. Insert the tape containing the file in the tape unit.
2. Load the file to be copied with a LOAD command, e.g.

LOAD"DTL-BASIC"

3. Remove the tape and replace with the second tape.
4. Save the file with the SAVE command, e.g.

SAVE"DTL-BASIC"

s. Repeat this procedure for the four files without r-ewinding
the tapes between each file copy.

INST A-SPEED 6

3. Main features of INST A-SPEED

3.1 Requirements

INST A-SPEED requires a standard Commodore 64 plus a
cassette tape unit. The other versions require a
standard 64 plus a single disk drive.

The compiler can make use of a printer but one is not
essential.

Neither the compiler nor compiled programs use a RDM
cartridge so that the user is free to use cartridge
software together with compiler programs.

3.2 The compilation process

Error
Checking

Source
File

Two Pass
Process

Run Time

INST A-SPEED is complementary to the CBM BASIC
interpreter due to its total compatability. This means
that programs can for convenience be developed and
debugged on the interpreter and when working can be
compiled for maximum SPEED and to reduce program size.

It is usual before compiling to make sure that the
programs work on the interpreter. INST A-SPEED does make
thorough checks for errors both at compile time (i.e.
while the program is being compiled) and at run-time
(i.e. when the compiled program is being run) but it is
more convenient to detect and correct errors on the
interpreter, rather than the compiler.

The compilation process involves :

F or the disk based versions; copying the source file
(i.e. the program to be compiled) on to the compiler disk
or copying the compiler files onto the program disk;

Loading and running the compiler;

Telling the compiler the name of the source file; i.e.
the file containing the program to be compiled;

Telling the compiler the name of the object file; i.e.
the file to be created by the compiler to hold the
compiled program;

Compilation is a two pass process. On the first pass
the source file is read a line at a time and a semi­
compiled version of the program is written to a work­
file. On the second pass the work-file is read back,
additional information is added and the object file is
recreated. Note that for INST A-SPEED the work-file is
held in memory in the area unused by BASIC.

After the compilation is complete the work-file is
deleted, and the object file may then be loaded and run,
or another program may be compiled.

INST A-SPEED

Program
Limitations

Listing

Special
File

7

Note that, for the disk based compilers, because the
program is never totally held within the compiler there
is no limit to the size of program that can be compiled.
Any program that will run on the interpreter should be
able to be compiled. For the tape based version there is
a limit on the size of program that can be compiled - see
section 3.6.

If required, the compiler can produce a listing of the
program and/or a report of any errors found.

In addition to the compiled program the compiler produces
a file LN-name (where "name" is the name of the compiled
program). This file is not involved in running the
compiled program but is only needed if the program has
run-time errors (e.g. DIVIDE BY ZERO ERROR) that were not
found before compilation -- see chapter 9.

3.3 The run-time library

Auto Load

BK Bytes

Assembler

The run-time library (file RTL-64) is a set of machine
code routines that must be in memory when a compiled
program is run.

It is not necessary for the user to load this file as,
every time a compiled program runs, the program first
checks to see whether the run-time library is in memory
and, if it is not, then it will load the file
automatically from either disk or tape, i.e. from
wherever the program was loaded. This means that the disk
or tape from which the first compiled program is loaded
after power up should contain a copy of R TL-64.

The run-time library is just less than BK bytes in size
but in order to avoid using up the valuable space within
the BASIC area, i.e. the 3BK available to BASIC, the run­
time library is stored outside this area in some of the
RAM that would otherwise be unused.

For the benefit of machine code programmers, the run-time
library is stored in the BK from $AOOO to $BFFF which is
an area of RAM that cannot be directly accessed from
BASIC. This leaves the 4K of accessible RAM at $COOO
(i.e. RAM that can be accessed via SYS,PEEK and POKE)
free for machine code and/or data (see sections B.2 and
B.3).

3.4 Combining BASIC and machine code

Many BASIC programs utilize machine code subroutines to
perform tasks that are not possible or are difficult in
BASIC. With the greatly improved performance provided by
INST A-SPEED it is possible to replace many machine code
routines with BASIC code.

INST A-SPEED 8

However, there will always be situations where some
machine code is desire able. INST A-SPEED has been
especially designed to ensure that in the vast majority
of cases machine code that works with a BASIC program on
the interpreter will also work without alteration with
the compiled program. This is possible because the
compile preserves precisely the same format for page
zero, the variable list, the array list and string
storage etc.

This m~ans that machine code for example, searches the
variable list for a particular variable or sorts a string
array will still work with a program compiled by INST A­
SPEED.

Further details are given in chapter 8.

3.5 Extensions to BASIC

How it
Works

One very useful feature of CBM machines is the way that
it is possible for additional features to be added to
BASIC by means of machine code routines either in ROM or
RAM.

INST A-SPEED has features that enable programs using such
extensions to be compiled and run successfully even
though the compiler does not know the details of the
extensions. This means that programmers are free to use
extensions to BASIC and are still able to obtain all the
benefits of compilation.

This is possible because as the compiler checks the
syntax of a statement and if it cannot recognize the
first character of the statement (i.e. if the character
does not start with either a legal keyword or an
alphabetic character), then it assumes that the statement
is valid and is an extension to standard BASIC.

The compiler embeds the text of the extension statement
in the' compiled program exactly as it occurs in the
source program. Then it precedes it by a special code and
follows it by a SYS call to the run-time library at the
time the program is executed. Next, the run-time library
detects the special code, sets up the page zero pointers
to the extension statement and calls the interpreter to
process it.

Now the interpreter processes the statement just as
though it was in a normal program and invokes the
additional machine code to implement the statement. When
the machine code routine returns control, the interpreter
obeys the SYS call and re-enters the run-time library.

The whole process works because the machine code finds
the variable and arrays lists, etc. exactly as it
expects.

INST A-SPEED 9

See chapter 8 for further information as to how
extensions (and SYS calls with parameters) are handled.

3.6 INSTA-SPEED 64 T -- facilities available.

Program
Limitations

INST A-SPEED
provides a
compilers.

64 T, the tape version of the compiler,
subset of the facilities of the disk based

The main restriction is the size of program that can be
compiled. This is because the entire program is held in
memory during compilation. The largest program that can
be compiled by the tape based version is 12K bytes
(12,288 bytes). If an attempt is made to compile a
program that is too large then the compiler will stop and
give an error message.

The only other restrictions are that the directives VL,
RO and VN cannot be used with the tape based compiler
(see chapter 6) and the control file facility cannot be
used (see chapter 4.9).

INST A-SPEED 10

4. Operation of INST A-SPEED

4.1 How to run the compiler

4.1.1 Disk versions.

The compiler disk actually contains two separate
compilers; one for single drive disk units (eg. the
1540 or 1541 units) and one for dual drive disk units
(eg. the 4040). The dual drive compiler will work with
drives attached to the serial port or with drives
attached via an IEEE-4BB cartridge.

When the dual drive compiler is used then the compiler
disk must be in drive 0 and the program to be compiled
must be on the disk in drive one.

There are two ways of using the single drive compiler.
The first is to copy the program to be compiled onto
the same disk compiler (ie. by use of LOAD and SAVE
commands). The second is to load and run the compiler
and then remove the compiler disk and replace it with
the disk holding the program to be compiled.

If there are a number of programs on the disk it is
worth checking that sufficient free space exists for
the compiled program and for the work-files used by
the compiler. These files will be deleted at the end
of the compilation but will require space until then.
As a rough guide the free space available should be at
least . equal to the size of the source file for the
dual drive compiler and at least twice the size of the
source file for the single drive compiler.

It is possible to find the amont of free space by
displaying the disk directory, ie. type the coommands

LOAD "$",B

and when READY is displayed, type

LIST

the size of each file and the free space on the disk
are given in terms of the number of blocks (a block is
256 bytes).

If there is not enough free space some files will have
to be deleted (after being copied to other disks).

Before running the compiler first fit the security key
to the cassette interface (lettered side upwards) and
then type

LOAD"DTL-BASIC" ,B

INST A-SPEED 11

for the single drive compiler

or

LOAD "DTL-BASIC-E",B

for the dual drive compiler;

and when READY is displayed, type

RUN

There will be a pause while the two files (RTL-64 and
either DTL-BASIC-MC or DTL-BASIC-MCE) containing
machine code are loaded into memory.

4.1.2 Tape Version

TAPE LOAD

Throughout these instructions it is assumed that the
user will obey instructions from the operating system
to press keys on the tape unit, ie. the messages

PRESS PLAY ON TAPE
PRESS RECORD AND PLAY ON TAPE

will not be explicitly mentioned in this manual.

To load the compiler first put the compiler tape
the tape unit and type

LOAD "DTL-BASIC"

and when READY i~ displayed, type

RUN

in

If this is the first time that the compiler has been
run since powering up the machine then there will be a
delay while the file "RTL-64" is loaded.

Note The compiler will ask that STOP be pressed, the
cassette cable be removed and the security key fitted.
Take care when fitting the security key to ensure that
the key is pushed on straight, If the key is pushed on
at an angle then there is a possibility that the
machine may reset.

Once the key number has been checked, the
removed and the cassette cable is relaced.

key is

INST A-SPEED 12

If this is the first time that the compiler has been
run since powering up the machine then there will be a
further delay while the file ''DTL-BASIC-MC'' is loaded.
Once you have used the compiler and the machine has
not been turned off, the files RTL-64 and DTL-BASIC-MC
will remain in memory (in the area unused by BASIC)
and will not have to be re-loaded when the compiler is
run again.

4.2 Compilation options

Starting up

The compiler will display the following list of
options

source file 7 :
object file 7 :
print source 7 :
print stats 7 :
run identity 7 :

plus a set of commands selected by the function keys.

Each option field that is input is terminated by
RETURN or F1 (function key 1).

Type the exact name of the source file

Type the name of the object file (the file to be
compiled).

Unless you wish to print, the compilation may be
started by pressing F3.

Print Options If printing is required then change the relevant "nllls
to "ylllS.

Statistics

If "print source 7" is "y" then the whole program will
be printed during the compilation.

If "print errors 7" is "y" then any error messages
will also be printed.

If "print stats 7" is "y" then at the end of the
compilation some statistics will be printed giving the
relative sizes of the source and object files (these
are always displayed). .r

If any printing is sel$ted the contents of "run
identity" will be printed at the start of the listing
to serve as an identification, ego it may be
convenient to put in the date or time etc. so that
when several listings of the same program are kept
then the correct sequence can be determined. The "run
identity" field can be left blank if required.

INST A-SPEED

Protector

4.3 Function keys

Directory

Restart

Change
Diskettes

Exit

4.4 Compilation

13

(Read only if you are using run-time data keys)
The PROTECTOR version of the compiler has one
additional option to those listed above, ie.

key identity?:

This specifies the key that is to be used with the
compiled program; the possible inputs are -

"c" -- for the compiler key
"r" -- for the run-time key
the serial number -- for a software house key

As mentioned earlier, F1 moves you to the next option.
If there are no more options and it is pressed,
compilation will start.

Alternatively, as soon as both the source and object
files have been named, F3 can be used to start the
compilation immediately.

If the user cannot remember the name of the
source file then F5 can be used on the disk based
versions to display the directory of all the program
files saved on the disk.

If it is
incorrectly
beginning.

realized
then F2

that an option has been input
can be used to go back to the

If it is discovered that the wrong disk is being used
then F 4 can be used to allow the disk to be changed
without reloading the compiler. Note that the new disk
should contain at least the file DTL-BASIC-MC, as this
will be re-loaded from disk.

F6 can be used to exit from the compiler without
performing a compilation.

4.4.1 All versions

As thea;. compilation begins, if any printing is to be
performed the compiler checks that the printer is
ready •. '4t it is not, the message

*******FIX PRINTER *******

is flashed on the screen. The
the printer or press space
printing.

user can either select
to continue without

INST A-SPEED

Printer Note

Error
Messages

Warning
Messages

14

Note that on some machines there is a problem with the
VIC 1515 printer that causes the system
this occurs then it is necessary to
printer and turn it back on again. At
of printing may be lost because of this.

to hang up. If
turn off the
least one Ii ne

During compilation the progress
screen by displaying the number
processed.

is recorded on the
of the line being

If the compiler detects any errors in the source
program an error message will be displayed either on
the screen or on the printer. If a number of errors
are found and the screen becomes full of error
messages, the compilation will pause so that the lines
in error may be noted before compilation resumes.

As well as error messages, it is possible for warning
messages to be displayed. These occur when the
compiler believes that it has detected an extension to
BASIC but may have found a syntax error. The reason
for this is explained in section 9.4

At the end of the compilation, a count of the number
of error and warning messages are displayed and the
compilation statistics are displayed or printed.

4.2.2 Tape Version

Starting Off

The tape based versions of the compiler requires some
additional operations by the user.

After the compilation options have been specified, the
message

ENSURE TAPE CONTAINING "source file name"
IS IN TAPE UNIT

PRESS SPACE TO CONTINUE

is displayed and the compiler tape may be rewound and
removed. The tape that contains the program to be
compiled should then be installed in the tape unit.
When SPACE is pressed, compilation commences.

When the program has been compiled the message

PRESS STOP

ABOUT TO CREATE "object file name"
ENSURE CORRECT TAPE IN TAPE UNIT

PRESS SPACE TO CONTINUE

is dislayed.

INST A-SPEED IS

The user now can leave the existing tape in the tape
unit, in which case the compiled program (the object
file) will be written to the tape immediately behind
the uncompiled program (the source file).

Alternatively, the existing tape may be removed and
replaced by a blank tape; in this case the compiled
program will then be the first file on that tape.

Note In either case make sure that the STOP key is pressed
before SPACE is pressed.

After the compiled program has been written to tape
the user is asked

CREATE LINE NUMBER FILE?

i.e. should the compiler create a line number file
(the LN file). If the answer is "y" then the LN file
will be written to tape following the compiled
program. this can take some time for a large program
so that it may be best to only create an LN file if it
is needed, i.e. if the compiled program gives a run­
time error (see chapter 9). The LN file is used by the
ERROR LOCATE program to find the line number upon
which the error occurred.

4.5 Compilation Statistics

Finding
Variables

The compilation statistics produced at the end of the
compilation give the sizes of:

- the source program
- the object program
- the object file

The sizes are given reported in bytes, blocks and the
number of bytes in the last block (a block is 256
bytes), e.g.:

SOURCE PROGRAM SIZE - 4253 (16,157)

So, 4253 bytes is 16 blocks plus 157 bytes (which
would require 17 blocks of disk space).

The program sizes are the amounts of memory occupied
when the program is run. The two sizes can be compared
to see what size reduction has been achieved.

The object file size exceeds the object program size
because this file normally holds both the program
the variable list. By comparing the file size with
pr~ram size, the size of the variable list can
determined. Note that the variable list holds all
normal . variables but not the arrays. The arrays
created dynamically at run-time.

and
the
be

the
are

INST A-SPEED 16

4.6 Termination Options

If any errors
object file is
to be edited
compiled.

were detected during compilation then the
not created and the source file will have
to correct the errors before it can be

If there were no errors the user has three options:

- Press key "e" to compile another program;

- Press key "L" to load and run the program that has just
been compiled.

- Press any other key to exit from the compiler;

Tape Notes Note that if INST A-SPEED "T" is being used then the
option to compile another program is especially useful as
it enables a number of programs to be compiled without
having to load the compiler or fit the security key for
each one. Also, the facility for automatically loading
the compiled program should only be used with INST A-SPEED
"T" if the compiled program is the first one on the tape.
If this is not the case then exit from the compiler and
load the compiled program by means of a LOAD command.

INST A-SPEED 17

4.7 Operation of compiled programs

Operation of compiled programs is identical to that
for uncompiled programs, i.e. compiled programs are
simply LOADED and RUN just like uncompiled programs.

Compiled programs should perform exactly like
uncompiled programs - if they do not then refer to
section 4.10

The first time a compiled program is run after the 64
has been turned on there will be a delay while it
loads the file "RTL-64". Each subsequent time that a
compiled program is run no delay will occur because
the program will detect that RTL-64 is already in
memory.

If a compiled program has been loaded from tape, RTL-
64 must be in memory. Normally, RTL-64 should be on
the same tape or the tape will have to be changed for
one which contains a copy of RTL-64.

Note CONT cannot be used with compiled programs. SYS 2061
should be used.

When a compiled program is stopped,
array elements can be displayed (for
with interpreted programs.

variables and
debugging) as

4.8 Making copies of compiled programs

RTL-64

If it is required to move a compiled program to
another disk use LOAD and SAVE, just the same as for
uncompiled programs, e.g.

LOAD"program name",8

change disk •••••••

SA VE"program name", 8

Note that a compiled program should not be SAVED after
it has been run. Do not forget that a copy of "R TL-64"
is normally needed on each disk containing compiled
programs.

Copies of compiled programs on tape can be made in a
similar manner, e.g.

LOAD"program name"

change tape •••••••

SA VE"program name"

Compiled programs on disk may also be copied to tape
by means of LOAD and SAVE. Do not forget that any
program that may be run immediately after power up
should be followed on the tape by a copy of "RTL-64".

INST A-SPEED

VL File

18

To save ti~e when using programs loaded from tape it
may be convenient to have one program that is loaded
and run whenever the machine is turned on. This
program should be followed on the tape by "RTL-64" and
then all other compiled programs will run since "RTL-
64" will already be in memory.

If programs being copied involve chaining or have a
separate variable list (see section 6.4 and chapter
8), then do not forget to copy the VL file. Note that
the order of files on tape should be

- the compiled program
- RTL-64 (this file is optional)

the VL file (eg. "vl-abcd" where "abcd" is the name
of the compiled program)

4.9 Special Operation Features

Automatic
object
file name

Compilation
of several
programs

There are two special features designed to make the
operation of the compiler even easier.

The first is invoked if the source file name has the
last four characters equal to "-src". In this case the
object file name will be generated automatically, e.g.

if the source file name is

"abcd-src"

then the compiler will call the object file

"abcd"

This feature can best be used by renaming all source
files to have the "-src" suffix as this will ensure
that the compiled programs will then have the name
that the user is familiar with. This is especially
useful when program chaining is used (i.e. when one
program LOADS another program). Otherwise, the LOAD
statement within the program would have to be altered.

The second special feature is available only on the
disk based versions and can be used when a number of
programs on the same disk are to be compiled. Rather
than compiling each program separately a control file
can be used to give the compiler a list of the
programs to be compiled. The programs will then be
compiled without any further action by the user.

A control file is a normal file that has the last four
characters equal to "-con", e.g. "compile-con".

INST A-SPEED

Control
file

Error
detection

4.10 Trouble shooting

Special
Integer
Mode

Security
Key

Premature
Stop

19

A control file is created and edited in the same
manner as a program file and consists simply of a list
of file names. Each file name should be on a separate
line and the first character of each line should be a
quote character (").

The first file name should be the name of the first
source file to be compiled and the second file name
should be the name of the corresponding object file.
The next file name should be the name of the second
source file to compile and so on

If the "-src" option is used then the object file name
is omitted.

ego A typical control file could be -

10 "filel"
20 "cfilel"
30 "file2"
40 "cfile2"
50 "test-src"

(the trailing quote on each line is optional)

In this case three complications will occur, i.e.

"file 1" will be compiled to give "cfilel"
"file2" will be compiled to give "cfile2"
"test-src" will be compiled to give· "test"

To start the compilation, the name of the control file
should be given instead of the source file name. The
printing options selected (and the key option for the
PROTECTOR version) will apply to all complications. If
a printer is available then it is recommended that the
option to print errors should be selected to ensure
that any errors are not lost.

If a compiled program does not appear to be running
exactly like the interpreted version it is likely that
the Special Integer mode must be selected. This is
done by means of the SI directive which is explained
in more detail in section 6.3.

If the machine is reset to the power up state when
the compiler is run, check that the security key is
fitted correctly.

If the compiler stops during compilation and the
1515 printer is in use, refer to section 4.4.1.

INST A-SPEED

VL or RO
file

20

If a compiled program using either the VL or RO
directive at the start of the program crashes when
run, check that the VL file is present on the disk (or
tape). Check also that the VL file has not been
renamed.

If a program using a VL file does not work after being
copied onto a disk or tape then check that the first
variable in the program has only a single character
name (see section 6.4).

A compiled program should not be SAVED to create a new
copy once it has been RUN.

DOS errors If the compiler stops during a compilation on the 1540
or 1541 drives with a "NO CHANNELS ERROR", or halts
with an error indicated on the disk drive, the reason
is actually a read or write error. The wrong error
message is due to a bug in the DOS within the disk
drive. That means that when an error occurs then if
further characters are read or written before a test
for an error is made then the wrong error message is
generated. The compiler cannot check for an error
after every character is read or written because this
would slow down disk i/o by a factor of three or four.

Avoid the
replace
option

Patches

If the "NO CHANNELS ERROR" occurs on a drive that
normally does not give any trouble then it is likely
to be for one of two reasons. The first is that it is
simply a bad disk that should be replaced by one of
better quality. The second reason is that the disk may
have been written on a different drive (eg. a 4040)
that is apparently compatible. Although such disks can
be read on a 1540 or 1541 they do appear to be more
susceptible to errors than ones written on the same
drive. If this is the case, make a new copy of the
disk on the drive upon which the compilation is to
take place.

The 1541 can also damage files on occasion so take
care to have copies of all files and use VALIDATE
frequently to ensure that the disk is in a good state.
If a program becomes damaged then perform a
VALIDATE and copy the file from a backup. Avoid
using the replace option (@) with the SAVE command as
its repeated use can cause problems. Instead, when
editing a program, SCRATCH the old copy and use SAVE
without replace to create the new file.

Some BASI C programs are "patched" in a special way by
the programmer so that after loading they will run
automatically, i.e. without RUN being typed. Such a
program cannot be compiled directly but if the un­
patched program is compiled then it ought to be
possible to apply the patch to the compiled program.

INST A-SPEED

Loading

Pokes

21

Uncompiled programs can load compiled programs but it
is not possible for a compiled program to directly
load and run an uncompiled program via a LOAD
statement within a compiled program. However, this
will work if the LOAD statement is obeyed outside the
program. One way of doing this is shown in the
following sequence which will load the uncompiled
program ''TEST''.

1000 PRINT"<clsXhome>LOAD "CI-R$(34)''lEST''CI-R$(34)'' ,W'
1010 POKE 198,6:REM SET BUFFER LENGTH
1020 DATA 19,13,82,85,78,13:REM <home><cr>RUN<cr>
1030 FOR I=lto6:READ X:POKE630 + I,X : NEXT
1040 NEW

<cIs> is the clear screen character
<home> is the home character

Some Basic programs POKE the address of the start of
variables (45,46 decimal) to move the variables higher
up the memory. such POKES are not necessary in
compiled programs and may cause the program not to
work (see section 6.4 and chapter 7).

INST A-SPEED 22

5. Making the most of INST A-SPEED

5.1 Achieving the best performance

Integer
Arithmetic

CS and CE
Directives

Speed
Improvements

Any program that has been compiled without any
alteration to the source file will run significantly
faster than on the interpreter. However, it is very
likely that by making one or two simple changes
considerable additional improvements can be
achieved.

The reason for this is that INST A-SPEED supports
integer arithmetic as well as floating point
arithmetic. Integer operations are used for all
operations when both operands are integers. This
applies to all arithmetic, logical and relational
operations.

Integer arithmetic is many times faster than
floating point, and to achieve the best performance
as much use of integer arithmetic should be made as
possible.

It is important to realize that, although the
interpreter supports integer variables it does not
do any integer arithmetic. All integers are
converted to floating point before any arithmetic
operation. For this reason few existing programs
make extensive use of integers.

Obviously, when writing new programs that are to be
compiled, integers should be used as often as
possible.

In order to save a user the trouble of having to
work through and edit an existing program to change
real variables to integers, INST A-SPEED provides a
way of automatically changing either all variables
to integers or certain specified variables. This is
achieved by means of the CS and CE directives which
are described fully in the next chapter.

All the user has to do is work through the program
and decide which variables should be floating point;
i.e. any variables which may hold a value greater
than 32767 or less than -32767, or, which needs to
hold numbers with a fractional part, cannot be
integers. All other numeric variables can be
converted to integers and the speed of improvement
can, in some cases, be dramatic.

The overall speed improvements that can be achieved
can vary considerably between different programs.
There are three main reasons for this:

INST A-SPEED 23

1.) When a program is performing I/O (input/output)
the program can spend most of its time waiting for
the peripheral, e.g. disk drive or printer. This
waiting time can be so great that even if the
statement processing time is many times faster, the
overall speed improvement will be not nearly so
great.

2.) The performance of a program on the interpreter
depends tremendously upon how the program is
written. For example, a routine at the front of a
large program can run several times faster than a
similar routine at the end of the program. When
compiled, both routines will take the same time, but
the relative speed up factors will vary
considerably.

3.) Some programs have to do a lot of floating point
arithmetic, e.g. statistical programs and programs
making extensive use of the trig functions (SIN,
COS, etc.) and cannot make as much use of integers
as normally possible. However, there will almost
always be some variables that can be converted, e.g.
variables used to access arrays.

5.2 High speed SPRITE movement

Games and
Graphics

One common situation where high performance is
required is when moving sprites in game and graphics
applications, or when POKEing characters directly to
the screen. It is worthwhile paying particular
attention to the POKE statements involved and
especially those that are obeyed many times.

For example a typical statement might be

POKE G + 3, YP

where G could hold 53248 (the address of the display
chip)

Such a statement could be moving a sprite and may be
in a FOR loop, and will probably be obeyed many
times. In a compiled program the time for the
floating point addition will far exceed the time to
do the POKE. A far faster version would be to place
a statement outside the loop such as

GA=G+3

and change the statement in the loop to

POKE GA, YP%

INST A-SPEED

Special Poke
Mode

Stop Key

24

However, this is still not as fast as can be
achieved because GA is a floating point variable.
Each time the statement is obeyed it has to be
converted to integer, which again takes much longer
than the POKE. GA cannot simply be made integer
because 53248 is too big. INST A-SPEED has a feature
to overcome this problem called special poke mode
which is controlled by the SP and NP directives
(described in section 6.6)

Special Poke mode enables an offset to be applied to
all subsequent POKES and PEEKS. In this case the
offset will be 53248 so that each POKE can now use
an integer.

This means the earlier statement can become -

GA% = 3

outside the loop and

POKE GA%,VP%

Inside the loop.

Such minor changes can have a dramatic effect on the
performance of programs making extensive use of
PEEKS and POKES.

Note also that disabling the stop key can also give
a small additional performance improvement see
section 6.5.

5.3 Improved programming style

Better
Programming
Techniques

One benefit of using INST A-SPEED which is not
immediately obvious is that it is possible to write
programs that are easier to understand and to
modify.

The reason for this is that in order to get the
best performance on the interpreter it is necessary
to employ techniques that are bad programming
practice. For example:

- Not using many REM statements;

- Using each variable for many tasks (to reduce the
time spent searching the variable list);

- Putting several statements on each line (to reduce
the time spent searching for line numbers);

- Placing the most frequently used statements at the
front of the program.

NSTA-SPEED 25

These techniques (and others) can speed an interpre­
ted program somewhat, but they can become almost
imcomprehensible to follow.

If a program is to be compiled, then none of these
techniques are necessary and the programmer can
concentrate upon producing well structured, clearly
understandable programs. This saves programming time
from the beginning and makes subsequent
modifications much easier.

5.4 Utilizing the extra memory

When a program is compiled the reduction in size of
the program can be considerable. This means that it
is often worthwhile to increase the size of the
arrays to utilize the extra space or to keep more
information in memory in order to reduce the amount
of disk I/O required.

Out of However, it is always convenient to be able to run
Memory error the same program on the interpreter when debugging.

If arrays are larger or if there are more arrays,
then an "put of memory error" is possible. A simple
way around this is to make the program detect
whether it is compiled or not compiled and to act
accordingly.

The way to do this is to check the first byte of the
first line of the program. In a compiled program
this byte will always be a SYS token (158 decimal),
e.g.

Place the following statement near the start of the
program -

CP% = 0 IF PEEK (2053) = 158 THEN CP% = 1

CP% can then be tested easily when required, e.g.

A% = 1000 : IF CP% <> 0 THEN A% = 2000
DIM X(A%)

INST A-SPEED 26

6. Compiler Directives.

Use at the
Beginning

A compiler directive is an instruction to the compiler
stored within the source file. The directives take the
form of a REM statement so that a program containing
directives may still be run on the interpreter. The
format of a directive is

REM ** <directive id> <directive text>

This format has been chosen to minimize the chance that
an existing REM will be seen as a directive by the
compiler.

<directive id> is a two character identifier.

<directive text> is additional information (not always
present) - see the individual directive descriptions.

Most directives can only occur at the start of the
program (i.e. before any non REM statements) and will be
ignored elsewhere in the program. However, some
directives can occur anywhere in the program and these
are indicated by an asterisk (*) in the list below.

The directives VL, RO and VN are not available on the
tape based version.

6.1 List of directives.

Directive Name

CS Convert Specified (for integer conversion)
CE Convert Excluding (for integer conversion)
SI Special Integer Mode
VL Variable List Address
RO Root program (for chaining)
VN Variable name file (for chaining)
DS Disable Stop key*
ES Enable Stop key*
SP Special Poke mode*
NP Normal Poke mode*
NW No warning messages

The directives RO and VN are described in chapter 7.

6.2 Integer conversion directives

These directives are used to tell the compiler which
floating point variables and arrays are to be treated as
integers.

CS means Convert all the Specified variables to integers

CE means Convert all the floating point variables to
integers excluding those listed in the directive.

INST A-SPEED

Error
Messages

27

The CS or CE should be followed by a list of variable
names in brackets with the names separated by commas,
e.g.

REM ** CS (Al,ZZ,X2,X3)

means convert all references to the names Al,ZZ,X2,X3
to integer, i.e. the program will be compiled as though
the variables were Al%,ZZ%,X2%,X3%.

REM ** CE (11,12,13)

means convert all floating point variables to integers
except 11, 12 and 13.

REM ** CEO

means convert all floating point variables with no
exceptions.

Note that both arrays and variables are converted, e.g.
in the first example if there is a variable Al and an
array AI, then both will be converted.

The compiler will generate an error message if an
integer already exists with the same name as a converted
variable. In such a case, it is possible to specify that
the variable name i~ to be changed during conversion,
e.g.

REM ** CS (X, Y = > YY%,Z)

will convert X and Z to X% and Z% respectively; but Y
will be converted to YY%.

REM ** CE (A,B = > Bl%,C)

will convert all variables except A and C; B will be
converted and will become Bl %.

Note When changing names during conversion, the first
character of the two names must be the same;

Integer
"For"
Variables

CS and CE directives cannot both be used in the same
program. There may be more than one CS or CE directive
in a program, but the number of name variables cannot
exceed 128.

Even for new programs there may be a need to use the CS
or CE directives, because the interpreter does not allow
integer FOR variables, even though in most programs FOR
variables only hold integers. If it is required to debug
the program on the interpreter, floating point variables
must be used in FOR statements. When the program is
compiled then CS or CE statements can be used to convert
the FOR variables to integers. This will enable the best
performance to be obtained.

INST A-SPEED 28

6.3 Special Integer Mode

Special integer mode is selected by the directive

REM - SI

This mode only affects the result of division and
exponentiation operations on integer operands.

The reason for this directive is that the compiler
cannot always be sure what the programmer intends for
these operators, when both operands are integer. This is
b~cause the normal action for the compiler to take when
both operands are integer is to perform an integer
operation. As has already been exlained, such operations
are much faster than floating point. With most integer
operations there is no problem, but for divide and
exponentiation the result can have a fractional part.

Consider the statement

A% = 8% / 2 * 4

now if 8% = 3 and integer division is used the answer
will be 4, but if floating point division is used the
answer will be 6.

On the interpreter the answer will be 6, because all
operations are floating point. For compiled programs in
normal integer mode the answer will be 4 because in most
situations when using integers the programmer expects
integer operations and..... they are much faster.

Note However, occasionally this can cause the compiled
program to work differently than the uncompiled program.
In such cases the use of special integer mode will
overcome the problem, i.e. it will force the compiler to
always use floating point arithmetic for division and
exponentiation.

6.4 Variable list positioning (disk versions only).

Normally, the compiler places the variable list
immediately behind the program, and the variable list is
loaded together with the program from the object file.

In some situations there may be a need to position the
variable list higher in the memory in order to leave
space between the end of the program and the start of
variables. Such space could be used for SPRITE data.

INST A-SPEED

VL

29

The VL Directive can be used to achieve this and takes
the form

REM ** VL <size>

where <size>
the start of
list. On the
address 2049
directive

REM VL 15000

is the size in bytes of the area between
the program and the start of the variable
Commodore 64 a BASIC program starts at
($0801 in hex). For example, if the

is used, then the variable list will be placed at
absolute addresses 15000 + 2049, which is 17049. If the
program occupies 10450 bytes (obtained from the
compilation statistics) then the free space between the
program and the variable list will be 15000 - 10450, ie.
4550 bytes.

When the VL directive is used, the variable list will be
stored in a separate file called "VL-ABCD"; where "ABCO"
is the name of the program. The first time the program
is run the VL file will be automatically loaded to the
correct address. On subsequent runs of the program the
file will not be loaded since the program will detect
that it already exists in memory.

Pokes Some programs utilize POKES to location 45 and/or 46 to
set the address of the variable list. Such POKES are
redundant in compiled programs. If a program does POKE
different values to 45 and 46 from those set by the
compiled program then problems are likely to occur.

Chaining
RO

If a program is involved in chaining and shares
variables with other programs, then the VL directive
should not be used because the RO directive achieves the
same result.

Note Note that a problem can occur when copying a VL file to
another disk or to a tape. When the VL file is LOADED to
memory prior to a SAVE, the system can damage the file.
This occurs because it thinks the VL file is a program.
The problem will not occur if the first used variable in
the program has a single character name.

6.5 Disabling the stop key

The directive

REM ** OS

disables the Stop key, while

INST A-SPEED

Faster

30

REM ** ES

enables the Stop key.

When a program is RUN the stop key is initially enabled.

Programs run slightly faster with the stop key disabled.

In the interpreter, the stop key is tested on every
statement. For compiled programs, in order to save time,
the stop key is only tested on NEXT and IF statements.

When a program uses LOAD to chain in another program, or
to load some machine code, etc. it is a good idea to
disable the stop key for the duration of the load
because if stop is pressed in the middle of a load then
the program will probably not be able to be restarted
with SYS 2061 (the compiled version of CONT).

6.6 Special Poke mode

Enabling

Special poke mode allows an automatic adjustment of POKE
(and PEEK) addresses from those specified in the
program. There are a variety of situations where this
can be convenient, e.g.

- To avoid the use of floating point and thus improve
performance (see 5.2 for an example of this)

- When a program has been developed on another machine
for which the POKE addresses are different. This is most
likely to be useful in programs that make many POKES to
the screen area which is at $8000 on most other CBM
machines but is at address $0400 on the 64.

Special poke mode is enabled by the directive

REM ** SP

and disabled by

REM ** NP

Before enabling the mode it is necessary to define the
adjustments to be made. This is done by POKEing a value
(while in normal mode) to location 41028. When special
poke mode is enabled this value will be exclusive-ORed
with the high byte of the address used in any POKE or
PEEK statements.

INST A-SPEED

Example

31

For example the statement:

POKE 41028,208

sets the value to 208 ($DO in hex). Now since the
display chip starts at address 53248 ($DOOO in hex) then
when the special mode is enabled by

REM - SP

a subsequent POKE such as

POKE 3,VP%

will actually write VP% to 53248 + 3 ($D003).

As another example, suppose a program written on another
machine with the screen at $8000 hex was to be run on
the 64 (where the screen is at $0400), and the program
POKEs information directly at the screen.

To handle this case the special poke mode value should
be $84 (132 in decimal). This is because the result of
exclusive-ORing $80 with $84 is $04. The easy way to
think of it is, a bit set to one in the poke mode value
inverts the corresponding bit in the address, while a
zero leaves the corresponding bit the same.

Therefore, in order for the POKE statements to work on
the 64, all that is necessary to do is

POKE 41028,132
REM ** SP

at the start of the program after a POKE is required to
select the color desired.

6.7 Inhibiting warning messages

When a program uses extensions to BASIC (see section
3.5), for each extension a warning message is normally
generated. Such warnings can be inhibited by the use of
the directive

REM ** NW

INST A-SPEED 32

7. Chaining Programs

Sharing
Variables

Poke Values

The term "chaining" is used to describe the practice
where one program loads another program on top of
itself by means of the LOAD statement. After the load
the new program runs automatically.

If a set of programs that utilize chaining are to be
compiled then the programs can either be compiled to
share variables or not to share variables.

Sharing variables occurs when a program is written
to access variables set up by a previous program,
i.e. the variables and arrays are preserved when the
program is changed.

Some chained programs do not share variables and in
such cases each program will normally start with a
CLR statement to get rid of the existing variables.

One common practice when chaining is for the first
program in the chain to POKE values into locations 45
and 46 which hold a pointer at the start of
variables. This is done to leave space for later
programs in the chain which are larger than the
first. Such POKES are not necessary for compiled
programs, and may in fact cause the program not to
run. In such cases, the statements can either be
removed or made conditional upon whether the program
is compiled or not by using the technique described
in section 5.4.

7.1 Chaining without shared variables

In this case no special action is necessary save
possibly removing some POKES as mentioned above.

Each program is simply compiled as normal and each
object file will contain its own variable list as
well as the compiled program.

7.2 Chaining with shared variables (disk versions only).

RO and VN If variables are to be shared then the use of the
directives RO and VN are necessary. This is so that
when each program is compiled the compiler can be
made aware of the variables used in the other
programs.

The first program in the chain should start with the
directive

REM ** RO <size> **

[NST A-SPEED

Note

VL file

Restrictions

33

Where the function of <size> is the same as for the
VL directive (see section 6.4 -- all points made
about VL also apply to RO), i.e. it defines the size
of the largest program in the chain and thus the
position for the variable list. Note that it is a
good idea for the value of <size> to exceed the
largest program size by a certain amount to allow for
program modifications.

The RO directive tells the compiler that it is
compiling the root program of a chain and that at the
end of the compilation, a VN file will be created
which records all the variable and array names used
and the addresses allocated to them. A VL file will
also be created holding the variable list.

The name of the VN file will be "VN-<name>" where
<name> is the name of the root program.

All the other programs involved in the chaining that
are to share variables should start with the
directive

REM ** VN"<name>" **

where <name> is the name of the compiled root
program.

The effect of the VN directive is to cause the
compiler to read in the specified VN file containing
all the variable names and addresses.

At the end of that compilation, if the program used
any new variable names, a new VN file will be created
that includes the new names.

When the root program is run the VL file will be
loaded to the address defined by the RO directive.
The program may then be overwritten by other programs
as many times as required and each will share the
same variable list that will remain in memory the
whole time.

Note that there is one restriction to programs that
contain the RO and VN directive, and this is that
DIM statements must exist for all arrays that are
dimensioned in that program, i.e. arrays without DIM
statements will not be automatically dimensioned to
have 11 elements. The compiler will not give an error
message for any array which does not have a DIM
statement and which did not occur in the VN file read
in at the start of the compilation.

INST A-SPEED

Summary

34

To summarize, the first program in the chain should
include a directive such as

REM ** RO 22000

where the largest object program in the chain does
not exceed 22000 bytes. All other programs that may
be chained and share variables should include a
directive

REM ** VN "MENU" **

where "MENU" is the root name.

INST A-SPEED 35

8. Information for users of machine code with BASIC

Many Basic programs utilize machine code. The machine
code may be held in RAM or ROM (eg. it may take the form
of a plug in cartridge). In general such machine code
will work unchanged with programs compiled by DTL-BASIC-
64. This chapter aims to provide enough information so
that a programmer using machine code together with BASIC
can ensure that the program works as intended.

There are several ways of getting machine code into
memory, ego

- loading from a file to $COOO - $CFFF;
- loading from a file to top of BASIC memory;
- via a plug in ROM chip;
- via a POKE statements from code stored in DATA
statements to an area outside the program;

via POKE statements from code stored
statements to an area within the program (eg.
statement) ;

in DATA
to a REM

Of all these techniques, problems are only likely with
the last one (because REM statements are removed by the
compiler). Machine code must be stored outside of the
compiled program.

8.1 Variable list and array list formats.

Variable
Order

Array
Order

Many machine code routines access the variable and array
lists to pass data to and from a BASIC program. INSTA­
SPEED creates lists in exactly the same format and uses
the same page zero pointers as the interpreter. This
means that the machine code routines should work without
alteration.

There are just a couple of things to watch out for.

The first, is that it is possible for the order of
variables in the list to differ from the order of
variables when the program is run under the
interpreter. The variables will be in the order that
they occur in the source listing rather than the order
in which they are referenced at run-time.

The second point concerns the array list. Again, the
order of entries may be different and there will be one
additional array. This will be the first array in the
list and its name consists of two null characters so
that a routine searching for a particular array will
work correctly.

The extra array is used by the compiler to keep track of
the addresses of the rest of the arrays as they are
created (because their sizes are not always known at
compile time) and consists of a 4 byte header plus Z
bytes for each array used in the program.

INST A-SPEED

8.2 Memory Map

36

The ar ea of RAM used by compiled programs is:

Addresses

$0000 to $0800

$0800 to $9FFF

$AOOO to $BFFF

$COOO to $FFFF

Use

Same as interpreter

Holds the compiled program,
variable list, array list and
strings organized as for
interpreter

Holds the run-time library (loaded
from file RTL-64)

Used by garbage collection (see
note next page)

8.3 Garbage Collection

12K byte
string
limit

Garbage collection is the process of reorganizing the
string storage to recover unused space. The GC routine
in ROM can be very slow.

The run-time library contains its own GC routine that is
very fast. This routine works by copying all the strings
out of the string area to the normally unused ROM area
at $COOO to $FFFF, and then copying the string back in a
collected form.

This means that if a program uses machine code located
in the GC area there is a possibility of it being
overwritten. Whether this happens depends upon the
maximum amount of space that may be required by the
program to hold strings and where the machine code
routines are located.

The GC routine works from the top of memory down.
Therefore, if the routines are put in the block $COOO to
$CFFF, as long as the size of all the strings do not
exceed 12K bytes there will be no problems.

If you are not sure whether some machine code may be
overwritten by GC, the machine code can be protected by
adjusting the pointers used by the GC routine. These
pointers are

$A040,41 - address of start of GC area

$A042,43 - address of end (top) of GC area

INST A-SPEED 37

If GC finds that there is not enough space for all the
strings then it will make several passes collecting a
portion of the strings each time. In such a case the
time for GC will increase a little but will still be
many times faster than the GC routine in ROM. Note that
the area defined by the two pointers above must be at
least 512 bytes in size otherwise the GC routine in ROM
will be used. This last point means that if an add on
product requires all the RAM from $COOO to $FFFF then a
compiled program will still work correctly provided
that it sets the size of the GC area (via the two
pointers described above) to less than 512 bytes.

Note that a machine code routine entered by a SYS call
cannot directly access the two pointers, as, on entry to
the routine the BASIC interpreter will be mapped into
$AOOO to $BFFF instead of the run-time library. The
routine will have to adjust the 6510 memory management
registers itself, or alternatively the pointers can be
set from Basic (Basic PEEK and POKEs access the run-time
library rather than the interpreter.)

Note Note that a machine code routine entered by a SYS call
cannot directly access the two pointers above, as on
entry to the routine the BASIC interpreter will be
mapped into $AOOO to $BFFF instead of the run-time
library. The routine will have to adjust the 6510 memory
management registers themselves or alternatively, the
pointers can be set from BASIC (BASIC PEEKS and POKES
access the run-time library rather than the interpre­
ter.)

8.4 Types of extension handled by the compiler.

Restrictions

There are three ways in which extensions are added to
BASIC and ALL will work with INST A-SPEED. The three
techniques are:

1.) Additional statement type starting with a non-
alphanumeric character.

2.) Additional statement types starting with an unused
token (i.e. with a new keyword).

3.) SYS calls with parameters i.e. additional
parameters following the address that are processed by
the machine code routine.

The only restriction on the use of extentions is that
they should not include a colon character (":") other
than at the end of the statement. Also if an extension
based on additional keywords is used, then listings
produced by the compiler will not print the new keywords
correctly.

INST A-SPEED

9. Errors

38

The compiler performs exhaustive checks while compiling
a program and reports all errors found. Errors can be
found during both Pass 1 and Pass 2. In addition,
further checks are made while the compiled program is
run to detect errors that cannot be found at compile
time.

Note If any compile time errors occur then the object file is
deleted by the compiler to ensure that the errors are
corrected before the compiled program is run.

There are three types of errors that can occur.

Pass 1 errors;

Pass 2 errors;

Run-Time errors.

In addition warning messages can occur during Pass 1

9.1 Pass 1 errors.

Syntax
Checks

Note

Pass 1 detects most errors because it checks the syntax
of each statement. When an error is detected an error
message is output following the line at which the error
was detected. The message contains an error number and
also indicates the position in the line at which the
error was detected.

Note that the error may be before the point indicated.
This is because
immediately, e.g.
will normally not
expression.

an error cannot always be detected
in an expression, a missing bracket
be apparent until the end of the

Appendix B contains a full list of the error numbers and
their meanings.

9.2 Pass 2 Errors

Undefined
Line
Numbers

The main errors that can be found during Pass 2 are
undefined line numbers; i.e. a GOTO or GOSUB to a line

number that does not exist.

The error message is simply the line number containing
the error followed by a "U" to indicate that an
undefined line number is referenced from that line, e.g.

23510 U

INST A-SPEED

Error 41

39

In addition, at the end of pass 2 an error 41 can occur
if it is found that an array is used in a program
containing a VN or RO directive for which no DIM
statement has been compiled (see section 7.2).

9.3 Run-Time errors.

When a compiled
continually checks
can occur.

program runs, the
for errors and the

- NEXT WITHOUT FOR
- RETURN WITHOUT GOSUB
- OUT OF DATA
- ILLEGAL QUANTITY
- OVERFLOW
- OUT OF MEMORY
- BAD SUBSCRIPT
- REDlM'D ARRAY
- DIVISION BY ZERO
- STRING TOO LONG
- FILE DATA

run-time library
following errors

The above error messages are the same as those used by
the interpreter. The interpreter detects additional
errors not in the above list (e.g. syntax errors) but
the compiler will find these errors at compile time.

The meaning of the above errors are exactly the same as
for the interpreter errors. Therefore, refer to the
Commodore manual if the meaning is unclear.

Run-Time The difference between run-time errors from compiled
Error programs and from interpreted programs is that
Difference the compiled program gives the address of the statement

containing the error rather tha~ line number. A
special program called ERROR LOCATE is provided to
enable the line number to be found.

Error The procedure is
Locate

- Make a note of the address of the error

- Load and run ERROR LOCATE

- When requested, key in the program name (i.e. the name
of the object file) and later the address of the error.

ERROR LOCATE will display the line number of the
statement containing the error.

Note Note that the above procedure will only work if the LN
file for that program exists on the disk.

INST A-SPEED

9.4 Warnings

Extension
to BASIC

No Warning
Directive

40

Warning messages occur when the compiler has detected an
extension to BASIC (see section 3.5) to notify the user
that an extension has been found. The reason for doing
this is that if a syntax error occurs at the start of a
statement the compiler will treat it as an extension to
BASIC rather than an error (there is no way that the
compiler could separate the two cases). Therefore, if
warnings occur for lines on which the programmer did not
use an extension, then an error must exist.

Warning messages can be directed to either the screen or
the printer along with any error messages. A count of
the warning messages is output at the end of the
compilation.

If a program frequently uses extensions to BASIC then
many warnings will occur. In such cases the programmer
may not require them. Warning messages can be turned
off by use of the "No Warning" directive at the start
or the program. In this case no warning messages will be
produced but a count will still be generated (see
section 6.7).

INST A-SPEED Appendix A

What is a Compiler?

This appendix tries to outline the main differences
and an interpreter.

Interpreter va. Compiler - Results are what Count

41

between a compiler

The first point to realize is that a compiler and interpreter are trying
to achieve the same end i.e., they are both trying to provide a consistent
and logical format for implementing a program. They both have to perform a
similar set of tasks. I"is just that these tasks are performed at
different times.

The Components of Running a Program

Consider what has to be done to "run" a program. A program consists of a
set of statements or instructions. Each statement is simply a sequence of
text characters. The program is intended by the programmer to define an
algorithm, i.e. it defines how a problem is to be solved or how a
particular task is to be performed. The algorithm is defined in terms that
are meaningful to the programmer but not very meaningful to the computer,
i.e. in terms of variables, operators, functions, line numbers, etc.

The main tasks that have to be performed on each statement before a
program can be run are

1.) The type of the statement must be recognized.

2.) The syntax of the statement must be checked.

3.) For each variable name detected the list of variables must be
searched to see if the variable has been allocated an address.
If not, an address must be allocated.

4.) For each reference to a line number (in GOTO or GOSUB
statements) the address of the line must be determined.

5.) For each expression the operator priority rules have to be
applied (including taking into account any brackets) in order
to determine the order of evaluating the expression.

6.) Any non-executable parts of the program such as spaces or
comments (REM statements in BASIC) must be ignored.

7.) Finally, the statement has to be obeyed.

Compare and Contrast

Both compilers and interpreters have to perform all the above tasks (and
others). The difference is evidenced when the tasks are performed. This is
significant because most statements in a program areexecuted more than
once and often many times.

INST A-SPEED Appendix A 42

An interpreter performs the above tasks every time a statement is
executed. This means that the same work may be repeated many times. Such
repetition is obviously wasteful and can be very time consuming, e. g. a
large program can have several hundred variables requiring long searches
every time a variable is referenced.

A compiler avoids such wasteful repetition by processing a program and
converting it to a different form.

In this way each of tasks 1 through 6 are performed only once for each
statement and only task 7 must be performed repeatedly. Tasks 1 to 6 are
performed when the program is compiled and only task 7 need be performed
every time the program is run.

The Compiler has two Forms - Source and Object

With an interpreter a program exists only in one form, i.e. the text that
the programmer has written. A compiler has two distint forms:

1.) The text form

2.) The converted form

To distinguish between the two the text form is normally called the
source code and the converted form the object (or binary) code.

The object code for a statement normally contains addresses where the
source code has variable names and/or line numbers. Similarly, expressions
are normally re-ordered to cater to operator priority and brackets, etc.
Also all redundant information such as spaces, REMS, line numbers, etc.
are omitted. Moreover, complex statements are normally broken down into a
number of simple steps.

Summary

It should be clear from the preceding that by pre-processing (j.e.
compiling) a program a compiler can make the program run much faster. But
obviously, the compilation process takes time. The advantage of an
interpreter is that when a program is being frequently changed (e.g. when
it is being debugged or modified) the source can be simply edited and the
program re-run. With a compiler the program must first be re-compiled
before a change can be tested. These two techniques are thus
complementary; interpreters are best during the program development phase
but once a program is working, a compiler is superior because it gives the
best overall program performance.

A Note on Insta-Speed

You will notice that the Insta-Speed diskette and/or tape and manual make
occasional references to DTL-BASIC. DTL-BASIC, as the original program
is known (and as is listed on your media), is owned and copyrighted by
Drive Technology Ltd. (David Hughes, designer) and published worldwide by
Dataview, Ltd. Both firms are located in the United Kingdom.

Insta-Speed, is an enhanced version of DTL-BASIC and is available under
this name in the United States. Insta-Speed is a trademark of Cimarron
Corporation and is protected under U.S. trade laws.

INST A-SPEED

ERROR
NUMBER

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19

20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
41
42

Appendix B

Error Numbers

CAUSE OF
ERROR

syntax error
wrong type of operand
no "TO" where one expected
illegal array subscript

no ")" where one expected
no "(" where one expected
no "," where one expected
no ";" where one expected
no "THEN" or "GOTO" where one expected
no "GOTO" or "GOSUB" where one expected
no "FN" where one expected
constant too big (either> 225 or < 0)
expression too complex
(shouldn't occur if program is OK on interpreter)
syntax error in expression
too many ")"'s
illegal operator in string expression
type mismatch
illegal statement type (CONT or UST)
program too big

43

(shouldn't occur for disk based versions if program is OK
on interpreter)
a function name must be real
FOR variable cannot be an array element
wrong number of subscripts
integer too big
negative number illegal

cannot set ST, n, OS, or DS$
function variable must be real

no function where one expected
no operator or separator where one expected
type mismatch in relational expression
no line number where one expected
no operand where one expected
illegal CS or CE statement

bracket missing from CS or CE statement
too many conversion variables (> 128)
error in CS or CE; no "," or "=>" after name
error in CS or CE; no "%" where one expected
converted name clash in CS or CE
no "=" where one expected
default array found in overlay
too much DATA text (maximum amount of DATA text is
approximately 8500 bytes for the disk versions and 6500
bytes for the tape version)

DTL-BASIC 64 Release 1 - known problems

1. The compiler (both disk and tape versions) will report a syntax
error for PRINT statements that contain TAB or SPC functions when the
closing bracket is followed by an alphanumeric character, ego the
statement

100 PRINT TAB(8)A$

would generate an error message.

The solution is to use a ";" after the TAB or SPC functions, ego

100 PRINT TAB(8);A$

would compile without an error message.

This problem will be corrected in the next release of the compiler.

2. If the compiler stops during compilation with a "NO CHANNELS
ERROR", the reason is actually a read or write error. This is due to a bug
in the 1541 DOS which means that when an error occurs then if further
characters are read or written after the error (ie. before a test for an
error is made) then the wrong error message is generated. The compiler
cannot check for an error after every character is read or written because
this slows down the disk i/o by a factor of three or four.

If the "NO CHANNELS ERROR" occurs it is likely to be for one of two
reasons. The first is that it is simply a bad disk that should be replaced
by a disk of better quality. The second reason is that the disk may have
been written on a different drive (eg. a 4040) that is apparently
compatible. Although such disks can be read by a 1541 they do appear to be
more susceptible to errors than ones written on a 1541.

3. Problems will occur when trying to OPEN a channel to the RS232
port. After such an OPEN the operating system performs a CLR which
confuses the compiled program and causes it to restart at the first line
of the program with some of the page zero pointers damaged.

This problem will be cured in the next release of the compiler. In release
1 the problem can be overcome by the addition of two lines at the front of
the program, ego the program

10 AP = 128
20 OPEN AP,2,3,CHR$(7)+CHR$(0)
30 <rest of program>

will not run correctly when compiled. However. When the following two
lines are added then it will run;

1 IF AP=O THEN FOR 1=0 TO 5:POKE 736+I,PEEK(45+I):NEXT:GOTOlO
2 IF AP=128 THEN FOR I=OT05: POKE45+I,PEEK(736+I):NEXT:GOT030

COI 'V'l(I~ ! C'i ,"
(\)1 1' '1<.)"

h~~'·l V. ~1 'J " " .
1tw; I)'()(U(lPl " " :

I ~, , 10 '1 >1., "If>U
('OP'''''') ·· '1 <~t · ·"'"

l ll 'Y frw' " I, Ir.

m''<III'.'I'.II"",,'·r,.
w"II,'" I " " !'1"~" .1".1
(11'" ,,,,,(,\ 0' 1 '

CIMA~~ON
..

DISTRI8UTED BY
MKI(U-\Cr MARKr" NG,
D rv l,\ION or S IAN/JUN
CON I UQLS, INC

7 158 HATHAWAY ,\lr~rrr.
SANIA ANA.
(AlIFOI?NIA 91. /o~
J[Ll:X 910·346-6/3')

