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i i Something amazing lies beneath BASIC.

Several years ago I decided to learn to program in

machine language, the computer's own language. I

understood BASIC fairly well and I realized that it was simply

not possible to accomplish all that I wanted to do with my

computer using BASIC alone. BASIC is sometimes just

too slow.

I faced the daunting (and exhilarating) prospect of

learning to go below the surface of my computer, of finding out

how to talk directly to a computer in its language, not the

imitation-English of BASIC. I bought four books on 6502

machine language programming and spent several months

practicing with them and puzzling out opcodes and

hexadecimal arithmetic, and putting together small machine

language programs.

Few events in learning to use a personal computer have

had more impact on me than the moment that I could instantly

fill the TV screen with any picture I wanted because of a

machine language program I had written. I was amazed at its

speed, but more than that, I realized that any time large

amounts of information were needed on screen in the future —

it could be done via machine language. I had, in effect, created

a new BASIC "command" which could be added to any of my

programs. This command — using a SYS or USR instruction to

p"[ send the computer to my custom-designed machine language
routine — allowed me to have previously impossible control

over the computer.

T"*! BASIC might be compared to a reliable, comfortable car. It
will get you where you want to go. Machine language is like a

sleek racing car — you get there with lots of time to spare.

When programming involves large amounts of data, music,

graphics, or games — speed can become the single most

important factor.

After becoming accustomed to machine language, I

decided to write an arcade game entirely without benefit of
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BASIC. It was to be in machine language from start to finish. I i ,

predicted that it would take about twenty to thirty hours. It '—I
was a space invaders game with mother ships, rows of aliens,

sound ... the works. It took closer to 80 hours, but I am <~>

probably more proud of that program than of any other I've '—>
written.

After Td finished it, I realized that the next games would a >

be easier and could be programmed more quickly. The *—>
modules handling scoring, sound, screen framing, delay, and

player/enemy shapes were all written. I only had to write new

sound effects, change details about the scoring, create new

shapes. The essential routines were, for the most part, already

written for a variety of new arcade-type games. When creating

machine language programs you build up a collection of

reusable subroutines. For example, once you find out how to

make sounds on your machine, you change the details, but not

the underlying procedures, for any new songs.

The great majority of books about machine language

assume a considerable familiarity with both the details of

microprocessor chips and with programming technique. This

book only assumes a working knowledge of BASIC. It was

designed to speak directly to the amateur programmer, the

part-time computerist. It should help you make the transition

from BASIC to machine language with relative ease.

This book is dedicated to Florence, Jim, and Larry. I

would also like to express my gratitude to Lou Cargile for his

many helpful suggestions; to Tom R. Halfhill and Charles

Brannon of the COMPUTE! Magazine editorial staff for their

contributions — both direct and indirect — to this book; and to

Robert Lock and Kathleen Martinek for their encouragement,

comments, and moral support. And special thanks to Jim : i

Butterfield for his maps, programs, and constant encourage- 1—>
ment to everyone who decides to learn 6502 machine language

programming. ^ ,

u
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Introduction

Why Machine Language?

Sooner or later, many programmers find that they want to learn

machine language. BASIC is a fine general-purpose tool, but it has its

limitations. Machine language (often called assembly language)

performs much faster. BASIC is fairly easy to learn, but most

beginners do not realize that machine language can also be easy.

And, just as learning Italian goes faster if you already know Spanish,

if a programmer already knows BASIC, much of this knowledge will

make learning machine language easier. There are many similarities.

This book is designed to teach machine language to those who

have a working knowledge of BASIC. For example, Chapter 9 is a list

of BASIC statements. Following each is a machine language routine

which accomplishes the same task. In this way, if you know what you

want to do in BASIC, you can find out how to do it in machine

language.

To make it easier to write programs in machine language (called

"ML" from here on), most programmers use a special program called

an assembler. This is where the term "assembly language" comes

from. ML and assembly language programs are both essentially the

same thing. Using an assembler to create ML programs is far easier

than being forced to look up and then POKE each byte into RAM

memory. That's the way it used to be done, when there was too little

memory in computers to hold languages (like BASIC or Assemblers) at

the same time as programs created by those languages. That old style

hand-programming was very laborious.

There is an assembler (in BASIC) at the end of this book which

will work on most computers which use Microsoft BASIC, including

the Apple, PET/CBM, VIC, and the Commodore 64. There is also a

separate version for the Atari. It will let you type in ML instructions

(like INC 2) and will translate them into the right numbers and POKE

them for you wherever in memory you decide you want your ML

program. Instructions are like BASIC commands; you build an ML

program using the ML "instruction set." A complete table of all the

6502 ML instructions can be found in Appendix A.

It's a little premature, but if you're curious, INC 2 will increase

the number in your computer's second memory cell by one. If the

number in cell 2 is 15, it will become a 16 after INC 2. Think of it as

' 'increment address two.''

vii



Introduction

Throughout the book we'll be learning how to handle a variety

of ML instructions, and the "Simple Assembler" program will be of

great help. You might want to familiarize yourself with it. Knowing

what it does (and using it to try the examples in this book), you will

gradually build your understanding of ML, hexadecimal numbers,

and the new possibilities open to the computerist who knows ML.

Seeing It Work

Chapters 2 through 8 each examine a major aspect of ML where it

differs from the way BASIC works. In each chapter, examples and

exercises lead the programmer to a greater understanding of the

methods of ML programming. By the end of the book, you should be

able to write, in ML, most of the programs and subroutines you will

want or need.

Let's examine some advantages of ML, starting with the main

one — ML runs extremely fast.

Here are two programs which accomplish the same thing. The

first is in ML, and the second is in BASIC. They get results at very

different speeds indeed, as you'll see:

Machine Language

169 1 160 0 153 0 128 153 0 129 153 0

130 153 0 131 200 208 241 96

BASIC

5 FOR I = 1 TO 1000: PRINT "A";: NEXT I

These two programs both print the letter "A" 1000 times on the

screen. The ML version takes up 28 bytes of Random Access Memory

(RAM). The BASIC version takes up 45 bytes and takes about 30 times

as long to finish the job. If you want to see how quickly the ML

works, you can POKE those numbers somewhere into RAM and run

the ML program with a SYS (Commodore computers) or USR (Atari)

or CALL (Apple). In both BASIC and ML, many instructions are

followed by an argument. The instructions SYS and CALL have

numbers as their arguments. In these cases, the instruction is going to

turn control of the computer over to the address given as the

argument. There would be an ML program waiting there. To make it

easy to see this ML program's speed, we'll load it into memory

without yet knowing much about it.

A disassembly is like a BASIC program's LISTing. You can give

the starting address of an ML program to a disassembler and it will

translate the numbers in the computer's memory into a readable

series of ML instructions. See Appendix D for a disassembler that you

can use to examine and study ML programs.

viii
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Here's what the PET/CBM version looks like when it has been

translated by a disassembler:

A Disassembly

Program l-l. Disassembly.

0360

0362

0364

0367

036A

036D

0370

0371

0373

A9 01

A0 00

99 00

99 00

99 00

99 00

C8

DO Fl

60

LDA

LDY

80 STA

81 STA

82 STA

83 STA

INY

BNE

RTS

#$01

#$00

$8000,Y

$8100,Y

$8200,Y

$8300,Y

$0364

The following BASIC programs (called loaders) POKE the ML

instructions (and their arguments) into memory for you:

Program 1-2. PET Version.

n

n

1 REM PET VERSION

800 FOR AD=864TO883:READ DA:POKE AD

,DA:NEXT AD

810 PRINT"SYS 864 TO ACTIVATE"

820 DATA169,01,160,0,153,0

830 DATA128,153,0,129,153,0

840 DATA130,153,0,131,200,208

850 DATA241,96

Program 1-3. VIC Version.

1 REM VIC VERSION

800 FOR AD=864TO885:READDA:POKEAD,D

A:NEXTAD

805 PRINT"SYS 864 TO ACTIVATE"

810 DATA 160, 0, 169, 1, 153, 0

820 DATA 30, 153, 0, 31, 169, 6

830 DATA 153, 0, 150, 153, 0, 151

840 DATA 200, 208, 237, 96
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Program 1-4.64 Version. , f

Newer model 64's need to have the color registers set before running this program *—^
to see the effect on the full screen.

1 REM COMMODORE 64 VERSION ]_j
800 FOR AD=40000TO40019:READDA:POKE

AD,DA:NEXTAD

805 PRINT"SYS 40000 TO ACTIVATE" )_(
810 DATA169,1,160,0,153,0

820 DATA4/153/0,5,153,0

830 DATA6,153,0,7,200,208

840 DATA241,96

Program 1-5. Apple Version.

100 FOR I = 770 TO 789: READ A: POKE I, A: NE

XT

110 PRINT "CALL 770 TO ACTIVATE "

120 DATA 169#129#162#0,157#0#4,157,0,5#157,0

,6#157,0,7#202#208#241#96

Program 1-6. Atari Version.

100 FOR 1=1536 TO 1561:READ A:POKE I,A:NEXT I

110 PRINT nA=USR(l536) TO ACTIVATE "

120 DATA 165,88,133,0,165,89,133,1,169

130 DATA 33,162,4,160,0,145,0,200,208,251,230

140 DATA 1,202,208,244,104,96

After running this program, type the SYS or USR or CALL as

instructed and the screen will instantly fill. From now on, when we

mention SYS, Atari owners should mentally substitute USR and

Apple owners should think CALL.

BASIC stands for Beginners All-purpose Symbolic Instruction

Code. Because it is all-purpose, it cannot be the perfect code for any

specific job. The fact that ML speaks directly to the machine, in the

machine's language, makes it the more efficient language. This is

because however cleverly a BASIC program is written, it will require

extra running time to finish a job.

For example, PRINT involves BASIC in a series of operations

which ML avoids. BASIC must ask and answer a series of questions.

Where is the text located that is to be PRINTed? Is it a variable? Where
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is the variable located? How long is it? Then, it must find the proper

location on the screen to place the text. However, as we will discover,

ML does not need to hunt for a string variable. And the screen

addresses do not require a complicated series of searches in an ML

program. Each of these tasks, and others, slow BASIC down because

it must serve so many general purposes. The screen fills slowly

because BASIC has to make many more decisions about every action

it attempts than does ML.

Inserting ML For Speed

A second benefit which you derive from learning ML is that your

understanding of computing will be much greater. On the abstract

level, you will be far more aware of just how computers work. On the

practical level, you will be able to choose between BASIC or ML,

whichever is best for the purpose at hand. This choice between two

languages permits far more flexibility and allows a number of tasks to

be programmed which are clumsy or even impossible in BASIC.

Quite a few of your favorite BASIC programs would benefit from a

small ML routine, "inserted" into BASIC with a SYS, USR, or CALL,

to replace a heavily used, but slow, loop or subroutine. Large sorting

tasks, smooth animation, and many arcade-type games must involve

ML.

BASIC Vs. Machine Language

BASIC itself is made up of many ML programs stored in your

computer's Read Only Memory (ROM) or sometimes loaded into

RAM from disk. BASIC is a group of special words such as STOP or

RUN, each of which stands for a cluster of ML instructions. One such

cluster might sit in ROM (unchanging memory) just waiting for you

to type LIST. If you do type in that word, the computer turns control

over to the ML routine which accomplishes a program listing. The

BASIC programmer understands and uses these BASIC words to

build a program. You hand instructions over to the computer relying

on the convenience of referring to all those pre-packaged ML routines

by their BASIC names. The computer, however, always follows a

series of ML instructions. You cannot honestly say that you truly

understand computing until you understand the computer's

language: machine language.

Another reason to learn ML is that custom programming is then

possible. Computers come with a disk operating system (DOS) and

BASIC (or other "higher-level" languages). After a while, you will

likely find that you are limited by the rules or the commands available

in these languages. You will want to add to them, to customize them.

An understanding of ML is necessary if you want to add new words

to BASIC, to modify a word processor (which was written in ML), or

to personalize your computer — to make it behave precisely as you

want it to.
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BASIC'S Strong Points I j

Of course, BASIC has its advantages and, in many cases, is to be * 1
preferred over ML. BASIC is easier to analyze, particularly because it

often includes REM statements which reveal the functions of the

program's parts. REMs also make BASIC easier to modify. This could j j
make it the language of choice if the program must frequently be

partially rewritten or updated to conform to changing conditions. For

example, a program which calculates a payroll might well have at the ] |
beginning a series of data statements which contain the tax rates.

BASIC DATA statements can be easily altered so that the program

will reflect the current rates. If the payroll program runs fast enough

in BASIC, there is no advantage to translating it into ML.

BASIC is also simpler to debug (to get all the problems ironed out

so that it works as it should). In Chapter 3 we will examine some ML

debugging techniques which work quite well, but BASIC is the easier

of the two languages to correct. For one thing, BASIC often just

comes out and tells you your programming mistakes by printing out

error messages on the screen.

Contrary to popular opinion, ML is not necessarily a memory-

saving process. ML can use up about as much memory as BASIC does

when accomplishing the same task. Short programs can be somewhat

more compact in ML, but longer programs generally use up bytes fast

in both languages. However, worrying about using up computer

memory is quickly becoming less and less important. In a few years,

programmers will probably have more memory space available than

they will ever need. In any event, a talent for conserving bytes, like

skill at trapping wild game, will likely become a victim of technology.

It will always be a skill, but it seems as if it will not be an everyday

necessity.

So, which language is best? They are both best — but for

different purposes. Many programmers, after learning ML, find that

they continue to construct programs in BASIC, and then add ML

modules where speed is important. But perhaps the best reason of all

for learning ML is that it is fascinating and fun. j f

Xll
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How To Use This Book

Although anyone wishing to learn 6502 machine language (ML) will

likely find this book instructive and worthwhile, the specific example

programs are written to work on five popular personal computers:

Apple, Atari, VIC, Commodore 64, and the PET/CBMs. If your

computer uses the 6502 microprocessor, but is not one of these

machines, you will need to find a "memory map" for your particular

machine. These maps — widely available in books and magazines,

and from user groups — will allow you to follow and practice with the

examples of 6502 machine language throughout this book.

In particular, there are several memory addresses which are

used in many of the examples presented in this book. Their addresses

are given for the five computers mentioned above, but if you have a

different computer, you should look them up in a map of your

machine:

1. ' 'Which key is pressed?'' This is an address, usually somewhere

in the first 256 addresses, which is always holding the value of the

most recently pressed key on the keyboard.

2. Starting Address ofRAM Screen Memory. This is the address in

your computer where, if you POKEd something into it from BASIC,

you would see the effect in the upper left-hand corner of your screen.

3. Print a Character. This address is within your BASIC ROM

memory itself. It is part of the BASIC language, but written in ML. It

is the starting address of a routine which will put a character on the

screen.

4. Get a Character. Also part of BASIC in ROM memory, this ML

pi routine accepts a character from the keyboard and stores it.
5. A safe place. You must know where, in your computer, you

can construct ML programs without interfering with a BASIC

n program or anything else essential to the computer's normal

operations. The best bet is often that memory space designed to serve

the cassette player called the cassette buffer. While practicing, you

—^ won't be using the cassette player and that space will be left alone by

i I the computer itself.

Here are the answers to give the Simple Assembler (Appendix

C) when it asks for''Starting Address.'' These are hexadecimal

j ^ numbers about which we'll have more to say in the next chapter. For

now, if you've got an Atari, type in 0600. If you use a PET/CBM,

answer 0360. For VIC or Commodore 64, type: 0340. If you have an

H
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Apple, use 0300. For other computers, you'll need to know where

there are about 100 RAM memory addresses that are safe.

All through this book, the examples will start at various arbitrary

addresses (1000, 2000, 5000, for example). You should substitute the

addresses which are safe in your computer. Just as it doesn't matter

whether you start a BASIC program at line number 10 or line 100, it

makes no difference whether a ML program starts at address 1000 or

0340, as long as you are putting it in a safe memory zone.

So, start all of the examples you assemble for practice in the

same convenient, safe memory location for your machine. In fact, the

Simple Assembler (SA) was designed to be modified and customized.

See the introduction to Appendix C for more detailed instructions on

customizing. Because you can make the SA conform to your needs,

you might want to replace the line with the INPUT that requests the

starting address (variable SA) with a specific address. In this way,

you can work with the examples in the book without having to

specify the safe address each time.

The First Step: Assembling

Throughout this book there are many short example ML programs.

They vary in length, but most are quite brief and are intended to

illustrate a ML concept or technique. The best way to learn something

new is most often to just jump in and do it. Machine language

programming is no different. Machine language programs are written

using a program called an assembler, just as BASIC programs are

written using a program called "BASIC."

In Appendix C there is a program called the "Simple

Assembler." Your first step in using this book should be to type in the

Microsoft version; it will work correctly on all personal computers

using Microsoft BASIC. (If you have an Atari, type in the Atari

version.)

Once you've typed this program into your computer, you can

save it to tape or disk and use it whenever you want to construct a ML

program. The example ML routines in this book should be entered

into your computer using the Simple Assembler and then modified,

examined, and played with.

Frequently, the examples are designed to do something to the

screen. The reason for this is that you can tell at once if things are

working as planned. If you are trying to send the message "TEST

STRING" and it comes out "test string" or "TEST STRIN" or "TEST

STRING®" — you can go back and reassemble it with the SA until

you get it right. More importantly, you'll discover what you did

wrong.

What you see on the screen when you POKE a particular

number to the screen will differ from computer to computer. In fact, it

can vary on different models of the same computer. For this reason,



How To Use This Book

ft the examples in the book are usually given in standard ASCII codes

• (explained later).

Chances are that your computer uses a particular code for the

<—% alphabet which is not ASCII. The Commodores use what's called

I i "PET ASCII" and the Atari uses ATASCII, for ATari ASCII. It's not
that bad, however, since once you've found the correct number to

show the letter' 'A'' on screen, the letter "B" will be the next higher

)j number. If you don't have a chart of the character codes for your

computer's screen POKEs, just use this BASIC program and jot down

the number which is used to POKE the uppercase and lowercase

"A."

10 FOR I = 0 TO 255: POKE (your computer's start-of-screen-

RAM address), I: NEXT

With that knowledge, you can easily achieve the exact, predicted

results for the examples in the book by substituting your computer's

code.

A Sample Example

The following illustrations will show you how to go about entering

and testing the practice examples in the book. At this point, of course,

you won't recognize the ML instructions involved. The following

samples are only intended to serve as a guide to working with the

examples you will come upon later in the text.

After you've typed in and saved the SA, you can RUN it (it's a

BASIC program which helps you to write ML). The first thing it does

is ask you where you want to start your ML program — where you

want it stored in memory. This is why you need to know of a safe

place to put ML programs in your computer.

Of course you use line numbers when creating a BASIC

program. Line numbers are not used in ML programming. Instead,

you can think of memory addresses as' 'line numbers." So, if you are

; I using the Atari, you will tell the SA that you are going to start your
ML program at 0600. It will then print 0600 on the screen as if it were a

line number, and you enter a ML program instruction, one per line,

I""! like this:

n
0600

0601

0603

0605

0608

0609

PLA

LDY

LDA

STA

RTS

END

(This PLA is always required in the Atari when

you use USR.)

#00 (Stay in the hexadecimal mode for this

example.)

#21

(58)Y
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The SA will automatically print each' 'line number'' address j (

when you are programming. You just type in those now mysterious <—'

ML instructions. This program will put the letter "A" on screen.

After you are finished with an example, you type the word "END" , ,

and the SA will tell you the starting address of your ML program in ( [
RAM memory.

The next step is to try out the ML program you've written to see

that it will work as planned. On the Atari, you could type: J j

X=USR(1536) (and hit RETURN)

and this will "RUN" your ML program. You will have sent control of

the computer from BASIC to your new ML program via the USR

command. Be sure to remember that the Atari requires the PLA as the

first instruction of each ML program that you plan to go to from

BASIC by using the USR command. In all the examples in this book, type

in a PLA as the first instruction before continuing with the rest of the

example ifyou use an Atari.

Most personal computers use Microsoft BASIC, and the PLA is

not necessary. Here's how the same example would look on a

PET/CBM after you answered 0360 as the starting address when the

SA asked for it:

0360 LDY #01

0362 LDA #41

0364 STA 8000

0367 RTS

0368 END (The word "END" isn't a 6502 ML instruction; it's

a special signal to the SA to stop constructing a

program and exit the SA program. Such special

words are called pseudo-ops.)

Then you could test it in direct mode (just typing in the

instruction onto the screen with no line number and not as part of a

BASIC program) by typing:

SYS 864 and you should see the ' 'A'' on the screen. | j

Notice that the Atari and PET versions are similar, but not ' '
identical. All 6502 based computers will work with the same

''instruction set'' of commands which the 6502 chip can understand. j j

The major differences occur when you need to specify something '—'
which is particular to the design of your computer brand. An example

would be the location in memory of your computer's screen. The < ,

instructions at 0605 in the Atari example and 0364 in the PET example i j
send the code for the letter "A" to the different screen locations for

these two computer brands. Also, the letter "A" itself is signified by

the number 41 on a PET and by the number 21 on an Atari. \ j
But we'll go into these things further on. The main thing to learn

here is how to use the SA to practice the examples. If you type in 0600

u
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n

•—i as the starting address as in the Atari example above, the SA will

' ' print the number 0600 on screen and wait for you to type in a 6502
instruction (PLA in this case) and hit RETURN. Then it will print the

— next memory address just as if you were using an automatic line

j I numbering routine when programming in BASIC. After you hit

RETURN, the SA will print 0601 and wait for you to type in LDY #00.

n





The Fundamentals

The difficulty of learning ML has sometimes been exaggerated. There

are some new rules to learn and some new habits to acquire. But most

ML programmers would probably agree that ML is not inherently

more difficult to understand than BASIC. More of a challenge to

debug in many cases, but it's not worlds beyond BASIC in

complexity. In fact, many of the first home computerists in the 1970's

learned ML before they learned BASIC. This is because an average

version of the BASIC language used in microcomputers takes up

around 12,000 bytes of memory, and early personal computers (KIM,

AIM, etc.) were severely restricted by containing only a small amount

of available memory. These early machines were unable to offer

BASIC, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found BASIC to

be just as difficult to grasp as ML. In both cases, the problem seems to

be that the rules of a new language simply are "obscure" until you

know them. In general, though, learning either language probably

requires roughly the same amount of effort.

The first thing to learn about ML is that it reflects the

construction of computers. It most often uses a number system

(hexadecimal) which is not based on ten. You will find a table in

Appendix E which makes it easy to look up hex, decimal, or binary

numbers.

We count by tens because it is a familiar (though arbitrary)

grouping for us. Humans have ten fingers. If we had eleven fingers,

the odds are that we would be counting by elevens.

What's a Natural Number?

Computers count in groups of twos. It is a fact of electronics that the

easiest way to store and manipulate information is by ON-OFF states.

A light bulb is either on or off. This is a two-group, it's binary, and so

the powers of two become the natural groupings for electronic

counters. 2,4, 8,16, 32, 64,128, 256. Finger counters (us) have been

using tens so long that we have come to think of ten as natural, like

thunder in April. Tens isn't natural at all. What's more, twos is a

more efficient way to count.

To see how the powers of two relate to computers, we can run a

short BASIC program which will give us some of these powers.

Powers of a number are the number multiplied by itself. Two to the
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power of two (22) means 2 times 2 (4). Two to the power of three (23)

means 2 times 2 times 2 (8).

10 FOR 1 = 0 to 16

20PRINT2AI

30 NEXT I

ML programming can be done in decimal (based on ten-

groupings), but usually is not. Most ML programming involves hex

numbers. This means groups of 16 rather than 10.

Why not just program in the familiar decimal numbers (as

BASIC does)? Because 16 is one of the powers of two. It is a

convenient grouping (or base) for ML because it organizes numbers

the way the computer does. For example, all computers work, at the

most elementary level, with bits. A bit is the smallest piece of

information possible: something is either on or off, yes or no, plus or

minus, true or false. This two-state condition (binary) can be

remembered by a computer's smallest single memory cell. This single

cell is called a bit. The computer can turn each bit "on" or "off" as if

it were a light bulb or a flag raised or lowered.

It's interesting that the word bit is frequently explained as a

shortening of the phrase Binary digiT. In fact, the word bit goes back

several centuries. There was a coin which was soft enough to be cut

with a knife into eight pieces. Hence, pieces ofeight. A single piece of

this coin was called a bit and, as with computer memories, it meant

that you couldn't slice it any further. We still use the word bit today as

in the phrase two bits, meaning 25 cents.

Whatever it's called, the bit is a small, essential aspect of

computing. Imagine that we wanted to remember the result of a

subtraction. When two numbers are subtracted, they are actually

being compared with each other. The result of the subtraction tells us

which number is the larger or if they are equal. ML has an instruction,

like a command in BASIC, which compares two numbers by

subtraction. It is called CMP (for compare). This instruction sets

' 'flags" in the CPU (Central Processing Unit), and one of the flags i |

always remembers whether or not the result of the most recent action t—J
taken by the computer was a zero. We'll go into this again later. What

we need to realize now is that each flag — like the flag on a mailbox — , .

has two possible conditions: up or down. In other words, this | j
information (zero result or not-zero) is: binary and can be stored within

a single bit. Each of the flags is a bit. Together they make up one byte.

That byte is called the Status Register. |_j

Byte Assignments

Our computers group these bits into units of eight, called bytes. This ^ .

relationship between bits and bytes is easy to remember if you think I j
of a bit as one of the "pieces of eight." Eight is a power of two also
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(two, to the third power). Eight is a convenient number of bits to

work with as a group because we can count from zero to 255 using

only eight bits.

This gives us enough room to assign all 26 letters of the alphabet

(and the uppercase letters and punctuation marks, etc.) so that each

printed character will have its particular number. The letter "A"

(uppercase) has been assigned the number 65. "B" is 66, and so on.

Throughout this book, examples will follow the ASCII code for letters

of the alphabet. Most microcomputers, however, do not adhere

strictly to the ASCII code. If you get unexpected results when trying

the example programs, check your BASIC manual to see if POKEing

to the screen RAM uses a different code than ASCII. If that is the

case, substitute your screen POKE code for the values given in the

examples.

These "assignments" form the convention called the ASCII

code by which computers worldwide can communicate with each

other. Text can be sent via modems and telephone lines and arrive

meaning the same thing to a different computer. It's important to

visualize each byte, then, as being eight bits ganged together and able

to represent 256 different things. As you might have guessed, 256 is a

power of two also (two, to the power of eight).

So, these groupings of eight, these bytes, are a key aspect of

computing. But we also want to simplify our counting from 0 to 255.

We want the numbers to line up in a column on the screen or on

paper. Obviously, the decimal number five takes up one space and the

number 230 takes up three spaces.

Also, hex is easier to think about in terms of binary numbers —

the on-off, single-bit way that the computer handles numbers:

Hex Binary

01 00000001

02 00000010

03 00000011 (land 2)

04 00000100

05 00000101 (4 and 1)

06 00000110 (4 and 2)

07 00000111(4+2 + 1)

08 00001000

09 00001001

-> 0A 00001010

0B 00001011

0C 00001100

0D 00001101

0E 00001110

OF 00001111

-> 10 00010000

11 00010001

Decimal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(note new digits)-

(note new column-

in the hex)
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See how hex $10 (hex numbers are usually preceded by a dollar ^ ,

sign to show that they are not decimal) looks like binary? If you split a < J
hex number into two parts, 1 and 0, and the binary (it's an eight-bit

group, a byte) into two parts, 0001 and 0000 — you can see the

relationship. s j

The Rationale For Hex Numbers

ML programmers often handle numbers as hexadecimal digits, ^ l

meaning groups of sixteen instead of ten. It is usually just called hex. i 5

You should read over the instructions to the Simple Assembler and

remember that you can choose between working in hex or decimal

with that assembler. You can know right from the start if you're

working with hex or decimal, so the dollar sign isn't used with the

Simple Assembler.

DECIMAL 0123456789 then you start over

with 10

HEX 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

OF then you start over with 10

Program 2-1. Microsoft Hex-Decimal Converter.

1 HE$="0123456789ABCDEF"

2 PRINT"{CLEAR}{03 DOWNjPLEASE CHOOSE:
4 PRINT"{03 DOWN}{03 RIGHTjl-INPUT HEX &

GET DECIMAL BACK.

5 REM NEW LINE HERE

6 PRINT"{02 DOWN} 2-INPUT DECIMAL TO G

ET HEX BACK.

7 GETK:IPK=0THEN7

9 PRINT" {CLEAR}": ON K*3OTO200,400
100 H$="":FORM=3TO0STEP-1:N%=DE/(16*M):DE=

DE-N%*16*M:H$=H$+MID$(HE$,N%+1,1)

:NEXT \ i

101 RETURN ^
102 D=0:Q=3:FORM=1TO4:FORW=0TO15:IFMID$(H$

,M,l)=MID$(HE$,W+l,l)THENl04 i J

103 NEXTW

104 D1=W*(16*(Q)):D=D+D1:Q=Q-1:NEXTM

105 DE=INT(D):RETURN } '

200 INPUT"{02 DOWN}HEX";H$:GOSUB102:PRINTS w
PC(11)"{UP}= {REV}"DE"{LEFT} "

210 GOTO200 l !
400 INPUT"{02 DOWN}DECIMAL";DE:GOSUB100:PR '—

10
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INTSPC(14)"{UP}= {REV} "H$"
410 GOTO400

Program 2-2. Atari Hex-Decimal Converter.

100 DIM H$(23),N$(9):OPEN#1,4,0,"K:"

130 GRAPHICS 0

140 PRINT" PLEASE CHOOSE:"

150 PRINT"1- INPUT HEX AND GET DECIMAL BAC

K."

160 PRINT"2- INPUT DECIMAL AND GET HEX BAC

K. "

170 PRINT:PRINT"==>";:GET#1,K

180 IFK<49OR>50THEN170

190 PRINTCHR$(K):ONK-48 GOTO 300,400

300 H$="@ABCDEFGHII I 1 111IJKLMNO"

310 PRINT"HEX";:INPUT N$:N=0

320 FORI=1TOLEN(N$)
330 N=N*16+ASC(H$(ASC(N$(l))-47))-64:NEXTI

340 PRINT"$";N$;"=";N:PRINT:PRINT:GOTO140

400 H$="0123456789ABCDEF"

410 PRINT"DECIMAL";:INPUTN:M=4096

420 PRINTN;"=$";

430 FORI=1TO4:J=INT(N/M)
440 PRINTH$(J+1,J+1);:N=N-M*J:M=M/l6
450 NEXTI:PRINT:PRINT:GOTO140

The first thing to notice is that instead of the familiar decimal

symbol 10, hex uses the letter "A" because this is where decimal

numbers run out of symbols and start over again with a one and a

zero. Zero always reappears at the start of each new grouping in any

number system: 0,10,20, etc. The same thing happens with the

groupings in hex: 0,10,20,30, etc. The difference is that, in hex, the 1

in the "tens" column equals a decimal 16. The second column is now a

"sixteens" column. 11 means 17, and 21 means 33 (2 times 16 plus

one). Learning hex is probably the single biggest hurdle to get over

when getting to know ML. Don't be discouraged if it's not

immediately clear what's going on. (It probably never will be totally

clear — it is, after all, unnatural.) You might want to practice the

11
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exercises at the end of this chapter. As you work with ML, hex will j j

gradually seem less and less alien. '—'
To figure out a hex number, multiply the second column by 16

and add the other number to it. So, 1A would be one times 16 plus 10 ^ ,

(recall that A stands for ten). i I

Hex does seem impossibly confusing when you come upon it for

the first time. It will never become second nature, but it should be at

least generally understood. What is more, you can program in ML J |
quite easily by looking up the hex numbers in the table at the end of

this book. You need not memorize them beyond learning to count

from 1 to 16 — learning the symbols. Be able to count from 00 up to

OF. (By convention, even the smallest hex number is listed as two

digits as in 03 or OB. The other distinguishing characteristic is that

dollar sign that is usually placed in front of them: $05 or $0E.) It is

enough to know what they look like and be able to find them when

you need them.

The First 255

Also, most ML programming involves working with hex numbers

only between 0 and 255. This is because a single byte (eight bits) can

hold no number larger than 255. Manipulating numbers larger than

255 is of no real importance in ML programming until you are ready

to work with more advanced ML programs. This comes later in the

book. For example, all 6502 ML instructions are coded into one byte,

all the "flags" are held in one byte, and many "addressing modes"

use one byte to hold their argument.

To learn all we need know about hex for now, we can try some

problems and look at some ML code to see how hex is used in the

majority of ML work. But first, let's take an imaginary flight over

computer memory. Let's get a visual sense of what bits and bytes and

the inner workings of the computer's RAM look like.

The City Of Bytes

Imagine a city with a single long row of houses. It's night. Each house

has a peculiar Christmas display: on the roof is a line of eight lights.

The houses represent bytes; each light is a single bit. (See Figure 2-1.)

If we fly over the city of bytes, at first we see only darkness. Each byte

contains nothing (zero), so all eight of its bulbs are off. (On the

horizon we can see a glow, however, because the computer has

memory up there, called ROM memory, which is very active and

contains built-in programs.) But we are down in RAM, our free user-

memory, and there are no programs now in RAM, so every house is

dark. Let's observe what happens to an individual byte when

different numbers are stored there; we can randomly choose byte

1504. We hover over that house to see what information is

"contained" in the light display. (See Figure 2-2.)

12
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Figure 2-2.

Like all the rest, this byte is dark. Each bulb is off. Observing this, we

know that the byte here is "holding" or representing a zero. If

someone at the computer types in POKE 1504,1 — suddenly the

rightmost light bulb goes on and the byte holds a one instead of a
zero:

Figure 2-3.

LJ

U

This rightmost bulb is in the l's column (just as it would be in our

usual way of counting by tens, our familiar decimal system). But the

next bulb is in a 2's column, so POKE 1504, 2 would be:

Figure 2-4.

And three would be one and two:

Figure 2-5.

In this way — by checking which bits are turned on and then adding

them together — the computer can look at a byte and know what

number is there. Each light bulb, each bit, is in its own special

14
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position in the row of eight and has a value twice the value of the one

just before it:

Eight bits together make a byte. A byte can "hold" a number

from 0 through 255 decimal. We can think of bytes, though, in any

number system we wish — in hex, decimal, or binary. The computer

uses binary, so it's useful to be able to visualize it. Hex has its uses in

ML programming. And decimal is familiar. But a number is still a

number, no matter what we call it. After all, five trees are going to be

five trees whether you symbolize them by 5, $05, or 00000101.

A Binary Quiz

BASIC doesn't understand numbers expressed in hex or binary. The

Simple Assembler contains two subroutines to translate a number

from decimal to hex or vice versa. You might want to take a look at

how it's done as a way of getting a better feel for these different

numbers systems. The subroutines are located at lines 4000 and 5000.

Binary, for humans, is very visual. It forms patterns out of zeros and

ones. The following program will let you quiz yourself on these

patterns.

Here is a game, for all computers, which will show you a byte as

it looks in binary. You then try to give the number in decimal:

Program 2-3. Binary Quiz for All Computers.

P| 100 REM BINARY QUIZ

1 110 C1=20:C0=111: REM FOR ATARI ONLY
120 C1=88:C0=79: REM FOR APPLE ONLY

H 130 C1=*209:C0=215:REM FOR COMMODORE ONLY
140 X=INT(256*RND(1)): D = X: P = 128

150 PRINT CHR$(125);: REM ATARI ONLY

f| 160 PRINT CHR$(147);: REM COMMODORE ONLY
170 HOME: REM APPLE ONLY

180 FOR I = 1 TO 8

jj 190 IF INT(D/P) = 1 THEN PRINT CHR$(C1);:
D = D-P: GOTO 210

15
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200 PRINT CHR$(C0); r [

210 P = P/2: NEXT I: PRINT ^
220 PRINT " WHAT IS THIS IN DECIMAL?"

230 INPUT Q: IF Q - X THEN PRINT j i

"CORRECT": GOTO 250 L—'
240 PRINT "SORRY, IT WAS";X

250 FOR T = 1 TO 1000: NEXT T j \

260 GOTO 140 ^

This program will print out the entire table of binary numbers

from 0 to 255:

Program 2-4.

100 REM COMPLETE BINARY TABLE

110 L=8:B=2:C=1

120 FORX=0TO255:PRINTX;

140 IFXAND1THENK(C)=49:GOTO160

150 K(C)=48

160 C=C+1:IFBANDXTHENK(C)=49:GOTO180

170 K(C)=48

180 B=B*2:IFO8THEN200

190 GOTO160

200 FORI=0TO7:PRINTSTR$(K(L)-48);:L=L-1

210 NEXT

220 C=0:PRINT

260 L=8:B=2:C=1:NEXTX

U
Examples And Practice

Here are several ordinary decimal numbers. Try to work out the hex

equivalent: I j

1. 10

2. 15

3. 5 jj

4. 16 L-'
5. 17

6. 32 —i

7. 128 LJ
8. 129

l i
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9. 255

10. 254

I"**""! We are not making an issue of learning hex or binary. If you
needed to look up the answers in the table at the end of the book,

fine. As you work with ML, you will familiarize yourself with some of

f—| the common hex numbers. You can write most ML programs without

' ) needing to worry about binary. For now, we only want to be able to

recognize what hex is. There are even some pocket "programmer"

calculators which change decimal to hex for you and vice versa.

Another way to go about "hexing" is to use a BASIC program which

does the translation. A problem with BASIC is that you will be

working in ML and your computer will be tied up. It is often

inconvenient to crank up a BASIC program each time you need to

work out a hex number. However, the Simple Assembler will do the

translations for you any time you need them.

One other reason that we are not stressing hex too much is that

ML is generally not programmed without the help of an assembler.

The Simple Assembler provided in this book will handle most of your

input automatically. It allows you to choose whether you prefer to

program in hex or decimal. You make this decision by changing line

10 before starting to assemble. After that, you can put in hex or

decimal without worrying that there will be any confusion about your

intentions.

This little BASIC program is good for practicing hex, but also

shows how to change a small part and make it work for two-byte hex

numbers. It will take decimal in and give back the correct hex. It is

designed for Microsoft BASIC computers, so it will not work on the

Atari.

10 H$="0123456789ABCDEF"

20 PRINT "ENTER DECIMAL NUMBER";:INPUT X

|—) 30 IF X > 255 GOTO 20: REM NO NUMBERS BIGGER

I THAN 255 ALLOWED
40 FORI=lTO0STEP-l

p. 50 N%= X/(16^I): X =X-N% * 16>N

f ] 60 HE$=HE$+MID$(H$,N%+1,1)

70 NEXT

^ 80 PRINT HE$

[] 90 GOTO 20

For larger hex numbers (up to two, to the power of 16 — which is

-. 65536), we can just change the above program. Eliminate line 30 and

change line 40 to: FOR 1=3 TO 0 STEP -1. This will give us four-place

hex numbers (used only as addresses) but which will also become

recognizable after some ML practice.

17
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65535 is an interesting number because it represents the limit of i I

our computers' memories. In special cases, with additional hardware, ^
memory can be expanded beyond this. But this is the normal upper

limit because the 6502 chip is designed to be able to address (put bytes ; i

in or take them out of memory cells) up to $FFFF. U—l

Ganging Two Bytes Together To Form An Address

The 6502 often sets up an address by attaching two bytes together and i j

looking at them as if they formed a unit. An address is most ^

commonly a two-byte number. $FFFF (65535) is the largest number

that two bytes can represent, and $FF (255) is the most that one byte

can hold. Three-byte addressing is not possible for the 6502 chip.

"Machine language" means programming which is understood

directly by the 6502 chip itself. There are other CPU (Central

Processing Unit) chips, but the 6502 is the CPU for VIC, Apple, 64,

PET/CBM, and Atari. It's the one covered in this book.

Reading A Machine Language Program

Before getting into an in-depth look at "monitors," those bridges

between you and your machine's language — we should first learn

how to read ML program listings. You've probably seen them often

enough in magazines. Usually, these commented, labeled, but very

strange-looking programs are called source code. They can be

examined and translated by an assembler program into an ML program.

When you have an assembler program run through source code, it

looks at the key words and numbers and then POKEs a series of

numbers into the computer. This series is then called the object code.

Source programs contain a great deal of information which is of

interest to the programmer. The computer only needs a list of

numbers which it can execute in order. But for most people, lists of

numbers are only slightly more understandable than Morse code. The

solution is to replace numbers with words. The primary job of an

assembler is to recognize an ML instruction. These instructions are

called mnemonics, which means ''memory aids.'' They are like BASIC

words, except that they are always three letters long. [ /
If you type the mnemonic JMP, the assembler POKEs a 76 into

RAM memory. It's easier to remember JMP than 76. The 76 is the __

number that clues the computer that it's supposed to perform a JMP. j- j

The 76 is called an opcode, for "operation code." The three-letter

words we use in ML programming, the mnemonics, were designed to

sound like what they do. JMP does a JUMP (like a GOTO in BASIC). i ;

Some deluxe assemblers also let you use labels instead of numbers — I—>
as long as you define your labels at the start of the source code. These

labels can refer to individual memory locations, special values like the v—

score in a game, or entire subroutines. l^

18
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Four Ways To List A Program

Labeled, commented source code listings are the most elaborate kind

of ML program representation. There are also three other kinds of ML

listings. We can use a simple addition example program to show how

it looks when represented in each of the four ML program listing

styles. The first two styles are simply ways for you to type a program

into the computer. The last two styles show you what to type in, but

also illustrate what is going on in the ML program. First let's look at

the most elementary kind of ML found in books and magazines: the

BASIC loader.

Program 2-6. BASIC Loader.

10 FOR ADDRESS = 4096 TO 4103

20 READ BYTE

30 POKE ADDRESS, BYTE

40 NEXT ADDRESS

50 DATA 169,2,105,5,141,160,15,96

This is a series of decimal numbers in DATA statements which is

POKEd into memory starting at decimal address 4096. When these

numbers arrive in RAM, they form a little routine which puts the

number 2 into the accumulator— a special location in the computer

that we'll get to later — and then adds 5. The result of the addition is

then moved from the accumulator to decimal address 4000. If you try

this program out, you can SYS 4096 to execute ML program and then

? PEEK (4000) and you'll see the answer: seven. BASIC loaders are

convenient because the user doesn't need to know how to enter ML

programs. The loader POKEs them in and all the user has to do is SYS

or USR or CALL to the right address and the ML transfers control

back to BASIC when its job is done.

Getting even closer to the machine level is the second way you

might see ML printed in books or magazines: the hex dump. On

some computers (PET, Apple) there is a special "monitor" program

in ROM which lets you list memory addresses and their contents as

hex numbers. More than that, you can usually type over the existing

values on the screen and change them. That's what a hex dump

listing is for. You copy it into your computer's RAM by using your

computer's monitor. How you enter the monitor mode differs on

each computer and we'll get to monitors in the next chapter.

The hex dump, like the BASIC loader, tells you nothing about

the functions or strategies employed within an ML program. Here's

the hex dump version of the same 2+5 addition program:
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Program 2-7.

u

u
1000 A9 02 69 05 8D A0 OF 60

U
The third type of listing is called a disassembly. It's the opposite of

an assembly because another program called a disassembler takes _ ,

machine language (the series of numbers, the opcodes in the ( \
computer's memory) and translates it into the words, the

mnemonics, which ML programmers use. The instruction you use

when you want to load the accumulator is called LDA, and you can

store what's in the accumulator by using an STA. We'll get to them

later. In this version of our example addition routine, it's a bit clearer

what's going on and how the program works. Notice that on the left

we have the hex numbers and, on the right, the translation into ML

instructions. ADC means ADd with Carry and RTS means ReTurn

from Subroutine.

Program 2-8.

1000 A9 02 LDA #$02

1002 69 05 ADC #$05

1004 8D A0 OF STA $0FA0

1007 60 RTS

The Deluxe Version

Finally we come to that full, luxurious, commented, labeled, deluxe

source code we spoke of earlier. It includes the hex dump and the

disassembly, but it also has labels and comments and line numbers

added, to further clarify the purposes of things. Note that the

numbers are all in hex. On the far left are the memory addresses

where this routine is located. Next to them are the hex numbers of the

instructions. (So far, it resembles the traditional hex dump.) Then

come line numbers which can be used the way BASIC line numbers ^ {
are: deleted, inserted, and so on. Next are the disassembled

translations of the hex, but you can replace numbers with

labels (see Program 2-10). You could still use numbers, but if you've \ )

defined the labels early on, they can serve as a useful reminder of '—'

what the numbers represent. Last, following the semicolons, are the ^

comments. They are the same as REM statements. (See Programs 2-9 i ,

and 2-10.) L-i
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2 The Fundamentals

Program 2-11. The Source Code By Itself.

.BA $1000 ; START ADDR $1000 (4096)

TWO .DE 2 ;DEFINE LABLE "TWO" AS 2.

ADDER .DE 5 ;DEFINE "ADDER" AS A 5.

STORAGE .DE $0FA0 ;DEFINE STORAGE ADDR.

START LDA #TWO ; LOAD A WITH 2

ADC #ADDER ; ADD 5

STA STORAGE ; STORE AT DECIMAL 4000

RTS ; RETURN

.EN ; END OF ASSEMBLY

Program 2-11 illustrates just the source code part. The object code has

not yet been generated from this source code. The code has not been

assembled yet. You can save or load source code via an assembler in the

same way that you can save or load programs via BASIC. When 2-11

is in the computer, you could type "ASSEMBLE" and the assembler

would translate the instructions, print them on the screen, and POKE

them into memory.

The Simple Assembler operates differently. It translates, prints,

and POKEs after you hit RETURN on each line of code. You can save

and load the object, but not the source code.

Before we get into the heart ofML programming, a study of the

instruction mnemonics and the various ways of moving information

around (called addressing), we should look at a major ML

programming aid: the monitor. It deserves its own chapter.

u

U

ANSWERS to quiz: 0A, OF, 05,10,11, 20,80,81, FF, FE

22



n 3

n The Monitor
A monitor is a program which allows you to work directly with your

computer's memory cells. When the computer "falls below" BASIC

into the monitor mode, BASIC is no longer active. If you type RUN, it

will not execute anything. BASIC commands are not recognized. The

computer waits, as usual, for you to type in some instructions. There

are only a few instructions to give to a monitor. When you're working

with it, you're pretty close to talking directly to the machine in

machine language.

The PET and Apple II have monitors in ROM. This means that

you do not need to load the monitor program into the computer; it's

always available to you. (PETs with Original ROM sets do not have a

ROM monitor; you must load in the monitor from a tape or disk.)

Atari and VIC computers have a monitor as part of a larger

"Assembler Editor" plug-in cartridge. The monitor on the Atari

cartridge is called the "Debugger." That's a good name for it:

debugging is the main purpose of a monitor. You use it to check your

ML code, to find errors.

The various computers have different sets of instructions which

their monitors recognize. However, the main functions are similar, so

it is worth reading through all of the following descriptions, even if

the discussion is not specifically about the monitor for your

computer. On the PET/CBM, VIC, and 64 you can add many of these

functions with a monitor "extension" program called Micromon or

Supermon (about which more later). These monitors are included in

Appendix F. The monitors on the Apple II and available in the Atari

p*| Assembler Editor Cartridge do not need "extending." They contain

' l most of the significant features required of a monitor. However, the

special extensions in Appendix F for the Commodore computers add

r—) considerably to the Commodore ML programmer's repertoire.

- j The Apple II
You enter the Apple monitor by typing CALL -151. You will see the

^ "*" monitor prompt and the cursor immediately after it. Here are the

' ' monitor instructions:
1. Typing an address (in hex) will show you the number

n contained in that memory cell. *2000 (hit RETURN) will show 2000 —

FF (if, in fact, 255 decimal ($FF, hex) is in that location).

2. You can examine a larger amount of memory in hex (this is

n
23
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called a memory dump or a hex dump). The Apple monitor remembers

the address of the last number displayed. This can be used as a

starting address for the dump. If you type the instruction in number

one above, and then type *.2010, you will see a dump of memory

between 2001 and 2010. The only difference between this and

instruction one is the period (.) before the requested address.

3. You can directly cause a dump by putting the period between

two addresses: *2000.2010 combines the actions of instructions one

and two above.

4. Hitting RETURN will continue a dump, one line at a time.

5. The last displayed memory location can be changed by using

the colon (:). This is the equivalent of BASIC'S POKE. If *2000 results

in FF on the screen, you can change this FF to zero by typing *:00. To

see the change, type *2000 again. Or you could type *2000:00 and

make the change directly.

The Apple II reference manual contains excellent descriptions of

the monitor instructions. We will list the rest of them only briefly

here:

6. Change a series of locations at once: *2000: 00 69 15 65 12.

7. Move (transfer) a section of memory: *4000 < 2000.2010M will

copy what's between 2000 and 2010 up to address 4000. (All these

addresses are hex.)

8. Compare two sections of memory: *4000 < 2000.2010V. This

looks like Move, but its job is to see if there are any differences

between the numbers in the memory cells from 2000-2010 and those

from 4000-4010. If differences are found, the address where the

difference occurs appears on screen. If the two memory ranges are

identical, nothing is printed on the screen.

9. Saving (writing) a section of ML to tape: *2000.2010W. This is

how you would save an MLprogram. You specify the addresses of

the start and end of your program.

10. Loading (reading) a section of memory (or an ML program)

back into the computer from tape: *2000.2010R will put the bytes

saved, in instruction nine, above, back where they were when you

saved them.

An interesting additional feature is that you could send the bytes

to any address in the computer. To put them at 4000, you would just

type *4000.4010R. This gives you another way to relocate subroutines

or entire ML programs (in addition to the Move instruction, number

seven above). If you move an ML program to reside at a different

address from the one it was originally intended during assembly, any

JMP or JSR (Jump To Subroutine, like BASIC'S GOSUB) instructions

which point to within your program must be adjusted to point to the

new addresses. If your subroutine contained an instruction such as

2000 JSR 2005, and you loaded at 4000, it would still say 4000 JSR

2005. You would have to change it to read 4000 JSR 4005. All the BNE,

24



n
The Monitor 3

r—t BPL, BEQ, branching instructions, though, will make the move

' I without damage. They are relative addresses (as opposed to the
absolute addressing of JSR 2005). They will not need any adjusting.

/*aah> We'll go into this in detail later.

i \ 11. Run (go): *2000G will start executing the ML program which

begins at address 2000. There had better be a program there or the

machine is likely to lock up, performing some nonsense, an endless

r""i loop, until you turn off the power or press a RESET key. The program
or subroutine will finish and return control of the computer to the

monitor when it encounters an RTS. This is like BASIC'S SYS

command, except the computer returns to the monitor mode.

12. Disassemble (list): *2000L will list 20 lines of ML on the

screen. It will contain three fields (a field is a "zone" of information).

The first field will contain the address of an instruction (in hex). The

address field is somewhat comparable to BASIC'S line numbers. It

defines the order in which instructions will normally be carried out.

Here's a brief review of disassembly listings. The second field

shows the hex numbers for the instruction, and the third field is

where a disassembly differs from a "memory" or "hex" dump (see

numbers one and two, above). This third field translates the hex

numbers of the second field back into a mnemonic and its argument.

Here's an example of a disassembly:

2000

2002

2005

A9 41

8D 23 32

A4 99

LDA

STA

LDY

#$41

$3223

$99

Recall that a dollar sign ($) shows that a number is in

hexadecimal. The pound sign (#) means "immediate" addressing

(put the number itselfinto the A register at 2000 above). Confusing

these two symbols is a major source of errors for beginning ML

programmers. You should pay careful attention to the distinction

between LDA #$41 and LDA $41. The second instruction (without the

pound sign) means to load A with whatever number is found in

address $41 hex. LDA #$41 means put the actual number 41 itself into the

accumulator. If you are debugging a routine, check to see that you've

got these two types of numbers straight, that you've loaded from

addresses where you meant to (and, vice versa, you've loaded

immediately where you intended).

13. Mini-assembler. This is an assembler program, though it is

not part of the monitor ROM. It is in the Integer BASIC ROM, so

systems using firmware Applesoft II cannot use it although the Apple

II Plus can, in the INT mode. Like the Simple Assembler, this mini

assembler cannot use labels or calculate forward branches. (The

Simple Assembler can be used for forward branches, however, as

we'll see later.) You enter the Apple mini-assembler by typing the
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address, mnemonic, and argument of your first instruction. The ! is . ,

printed by the computer: I \

!2000:LDA #15

This will be disassembled, and then you type in the next line, \ \

using spaces between each field: ^^

! LDY#01

14. Step and Trace. These are very useful ways to isolate and fix 1 (
errors. Remember that ML does not have much in the way of error

messages. In fact, unless you are using a very complex assembler

program, the only error that an assembler can usually detect is an

impossible mnemonic. If you mistyped LDA as LDDA, your

assembler would print ??? or, in the Apple, sound a beep and put a

circumflex (a) near the error. In any case, you are not going to get

elaborate SYNTAX ERROR messages. The Simple Assembler will

type the word ERROR on the screen. Try it.

We'll examine step and trace debugging methods under

numbers 10 and 11 of the discussion of the Atari cartridge below. The

Atari Assembler Cartridge and the Commodore Monitor Extension

programs both allow step and trace, too.

15. Changing registers. *(CONTROL) E will display the

contents of the Accumulator, the X and Y registers, the status register

(P) and the stack pointer (S). You can then change the contents of

these registers by typing them in on screen, following a colon. Note

that to change the Y register, you must type in the A and X registers

as well:

* (CONTROL) E

You'll see: A=01 X=05 Y=FF P=30 S=FE(whatever'sinthe

registers at the time).

To change the Y register to 00, you type in the A, X, and then the

new version of Y:

*:01 05 00 (and hit RETURN)

16. Going back to BASIC. You can use* (CONTROL) B to go to " «
BASIC (but it will wipe out any BASIC program that might have been

there). Or you can use * (CONTROL) C to go back to BASIC,

non-destructively. - ]^j

The Atari Monitor

To enter the monitor on the Atari, you put the assembler cartridge f ,

into the left slot. The Atari does not have a monitor in ROM; you (--J
need the cartridge. As mentioned at the start of this chapter, the

monitor mode in Atari is called DEBUG and is a part of the larger . j

program within the assembler cartridge. There are three parts (or j [
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n

modes) within the cartridge: EDIT, ASM (assembler), and DEBUG.

Before looking at the commands available in the DEBUG mode, let's

briefly explore how an ML program is created using the EDIT mode

followed by ASM. The cartridge provides the Atari with a more

advanced assembler than the Simple Assembler or the mini

assemblers available within the Apple II monitor or the Commodore

monitor extension programs. The cartridge allows labels, comments,

and line numbers.

Until now, we've discussed ML programming which uses three

fields (zones). Here's an example program which shows these three

simple fields. We will print ten "A's" on the screen (the numbers are

decimal):

Address Field

2000

2002

2004

2007

2008

2010

Instruction Field

LDY

LDA

STA

DEY

BNE

RTS (or BRK)

Argument (Operand) Field

#10

#33

(88),Y

(The screen location is

remembered by the Atari

in addresses 88 and 89.)

2004

When you are in Atari's EDIT mode, you construct a program

somewhat differently than you do with the Simple Assembler (or

with mini-assemblers). Here's the same program using the Atari's

additional fields:

Line#

100

110

120

130

140

Label

START

LOOP

Instruction

LDY

LDA

STA

DEY

BNE

Argument

#10

#33

(88),Y

LOOP

Comments

Set up counter for loop

"A"inATASCII

Loop until zero

Notice that labels allow us to use the word LOOP instead of the

specific address we want to loop back to. In addition to all this, there

are pseudo-ops which are instructions to the assembler to perform

some task. A pseudo-op does not become part of the ML program

(it's not a 6502 instruction), but it affects the assembly process in
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some way. We would need two pseudo-ops in the above program to j \

allow it to be assembled properly. Add these lines: !—'

10 * = $0600 (tells the assembler that this program should be

assembled starting at address $0600. The $ means hexadecimal.) ) {

160 .END (tells the assembler that it should stop assembling L—
here.)

The example above with line numbers and labels is called source \~ I

code because it is the source from which the assembler gets its {—

information when it assembles object code (object code is an actual ML

program which could be run, or executed). You cannot run the

program above as is. It must first be assembled into 6502 ML. For one

thing, the label LOOP has to be replaced with the correct branch back

to line 120. Source code does not put bytes into memory as you write

it (as a more elementary assembler like the Simple Assembler does).

More Than A Monitor

To make this into object code which you can actually execute, you

type ASM (for assemble), and the computer will put the program

together and POKE the bytes into memory, showing you on screen

what it looks like.

To test the program, type BUG to enter the DEBUG mode, clear

the screen, and RUN it by typing G600 (for GO $0600). You'll see

AAAAAAAAAA on screen. It works!

All this isn't, strictly speaking, a monitor. It's a full assembler.

The part of the assembler cartridge program which is equivalent to

the monitor programs on Apple II and PET is the DEBUG mode.

There are a number of commands in DEBUG with which you can

examine, test, and correct ML code. As on the other computers, the

DEBUG (monitor) mode allows you to work closely with single bytes

at a time, to see the registers, to trace program flow. All numbers you

see on screen (or use to enter into the computer) are in hex. You enter

the DEBUG mode by typing BUG when the Assembler Cartridge is in

the Atari. (To go back to EDIT mode, type X.) Here are the commands

of DEBUG: . M
1. Display the registers: type DR (RETURN) and you will see

whatever is in the various registers.

A=01 X=05 Y=OF P=30 S=FE (P is the status register and S If
is the stack pointer.) ^

2. Change the registers: type CR< 6,2 (RETURN) and you will

have put a six into the accumulator and a two into the X register. To \ /

put a five into the status register, you must show how far to go by ^

using commas: CR< ,,,5 would do it. CR< 5 would put five into the

accumulator. ,- ,

3. Dump memory: type D2000 and you will see the eight hex I 1
numbers which start at address 2000 in memory.
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) i

D2000

2000 FF 02 60 20 FF D2 00 00

D2000,2020 (would dump out memory between these two

addresses)

4. Change memory: type C2000 < 00,00 to put zeros into the first

two bytes following address 2000.

<*-! 5. Transfer (move) memory: type M1000< 2000,2010 and you

/ 1 will non-destructively copy what's between 2000-2010 down into

1000-1010.

6. Compare (verify) memory: type V1000< 2000,2010 and any

mismatches will be printed out.

7. Disassemble (list): type L2000 and you will see 20 lines of

instructions displayed, the mnemonics and their arguments.

8. Mini-assemble: the DEBUG mode allows you to enter

mnemonics and arguments one at a time, but you cannot use labels.

(The pseudo-ops BYTE, DBYTE, and WORD are available, though.)

This is similar to the Simple Assembler and the mini-assemblers

available to Apple II and PET monitor users.

You type 2000 < LDA $05 and the computer will show you the

bytes as they assemble into this address. Subsequent instructions can

be entered by simply using the less-than sign again: < INC $05. To

return to the DEBUG mode, you can hit the RETURN key on a blank

line.

9. Go (RUN a program): type G2000 and whatever program

starts at address 2000 will run. Usually, you can stop the RUN by

hitting the BREAK key. There are cases, though, (endless loops)

which will require that you turn off the computer to regain control.

10. Trace: type T2000 and you will also RUN your program, but

the registers, bytes of ML code, and the disassembled mnemonics

and arguments are shown as each instruction is executed. This is

especially useful since you can watch the changes taking place in the

registers and discover errors. If you have an LDA $03 and you then

expect to find the accumulator to have the number three in it — you'll

] 7 notice that you made that very common mistake we talked about
earlier. Following LDA $03, you will see that the accumulator has,

perhaps, a ten in it instead of the three you thought you'd get. Why?

r*| Because you wanted to write LDA #03 (immediate). Instead, you
mistakenly loaded A with the value in address three, whatever it is.

Seeing unexpected things like this happen during trace allows

r"*7 you to isolate and fix your errors. Trace will stop when it lands on a

I 1 BRK instruction or when you press the BREAK key.
11. Step: type S2000 and you will "step" through your program

at 2000, one instruction at a time. It will look like trace, but you move

slowly and you control the rate. To see the following instruction, you

type the S key again. Typing S over and over will bring you through
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the program.

12. Return to EDIT mode: type X. j [

PET, VIC, And Commodore 64 Monitors

The resident monitor on the PET/CBM computer is the simplest of \ )

monitors. You enter it from BASIC by typing SYS 4 when no program ^—>

is RUNning. This lands on a BReaK instruction; address 4 always

contains a zero which is the opcode for BRK. You are then in monitor

mode. Original ROM PETs, the earliest models, do not have a \ I
monitor in ROM, but one is available on tape, called TIM. Everything

is done with hexadecimal numbers.

There are only six monitor commands:

1. Go (RUN): type G 2000 and the program starts at address

2000. It will continue until it lands on a BRK instruction. There is no

key you can type to stop it.

2. LOAD (from tape or disk): type L "0:NAME",08 and a

program called "name" on disk drive zero will be loaded at the

address from which it was SAVEd. There is no provision to allow you

to LOAD to a different address. L "NAME",01 will LOAD from tape.

3. SAVE (to a tape or disk): type S "0:NAME",08,2000,2009 and

the bytes between hex 2000 and 2008 will be saved to disk drive zero

and called "name." Important note: you should always be aware that a

SAVE will not save the highest byte listed in your SAVE instruction. You

always specify one byte more than you want to save. In our example

here, we typed 2009 as our top address, but the monitor SAVEd only

up to 2008. S "NAME",01,2000,2009 will SAVE to tape.

An interesting trick is to save the picture on your screen. Try this

from the monitor (for a disk drive): S "0:SCREEN",08,8000,8400

(with a tape drive: S "SCREEN",01,8000,8400). Then, clear the

screen and type: L "0:SCREEN",08 (tape: L "SCREEN",01). This

illustrates that an ML SAVE or LOAD just takes bytes from within

whatever range of memory you specify; it doesn't care what those

bytes contain or if they make ML sense as a program.

4. See memory (memory dump): type M 2000 2009 and the

bytes between these addresses will be displayed on screen. To change j \
them, you use the PET cursor controls to move to one of these hex

numbers and type over it. Hitting the RETURN key makes the change

in the computer's memory (the same way you would change a line in \ /

BASIC). ^

Machine Language Registers

5. See the registers: type R and you will see something like this J [
on screen (the particular numbers in each category will depend on

what's going on in your computer whenever you type R):

PC IRQ SR AC XR YR SP M
2000 E62E 30 00 05 FF FE

30 U



The Monitor 3

The PC is the program counter: above, it means that the next

instruction the computer would perform is found at address 2000. If

you typed G (for RUN), this is where it would start executing. The

IRQ is the interrupt request. The SR is the status register (the

condition of the flags). The AC is the accumulator, the XR and YR are

the X and Y registers. The SP is the stack pointer. We'll get into all

this later.

6. Exit to BASIC: type X.

That's it. Obviously, you will want to add trace, step, transfer,

disassemble, and other useful monitor aids. Fortunately, they are

available. Two programs, Supermon and Micromon, can be LOADed

into your Commodore computer and will automatically attach

themselves to your "resident" monitor. That is, when you're in the

monitor mode, you can type additional monitor commands.

Both Micromon and Supermon are widely available through user

groups (they are in the public domain, available to everyone for free).

If there is no user group nearby, you can type them in yourself.

Supermon appeared in COMPUTE! Magazine, December 1981, Issue

#19, on page 134. Micromon appeared in COMPUTE!, January 1982,

Issue #20, page 160. A Micromon for VIC can be found in COMPUTE!,

November 1982. Because of their value, particularly when you are

debugging or analyzing ML programs, you will want to add them to

your program library. Several of these monitor extensions can be

found in Appendix F.

Using The Monitors

You will make mistakes. Monitors are for checking and fixing ML

programs. ML is an exacting programming process, and causing bugs

is as unavoidable as mistyping when writing a letter. It will happen,

be sure, and the only thing for it is to go back and try to locate and fix

the slip-up. It is said that every Persian rug is made with a deliberate

mistake somewhere in its pattern. The purpose of this is to show that

only Allah is perfect. This isn't our motivation when causing bugs in

an ML program, but we'll cause them nonetheless. The best you can

do is try to get rid of them when they appear.

Probably the most effective tactic, especially when you are just

starting out with ML, is to write very short sub-programs

(subroutines). Because they are short, you can more easily check each

one to make sure that it is functioning the way it should. Let's assume

that you want to write an ML subroutine to ask a question on the

screen. (This is often called a prompt since it prompts the user to do

something.)

The message can be: "press any key." First, we'll have to store

the message in a data table. We'll put it at hex $1500. That's as good a

place as anywhere else. Remember that your computer may be using

a different screen RAM POKE code to display these letters. POKE the
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letter "A" into your screen RAM to see what number represents the

start of your screen alphabet and use those numbers for any direct-to-

screen messages in this book.

ASCII ATARI

1500 80 P 48

1501 82 R 50

1502 69 E 37

1503 83 S 51

1504 83 S 51

1505 32 0

1506 65 A 33

1507 78 N 46

1508 89 Y 57

1509 32 0

150A 75 K 43

150B 69 E 37

150C 89 Y 57

150D 00 255 (the delimiter,

the signal that the message is

finished. Atari must use

something beside zero which is

used to represent the space

character.)

We'll put the subroutine at $1000, but be warned! This

subroutine will not work as printed. There are two errors in this

program. See if you can spot them:

1000 LDY #$00

1002 LDA $1500,Y

1005 CMP $00 (is it the delimiter?)

1007 BNE $100A (if not, continue on)

1009 RTS (it was zero, so quit and return to whatever

JSRed, or called, this subroutine)

100A STA $8000,Y(forPET)

100D INY

100E JMP $1000 (always JMP back to $1000)

Make the following substitutions if you use one of these machines: ] /

Atari: 1005 CMP $FF (That's hex for 255.)

Atari: 100A STA ($88),Y

Apple: 100A STA $0400,Y M

Since we haven't yet gone into addressing or instructions much,

this is like learning to swim by the throw-them-in-the-water method.

See if you can make out some of the meanings of these instructions I I
anyway.
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p*[ This subroutine will not work. There are two errors andthey are

1 two of the most common bugs in ML programming. Unfortunately,

they are not obvious bugs. An obvious bug would be mistyping: LDS

r—* when you mean LDA. That sort of bug would be caught by your

' I assembler, and it would print an error message to let you know that
no such instruction as LDS exists in 6502 ML.

^ The bugs in this routine are mistakes in logic. If you disassemble

) ^ this, it will also look fine to the disassembler, and no error messages
will be printed there either. But, it will not work the way you wanted

it to. Before reading on, see if you can spot the two errors. Also see if

you can figure out how this routine would execute its instructions.

Where does the computer go after the first pass through this code?
When and how does it finish the job?

Two Common Errors

A very common bug, perhaps the most common ML bug, is caused

by accidentally using zero page addressing when you mean to use

immediate addressing. We mentioned this before, but it is the cause of

so much puzzlement to the beginning ML programmer that we'll go

over it several times in this book. Zero page addressing looks very

similar to immediate addressing. Zero page means that you are

addressing one of the cells in the first 256 addresses. A page of

memory is 256 bytes. The lowest page is called zero page and is the

RAM cells from number zero through 255. Page one is from 256-511

(this is the location of the "stack" which we'll get to later). Addresses

512-767 are page three and so on up to the top memory, page 255.

Immediate addressing means that the number is right within the

ML code, that it's the number which follows (which is the operand or

the argument of) an instruction. LDA #13 is immediate. It puts the

number 13 into the accumulator. LDA $13 is zero page and puts

whatever number is in address 13 into the accumulator. It's easy and

very common to mix up these two, so you might look at these

instructions first when debugging a faulty program. See that all your

r—■» zero page addressing is supposed to be zero page and that all your

' immediate addressing is supposed to be immediate.
In the prompt example above, the LDY #00 is correct — we do

^ want to set the Y register counter to zero to begin printing the

j i message. So we want an immediate, the actual number zero. Take a

good look, however, at the instruction at location $1005. Here we are

not asking the computer to compare the number in the accumulator

j j to zero. Instead, we are asking the computer to compare it to

whatever might be in address zero — with unpredictable results. To fix

this bug, the instruction should be changed to the immediate

—"I addressing mode with CMP # 0.

■ The second bug is also a very common one. The subroutine, as

written, can never leave itself. It is an endless loop. Loop structures

n
33



3 The Monitor

' U

are usually preceded by a short initialization phase. The counters | f

have to be set up before the loop can begin. Just as in BASIC, where '—l
FOR I = 1 TO 10 tells the loop to cycle ten times, in ML, we set the Y

register to zero to let it act as our counter. It kills two birds with one x ^

stone in this subroutine. It is the offset (a pointer to the current I—/
position in a list or series) to load from the message in the data table

and the offset to print to the screen. Without Y going up one (INY)

each time through the loop, we would always print the first letter of [ \
the message, and always in the first position on the screen.

What's the problem? It's that JMP instruction at $100E. It sends

us back to the LDY # 0 address at 1000. We should be looping back to

address 1002. As things stand, the Y register will always be reset to

zero, and there will never be any chance to pick up the delimiter and

exit the subroutine. An endless cycle of loading the "P" and printing

it will occur. Y will never get beyond zero because each loop jumps

back to 1000 and puts a zero back into Y. To see this, here's the same

bug in BASIC:

10 T = 5

20 T=T+ 1

30 IF T = 10 THEN 50

40 GOTO 10

Tracking Them Down

The monitor will let you discover these and other errors. You can

replace an instruction with zero (BRK) and see what happens when

you execute the program up to the BRK. Better yet, you can single

step through the program and see that, for example, you are not \
really computing CMP #00 where you thought you were. It would

also be easy to see that the Y register is being reset to zero each time

through the loop. You are expecting to use it as a counter and it's not

cooperating, it's not counting up each time through the loop. These

and other errors are, if not obvious, at least discoverable from the

monitor.

Also, the disassembler function of the monitor will permit you to

study the program and look, deliberately, for correct use of #00 and

$00. Since that mix-up between immediate and zero page addressing

is so common an error, always check for it first.

Programming Tools

The single most significant quality of monitors which contributes to

easing the ML programmer's job is that monitors, like BASIC, are \ j
interactive. This means that you can make changes and test them right -

away, right then. In BASIC, you can find an error in line 120, make

the correction, and RUN a test immediately.

It's not always that easy to locate and fix bugs in ML: there are

few, if any, error messages, so finding the location of a bug can be
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difficult. But a monitor does allow interactivity: you make changes

and test them on the spot. This is one of the drawbacks of complex

assemblers, especially those which have several steps between the

writing of the source code and the final assembly of executable object

code (ML which can be executed).

These assemblers often require several steps between writing an

ML program and being able to test it. There are linkers, relocatable

loaders, double-pass assembly, etc. All of these functions make it

easier to rearrange ML subroutines, put them anywhere in memory

without modification, etc. They make ML more modular (composed

of small, self-sufficient modules or subroutines), but they also make it

less interactive. You cannot easily make a change and see the effects

at once.

However, using a mini-assembler or the Simple Assembler, you

are right near the monitor level and fixes can easily and quickly be

tested. In other words, the simpler assemblers sometimes gain in

efficiency what they lose in flexibility. The simpler assemblers

support a style of programming which involves less pre-planning,

less forethought, less abstract analysis. If something goes awry, you

can just try something else until it all works.

Plan Ahead Or Plunge In?

Some find such trial and error programming uncomfortable, even

disgraceful. The more complicated assemblers discourage

interactivity and expect careful preliminary planning, flowcharts,

even writing out the program ahead of time on paper and debugging

it there. In one sense, these large assemblers are a holdover from the

early years of computing when computer time was extremely

expensive. There was a clear advantage to coming to the terminal as

prepared as possible. Interactivity was costly. But, like the

increasingly outdated advice urging programmers to worry about

saving computer memory space, it seems that strategies designed to

conserve computer time are anachronistic. You can spend all the time

you want on your personal computer.

Complex assemblers tend to downgrade the importance of a

monitor, to reduce its function in the assembly process. Some

programmers who've worked on IBM computers for 20 years do not

use the word monitor in the sense we are using it. To them, monitors

are CRT screens. The deluxe assembler on the SuperPet, for example,

does have a monitor, but it has no single-step function and has no

provision for SAVEing an ML program to disk or tape from the

monitor.

Whether or not you are satisfied with the interactive style of

simple, mini-assemblers and their greater reliance on the monitor

mode and on trial and error programming is your decision. If you

want to graduate to the more complicated assemblers, to move closer
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to high-level languages with labels and relocatable code, fine. The | ^

Atari assembler is fairly high-level already, but it does contain a full- i—j

featured monitor, the "debugger," as well. The choice is ultimately a

matter of personal style.

Some programmers are uncomfortable unless they have a fairly i j
complete plan before they even get to the computer keyboard. Others

are quickly bored by elaborate flowcharting, "dry computing" on

paper, and can't wait to get on the computer and see-what-happens- i f

if. Perhaps a good analogy can be found in the various ways that s J
people make telephone calls. When long-distance calls were

extremely expensive, many people made lists of what they wanted to

say and carefully planned the call before dialing. They would also

watch the clock during the call. (Some still do this today.) As the costs

of phoning came down, most people found that spontaneous

conversation was more satisfying. It's up to you.

Computer time, though, is now extremely cheap. If your

computer uses 100 watts and your electric company charges five cents

per KWH, leaving the computer on continuously costs about 12 cents

a day.

\ !
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The 6502 processor is an electronic brain. It performs a variety of

manipulations with numbers to allow us to write words, draw

pictures, control outside machines such as tape recorders, calculate,

and do many other things. Its manipulations were designed to be

logical and fast. The computer has been designed to permit

everything to be accomplished accurately and efficiently.

If you could peer down into the CPU (Central Processing Unit),

the heart of the computer, you would see numbers being delivered

and received from memory locations all over the computer.

Sometimes the numbers arrive and are sent out, unchanged, to some

other address. Other times they are compared, added, or otherwise

modified, before being sent back to RAM or to a peripheral.

Writing an ML program can be compared to planning the

activities of this message center. It can be illustrated by thinking of

computer memory as a city of bytes and the CPU as the main post

office. (See Figure 4-1.) The CPU does its job using several tools: three

registers, a program counter, a stack pointer, and seven little one-bit

flags contained in a byte called the Status Register. We will only

concern ourselves with the "C" (carry) flag and the "Z" (it equals

zero) flags. The rest of them are far less frequently needed for ML

programming so we'll only describe them briefly. (See Figure 4-1.)

Most monitors, after you BRK (like BASIC'S STOP) out of a

program, will display the present status of these tools. It looks

something like this:

Program 4-1 ♦ Current Status OfThe Registers.

PC IRQ SR AC XR YR SP

0005 E455 30 00 5E 04 F8

The PC is the Program Counter and it is two bytes long so it can

refer to a location anywhere in memory. The IRQ is also two bytes

and points to a ROMML routine which handles interrupts, special-

priority actions. A beginning ML programmer will not be working

with interrupts and need not worry about the IRQ. You can also more

or less let the computer handle the SP on the end. It's the stack
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P""! pointer. The SP keeps track of numbers, usually return-from-

subroutine addresses which are kept together in a list called the stack.

The computer will automatically handle the stack pointer for us.

r—> It will also deal with IRQ and the program counter. For example, each

1 1 ML instruction we give it could be one, two, or three bytes long. TYA
has no argument and is the instruction to transfer a number from the

_ Y register to the accumulator. Since it has no argument, the PC can

| ) locate the next instruction to be carried out by raising itself by one. If

the PC held $4000, it would hold $4001 after execution of a TYA. LDA

#$01 is a two-byte instruction. It takes up two bytes in memory so the

next instruction to be executed after LDA #$01 will be two bytes

beyond it. In this case, the PC will raise itself from $4000 to $4002. But

we can just let it work merrily away without worrying about it.

The Accumulator: The Busiest Register

The SR, AC, XR, and YR, however, are our business. They are all

eight bits (one byte) in size. They are not located in memory proper.

You can't PEEK them since they have no address like the rest of

memory. They are zones of the CPU. The AC, or A register, but most

often called the accumulator, is the busiest place in the computer. The

great bulk of the mail comes to rest here, if only briefly, before being

sent to another destination.

Any logical transformations (EOR,AND) or arithmetic

operations leave their results in the accumulator. Most of the bytes

streaming through the computer come through the accumulator. You

can compare one byte against another using the accumulator. And

nearly everything that happens which involves the accumulator will

have an effect on the status register (SR, the flags).

The X and Y registers are similar to each other in that one of their

main purposes is to assist the accumulator. They are used as

addressing indexes. There are addressing modes that we'll get to in a

minute which add an index value to another number. For example,

LDA $4000,X will load into A the number found in address $4005, if

ntheX register is currently holding a five. The address is the number

plus the index value. If X has a six, then we load from $4006. Why not

just LDA $4006? It is far easier to raise or lower an index inside a loop

0Kmmm> structure than it would be to write in each specific address literally.

i ( A second major use of X and Y is in counting and looping. We'll

go into this more in the chapter on the instruction set.

We'll also have some things to learn later about the SR, the

p^ Status Register which holds some flags showing current conditions.
The SR can tell a program or the CPU if there has been a zero, a carry,

or a negative number as the result of some operation, among other

J—"» things. Knowing about carry and zero flags is especially significant in
' ' ML.

For now, the task at hand is to explore the various "classes" of

m mail delivery, the 6502 addressing modes.
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Aside from comparing things and so forth, the computer must \ ^

have a logical way to pick up and send information. Rather like a t—'

postal service in a dream — everything should be picked up and

delivered rapidly, and nothing should be lost, damaged, or delivered

to the wrong address. ' |
The 6502 accomplishes its important function of getting and

sending bytes (GET and PRINT would be examples of this same thing

in BASIC) by using several "addressing modes." There are 13 [ (
different ways that a byte might be "mailed" either to or from the

central processor.

When programming, in addition to picking an instruction (of the

56 available to you) to accomplish the job you are working on, you

must also make one other decision. You must decide how you want to

address the instruction — how, in other words, you want the mail sent

or delivered. There is some room for maneuvering. You will probably

not care if you accidentally choose a slower delivery method than you

could have. Nevertheless, it is necessary to know what choices you

have: most addressing modes are designed to aid a common

programming activity.

Absolute And Zero

Let's picture a postman's dream city, a city so well planned from a

postal-delivery point of view that no byte is ever lost, damaged, or

sent to the wrong address. It's the City of Bytes we first toured in

Chapter 2. It has 65536 houses all lined up on one side of a street (a

long street). Each house is clearly labeled with its number, starting

with house zero and ending with house number 65535. When you

want to get a byte from, or send a byte to, a house (each house holds

one byte) — you must "address" the package. (See Figure 4-2.)

Here's an example of one mode of addressing. It's quite popular

and could be thought of as "First Class." Called absolute addressing,

it can send a number to, or receive one from, any house in the city.

It's what we normally think of first when the idea of "addressing"

something comes up. You just put the number on the package and \ i

send it off. No indexing or special instructions. If it says 2500, then it *—'

means house 2500.

1000 STA $2500

or u-j

1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the . ,

instructions which get a byte from, or send it to, the accumulator. The LJ
address, though, is found in the numbers following the instruction.

The items following an instruction are called the instruction's

argument. You could have written the address several ways. Writing it ) f
as $2500 tells your assembler to get it from, or send it directly to, hex ^^
$2500. This kind of addressing uses just a simple $ and a four-digit
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number. You can send the byte sitting in the accumulator to

anywhere in RAM memory by this method. Remember that the byte

value, although sent to memory, also remains in the accumulator. It's

more a copying than a literal sending.

To save time, if you are sending a byte down to address 0

through 255 (called the "zero page"), you can leave off the first two

numbers: 1000 STA $07. This is only for the first 256 addresses, but

they get more than their share of mail. Your machine's BASIC and

operating system (OS) use much of zero page for their own

temporary flags and other things. Zero page is a busy place, and there

is not much room down there for you to store your own ML pointers

or flags (not to mention whole routines).

Heavy Traffic In Zero Page

This second way to address, using only two hex digits, any hex

number between $00 and $FF or a decimal number between 0 and

255, is called, naturally enough, zero page addressing. It's pretty fast

mail service: the deliverer has to decide among only 256 instead of

65536 houses, and the computer is specially wired to service these

special addresses. Think of them as being close to the post office.

Tilings get in and out fast at zero page. This is why your BASIC and

operating system tend to use it so often.

These two addressing modes — absolute and zero page — are

very common ones. In your programming, you will probably not use

zero page as much as you might like. You will notice, on a map of

your computer's flags and temporary storage areas, that zero page is

heavily trafficked. You might cause a problem storing things in zero

page in places used by the OS (operating system) or BASIC. Several

maps of both zero page and BASIC in ROM can be found in

Appendix B.

You can find safe areas to store your own programs' pointers

and flags in zero page. A buffer (temporary holding area) for the

cassette drive or for BASIC'S floating point numbers might be used

only during cassette loads and saves or during BASIC RUNs to

calculate numbers. So, if your flags and pointers were stored in these

addresses, things would be fine unless you involved cassette

operations. In any case, zero page is a popular, busy neighborhood.

Don't put any ML programs in there. Your main use of zero page is

for the very efficient "indirect Y" addressing we'll get to in a minute.

But you've always got to check your computer's memory map for

zero page to make sure that you aren't using bytes which the

computer itself uses.

By the way, don't locate your ML programs in page one (256-511

decimal) either. That's for the "stack," about which more later. We'll

identify where you can safely store your ML programs in the various

computers. It's always OK to use RAM as long as you keep BASIC

42



Addressing 4

n programs from putting their variables on top of ML, and keep ML

from writing over your BASIC assembler program (such as the

Simple Assembler).

n Immediate

Another very common addressing mode is called immediate

addressing — it deals directly with a number. Instead of sending out

,— for a number, we can just shove it immediately into the accumulator

I ) by putting it right in the place where other addressing modes have an

address. Let's illustrate this:

1000 LDA $2500 (Absolute mode)

1000 LDA #$09 (Immediate mode)

The first example will load the accumulator with whatever

number it finds at address $2500. In the second example, we simply

wanted to put a 9 into the accumulator. We know that we want the

number 9. So, instead of sending off for the 9, we just type a 9 in

where we would normally type a memory address. And we tack on a

# symbol to show that the 9 is the number we're after. Without the #,

the computer will load the accumulator with whatever it finds at

address number 9 (LDA $09). That would be zero page addressing,

instead of immediate addressing.

In any case, immediate addressing is very frequently used, since

you often know already what number you are after and do not need

to send for it at all. So, you just put it right in with a #. This is similar

to BASIC where you define a variable (10 VARIABLE =9). In this

case, we have a variable being given a known value. LDA #9 is the

same idea. In other words, immediate addressing is used when you

know what number you want to deal with; you're not sending off for

it. It's put right into the ML code as a number, not as an address.

To illustrate immediate and absolute addressing modes working

together, let's imagine that we want to copy a 15 into address $4000.

(See Program 4-2.)

*—! Implied

' I Here's an easy one. You don't use any address or argument with this
one.

fmmm) This is among the more obvious modes. It's called implied,

\ 1 since the mnemonic itself implies what is being sent where: TXA

means transfer X register's contents to the Accumulator. Implied

addressing means that you do not put an address after the instruction

P"l (mnemonic) the way you would with most other forms of addressing.
It's like a self-addressed, stamped envelope. TYA and others are

similar short-haul moves from one register to another. Included in

p-| this implied group are the SEC, CLC, SED, CLD instructions as well.

* They merely clear or set the flags in the status register, letting you
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i )

r"! and the computer keep track of whether an action resulted in a zero,

' • ' if a' 'carry'' has occurred during addition or subtraction, etc.
Also "implied" are such instructions as RTS (ReTurn from

r-j Subroutine), BRK (BReaK), PLP, PHP, PLA, PHA (which "push" or

i \ ' 'pull'' the processor status register or accumulator onto or off the

stack). Such actions, and increasing by one (incrementing) the X or Y

register's number (INX, INY) or decreasing it (DEX, DEY), are also

j| called "implied." What all of these implied addresses have in
common is the fact that you do not need to actually give any address.

By comparison, an LDA $2500 mode (the absolute mode) must have

that $2500 address to know where to pick up the package. TXA

already says, in the instruction itself, that the address is the X register

and that the destination will be the accumulator. Likewise, you do

not put an address after RTS since the computer always memorizes

its jump-off address when it does a JSR (Jump to Subroutine). NOP
(No OPeration) is, of course, implied mode too.

Relative

One particular addressing mode, the relative mode, used to be a real

headache for programmers. Not so long ago, in the days when ML

programming was done "by hand," this was a frequent source of

errors. Hand computing — entering each byte by flipping eight

switches up or down and then pressing an ENTER key — meant that

the programmer had to write his program out on paper, translate the

mnemonics into their number equivalents, and then "key" the whole

thing into the machine. It was a big advance when computers would

accept hexadecimal numbers which permitted entering OF instead of

eight switches: 00001111. This reduced errors and fatigue.

An even greater advance was when the machines began having

enough free memory to allow an assembler program to be in the

computer while the ML program was being written. An assembler

not only takes care of translating LDA $2500 into its three (eight-

switch binary) numbers: 10101101 00000000 00100101, but it also

ndoes relative addressing. So, for the same reason that you can

program in ML without knowing how to deal with binary numbers —

you can also forget about relative addressing. The assembler will do it

for you.

jj Relative addressing is used with eight instructions only: BVS,
BVC, BCS, BCC, BEQ, BMI, BNE, BPL. They are all "branching"

instructions. Branch on: overflow flag set (or cleared), carry flag set

r"—j (or cleared), equal, minus, not-equal, or plus. Branch if Not-Equal,

' like the rest of this group, will jump up to 128 addresses forward or

backward from where it is or 127 addresses backward (if the result of

r—i the most recent activity is "not equal"). Note that these jumps can be

' ^ a distance of only 128, or 127 back, and they can go in either direction.
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You specify where the jump should go by giving an address within ^ /

these boundaries. Here's an example: ( ^

1000 LDX #$00

1002 INX

1003 BNE 1002 LJ
1005 BRK

(The X register will count up by ones until it hits 255 decimal and \ {

then it resets itself to zero.) i >

This is what you type in to create a ML FOR-NEXT loop. You are

branching, relative to address 1003, which means that the assembler

will calculate what address to place into the computer that will get

you to 1002. You might wonder what's wrong with the computer just

accepting the number 1002 as the address to which you want to

branch. Absolute addressing does give the computer the actual

address, but the branching instructions all need addresses which are

"offsets" of the starting address. The assembler puts the following
into the computer:

1000 A2 00

1002 E8

1003 DO FD

1005 00

The odd thing about this piece of code is that "FD" at 1004. How

does FD tell the computer to Branch back to 1002? (Remember that X

will increment up to 255, then reset to zero on the final increment.)

$FD means 253 decimal. Now it begins to be clear why relative

addressing is so messy. If you are curious, numbers larger than 127,

when found as arguments of relative addressing instructions, tell the

computer to go back down to lower addresses. What's worse, the

larger the number, the less far down it goes. It counts the address 1005

as zero and counts backwards thus:

1005 = 0

1004 = 255

1003 = 254 LJ
1002 = 253

Not a very pretty counting method! Luckily, all that we , ,

fortunate assembler users need do is to give the address (as if it were i j
an absolute address), and the assembler will do the hard part. This

strange counting method is the way that the computer can handle

negative numbers. The reason it can only count to 128 is that the j j
leftmost bit is no longer used as a 128th's column. Instead, this bit is

on or off to signify a positive or negative number.
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When you are using one of the branch instructions, you

sometimes branch forward. Let's say that you want to have a

different kind of FOR-NEXT loop:

1000 LDX #0

1002 INX

1003 BEQ 100A

1005 JMP 1002

1008 BRK

1009 BRK

100ABRK

When jumping forward, you often do not yet know the precise

address you want to branch to. In the example above, we really

wanted to go to 1008 when the loop was finished (when X was equal

to zero), but we just entered an approximate address (100A) and

made a note of the place where this guess appeared (1004). Then,

using the POKE function on the assembler, we can POKE the correct

offset when we know what it should be. Forward counting is easy.

When we finally saw that we wanted to go to 1008, we would POKE

1004, 3. (The assembler would have written a five because that's the

correct offset to branch to 100A, our original guess.)

Remember that the zero address for these relative branches is

the address immediately following the branch instructions. For

example, a jump to 1008 is three because you count: 1005 a zero,

1006 = 1,1007=2,1008=3. All this confusion disappears after writing

a few programs and practicing with estimated branch addresses.

Luckily, the assembler does all the backwards branches. That's lucky

because they are much harder to calculate.

Unknown Forward Branches

Also, the Simple Assembler will do one forward ("not-yet-known")

branch calculation for you. If you look at the BASIC program listing of

the Simple Assembler, you will see that the pseudo-ops (fake

operations) are located from line 241 up. You could add additional

forward-resolving pseudo-ops if you just give them new names like

Fl resolved later by Rl. Alternatively, you can type a guess in for the

forward branches, as we just did in the example above. Then, when

you find out the exact address, simply exit from the assembler, give

1004 as your starting address for assembly, and write in BEQ 1008 and

let the assembler calculate for you. Either way, you will soon get the

hang of forward branching.

We'll get into pseudo-ops later. Essentially, they are instructions

to the assembler (such as "please show me the decimal equivalent of

the following hex number"), but which are not intended to be

thought of as mnemonics which get translated into ML object code.

Pseudo-ops are "false" operations, not part of the 6502 instruction set.
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They are requests to the assembler program to perform some extra

service for the programmer.

Absolute^ And Absolute,Y

Another important addressing mode provides you with an easy way

to manipulate lists or tables. This method looks like absolute

addressing, but it attaches an X or a Y to the address. The X or Y

stands for the X or Y registers, which are being used in this technique

as offsets. That is, if the X register contains the number 3 and you

type: LDA 1000, X, you will LoaD the Accumulator with the value

(the number) which is in memory cell 1003. The register value is added to

the absolute address.

Another method called Zero Page,X works the same way:

LDA 05,X. This means that you can easily transfer or search through

messages, lists, or tables. Error messages can be sent to the screen

using such a method. Assume that the words SYNTAX ERROR are

held in some part of memory because you sometimes need to send

them to the screen from your program. You might have a whole table

of such messages. But we'll say that the words SYNTAX ERROR are

stored at address 3000. Assuming that your screen memory address is

32768 (8000 hex), here's how you would send the message:

1000 LDX #$00 (set the counter register to zero)

1002 LDA $3000,X (get a letter at 3000+X)

1005 BEQ $100E (if the character is a zero, we've

reached the end of message,

so we end the routine)

1007 STA $8000,X (store a letter on the screen)

100A INX (increment the counter so the next

letter in the message, as well as the

next screen position, are pointed

to)

100B JMP $1002 (jump to the load instruction to

fetch the next character)

100E BRK (task completed, message

transferred)

This sort of indexed looping is an extremely common ML

programming device. It can be used to create delays (FOR T=1 TO

5000: NEXT T), to transfer any kind of memory to another place, to

check the conditions of memory (to see, for example, if a particular

word appears somewhere on the screen), and to perform many other

applications. It is a fundamental, all-purpose machine language

technique.

Here's a fast way to fill your screen or any other area of memory.

This example uses the Commodore 64 Screen RAM starting address.

Just substitute your computer's screen-start address. This is a full
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source code for the demonstration screen-fill we tried in Chapter 1.

See if you can follow how this indexed addressing works. What bytes

are filled in, and when? At ML speeds, it isn't necessary to fill them in

order —• nobody would see an irregular filling pattern because it all

happens too fast for the eye to see it, like magic. (See Program 4-3.)

Compare this to Program 1-2 to see the effects of using a

different screen starting address and how source code is an expansion

of a disassembly.

Indirect Y

This one is a real workhorse; you'll use it often. Several of the

examples in this book refer to it and explain it in context. It isn't so

much an address in itself as it is a method of creating an address. It

looks like this:

$4000 STA ($80),Y

Seems innocent enough. But watch out for the parentheses.

They mean that $80 is not the real address we are trying to store A

into. Instead, addresses $80 and $81 are holding the address we are

really sending our byte in A to. We are not dealing directly with $0080

here; hence the name for this addressing mode: indirect Y.

If $80,81 have these numbers in them:

$0080 01

$0081 20

and Y is holding a five, then the byte in A will end up in address

$2006! How did we get $2006?

First, we've got to mentally switch the numbers in $80,81. The

6502 requires that such "address pointers" be held in backwards

order. So visualize $80,81 as forming $2001, a pointer. Then add the

value in Y, which is five, and you get $2006.

This is a valuable tool and you should familiarize yourself with

it. It lets you have easy access to many memory locations very quickly

by just changing the Y register or the pointer. To go up a page, add

one to the number in $0081. To go down four pages, subtract four

from it. Combine this with the indexing that Y is doing for you and

you've got great efficiency. The pointers for this addressing mode

must be stored in zero page locations.

When an address is put into a pointer, you can see that it was

split in half. The address $2001 was split in the example above. It's a

two-byte number and ML terminology distinguishes between the

bytes by saying that one is the LSB (least significant byte) and the

other is the MSB (most significant byte). The $01 is the least

significant. To grasp what is meant by "significant," imagine

chopping a decimal number such as 5015 in half. Since the left half,

50, stands for fifty 100's and the right half stands for 15 ones,
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|—] obviously the leftmost half, the 100's, is more significant. Likewise,

1 ' the left half of a two-byte hex number like $2001 is the most
significant byte. The $20 stands for 32 times 256 (in decimal terms).

nit's easy to multiply double-byte numbers by decimal 256 by just

adding one to the MSB. This would be a quick way of moving

through the "pages" in memory.

The other thing to remember about MSB,LSB is that they are

i | reversed when broken up and used as an address pointer: LSB,MSB.

Indirect X

Not often used, this mode makes it possible to set up a group of

pointers (a table) in page zero. It's like Indirect Y except the X register

value is not added to the address pointer to form the ultimate address

desired. Rather, it points to which of the pointers to use. Nothing is

added to the address found in the pointer.

It looks like this:

$5000 STA ($90,X)

To see it in action, let's assume that part of zero page has been

set up to point to various parts of memory. A table of pointers, not

just one:

$0090 $00 Pointer #1

$0091 $04 (it points to $0400)

$0092 $05 Pointer #2

$0093 $70 ($7005)

$0094 $EA Pointer #3

$0095 $80 (pointing to $80EA)

If X holds a two when we STA $(90,X), then the byte in A will be

sent to $7005. If X holds a four, the byte will go to $80EA.

All in all, this has relatively little merit. It would be useful in rare

situations, but at least it's there if you should find you need it.

Accumulator Mode

|—I ASL, LSR, ROL, and ROR shift or manipulate the bits in the byte in

t I the accumulator. We'll touch on them in the chapter on the
instruction set. They don't have much to do with addressing, but

they are always listed as a separate addressing mode.

' Zero Page,Y
This can only be used with LDX and STX. Otherwise it operates just

nlike Zero Page, X discussed above.

There you have them, thirteen addressing modes to choose

from. The six you should focus on and practice are: Immediate,

Absolute (plus Absolute,Y and ,X), Zero Page, and Indirect Y. The

I [ rest are either automatic (implied) or not really worth bothering with
until you have full command of the six common and useful ones.

Now that we've surveyed the ways you can move numbers

pn around, it's time to see how to do arithmetic in ML.
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n Arithmetic
' I There'll be many things you'll want to do in ML, but complicated

math is not one of them. Mathematics beyond simple addition and

subtraction (and a very easy form of elementary division and

multiplication) will not be covered in this book. For most games and

other ML for personal computing, you will rarely need to program

with any complex math. In this chapter we will cover what you are

likely to want to know. BASIC is well-suited to mathematical

programming and is far easier to program for such tasks.

Before we look at ML arithmetic, it is worth reviewing an

important concept: how the computer tells the difference between

addresses, numbers as such, and instructions. It is valuable to be able

to visualize what the computer is going to do as it comes upon each

byte in your ML routine.

Even when the computer is working with words, letters of the

alphabet, graphics symbols and the like — it is still working with

numbers. A computer works only with numbers. The ASCII code is a

convention by which the computer understands that when the

context is alphabetic, the number 65 means the letter A. At first this is

confusing. How does it know when 65 is A and when it is just 65? The

third possibility is that the 65 could represent the 65th cell in the

computer's memory.

It is important to remember that, like us, the computer means

different things at different times when it uses a symbol (like 65). We

can mean a street address by it, a temperature, the cost of a milk

shake, or even a secret code. We could agree that whenever we used

the symbol "65" we were ready to leave a party. The point is that

symbols aren't anything in themselves. They stand for other things,

and what they stand for must be agreed upon in advance. There must

be rules. A code is an agreement in advance that one thing

symbolizes another.

The Computer's Rules

Inside your machine, at the most basic level, there is a stream of

input. The stream flows continually past a "gate" like a river through

a canal. For 99 percent of the time, this input is zeros. (BASICs differ;

some see continuous 255's, but the idea is the same.) You turn it on

and the computer sits there. What's it doing? It might be updating a

clock, if you have one, and it's holding things coherent on the TV
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screen — but it mainly waits in an endless loop for you to press a key i i

on your keyboard to let it know what it's supposed to do. There is a <—I
memory cell inside (this, too, varies in its location) which the

computer constantly checks. On some computers, this cell always has ( j

a 255 in it unless a key is pressed. If you press the RETURN key, a 13 i^j

will replace the 255. At last, after centuries (the computer's sense of

time differs from ours) here is something to work with! Something

has come up to the gate at long last. \ j

You notice the effect at once — everything on the screen moves

up one line because 13 (in the ASCII code) stands for carriage return.

How did it know that you were not intending to type the number 13

when it saw 13 in the keyboard sampling cell? Simple. The number

13, and any other keyboard input, is always read as an ASCII number.

In ASCII, the digits from 0 through 9 are the only number

symbols. There is no single symbol for 13. So, when you type in a 1

followed immediately by a 3, the computer's input-from-the-

keyboard routine scans the line on the screen and notices that you

have not pressed the "instant action" keys (the STOP, BREAK, ESC,

TAB, cursor-control keys, etc.). Rather, you typed 1 and 3 and the

keyboard sampling cell (the "which key pressed" address in zero

page) received the ASCII value for one and then for three. ASCII

digits are easy to remember in hex: zero is 30,1 is 31, and up to 39 for

nine. In decimal, they are 48 through 57.

The computer decides the "meaning" of the numbers which

flow into and through it by the numbers' context. If it is in

"alphabetic" mode, the computer will see the number 65 as "a"; or if

it has just received an "a," it might see a subsequent number 65 as an

address to store the "a". It all depends on the events that surround a

given number. We can illustrate this with a simple example:

2000 LDA #65 A9 (169) 41 (65)

2000 STA $65 85 (133) 41 (65)

This short ML program (the numbers in parentheses are the

decimal values) shows how the computer can "expect" different t (

meanings from the number 65 (or 41 hex). When it receives an C I
instruction to perform an action, it is then prepared to act upon a

number. The instruction comes first and, since it is the first thing the

computer sees when it starts a job, it knows that the A9 (169) is LJ

not a number. It has to be one of the ML instructions from its set of

instructions (see Appendix A).

Instructions And Their Arguments

The computer would no more think of this first 169 as the number 169

than you would seal an envelope before the letter was inside. If you

are sending out a pile of Christmas cards, you perform instruction-

argument just the way the computer does: you (1) fill the envelope
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r"^ (instruction) (2) with a card (argument or operand). All actions do

1 something to something. A computer's action is called an instruction
(or, in its numeric form inside the computer's memory it's called an

n opcode for operation code). The target of the action is called the

instruction's argument (operand). In our program above, the

computer must LoaD Accumulator with 65. The # symbol means

_ ''immediate"; the target is right there in the next memory cell

I [ following the mnemonic LDA, so it isn't supposed to be fetched from
a distant memory cell.

Then the action is complete, and the next number (the 133 which

means STore Accumulator in zero page, the first 256 cells) is seen as

the start of another complete action. The action of storing always

signals that the number following the store instruction must be an

address of a cell in memory to store to.

Think of the computer as completing each action and then

looking for another instruction. Recall from the last chapter that the

target can be "implied" in the sense that INX simply increases the X

register by one. that "one" is "implied" by the instruction itself, so
there is no target argument in these cases. The next cell in this case

must also contain an instruction for a new instruction-argument cycle.

Some instructions call for a single-byte argument. LDA #65 is of

this type. You cannot LoaD Accumulator with anything greater than

255. The accumulator is only one byte large, so anything that can be

loaded into it can also be only a single byte large. Recall that $FF (255

decimal) is the largest number that can be represented by a single

byte. STA $65 also has a one byte argument because the target

address for the STore Accumulator is, in this case, in zero page.

Storing to zero page or loading from it will need only a one byte

argument — the address. Zero page addressing is a special case, but

an assembler program will take care of it for you. It will pick the

correct opcode for this addressing mode when you type LDA $65.

LDA $0065 would create ML code that performs the same operation

though it would use three bytes instead of two to do it.

The program counter is like a finger that keeps track of where

the computer is located in its trip up a series of ML instructions. Each

instruction takes up one, two, or three bytes, depending on what

type of addressing is going on.

Context Defines Meaning

TXA uses only one byte so the program counter (PC) moves ahead

one byte and stops and waits until the value in the X register is moved

over to the accumulator. Then the computer asks the PC, "Where are

we?" and the PC is pointing to the address of the next instruction. It

never points to an argument. It skips over them because it knows

how many bytes each addressing mode uses up in a program.

Say that the next addresses contain an LDA $15. This is two

bytes long (zero page addressing). The PC is raised by two. The
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longest possible instruction would be using three bytes, such as LDA \ \

$5000 (absolute addressing). Here the argument takes up two bytes. ^

Add that to the one byte used by any instruction and you have a total

of three bytes for the PC to count off. Zero page LDA is represented , ,

by the number A5 and Absolute LDA is AD. Since the opcodes are l^J

different, even though the mnemonics are identical, the computer

can know how many bytes the instruction will use up.

Having reviewed the way that your computer makes contextual 1)
sense out of the mass of seemingly similar numbers of which an ML

program is composed, we can move on to see how elementary

arithmetic is performed in ML.

Addition

Arithmetic is performed in the accumulator. The accumulator holds

the first number, the target address holds the second number (but is

not affected by the activities), and the result is left in the accumulator.

So:

LDA #$40 (remember, the # means immediate, the $ means

hex)

ADC #$01

will result in the number 41 being left in the accumulator. We could

then STA that number wherever we wanted. Simple enough. The

ADC means ADd with Carry. If this addition problem resulted in a

number higher than 255 (if we added, say, 250+6), then there would

have to be a way to show that the number left behind in the

accumulator was not the correct result. What's left behind is the cany.

What would happen after adding 250+ 6 is that the accumulator

would contain a 1. To show that the answer is really 256 (and not 1),

the "carry flag" in the status register flips up. So, if that flag is up, we

know that the real answer is 255 plus the 1 left in the accumulator.

To make sure that things never get confused, always put in a

CLC (CLear Carry) before any addition problems. Then the flag will

go down before any addition and, if it is up afterward, we'll know -

that we need to add 256 to whatever is in the accumulator. We'll J^g

know that the accumulator holds the carry, not the total result.

One other point about the status register: there is another flag,

the "decimal" flag. If you ever set this flag up (SED), all addition and I )

subtraction is performed in a decimal mode in which the carry flag is '
set when addition exceeds 99. In this book, we are not going into the

decimal mode at all, so it's a good precaution to put a CLear Decimal j. j

mode (CLD) instruction as the first instruction of any ML program !—'

you write. After you type CLD, the flag will be put down and the

assembler will move on to ask for your next instruction, but all the .—{

arithmetic from then on will be as we are describing it. ; \
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1 We have already discussed the idea of setting aside some memory
cells as a table for data. All we do is make a note to ourselves that,

pi say, $80 and $81 are declared a zone for our personal use as a storage

< I area. Using a familiar example, let's think of this zone as the address
that holds the address of a ball-like character for a game. As long as

the addresses are not in ROM, or used by our program elsewhere, or

[\ used by the computer (see your computer's memory map), it's fine to
declare any area a data zone. It is a good idea (especially with longer

programs) to make notes on a piece of paper to show where you

intend to have your subroutines, your main loop, your initialization,

and all the miscellaneous data — names, messages for the screen,

input from the keyboard, etc. This is one of those things that BASIC

does for you automatically, but which you must do for yourself in

ML.

When BASIC creates a string variable, it sets aside an area to

store variables. This is what DIM does. In ML, you set aside your own

areas by simply finding a safe and unused memory space and then

not writing a part of your program into it. Part of your data zone can

be special registers you declare to hold the results of addition or

subtraction. You might make a note to yourself that $80 and $81 will

hold the current address of the bouncing ball in your game. Since the

ball is constantly in motion, this register will be changing all the time,

depending on whether the ball hit a wall, a paddle, etc. Notice that

you need two bytes for this register. That is because one byte could

hold only a number from 0 to 255. Two bytes together, though, can

hold a number up to 65535.

In fact, a two-byte register can address any cell in most

microcomputers because most of us have machines with a total of

65536 memory cells (from zero to 65535). So if your ball is located (on

your screen) at $8000 and you must move it down one, just change

the ball-address register you have set up. If your screen has 40

columns, you would want to add 40 to this register.

r*| The ball address register now looks like this: $0080 00 80
(remember that the higher, most significant byte, comes after the LSB,

the least significant byte in the 6502's way of looking at pointers). We

r~-\ want it to be: $0080 28 80. (The 28 is hex for 40.) In other words,

1 we're going to move the ball down one line on a 40-column screen.

Remember the "indirect Y" addressing mode described in the

—^ previous chapter? It lets us use an address in zero page as a pointer to

I i another address in memory. The number in the Y register is added to
whatever address sits in 80,81, so we don't STA to $80 or $81, but

rather to the address that they contain. STA ($80),Y or, using the

j[ simplified punctuation rules of the Simple Assembler: STA (80)Y.
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Moving A Ball Down L

How to add $28 to the ball address register? First of all, CLC, clear the O
carry to be sure that flag is down. To simplify our addition, we can set

aside another special register which serves only to hold the $28 as a

double-byte number all through the game: $4009 28 00. This is the \^J
size of one screen line in our 40-column computer and it won't

change. Since it moves the ball down one screen line, it can be used

equally well for a subtraction that would move the ball up one screen j j
line as well. Now to add them together: ^*

1000 CLC (1000 is our "add 40 to ball address"

subroutine)

1001 LDA $80 (we fetch the LSB of ball address)

1003 ADC $4009 (LSB of our permanent screen line size)

1006 STA $80 (put the new result into the ball address)

1008 LDA $81 (get the MSB of ball address)

100AADC $400A (add with carry to the MSB of screen value)

100DSTA $81 (update the ball address MSB)

That's it. Any carry will automatically set the carry flag up

during the ADC action on the LSB and will be added into the result

when we ADC to the MSB. It's all quite similar to the way that we

add ordinary decimal numbers, putting a carry onto the next column

when we get more than a 10 in the first column. And this carrying is

why we always CLC (clear the carry flag, putting it down) just before

additions. If the carry is set, we could get the wrong answer if our

problem did not result in a carry. Did the addition above cause a

carry?

Note that we need not check for any carries during the

MSB+MSB addition. Any carries resulting in a screen address greater

than $FFFF (65535) would be impossible on our machines. The 6502 is

permitted to address $FFFF tops, under normal conditions.

Subtraction

As you might expect, subtracting single-byte numbers is a snap: x —,

LDA #$41 i—i
SBC #$01

results in a $40 being left in the accumulator. As before, though, it is II

good to make it a habit to deal with the carry flag before each '—

calculation. When subtracting, however, you set the carry flag: SEC.

Why is unimportant. Just always SEC before any subtractions, and \ i

your answers will be correct. Here's double subtracting that will i—I
move the ball up the screen one line instead of down one line:

$1020 SEC ($1020 is our "take 40 from ball address" j "j

subroutine) ^J
1021 LDA $80 (get the LSB of ball address)

I i
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nlO23 SBC $4009 (LSB of our permanent screen line value)

1026 STA $80 (put the new result into the ball address)

1028 LDA $81 (get the MSB of ball address)

— 102A SBC $400A (subtract the MSB of screen value)

M 102D STA $81 (update the ball address MSB)

Multiplication And Division

n Multiplying could be done by repeated adding. To multiply 5x4, you

could just add 4+4+4+4+4. One way would be to set up two

registers like the ones we used above, both containing 04, and then

loop through the addition process five times. For practical purposes,

though, multiplying and dividing are much more easily accomplished

in BASIC. They simply are often not worth the trouble of setting up in

ML, especially if you will need results involving decimal points

(floating point arithmetic). Perhaps surprisingly, for the games and

personal computing tasks where creating ML routines is useful, there

is little use either for negative numbers or arithmetic beyond simple

addition and subtraction.

If you find that you need complicated mathematical structures,

create the program in BASIC, adding ML where super speeds are

necessary or desirable. Such hybrid programs are efficient and, in

their way, elegant. One final note: an easy way to divide the number

in the accumulator by two is to LSR it. Try it. Similarly, you can

multiply by two with ASL. We'll define LSR and ASL in the next

chapter.

Double Comparison

One rather tricky technique is used fairly often in ML and should be

learned. It is tricky because there are two branch instructions which

seem to be worth using in this context, but they are best avoided. If

you are trying to keep track of the location of a ball on the screen, it

will have a two-byte address. If you need to compare those two bytes

against another two-byte address, you need a "double compare"

subroutine. You might have to see if the ball is out of bounds or if

r^| there has been a collision with some other item flying around on

1 screen. Double compare is also valuable in other kinds of ML
programming.

f*5 The problem is the BPL (Branch on PLus) and BMI (Branch on

< I Minus) instructions. Don't use them for comparisons. In any
comparisons, single- or double-byte, use BEQ to test if two numbers

^ are equal; BNE for not equal; BCS for equal or higher; and BCC for

J I lower. You can remember BCS because its ''S" is higher and BCC

because its "C" is lower in the alphabet. To see how to perform a

double-compare, here's one easy way to do it. (See Program 5-1.)
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P"| This is a full-dress, luxurious assembler at work. With such assem-
' -" biers you can use line numbers and labels, add numbers to labels (see

TESTED +1 in line 150), add comments, and all the rest. To try this out,

ntypein the hex bytes on the left, starting at address $1010, which make

up the program itself. Then fill bytes $1000-100f with zeros — that's your

storage area for the numbers you are comparing as well as a simulated

p^, 'landing place" where your computer will branch, demonstrating that

\ I the comparison worked correctly.

Now try putting different numbers into the two-byte zones called

TESTED and SECOND. TESTED, at $1000, is the first, the tested, num

ber. It's being tested against the second number, called SECOND. As

you can see, you've got to keep it straight in your mind which number

is the primary number. There has to be a way to tag them so that it

means something when you say that one is larger (or smaller) than the

other.

When you've set up the numbers in their registers ($1000 to $1003),

you can run this routine by starting at $1010. All that will happen is that

you will land on a BRK instruction. Where you land tells you the result

of the comparison. If the numbers are equal, you land at $1005. If the

TESTED number is less than the SECOND number, you'll end up at

$1004. If all you needed to find out was whether they were unequal,

you could use BNE. Or you could leave out branches that you weren't

interested in. Play around with this routine until you've understood

the ideas involved.

In a real program, of course, you would be branching to the

addresses of subroutines which do something if the numbers are equal

or greater or whatever. This example sends the computer to $1004,

$1005, or $1006 just to let you see the effects of the double-compare sub

routine. Above all, remember that comparing in ML is done with BCS

and BCC (not BPL or BMI).
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There are 56 instructions (commands) available in 6502 machine

language. Most versions of BASIC have about 50 commands. Some

BASIC instructions are rarely used by the majority of programmers:

USR, END, SGN, TAN, etc. Some, such as END and LET, contribute

nothing to a program and seem to have remained in the language for

nostalgic reasons. Others, like TAN, have uses that are highly

specialized. There are surplus commands in computer languages just

as there are surplus words in English. People don't often say

culpability. They usually say guilt. The message gets across without

using the entire dictionary. The simple, common words can do the

job.

Machine language is the same as any other language in this

respect. There are around 20 heavily used instructions. The 36

remaining ones are far less often used. Load the disassembler

program in Appendix D and enter the starting address of your

computer's BASIC in ROM. You can then read the machine language

routines which comprise it. You will quickly discover that the

accumulator is heavily trafficked (LDA and STA appear frequently),

but you will have to hunt to find an ROR, SED, CLV, RTI, or BVC.

ML, like BASIC, offers you many ways to accomplish a given

job. Some programming solutions, of course, are better than others,

but the main thing is to get the job done. An influence still lingers

from the early days of computing when memory space was rare and

expensive. This influence — that you should try to write programs

using up as little memory as possible — is usually safely ignored.

7—*> Efficient memory use will often be low on your list of objectives. It

i > could hardly matter if you used up 25 instead of 15 bytes to print a

message to your screen when your computer has space for programs

rM*T which exceeds 30,000 bytes.

j j Rather than memorize each instruction individually, we will

concentrate on the workhorses. Bizarre or arcane instructions will get

only passing mention. Unless you are planning to work with ML for

[j interfacing or complex mathematics and such, you will be able to
write excellent machine language programs for nearly any application

with the instructions we'll focus on here.

p*j For each instruction group, we will describe three things before

) getting down to the details about programming with them. 1. What
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the instructions accomplish. 2. The addressing modes you can use . "}

with them. 3. What they do, if anything, to the flags in the Status *—j

Register. All of this information is also found in Appendix A.

The Six Instruction Groups ) (

The best way to approach the "instruction set" might be to break it u~'

down into the following six categories which group the instructions

according to their functions: 1. The Transporters 2. The Arithmetic j- j

Group 3. The Decision-makers 4. The Loop Group 5. The Subroutine i^i

and Jump Group and 6. The Debuggers. We will deal with each group

in order, pointing out similarities to BASIC and describing the major

uses for each.

As always, the best way to learn is by doing. Move bytes

around. Use each instruction, typing a BRK as the final instruction to

see the effects. If you LDA #65, look in the A register to see what

happened. Then STA $12 and check to see what was copied into

address $12. If you send the byte in the accumulator (STA), what's

left behind in the accumulator? Is it better to think of bytes as being

copied rather than being sent?

Play with each instruction to get a feel for it. Discover the effects,

qualities, and limitations of these ML commands.

I. The Transporters:

LDA, LDX, LDY

STA, STX, STY

TAX, TAY

TXA, TYA

These instructions move a byte from one place in memory to

another. To be more precise, they copy what is in a source location \ p

into a target location. The source location still contains the byte, but —I
after a "transporter" instruction, a copy of the byte is also in the

target. This does replace whatever was in the target. ,

All of them affect the N and Z flags, except STA, STX, and STY LJ
which do nothing to any flag.

There are a variety of addressing modes available to different

instructions in this group. Check the chart in Appendix A for

specifics.

Remember that the computer does things one at a time. Unlike

the human brain which can carry out up to 1000 different instructions

simultaneously (walk, talk, and smile, all at once) — the computer

goes from one tiny job to the next. It works through a series of
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instructions, raising the program counter (PC) each time it handles an

instruction.

If you do a TYA, the PC goes up by one to the next address and

the computer looks at that next instruction. STA $80 is a two-byte

long instruction, it's zero page addressing, so the PC=PC+2. STA

$8500 is a three-byte long absolute addressing mode and PC=PC+ 3.

Recall that there's nothing larger than a three-byte increment of

the PC. However, in each case, the PC is cranked up the right amount

to make it point to the address for the next instruction. Things would

get quickly out of control if the PC pointed to some argument,

thinking it was an instruction. It would be incorrect (and soon

disastrous) if the PC landed on the $15 in LDA $15.

If you type SYS1024 (or USR or CALL), the program counter is

loaded with $0400 and the computer "transfers control" to the ML

instructions which are (we hope!) waiting there. It will then look at

the byte in $0400, expecting it to be an ML instruction. It will do that

job and then look for the next instruction. Since it does this very fast,

it can seem to be keeping score, bouncing the ball, moving the

paddle, and everything else — simultaneously. It's not, though. It's

flashing from one task to another and doing it so fast that it creates

the illusion of simultaneity much the way that 24 still pictures per

second look like motion in movies.

The Programmer's Time Warp

Movies are, of course, lots of still pictures flipping by in rapid

succession. Computer programs are composed of lots of individual

instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our

programming job easier: we can think of large programs as single

steps, coordinated into meaningful, harmonious actions. Now the

computer will put a blank over the ball at its current address, then

add 40 to the ball's address, then print a ball at the new address. The

main single-step action is moving information, as single-byte

numbers, from here to there, in memory. We are always creating,

updating, modifying, moving and destroying single-byte variables.

The moving is generally done from one double-byte address to

another. But it all looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp.You

might spend several hours constructing a program which executes in

seconds. You are putting together instructions which will later be

read and acted upon by coordinated electrons, moving at electron

speeds. It's as if you spent an afternoon slowly and carefully drawing

up pathways and patterns which would later be a single bolt of

lightning.
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In ML there are three primary places where variables rest briefly on L—j

their way to memory cells: the X, the Y, and the A registers. And the

A register (the accumulator) is the most frequently used. X and Y are r ,

used for looping and indexing. Each of these registers can grab a byte i j

from anywhere in memory or can load the byte right after its own

opcode (immediate addressing):

LDX $8000 (puts the number at hex address 8000 into X, L-,5
without destroying it at $8000)

LDX #65 (puts the number 65 into X)

LDA and LDY work the same.

Be sure you understand what is happening here. LDX $1500

does not copy the "byte in the X register into address $1500." It's just

the opposite. The number (or "value" as it's sometimes called) in

$1500 is copied into the X register.

To copy a byte from X, Y, or A, use STX, STY, or STA. For these

"store-bytes" instructions, however, there is no immediate

addressing mode. No STA #15. It would make no sense to have STA

#15. That would be disruptive, for it would modify the ML program

itself. It would put the number 15 into the next cell beyond the STA

instruction within the ML program itself.

Another type of transporter moves bytes between registers —

TAY, TAX, TYA, TXA. See the effect of writing the following. Look at

the registers after executing this:

1000 LDA #65

TAY

TAX

The number 65 is placed into the accumulator, then transferred

to the Y register, then sent from the accumulator to X. All the while,

however, the A register (accumulator) is not being emptied. Sending

bytes is not a "transfer" in the usual sense of the term "sending."

It's more as if a Xerox copy were made of the number and then the ^ ,

copy is sent. The original stays behind after the copy is sent. Lj

LDA #15 followed by TAY would leave the 15 in the

accumulator, sending a copy of 15 into the Y register.

Notice that you cannot directly move a byte from the X to the Y ! j
register, or vice versa. There is no TXY or TYX.

Flags Up And Down -

Another effect of moving bytes around is that it sometimes throws a L-J
flag up or down in the Status Register. LDA (or LDX or LDY) will

affect the N and Z, negative and zero, flags.

We will ignore the N flag. It changes when you use "signed ) \
numbers," a special technique to allow for negative numbers. For our *" l
purposes, the N flag will fly up and down all the time and we won't
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care. If you're curious, signed numbers are manipulated by allowing

the seven bits on the right to hold the number and the leftmost bit

stands for positive or negative. We normally use a byte to hold values

from 0 through 255. If we were working with "signed" numbers,

anything higher than 127 would be considered a negative number

since the leftmost bit would be "on" — and an LDA #255 would be

thought of as -1. This is another example of how the same things (the

number 255 in this case) could signify several different things,

depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important. It shows

whether or not some action during a program run resulted in a zero.

The branching instructions and looping depend on this flag, and

we'll deal with the important zero-result effects below with the BNE,

INX, etc., instructions.

No flags are affected by the STA, STX, or STY instructions.

The Stack Can Take Care Of Itself

There are some instructions which move bytes to and from the stack.

These are for advanced ML programmers. PHA and PLA copy a byte

from A to the stack, and vice versa. PHP and PLP move the status

register to and from the stack. TSX and TXS move the stack pointer to

or from the X register. Forget them. Unless you know precisely what

you are doing, you can cause havoc with your program by fooling

with the stack. The main job for the stack is to keep the return

addresses pushed into it when you JSR (Jump To Subroutine). Then,

when you come back from a subroutine (RTS), the computer pulls the

addresses off the stack to find out where to go back to.

The one major exception to this warning about fiddling with the

stack is Atari's USR instruction. It is a worthwhile technique to

master. Atari owners can move between BASIC and ML programs

fairly easily, passing numbers to ML via the stack. The parameters

(the passed numbers) must be pulled off the stack when the ML

program first takes control of the computer.

For most ML programming, on the other hand, avoid stack

manipulation until you are an advanced programmer. If you

manipulate the stack without great care, you'll give an RTS the wrong

address and the computer will travel far, far beyond your control. If

you are lucky, it sometimes lands on a BRK instruction and you fall

into the monitor mode. The odds are that you would get lucky

roughly once every 256 times. Don't count on it. Since BRK is rare in

your BASIC ROM, the chances are pretty low. If your monitor has a

FILL instruction which lets you put a single number into large

amounts of RAM memory, you might want to fill the RAM with

"snow." FILL 1000 8000 00 would put zeros into every address from

1000 to 8000. This greatly improves the odds that a crash will hit a

BRK.
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As an aside, there is another use for a blanket of' 'zero page ■. (

snow." Many Atari programs rely on the fact that the computer v. )

leaves page six ($0600-06FF) pretty much alone. The PET doesn't

make much use of the second cassette buffer. So, you can safely put

an ML subroutine in these places to, for example, add a routine which J !
customizes an ML word processor. Does your Atari's ML word-

processing program use any memory space in page six? Probably.

What locations does it use? Fill page six with 00's, put the word- \i

processor through its paces, then look at the tracks, the non-zeros, in ^^
the snow.

2. The Arithmetic Group:

ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or clear the

carry flag. ADC and SBC affect the N, Z, C, and V (overflow) flags.

CLC and SEC, needless to say, affect the C flag and their only

addressing mode is Implied.

ADC and SBC can be used in eight addressing modes:

Immediate, Absolute, Zero Page, (Indirect,X), (Indirect),Y, Zero

Page,X, and Absolute,X and Y.

Arithmetic was covered in the previous chapter. To review,

before any addition, the carry flag must be cleared with CLC. Before

any subtraction, it must be set with SEC. The decimal mode should

be cleared at the start of any program (the initialization): CLD. You

can multiply by two with ASL and divide by two with LSR. Note that

you can divide by four with LSR LSR or by eight with LSR LSR LSR.

You could multiply a number by eight with ASL ASL ASL. What

would this do to a number: ASL ASL ASL ASL? To multiply by

numbers which aren't powers of two, use addition plus

multiplication. To multiply by ten, for example: copy the original

number temporarily to a vacant area of memory. Then ASL ASL ASL -.- ,

to multiply it by eight. Then multiply the stored original by two with 1 1
a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for

anything. You can forget about the branch which depends on it, BVC, ! J
too. Only five instructions affect it and it relates to "twos

complement" arithmetic which we have not touched on in this book.

Like decimal mode or negative numbers, you will be able to construct ] |

your ML programs very effectively if you remain in complete ^^

ignorance of this mode. We have largely avoided discussion of most

of the flags in the status register: N, V, B, D, and I. This avoidance i ~

has also removed several branch instructions from our consideration: <—

BMI, BPL, BVC, and BVS. These flags and instructions are not
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usually found in standard ML programs and their use is confined to

specialized mathematical or interfacing applications. They will not be

of use or interest to the majority of ML programmers.

The two flags of interest to most ML programmers are the Carry

flag and the Zero flag. That is why, in the following section, we will

examine only the four branch instructions which test the C and Z

flags. They are likely to be the only branching instructions that you'll
ever find occasion to use.

3. The Decision-Makers:

CMP, BNE, BEQ, BCC, BCS

The four "branchers" here — they all begin with a "B" — have

only one addressing mode. In fact, it's an interesting mode unique to

the "B" instructions and created especially for them: relative

addressing. They do not address a memory location as an absolute

thing; rather, they address a location which is a certain distance from

their position in the ML code. Put another way, the argument of the

"B" instructions is an offset which is relative to their position. You

never have to worry about relocating "B" instructions to another part

of memory. You can copy them and they will work just as well in the

new location. That's because their argument just says "add five to the

present address" or "subtract twenty-seven," or whatever argument

you give them. But they can't branch further back than 127 or further

forward than 128 bytes.

None of the brancher instructions have any effect whatsoever on

any flags; instead, they are the instructions which look at the flags.

They are the only instructions that base their activity on the condition

of the status register and its flags. They are why the flags exist at all.

CMP is an exception. Many times it is the instruction that comes

just before the branchers and sets flags for them to look at and make

decisions about. Lots of instructions — LDA is one — will set or

"clear" (put down) flags — but sometimes you need to use CMP to

find out what's going on with the flags. CMP affects the N, Z, and C

flags. CMP has many addressing modes available to it: Immediate,

Absolute, Zero Page, (Indirect,X), (Indirect),Y, Zero Page,X, and

Absolute,X and Y.

The Foundations Of Computer Power

This decision-maker group and the following group (loops) are the

basis of our computers' enormous strength. The decision-makers

allow the computer to decide among two or more possible courses of

action. This decision is based on comparisons. If the ball hits a wall,

then reverse its direction. In BASIC, we use IF-THEN and ON-GOTO
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structures to make decisions and to make appropriate responses to , ,

conditions as they arise during a program run. ! 1
Recall that most micros use memory mapped video, which means

that you can treat the screen like an area of RAM memory. You can

PEEK and POKE into it and create animation, text, or other visual j '
events. In ML, you PEEK by LDA $VIDEO MEMORY and examine

what you've PEEKed with CMP. You POKE via STA $VIDEO

MEMORY. \ (

CMP does comparisons. This tests the value at an address '—■*
against what is in the accumulator. Less common are CPX and CPY.

Assume that we have just added 40 to a register we set aside to hold

the current address-location of a ball on our screen during a game.

Before the ball can be POKEd into that address, we'd better make

sure that something else (a wall, a paddle, etc.) is not sitting there.

Otherwise the ball would pass right through walls.

Since we just increased the location register (this register, we

said, was to be at $80,81), we can use it to find out if there is blank

space (32) or something else (like a wall). Recall that the very useful

"indirect Y" addressing mode allows us to use an address in zero

page as a pointer to another address in memory. The number in the Y

register is added to whatever address sits in 80,81; so we don't LDA

from 80 or 81, but rather from the address that they contain, plus Y's

value.

To see what's in our potential ball location, we can do the

following:

LDY #0 (we want to fetch from the ball address itself, so we

don't want to add anything to it. Y is set to zero.)

LDA (80),Y (fetch whatever is sitting where we plan to next

send the ball. To review Indirect, Y addressing once

more: say that the address we are fetching from here

is $1077. Address $80 would hold the LSB ($77) and

address $81 would hold the MSB ($10). Notice that

the argument of an Indirect,Y instruction only

mentions the lower address of the two-byte ) f

pointer, the $80. The computer knows that it has to L*~J

combine $80 and $81 to get the full address — and

does this automatically.) j i

At this point in your game, there might be a 32 (ASCII for the

space or blank character) or some other number which we would

know indicated a wall, another player, a paddle, etc. Now that this J ]

questionable number sits in the accumulator, we will CMP it against a '—'
space. We could compare it with the number which means wall or the

other possibilities — it doesn't matter. The main thing is to compare it: , - -
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2000 CMP #32 (is it a space?)

2002 BNE 200A (Branch if Not Equal [if not 32] to address 200A,

which contains the first of a series of

comparisons to see if it's a wall, a paddle, etc.

On the other hand, if the comparison worked, if

it was a 32 (so we didn't Branch Not Equal),

then the next thing that happens is the

instruction in address 2004. We "fall through"

the BNE to an instruction which jumps to the

subroutine (JSR), which moves the ball into

this space and then returns to address 2007,

which jumps over the series of comparisons for

wall, paddle, etc.)

2004 JSR 3000 (the ball printing subroutine)

2007 JMP 2020 (jump over the rest of the comparisons)

200A CMP #128 (is it our paddle symbol?)

200C BNE 2014 (if not, continue to next comparison)

200E JSR 3050 (do the paddle-handling subroutine and ...)

2011 JMP 2020 (jump over the rest, as before in 2007)

2014 CMP #144 (is it a wall... and so forth with as many

comparisons as needed)

This structure is to ML what ON-GOTO or ON-GOSUB is to

BASIC. It allows you to take multiple actions based on a single LDA.

Doing the CMP only once would be comparable to BASIC'S IF-THEN.

Other Branching Instructions

In addition to the BNE we just looked at, there are BCC, BCS, BEQ,

BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and BNE and you

can safely ignore the others.

All of them are branching, IF-THEN, instructions. They work in

the same way that BNE does. You write BEQ followed by the address

you want to go to. If the result of the comparison is "yes, equal-to-

zero is true," then the ML program will jump to the address which is

the argument of the BEQ. "True" here means that something EQuals

zero. One example that would send up the Z flag (thereby triggering

the BEQ) is: LDA #00. The action of loading a zero into A sets the Z

flag up.

You are allowed to "branch" either forward or backward from

the address that holds the "B—" instruction. However, you cannot

branch any further than 128 bytes in either direction. If you want to

go further, you must JMP (JuMP) or JSR (Jump to SubRoutine). For all

practical purposes, you will usually be branching to instructions

located within 30 bytes of your "B" instruction in either direction.

You will be taking care of most things right near where a CoMPare, or

other flag-setting event, takes place.
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If you need to use an elaborate subroutine, simply JSR to it at the

target address of your branch:

2000 LDA 65

2002 CMP 85 (is what was in address 65 equal to what was in

address 85?)

2004 BNE 2009 (if Not Equal, branch over the next three bytes

which perform some elaborate job)

2006 JSR 4000 (at 4000 sits an elaborate subroutine to take care

of cases where addresses 65 and 85 turn out to

be equal)

2009 (continue with the program here)

If you are branching backwards, you've written that part of your

program, so you know the address to type in after a BNE or one of the

other branches. But, if you are branching forward, to an address in

part of the program not yet written — how do you know what to give

as the address to branch to? In complicated two-pass assemblers, you

can just use a word like "BRANCHTARGET", and the assembler will

"pass" twice through your program when it assembles it. The first

"pass" simply notes that your BNE is supposed to branch to

"BRANCHTARGET," but it doesn't yet know where that is.

When it finally finds the actual address of "BRANCHTARGET,"

it makes a note of the correct address in a special label table. Then, it

makes a second "pass" through the program and fills in (as the next

byte after your BNE or whatever) the correct address of

"BRANCHTARGET". All of this is automatic, and the labels make

the program you write (called the source code) look almost like English.

In fact, complicated assemblers can contain so many special features

that they can get close to the higher-level languages, such as BASIC:

(These initial definitions of labels TESTBYTE = 80

are sometimes called "equates.") NEWBYTE = 99

2004 LDA TESTBYTE

2006 CMP NEWBYTE

2008 BNE BRANCHTARGET

200A JR SPECIALSUBROUTINE

BRANCHTARGET 200D . .. etc.

Instead of using lots of numbers (as we do when using the

Simple Assembler) for the target/argument of each instruction, these

assemblers allow you to define ("equate") the meanings of words like

"TESTBYTE" and from then on you can use the word instead of the

number. And they do somewhat simplify the problem of forward

branching since you just give (as above) address 200D a name,

"BRANCHTARGET," and the word at address 2009 is later replaced

with 200D when the assembler does its passes.

This is how the example above looks as the source code listing

from a two-pass, deluxe assembler:
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Actually, we should note in passing that a 200D will not be the j |

number which finally appears at address 2009 to replace »—>

"BRANCHTARGET". To save space, all branches are indicated as an

"offset" from the address of the branch. The number which will ■

finally replace "BRANCHTARGET" at 2009 above will be three. This LJ
is similar to the way that the value of the Y register is added to an

address in zero page during indirect Y addressing (also called

"indirect indexed''). The number given as an argument of a branch ) I

instruction is added to the address of the next instruction. So, Lw~'
200A+ 3 =200D. Our Simple Assembler will take care of all this for

you. All you need do is give it the 200D and it will compute and put

the 3 in place for you.

Forward Branch Solutions

There is one responsibility that you do have, though. When you are

writing 2008 BNE 200D, how do you know to write in 200D? You can't

yet know to exactly which address up ahead you want to branch.

There are two ways to deal with this. Perhaps easiest is to just put in

BNE 2008 (have it branch to itself). This will result in a FE being

temporarily left as the target of your BNE. Then, you can make a note

on paper to later change the byte at 2009 to point to the correct

address, 200D. You've got to remember to "resolve" that FE to

POKE in the number to the target address, or you will leave a little

bomb in your program — an endless loop. The Simple Assembler has

a POKE function. When you type POKE, you will be asked for the

address and value you want POKEd. So, by the time you have

finished coding 200D, you could just type POKE and then POKE

2009,3.

The other, even simpler, way to deal with forward branch

addresses will come after you are familiar with which instructions use

one, two, or three bytes. This BNE-JSR-TARGET construction is

common and will always be six away from the present address, an

offset of 6. If the branch instruction is at 2008, you just count off three:

200A, 200B, 200C and write BNE 200D. Other, more complex

branches such as ON-GOTO constructions will also become easy to ^ (
count off when you're familiar with the instruction byte-lengths. In

any case, it's simple enough to make a note of any unsolved branches

and correct them before running the program. ) j

Alternatively, you can use a single "unresolved" forward (
branch in the Simple Assembler; see its instructions. You just type

BNE FORWARD. , (

Recall our previous warning about staying away from the <—'

infamous BPL and BMI instructions? BPL (Branch on PLus) and BMI

(Branch on Minus) sound good, but should be avoided. To test for .

less-than or more-than situations, use BCC and BCS respectively. L_
(Recall that BCC is alphabetically less-than BCS — an easy way to
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remember which to use.) The reasons for this are exotic. We don't

need to go into them. Just be warned that BPL and BMI, which sound

so logical and useful, are not. They can fail you and neither one lives

up to its name. Stick with the always trustworthy BCC, BCS.

Also remember that BNE and the other three main "B" group

branching instructions often don't need to have a CMP come in front

of them to set a flag they can test. Many actions of many opcodes will

automatically set flags during their operations. For example, LDA $80

will affect the Z flag so you can tell if the number in address $80 was

or wasn't zero by that flag. LDA $80 followed by BNE would branch

away if there were anything besides a zero in address $80. If in doubt,

check the chart of instructions in Appendix A to see which flags are

set by which instructions. You'll soon get to know the common ones.

If you are really in doubt, go ahead and use CMP.

4. The Loop Group:

DEY, DEX, INY, INX, INC, DEC

INY and INX raise the Y and X register values by one each time

they are used. If Y is a 17 and you INY, Y becomes an 18. Likewise,

DEY and DEX decrease the value in these registers by one. There is

no such increment or decrement instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory address by

one. You can give arguments to them in four addressing modes:

Absolute, Zero Page, Zero Page,X and Absolute,X. These instructions

affect the N and Z flags.

The Loop Group are usually used to set up FOR-NEXT

structures. The X register is used most often as a counter to allow a

certain number of events to take place. In the structure FOR 1=1 TO

10: NEXT I, the value of the variable I goes up by one each time the

loop cycles around. The same effect is created by:

2000 LDX #10

2002 DEX ("DEcrement" or "DEcrease X" by 1)

2003 BNE 2002 (Branch if Not Equal [to zero] back up to

address 2002)

Notice that DEX is tested by BNE (which sees if the Z flag, the

zero flag, is up). DEX sets the Z flag up when X finally gets down to

zero after ten cycles of this loop. (The only other flag affected by this

loop group is the N [negative] flag for signed arithmetic.)

Why didn't we use INX, INcrease X by 1? This would parallel

exactly the FOR I = 1 TO 10, but it would be clumsy since our starting

count which is #10 above would have to be #245. This is because X

will not become a zero going up until it hits 255. So, for clarity and
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simplicity, it is customary to set the count of X and then DEX it j |

downward to zero. The following program will accomplish the same {—*

thing as the one above, and allow us to INX, but it too is somewhat

clumsy: I I

2000 LDX #0 ^—j
2002 INX

2003 CPX #10 ^ /

2005 BNE 2002 U

Here we had to use zero to start the loop because, right off the

bat, the number in X is INXed to one by the instruction at 2002. In any

case, it is a good idea to just memorize the simple loop structure in

the first example. It is easy and obvious and works very well.

Big Loops

How would you create a loop which has to be larger than 256 cycles?

When we examined the technique for adding large numbers, we

simply used two-byte units instead of single-byte units to hold our

information. Likewise, to do large loops, you can count down in two

bytes, rather than one. In fact, this is quite similar to the idea of

"nested" loops (loops within loops) in BASIC.

2000 LDX #10 (start of 1st loop)

2002 LDY #0 (start of 2nd loop)

2004 DEY

2005 BNE 2004 (if Y isn't yet zero, loop back to DEcrease Y

again — this is the inner loop)

2007 DEX (reduce the outer loop by one)

2008 BNE 2002 (if X isn't yet zero, go through the entire DEY

loop again)

200A (continue with the rest of the program . . .)

One thing to watch out for: be sure that a loop BNE's back up to

one address after the start of its loop. The start of the loop sets a number

into a register and, if you keep looping up to it, you'll always be

putting the same number into it. The DEcrement (decrease by one) ) f

instruction would then never bring it down to zero to end the ^-^
looping. You'll have created an endless loop.

The example above could be used for a "timing loop" similarly \ j

to the way that BASIC creates delays with: FOR T=1 TO 2000: NEXT '—I
T. Also, sometimes you do want to create an endless loop (the BEGIN

.. . UNTIL in "structured programming"). A popular "endless"

loop structure in BASIC waits until the user hits any key: 10 GET K$:

IFK$=""THEN10.

10 IF PEEK (764)=255 THEN 10 is the way to accomplish this on

the Atari; it will cycle endlessly unless a key is pressed. The simplest

way to accomplish this in ML is to look on the map of your computer
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f—[ to find which byte holds the "last key pressed" number. On Upgrade

' l and 4.0 CBM/PET, it's address 151. On Atari, it's 764. On Apple II,
it's -16384. On VIC and Commodore 64, it's 203 with a 64 in that

j—I location if no key is pressed. In any event, when a key is pressed, it

' I deposits its special numerical value into this cell. If no key is pressed,
some standard value stays there all the time. We'll use the CBM as

_ our model here. If no key is pressed, location 151 will hold a 255:

1 > 2000 LDA 151
2002 CMP #255

2004 BEQ 2000

If the CMP is EQual, this means that the LDA pulled a 255 out of

address 151 and, thus, no key is pressed. So, we keep looping until

the value of address 151 is something other than 255. This setup is

like GET in BASIC because not only does it wait until a key is

pressed, but it also leaves the value of the key in the accumulator

when it's finished.

Recall that a CMP performs a subtraction. It subtracts the number

in its argument from whatever number sits in the accumulator at the

time. LDA #12 CMP $15 would subtract a 5 from 12 if 5 is the number

"held" in address 15. This is how it can leave flags set for testing by

BEQ or BNE. The key difference between this "subtraction" and SBC

is that neither the accumulator nor the argument is affected at all by

it. They stay what they were. The result of the subtraction is "thrown

away," and all that happens is that the status flags go up or down in

response to the result. If the CMP subtraction causes an answer of

zero, the Z flag flips up. If the answer is not zero, the Z flag flips

down. Then, BNE or BEQ can do their job — checking flags.

Dealing With Strings

You've probably been wondering how ML handles strings. It's pretty

straightforward. There are essentially two ways: known-length and

zero-delimit. If you know how many characters there are in a

n message, you can store this number at the very start of the text:

"5ERROR." (The number 5 will fit into one byte, at the start of the

text of the message.) If this little message is stored in your "message

n zone" — some arbitrary area of free memory you've set aside to hold

|1 all of your messages — you would make a note of the particular

address of the "ERROR" message. Say it's stored at 4070. To print it

out, you have to know where you "are" on your screen (cursor

P"! position). Usually, the cursor address is held in two bytes in zero
page so you can use Indirect,Y addressing.

Alternatively, you could simply set up your own zero-page

r—j pointers to the screen. For Apple II and Commodore 64, the screen

' * memory starts at 1024; for CBM/PET it's 32768. In any case, you'll be

able to set up a "cursor management" system for yourself. To
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simplify, we'll send our message to the beginning of the Apple's \ »

screen: I i

2000 LDX 4070 (remember, we put the length of the message

as the first byte of the message, so we load our j j

counter with the length) u_j

2003 LDY #0 (Y will be our message offset)

2005 LDA 4071,Y (gets the character at the address plus Y. Y is ^

zero the first time through the loop, so the ( I
"e" from here lands in the accumulator. It

also stays in 4071. It's just being copied into

the accumulator.)

2008 STA 1024,Y (we can make Y do double duty as the offset

for both the stored message and the screen-

printout. Y is still zero the first time through

this loop, so the "e" goes to 1024.)

2011 INY (prepare to add one to the message-storage

location and to the screen-print location)

2012 DEX (lower the counter by one)

2013 BNE 2005 (if X isn't used up yet, go back and get-and-

print the next character, the "r")

If The Length Is Not Known

The alternative to knowing the length of a string is to put a special

character (usually zero) at the end of each message to show its limit.

This is called a delimiter. Note that Atari users cannot make zero the

delimiter because zero is used to represent the space character. A zero

works well for other computers because, in ASCII, the value 0 has no

character or function (such as carriage return) coded to it.

Consequently, any time the computer loads a zero into the

accumulator (which will flip up the Z flag), it will then know that it is

at the end of your message. At 4070, we might have a couple of error

messages: "Ball out of rangeOTime nearly up!0". (These are numeric,

not ASCII, zeros. ASCII zero has a value of 48.)

To print the time warning message to the top of the CBM/PET \ j

screen (this is in decimal): 1—I

2000 LDY #0

2002 LDA 4088,Y (get the "T") ) j

2005 BEQ 2005 (the LDA just above will flip the zero flag up if [—1
it loads a zero, so we forward branch out of our .

message-printing loop.''BEQ 2005" is a ^ ,

dummy target, used until we know the actual ( )

target and can POKE it into 2006.)

2007 STA 32768,Y (we're using the Y as a double-duty offset

again) M



The Instruction Set 6

2010 INY

2011 JMP 2002 (in this loop, we always jump back. Our exit

from the loop is not here, at the end. Rather, it

is the Branch if EQual which is within the

loop.)

2014 (continue with another part of the program)

By the way, you should notice that the Simple Assembler will

reject the commas in this example and, if you've forgotten to set line

10 to accept decimal, it will not accept the single zero in LDY #0. Also,

if you get unpredictable results, maybe decimal 2000 is not a safe

address to store your ML. You might need to use some other practice

area.

Now that we know the address which follows the loop (2014),

we can POKE that address into the "false forward branch" we left in

address 2006. What number do we POKE into 2006? Just subtract 2007

from 2014, which is seven. Using the Simple Assembler, type POKE

and you can take care of this while you remember it. The assembler

will perform the POKE and then return to wait for your next

instruction.

Both of these ways of handling messages are effective, but you

must make a list on paper of the starting addresses of each message.

In ML, you have the responsibility for some of the tasks that BASIC

(at an expense of speed) does for you. Also, no message can be larger

than 255 using the methods above because the offset and counter

registers count only that high before starting over at zero again.

Printing two strings back-to-back gives a longer, but still under 255

byte, message:

2000 LDY #0

2002 LDX #2 (in this example, we use X as a counter which

represents the number of messages we are

printing)

2004 LDA 4000,Y (get the "B" from "Ball out of. . .")

2007 BEQ 2016 (go to reduce [and check] the value of X)

2009 STA 32768,Y (we're using the Y as a double-duty offset

again)

2012 INY

2013 JMP 2004

2016 INY (we need to raise Y since we skipped that step

when we branched out of the loop)

2017 DEX (at the end of the first message, X will be
a "1"; at the end of the second message,

it will be zero)

2018 BNE 2004 (if X isn't down to zero yet, re-enter the loop to

print out the second message)
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To fill your screen with instructions instantly (say at the start of a t j

game), you can use the following mass-move. We'll assume that the L^
instructions go from 5000 to 5400 in memory and you want to transfer

them to the PET screen (at $8000). If your computer's screen RAM ,

moves around (adding memory to VIC will move the screen RAM | |
address), you will need to know and substitute the correct address for

your computer in these examples which print to the screen. This is in

hex: [J

2000 LDY #0

2002 LDA 5000,Y

2005 STA 8000,Y

2008 LDA 5100,Y

200B STA 8100,Y

200E LDA 5200,Y

2011 STA 8200,Y

2014 LDA 5300,Y

2017 STA 8300,Y

201AINY

201B BNE 2002 (if Y hasn't counted up to zero — which comes

just above 255 — go back and load-store the

next character in each quarter of the large

message )

This technique is fast and easy any time you want to mass-move

one area of memory to another. It makes a copy and does not disturb

the original memory. To mass-clear a memory zone (to clear the

screen, for example), you can use a similar loop, but instead of

loading the accumulator each time with a different character, you

load it at the start with the character your computer uses to blank the

screen. (Commodore including VIC and Apple = decimal 32;

Atari = 0):

2000

2002

2004

2007

200A

200D

2010

2011

LDA #20 (this example, in hex, blanks the PET screen)

LDY #0

STA 8000,Y

STA 8100,Y

STA 8200,Y

STA 8300,Y

DEY

BNE 2004

u

LJ

Of course, you could simply JSR to the routine which already

exists in your BASIC to clear the screen. In Chapter 7 we will explore

the techniques of using parts of BASIC as examples to learn from and

also as a collection of ready-made ML subroutines. Now, though, we

can look at how subroutines are handled in ML.
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5. The Subroutine and Jump Group:

JMP, JSR, RTS

JMP has only one useful addressing mode: Absolute. You give it a

firm, two-byte argument and it goes there. The argument is put into

the Program Counter and control of the computer is transferred to

this new address where an instruction there is acted upon. (There is a

second addressing mode, JMP Indirect, which, you will recall, has a

bug and is best left unused.)

JSR can only use Absolute addressing.

RTS's addressing mode is Implied. The address is on the stack,

put there during the JSR.

None of these instructions has any effect on the flags.

JSR (Jump to SubRoutine) is the same as GOSUB in BASIC, but

instead of giving a line number, you give an address in memory

where the subroutine sits. RTS (ReTurn from Subroutine) is the same

as RETURN in BASIC, but instead of returning to the next BASIC

command, you return to the address following the JSR instruction

(it's a three-byte-long ML instruction containing JSR and the two-byte

target address). JMP (JuMP) is GOTO. Again, you JMP to an address,

not a line number. As in BASIC, there is no RETURN from a JMP.

Some Further Cautions About The Stack

The stack is like a pile of coins. The last one you put on top of the pile

is the first one pulled off later. The main reason that the 6502 sets

aside an entire page of memory especially for the stack is that it has to

know where to go back to after GOSUBs and JSRs.

A JSR instruction pushes the correct return address onto the

"stack" and, later, the next RTS "pulls" the top two numbers off the

stack to use as its argument (target address) for the return. Some

programmers, as we noted before, like to play with the stack and use

it as a temporary register to PHA (PusH Accumulator onto the stack).

This sort of thing is best avoided until you are an advanced ML

programmer. Stack manipulations often result in a very confusing

program. Handling the stack is one of the few things that the

computer does for you in ML. Let it.

The main function of the stack (as far as we're concerned) is to

hold return addresses. It's done automatically for us by "pushes"

with the JSR and, later, "pulls" (sometimes called pops) with the RTS.

If we don't bother the stack, it will serve us well. There are thousands

upon thousands of cells where you could temporarily leave the

accumulator — or any other value — without fouling up the orderly

arrangement of your return addresses.

Subroutines are extremely important in ML programming. ML

programs are designed around them, as we'll see. There are times
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when you'll be several subroutines deep (one will call another which \ j

calls another); this is not as confusing as it sounds. Your main Player- t_^

input routine might call a print-message subroutine which itself calls

a wait-until-key-is-pressed subroutine. If any of these routines PHA ^

(PusH the Accumulator onto the stack), they then disturb the [ j
addresses on the stack. If the extra number on top of the stack isn't

PLA-ed off (PulL Accumulator), the next RTS will pull off the number

that was PHA'ed and half of the correct address. It will then merrily I j

return to what it thinks is the correct address: it might land

somewhere in the RAM, it might go to an address at the outer reaches

of your operating system — but it certainly won't go where it should.

Some programmers like to change a GOSUB into a GOTO (in

the middle of the action of a program) by PLA PLA. Pulling the two

top stack values off has the effect of eliminating the most recent RTS

address. It does leave a clean stack, but why bother to JSR at all if you

later want to change it to a GOTO? Why not use JMP in the first

place?

There are cases, too, when the stack has been used to hold the

current condition of the flags (the Status Register byte). This is

pushed/pulled from the stack with PHP (PusH Processor status) and

PLP (PulL Processor status). If you should need to "remember" the

condition of the status flags, why not just PHP PLA STA $NN?

("NN" means the address is your choice.) Set aside a byte

somewhere that can hold the flags (they are always changing inside

the Status Register) for later and keep the stack clean. Leave stack

acrobatics to FORTH programmers. The stack, except for advanced

ML, should be inviolate.

FORTH, an interesting language, requires frequent stack

manipulations. But in the FORTH environment, the reasons for this

and its protocol make excellent sense. In ML, though, stack

manipulations are a sticky business.

Saving The Current Environment

There is one exception to our leave-the-stack-alone rule. Sometimes

(especially when you are ' 'borrowing'' a routine from BASIC) you [ j
will want to take up with your own program from where it left off.

That is, you might not want to write a "clear the screen" subroutine

because you find the address of such a routine on your map of S I

BASIC. However, you don't know what sorts of things BASIC will do l—
in the meantime to your registers or your flags, etc. In other words,

you just want to clear the screen without disturbing the flow of your

program by unpredictable effects on your X, Y, A, and status

registers. In such a case, you can use the following "Save the state of

things" routine:

2000 PHP (push the status register onto the stack)

2001 PHA
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2002 TXA

2003 PHA

2004 TYA

2005 PHA

2006 JSR (to the clear-the-screen routine in BASIC. The RTS

will remove the return address [2009], and you'll

have a mirror image of the things you had pushed

onto the stack. They are pulled out in reverse order,

as you can see below. This is because the first pull

from the stack will get the most recently pushed

number. If you make a little stack of coins, the first

one you pull off will be the last one you put onto the

stack.)

2009 PLA (now we reverse the order to get them back)

2010 TAY

2011 PLA

2012 TAX

2013 PLA (this one stays in A)

2014 PLP (the status register)

Saving the current state of things before visiting an uncharted,

unpredictable subroutine is probably the only valid excuse for playing

with the stack as a beginner in ML. The routine above is constructed

to leave the stack intact. Everything that was pushed on has been

pulled back off.

The Significance Of Subroutines

Maybe the best way to approach ML program writing — especially a

large program — is to think of it as a collection of subroutines. Each of

these subroutines should be small. It should be listed on a piece of

paper followed by a note on what it needs as input and what it gives

back as parameters. "Parameter passing" simply means that a

subroutine needs to know things from the main program

(parameters) which are handed to it (passed) in some way.

The current position of the ball on the screen is a parameter

which has its own "register" (we set aside a register for it at the start

when we were assigning memory space on paper). So, the "send the

ball down one space" subroutine is a double-adder which adds 40 or

whatever to the "current position register." This value always sits in

the register to be used any time any subroutine needs this

information. The "send the ball down one" subroutine sends the

current-position parameter by passing it to the current-position

register.

This is one way that parameters are passed. Another illustration

might be when you are telling a delay loop how long to delay. Ideally,

your delay subroutine will be multi-purpose. That is, it can delay for
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anywhere from Vi second to 60 seconds or something. This means . ,

that the subroutine itself isn't locked into a particular length of delay. ^ J

The main program will "pass" the amount of delay to the subroutine.

3000 LDY #0 v ;

3002 INY L.J

3003 BNE 3002

3005 DEX

3006 BNE 3000 [I
3008 RTS

Notice that X never is initialized (set up) here with any particular

value. This is because the value of X is passed to this subroutine from

the main program. If you want a short delay, you would:

2000 LDX #5 (decimal)

2002 JSR 3000

And for a delay which is twice as long as that:

2000 LDX #10

2002 JSR 3000

In some ways, the less a subroutine does, the better. If it's not

entirely self-sufficient, and the shorter and simpler it is, the more

versatile it will be. For example, our delay above could function to

time responses, to hold sounds for specific durations, etc. When you

make notes, write something like this: 3000 DELAY LOOP (Expects

duration in X. Returns 0 in X.). The longest duration would be LDX

#0. This is because the first thing that happens to X in the delay

subroutine is DEX. If you DEX a zero, you get 255. If you need longer

delays than the maximum value of X, simply:

3000 LDX #0

3002 JSR 3000

3005 JSR 3000 (notice that we don't need to set X to zero this

second time. It returns from the subroutine

with a zeroed X.)

U
You could even make a loop of the JSR's above for extremely

long delays. The point to notice here is that it helps to document each

subroutine in your library: what parameters it expects, what \ J

registers, flags, etc., it changes, and what it leaves behind as a result.

This documentation — a single sheet of paper will do — helps you

remember each routine's address and lets you know what effects and f /

preconditions are involved. ^—J

JMP

Like BASIC'S GOTO, JMP is easy to understand. It goes to an I |

address: JMP 5000 leaps from wherever it is to start carrying out the <—'
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instructions which start at 5000. It doesn't affect any flags. It doesn't

do anything to the stack. It's clean and simple. Yet some advocates of

"structured programming" suggest avoiding JMP (and GOTO in

BASIC). Their reasoning is that JMP is a shortcut and a poor

programming habit.

For one thing, they argue, using GOTO makes programs

confusing. If you drew lines to show a program's "flow" (the order

in which instructions are carried out), a program with lots of GOTO's

would look like boiled spaghetti. Many programmers feel, however,

that JMP has its uses. Clearly, you should not overdo it and lean

heavily on JMP. In fact, you might see if there isn't a better way to

accomplish something if you find yourself using it all the time and

your programs are becoming impossibly awkward. But JMP is

convenient, often necessary in ML.

A 6502 Bug

On the other hand, there is another, rather peculiar JMP form which

is hardly ever used in ML: JMP (5000). This is an indirect jump which

works like the indirect addressing we've seen before. Remember that

in Indirect,Y addressing (LDA (81),Y), the number in Y is added to

the address found in 81 and 82. This address is the real place we are

LDAing from, sometimes called the effective address. If 81 holds a 00,

82 holds a 40, and Y holds a 2, the address we LDA from is going to be

4002. Similarly (but without adding Y), the effective address formed

by the two bytes at the address inside the parentheses becomes the

place we JMP to in JMP (5000).

There are no necessary uses for this instruction. Best avoid it the

same way you avoid playing around with the stack until you're an

ML expert. If you find it in your computer's BASIC ROM code, it will

probably be involved in an "indirect jump table," a series of registers

which are dynamic. That is, they can be changed as the program

progresses. Such a technique is very close to a self-altering program

and would have few uses for the beginner in ML programming.

Above all, there is a bug in the 6502 itself which causes indirect JMP to

malfunction under certain circumstances. Put JMP ($NNNN) into the

same category as BPL and BMI. Avoid all three.

If you decide you must use indirect JMP, be sure to avoid the

edge of pages: JMP ($NNFF). The "NN" means "any number."

Whenever the low byte is right on the edge, if $FF is ready to reset to

00, this instruction will correctly use the low byte (LSB) found in

address $NNFF, but it will not pick up the high byte (MSB) from

$NNFF plus one, as it should. It gets the MSB from NN00!

Here's how the error would look if you had set up a pointer to

address $5043 at location $40FF:

$40FF 43

$4100 50
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Your intention would be to JMP to $5403 by bouncing off this ^ >

pointer. You would write JMP ($40FF) and expect that the next I I
instruction the computer would follow would be whatever is written

at $5043. Unfortunately, you would land at $0043 instead (if address

$4000 held a zero). It would get its MSB from $4000. j |

6. Debuggers: y

BRKandlMOP

BRK and NOP have no argument and are therefore members of that

class of instructions which use only the Implied addressing mode.

They also affect no flags in any way with which we would be

concerned. BRK does affect the I and B flags, but since it is a rare

situation which would require testing those flags, we can ignore this

flag activity altogether.

After you've assembled your program and it doesn't work as

expected (few do), you start debugging. Some studies have shown that

debugging takes up more than fifty percent of programming time.

Such surveys might be somewhat misleading, however, because

"making improvements and adding options" frequently takes place

after the program is allegedly finished, and would be thereby

categorized as part of the debugging process.

In ML, debugging is facilitated by setting breakpoints with BRK

and then seeing what's happening in the registers or memory. If you

insert a BRK, it has the effect of halting the program and sending you

into your monitor where you can examine, say, the Y register to see if

it contains what you would expect it to at this point in the program.

It's similar to BASIC'S STOP instruction:

2000 LDA #15

2002 TAY

2003 BRK

If you run the above, it will carry out the instructions until it gets j j
to BRK when it will put the program counter plus two on the stack, put

the status register on the stack, and load the program counter with

whatever is in addresses $FFFE, $FFFF. These are the two highest \ j

addresses in your computer and they contain the vector (a pointer) for (—
an interrupt request (IRQ).

These addresses will point to a general interrupt handler and, if

your computer has a monitor, its address might normally be found

here. Remember, though, that when you get ready to CONT, the

address on the top of the stack will be the BRK address plus two.

Check the program counter (it will appear when your monitor

displays the registers) to see if you need to modify it to point to the
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next instruction instead of pointing, as it might be, to an argument.

Some monitors adjust the program counter when they are BRKed to

so that you can type g (go) in the same way that you would type

CONT in BASIC. See the instructions for your particular monitor.

Debugging Methods

In effect, you debug whenever your program runs merrily along and

then does something unexpected. It might crash and lock you out.

You look for a likely place where you think it is failing and just insert a

BRK right over some other instruction. Remember that in the monitor

mode you can display a hex dump and type over the hex numbers on

screen, hitting RETURN to change them. In the example above,

imagine that we put the BRK over an STY 8000. Make a note of the

hex number of the instruction you covered over with the BRK so you

can restore it later. After checking the registers and memory, you

might find something wrong. Then you can fix the error.

If nothing seems wrong at this point, restore the original STY

over the BRK, and insert a BRK in somewhere further on. By this

process, you can isolate the cause of an oddity in your program.

Setting breakpoints (like putting STOP into BASIC programs) is an

effective way to run part of a program and then examine the

variables.

If your monitor or assembler allows single-stepping, this can be an

excellent way to debug, too. Your computer performs each

instruction in your program one step at a time. This is like having

BRK between each instruction in the program. You can control the

speed of the stepping from the keyboard. Single-stepping automates

breakpoint checking. It is the equivalent of the TRACE command

sometimes used to debug BASIC programs.

Like BRK ($00), the hex number of NOP ($EA) is worth

memorizing. If you're working within your monitor, it will want you

to work in hex numbers. These two are particularly worth knowing.

NOP means No OPeration. The computer slides over NOP's without

taking any action other than increasing the program counter. There

are two ways in which NOP can be effectively used.

First, it can be an eraser. If you suspect that STY 8000 is causing

all the trouble, try running your program with everything else the

same, but with STY 8000 erased. Simply put three EA's over the

instruction and argument. (Make a note, though, of what was under

the EA's so you can restore it.) Then, the program will run without

this instruction and you can watch the effects.

Second, it is sometimes useful to use EA to temporarily hold

open some space. If you don't know something (an address, a

graphics value) during assembly, EA can mark that this space needs

to be filled in later before the program is run. As an instruction, it will
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let the program slide by. But, remember, as an address or a number,

EA will be thought of as 234. In any case, EA could become your "fill

this in" alert within programs in the way that we use self-branching

(leaving a zero after a BNE or other branch instruction) to show that

we need to put in a forward branch's address.

When the time comes for you to "tidy up" your program, use

your monitor's "find" command, if it has one. This is a search

routine: you tell it where to start and end and what to look for, and it [ |
prints out the addresses of any matches it finds. It's a useful utility; if

your monitor does not have a search function, you might consider

writing one as your first large ML project. You can use some of the

ideas in Chapter 8 as a starting point.

Less Common Instructions

The following instructions are not often necessary for beginning

applications, but we can briefly touch on their main uses. There are

several "logical" instructions which can manipulate or test individual

bits within each byte. This is most often necessary when interfacing.

If you need to test what's coming in from a disk drive, or translate on

a bit-by-bit level for I/O (input/output), you might work with the

"logical" group.

In general, this is handled for you by your machine's operating

system and is well beyond beginning ML programming. I/O is

perhaps the most difficult, or at least the most complicated, aspect of

ML programming. When putting things on the screen, programming

is fairly straightforward, but handling the data stream into and out of

a disk is pretty involved. Timing must be precise, and the

preconditions which need to be established are complex.

For example, if you need to "mask" a byte by changing some of

its bits to zero, you can use the AND instruction. After an AND, both

numbers must have contained a 1 in any particular bit position for it

to result in a 1 in the answer. This lets you set up a mask: 00001111

will zero any bits within the left four positions. So, 00001111 AND

11001100 result in 00001100. The unmasked bits remained

unchanged, but the four high bits were all masked and zeroed. The \

ORA instruction is the same, except it lets you mask to set bits (make

them a 1). 11110000 ORA 11001100 results in 11111100. The

accumulator will hold the results of these instructions. I j
EOR (Exclusive OR) permits you to "toggle" bits. If a bit is one it

will go to zero. If it's zero, it will flip to one. EOR is sometimes useful

in games. If you are heading in one direction and you want to go back

when bouncing a ball off a wall, you could "toggle." Let's say that

you use a register to show direction: when the ball's going up, the

byte contains the number 1 (00000001), but down is zero (00000000).

To toggle this least significant bit, you would EOR with 00000001.

This would flip 1 to zero and zero to 1. This action results in the
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complement of a number. 11111111EOR11001100 results in 00110011.

To know the effects of these logical operators, we can look them

up in "truth tables" which give the results of all possible

combinations of zeros and ones:

AND

0AND0=0

0AND1=0

1AND0=0

1AND1=1

OR

0OR0=0

0ORl=l

lOR0=l

1OR1=1

EOR

0EOR0= 0

0EORl=l

1EORO=1

1EOR1=0

BIT Tests

Another instruction, BIT, also tests (it does an AND), but, like CMP,

it does not affect the number in the accumulator — it merely sets flags

in the status register. The N flag is set (has a 1) if bit seven has a 1 (and

vice versa). The V flag responds similarly to the value in the sixth bit.

The Z flag shows if the AND resulted in zero or not. Instructions, like

BIT, which do not affect the numbers being tested are called non

destructive.

We discussed LSR and ASL in the chapter on arithmetic: they

can conveniently divide and multiply by two. ROL and ROR rotate the

bits left or right in a byte but, unlike with the Logical Shift Right or

Arithmetic Shift Left, no bits are dropped during the shift. ROL will

leave the 7th (most significant) bit in the carry flag, leave the carry flag

in the Oth (least significant bit), and move every other bit one space to

the left:

ROL 11001100 (with the carry flag set) results in

10011001 (carry is still set, it got the leftmost 1)

If you disassemble your computer's BASIC, you may well look

in vain for an example of ROL, but it and ROR are available in the

6502 instruction set if you should ever find a use for them. Should

you go into advanced ML arithmetic, they can be used for

multiplication and division routines.

Three other instructions remain: SEI (SEt Interrupt), RTI

(ReTurn from Interrupt), and CLI (CLear Interrupt). These operations

are, also, beyond the scope of a book on beginning ML programming,

but we'll briefly note their effects. Your computer gets busy as soon as

the power goes on. Things are always happening: timing registers are

being updated; the keyboard, the video, and the peripheral

connectors are being refreshed or examined for signals. To

"interrupt" all this activity, you can SEI, perform some task, and

then CLI to let things pick up where they left off.

SEI sets the interrupt flag. Following this, all maskable

interruptions (things which can be blocked from interrupting when

the interrupt status flag is up) are no longer possible. There are also
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non-maskable interrupts which, as you might guess, will jump in ) t

anytime, ignoring the status register. L—*
The RTI instruction (ReTurn from Interrupt) restores the

program counter and status register (takes them from the stack), but ^ —,

the X, Y, etc., registers might have been changed during the i^J

interrupt. Recall that our discussion of the BRK involved the above

actions. The key difference is that BRK stores the program counter

plus two on the stack and sets the B flag on the status register. CLI JJ
puts the interrupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn't matter.

They are essentially hardware and interface related. You can do

nearly everything you will want to do in ML without them. How

often have you used WAIT in BASIC?
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Borrowing From BASIC

BASIC is a collection of ML subroutines. It is a large web of hundreds

of short, ML programs. Why not use some of them by JSRing to

them? At times, this is in fact the best solution to a problem.

How would this differ from BASIC itself? Doesn't BASIC just

create a series of JSR's when it RUNs? Wouldn't using BASIC'S ML

routines in this way be just as slow as BASIC?

In practice, you will not be borrowing from BASIC all that much.

One reason is that such JSRing makes your program far less portable,

less easily RUN on other computers or other models of your

computer. When you JSR to an address within your ROM set to save

yourself the trouble of re-inventing the wheel, you are,

unfortunately, making your program applicable only to machines

which are the same model as yours. The subroutine to allocate space

for a string in memory is found at $D3D2 in the earliest PET model. A

later version of PET BASIC (Upgrade) used $D3CE and the current

models use $C61D. With Atari, Texas Instruments, Sinclair and other

computers as exceptions, Microsoft BASIC is nearly universally used

in personal computers. But each computer's version of Microsoft

differs in both the order and the addresses of key subroutines.

Kernals And Jump Tables

To help overcome this lack of portability, some computer

manufacturers set aside a group of frequently used subroutines and

create a Jump Table, or kernal, for them. The idea is that future,

upgraded BASIC versions will still retain this table. It would look

something like this:

FFCF 4C 15 F2 (INPUT one byte)

FFD2 4C 66 F2 (OUTPUT one byte)

FFD5 4C 01 F4 (LOAD something)

FFD8 4C DD F6 (SAVE something)

This example is part of the Commodore kernal.

There is a trick to the way this sort of table works. Notice that

each member of the table begins with 4C. That's the JMP instruction

and, if you land on it, the computer bounces right off to the address

which follows. $FFD2 is a famous one in Commodore computers. If

you load the accumulator with a number (LDA #65) and then JSR

FFD2, a character will be printed on the screen. The screen location is
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incremented each time you use it, so it works semi-automatically. In ; "'1

other words, it also keeps track of the current "cursor position" for LJ
you.

This same "output" routine will work for a printer or a disk or a —

tape — anything that the computer sees as an output device. LJ
However, unless you open a file to one of the other devices (it's

simplest to do this from BASIC in the normal way and then SYS,

USR, or CALL to an ML subroutine), the computer defaults to [ j
(assumes) the screen as the output device, and FFD2 prints there.

What's curious about such a table is that you JSR to FFD2 as you

would to any other subroutine. But where's the subroutine? It's not

at FFD5. That's a different JMP to the LOAD code. A naked JMP

(there is no RTS here in this jump table) acts like a rebound: you hit

one of these JMP's in the table and just bounce off it to the true

subroutine.

The real subroutine (at $F266 in one BASIC version's $FFD2's

JMP) will perform what you expect. Why not just JSR to F266 directly?

Because, on other models of Commodore computers — Original

BASIC, for example — the output subroutine is not located at F266. It's

somewhere else. But a JSR to FFD2 will rebound you to the right

address in any Commodore BASIC. All Commodore machines have

the correct JMP for their particular BASIC set up at FFD2. This means

that you can JSR to FFD2 on any Commodore computer and get

predictable results, an output of a byte.

So, if you look into your BASIC code and find a series of JMP's

(4C xx xx 4C xx xx), it's a jump table. Using it should help make your

programs compatible with later versions of BASIC which might be

released. Though this is the purpose of such tables, there are never

any guarantees that the manufacturer will consistently observe them.

And, of course, the program which depends on them will certainly

not work on any other computer brand.

What's Fastest?

Why, though, is a JSR into BASIC code faster than a BASIC program?

When a BASIC program RUNs, it is JSRing around inside itself. The My

answer is that a program written entirely in ML, aside from the fact

that it borrows only sparingly from BASIC prewritten routines,

differs from BASIC in an important way. A finished ML program is j J

like compiled code; that is, it is ready to execute without any overhead.

In BASIC each command or instruction must be interpreted as it

RUNs. This is why BASIC is called an "interpreter." Each instruction \ j

must be looked up in a table to find its address in ROM. This takes '—'

time. Your ML code will contain the addresses for its JSR's. When ML

runs, the instructions don't need the same degree of interpretation by j j

the computer.

There are special programs called compilers which take a BASIC
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program and transform ("compile") it into ML-like code which can

then be executed like ML, without having to interpret each

command. The JSR's are within the compiled program, just as in ML.

Ordinarily, compiled programs will RUN perhaps 20 to 40 times

faster than the BASIC program they grew out of. (Generally, there is

a price to pay in that the compiled version is almost always larger

than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic ML

writers. You write it in BASIC, and they translate it into an ML-like

program. Even greater improvements in speed can be achieved if a

program uses no floating point (decimal points) in the arithmetic.

Also, there are "optimized" compilers which take longer during the

translation phase to compile the finished program, but which try to

create the fastest, most efficient program design possible. A good

compiler can translate an 8K BASIC program in two or three minutes.

GET And PRINT

Two of the most common activities in a computer program are getting

characters from the keyboard and printing them to the screen. To

illustrate how to use BASIC from within an ML program, we'll show

how both of these tasks can be accomplished from within ML.

For the Atari, $F6E2 works like BASIC'S GET#. If you JSR $F6E2,

the computer will wait until a key is pressed on the keyboard. Then,

when one is pressed, the numerical code for that key is put into the

accumulator, and control is returned to your ML program. To try this,

type:

2000 JSR $F6E2

2003 BRK

Then run this program and hit a key on the keyboard. Notice

that the code number for that letter appears in the accumulator.

Another location within Atari's BASIC ROM will print a

character (whatever's in the accumulator) to the next available

position on the screen. This is like PUT#6. Try combining the above

GET# with this:

2000 JSR $F6E2 (get the character)

2003 JSR $F6A4 (print to the screen)

2006 BRK

Using $F6A4 changes the numbers in the X and Y registers

(explained below).

For the Apple, there are BASIC routines to accomplish these

same jobs. Apple Microsoft BASIC'S GET waits for user input.

(Commodore's GET doesn't wait for input.)

2000 JSR $FD0C (GET a byte from the keyboard

2003 RTS (the character is in the accumulator)
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This address, $FD0C, will wait until the user types in a ^ "/

character. It will position a flashing cursor at the correct position. O
However, it will not print an "echo," an image of the character on the

screen. . ,

To print to the screen: \_J>

2000 LDA # 65 (put "a" into the accumulator)

2002 JSR $FBFD (print it) r j

For Commodore computers (VIC, 64, and PET/CBM) which also use ^
Microsoft BASIC, the two subroutines are similar:

2000 JSR $FFE4 (GET whatever key is being pressed)

2003 BEQ 2000 (if no key is pressed, a zero is in the

accumulator, so you BEQ back and try for a

character again)

2005 RTS (the character's value is in the accumulator)

The $FFE4 is another one of those "kernal" jump table locations

common to all Commodore machines. It performs a GET.

An ML routine within your BASIC which keeps track of the

current cursor position and will print things to the screen is often

needed in ML programming.

The VIC, 64, and PET/CBM use the routine called by $FFD2.

Apple uses $FDED. Atari uses $F6A4.

You can safely use the Y register to print out a series of letters (Y

used as an index) in any BASIC except Atari's. You could print out a

whole word or block of text or graphics stored at $1000 in the

following way. (See Program 7-1.)

Atari's BASIC alters the X and Y registers when it executes its

"print it" subroutine so you need to keep count some other way.

Whenever you borrow from BASIC, be alert to the possibility that the

A, X, or Y registers, as well as the flags in the status register, might

well be changed by the time control is returned to your ML program.

Here's one way to print out messages on the Atari. (See Program 7-2.)

If you look at Appendix B you will see that there are hundreds of

freeze-dried ML modules sitting in BASIC. (The maps included in

this book are for VIC, PET, Atari, and Commodore 64. Appendix B

contains information on how to obtain additional maps for Apple and

Atari.)

It can be intimidating at first, but disassembling some of these

routines is a good way to discover new techniques and to see how

professional ML programs are constructed. Study of your computer's

BASIC is worth the effort, and it's something you can do for yourself.

From time to time, books are published which go into great detail

about each BASIC routine. They, too, are often worth studying.
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8

Building A Program

Using what we've learned so far, and adding a couple of new

techniques, let's build a useful program. This example will

demonstrate many of the techniques we've discussed and will also

show some of the thought processes involved in writing ML.

Among the computer's more impressive talents is searching. It

can run through a mass of information and find something very

quickly. We can write an ML routine which looks through any area of

memory to find matches with anything else. If your BASIC doesn't

have a FIND command or its equivalent, this could come in handy.

Based on an idea by Michael Erperstorfer published in COMPUTE!

Magazine, this ML program will report the line numbers of all the

matches it finds.

Safe Havens

Before we go through some typical ML program-building methods,

let's clear up the "where do I put it?" question. ML can't just be

dropped anywhere in memory. When the Simple Assembler asks

"Starting Address?", you can't give it any address you want to. RAM

is used in many ways. There is always the possibility that a BASIC

program might be residing in part of it (if you are combining ML with

a BASIC program). Or BASIC might use part of RAM to store arrays

or variables. During execution, these variables might write (POKE)

into the area that you placed your ML program, destroying it. Also,

the operating system, the disk operating system, cassette/disk loads,

printers — they all use parts of RAM for their activities. There are

other things going on in the computer beside your hard-won ML

program.

Obviously, you can't put your ML into ROM addresses. That's

impossible. Nothing can be POKEd into those addresses. The 64 is an

exception to this. You can POKE into ROM areas because a RAM

exists beneath the ROM. Refer to the Programmer's Reference Guide or

see Jim Butterfield's article on 64 architecture (COMPUTE! Magazine,

January 1983) for details.

Where to put ML? There are some fairly safe areas.

If you are using Applesoft in ROM, 768 to 1023 ($0300 to $03FF)

is safe. Atari's page six, 1536 to 1791 ($0600 to $06FF) is good. The 64

and VIC's cassette buffer at 828 to 1019 ($033C to $03FB) are good if

you are not LOADing or SAVEing from tape.
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8 Building A Program

The PET/CBM makes provision for a second cassette unit. In

theory, it would be attached to the computer to allow you to update

files or make copies of programs from Cassette #1 to Cassette #2. In

practice, no one has mentioned finding a use for a second cassette S

drive. It is just as easy to use a single cassette for anything that a ]^J
second cassette could do. As a result, the buffer (temporary holding

area) for bytes streaming in from the second cassette unit is very safe

indeed. No bytes ever flow in from the phantom unit so it is a perfect rj
place to put ML. ^^

The "storage problem" can be solved by knowing the free

zones, or creating space by changing the computer's understanding

of the start or end of BASIC programs. When BASIC is running, it

will set up arrays and strings in RAM memory. Knowing where a

BASIC program ends is not enough. It will use additional RAM.

Sometimes it puts the strings just after the program itself. Sometimes

it builds them down from the "top of memory," the highest RAM

address. Where are you going to hide your ML routine if you want to

use it along with a BASIC program? How are you going to keep

BASIC from overwriting the ML code?

Misleading The Computer

If the ML is a short program you can stash it into the safe areas listed

above. Because these safe areas are only a couple of hundred bytes

long, and because so many ML routines want to use that area, it can

become crowded. Worse yet, we've been putting the word "safe" in

quotes because it just isn't all that reliable. Apple uses the "safe"

place for high-res work, for example. The alternative is to deceive the

computer into thinking that its RAM is smaller than it really is. This is

the real solution.

Your ML will be truly safe if your computer doesn't even suspect

the existence of set-aside RAM. It will leave the safe area alone

because you've told it that it has less RAM than it really does.

Nothing can overwrite your ML program after you misdirect your

computer's operating system about the size of its RAM memory. —

There are two bytes in zero page which tell the computer the highest [ j
RAM address. You just change those bytes to point to a lower

address. \

These crucial bytes are 55 and 56 ($37,38) in the 64 and VIC.

They are 52,53 ($34,35) in PET/CBM Upgrade and 4.0 BASIC. In the

PET with Original ROM BASIC, they are 134,135 ($86,87). The Apple

uses 115,116 ($73,74), and you lower the Top-of-BASIC pointer just as

you do in Commodore machines.

The Atari does something similar, but with the bottom of RAM. It

is easier with the Atari to store ML just below BASIC than above it.

Bump up the "lomem" pointer to make some space for your ML. It's

convenient to start ML programs which are too long to fit into page
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Building A Program 8

six ($0600-06FF) at $1FOO and then put this address into lomem. The

LSB and MSB are reversed, of course, as the 6502 requires its pointers

to be like this:

$02E7 00

$02E8 IF

$02E7,8 is Atari's low memory pointer. You should set up this

pointer (LDA $00, STA $02E7, LDA #$1F, STA $02E8) as part of your

ML program. Following that pointer setup, JMP $A000 which

initializes BASIC. If you are not combining ML with a BASIC

program, these preliminary steps are not necessary.

Safe Atari zero page locations include $00-04, $CB-D0, $D4-D9

(if floating point numbers are not being used); $0400 (the printer and

cassette buffer), $0500-057F (free), $0580-05FF (if floating point and

the Editor are not being used), $0600-06FF (free) are also safe. No

other RAM from $0700 (Disk Operating System) to $9FFF or $BFFF is
protected from BASIC.

To repeat: address pointers such as these are stored in LSB, MSB

order. That is, the more significant byte comes second (this is the

reverse of normal, but the 6502 requires it of address pointers). For

example, $8000, divided between two bytes in a pointer, would look

like this:

0073 00

0074 80

As we mentioned earlier, this odd reversal is a peculiarity of the

6502 that you just have to get used to. Anyway, you can lower the

computer's opinion of the top-of-RAM-memory, thereby making a

safe place for your ML, by changing the MSB. If you need one page

(256 bytes): POKE 116, PEEK (116)-1 (Apple). For four pages (1024

bytes) on the Upgrade and 4.0 PETs: POKE 53, PEEK (53) -4. Then

your BA or start of assembling could begin at (Top-of-RAM-255 or

Top-of-RAM-1023, respectively. You don't have to worry much about

the LSB here. It's usually zero. If not, take that into account when

planning where to begin storage of your object code.

Building The Code

Now we return to the subject at hand — building an ML program.

Some people find it easiest to mentally break a task down into several

smaller problems and then weave them into a complete program.

That's how we'll look at our search program. (See Program 8-1.)

For this exercise, we can follow the PET/CBM 4.0 BASIC version

to see how it is constructed. All the versions (except Atari's) are

essentially the same, as we will see in a minute. The only differences

are in the locations in zero page where addresses are temporarily

stored, the "start-of-BASIC RAM" address, the routines to print a
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Building A Program 8

character and to print a line number, and the RAM where it's safe to

store the ML program itself. In other words, change the defined

variables between lines 20 and 100 in Program 8-1 and you can use the

program on another computer.

We will build our ML program in pieces and then tie them all

together at the end. The first phase, as always, is the initialization.

We set up the variables and fill in the pointers. Lines 20 and 30 define

two, two-byte zero page pointers. L1L is going to point at the address

of the BASIC line we are currently searching through. L2L points to

the starting address of the line following it.

Microsoft BASIC stores four important bytes just prior to the

start of the code in a BASIC line. Take a look at Figure 8-1. The first

two bytes contain the address of the next line in the BASIC program.

The second two bytes hold the line number. The end of a BASIC line

is signaled by a zero. Zero does not stand for anything in the ASCII

code or for any BASIC command. If there are three zeros in a row,

this means that we have located the "top," the end of the BASIC

program. (The structure of Atari BASIC is significantly different. See

Figure 8-2.)

But back to our examination of the ML program. In line 40 is a

definition of the zero page location which holds a two-byte number

that Microsoft BASIC looks at when it is going to print a line number

on the screen. We will want to store line numbers in this location as

we come upon them during the execution of our ML search program.

Each line number will temporarily sit waiting in case a match is

found. If a match is found, the program will JSR to the BASIC ROM

routine we're calling "PLINE," as defined in line 70. It will need the

"current line number" to print to the screen.

Line 50 establishes that BASIC RAM starts at $0400 and line 60

gives the address of the "print the character in the accumulator"

ROM routine. Line 100 says to put the object code into the PET's (all

BASIC versions) second cassette buffer, a traditional "safe" RAM

area to store short ML programs. These safe areas are not used by

BASIC, the operating system (OS), or, generally, by monitors or

assemblers. If you are working with an assembler or monitor,

however, and keep finding that your object code has been messed up

— suspect that your ML creating program (the monitor or assembler)

is using part of your "safe" place. They consider it safe too. If this

should happen, you'll have to find a better location.

Refer to Program 8-1 to follow the logic of constructing our

Microsoft search program. The search is initiated by typing in line

zero followed by the item we want to locate. It might be that we are

interested in removing all REM statements from a program to shorten

it. We would type 0:REM and hit RETURN to enter this into the

BASIC program. Then we would start the search by a SYS to the
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n
Building A Program 8

!"""> starting address of the ML program. In the PET 4.0 version of

J Program 8-1, it would be SYS 864 (hex $0360).
By entering the "sample" string or command into the BASIC

f-•> program as line zero, we solve two problems. First, if it is a string, it

> i will be stored as the ASCII code for that string, just as BASIC stores
strings. If it is a keyword like REM, it will be translated into the

P_ "tokenized," one-byte representation of the keyword, just as BASIC

i ! stores keywords. The second problem this solves is that our sample is
located in a known area of RAM. By looking at Figure 8-1, you can tell

that the sample's starting address is always the start of BASIC plus

six. In Program 8-1 that means 0406 (see line 550).

Set Up The Pointers

We will have to get the address of the next line in the BASIC program

we are searching. And then we need to store it while we look through

the current line. The way that BASIC lines are arranged, we come

upon the link to the next line's address and the line number before

we see any BASIC code itself. Therefore, the first order of business is

to put the address of the next line into L1L. Lines 150 through 180

take the link found in start-of-BASIC RAM (plus one) and move it to

the storage pointer "L1L."

Next, lines 190 to 250 check to see if we have reached the end of

the BASIC program. It would be the end if we had found two zeros in

a row as the pointer to the next line's address. If it is the end, the RTS

sends us back to BASIC mode.

The subroutine in lines 260 through 440 saves the pointer to the

following line's address and also the current line number. Note the

double-byte addition in lines 390-440. Recall that we CLC before any

addition. If adding four to the LSB (line 400) results in a carry, we

want to be sure that the MSB goes up by one during the add-with-

carry in line 430. It might seem to make no sense to add a zero in that

line. What's the point? The addition is with carry; in other words, if

the carry flag has been set up by the addition of four to the LSB in line

^—i 400, then the MSB will go up by one. The carry will make this

■ I happen.

First Characters

/**1 It's better to just compare the first character in a word against each

' byte in the searched memory than to try to compare the entire sample
word. If you are looking for MEM, you don't want to stop at each byte

« in memory and see if M-E-M starts there. Just look for M's. When you

come upon a M, then go through the full string comparison. If line

490 finds a first-character match, it transfers the program to "SAME"

(line 520) which will do the entire comparison. On the other hand, if

the routine starting at line 451 comes upon a zero (line 470), it knows

that the BASIC line has ended (they all end with zero). It then goes

down to "STOPLINE" (line 610) which puts the "next line" address

109
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pointer into the "current line" pointer and the whole process of

reading a new BASIC line begins anew.

If, however, a perfect match was found (line 560 found a zero at

the end of the 0:REM line, showing that we had come to the end of

the sample string) — we go to''PERFECT'' and it makes a JSR to print LJ
out the line number (line 660). That subroutine bounces back (RTS) to

"STOPLINE" which replaces the "current line" (L1L) pointer with

the "next line" pointer (L2L). Then we JMP back to "READLINE" [J

which, once again, pays very close attention to zeros to see if the

whole BASIC program has ended with double zeros. We have

returned to the start of the main loop of this ML program.

This sounds more complicatedthan it is. If you've followed

this so far, you can see that there is enormous flexibility in

constructing ML programs. If you want to put the "STOPLINE"

segment earlier than the "SAME" subroutine — go ahead. It is quite

common to see a structure like this:

INITIALIZATION

LDA #15

STA$83

MAIN LOOP

START JSR 1

JSR 2

JSR 3

BEQ START (until some index runs out)

RTS (to BASIC)

SUBROUTINES

1

2 (each ends with RTS back to the MAIN LOOP)

3

DATA

Table 1

Table 2

Table 3

The Atari FIND Utility

The second source listing, Program 8-2, adds a FIND command to

Atari BASIC. You access it with the USR command. It is written to \ P

assemble in page six (1536 or $0600) and is an example of a full-blown '—'

assembly. You'll need the assembler/editor cartridge to type it in.

After you've entered it, enter''ASM'' to assemble it into j 7

memory. After it is finished, use the SAVE command to store the v /

object (executable ML) code on tape or disk. Use:

SAVE#C: > 0600,067E for tape p)

SAVE#D:FIND.OBJ< 0600 067E for disk <—!
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You can then put the BASIC cartridge in and enter the machine

language with the BASIC loader program, or with the L command of

DOS.

Using FIND from BASIC is simple. Say you want to search a

master string, A$ for the substring "hello". If B$ contains "hello",

the USR call would look like:

POS = USR (1536,ADR(A$),LEN(A$),ADR(B$),LEN(B$) )

POS will contain the position of the match. It will be a memory

location within the ADRress of A$. To get the character position

within A$, just use POS-ADR(A$) +1. If the substring (B$) is not

found, POS will be zero.

It's easy to add commands like this to Atari BASIC. Also see

"Getting The Most Out Of USR" in the November 1982 issue of

COMPUTE! Magazine (p. 100).

64, Apple, & VIC Versions

Versions of the search routine for the Commodore 64 and VIC-20

and the Apple II are provided as BASIC loader programs.

Remember from Chapter 2 that a loader is a BASIC program

which POKEs a machine language program (stored in DATA

statements) into memory. Once you have entered and run the

BASIC programs, you can examine the ML programs using a

disassembler. (See Appendix D.)

These versions are similar to the PET Version outlined in

Program 8-1. The characters to be searched for are typed in line 0.

To start the search in the 64 version (Program 8-3), type SYS

40800. Use CALL 768 to activate the Apple version (Program 8-4).

The VIC version (Program 8-5) is activated with SYS 828.

As your skills improve, you will likely begin to appreciate, and

finally embrace, the extraordinary freedom that ML confers on the

programmer. Learning it can seem fraught with obscurity and rules.

It can even look menacing. But there are flights you will soon be

taking through your computer. Work at it. Try things. Learn how to

find your errors. It's not circular — there will be considerable

advances in your understanding. One day, you might be able to sit

down and say that you can combine BASIC with ML and do pretty

much anything you want to do with your machine.

Ill
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Building A Program 8

Program 8-3. 64 Search BASIC Loader.

799 X=PEEK(55):POKE55,X-1:REM PROTECT ML

800 FOR ADRES=40800TO40913:READ DATTA:

POKE ADRES,DATTA:NEXT ADRES

900 PRINT"SYS40800 TO ACTIVATE"
4096 DATA 162, 0, 173, 1, 8, 133

4102 DATA 165, 173, 2, 8, 133, 166

4108 DATA 160, 0, 177, 165, 208, 6

4114 DATA 200, 177, 165, 208, 1, 96

4120 DATA 160, 0, 177, 165, 141, 167

4126 DATA 0, 200, 177, 165, 141, 168

4132 DATA 0, 200, 177, 165, 133, 57

4138 DATA 200, 177, 165, 133, 58, 165

4144 DATA 165, 24, 105, 4, 133, 165

4150 DATA 165, 166, 105, 0, 133, 166

4156 DATA 160, 0, 177, 165, 240, 28

4162 DATA 205, 6, 8, 240, 4, 200

4168 DATA 76, 158, 159, 162, 0, 232

4174 DATA 200, 189, 6, 8, 240, 7

4180 DATA 209, 165, 240, 245, 76, 158

4186 DATA 159, 32, 201, 159, 165, 167

4192 DATA 133, 165, 165, 168, 133, 166

4198 DATA 76, 108, 159, 32, 201, 189

4204 DATA 169, 32, 32, 210, 255, 96

READY.

Program 8-4. Apple Version.

700 FOR AD=768TO900: READ DA:POKE A

P"! D,DA:NEXT AD

768 DATA169,76,141,245,3,169

774 DATA16,141,246,3,169,3

P| 780 DATA141,247,3,96,162,0

1 786 DATA173,1,8,133,1,173
792 DATA2,8,133,2,160,0

"p 798 DATA177,l,208,6,200,177
' ! 804 DATA1,208,1,96,160,0

810 DATA177,1,133,3,200,177

f-[ 816 DATAl,133,4,200,177,l

822 DATA133,117,200,177,1,133

n
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828 DATA118,165,l,24,105,4

834 DATA133,1,165,2,105,0

840 DATA133,2,160,0,177,1

846 DATA240,28,205,6,8,240 ,
852 DATA4/200f76,76,3,162 U
858 DATAO,232,200,189,6,8

864 DATA240f7f209,1,240,245 , /

870 DATA76,76,3,76,119,3 UJ

876 DATA165,3,133,1,165,4

882 DATA133,2,76,28,3,169

888 DATA163,32,237,253,32,32

894 DATA237,169,160,32,237,253

900 DATA76,108,3

Program 8-5. VIC-20 Search BASIC Loader.

800 FOR ADRES=828TO941:READ DATTArPOKE ADR

ES,DATTAtNEXT ADRES

810 PRINT"SYS 828 TO ACTIVATE"

828 DATA 162, 0, 173, 1, 16, 133

834 DATA 187, 173, 2, 16, 133, 188

840 DATA 160, 0, 177, 187, 208, 6

846 DATA 200, 177, 187, 208, 1, 96

852 DATA 160, 0, 177, 187, 141, 190

858 DATA 0, 200, 177, 187, 141, 191

864 DATA 0, 200, 177, 187, 133, 57

870 DATA 200, 177, 187, 133, 58, 165

876 DATA 187, 24, 105, 4, 133, 187

882 DATA 165, 188, 105, 0, 133, 188

888 DATA 160, 0, 177, 187, 240, 28 | |

894 DATA 205, 6, 16, 240, 4, 200 ^
900 DATA 76, 122, 3, 162, 0, 232

906 DATA 200, 189, 6, 16, 240, 7 I |

912 DATA 209, 187, 240, 245, 76, 122 <—'
918 DATA 3, 32, 165, 3, 165, 190

924 DATA 133, 187, 165, 191, 133, 188 j [

930 DATA 76, 72, 3, 32, 194, 221 ^
936 DATA 169, 32, 32, 210, 255, 96

U
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n ML Equivalents Of
n BASIC Commands

What follows is a small dictionary, arranged alphabetically, of the

major BASIC commands. If you need to accomplish something in ML

— TAB for example — look it up in this chapter to see one way of

doing it in ML. Often, because ML is so much freer than BASIC, there

will be several ways to go about a given task. Of these choices, one

might work faster, one might take up less memory, and one might be

easier to program and understand. When faced with this choice, I

have selected example routines for this chapter which are easier to

program and understand. At ML speeds, and with increasingly

inexpensive RAM memory available, it will be rare that you will need

to opt for velocity or memory efficiency.

CLR

In BASIC, this clears all variables. Its primary effect is to reset

pointers. It is a somewhat abbreviated form of NEW since it does not

"blank out" your program, as NEW does.

We might think of CLR, in ML, as the initialization routine which

erases (zeros) the memory locations you've set aside to hold your ML

flags, pointers, counters, etc. Before your program RUNs, you may

want to be sure that some of these "variables" are set to zero. If they

are in different places in memory, you will need to zero them

individually:

,—| 2000 LDA # 0

/ t 2002 STA1990 (put zero into one of the "variables")
2005 STA 1994 (continue putting zero into each byte which

,_ needs to be initialized)

I j On the other hand, maybe you've got your tables, flags, etc., all
lined up together somewhere in a data table at the start or end of your

^-^ ML program. It's a good idea. If your table is in one chunk of RAM,

I i say from 1985 to 1999, then you can use a loop to zero them out:

2000 LDA # 0

j—. 2002 LDY # 15 (Y will be the counter. There are 15 bytes to zero out in

\ i this example.)
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CONT

2004 STA 1985,Y (the lowest of the 15 bytes)

2007 DEY

2008 BNE 2004 (let Y count down to zero, BNEing until Y is zero,

then the Branch if Not Equal will let the program

fall through to the next instruction at 2010)

CONT

This word allows your program to pick up where it left off after a

STOP command (or after hitting the system break key). You might

want to look at the discussion of STOP, below. In ML, you can't

usually get a running program to stop with the BREAK (or STOP)

key. If you like, you could write a subroutine which checks to see if a

particular key is being held down on the keyboard and, if it is, BRK:

3000 LDA 96 (or whatever your map says is the "key currently

depressed" location for your machine)

3002 CMP # 13 (this is likely to be the RETURN key on your

machine, but you'll want CMP here to the value

that appears in the ' 'currently pressed'' byte for

the key you select as your STOP key. It could be

any key. If you want to use "A" for your "stop"

key, try CMP #65.)

3004 BNE 3007 (if it's not your target key, jump to RTS)

3006 BRK (if it is the target, BRK)

3007 RTS (back to the routine which called this subroutine)

The 6502 places the Program Counter (plus two) on the stack

after a BRK.

A close analogy to BASIC is the placement of BRK within ML

code for a STOP and then typing .G or GO or RUN — whatever your

monitor recognizes as the signal to start execution of an ML program

-to CONT.

DATA

In BASIC, DATA announces that the items following the word DATA

are to be considered pieces of information (as opposed to being

thought of as parts of the program). That is, the program will

probably use this data, but the data are not BASIC commands. In ML,

such a zone of "non-program" is called a table. It is unique only in

that the program counter never starts trying to run through a table to

carry out instructions. Program control is never transferred to a table

since there are no meaningful instructions inside a table. Likewise,

BASIC slides right over its DATA lines.

To keep things simple, tables of data are usually stored together

either below the program or above it in memory. (See Figure 9-1.)
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DIM

From within the program, tables can be used to print messages

to the screen, update or examine flags, etc. If you disassemble your

BASIC in ROM, you'll find the words STOP, RUN, LIST, and so

forth, gathered together in a table. You can suspect a data table when

your disassembler starts giving lots of error messages. It cannot find

groups of meaningful opcodes within tables.

Figure 9-1. Typical ML program organization with data tables —

one at top or bottom of program.

DATA

INITIALIZATION

MAIN

LOOP

DATA

Bottom of Memory

Start Of ML Program

Subroutines

DIM

With its automatic string handling, array management, and error

messages, BASIC makes life easy for the programmer. The price you

pay for this "hand-holding" is that a program is slow when it's RUN.

In ML, the DIMensioning of space in memory for variables is not

explicitly handled by the computer. You must make a note that you

are setting aside memory from 6000 to 6500, or whatever, to hold

variables. It helps to make a simple map of this "dimensioned"

memory so you know where permanent strings, constants, variable

strings, and variables, flags, etc., are within the dimensioned zone.

A particular chunk of memory (where, and how much, is up to

you) is set aside, that's all. You don't write any instructions in ML to

set aside the memory; you just jot it down so you won't later use the

reserved space for some other purpose. Managing memory is left up

to you. It's not difficult, but it is your responsibility.
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END y

There are several ways to make a graceful exit from ML programs.

You can look for the "warm start'' address on your particular

computer (in the map of its BASIC locations) and JMP to that address. ] I
Or you can go to the "cold start" address. This results in the

computer resetting itself as if you had turned the power off and then

back on again. j j

If you went into the MLfrom BASIC (with a USR or SYS), you i—'
can return to BASIC with an RTS. Recall that every JSR matches up

with its own RTS. Every time you use a JSR, it shoves its "return

here" address onto the top of the stack. If the computer finds another

JSR (before any RTS's), it will shove another return address on top of

the first one. So, after two JRS's, the stack contains two return

addresses. When the first RTS is encountered, the top return address

is lifted from the stack and put into the program counter so that the

program returns control to the current instruction following the most

recent JSR.

When the next RTS is encountered, it pulls its appropriate return

(waiting for it on the stack) and so on. The effect of a SYS or USR

from BASIC is like a JSR from within ML. The return address to the

correct spot within BASIC is put on the stack. In this way, if you are

within ML and there is an RTS (without any preceding JSR), what's

on the stack had better be a return-to-BASIC address left there by SYS

or USR when you first went into ML.

Another way to END is to put a BRK in your ML code. This

drops you into the machine's monitor. Normally, you put BRKs in

during program development and debugging. When the program is

finished, though, you would not want to make this ungraceful exit

any more than you would want to end a BASIC program with STOP.

In fact, many ML programs, if they stand alone and are not part

of a larger BASIC program, never END at all! They are an endless

loop. The main loop just keeps cycling over and over. A game will not

end until you turn off the power. After each game, you see the score

and are asked to press a key when you are ready for the next game.

Arcade games which cost a quarter will ask for another quarter, but

they don't end. They go into "attract mode." The game graphics are

left running on screen to interest new customers.

An ML word processor will cycle through its main loop, waiting

for keys to be pressed, words to be written, format or disk

instructions to be given. Here, too, it is common to find that the word

processor takes over the machine, and you cannot stop it without

turning the computer off. Among other things, such an endless loop

protects software from being easily pirated. Since it takes control of

the machine, how is someone going to save it or examine it once it's
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in RAM? Some such programs are "auto-booting" in that they cannot

be loaded without starting themselves running.

BASIC, itself a massive ML program, also loops endlessly until

you power down. When a program is RUNning, all sorts of things are

happening. BASIC is an interpreter, which means that it must look up

each word (like INT) it comes across during a RUN (interpreting it, or

translating its meanings into machine-understandable JSRs). Then

BASIC executes the correct sequence of ML actions from its collection

of routines.

In contrast to BASIC RUNs, BASIC spends 99 percent of its time

waiting for you to program with it. This waiting for you to press keys

is its "endless" loop, a tight, small loop indeed. It would look like our

"which key is pressed?" routine.

2000 LDA 96 (or wherever your machine's map shows that the

"which key down" value is stored)

2002 CMP #255 (or whatever value is normally left in this address

by default when no key is being pressed)

2004 BEQ 2000 (if it says "no key down," cycle back and wait for

one)

FOR-NEXT

Everyone has used "delay loops" in BASIC (FOR T = l TO 1000:

NEXT T). These are small loops, sometimes called do-nothing

loops because nothing happens between the FOR and the NEXT

except the passage of time. When you need to let the user read

something on the screen, it's sometimes easier just to use a delay loop

than to say "When finished reading, press any key."

In any case, you'll need to use delay loops in ML just to slow ML

itself down. In a game, the ball can fly across the screen. It can get so

fast, in fact, that you can't see it. It just "appears" when it bounces

off a wall. And, of course, you'll need to use loops in many other

situations. Loops of all kinds are fundamental programming

techniques.

In ML, you don't have that convenient little counter ("T" in the

BASIC FOR/NEXT example above) which decides when to stop the

loop. When T becomes 1000, go to the instructions beyond the word

NEXT. Again, you must set up and check your counter variable by

yourself.

If the loop is going to be smaller than 255 cycles, you can use the

X register as the counter (Y is saved for the very useful indirect indexed

addressing discussed in Chapter 4: LDA (96),Y). So, using X, you can

count to 200 by:

2000 LDX #200 (or $C8 hex)

2002 DEX

2003 BNE 2002



FOR-NEXT-STEP u

U

For loops involving counters larger than 255, you'll need to use j i

two bytes to count down, one going from 255 to zero and then *—I
clicking (like a gear) the other (more significant) byte. To count to 512:

2000LDA#2 \, i

2002 STA 0 (put the 2 into address zero, our MSB, Most !—'
Significant Byte, counter)

2004 LDX #0 (set X to zero so that its first DEX will make it 255.

Further DEX's will count down again to zero, I 1
when it will click the MSB down from 2 to 1 and

then finally 0)

2006 DEX

2007 BNE 2006

2009 DEC 0 (click the number in address zero down 1)

2011 BNE 2006

Here we used the X register as the LSB (least significant byte)

and address zero as the MSB. We could use addresses zero and one to

hold the MSB/LSB if we wanted. This is commonly useful because

then address zero (or some available, two-byte space in zero page)

can be used for LDA (0),Y. You would print a message to the screen

using the combination of a zero page counter and LDA (zero page

address),Y.

FOR-NEXT-STEP

Here you would just increase your counter (usually X or Y) more than

once. To create FOR I=100 TO 1 STEP -2 you could use:

2000 LDX # 100

2002 DEX

2003 DEX

2004 BNE 2002

For larger numbers you create a counter which uses two bytes

working together to keep count of the events. Following our example

above for FOR-NEXT, we could translate FOR I=512 TO 0 STEP -2: \ j

2000 LDA #2 L—'
2002 STA 0 (this counts the MSB)

2004 LDX #0 (X counts the LSB) i /

2006 DEX LJ
2007 DEX (here we click X down a second time, for -2)

2008 BNE 2006

2010 DEC 0 l_J
2012 BNE 2006

U
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To count up, use the CoMPare instruction. FOR I = 1 TO 50

STEP 3:

2000LDX#0

i—! 2002INX

1 ] 2003 INX
2004 INX

r-» 2005CPX#50

( I 2007 BNE 2002

For larger STEP sizes, you can use a nested loop within the larger

one. This would avoid a whole slew of INX's. To write the ML

equivalent of FOR I = 1 TO 50 STEP 10:

2000 LDX #0

2002 LDY #0

2004 INX

2005INY

2006CPY#10

2008 BNE 2004

2010 CPX #50

2012 BNE 2002

GET

Each computer model has its own "which key is being pressed?"

address, where it holds the value of a character typed in from the

keyboard. To GET, you create a very small loop which just keeps

testing the first address in the buffer.

For Atari (in decimal):

2000 LDA 764 ("which key pressed" decimal address. In

advanced assemblers, you could freely mix

decimal with hex, but not in the Simple

Assembler.)

2003 CMP #255 (when an FF value is in this address, it means

r-i that no key is pressed)

i I 2005 BEQ 2000 (keep going back and looking until there is some

key pressed)

<-—* For PET (Upgrade and 4.0) (in decimal)

' ? 2000 LDA 151 ("which key pressed" decimal address)
2003 CMP #255

i—| 2005 BEQ 2000

1 ' For PET (Original):
2000 LDA 515 ("which key pressed" decimal address)

n 2003 CMP #255
2005 BEQ 2000
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GOSUB

For Apple II (hex): \ /

2000 LDA C000 (' 'which key pressed'' — note: this is in hex) l—'
2003 BPL 2000

2005STAC010 (clears the keyboard) \ (

2008 AND #7F (to give you the correct character value) l—'

For VIC and 64 (decimal):

2000 LDA197 M
2003 CMP #255

2008 BEQ 2000

The Commodore computers have a GET routine similar to the

one illustrated by these examples, which is built in at $FFE4 which

can be used for all ROM versions (all models of CBM) because it is a

fixed JMP table which does not change address when new BASIC

versions are introduced. See your BASIC'S map for Print a Byte to the

Screen, GET a Byte, and other routines in the Commodore Jump

Tables. They start at $FFBD.

The examples above do not conform to PET BASIC'S GET. In

this version of BASIC, the computer does not "wait" for a character.

If no key is being held down during a GET, the computer moves on

and no GET takes place. In our ML GETs above, we loop until some

character is actually pressed.

For most programming purposes, though, you want to wait

until a key has actually been pressed. If your program is supposed to

fly around doing things until a key is pressed, you might use the

above routines without the loop structure. Just use a CMP to test for

the particular key that would stop the routine and branch the

program somewhere else when a particular key is pressed. How you

utilize and construct a GET-type command in ML is up to you. You

can, with ML's flexibility, make special adjustments to use the best

kind of GET for each different application.

GOSUB . .
This is nearly identical to BASIC in ML. Use JSR $NNNN and you 1 }
will go to a subroutine at address NNNN instead of a line number, as

in BASIC. ("NNNN" just means you can put any hex number in

there you want to.) Some assemblers allow you to give "labels,"

names to JSR to instead of addresses. The Simple Assembler does not

allow labels. You are responsible (as with DATA tables, variables,

etc.) for keeping a list on paper of your subroutine addresses and the

parameters involved.

Parameters are the number or numbers handed to a subroutine to

give it information it needs. Quite often, BASIC subroutines work

with the variables already established within the BASIC program. In

ML, though, managing variables is up to you. Subroutines are useful
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because they can perform tasks repeatedly without needing to be

programmed into the body of the program each time the task is to be

carried out. Beyond this, they can be generalized so that a single

subroutine can act in a variety of ways, depending upon the variable

(the parameter) which is passed to it.

A delay loop to slow up a program could be general in the sense

that the amount of delay is handed to the subroutine each time. The

delay can, in this way, be of differing durations, depending on what

it gets as a parameter from the main routine. Let's say that we've

decided to use address zero to pass parameters to subroutines. We

could pass a delay of "five" cycles of the loop by:

2000LDA#5

The Main Program 2002 STA 0

2004 JSR 5000

The Subroutine 5000 DEC 0

5002 BEQ 5012 (if address zero has

counted all the way down

from five to zero, RTS back

to the Main Program)

5004LDY#0

5006 DEY

5007 BNE 5006

5009 JMP 5000

5012 RTS

A delay which lasted twice as long as the above would merely

require a single change: 2000 LDA # 10.

GOTO

In ML, it's JMP. JMP is like JSR, except the address you leap away

from is not saved anywhere. You jump, but cannot use an RTS to find

your way back. A conditional branch would be CMP #0 BEQ 5000. The

condition of equality is tested by BEQ, Branch if EQual. BNE tests a

condition of inequality, Branch if Not Equal. Likewise, BCC (Branch if

Carry is Clear) and the rest of these branches are testing conditions

within the program.

GOTO and JMP do not depend on any conditions within the

program, so they are unconditional. The question arises, when you use

a GOTO: Why did you write a part of your program that you must

always (unconditionally) jump over? GOTO and JMP are sometimes

used to patch up a program, but, used without restraint, they can

make your program hard to understand later. Nevertheless, JMP can

many times be the best solution to a programming problem. In fact, it

is hard to imagine ML programming without it.
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One additional note about JMP: it makes a program non- i i

relocatable. If you later need to move your whole ML program to a I I
different part of memory, all the JMP's (and JSR's) need to be checked

to see if they are pointing to addresses which are no longer correct

(JMP or JSR into your BASIC ROM's will still be the same, but not | j
those which are targeted to addresses within the ML program). This

can be an important consideration if you are going to use an ML

subroutine in other programs where the locations might well differ. \ I

Fully relocatable ML routines can be convenient if you like to program s—
by drawing from a personal collection of solved problems.

2000 JMP 2005

2003 LDY #3

2005 LDA #5

If you moved this little program up to 5000, everything would

survive intact and work correctly except the JMP 2005 at address 2000.

It would still say to jump to 2005, but it should say to jump to 5005,

after the move. You have to go through with a disassembly and check

for all these incorrect JMP's. To make your programs more

"relocatable," you can use a special trick with unconditional

branching which will move without needing to be fixed:

2000 LDY #0

2002 BEQ 2005 (since we just loaded Y with a zero, this Branch-

if-EQual-to-zero instruction will always be true

and will always cause a pseudo-JMP)

2004 NOP

2005 LDA #5

This works because we set the Z flag. Then, when BEQ tests the

zero flag, it will pass the test, it will find that flag "up" and will

branch. If you load X, Y, or A with a zero, the zero flag goes up.

Various monitors and assemblers include a "move it" routine,

which will take an ML program and relocate it somewhere else in

memory for you. On the Apple, you can go into the monitor and type „ , *

*5000 < 2000.2006M (although you will have to give the monitor these LJ
numbers in hex). The first number is the target address. The second

and third are the start and end of the program you want to move.

On CBM computers, the built-in monitor (the VIC-20 and the j j
Original 2001 ROM set do not have a built-in monitor) does not have a

Move it command. However, it is easy to add a "monitor extension"

program to the built-in monitor. Supermon and Micromon are such \ I

extensions. The format for Moveit in Commodore machines is .T 2000 '—'
2006 5000 (start and end of the program to be moved, followed by the

target address). Again, these numbers must be in hex. The T stands \ >
for transfer. I I

The Atari Assembler Editor Cartridge follows a convention
similar to Apple's: M 5000 < 2000,2006.
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IF-THEN

This familiar and primary computing structure is accomplished in ML

with the combination of CMP-BNE or any other conditional branch:

BEQ, BCC, etc. Sometimes, the IF half isn't even necessary. Here's
how it would look:

2000 LDA 57 (what's in address 57?)

2002 CMP #15 (is it 15?)

2004 BEQ 2013 (IF it is, branch up to 2013)

2006 LDA #10 (or ELSE, put a 10 into address 57)

2008 STA 57

2010 JMP 2017 (and jump over the THEN part)

2013 LDA #20 (THEN, put a 20 into address 57)

2015 STA 57

2017 (continue with the program . . .)

Often, though, your flags are already set.by an action, making

the CMP unnecessary. For example, if you want to branch to 2013 if

the number in address 57 is zero, just LDA 57 BEQ 2013. This is

because the act of loading the accumulator will affect the status

register flags. You don't need to CMP #0 because the zero flag will be

set if a zero was just loaded into the accumulator. It won't hurt

anything to use a CMP, but you'll find many cases in ML

programming where you can shorten and simplify your coding. As

you gain experience, you will see these patterns and learn how and

what affects the status register flags.

INPUT

This is a series of GETs, echoed to the screen as they are typed in,

which end when the typist hits the RETURN key. The reason for the

echo (the symbol for each key typed is reproduced on the screen) is

that few people enjoy typing without seeing what they've typed. This

also allows for error correction using cursor control keys or DELETE

and INSERT keys. To handle all of these actions, an INPUT routine

must be fairly complicated. We don't want, for example, the DELETE

to become a character within the string. We want it to immediately act

on the string being entered during the INPUT, to erase a mistake.

Our INPUT routine must be smart enough to know what to add

to the string and what keys are intended only to modify it. Here is the

basis for constructing your own ML INPUT. It simply receives a

character from the keyboard, stores it in the screen RAM cells, and

ends when the RETURN key is pressed. This version is for Upgrade

and 4.0 CBM/PETs and we'll write it as a subroutine. That simply

means that when the 13 (ASCII for carriage return) is encountered,
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we'll perform an RTS back to a point just following the main program { .

address which JSRed to our INPUT routine: I I

5000 LDY #0 (Y will act here as an offset for storing the

characters to the screen as they come in) , }

5002 LDA158 (this is the "number of keys in the keyboard buffer'' LJ

location. If it's zero, nothing has been typed yet)

5004 BNE 5002 (so we go back to 5002)

5006 LDA 623 (get the character from the keyboard buffer) ^ {
5009 CMP #13 (is it a carriage return?)

5011 BNE 5014 (if not, continue)

5013 RTS (otherwise return to the main program)

5014 STA 32768,Y (echo it to the screen)

5017INY

5018LDA#0

5020 STA 158 (reset the "number of keys" counter to zero)

5022 JMP 5002 (continue looking for the next key)

This INPUT could be made much larger and more complex. As it

stands, it will contain the string on the screen only. To save the string,

you would need to read it from screen RAM and store it elsewhere

where it will not be erased. Or, you could have it echo to the screen,

but (also using Y as the offset) store it into some safe location where

you are keeping string variables. The routine above does not make

provisions for DELETE or INSERT either. The great freedom you

have with ML is that you can redefine anything you want. You can

softkey: define a key's meaning via software; have any key perform

any task. You might use the $ key to DELETE.

Along with this freedom goes the responsibility for organizing,

writing, and debugging these routines.

LET

Although this word is still available on most BASICs, it is a holdover

from the early days of computing. It is supposed to remind you that a

statement like LET NAME=NAME+4 is an assignment of a value to a \ i

variable, not an algebraic equation. The two numbers on either side of ^—-*
the "equals" sign, in BASIC, are not intended to be equal in the

algebraic sense. Most people write NAME =NAME+ 4 without using , ,

LET. However, the function of LET applies to ML as well as to BASIC: I I
we must assign values to variables.

In the Atari, VIC, and Apple, for example, where the address of

the screen RAM can change depending on how much memory is in j j
the computer, etc. — there has to be a place where we find out the

starting address of screen RAM. Likewise, a program will sometimes

require that you assign meanings to string variables, counters, and the j I

like. This can be part of the initialization process, the tasks performed —'
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before the real program, your main routine, gets started. Or it can

happen during the execution of the main loop. In either case, there

has to be an ML way to establish, to assign, variables. This also means

that you must have zones of memory set aside to hold these variables.

For strings, you can think of LET as the establishment of a

location in memory. In our INPUT example above, we might have

included an instruction which would have sent the characters from

the keyboard to a table of strings as well as echoing them to the

screen. If so, there would have to be a way of managing these strings.

For a discussion on the two most common ways of dealing with

strings in ML, see Chapter 6 under the subhead "Dealing With

Strings."

In general, you will probably find that you program in ML using

somewhat fewer variables than in BASIC, there are three reasons for
this:

1. You will probably not write many programs in ML such as

data bases where you manipulate hundreds of names, addresses, etc.

It might be somewhat inefficient to create an entire data base

management program, an inventory program for example, in ML.

Keeping track of the variables would be a nightmare. An important

benefit of ML is its speed of execution, but a drawback is that it slows

programming down. So, for an inventory program, you could write

the bulk of the program in BASIC and simply attach ML routines for

sorting and searching tasks within the program.

2. Also, the variables in ML are often handled within a series of

instructions (not held elsewhere as BASIC variables are). FOR 1 = 1

TO 10: NEXT I becomes LDY #1, INY, CPY #10, BNE. Here, the

BASIC variable is counted for you and stored outside the body of the

program. The ML "variable," though, is counted by the program

itself. ML has no interpreter which handles such things. If you want a

loop, you must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the

start of the program and then to refer to them later by their variable

names, as in: 10 BALL=79. Then, any time you want to PRINT the

BALL to the screen, you could say, PRINT CHR$(BALL). Alterna

tively, you might define it this way in BASIC: 10 BALL$="0". In

either case, your program will later refer to the word BALL. In this

example we are assuming that the number 79 will place a ball

character on your screen.

In ML we are not free to use variable names except when using a

complicated, advanced assembler. With the Simple Assembler, you

will find it easier just to LDA #79, STA (screen position) each time.

Some people like to put the 79 into their zone of variables (that

arbitrary area of memory set up at the start of a program to hold

tables, counters, and important addresses). They can pull it out of

that zone whenever it's needed. That is somewhat cumbersome,
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though, and slower. You would LDA1015, STA (screen position), i i

assuming you had put a 79 into this "ball" address earlier. L—I
Obviously a value like BALL will remain the same throughout a

program. A ball will look like a ball in your game, whatever else

happens. So, it's not a true variable, it does not vary. It is constant. A [ J
true variable must be located in your "zone of variables," your

variable table. It cannot be part of the body of your program itself (as

in: LDA #79) because it will change. You don't know when writing ^ j
your program what the variable will be. So you can't use immediate

mode addressing because it might not be a #79. You have to LDA 1015

(or whatever) from within your table of variables.

Elsewhere in the program you have one or more STA 1015's or

INC 1015's or some other manipulation of this address which keeps

updating this variable. In effect, ML makes you responsible for

setting aside areas which are safe to hold variables. What's more, you

have to remember the addresses, and update the variables in those

addresses whenever necessary. This is why it is so useful to keep a

piece of paper next to you when you are writing ML. The paper lists

the start and end addresses of the zone of variables, the table. You

also write down the specific address of each variable as you write

your program.

LIST

This is done via a disassembler. It will not have line numbers (though,

again, advanced assembler-disassembler packages do have line

numbers). Instead, you will see the address of each instruction in

memory. You can look over your work and debug it by working with

the disassembler, setting BRKs into problem areas, etc. See

Appendix D.

LOAD

The method of saving and loading an ML program varies from

computer to computer. Normally, you have several options which | j
can include loading: from within the monitor, from BASIC, or even

from an assembler. When you finish working on a program, or a

piece of a program, on the Simple Assmbler you will be given the j j

starting and ending addresses of your work. Using these, you can '—*
save to tape or disk in the manner appropriate to your computer. To

LOAD, the simplest way is just to LOAD as if you were bringing in a \ ,

BASIC program. Unfortunately, this only works on Commodore I I
machines. You'll get your ML program, not a BASIC program, so it

won't start at the normal starting address for BASIC unless you wrote

and saved it at that address. You should type NEW after loading it, (_J
however, to reset some pointers in the computer. That will not NEW

out the ML program.
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To save from within the monitor on Commodore machines:

.S "PROGRAM NAME'',01,NNNN,NNNN* (for tape)

.L "PROGRAM NAME",01 (for tape)

.S "0:PROGRAM NAME",08,NNNN,NNNN* (for disk)

.L "OrPROGRAM NAME",08 (for disk)

*You should add one to the hex number for the end of your

program or the SAVE will clip off the last byte. If your program exists

in RAM from $0300 to $0350, you save it like this: .S "PROGRAM

NAME",01,0300,0351.

On the Apple, you must BLOAD from disk. On the Atari, if you

have DOS you can use the "L" command from the DOS menu to

LOAD in an ML program. If you don't, you need to use a short

BASIC program that grabs in the bytes via a series of GETs:

10OPEN#l,4,0,"C:"

20 GET#1/NN:GET#1/NN: REM DISCARD THE HEADER

30 GET#1,LO:GET#1,HI: REM START ADDRESS

40 START= LO +256*HI

50 GET#1,LO:GET#1,HI: REM ENDING ADDRESS

60FIN = LO+256*HI

70 TRAP 100

80 FORI = START TO FIN: GET#1,A: POKEI,A:NEXTI

90 GOTO 30

100 END

Note: This will not work correctly if the START and FIN

addresses overlap this BASIC program in memory. It would

then load in on top of itself.

.The

NEW

In Microsoft BASIC, this has the effect of resetting some pointers

which make the machine think you are going to start over again. Tin

p—■] next program line you type in will be put at the "start-of-a-BASIC-

' i program" area of memory. Some computers, the Atari for example,

even wash memory by filling it with zeros. There is no special

,_ command in ML for NEWing an area of memory, though some

! | monitors have a' 'fill memory'' option which will fill a block of

memory as big as you want with whatever value you choose.

The reason that NEW is not found in ML is that you do not

P""J always write your programs in the same area of memory (as you do in
BASIC), building up from some predictable address. You might have

a subroutine floating up in high memory, another way down low,

fl your table of variables just above the second subroutine, and your

1 ^ main program in the middle. Or you might not. We've been using

n
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2000 as our starting address for many of the examples in this book

and 5000 for subroutines, but this is entirely arbitrary.

To "NEW" in ML, just start assembling over the old program.

Alternatively, you could just turn the power off and then back on

again. This would, however, have the disadvantage of wiping out

your assembler along with your program.

ON GOSUB

In BASIC, you are expecting to test values from among a group of

numbers: 1,2,3,4,5 .... The value of X must fall within this narrow

range: ON X GOSUB 100, 200, 300 ... (X must be 1 or 2 or 3 here). In

other words, you could not conveniently test for widely separated

values of X (18, 55, 220). Some languages feature an improved form of

ON GOSUB where you can test for any values. If your computer

were testing the temperature of your bathwater:

CASE

80 OF GOSUB HOT ENDOF

100 OF GOSUB VERYHOT ENDOF

120 OF GOSUB INTOLERABLE ENDOF

ENDCASE

ML permits you the greater freedom of the CASE structure.

Using CMP, you can perform a multiple branch test:

2000 LDA150 (get a value, perhaps input from the keyboard)

2002 CMP #80

2004 BNE 2009

2006 JSR 5000 (where you would print''hot,'' following your

example of CASE)

2009 CMP # 100

2011 BNE 2016

2013 JSR 5020 (print "very hot")

2016 CMP # 120

2018 BNE 2023

2020 JSR 5030 (print "intolerable")

Since you are JSRing and then will be RTSing back to within the

multiple branch test above, you will have to be sure that the

subroutines up at 5000 do not change the value of the accumulator. If

the accumulator started out with a value of 80 and, somehow, the

subroutine at 5000 left a 100 in the accumulator, you would print

"hot" and then also print "very hot." One way around this would be

to put a zero into the accumulator before returning from each of the

subroutines (LDA #0). This assumes that none of your tests, none of

your cases, responds to a zero.
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This is more common in ML than the ON GOSUB structure above. It

eliminates the need to worry about what is in the accumulator when

you return from the subroutines. Instead of RTSing back, you jump

back, following all the branch tests.

2000 LDA150

2002 CMP #80

2004 BNE 2009

2006 JMP 5000 (print "hot")

2009 CMP # 100

2011 BNE 2016

2013 JMP 5020 (print'Very hot")

2016 CMP # 120

2018 BNE 2023

2020 JMP 5030 (print "intolerable")

2023 (all the subroutines JMP 2023 when they finish)

Instead of RTS, each of the subroutines will JMP back to 2023,

which lets the program continue without accidentally "triggering"

one of the other tests with something left in the accumulator during

the execution of one of the subroutines.

PRINT

You could print out a message in the following way:

2000 LDY #0

2002 LDA #72 (use whatever your computer's screen POKE

value is for the letter "H")

2004 STA 32900,Y (an address on the screen)

2007INY

2008 LDA #69 (the letter "E")

2010 STA 32900,Y

2013 INY

r—I 2014 LDA #76 (the letter "L")

2016 STA 32900,Y

2019 INY

_ 2020 LDA #76 (the letter "L")

i i 2022 STA 32900,Y

2025 INY

2026 LDA #79 (the letter "O")

| | 2028 STA 32900,Y

But this is clearly a cumbersome, memory-eating way to go

about it. In fact, it would be absurd to print out a long message this

!"""[ way. The most common ML method involves putting message strings
into a data table and ending each message with a zero. Zero is never a
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printing character in computers (excepting Atari which cannot use i i

the technique described here). To print the ASCII number zero, you i—I
use 48: LDA #48, STA 32900. So, zero itself can be used as a delimiter

to let the printing routine know that you've finished the message. In ^

a data table, we first put in the message ' 'hello". Recall that you j |
should substitute your own computer's screen POKE code:

1000 72 H |

100169 E LJ

1002 76 L

1003 76 L

1004 79 O

1005 0 (the delimiter, see Chapter 6)

1006 72 H

1007 731 (another message)

1008 0 (another delimiter)

Such a message table can be as long as you need; it holds all

your messages and they can be used again and again:

2000 LDY #0

2002 LDA 1000,Y

2005 BEQ 2012 (if the zero flag is set, it must mean that we've

reached the delimiter, so we branch out of this

printing routine)

2005 STA 39000,Y (put it on the screen)

2008INY

2009 JMP 2002 (go back and get the next letter in the message)

2012 (continue with the program.)

Had we wanted to print "HI," the only change necessary would

have been to put 1006 into the LDA at address 2003. To change the

location on the screen that the message starts printing, we could just

put some other address into 2006. The message table, then, is just a

mass of words, separated by zeros, in RAM memory.

The easiest way to print to the screen, especially if your program

will be doing a lot of printing, is to create a subroutine and use some j \
bytes in zero page (addresses 0 to 255) to hold the address of the

message and the screen location you want to send it to. This is one

reason why hex numbers can be useful. To put an address into zero } j

page, you will need to put it into two bytes. It's too big to fit into one

byte. With two bytes together forming an address, the 6502 can

address any location from $0000 to the top $FFFF. So, if the message

is at decimal location 1000 like "HELLO" above, you should turn

1000 into a hex number. It's $03E8.

Then you split the hex number in two. The left two digits, $03,

are the MSB (the most significant byte) and the right digits, $E8, make
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up the LSB (least significant byte). If you are going to put this target

address into zero page at 56 (decimal):

2000 LDA #232 (LSB, in decimal)

2002 STA 56

2004 LDA #3 (MSB)

2006STA57

2008 JSR 5000 (printout subroutine)

5000 LDY #0

5002 LDA (56),Y

5004 BEQ 5013 (if zero, return from subroutine)

5006 STA 32900,Y (to screen)

5009INY

5010 JMP 5002

5013 RTS

One drawback to the subroutine is that it will always print any

messages to the same place on the screen. That 32900 (or whatever

you use there) is frozen into your subroutine. Solution? Use another

zero page pair of bytes to hold the screen address. Then, your calling

routine sets up the message address, as above, but also sets up the

screen address.

The Atari contains the address of the first byte of the screen

addresses in zero page for you at decimal 88 and 89. You don't need

to set up a screen address byte pair on the Atari. We are using the

Apple II's low resolution screen for the examples in this

book, so you will want to put 0 and 4 into the LSB and MSB

respectively. The PET's screen is always located in a particular place,

unlike the Atari, Apple, VIC, and 64 screen RAM locations which can

move, so you can put a $00 and an $80 into LSB and MSB for PET.

The following is in decimal:

2000 LDA #232 (LSB)

2002 STA 56 (set up message address)

2004 LDA #3 (MSB)

2006 STA 57

2008 LDA # 0 (LSB for PET and Apple)

2010 STA 58 (we'll just use the next two bytes in zero page

above our message address for the screen address)

2012 LDA # 4 (this is for Apple II; use 128 ($80) for PET)

2014 STA 59

2016 JSR 5000

5000 LDY #0

5002 LDA (56),Y

5004 BEQ 5013 (if zero, return from subroutine)
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5006 STA (58),Y (to screen)

5009INY

5010 JMP 5002

5013 RTS

For Atari: 5006 STA (88),Y. You have less flexibility because you

will always be printing your messages to the first line on screen,

using address 88 as your screen storage target. To be able to put the

message anywhere on screen, Atari users will have to use some other

zero page for the screen address, as we did for Apple II and PET

above. Atari users would have to keep track of the "cursor position"

for themselves in that case.

READ

There is no reason for a reading of data in ML. Variables are not placed

into ML "DATA statements." They are entered into a table when you

are programming. The purpose of READ, in BASIC, is to assign

variable names to raw data or to take a group of data and move it

somewhere, or to manipulate it into an array of variables. These

things are handled by you, not by the computer, in ML programming.

If you need to access a piece of information, you set up the

addresses of the datum and the target address to which you are

moving it. See the "PRINT" routines above. As always, in ML you

are expected to keep track of the locations of your variables. You keep

a map of data locations, vectors, tables, and subroutine locations. A

pad of paper is always next to you as you program in ML. It seems as

if you would need many notes. In practice, an average program of say

1000 bytes could be mapped out and commented on, using only one

sheet.

REM

You do this on a pad of paper, too. If you want to comment or make

notes about your program — and it can be a necessary, valuable

explanation of what's going on — you can disassemble some ML code

like a BASIC LISTing. If you have a printer, you can make notes on

the printed disassembly. If you don't have a printer, make notes on

your pad to explain the purpose of each subroutine, the parameters it

expects to get, and the results or changes it causes when it operates.

Complex, large assemblers often permit comments within the

source code. As you program with them, you can include REMarks

by typing a semicolon, or parentheses, or some other signal to the

assembler to ignore the REMarks when it is assembling your

program. In these assemblers, you are working much closer to the

way you work in BASIC. Your remarks remain part of the source

program and can be listed out and studied.
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RUN

RETURN

RTS works the same way that RETURN does in BASIC: it takes you

back to just after the JSR (GOSUB) that sent control of the program

away from the main program and into a subroutine. JSR pushes, onto

the stack, the address which immediately follows the JSR itself. That

address then sits on the stack, waiting until the next RTS is

encountered. When an RTS occurs, the address is pulled from the

stack and placed into the program counter. This has the effect of

transferring program control back to the instruction just after the JSR.

RUN

There are several ways to start an ML program. If you are taking off

into ML from BASIC, you just use SYS or USR or CALL. They act just

like JSR and will return control to BASIC, just like RETURN would,

when there is an unmatched RTS in the ML program. By unmatched

we mean the first RTS which is not part of a JSR/RTS pair. USR and

SYS and CALL can be used either in immediate mode (directly from the

keyboard) or from within a BASIC program as one of the BASIC

commands.

USR is just like SYS and CALL except that you can "send" values

from BASIC to ML by attaching them to the USR ( ) within the

parentheses. In Microsoft BASIC (Apple, PET/CBM, etc.), you must

set up the location of your target ML program in special USR

addresses, before exiting BASIC via USR. For example, to "gosub" to

an ML routine located at $0360 (hex), you want to put a $60 (hex) into

address 1 and an 03 into address 2. The 03 is obvious, just POKE 2,3.

Atari goes from BASIC to ML via USR. The USR's argument may

place several parameters on the stack along with the "count," the

number of parameters which were passed.

The hex 60 means that you would multiply 16 x 6, since the

second column in hex is the "16's" column. So you would POKE 1,

96. Recall that we always set up ML addresses to be used by "indirect

indexed addressing" (LDA (00),Y) by putting the LSB (least

significant byte) first. To set up 0360, then, you first separate the hex

number into its two bytes, 03 60. Then you translate them into

decimal since we're in BASIC when we use USR: 3 96. Then you

switch them so that they conform to the correct order for ML:

LSB/MSB 96 3. Finally, you POKE them into memory locations 1

and 2.

If this seems rather complex, it is. In practice, Microsoft BASIC

users rarely use USR. The number which is "passed" to ML from

within the parentheses is put into the floating point accumulator.

Following this you must JSR to FPINT, a BASIC ROM routine which

converts a floating point value into an integer that you could work
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U

with in ML. As we mentioned, working with floating point arithmetic s ,

in ML is an arcane art. For most applications which must pass Uj
information from BASIC to ML, it is far easier to use ordinary

"integer" numbers and just POKE them into some predetermined

ML variable zone that you've set aside and noted on your workpad. ! J
Then just SYS to your ML routine, which will look into the set-aside,

POKEd area when it needs the values from BASIC.

In Atari BASIC, USR works in a more simplified and more (' I

convenient way. For one thing, the target ML address is contained *—'

within the argument of the USR command: USR (address). This

makes it nearly the exact parallel of BASIC'S GOSUB. What's more,

USR passes values from BASIC by putting them on the stack as a two-

byte hex number. USR (address,X) does three things. 1. It sends

program control to the ML routine which starts at "address." 2. It

pushes the number X onto the stack where it can be pulled out with

PLA's. 3. Finally, it pushes the total number of passed values onto the

stack. In this case, one value, X, was passed to ML. All of these

actions are useful and make the Atari version of USR a more sensible

way of GOSUBing from BASIC to ML.

If you are not going between BASIC and ML, you can start

(RUN) your ML program from within your "monitor." The PET/CBM

and the Apple have built-in monitor programs in their ROM chips.

On the Atari, a monitor is available as part of a cartridge. On the

"Original" PET/CBM (sometimes called BASIC 2.0), there is no built-

in monitor. A cassette with a program called TIM (terminal interface

monitor) can be LOADed, though, and used in the same way that the

built-in versions are on later models. Neither the VIC nor the 64 has a

built-in monitor.

To enter "monitor mode" (as opposed to the normal BASIC

mode), you can type SYS 1024 or SYS 4 on the PET/CBM. These

locations always contain a zero and, by "landing" on a zero in ML,

you cause a BRK to take place. This displays the registers of your 6502

and prints a dot on the screen while waiting for your instructions to

the monitor. To enter the monitor on Apple II, type CALL -151 and ^ ~ t

you will see an asterisk (instead of PET's period) as your prompt. lJ
From within Atari's Assembler Cartridge, you would type BUG to

enter the equivalent of the Apple and PET monitor. The Atari will

print the word DEBUG and then the cursor will wait for your next [\
instruction.

To RUN an ML program, all five computers use the abbreviation

G to indicate ' 'goto and run'' the hex address which follows the G. ) j

Unfortunately, the format of the ML RUN (G), as always, differs ^
between machines. To run a program which starts at address $2000:

Apple II, you type: 2000G (8192 in decimal) j {
PET,VIC,64, you type: G 2000 ^
Atari, you type: G 2000
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STOP

One other difference: the Apple II expects to encounter an

unmatched RTS to end the run and return control to the monitor. Put

another way, it will think that your ML program is a subroutine and

2000G causes it to JSR to the subroutine at address (in hex) 2000. The

Commodores and the Atari both look for a BRK instruction (00) to

throw them back into monitor mode.

SAVE

When you SAVE a BASIC program, the computer handles it

automatically. The starting address and the ending address of your

program are calculated for you. In ML, you must know the start and

end yourself and let the computer know. From the Apple II monitor,

you type the starting and ending address of what you want saved,

and then "W" for write:

2000.2010W (This is only for cassette and these commands are

in hex. These addresses are 8192.8208, in decimal.)

From BASIC to disk use:

BSAVE Name,A,L (A = address, L=length)

On the VIC, 64, and PET, the format for SAVE is similar, but

includes a filename:

.S "PROGRAM NAME",01,2000,2010 (the 01 is the "device

number" of the tape player)

To save to disk, you must change the device number to 08 and

start the filename with the number of the drive you are SAVEing to:

.S "0:NAME",08,2000,2010

(Always add one to the "finish" address; the example

above saves from 2000 to 200F.)

With the Atari Assembler Cartridge, you:

SAVE#C:NAME < 2000,2010 (do this from the EDIT, not

DEBUG, mode). The NAME is not required with cassette.

To write Atari source code to cassette, type: SAVE#C. For disk,

type SAVE#D:FILENAME.EXT or use DOS.

STOP

BRK (or an RTS with no preceding JSR, on the Apple) throws you

back into the monitor mode after running an ML program. This is

most often used for debugging programs because you can set

"breakpoints" in the same way that you would use STOP to examine

variables when debugging a BASIC program.
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String Handling

ASC ^
In BASIC, this will give you the number of the ASCII code which

stands for the character you are testing. ?ASC(''A") will result in a 65 LJ
being displayed. There is never any need for this in ML. If you are

manipulating the character A in ML, you are using ASCII already. In

other words, the letter A is 65 in ML programming. If your computer 1 I

stores letters and other symbols in nonstandard ways (such as ^
Commodore character codes for lowercase, and Atari's ATASCII),

you will need to write a special program to be able to translate to

standard ASCII if you are using a modem or some other peripheral

which uses ASCII. See your computer's manual, the Atari BASIC

Reference Manual for example, for information on your computer's

internal character code.

CHR$

This is most useful in BASIC to let you use characters which cannot

be represented within normal strings, will not show up on your

screen, or cannot be typed from the keyboard. For example, if you

have a printer attached to your computer, you could "send"

CHR$(13) to it, and it would perform a carriage return. (The correct

numbers which accomplish various things sometimes differ, though

decimal 13 — an ASCII code standard — is nearly universally

recognized as carriage return.) Or, you could send the combination

CHR$(27)CHR$(8) and the printer would backspace.

Again, there is no real use for CHR$ within ML. If you want to

specify a carriage return, just LDA #13. In ML, you are not limited to

the character values which can appear on screen or within strings.

Any value can be dealt with directly.

The following string manipulation instructions are found in

Microsoft BASIC: ^

LEFTS "
As usual in ML, you are in charge of manipulating data. Here's one

way to extract a five-character-long "substring" from out of the left

side of a string as in the BASIC statement: LEFT$ (X$,5) ) J

2000 LDY #5

2002 LDX #0 (use X as the offset for buffer storage) . -.

2004 LDA 1000,Y (the location of X$) LJ
2007 STA 4000,X (the "buffer," or temporary storage area for

the substring)

2010INX | ;

2011DEY ^
2012 BNE 2004

LJ



n

RIGHTS

n LEN

In some cases, you will already know the length of a string in ML.

r—* One of the ways to store and manipulate strings is to know

J ) beforehand the length and address of a string. Then you could use

v the subroutine given for LEFT$ above. More commonly, though, you
will store your strings with delimiters (zeros, except in Atari) at the

; \ end of each string. To find out the length of a certain string:

2000 LDY #0

2002 LDA1000,Y (the address of the string you are testing)

2003 BEQ 2009 (remember, if you LDA a zero, the zero flag is set.

So you don't really need to use a CMP #0 here to

test whether you've loaded the zero delimiter)

2005INY

2006 BNE 2002 (we are not using a JMP here because we assume

that all your strings are less than 256 characters

long.)

2008 BRK (if we still haven't found a zero after 256 INY's, we

avoid an endless loop by just BRKing out of the

subroutine)

2009 DEY (the LENgth of the string is now in the Y register)

We had to DEY at the end because the final INY picked up the

zero delimiter. So, the true count of the LENgth of the string is one

less than Y shows, and we must DEY one time to make this

adjustment.

MID$

To extract a substring which starts at the fourth character from within

the string and is five characters long (as in MID$(X$,4,5)):

2000 LDY #5 (the size of the substring we're after)

2002 LDX #0 (X is the offset for storage of the substring)

^ 2004 LDA 1003,Y (to start at the fourth character from within the

/ \ X$ located at 1000, simply add three to that

address. Instead of starting our LDA,Y at

1000, skip to 1003. This is because the first

f*11"- character is not in position one. Rather, it is at
1 the zeroth position, at 1000.)

2007 STA 4000,X (the temporary buffer to hold the substring)

0 2010INX

1 I 2011 DEY
2012 BNE 2004

r) RIGHTS

This, too, is complicated because normally we do not know the

LENgth of a given string. To find RIGHT$(X$,5) if X$ starts at 1000,

RR
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RIGHTS ^

u

we should find the LEN first and then move the substring to our

holding zone (buffer) at 4000:

2000 LDY #0

2002 LDX #0

2004 LDA 1000,Y

2007 BEQ 2013 (the delimiting zero is found, so we know LEN)

2009INY

2010 JMP 2004

2013 TYA (put LEN into A to subtract substring size from it)

2014 SEC (always set carry before subtraction)

2015 SBC #5 (subtract the size of the substring you want to

extract)

2017 TAY (put the offset back into Y, now adjusted to point to

five characters from the end of X$)

2018 LDA 1000,Y

2021 BEQ 2030 (we found the delimiter, so end)

2023 STA 4000,X

2026INX

2027 DEY

2028 BNE 2018

2030 RTS

The above does not apply to Atari since it cannot use zero as a

delimiter.

SPC

This formatting instruction is similar to TAB. The difference is that

SPC(10) moves you ten spaces to the right from wherever the cursor

is on screen at the time. TAB(10) moves ten spaces from the left-hand

side of the screen. In other words, TAB always counts over from the

first column on any line; SPC counts from the cursor's current

position.

In ML, you would just add the amount you want to SPC over. If

you were printing to the screen and wanted ten spaces between A

and B so it looked like this (A B), you could write:

2000 LDA #65 (A)

2002 STA 32768 (screen RAM address)

2005 LDA #66 (B)

2007 STA 32778 (you've added ten to the target address)

Alternatively, you could add ten to the Y offset: \ (

2000 LDY #0

2002 LDA #65 \

2004 STA 32768,Y I /

2007 LDY #10 (add ten to Y) V



TAB

2009 LDA #66

2011 STA 32768,Y

If you are printing out many columns of numbers and need a

subroutine to correctly space your printout, you might want to use a

subroutine which will add ten to the Y offset each time you call the

subroutine:

5000 TYA

5001CLC

5002 ADC #10

5004 TAY

5005 RTS

This subroutine directly adds ten to the Y register whenever you

JSR 5000. To really do this job, however, you should use a two-byte

register to keep track of the cursor.

TAB

Quite similar to SPC, except that you don't add the offset from the

cursor position (whatever location you most recently printed).

Rather, TAB(X) moves ten over from the left side of the screen, or, if

you are using a printer, from the left margin on the piece of paper.

There is no particular reason to use TAB in ML. You have much more

direct control in ML over where characters are printed out.
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Appendix A

ADC Add Memory To Accumulator With Carry

Status Flags

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

N Z C

Mnemonics

ADC#Arg

ADC Arg

ADC Arg, X

ADC Arg

ADC Arg, X

ADC Arg, Y

ADC (Arg, X)

ADC (Arg), Y

I D "

Opcode

69

65

75

6D

7D

79

61

71

Size

In Bytes

2

2

2

3

3

3

2

2

AND "AND" Memory With Accumulator

Status Flags N Z C
• •

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Mnemonics

AND # Arg

AND Arg

ANDArg,X

AND Arg

AND Arg, X

AND Arg, Y

AND (Arg, X)

AND (Arg),Y

I D

Opcode

29

25

35

2D

3D

39

21

31

V

Size

In Bytes

2

2

2

3

3

3

2

2

j )
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ASL

ASL

Status Flags

Addressing

Mode

Accumulator

Zero Page

Zero Page, X

Absolute

Absolute, X

BCC

Status Flags

Addressing

Mode

Relative

BCS

Status Flags

Addressing

Mode

Relative

Shift Left One Bit

N Z C I D i
• • •

Mnemonics

ASL A

ASLArg

ASLArg,X

ASLArg

ASLArg,X

Opcode

OA

06

16

OE

IE

Branch On Carry Clear

N Z C I D

Mnemonics

BCC Arg

Opcode

90

Branch On Carry Set

N Z C I D

Mnemonics

BCS Arg

Opcode

BO

Size

In Bytes

1

2

2

3

3

V

Size

In Bytes

2

V

Size

In Bytes

2

U

U

\ ii

u

y

L
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BNE

BEQ

Status Flags

Addressing

Mode

Relative

Branch On Zero

N Z C

Mnemonics

BEQArg

I D ^

Opcode

FO

Size

In Bytes

2

BIT Test Bits In Memory Against Accumulator

Status Flags

Addressing

Mode

Zero Page

Absolute

N Z C
• •

Mnemonics

BITArg

BITArg

I D ^

Opcode

24

2C

V

•

Size

In Bytes

2

3

BMI

Status Flags

Addressing

Mode

Relative

Branch On Minus

N Z C

Mnemonics

BMIArg

I D

Opcode

30

V

Size

In Bytes

2

BNE Branch On Anything But Zero

Status Flags

Addressing

Mode

Relative

N Z C

Mnemonics

BNE Arg

I D

Opcode

DO

V

Size

In Bytes

2

I \
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BPL

BPL

Status Flags

Addressing

Mode

Relative

Branch On Plus

N Z C

Mnemonics

BPLArg

I D

Opcode

10

V

Size

In Bytes

2

BRK

Status Flags

Addressing

Mode

Implied

Break

N Z C

Mnemonics

BRK

I D
•

Opcode

00

V

Size

In Bytes

1

BVC Branch On Overflow Clear

Status Flags

Addressing

Mode

Relative

N Z C

Mnemonics

BVCArg

I D

Opcode

50

V

Size

In Bytes

2

BVS

Status Flags

Addressing

Mode

Relative

Branch On Overflow Set

N Z C

Mnemonics

BVSArg

I D ^

Opcode

70

Size

In Bytes

2
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CLV

CLC Clear Cany Flag

Status Flags N Z C I D V
•

Addressing

Mode

Implied

Mnemonics

CLC

Opcode

18

Size

In Bytes

1

CLD

Status Flags

Addressing

Mode

Implied

Clear Decimal

N Z

Mnemonics

CLD

Mode

C I D
•

Opcode

D8

V

Size

In Bytes

1

CLI Clear Interrupt Disable Bit

Status Flags N Z C I D V
•

Addressing

Mode

Implied

Mnemonics

CLI

Opcode

58

Size

In Bytes

1

CLV

Status Flags

Addressing

Mode

Implied

Clear Overflow Flag

N Z C I D

Mnemonics

CLV

Opcode

B8

V

•

Size

In Bytes

1
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CMP

CMP Compare Memory And Accumulator

Status Hags N Z C I D V
• • •

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Mnemonics

CMP # Arg

CMPArg

CMP Arg, X

CMPArg

CMP Arg, X

CMP Arg, Y

CMP (Arg, X)

CMP (Arg), Y

Opcode

C9

C5

D5

CD

DD

D9

Cl

Dl

Size

In Bytes

2

2

2

3

3

3

2

2

CPX Compare Memory Against X Register

Status Flags

Addressing

Mode

Immediate

Zero Page

Absolute

N Z C I D
• • •

Mnemonics

CPX # Arg

CPXArg

CPXArg

Opcode

EO

E4

EC

V

Size

In Bytes

2

2

3

CPY Compare Memory Against Y Register

Status Flags N Z C I D V
• • •

Addressing

Mode

Immediate

Zero Page

Absolute

Mnemonics

CPY # Arg

CPYArg

CPYArg

Opcode

CO

C4

CC

Size

In Bytes

2

2

3

u

\ r
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DEY

DEC Decrement Memory By One

Status Flags N Z C I D V
• •

Addressing

Mode

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

DEC Arg

DEC Arg, X

DEC Arg

DEC Arg, X

Opcode

C6

D6

CE

DE

Size

In Bytes

2

2

3

3

DEX Decrement X Register By One

Status Flags N Z C I D 1
• •

Addressing

Mode

Implied

Mnemonics

DEX

Opcode

CA

V

Size

In Bytes

1

DEY Decrement Y Register By One

Status Flags N Z C I D V
• •

Addressing

Mode

Implied

Mnemonics

DEY

Opcode

88

Size

In Bytes

1
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EOR

EOR Exclusive—Or Memory With Accumulator

Status Flags N Z C I D V
• •

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Mnemonics

EOR # Arg

EORArg

EOR Arg, X

EORArg

EOR Arg, X

EOR Arg, Y

EOR (Arg, X)

EOR (Arg), Y

Opcode

49

45

55

4D

5D

59

41

51

Size

In Bytes

2

2

2

3

3

3

2

2

INC Increment Memory By One

Status Flags N Z C I D V
• •

Addressing

Mode

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

INC Arg

INC Arg, X

INC Arg

INC Arg, X

Opcode

E6

F6

EE

FE

Size

In Bytes

2

2

3

3

INX Increment X Register By One

Status Flags N Z C I D
• •

Addressing

Mode

Implied

Mnemonics

INX

Opcode

E8

V

Size

In Bytes

1
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I \

JSR

INY IncrementY Register By One

Status Flags

Addressing

Mode

Implied

N Z C

Mnemonics

INY

I D

Opcode

C8

V

Size

In Bytes

1

JMP

Status Flags

Addressing

Mode

Absolute

Indirect

Jump

N Z C

Mnemonics

JMP Arg

JMP (Arg)

I D

Opcode

4C

6C

V

Size

In Bytes

COCO

JSR Jump To New Location, But Save

Status Flags

Addressing

Mode

Absolute

N Z C

Mnemonics

JSR Arg

Return Address

I D

Opcode

20

V

Size

In Bytes

3
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LDA

LDA Load Accumulator With

Status Flags N Z C
• •

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Mnemonics

LDA # Arg

LDAArg

LDA Arg, X

LDAArg

LDA Arg, X

LDAArg, Y

LDA (Arg, X)

LDA (Arg), Y

Memory

I D

Opcode

A9

A5

B5

AD

BD

B9

Al

Bl

V

Size

In Bytes

2

2

2

3

3

3

2

2

LDX Load X Register

Status Flags N Z C

Addressing

Mode

Immediate

Zero Page

Zero Page, Y

Absolute

Absolute, Y

Mnemonics

LDX # Arg

LDX Arg

LDX Arg, Y

LDX Arg

LDX Arg, Y

I D

Opcode

A2

A6

B6

AE

BE

V

Size

In Bytes

2

2

2

3

3

u

u

u

Li

LJ
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NOP

I \

LDY Load Y Register

Status Hags N Z C I D V
• •

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

LDYIArg

LDYArg

LDYArg,X

LDYArg

LDYArg,X

Opcode

AO

A4

64

AC

BC

Size

In Bytes

2

2

2

3

3

LSR Shift Right One Bit In Either Memory Or Accumulator

Status Flags N Z C ID V
• • •

Addressing

Mode

Accumulator

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

LSRA

LSR Arg

LSRArg,X

LSR Arg

LSR Arg, X

Opcode

4A

46

56

4E

5E

Size

In Bytes

1

2

2

3

3

NOP No Operation

Status Flags N Z C I D V

Addressing

Mode

Implied

Mnemonics

NOP

Opcode

EA

Size

In Bytes

1
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ORA

ORA ORMemory With Accumulator

Status Flags

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

N Z C

Mnemonics

ORA # Arg

ORAArg

ORA Arg, X

ORAArg

ORA Arg, X

ORA Arg, Y

ORA (Arg, X)

ORA (Arg), Y

I D

Opcode

09

05

15

0D

ID

19

01

11

V

Size

In Bytes

2

2.

2

3

3

3

2

2

PHA

Status Flags

Addressing

Mode

Implied

Push Accumulator Onto The

N Z C

Mnemonics

PHA

Stack

I D

Opcode

48

V

Size

In Bytes

1

PHP Push Processor Status Onto The Stack

Status Flags N Z C I D V

Addressing

Mode

Implied

Mnemonics

PHP

Opcode

08

Size

In Bytes

1

u

u

160
\ I



j I

ROL

PLA

Status Flags

Addressing

Mode

Implied

Pull Accumulator From The

N Z C
• •

Mnemonics

PLA

Stack

I D

Opcode

68

V

Size

In Bytes

1

PLP Pull Processor Status From The Stack

Status Flags N Z C I D V

From Stack

Addressing

Mode

Implied

Mnemonics

PLP

Opcode

28

Size

In Bytes

1

ROL Rotate One Bit Left In Memory Or The Accumulator

Status Flags N Z C I D V
• • •

Addressing

Mode

Accumulator

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

ROLA

ROLArg

ROL Arg, X

ROLArg

ROL Arg, X

Opcode

2A

26

36

2E

3E

Size

In Bytes

1

2

2

3

3
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ROR

ROR Rotate One Bit Right In Memory Or The Accumulator

Status Flags N Z C I D V
• • •

Addressing

Mode

Accumulator

Zero Page

Zero Page, X

Absolute

Absolute, X

Mnemonics

RORA

RORArg

RORArg,X

RORArg

RORArg,X

Opcode

6A

66

76

6E

7E

Size

In Bytes

1

2

2

3

3

RTI Return From Interrupt

Status Flags N Z C I D V

From Stack

Addressing

Mode

Implied

Mnemonics

RTI

Opcode

40

Size

In Bytes

1

RTS

Status Flags

Addressing

Mode

Implied

Return From Subroutine

N Z C I D ' 1

Mnemonics

RTS

Opcode

60

V

Size

In Bytes

1

I I

LJ
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SED

SBC Subtract Memory From Accumulator, With Borrow

Status Flags

Addressing

Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

N Z C

Mnemonics

SBC#Arg

SBCArg

SBCArg,X

SBCArg

SBCArg,X

SBCArg,Y

SBC(Arg,X)

SBC(Arg),Y

I D

Opcode

E9

E5

F5

ED

FD

F9

El

Fl

V

Size

In Bytes

2

2

2

3

3

3

2

2

SEC

Status Flags

Addressing

Mode

Implied

Set Carry Flag

N Z C
•

Mnemonics

SEC

I D

Opcode

38

V

Size

In Bytes

1

SED Set Decimal Mode

Status Flags N Z C I D V
•

Addressing

Mode

Implied

Mnemonics

SED

Opcode

F8

Size

In Bytes

1

) I
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SEI

SEI Set Interrupt Disable Status

Status Flags N Z C I D V
•

Addressing

Mode

Implied

Mnemonics

SEI

Opcode

78

Size

In Bytes

1

STA Store Accumulator In Memory

Status Flags N Z C I D V

Addressing

Mode

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Mnemonics

STAArg

STAArg,X

STAArg

STAArg,X

STAArg,Y

STA(Arg,X)

STA(Arg),Y

Opcode

85

95

8D

9D

99

81

91

Size

In Bytes

2

2

3

3

3

2

2

STX Store X Register In Memory

Status Flags

Addressing

Mode

Zero Page

Zero Page, Y

Absolute

N Z C

Mnemonics

STXArg

STXArg,Y

STXArg

I D

Opcode

86

96

8E

V

Size

In Bytes

2

2

3
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TSX

STY Store Y Register In Memory

Status Flags N Z C I D V

Addressing

Mode

Zero Page

Zero Page, X

Absolute

Mnemonics

STYArg

STYArg,X

STYArg

Opcode

84

94

8C

Size

In Bytes

2

2

3

TAX Transfer Accumulator To X Register

Status Flags N Z C I D V
• •

Addressing

Mode

Implied

Mnemonics

TAX

Opcode

AA

Size

In Bytes

1

TAY Transfer Accumulator To Y Register

Status Flags N Z C ID V
• •

Addressing

Mode

Implied

Mnemonics

TAY

Opcode

A8

Size

In Bytes

1

TSX Transfer Stack Pointer To X Register

Status Flags N Z C I D V
• •

Addressing

Mode

Implied

Mnemonics

TSX

Opcode

BA

Size

In Bytes

1
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TXA

TXA Transfer X Register To Accumulator

Status Hags N Z C I D V
• •

Addressing

Mode

Implied

Mnemonics

TXA

Opcode

8A

Size

In Bytes

1

TXS Transfer X Register To Stack Pointer

Status Flags N Z C I D V

Addressing

Mode

Implied

Mnemonics

TXS

Opcode

9A

Size

In Bytes

1

TYA Transfer Y Register To Accumulator

Status Hags N Z C I D V
• •

Addressing

Mode

Implied

Mnemonics

TYA

Opcode

98

Size

In Bytes

1

) I

u

u
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These maps, primarily the work ofJim Butterfield, all originally appeared in COMPUTE!

Magazine. (See the copyright page for references.)

Map I. PET Original And Upgrade BASIC.

ORIG UPGR DESCRIPTION

C357 C355 ?OUT OF MEMORY

C359 C357 Send BASIC error message

C38B C389 Warm start, BASIC

C3AC C3AB Crunch & insert line
C430 C439 Fix chaining & READY

C433 C442 Fix chaining

C48D C495 Crunch tokens

C522 C52C Find line in BASIC

C553 C55D Do NEW

C56A C572 Do CLR

C59A C5A7 Reset BASIC to start

C6B5 C6C4 Continue BASIC execution

C863 C873 Get fixed-point number from BASIC

C9CE C9DE Send Return, LF if in screen mode

C9D2 C9E2 Send Return, Linefeed

CA27 CA1C Print string

CA2D CA22 Print precomputed string

CA49 CA45 Print character

CE11 CDF8 Check for comma

CE13 CDFA Check for specific character

CE1C CE03 'SYNTAX ERROR'

D079 D069 Bump Variable Address by 2

D0A7 D09A Float to Fixed conversion

D278 D26D Fixed to Float conversion

D679 D67B Get byte to X reg

D68D D68F Evaluate String

D6C4 D6C6 Get two parameters

D73C D773 Add (from memory)

D8FD D934 Multiply by memory location

D9B4 D9EE Multiply by ten

DA74 DAAE Unpack memory variable to Accum #1

DB1B DB55 Completion of Fixed to Float conversion

DC9F DCD9 Print fixed-point value

DCA9 DCE3 Print floating-point value
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u

u

DCAF

E3EA

na

na

na

F0B6

FOBA

F12C

E7DE

F167

F17A

F17E

F187

F2C8

F2CD

F32A

F33F

na

F3DB

F3E5

F3FF

F411

F43F

F462

F495

F504

F52A

F52D

F579

F57B

F5AE

F64D

F667

F67D

F6E6

F78B

F7DC

F83B

F87F

F88A

F8B9

F8C1

F913

FBDC

FD1B

DCE9

E3D8

E775

E7A7

E7B6

F0B6

FOBA

F128

F156

F16F

F17F

F183

F18C

F2A9

F2AE

F301

F315

F322

F3E6

F3EF

F40A

F41D

F447

F466

F494

F4FD

F521

F524

F56E

F570

F5A6

F63C

F656

F66C

F6F0

F770

F7BC

F812

F855

F85E

F886

F883

F8E6

FB76

FC9B

Convert number to ASCII string

Print a character

Output byte as 2 hex digits

Input 2 hex digits to A

Input 1 hex digit to A

Send'talk'to IEEE

Send 'listen' to IEEE

Send Secondary Address

Send canned message

Send character to IEEE

Send 'untalk'

Send 'unlisten'

Input from IEEE

Close logical file

Close logical file in A

Check for Stop key

Send message if Direct mode

LOAD subroutine

?LOAD ERROR

Print READY & reset BASIC to start

Print SEARCHING...

Print file name

Get LOAD/SAVE type parameters

Open IEEE channel for output

Find specific tape header block

Get string

Open logical file from input parameters

Open logical file

?FILE NOT FOUND, clear I/O

Send error message

Find any tape header block

Get pointers for tape LOAD

Set tape buffer start address

Set cassette buffer pointers

Close IEEE channel

Set input device from logical file number

Set output device from LFN

PRESSPLAY. .; wait

Read tape to buffer

Read tape

Write tape from buffer

Write tape, leader length in A

Wait for I/O complete or Stop key

Reset tape I/O pointer

Set interrupt vector

U

U

LJ

U
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FFC6

FFC9

FFCC

FFCF

FFD2

FFE4

FFC6

FFC9

FFCC

FFCF

FFD2

FFE4

Set input device

Set output device

Restore default I/O devices

Input character

Output character

Get character

Map 2. Upgrade PET/CBM Map.

0000-0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

oooc

000D

000E

0011-0012

0013

0014-0015

0016-001E

001F-0020

0021-0022

0023-0027

0028-0029

002A-002B

002C-002D

002E-002F

0030-0031

0032-0033

0034-0035

0036-0037

0038-0039

003A-003B

003C-003D

003E-003F

0040-0041

0-2

3

4

5

6

7

8

9

10

11

12

13

14

17-18

19

20-21

22-30

31-32

33-34

35-39

40-41

42-43

44-45

46-47

48-49

50-51

52-53

54-55

56-57

58-59

60-61

62-63

64-65

USR Jump instruction

Search character

Scan-between-quotes flag

BASIC input buffer pointer;#subscripts

Default DIM flag

Type: FF = string, 00=numeric

Type: 80=integer, 00=floating point

DATA scan flag; LIST quote flag;

memory flag

Subscript flag; FNx flag

0=input; 64=get; 152=read

ATN sign flag; comparison evaluation flag

input flag; suppress output if negative

current I/O device for prompt-suppress

BASIC integer address (for SYS, GOTO, etc.)

Temporary string descriptor stack pointer

Last temporary string vector

Stack of descriptors for temporary strings

Pointer for number transfer

Misc. number pointer

Product staging area for multiplication

Pointer: Start-of-BASIC memory

Pointer: End-of-BASIC, Start-of-Variables

Pointer: End-of-Variables, Start-of-Arrays

Pointer: End-of-Arrays

Pointer: Bottom-of-strings (moving down)

Utility string pointer

Pointer: Limit of BASIC Memory

Current BASIC line number

Previous BASIC line number

Pointer to BASIC statement (for CONT)

Line number, current DATA line

Pointer to current DATA item

Input vector
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0042-0043

0044-0045

0046-0047

0048

004A

004B-004C

004D-0050

0051-0053

0054-0058

0059-005D

005E-0063

0064

0065

0066-006B

006C

006D

006E-006F

0070-0087

0088-008C

008D-008F

0090-0091

0092-0093

0094-0095

0096

0097

0098

0099-009A

009B

009C

009D

009E

009F

00A0

00A1

00A3-00A4

00A5

00A6

00A7

00A8

00A9

00AA

OOAB

OOAC

00AD

OOAE

66-67

68-69

70-71

72

74

75-76

77-80

81-83

84-88

89-93

94-99

100

101

102-107

108

109

110-111

112-135

136-140

141-143

144-145

146-147

148-149

150

151

152

153-154

155

156

157

158

159

160

161

163-164

165

166

167

168

169

170

171

172

173

174

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y save register; new-operator save

Comparison symbol accumulator

Misc. numeric work area

Work area; garbage yardstick

Jump vector for functions

Misc. numeric storage area

Misc. numeric storage area

Accumulator#l:E,M,M,M,M,S

Series evaluation constant pointer

Accumulator hi-order propagation word

Accumulator #2

Sign comparison, primary vs. secondary

low-order rounding byte for Ace #1

Cassette buffer length/Series pointer

Subrtn: Get BASIC Char; 77,78=pointer

RND storage and work area

Jiffy clock for TI and TI$

Hardware interrupt vector

Break interrupt vector

NMI interrupt vector

Status word ST

Which key depressed: 255 = no key

Shift key: 1 if depressed

Correction clock

Keyswitch PIA: STOP and RVS flags

Timing constant buffer

Load=0, Verify=1

Characters in keyboard buffer

Screen reverse flag

IEEE-488 mode

End-of-line-for-input pointer

Cursor log (row, column)

PBD image for tape I/O

Key image

0=flashing cursor, else no cursor

Countdown for cursor timing

Character under cursor

Cursor blink flag

EOT bit received

Input from screen/input from keyboard

X save flag

How many open files

u

LJ

Li

U
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n

OOAF 175

OOBO 176

OOB1 177

00B2 178

00B4 180

00B5 181

00B7 183

00B9 185

00BA 186

OOBB 187

OOBC 188

OOBD 189

OOBE 190

OOBF 191

OOCO 192

00C1 193

00C2 194

00C3 195

00C4-00C5 196-197

00C6 198

00C7-00C8 199-200

00C9-00CA 201-202

00CB-00CC 203-204

00CD 205

OOCE 206

OOCF 207

OODO 208

00D1 209

00D2 210

00D3 211

00D4 212

00D5 213

00D6-00D7 214-215

00D8 216

00D9 217

00DA-00DB 218-219

n

n

00DC

00DD

OODE

OODF

00E0-00F8

00F9

OOFA

220

221

222

223

224-248

249

250

OOFB-OOFC 251-252

0100-010A 256-266

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte received flag

Tape buffer character

Pointer in file name transfer

Serial bit count

Cycle counter

Countdown for tape write

Tape buffer #1 count

Tape buffer #2 count

Write leader count; Read pass I/pass 2

Write new byte; Read error flag

Write start bit; Read bit seq error

Pass 1 error log pointer

Pass 2 error correction pointer

0=Scan; 1-15 = Count; $40=Load; $80=End

Checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape buffer, scrolling

Tape end address/end of current program

Tape timing constants

00 = direct cursor, else programmed cursor

Timer 1 enabled for tape read; 00 = disabled

EOT signal received from tape

Read character error

# characters in file name

Current logical file number

Current secondary addrs, or R/W command

Current device number

Line length (40 or 80) for screen

Start of tape buffer, address

Line where cursor lives

Last key input; buffer checksum; bit buffer

File name pointer

Number of keyboard INSERTS outstanding

Write shift word/Receive input character

# blocks remaining to write/read

Serial word buffer

Screen line table: hi order address & line wrap

Cassette #1 status switch

Cassette #2 status switch

Tape start address

Binary to ASCII conversion area
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0100-013E 256-318 Tape read error log for correction

0100-01FF 256-511 Processor stack area

0200-0250 512-592 BASIC input buffer

0251-025A 593-602 Logical file number table

025B-0264 603-612 Device number table

0265-026E 613-622 Secondary address, or R/W cmd, table

026F-0278 623-632 Keyboard input buffer

027A-0339 634-825 Tape #1 buffer

033A-03F9 826-1017 Tape #2 buffer

03FA-03FB 1018-1019 Vector for Machine Language Monitor

0400-7FFF 1024-32767 Available RAM including expansion

8000-8FFF 32768-36863 Video RAM

9000-BFFF 36864-49151 Available ROM expansion area

C000-E0F8 49152-57592 Microsoft BASIC interpreter

E0F9-E7FF 57593-59391 Keyboard, Screen, Interrupt programs

E810-E813 59408-59411 PIA1 - Keyboard I/O

E820-E823 59424-59427 PIA2 - IEEE-488 I/O

E840-E84F 59456-59471 VIA - I/O and Timers

F000-FFFF 61440-65535 Reset, tape, diagnostic monitor

Map 3. PET/CBM 4.0 BASIC. Zero Page.

Hex Decimal Description

0000-0002 0-2 USR jump

0003 3 Search character

0004 4 Scan-between-quotes flag

0005 5 Input buffer pointer; # of subscripts

0006 6 Default DIM flag

0007 7 Type: FF=string, 00=numeric

0008 8 Type: 80=integer, 00=floating point

0009 9 Flag: DATA scan; LIST quote; memory

000A 10 Subscript flag; FNX flag

000B 11 O=INPUT; $40=GET; $98=READ

000C 12 ATN sign/Comparison Evaluation flag

OOOD-OOOF 13-15 Disk status DS$ descriptor

0010 16 Current I/O device for prompt-suppress

0011-0012 17-18 Integer value (for SYS, GOTO etc)

0013-0015 19-21 Pointers for descriptor stack

0016-001E 22-30 Descriptor stack(temp strings)
001F-0022 31-34 Utility pointer area

0023-0027 35-39 Product area for multiplication

0028-0029 40-41 Pointer: Start-of-Basic
002A-002B 42-43 Pointer: Start-of-Variables

002C-002D 44-45 Pointer: Start-of-Arrays

002E-002F 46-47 Pointer: End-of-Arrays

0030-0031 48-49 Pointer: String-storage(moving down)
0032-0033 50-51 Utility string pointer

0034-0035 52-53 Pointer: Limit-of-memory

0036-0037 54-55 Current Basic line number
0038-0039 56-57 Previous Basic line number
OO3A-OO3B 58-59 Pointer: Basic statement for CONT
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003c

003E

0040

0042

0044

0046

0048

004A

004B.

0051
0054.

005E

005F

0063
0064

0065
0066

006C

006D

006E.

0070

0077
0088

008D

0090

0092

0094

0096

0097
0098

0099
009B

009C

009D

009 E

009F

00A0

00A1

00A3-00A4

00A5
00A6

00A7
00A8

00A9
OOAA

OOAB

OOAC

OOAD

OOAE

OOAF

OOBO

00B1

00B2

00B3
00B4

00B5

00B7

00B9

•003D

• 003F

■0041

-0043
.0045

■0047

•0049

•0050

■0053
•005D

-0062

-006B

006F

-0087
•0078

•008C

008F

■0091

•0093
•0095

-009A

60-61 Current DATA line number

62-63 Current DATA address

64-65 Input vector
66-67 Current variable name

68-69 Current variable address
70-71 Variable pointer for FOR/NEXT

72-73 Y-save; op-save; Basic pointer save

74 Comparison symbol accumulator

75-80 Misc work area, pointers, etc

81-83 Jump vector for functions
84-93 Misc numeric work area
94 Accum#1: Exponent

95-98 Accum/M: Mantissa

99 Accum//1: Sign

100 Series evaluation constant pointer

101 Accum#1 hi-order (overflow)

102-107 Accum#2: Exponent, etc.

108 Sign comparison, Acc#1 vs #2

106 Accum#1 lo-order (rounding)
110-111 Cassette buff len/Series pointer

112-135 CHRGET subroutine; get Basic char

119-120 Basic pointer (within subrtn)

136-140 Random number seed.

141-143 Jiffy clock for TI and TI$

144-145 Hardware interrupt vector

146-147 BRK interrupt vector
148-149 NMI interrupt vector
150 Status word ST

151 Which key down; 255=no key

152 Shift key: 1 if depressed

153-154 Correction clock

155 Keyswitch PIA: STOP and RVS flags

156 Timing constant for tape

157 Load=0, Verify=1

158 Number of characters in keybd buffer

159 Screen reverse flag

160 IEEE output; 255=character pending
161 End-of-line-for-input pointer
163-164 Cursor log (row, column)

165 IEEE output buffer
166 Key image

167 0=flash cursor

168 Cursor timing countdown

169 Character under cursor

170 Cursor in blink phase

171 EOT received from tape

172 Input from screen/from keyboard

173 X save

174 How many open files

175 Input device, normally 0

176 Output CMD device, normally 3

177 Tape character parity

178 Byte received flag

179 Logical Address temporary save

180 Tape buffer character; MLM command

181 File name pointer; MLM flag, counter

183 Serial bit count

185 Cycle counter
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1 (

LJ

LJ

OOBA

OOBB-OOBC

OOBD

OOBE

OOBF

OOCO-OOC1

00C2

OOC3

00C4-00C5
00C6

OOC7-OOC8

OOC9-OOCA

OOCB-OOCC

OOCD

OOCE

OOCF

OODO

OOD1

00D2

OOD3
00D4

OOD5

00D6-00D7
OOD8

OOD9
OODA-OODB

OODC

OODD

OODE

OODF

OOEO-OOF8

OOEO-OOE1

00E2

OOE3
00E4

00E5
OOE6

00E7
00E8

OOE9-OOEA

OOEB-OOEC

OOF9-OOFA

OOFB-OOFC

OOFD-OOFE

O1OO-O1OA

O1OO-O13E

O1OO-O1FF

0200-0250

0251-025A

025B-0264

0265-026E

026F-0278

027A-0339

O33A-O3F9
033A

033B

033C

033D

186

187-188

189
190

191
192-193
194

195

196-197
198

199-200

201-202

203-204

205
206

207
208

209
210

211

212

213
214-215
216

217

218-219
220

221

222

223
224-248

224-225
226

227
228

229
230

231
232

233-234

235-236

249-250

251-252

253-254

256-266

256-318

256-511
512-592

593-602

603-612

613-622

623-632

634-825
826-1017
826

827
828

829

Tape writer countdown

Tape buffer pointers, #1 and #2

Write leader count; read pass1/2

Write new byte; read error flag

Write start bit; read bit seq error

Error log pointers, pass1/2
0=Scan/1-15=Count/$40=Load/$80=End

Write leader length; read checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape, scroll

Tape end addrs/End of current program

Tape timing constants

0=direct cursor, else programmed

Tape read timer 1 enabled

EOT received from tape

Read character error

# characters in file name

Current file logical address

Current file secondary addrs

Current file device number

Right-hand window or line margin

Pointer: Start of tape buffer

Line where cursor lives

Last key/checksum/misc.

File name pointer

Number of INSERTS outstanding

Write shift word/read character in

Tape blocks remaining to write/read

Serial word buffer

(40-column) Screen line wrap table

(80-column) Top, bottom of window

(80-column) Left window margin

(80-column) Limit of keybd buffer

(80-column) Key repeat flag

(80-column) Repeat countdown

(80-column) New key marker

(80-column) Chime time

(80-column) HOME count

(80-column) Input vector

(80-column) Output vector

Cassette status, #1 and #2

MLM pointer/Tape start address

MLM, DOS pointer, misc.

STR$ work area, MLM work

Tape read error log

Processor stack

MLM work area; Input buffer

File logical address table

File device number table

File secondary adds table

Keyboard input buffer

Tape#1 input buffer

Tape//2 input buffer

DOS character pointer

DOS drive 1 flag

DOS drive 2 flag

DOS length/write flag

LJ

174



Appendix B

033E

033F-0340

0341

0342-0352

0353-0380

03EE-03F7
O3FA-O3FB

03FC

0400-7FFF

830

831-832

833
834-850

851-896

1006-1015

1018-1019
1020

1024-3276

DOS syntax flags

DOS disk ID

DOS command string count

DOS file name buffer

DOS command string buffer

(80-column) Tab stop table

Monitor extension vector

IEEE timeout defeat

1024-32767 Available RAM including expansion

8OOO-83FF 32768-33791 (40-column) Video RAM
8000-87FF 32768-34815 (80-column) Video RAM

9000-AFFF 36864-45055 Available ROM expansion area

B000-DFFF 45056-57343 Basic, DOS, Machine Lang Monitor

E000-E7FF 57344-59391 Screen, Keyboard, Interrupt programs

E81O-E813 59408-59411 PIA 1 - Keyboard I/O

E820-E823 59424-59427 PIA 2 - IEEE-488 1/0
E840-E84F 59456-59471 VIA - I/O and timers

E880-E881 59520-59521 (80-column) CRT Controller

F000-FFFF 61440-65535 Reset, I/O handlers, Tape routines

Map 4. PET/CBM 4.0 BASIC ROM Routines.

Description

B000-B065 Action addresses for primary keywords

B066-B093 Action addresses for functions

B094-B0B1 Hierarchy and action addresses for operators

B0B2-B20C Table of Basic keywords

B20D-B321 Basic messages, mostly error messages

B322-B34F Search the stack for FOR or GOSUB activity

B350-B392 Open up space in memory

B393-B39F Test: stack too deep?

B3AO-B3CC Check available memory

B3CD Send canned error message, then:

B3FF-B41E Warm start; wait for Basic command

B41F-B4B5 Handle new Basic line input

B4B6-B4E1 Rebuild chaining of Basic lines

B4E2-B4FA Receive line from keyboard

B4FB-B5A2 Crunch keywords into Basic tokens

B5A3-B5D1 Search Basic for given line number

B5D2 Perform NEW, and;

B5EC-B621 Perform CLR

B622-B62F Reset Basic execution to start

B630-B6DD Perform LIST

B6DE-B784 Perform FOR

B785-B7B6 Execute Basic statement

B7B7-B7C5 Perform RESTORE

B7C6-B7ED Perform STOP or END

B7EE-B807 Perform CONT
B808-B812 Perform RUN

B813-B82F Perform GOSUB

B830-B85C Perform GOTO

B85D Perform RETURN, then:
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B883-B890 Perform DATA: skip statement

B891 Scan for next Basic statement

B894-B8B2 Scan for next Basic line

B8B3 Perform IF, and perhaps:

B8C6-B8D5 Perform REM: skip line

B8D6-B8F5 Perform ON
B8F6-B92F Accept fixed-point number

B93O-BA87 Perform LET
BA88-BA8D Perform PRINT//

BA8E-BAA1 Perform CMD

BAA2-BB1C Perform PRINT

BB1D-BB39 Print string from memory

BB3A-BB4B Print single format character

BB4C-BB79 Handle bad input data

BB7A-BBA3 Perform GET

BBA4-BBBD Perform INPUT*

BBBE-BBF4 Perform INPUT

BBF5-BC01 Prompt and receive input

BC02-BCF6 Perform READ

BCF7-BD18 Canned Input error messages

BD19-BD71 Perform NEXT
BD72-BD97 Check type mismatch

BD98 Evaluate expression

BEE9 Evaluate expression within parentheses

BEEF Check parenthesis, comma

BF00-BF0B Syntax error exit

BF8C-C046 Variable name setup
CO47-CO85 Set up function references

C086-C0B5 Perform OR, AND

C0B6-C11D Perform comparisons

C11E-C12A Perform DIM

C12B-C1BF Search for variable

C1C0-C2C7 Create new variable

C2C8-C2D8 Setup array pointer

C2D9-C2DC 32768 in floating binary

C2DD-C2FB Evaluate integer expression

C2FC-C4A7 Find or make array

C4A8 Perform FRE, and:

C4BC-C4C8 Convert fixed-to-floating

C4C9-C4CE Perform POS

C4CF-C4DB Check not Direct

C4DC-C5O9 Perform DEF
C50A-C51C Check FNx syntax

C51D-C58D Evaluate FNx

C58E-C59D Perform STR$

C59E-C5AF Do string vector

C5BO-C61C Scan, set up string

C61D-C669 Allocate space for string

C66A-C74E Garbage collection

C74F-C78B Concatenate

C78C-C7B4 Store string
C7B5-C810 Discard unwanted string

U

u
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C811-C821 Clean descriptor stack
C822-C835 Perform CHR$
C836-C861 Perform LEFT$
C862-C86C Perform RIGHT$

C86D-C896 Perform MID$
C897-C8B1 Pull string data

C8B2-C8B7 Perform LEN
C8B8-C8C0 Switch string to numeric
C8C1-C8D0 Perform ASC

C8D1-C8E2 Get byte parameter

C8E3-C920 Perform VAL
C921-C92C Get two parameters for POKE or WAIT

C92D-C942 Convert floating-to-fixed

C943-C959 Perform PEEK
C95A-C962 Perform POKE

C963-C97E Perform WAIT

C97F-C985 Add 0.5
C986 Perform subtraction

C998-CA7C Perform addition

CA7D-CAB3 Complement accum#1

CAB4-CAB8 Overflow exit

CAB9-CAF1 Multiply-a-byte

CAF2-CB1F Constants

CB20 Perform LOG

CB5E-CBC1 Perform multiplication

CBC2-CBEC Unpack memory into accum#2

CBED-CC09 Test & adjust accumulators

CC0A-CC17 Handle overflow and underflow

CC18-CC2E Multiply by 10

CC2F-CC33 10 in floating binary

CC34 Divide by 10

CC3D Perform divide-by

CC45-CCD7 Perform divide-into

CCD8-CCFC Unpack memory into accum#1

CCFD-CD31 Pack accum#1 into memory

CD32-CD41 Move accum#2 to #1

CD42-CD50 Move accum#1 to #2

CD51-CD60 Round accum/M

CD61-CD6E Get accum#1 sign

CD6F-CD8D Perform SGN

CD8E-CD90 Perform ABS
CD91-CDD0 Compare accum#1 to memory

CDD1-CE01 Floating-to-fixed

CE02-CE28 Perform INT

CE29-CEB3 Convert string to floating-point

CEB4-CEE8 Get new ASCII digit

CEE9-CEF8 Constants
CF78 Print IN, then:

CF7F-CF92 Print Basic line #

CF93-D0C6 Convert floating-point to ASCII

D0C7-D107 Constants

D108 Perform SQR
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D112 Perform power function

D14B-D155 Perform negation

D156-D183 Constants
D184-D1D6 Perform EXP
D1D7-D220 Series evaluation

D221-D228 RND constants

D229-D281 Perform RND

D282 Perform COS

D289-D2D1 Perform SIN

D2D2-D2FD Perform TAN

D2FE-D32B Constants

D32C-D35B Perform ATN

D35C-D398 Constants
D399-D3B5 CHRGET sub for zero page

D3B6-D471 Basic cold start

D472-D716 Machine Language Monitor

D717-D7AB MLM subroutines

D7AC-D802 Perform RECORD

D803-D837 Disk parameter checks
D838-D872 Dummy disk control messages

D873-D919 Perform CATALOG or DIRECTORY

D91A-D92E Output

D92F-D941 Find spare secondary address

D942-D976 Perform DOPEN

D977-D990 Perform APPEND

D991-D9D1 Get disk status

D9D2-DA06 Perform HEADER

DA07-DA30 Perform DCLOSE

DA31-DA64 Set up disk record

DA65-DA7D Perform COLLECT

DA7E-DAA6 Perform BACKUP

DAA7-DAC6 Perform COPY

DAC7-DAD3 Perform CONCAT

DAD4-DB0C Insert command string values

DBOD-DB39 Perform DSAVE

DB3A-DB65 Perform DLOAD

DB66-DB98 Perform SCRATCH

DB99-DB9D Check Direct command

DB9E-DBD6 Query ARE YOU SURE?

DBD7-DBE0 Print BAD DISK

DBE1-DBF9 Clear DS$ and ST

DBFA-DC67 Assemble disk command string

DC68-DE29 Parse Basic DOS command
DE2C-DE48 Get Device number

DE49-DE86 Get file name

DE87-DE9C Get small variable parameter

** Entry points only for E000-E7FF **

E000 Register/screen initialization

E0A7 Input from keyboard

El 16 Input from screen

E202 Output character

E442 Main Interrupt entry

u
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r—i E455 Interrupt: clock, cursor, keyboard
f > E600 Exit from Interrupt

#* **

F000-F0D1 File messages

n F0D2 Send 'Talk1
f ] F0D5 Send 'Listen'

F0D7 Send IEEE command character

_ F109-F142 Send byte to IEEE

\\ F1M3-F150 Send byte and clear ATN
F151-F16B Option: timeout or wait

F16C-F16F DEVICE NOT PRESENT

F170-F184 Timeout on read, clear control lines

F185-F192 Send canned file message
F193-F19D Send byte, clear control lines

F19E-F1AD Send normal (deferred) IEEE char

F1AE-F1BF Drop IEEE device

F1C0-F204 Input byte from IEEE

F205-F214 GET a byte

F215-F265 INPUT a byte
F266-F2A1 Output a byte

F2A2 Abort files

F2A6-F2C0 Restore default I/O devices

F2C1-F2DC Find/setup file data

F2DD-F334 Perform CLOSE

F335-F342 Test STOP key
F343-F348 Action STOP key

F349-F350 Send message if Direct mode

F351-F355 Test if Direct mode

F356-F400 Program load subroutine

F401-F448 Perform LOAD

F449-F46C Print SEARCHING

F46D-F47C Print LOADING or VERIFYING
F47D-F4A4 Get Load/Save parameters

F4A5-F4D2 Send name to IEEE

F4D3-F4F5 Find specific tape header

F4F6-F50C Perform VERIFY

F50D-F55F Get Open/Close parameters

_ F560-F5E4 Perform OPEN

) l F5E5-F618 Find any tape header
F619-F67A Write tape header

F67B-F694 Get start/end addrs from header

f—| F695-F6AA Set buffer address

f i F6AB-F6C2 Set buffer start & end addrs

F6C3-F6CB Perform SYS

F6CC-F6DC Set tape write start & end

n F6DD-F767 Perform SAVE
' ^ F768-F7AE Update clock

F7AF-F7FD Connect input device

F7FE-F84A Connect output device
F84B-F856 Bump tape buffer pointer

F857-F879 Wait for PLAY
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F87A-F88B Test cassette switch

F88C-F899 Wait for RECORD
F89A Initiate tape read

F8CB Initiate tape write

F8E0-F92A Common tape I/O

F92B-F934 Test I/O complete

F935-F944 Test STOP key

F945-F975 Tape bit timing adjust

F976-FA9B Read tape bits

FA9C-FBBA Read tape characters

FBBB-FBC3 Reset tape read address

FBC4-FBC8 Flag error into ST

FBC9-FBD7 Reset counters for new byte

FBD8-FBF3 Write a bit to tape

FBF4-FC85 Tape write

FC86-FCBF Write tape leader
FCCO-FCDA Terminate tape; restore interrupt

FCDB-FCEA Set interrupt vector

FCEB-FCF8 Turn off tape motor
FCF9-FDOA Checksum calculation

FD0B-FD15 Advance load/save pointer

FD16-FD4B Power-on Reset

FD4C-FD5C Table of interrupt vectors

** Jump table: **
FF93-FF9E CONCAT,DOPEN,DCLOSE,RECORD

FF9F-FFAA HEADER,COLLECT,BACKUP,COPY

FFAB-FFB6 APPEND,DSAVE,DLOAD,CATALOG

FFB7-FFBC RENAME,SCRATCH

LJ

FFBD

FFCO

FFC3
FFC6

FFC9

FFCC

FFCF

FFD2

FFD5

FFD8

FFDB

FFDE

FFE1

FFE4

FFE7
FFEA

Get disk status

OPEN

CLOSE

Set input device

Set output device

Restore default I/O devices

INPUT a byte

Output a byte

LOAD

SAVE

VERIFY

SYS

Test stop key

GET byte

Abort all files

Update clock

FFFA-FFFF Hard vectors: NMI, Reset, INT

I '

I J
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Appendix B

n Map 6. Commodore 64 Memory Map.

SID (6581) Commodore 64

n
VI V2 V3

D400 D407D40E
D401 D408D40F
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D403 D40AD411

D404 D40B D412

D405 D40CD413

D406 D40DD414
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Pulse Width

0 0 0 0
H
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NSE PUL SAW TR1
Key

Attack Time

2 ms - 8 sec

Decay Time

6 ms - 24 sec

Sustain Level
Release Time

6 ms - 24 sec

VI V2 V3

542725427954286
54273 54280 54287
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0 0

V3

Off
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Hi Bd
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Filter & Volume
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D419

D41A

D41B

D41C

(Read Only)

Paddle X

Paddle Y

Noise 3 (Random)

Envelope 3

Sense

54297

54298

54299

54300

u

u

u

u

u
Special voice features (TEST, RING MOD, SYNC) are omitted from the above diagram.

$DDOO

$DD01
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$DD05

$DD06

$DD07

$DDOD

$DDOE

$DDOF

CIA2(NMI)

Serial

In

DSR

In

IN

Clock

In

CTS

In

Pc

IN

(6526)

Serial Clock

Out Out

irallell

DCD*

In

Jser Port

ATN

Out

RI*

In

Out Out Out

$3F

RS-232

Out

DTR

Out

Out

Commodore 64
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Out

Out

RS-232

In

Out

$06 For RS-232

Timer A

Timer B

RS-232
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Timer

B

Timer

Timer

A Start

Timer

B Start

*Connected but not used by system.
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I

mmm $0000

| $0001

n

Processor I/O Port
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Motor
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Commodore 64
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i

D-Rom

Switch

I

Out

EF.RAM

Switch

Out

AB.RAM

Switch

DDR 0

PR 1

CIA 1 (IRQ) (6526) Commodore 64
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Paddle SELl 1 Joystick 0
A B 1 1 R L D U

Keyboard Row Select (Inverted)

Joystick 1

Keyboard Column Read
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$00 — All Input

Timer A

Timer B
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l |
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Input

One Out

Shot Mode
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i i I

—

Timer Interr.
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^6e Timer
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Time Timer
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For Further Reference

Apple: What's Where In The Apple, William Luebbert, Micro Ink,

Inc., 34 Chelmsford St., Chelmsford, MA 01824,1981.

Atari: Mapping The Atari, Ian Chadwick, COMPUTE! Books,

P.O. Box 5406, Greensboro, NC 27403,1983. (This covers the

operating system and provides lengthy cross-referenced

explanations of Atari's memory addresses.)

Atari: The Atari BASIC Sourcebook, Bill Wilkinson, COMPUTE! Books,

P.O. Box 5406, Greensboro, NC 27403,1983. (Complete

commented source code of Atari BASIC, with explanatory text.)

/. \

221



u

0

0

0

u

0

0

u

0

Q



Appendix C

Simple Assembler

Notes On Assembling

This program is written in BASIC because there is no reason not to.

Since the program runs quickly enough and there is some

complicated arithmetic involved, BASIC is the language of choice.

There are assemblers in ML which make two "passes" through the

source code and do need the extra speed. But this is a simple, "one-

pass" assembler. The virtue of simplicity is that you can easily and

quickly make small ML routines, test them, and debug them. An

added bonus is that modifying the Simple Assembler is easy in

BASIC. We'll see how you can customize it in a minute.

The assembler accepts your opcodes and their arguments,

translates them into the correct numeric values, and POKEs them into

RAM memory. You have a choice between using hex or decimal

during your ML programming on the Simple Assembler (SA). If you

remove line 10, the SA will accept only decimal numbers as

arguments, will print all addresses in decimal, and will display the

object code (the numbers it is POKEing) in decimal. Leaving line 10 in

the program will result in the SA accepting, addressing, and

displaying only hexadecimal numbers.

The circumflex in lines 4010 and 5030 — the character following

the number 16 — means "to the power of" and generally appears on

computer keyboards as an arrow pointing up. Since this is not a

complicated assembler, a decision had to be made concerning

whether or not to include two of the conventions which have been

traditional in ML programming. They were left out because it saves

programming time to avoid them and they are unnecessary.

The first one is the dollar sign ($). When an assembler can accept

either hex or decimal simultaneously it must have a way to tell, if you

type in "10", whether you mean decimal 10 or hex 10 (decimal 16).

The convention requires that you write decimal ten as "10" and hex

as "$10."However, this can quickly become a burden. In the SA, you

let it know which kinds of numbers you are using by setting H in line

ten. After that, just type in the numbers. No $ is used. The second

convention that is not included in the SA is the use of the comma.

Again, there is no particular reason to use commas, but it has been

the tradition to include them for certain addressing modes. They, too,

can become burdensome when you are programming. Also, each line
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of your ML program is brought into the computer via the INPUT

statement in line 240. Microsoft BASIC'S INPUT statement dislikes

seeing commas. So, it is expedient in several ways to drop the comma

convention. There is just no reason to use them.

One additional note. The SA does not accept the indirect jump:

JMP ($0FFF). You could add it if you wish, but because of a bug in the

6502, it is far safer to avoid it.

Here is a list of the traditional conventions used in most

assemblers compared to the simplified conventions of the SA. Notice

that each addressing mode has its own appearance, its own

punctuation. This is how an assembler knows which addressing

mode you mean to use.

Spaces are important.

Addressing Mode

Conventions

Immediate

Absolute

Zero Page

Accumulator

Zero Page, X

Zero Page, Y

Absolute, X

Absolute, Y

Indexed Indirect

Indirect Indexed

Simple Assembler

LDA#15

LDA1500

LDA15

ASL

LDA15X

LDX15Y

LDA 1500X

LDA1500Y

LDA(15X)

LDA (15)Y

Traditional

LDA #$15

LDA $1500

LDA $15

(sometimes

LDA *$15)

ASL A

LDA$15,X

LDX$15,Y

LDA$1500,X

LDA$1500,Y

LDA ($15,X)

LDA ($15),Y

Customizing The Simple Assembler

An assembler is only supposed to get your typed opcodes and their

arguments, translate them into the right numbers, and put them in

memory for you. Nevertheless, the assembler is there for your benefit

and it is a computer program. It can be taught to do whatever else

would assist you in your ML programming. This is where "pseudo-

ops" come in. They are not part of the 6502 ML instruction set. They

are false opcodes. When you enter one of these, the assembler

doesn't put it into 6502 and POKE it. It can't. It does something for

you like figure out the hex equivalent of a decimal number or

whatever.

The SA has four built-in pseudo-ops and you can add others.

Following the input of the opcode (line 240) there is a short quiz. The

first question the computer asks itself is: "did they type the word

'FORWARD'?" If so, it means that you are planning to branch

forward, but you don't yet know how far. It will make a mental note

of this and later, when you type in another pseudo-op, "RESOLVE,"
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P"l it will go back and put in the correct address for the branch. Also, you

f ' can hand-POKE in any number in any address by typing the pseudo-
op "POKE". And, when you are finished with a program, type

r—> "END" and the assembler will quit, reporting the starting and

1 \ ending addresses of your program in decimal.
A full-featured assembler can include dozens of pseudo-ops.

^ Let's briefly examine several popular ones to see if there are some

/ \ that you might want to add to the SA. Then we'll add a hex/decimal

pseudo-op to the SA to show how it's done.

BA — Begin Assembly. The SA asks you directly for the starting

address (variable SA$). BA signifies the location in RAM memory

where you want the object code to start. Example: BA $0400

BY — Bytes. This is for the creation of data tables. The BY is

followed by numbers or text characters which are POKEd into

memory at the current address. You put these BYtes at the start or

end of a program (it could result in havoc if it were in the middle of a

program; they would likely be meaningless as instructions). Example:

BY 46 46 48 42 12 11 or BY "THIS IS A MESSAGE"

DE — Define a label. Labels require a two-pass assembler that

goes through the source code first to create a table of labels which

would look something like this:

START

LETTER.A

PRINTROUTINE

1500

65

64422

Then, the second time through your source code, the assembler

would replace all the labels with their correct values. This is called

"resolving" the labels. DE is usually part of the initialization process.

A number of the example programs in this book start off with a series

of DE pseudo-ops, telling the assembler the meaning of various

important labels that will be used later in the source code instead of

literal numbers. Example: START DE 1500 or LETTER.A DE 65.

EN — The end of the source program. Stop assembling at this

point. The SA uses END.

MC — Move code. This interesting pseudo-op takes care of a

problem that sometimes comes up when you want your object code

to be ultimately used in an address that is now being used by the

assembler itself or cannot be directly POKEd at this time with the

object code. For instance, if your computer's RAM memory starts at

address 2048 like the Commodore 64, and you want to put your final

ML object code there, what do you do? If the SA was told to start

assembly there, it would begin to nibble away at itself. It's in RAM

starting at 2048.

i |
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0
To allow you to store object code elsewhere, but have it assembled

appropriately for final use in 2048, you could instruct the assembler:

MC 25000 (temporarily store it here)

BA 2048 (but make internal JMPs, JSRs, and table references

correct for this starting address)

You can add your own pseudo-ops to the SA following line 240.

Many times when you are working along in hex you will want to

know the decimal equivalent of a number and vice versa. It's nice to

be able to just ask for the translation right during assembling. The

answer is printed on the screen and you continue on with your

programming. The assembler will do nothing to the ML during all

this; it's just giving you an answer.

If you are working in the hex mode and want a decimal number,

just type DECIMAL and the computer will accept a hex number from

you and give back its decimal equivalent. Conversely, type HEX and

give a decimal number for that translation.

To include this pseudo-op in the SA, add the following lines:

Program C-l. Adding The Conversion Pseudo-op.

245 IFMN$="HEX"THENGOTO7000

246 IFMN$=MDECIMAL"THENGOTO7200

7000 PRINT"ENTER DECIMAL NUMBER11;: INPUTDE: IFD

E>255THENSZ=3:GOTO7020

7010 SZ=1

7020 GOSUB4000:PRINT11 = $

"H$:GOTO230

7200 PRINT"ENTER HEX NUMBER";:INPUTH?

7210 SX=LEN(H$):BK$="000m:H$=LEFT$(BK$,4-SX)+

H$

7 220 GOSUB5000:PRINT" = "

DE:GOTO230

The Simple Assembler has a few error messages that it will print j {
when it can't make sense out of something. The primary

responsibility for finding errors, however, is yours. You can create

and save ML routines and then look at them with the Disassembler to ) ""*/

see if they look like they should. SA takes up about 4.5K so it will not v—'

run on an unexpanded VIC. A 3K RAM expansion will provide 2000

bytes for storage of your ML routines. f *

uJ
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Program C-2. Simple Assembler (VIC, PET, Apple, 64 Version).

10 H=1:REM IF H = 0 THEN ASSEMBLY IS IN DEC

IMAL

50 HE$="0123456789ABCDEF":SZ=1:ZO$="000"

100 PRINT" SIMPLE ASSEMBLER CONVENTIONS

110 DIMM$(56)fTY(56),OP(56)

120 FORI=1TO56:READM$(I)

122 ROP$=MID$(M$(I),4,1):TY(I)=VAL(ROP$)
124 OP$=RIGHT$(M$(l),3):OP(l)=VAL(OP$)
126 M$(l)=LEFT$(M$(l),3)
140 NEXTI: PRINT

150 PRINT"IMMEDIATE LDA #15

155 PRINT"ABSOLUTE LDA 1500

160 PRINT"ZERO PAGE LDA 15

165 PRINT"ACCUMULATOR ASL

170 PRINT"INDIRECT X LDA (15X)

175 PRINT"INDIRECT Y LDA (15)Y

177 PRINT"ZERO PAGE X LDA 15X

179 PRINT"ZERO PAGE Y LDX 15Y

180 PRINT"ABSOLUTE X LDA 1500X

185 PRINT"ABSOLUTE Y LDA 1500Y

189 PRINT-.PRINT" ENTER ALL NUMBERS IN ";

190 IFH=1 THENPRINT"HEX":GOTO200

195 PRINT"DECIMAL"

200 PRINT:PRINT"PLEASE INPUT STARTING ADDRES

S FOR ML PROGRAM" : INPUT SA$

210 IFH=1THENH$=SA$:GOSUB5000:SA=DE:GOTO220

215 SA=VAL(SA$)

220 TA=SA:PRINT"{CLEAR}":REM CLEAR THE SCREE
N

230 IFH=1THENDE=SA:SZ=3:GOSUB4000:PRINTH$;:G

OTO240

2 35 PRINTSA" ";

240 INPUTMN$:PRINT"{UP}"SPC(20);:REM GO UP O
NE LINE AND OVER 20 SPACES

241 REM ADD NEW PSEUDO-OPS HERE

242 IFRIGHT$(MN$,7)="FORWARD"THENFB=SA

243 IFRIGHT$(MN$,7)="RESOLVE"THENFR=SA-FB:PO

KEFB+1,FR-2:PRINT" OK":GOTO230

244 IFRIGHT$(.MN$,4) = "POKE"THENPRINT"ADDR,NUM

BER(DEC)";:INPUTADR,NUM:POKEADR#NUM

:GOTO230
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D
2 50 IFMN$="END"THENPRINT:PRINT" PROGRAM s ,

IS FROM"TA"TO"SA:END 1 1
260 L=LEN(MN$):L$=LEFT$(MN$,3)

270 FORI=1TO56:IFL$=M$(I)THEN300 j

280 NEXTI J )
290 GOTO850

300 REM PRIMARY OPCODE CATEGORIES

301 TY=TY(I):OP=OP(I) ^J
305 IFFB=SA THENTN=0:GOTO2010

310 IFTY=0THENGOTO1000

320 IFTY=3THENTY=1:IFL=3THENOP=OP+8:GOTO1000

330 R$=RIGHT$(MN$,L-4):IFH=1THENGOSUB6000

340 LR$=LEFT$ (R$, 1) :LL=LEN(R$ ): IFLR$="#IITHEN

480

350 IFLR$="(IITHEN520

360 IFTY=8THEN600

370 IFTY=3THENOP=OP+8:GOTO1000

380 IFRIGHT$ (R§, 1 J^VORRIGHT? (R$, 1 )-MY"THBN

630

390 IFLEFT$(L$,1)=MJHTHEN820

400 TN«VAL(R$):IFTN>255THEN430

410 IFTY=10RTY=30RTY=40RTY=5THEN0P=0P+4

420 GOTO2000

430 H%-TN/256iL%-TN-256*H%iIPTY-2ORTY-7THBNO

P=OP+8:GOTO470

440 IFTY=1ORTY=3ORTY=4ORTY=5THENOP=OP+12:GOT

0470

450 IFTY=6ORTY=9THEN470

460 GOTO850

470 GOTO3000

480 TN=VAL(RIGHT$(R$,LL-1))
490 IFTY«1THENOP=OP+8:GOTO2000

500 IFTY=4ORTY=5THENGOTO2000 \\

510 GOTO850 ^
520 IFRIGHT$(R$,2) = II)YIITHEN540

530 IFRIGHT$(R$#2) = "X)IITHEN570 ) "\

540 TN-VAL(MID$(R$f2f.LL-3)) ^^
5 50 IFTY=1THENOP=OP+16:GOTO2000

560 GOTO850 \^

570 TN=VAL(MID$(R$,2#LL-3)) v_j

580 IFTY=1THENGOTO2000

590 GOTO850 r ,

600 TN=VAL(R$):TN=TN-SA-2:IFTN<-128ORTN>127T LJ

HENPRINT"TOO FAR ";:GOTO850
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n

n
610 IFTN<0THENTN=TN+256

620 GOTO2000

630 IFRIGHT$(R$,2)=")Y"THEN540
^ 640 IFRIGHT$(R$,l)=HX"THEN720

I \ 650 REM *ZERO Y

660 TN=VAL(LEFT$(R$,LL-1)):IFTN>255THEN680
^ 670 IFTY=2ORTY=5THEN730

M 675 IFTY=1THEN760

680 GOSUB770:IFTY=1THENOP=OP+24:GOTO710

690 IFTY=5THENOP=OP+28:GOTO710
700 GOTO850

710 GOTO3000

720 TN=VAL(LEFT$(R$,LL-1)):IFTN>255THENGOSUB
770:GOTO780

7 30 IFTY=2THENOP=OP+16:GOTO760

740 IFTY=lORTY=3ORTY=5THENOP=OP+20:GOTO760
750 GOTO850

760 GOTO2000

770 H%=TN/256:L%=TN-256*H%:RETURN
780 IFTY=2THENOP=OP+24:GOTO810

790 IFTY=10RTY=30RTY=5THEN0P=0P+28:GOTO810
800 GOTO850

810 GOTO3000

820 TN=VAL(R$)

830 GOSUB770

840 GOTO710

850 PRINT"{REV} ERROR ":GOTO230
1000 REM 1 BYTE INSTRUCTIONS

1010 POKESA,OP:SA=SA+1:IFH=1THEN 1030

1020 PRINTOP:GOTO230

1030 DE = OP:GOSUB4000:PRINTH$:GOTO230

2000 REM 2 BYTE INSTRUCTIONS

PI 2005 IFTN>255THENPRINT" INCORRECT ARGUMENT, (
1 ' #5 IN HEX IS #05)":GOTO230

2010 POKESA,OP:POKESA+1,TN:SA=SA+2:IFH=1THEN2

^P 030

( •' 2020 PRINTOP;TN:GOTO230
2030 DE = OP:GOSUB4000:PRINTH$" ";

f*t 2040 DE = TN:GOSUB4000:PRINTH$:GOTO230

' \ 3000 REM 3 BYTE INSTRUCTIONS
3010 POKESA# OP:POKESA+1f L%:POKESA+2,H%:SA=SA+

3:IFH=1THEN3030

3020 PRINTOP;L%;H%:GOTO230

3030 DE = OP:GOSUB4000:PRINTH$" ";

n
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3040 DE = L%:GOSUB4000:PRINTH$" "; f ,

3050 DE = H%:GOSUB4000:PRINTH?:GOTO230 LJ
4000 REM DECIMAL TO HEX (DE TO H$)

4010 H$="":FORM=SZTO0STEP-1:N%=DE/(16"m):DE=D

E-N%*16*M:H$=H$+MID$(HE$,N%+1,1) Lj
4020 NEXT:SZ=1:RETURN

5000 REM HEX TO DECIMAL (H$ TO DE)

5010 D=0:Q=3:FORM=1TO4:FORW=0TO15:IFMID$(H$,M U
,1)=MID$(HE§,W+l,1)THEN5030

5020 NEXTW

5030 D1=W*(16"(Q)):D=D+D1:Q=Q-1:NEXTM:DE=INT(

D):RETURN

6000 REM ACCEPT HEX OPCODE INPUT AND TRANSLAT

E IT TO DECIMAL

6010 IFLEFT$(R$,l) = "#liTHENH$="00"+RIGHT$(R$,2

):GOSUB5000:R$="#"+STR$(DE):RETURN

6020 LS=LEN(R$):AZ$=LEFT$(R$,1):ZA$=MID$(R$,L

8,1):IFAZ$ <>"("THEN6050

6030 IFZA$="Y"THENH$= ii00"+MID$(R$,2,2):GOSUB5

000 :R$="(ii+STR$(DE) + ")Y11: RETURN

6040 IFZA$= " ) "THENH$= ll00 "+MID$ (R$, 2 , 2 ): GOSUB5

000 :R$="(II+STR$(DE) + "X)11: RETURN

6050 IFZA$= IIX"ORZA$="YIITHEN6070

6060 H$=LEFT$(ZO$,4-LS)+R$:GOSUB5000:R$=STR§(

DE):RETURN

6070 IFLS=5THENH$=LEFT$(R$,4):GOTO6090

6080 H$="00"+LEFT$(R$#2)

6090 GOSUB5000:R$=STR$(DE)+ZA$:RETURN

20000 DATAADC1097,AND1033,ASL3002,BCC8144,

BCS8176,BEQ8240,BIT7036 # BMI8048

20010 DATABNE8208,BPL8016,BRK0000,BVC8080,BVS8

112,CLC0024,CLD0216,CLI0088

20020 DATACLV0184,CMP1193,CPX4224,CPY4192,DEC2 i I

198,DEX0202,DEY0136,EOR1065 U
20030 DATAINC2230#INX0232/INY0200#JMP6076#JSR9

032ILDA1161/LDX5162#LDY5160 ) ,

20040 DATALSR3066#NOP0234#ORA1001#PHA0072#PHP0 ^—J

008,PLA0104,PLP0040#ROL3034

20050 DATAROR3098#RTI0064#RTS0096#SBC1225#SEC0 r ;

056,SED0248,SEI0120,STA1129 LJ
20060 DATASTX2134#STY2132,TAX0170#TAY0168#TSX0

186#TXA0138fTXS0154/TYA0152 (- .

230 LJ
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Program C-3. Simple Assembler: Atari Version.

10 HX=1:REM IF HX= 0 THEN ASSEMBLY I

^ S IN DECIMAL

( \ 20 DIM HE*<16>,Z0*<3>,R*<10),MN*<12)

,ZA«(1),AZ*(1),L$(3),SA$ < 4) ,H*(4)

r^ ?LR$ ( 1 )

) 30 OPEN #1,12,0,"E:"

50 HE$="0123456789ABCDEF":SZ=1:ZO$="

000"

100 PRINT " C3

i 3

H";

110 DIM M*(56*3),TY(56),OP(56)

120 FOR I = l TO 56:READ MN$ : M* ( I *3-2.,

I*3)=MN$(1,3)

122 TY <I>=VAL(MN$(4.4) ) s OP(I)=VAL(MN

*(5) )

130 NEXT I

140 PRINT s?

150 PRINT "Immediate^ SPACES3LDA #1

5"

155 PRINT "Ab5Dlute{6 SPACES}LDA 150

0"

160 PRINT "Zero psge(5 SPACES^LDA 15
ti

165 PRINT "Accumulator^ SPACES1ASL11

170 PRINT "Indirect XC4 SPACES3LDA <

1 5 X ) "

175 PRINT "Indirect Y£4 SPACES3LDA (

r-i 1 5 ) Y "

I i 177 PRINT "Zero page X*3 SPACES?LDA

15X"

) ^ 179 PRINT "Zero page YC3 SPACES3LDX

I 15Y"

180 PRINT "Absolute X<!4 SPACES3LDA 1

r^ 500X"

i 185 PRINT "Absolute Y£ 4 SPACES3LDA 1

500Y"

i , 189 PRINT -.PRINT "C4 SPACES>Enter al

J i 1 numbers in " ;

190 IF HX=1 THEN PRINT
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195 PRINT "PMIMI" ] I

197 ? :? "Addresses:Use 1536-1791 <* '—l

0600-S06FF)":? :?

200 PRINT "<:2 DEL LINE>Please enter \ \

starting":? "address for ML prog N—;

ram";:INPUT SA*:IF SA*="" THEN ?

"C2 UP*";:GOTO 200 \ f

210 IF HX=1 THEN H*=SA$:GOSUB 5000:S ^
A=DE:GOTO 217

215 SA=VAL(SA$)

217 IF SA<256 OR SA>=40960 THEN ? "

{4 UP}Not ZPAGE or ROM!":? : GOTO

200

220 TA=SA: PRINT " {CLEAR* " : GOTO 230

-t- -t- w : •: %. O m L. L- ^ fjr T|| aft B Wi —^ %< ^4.*j «-w!P ■ : • i #

HX=1 THEN ? "<e.g, #5 should be

#05)":?

230 IF HX=1 THEN DE=SA:S2=3:GOSUB 40

00:PRINT H*;": ";:GOTO 240

235 PRINT SA;": ";

240 TRAP 225: INPUT #i;MN$:? "CUP311?:

POKE 35, 20: IF MN$="lf THEN ? "

{DEL LINE?";:GOTO 230

241 REM ADD NEW PSEUDO-OPS HERE

242 IF LEN<MN*)>6 THEN IF MN*(LEN<MN

*)-6)="FORWARDn THEN FB=SA

243 IF MN*="RESOLVEn THEN FR=SA-FB:P

OKE FB+1 ? FR-2: PRINT fl OK": GOTO

230

244 IF MN*="POKE" THEN PRINT "ADDR,N

UMBER(DEC)";:INPUT ADDR,NUM:POKE [ 7

ADDR,NUM:GOTO 230 —1
250 IF nN*=HENDM THEN 8000

260 L=LEN(MN$):L$=MN$<1,3) j ;

270 FOR 1 = 1 TO 56: IF L* =M$<I*3-2, I*

) THEN 300

280 NEXT I

290 GOTO 850

300 REM PRIMARY OPCODE CATEGORIES

301 TY = TY<I) :OP = OP ( I)

305 IF FB = SA THEN TN= 0:SOTO 2010

310 IF TY=0 THEN GOTO 1000

u
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n

n
320

340

350

360

370

380

390

400

410

420

430

440

450

460

470

430

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640
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IF TY=3 THEN TY=1:IF L=3 THEN OP

=0P+8:G0T0 1000

R$=MN$<5):IF HX=1 THEN GOSUB 600

0

LR$=R$<1,1>:LL=LEN(R*):IF LR*="#

11 THEN 480

LR*="< THEN 520

600

0P=0P+8:G0TQ 1000

OR R*(LL>=MY" THEN

IF

IF JY=8 THEN

IF TY=3 THEN

IF R*<LL)="X

630

IF L*<1,1>="J" THEN 820

TN=VAL<R*):IF TN>255 THEN 430

IF TY=1 OR TY=3 OR TY=4 OR TY=5

THEN 0P=0P+4

GOTO 2000

H=INT(TN/256):L=<TN-256*H):IF TY

=2 OR TY=7 THEN 0P=0P+8:G0T0 470

IF TY=1 OR TY=3 OR TY=4 OR TY=5

THEN 0P=0P+12:GOTO 470

IF TY=6 OR TY=9 THEN 470

GOTO 850

GOTO 3000

TN=VAL<R*(2))

IF TY=1 THEN 0P=0P+3

IF TY=4 OR TY=5 THEN

GOTO 850

IF R*(LL-1>=">Y" THEN

IF R* <LL-1 > =flX> " THEN

TN=VAL(R* <2,LL-1> )

IF TY=1 THEN 0P=0P+16

GOTO 850

TN=VAL <R* <2,LL-1> )

IF TY=1 THEN GOTO 2000

GOTO 850

TN=VAL <R*> :TN=TN-SA-2s IF TN< -128

OR TN>127 THEN PRINT

sGOTO 850

IF TN<0 THEN TN=TH+256

GOTO 2000

IF R*<LL-1>=">Y" THEN 540

IF R^(LL)="XM THEN 720

GOTO 2000

GOTO 2000

540

570

GOTO 2000
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LL-1 > ) : IF TN>255 THE

7 30

0P=0P+24:

GOTO 710

TN>255 THE

760

THEN OP=

650 REM *ZERO Y

660 TN=VAL<R*<1

N 630

670 IF TY=2 OR TY = 5 THEN

675 IF TY=1 THEN 760

680 GOSUB 770:IF TY=1 THEN

GOTO 7 10

690 IF TY=5 THEN 0P=0P+23

700 GOTO 850

710 GOTO 3000

720 TN = VAL <R* <1,LL-1) > : IF

N GOSUB 770:GOTO 730

730 IF TY=2 THEN OP=OP+16:GOTO

740 IF TY=1 OR TY=3 OR TY=5

OP+20:GOTO 760

750 GOTO 850

760 GOTO 2000

770 H=INT<TN/256):L=TN-256*H:RETURN

780 IF TY=2 THEN 0P=0P+24:GOTO 310

790 IF TY=1 OR TY=3 OR TY = 5 THEN OP=

0P+23:G0T0 310

800 GOTO 850

310 GOTO 3000

320 TN=VAL<R*>

330 GOSUB 770

840 GOTO 7 10

850 PRINT " -CBELLilalr^IiSiM" : GOTO 230

1000 REM 1 BYTE INSTRUCTIONS

1010 POKE SA?OP:SA=SA+1:IF HX=i THEN

1030

1020 PRINT OP:GOTO 230

1030 DE=OP:GOSUB 4000:PRINT H*:GOTO

230

2000 REM 2 BYTE INSTRUCTIONS

2005 IF TN>256 THEN ? :? "Error—";T

N;">256 ($100)":GOTO 230

2010 POKE SA,OP:POKE SA+1,TN:SA=SA+2

:IF HX=1 THEN 2030

2020 PRINT OP;11 ";TN:GOTO 230

2030 DE=OP:GOSUB 4000:PRINT H$;" ";

2040 DE=TN:GOSUB 4000:PRINT H*:GOTO
230

\ I

LJ

U

) i
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n

n

n

n

3000

3010

3020

3030

3040

3050

4000

4010

REM 3

POKE

BYTE

SA,OP:

2,H:SA=SA+3

PRINT

DE = OP

DE = L:

DE = H:

30

OP; "

:GOSUB

GOSUB

GOSUB

REM DECIMAL

H*=" "

AH=I

(AH+1

:A=INT

NT(A/1

,AH+1)

Appendix C

INSTRUCTIONS

POKE SA+1?L:POKE SA +

:IF HX=1 THEN 3030

";L;" ";H:GOTO 230

4000: PRINT H$;" " ;

4000:PRINT H*;" ";

4000:PRINT H*:GOTO 2

TO HEX (DE TO H*>

(DE/256):IF A>0 THEN

6) :AL=A-AH*16:H$=HE$

(2)=HE* (AL+1, AL+1

4020 A=DE-A*256:AH=INT (A/16):AL=A-AH

*i6:H*(LEN <H*> +1)=HE*(AH+i,AH+1

) :H*(LEN <H*> +1>=HE*(AL+1,AL+1) :

SZ=1:RETURN

5000 REM HEX TO DECIMAL <H$ TO DE)

5010 D=0:Q=3:FOR M=l TO 4:W=ASC<H*<M

)>-4S:IF W>9 THEN W=W-7

5030 D=D*16 + W: NEXT M: DE=IIMT <D) : RETUR

N

6000 REM ACCEPT HEX OPCODE INPUT AND

TRANSLATE IT TO DECIMAL

6010 IF R*(l,l)="#" THEN H*= " 00" s H*'<

3)=R$ <2) :GOSUB 5000sR*="#":R* <2

)=STR* (DE) :RETURN

6020 LS=LEN(R*):AZ$=R$(1,1):2A$=R$(L

S):IF AZ*<>"(fl THEN 6050

6030 IF ZA$="Y" THEN H*="00"sH*<3)=R

*(2,4) :GOSUB 5000:R*=" ("sR* <2) =

STR*(DE):R$(LEN(R*)+1)=")Y":RET

URN

6040 IF ZA$=")" THEN H*="00"sH*(3)=R

*(2 ? 4) :GOSUB 5000:R*=" (":R*(2) =

STR*(DE):R*(LEN(R*)+1)="X)":RET

URN

6050 IF ZA*="X" OR ZA$="Y" THEN 6070

6060 H*="":IF LS<4 THEN H*=2O*(1?4-L

S)

6065 H^(LEN(H*)+1)=R*:GOSUB 5000:R*=

STR*(DE):RETURN
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6070 IF LS=5 THEN H*=R*(1,4):GOTO 60

90

6080 H$="00":H*(3)=R*(1,2)

6090 GOSUB 5000:R*=STR* <DE> :R*(LEN(R

*)+1)= ZA*:RETURN

8000 PRINT :PRINT "*STARTS ";TA;:SZ =

3:DE=TA:GOSUB 4000:PRINT "■'<*";
H*; ") "

8010 PRINT ENDSC3 SPACES* SA: DE=

SA:SZ=3:GOSUB 4000:PRINT " (*";

H*;")":END

20000 DATA ADC 1097fAND 1033,ASL3002,B

CC8 144,BCS8176,BEQ8240,BIT7036

,BMI804S

20010 DATA BNE8208,BPLS016.BRK0000,B

VC8080,BVS8112,CLC0024,CLD0216

? CLI0088

20020 DATA CLV0184,CMP1193,CPX4224,C

PY4192? DEC2198,DEX0202,DEY0136

,EOR1065

20030 DATA INC2230,INX0232,INY0200,J

MP6076,JSR9032,LDA116i,LDX5162

? LDY5160

20040 DATA LSR3066,NOP0234,ORA1001 ? P

HA0072,PHP0008,PLA0104,PLP0040

,ROL3034

20050 DATA ROR3098,RTI0064,RTS0096,S

BC1225?SEC0056

,STA1129

SED0248,SEI0120

20060 DATA STX2134,STY2132,TAX0170,T

AY0168,TSX01S6,TXA0138,TXS0154

?TYA0152
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n
Note: The A means "to the power of" as in 2 A 2=4.

p-) Program D-1. Disassembler (VIC, PET, Apple, 64 Version).

1 HE$="0123456789ABCDEF"
2 L$="

4 j$=» >"

13 PRINT" DISASSEMBLER
14 PRINT

16 DIMM$(15,15)

17 FORI=0TO15:FORB=0TO14:READM$(I,B):NEXTB:
NEXTI

25 REM START MAIN LOOP

30 PRINT"STARTING ADDRESS (DECIMAL)";:INPUT
SA:TA=SA

31 PRINTflSTART ADDRESS HEX "; :DE=SA: ZX=3 :G

OSUB1200:PRINTH$" "

35 IFSA<0THENEND

41 I=SA

45 REM PRINT ADDRESS

46 PRINTI" ";

50 X=PEEK(I)

55 GOSUB5000

56 IFL%=15ORM$(H%,L%) ="0"THENPRINTn ?
X:CK=0:LN=LN+l:GOTO70

58 PRINTM$(H%#L%);
60 GOSUB6000:IFEQTHENEQ=0

72 IFLN=20THENLN=0:GOTO2000

80 GOTO45

600 IFCK=12THEN603

601 B=PEEK(I+1):IFB>127THENB=((NOTB)AND255)+
1:B=-B

602 BAD=I+2+B:PRINT" "BAD:1=1+1:RETUR

N

603 IFH%>8THEN800

604 IFH%=2THENJ=1:GOTO850

605 IFH%=6THENPRINT:PRINTL$:EQ=1:RETURN
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606 IFH%=6THENRETURN

607 PRINT 1_J
608 RETURN

610 IFCK=12THEN615

611 PRINT" (llPEEK(l+l)"),Y"
612 1=1+1:RETURN

615 PRINT" (llPEEK(l+l)"fX)"
616 1=1+1:RETURN M

630 IFCK=12THEN635

631 PRINT" "PEEK(I+1)"#X"
632 1=1+1:RETURN

635 PRINT" "PEEK(I+1)

636 1=1+1:RETURN

640 IFCK=12THEN645

641 PRINT" "PEEK(l+l)",X"

642 1=1+1:RETURN

645 PRINT" "PEEK(I+1)

646 1=1+1:RETURN

660 IFCK=12THEN645

661 IFH%=9ORH%=11THENPRINT" "PEEK(l+l)",Y"

662 IFH%=7ORH%=15ORH%=5ORH%=3THEN640

663 IFH%=13THEN631

664 PRINT:GOTO642

680 PRINT: RETURN

690 IFCK=12THEN800

691 I$="Y":GOTO850

720 IFCK=12THEN725

722 I$="X":GOTO850

725 IFH%=6THENPRINT" (IND. ";:I=I+1

726 IFH%=2THEN850

727 IFH%=4THENPRINTJ$;:GOTO850

728 IFH%=8ORH%=10ORH%=12ORH%=14THEN850

729 GOTO610 j |

730 IFCK=12THEN850 <—'
731 I$="X":GOTO850

740 IFCK=12THEN850 \ )

741 IFH%=11THENI$="Y":GOTO850 !—'
742 I$="X":GOTO850

800 PRINT" #"PEEK(I+1)

801 1=1+1:RETURN

850 N=PEEK(l+l)+PEEK(l+2)*256
860 IFI$=""THEN900

870 IFI$="X"THENPRINT" "N"#X"

880 IFI$="Y"THENPRINT" "N"#Y"
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p] 890 I$=IMI: 1=1+2: RETURN

' * 900 PRINT" "N: 1=1+2

906 RETURN

r—) 1000 DATABRK,ORA,0,0,0,ORA,ASL,0,PHP,ORA,ASL,

f ^ 0,0,ORA,ASL,BPL,ORA,0,0,0,ORA,ASL
1010 DATA0,CLC,ORA,0,0,0,ORA,ASL,JSR,AND,0,0,

r—l BIT,AND,ROL,0,PLP,AND,ROL,0,BIT

' i 1020 DATAAND,ROL,BMI,AND,0,0,0,AND,ROL,0,SEC,

AND,0,0,0,AND,ROL,RTI,EOR,0,0,0

1030 DATAEOR, LSR, 0, PHA, EOR, LSR, 0 , JMP, EOR, LSR#

BVC# EOR# 0,0,0,EOR,LSR,0,CLI,EOR,0

1040 DATA0,0,EOR,LSR,RTS,ADC,0,0,0,ADC,ROR,0,

PLA,ADC

1045 DATAROR,0,JMP,ADC,ROR,BVS,ADC,0,0,0

1050 DATAADC,ROR,0,SEI,ADC,0,0,0,ADC,ROR,0,ST

A

1055 DATA0,0,STY,STA,STX,0,DEY,0,TXA,0,STY,ST

A

1060 DATASTX,BCC,STA,0,0,STY,STA,STX,0,TYA,ST

A,TXS,0,0,STA,0,LDY,LDA,LDX,0

1070 DATALDY,LDA,LDX,0,TAY,LDA,TAX,0,LDY,LDA,

LDX,BCS,LDA,0,0,LDY,LDA,LDX,0

1080 DATACLV,LDA,TSX,0

1090 DATALDY,LDA,LDX,CPY,CMP,0,0,CPY,CMP,DEC,

0,INY,CMP,DEX,0,CPY,CMP,DEC

1095 DATABNE,CMP,0,0,0,CMP,DEC,0,CLD,CMP,0,0,

0,CMP,DEC,CPX,SBC,0,0,CPX,SBC,INC

1098 DATA0,INX,SBC,NOP,0,CPX,SBC,INC,BEQ,SBC,

0,0,0,SBC,INC,0,SED,SBC,0,0,0,SBC

1099 DATAINC

1200 REM MAKE DECIMAL INTO HEX

j ) 1201 H$="":FORM=ZXTO0STEP-1:N%=DE/(16"M):DE=D
/ i E-N%*16*M:H$=H$+MID$(HE$,N%+1,1)

1202 NEXT:RETURN

2000 PRINT"TYPE C TO CONTINUE FROM11 I

\] 2001 GETK$:IFK$=IIMTHEN2001
2002 IFK$=IICIITHENSA=I:TA=SA:GOTO35
2003 INPUTSA:TA=SA:GOTO35

P*j 5000 REM ANALYZE H & L OF OPCODE
5010 H%=X/16:L%=X-H%*16
5020 :RETURN

f-j 6000 REM FIND ADDRESS TYPE & GOSUB

6020 CK=H%/2:IFCK=INT(CK)THENCK=12
6025 L%=L%+1

n
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6030 ONL%GOSUB600,610,800,6050,640,640,660,60 ■ ,

50,680,690,680,6050,720,730,740 LJ
6040 CK=0

6045 LN=LN+1 . ,

6050 RETURN i_J

Program D-2. Atari Disassembler. U-J

1OO REM ■>***:V*HdSl.lMd;»

105 GRAPHICS OsPOSITION 11,0s? "WBSSi

BTijytsjzwmsisM »J 9k bTF^B" s? 5? " Lofldi no ope

odes..."

110 DIM OPCODE*(256*1O),LN(255),NB(25

5),T*(10>,D*(5)

120 FOR 1=0 TO 255

125 READ T*,NB

130 LN(I)=LEN(T*>

140 OPCODE*(1*10+1,I*10+LN(I)>=T*

150 NB(I)=NB

160 NEXT I

17O GRAPHICS O:POSITION 11,0:? "■35SD

DI5R55EMBLER

ISO ? :?

19O TRAP 190:? "CUPXDEL LINE>Startin

g Address (Decimal)";:INPUT ADDR:

TRAP 40000

2OO IF ADDR<0 OR ADDR>65535 THEN 190

210 OP=PEEK(ADDR):NB=NB(OP)

220 T*=OPCODE$(OP*1O+1,OP*1O+LN(OP))

230 PRINT ADDR;sPOKE 85,10sPRINT OP;:

POKE 85,15 LJ
240 ON NB+2 GOTO 2425244,2505260?270

242 NB= 2: T=PEEK (ADDR4-1 ) : IF T>128 THEN

T=T-256 Lj
243 PRINT T;:POKE 85,20:PRINT T$;"

;ADDR+2+T:G0T0 300

244 ? "Ui««?.l-ll=i;.TJ«WJr" s NB=1 : GOTO 300 |_[
246 PRINT T*;" ";ADDR+2+T:GOTO 300

250 POKE 85,20:PRINT T*:GOTO 300

260 PRINT PEEK(ADDR+1);:POKE 85520:D* LJ
=STR*(PEEK(ADDR+i)):GOSUB 4OO:GOT

240 L-J
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270 PRINT PEEK(ADDR+1) ; :POKE 85,15s PR

INT PEEK(ADDR+2);:POKE 85,20

28O D*=STR*(<PEEK(ADDR+1)+256*PEEK(AD

DR+2>)):60SUB 4OO

300 ADDR=ADDR+NB:IF ADDR<0 THEN ADDR=

65536-T

310 IF ADDR>65535 THEN ADDR=T

320 IF PEEK(53279)=7 THEN 21O

330 GOTO 19O

4OO ? T*(1,4+(LN(OP)>4));D*;T$(4+2*(L

N(OP)>5))sRETURN

5OO DATA BRK,1,ORA <X>,2,7,0,7,0,7,0,

ORA ,2,ASL ,2,?«6,PHP,1.ORA # ,
2

510 DATA ASL A,1,?.O,?,O,ORA ,3,ASL

,3,?,0,BPL,-l,0RA ()Y,2,?,0,?,0

520 DATA 7,0,ORA X,2,ASL X.2,?,0,CL

C,1,ORA Y,3,?,6,?,O,?,O5ORA X,3
530 DATA ASL ,2,?,0,JSR ,3,AND (X),2

,?,O,?,O,BIT ,2,AND ,2,ROL ,2,?,0

540 DATA PLP,1,AND # ,2,R0L A,i,?,O,B

IT ,3,AND ,3«R0L , 3, ?, O, BMI '< -1 , AN
D ()Y,2 "

550 DATA ?.0,?,0,?.O,AND X,2,R0L X,

2,?,O,SEC5 1, AND ' Y,3,CLI, 1,7,0
56O DATA ?,O,AND X,3,ROL X,3,?,O,RT

I,1,EOR (X),2,?5O,?,O5?,6,EOR ,2
570 DATA LSR ,2,?,O,PHA,i,EOR # ,2,L

SR ,3,?,0ijMP ,3,EOR ,3,LSR
3,?,0

580 DATA BVC,-1,EOR <)Y,2,?,O,7,O,7,O

,EOR X,2,LSR X,2.?,0,CLI,1,EOR

Y,2

59O DATA ?,O,7,0,?,O,EOR X,3,LSR X,

3,?,0,RTS,1,ADC (X),2,7,0,7,0

6OO DATA 7,0.ADC y2,R0R ,2,?,6,PLA,
1,ADC # ,2,R0R A,1,?,O,JMP 0,108

,ADC ,3

610 DATA ROR ,3,?,O,BVS,-1,ADC ()Y,2

,7,0,7,0,7,0,ADC X,2,R0R X,2,?,

O
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62O DATA SEI,1,ADC Y, 3, ?, O, ?, Os ?, O, A , ,

DC X,3,R0R X,3,?,0,?,0,STA <X>, <—1

2

630 DATA ?,O,?,O,STY ,2,STA ,2,STX j i

,2,?,O,i>EY, I,?,O,TXA, 1,?,O ^-J
64O DATA STY ,3,STA ,3,STX ,3,?,0,

BCC,-1,STA 6Y,2,?,0,?,0,STY X,2 ( /
,STA X,2 '—'

650 DATA STX Y,2,?,O,TYA,1,STA Y,35

TXS,15?,O,?,O,STA X,3,?,O,?,O

66O DATA LDY # ,2,LDA <X>,2,LDX # ,2,

?,O,LDY ,2,LDA ,2,LDX ,2,?,0,T

AY,1,LDA # ,2

67O DATA TAX,1,?,O,LDY ,3,LDA ,3,LD

X ,3,?,O,BCS,-1,LDA <)Y,2,?,0,?,

O

68O DATA LDY X,2,LDA X,2,LDX Y,2,?

,O,CLV,1,LDA Y,3,TSX,1,?,O,LDY

X,3,LDA X,3

690 DATA LDX Y,3,?,O,CPY # ,2,CMP (X

),2,?,O,?,O,CPY ,2,CMP ,2,DEC

,2,?,b
700 DATA INY,1,CMP # ,2,DEX,1,?,O,CPY

,3,CMP ,3,DEC ,3,?,0,BNE,-1,C

MP (>Y,2

710 DATA ?,O,?,O,?,O,CMP X,2,DEC X,

2,?,O,CLD,i,CMP Y,3,?,O,?,O

72O DATA ?,O,CMP X,3,DEC X,3,?,0,CP

SBC ,2

730 DATA INC ,2,?,O,INX,1,SBC # ,2,N , i

OP,1,?,O,CPX ,3,SBC ,3,INC ,3, LJ

74O DATA BEQ,-1«SBC <Y),2,?,O,?,O,?,O j J

,SBC X,2,INC X,2,?,0,SED.l.SBC LJ
Y,3

750 DATA ?,O,?,O«?,O,SBC X,3,INC X, i |

3,?,O Lj
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Number Tables

This lookup table should make it convenient when you need to

translate hex, binary, or decimal numbers. The first column lists the

decimal numbers between 1 and 255. The second column is the

hexadecimal equivalent. The third column is the decimal equivalent

of a hex most significant byte or "MSB." The fourth column is the

binary.

If you need to find out the decimal equivalent of the hex number

$FD15, look up $FD in the MSB column and you'll see that it's 64768.

Then look up the $15 in the LSB column (it's 21 decimal) and add

21 + 64768 to get the answer: 64789.

Going the other way, from decimal to hex, you could translate

64780 into hex by looking in the MSB column for the closest number

(it must be smaller, however). In this case, the closest smaller number

is 64768 so jot down $FD as the hex MSB. Then subtract 64768 from

64780 to get the LSB: 12. Look up 12 in the decimal column (it is $0C

hex) and put the $FD MSB together with the $0C LSB for your

answer: $FD0C.

With a little practice, you can use this chart for fairly quick

conversions between the number systems. Most of your translations

will only involve going from hex to decimal or vice versa with the LSB

of hex numbers, the first 255 numbers, which require no addition or

subtraction. Just look them up in the table.

n

Table E-l.

Decimal

(LSB)

1

2

3

4

5

6

7

8

9

10

Hex

01

02

03

04

05

06

07

08

09

0A

Decimal

(MSB)

256

512

768

1024

1280

1536

1792

2048

2304

2560

Binary

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010
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Decimal

(LSB)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Hex

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

Decimal

(MSB)

2816

3072

3328

3584

3840

4096

4352

4608

4864

5120

5376

5632

5888

6144

6400

6656

6912

7168

7424

7680

7936

8192

8448

8704

8960

9216

9472

9728

9984

10240

10496

10752

11008

11264

11520

11776

12032

12288

12544

Binary

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00010010

00010011

00010100

00010101

00010110

00010111

00011000

00011001

00011010

00011011

00011100

00011101

00011110

00011111

00100000

00100001

00100010

00100011

00100100

00100101

00100110

00100111

00101000

00101001

00101010

00101011

00101100

00101101

00101110

00101111

00110000

00110001

u

u

u

LJ

u

U

LJ

U
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Decimal

(LSB)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Hex

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

Decimal

(MSB)

12800

13056

13312

13568

13824

14080

14336

14592

14848

15104

15360

15616

15872

16128

16384

16640

16896

17152

17408

17664

17920

18176

18432

18688

18944

19200

19456

19712

19968

20224

20480

20736

20992

21248

21504

21760

22016

22272

22528

Binary

00110010

00110011

00110100

00110101

00110110

00110111

00111000

00111001

00111010

00111011

00111100

00111101

00111110

00111111

01000000

01000001

01000010

01000011

01000100

01000101

01000110

01000111

01001000

01001001

01001010

01001011

01001100

01001101

01001110

01001111

01010000

01010001

01010010

01010011

01010100

01010101

01010110

01010111

01011000
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Decimal

(LSB)

Hex Decimal

(MSB)

Binary

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C
6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

22784

23040

23296

23552

23808

24064

24320

24576

24832

25088

25344

25600

25856

26112

26368

26624

26880

27136

27392

27648
27904

28160

28416

28672

28928

29184

29440
29696

29952

30208

30464

30720

30976

31232

31488

31744

32000

32256

32512

01011001

01011010

01011011

01011100

01011101

01011110

01011111

01100000

01100001

01100010

01100011

01100100

01100101

01100110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

01101111

01110000

01110001

01110010

01110011
01110100

01110101

01110110

01110111

01111000

01111001

01111010

01111011

01111100

01111101

01111110

01111111

u

u

LJ

i (

(

u
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n

n

I )

n

Decimal

(LSB)

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Hex

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8P

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

Decimal

(MSB)

32768

33024

33280

33536

33792

34048

34304

34560

34816

35072

35328

35584

35840

36096

36352

36608

36864

37120

37376

37632

37888

38144

38400

38656

38912

39168

39424

39680

39936

40192

40448

40704

40960

41216

41472

41728

41984

42240

42496

Binary

10000000

10000001

10000010

10000011

10000100

10000101

10000110

10000111

10001000

10001001

10001010

10001011

10001100

10001101

10001110

10001111

10010000

10010001

10010010

10010011

10010100

10010101

10010110

10010111

10011000

10011001

10011010

10011011

10011100

10011101

10011110

10011111

10100000

10100001

10100010

10100011

10100100

10100101

10100110
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Decimal

(LSB)

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

18Jo

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Hex

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

Decimal

(MSB)

42752

43008

43264

43520

43776

44032

44288

44544

44800

45056

45312

45568

45824

46080

46336

46592

46848

47104

47360

47616

47872

48128

48384

48640

48896

49152

49408

49664

49920

50176

50432

50688

50944

51200

51456

51712

51968

52224

Binary

10100111

10101000

10101001

10101010

10101011

10101100

10101101

10101110

10101111

10110000

10110001

10110010

10110011

10110100

10110101

10110110

10110111

10111000

10111001

10111010

10111011

10111100

10111101

10111110

10111111

11000000

11000001

11000010

11000011

11000100

11000101

11000110

11000111

11001000

11001001

11001010

11001011

11001100

u

) I

LJ
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Decimal

(LSB)

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240
241 1

242

Hex

CD

CE

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DB

DF

BO

El

E2

E3

E4

E5

E6

E7 !

E8

E9 !

EA !

EB 1

EC 1

ED 1

EE 1

EF 1

FO 1

Fl <

F2 (

Decimal

(MSB)

52480

52736

52992

53248

53504

53760

54016

54272

54528

54784

55040

55296

55552

55808

56064

56320

56576

56832

57088

57344

57600

57856

58112

58368

58624

58880

59136

59392

59648

59904

50160

50416

50672

50928

51184

51440
51696

51952

Binary

11001101

11001110

11001111

11010000

11010001

11010010

11010011

11010100

11010101

11010110

11010111

11011000

11011001

11011010

11011011

11011100

11011101

11011110

11011111

11100000

11100001

11100010

11100011

11100100

11100101

11100110

11100111

11101000

11101001

11101010

11101011

11101100

11101101

11101110

11101111

11110000

11110001

11110010
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Decimal

(LSB)

243

244

245

246

247
248

249

250

251

252

253

254

255

Hex

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Decimal

(MSB)

62208

62464

62720

62976

63232

63488

63744

64000

64256

64512

64768

65024

65280

Binary

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

LJ

I I
<, )

[ <

u

The following program will print copies of this number table.

You might need to make some adjustments to the printout

conventions of your computer's BASIC and your printer itself. This

program is for Microsoft BASIC and will not work on the Atari.

Program E-l. Microsoft Table Printer.

10 OPEN4,4:REM OPEN CHANNEL TO PRINTER

100 HE$="0123456789ABCDEF"

110 FORX=1TO255

120 B=2:C=1

122 IFX<10THENPRINT#4," ";:GOTO130

124 IFX<100THENPRINT#4/" ";

130 PRINT#4,X;" ";:DE=X:GOSUB240

135 REM CREATE BINARY

140 IFXAND1THENK$(C)="1":GOTO160
150 K$(C)="0"

160 C=C+1:IFBANDXTHENK$(C)="1":GOTO180
170 K$(C)="0"

180 B=B*2:IFO8THEN200
190 GOTO160

200 FORI=8TO1STEP-1:PRINT#4,K$(I);:NEXTI

u

LJ

250
I i
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220 PRINT#4:NEXTX

230 END:REM TRANSFORM TO HEX

240 H$="":FORM=1TO0STEP-1:N%=DE/(16*M):DE=DE

250 H$=H$+MID$(HE$,N%+l,l):NEXT

260 PRINT#4,H$" ";:DE=X*256

262 IFDE<1000THENPRINT#4," ";:GOTO270

264 IFDE<10000THENPRINT#4/" ";

270 PRINT#4,DE" ";:RETURN

H





n Appendix F
- SUPERMON For PET

Thefollowing monitor extensions are the work ofseveral programmers and were previously

published in COMPUTE! Magazine. (See the copyright page for references.)

i ! Here is the legendary Supermon — a version for Upgrade (3.0 or

"New ROM") and 4.0 PETs, all keyboards, all memory sizes, 40 or 80

column screens. You need not yet know how to program in machine

language (ML) to enter this program — or to use it. In fact, exploring

with Supermon, you will find that the mysterious world of your

computer's own language becomes gradually understandable. You

will find yourself learning ML.

Many ML programmers with PET/CBM machines feel that

Supermon is the essential tool for developing programs of short to

medium length. All Upgrade and 4.0 machines have a "resident"

monitor, a program within the computer's ROM which allows you to

type SYS1024 and see the registers, load and save and run ML

programs, or see a memory dump (a list of numbers from the

computer's memory cells). But to program or analyze ML easily,

disassembler, assembler, hunt, and single-step functions are all

practical necessities. Supermon provides these and more.

Even if you've never assembled a single instruction and don't

know NOP from ROL, this appendix will lead you step-by-step

through the entry and SAVE of Supermon.

How To Enter Supermon

1. Type in the BASIC program (Program 1). It is the same for all

versions. Then save it normally by typing SAVE "CONTROL". This

program will be used later to automatically find your memory size,

transfer Supermon to the top, and report to you the SYS address you

use to activate it.

rn 2. Now the hard part: type SYS 1024 which enters you into the

< I machine language monitor. You will see something like the

following:

[—I Figure I.

( ! B*
PC IRQ SR AC XR YR SP

j—] .; 0401 E455 32 04 5E 00 EE

Then type: M 0600 0648 and you will see something similar to this

(the numbers will be different, but we are going to type over them

! j which, after hitting RETURN on each line, will enter the new
numbers into the computer's memory):

H 253
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Figure 2.

M 0600

0600

: 0608

: 0610

: 0618

: 0620

: 0628

: 0630

: 0638

: 0640

: 0648

0648

28

FF

CB

34

00

06

18

20

50

IF

58

FC

85

85

93

F0

65

43

06

D0

FF

00

IF

21

06

11

34

06

90

02

FF

21

A9

A5

06

85

AA

8A

DB

C6

00

06

0C

35

D0

23

A5

20

60

20

0B

03

85

85

16

20

23

43

EA

C6

06

AD

20

22

20

38

65

06

EA

IF

AD

A9

A5

A0

38

06

35

20

A5

Bl

u

We have divided Supermon into 21 blocks with 80 hexadecimal

numbers per block to make typing easier. There is a final, shorter

block with 64 numbers. Type right over the numbers on the screen so

that line 0600 looks like it does in Program 2. Then hit RETURN and

cursor over to the A5 on line 0608. (Set a TAB to this position if your

keyboard has a TAB key.) Then type over the numbers in this line and

so on. When you have finshed typing your RETURN on line 0648,

type in: M 0650 0698 and the next block will appear for you to type

over. Continue this way until you finish entering the new version of

line 0CC8 at the end. (Hope that no lightning or fuses blow.)

3. If you have Upgrade ROMs, you will need to correct the lines

listed in Program 3 at this point. To change line 06D0, simply type M

06D0 06D0 and it will appear so that you can type over it and

RETURN as in step 2.

4. Now Supermon is in your memory and you must SAVE it.

Hit RETURN so that you are on a new line and type:

S"SUPERMON", 01,0600,0CCC (to SAVE to tape) or type:

S"0:SUPERMON'',08,0600,0CCC (to SAVE to disk drive 0).

5. Finally, you will want to use the Checksum program to see if

you made any errors during the marathon. You probably did, but to

make it as painless as possible, the Checksum program will flash

through your Supermon and let you know which blocks need to be

corrected. So, type in Program 4 (or if you have Upgrade ROMs, use

the first three lines from Program 5). SAVE Checksum just in case.

Then LOAD "SUPERMON" (an ordinary LOAD as with a BASIC

program will slide it in starting at address 1536, above the end of

Checksum). Then RUN. Incorrect blocks will be announced. When

you know where the errors are, type SYS1024 and then M XXXX

XXXX for the starting and ending addresses of the bad block. Check

254
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f*-j the numbers against Program 2 (or Program 3) and in all corrections.

' j If, despite everything, you cannot find an error within a block, make

sure that the corresponding number within the DATA statement of

<—I the Checksum program is correct. Then SAVE the good version

; ! "SUPERMONl" as in step 4.
6. Your reward is near. LOAD "CONTROL" and then LOAD

SUPERMONl. Then type RUN and hold your breath. If all goes well,

(1 you should see:

Figure 3.

SUPERMON4!

DISASSEMBLER BY WOZNIAK/BAUM

SINGLE STEP

BY JIM RUSSO

MOST OTHER STUFF ,BY BILL SEILER

TIDIED & WRAPPED BY JIM BUTTERFIELD

LINK TO MONITOR — SYS 31283

SAVE WITH MLM:

.S "SUPERMON",01,7A33f8000

READY.

And you should be able to use all the commands listed in the

Supermon Summary. If some, or all, of the commands fail to

function, check the last, short block of code to see if there are any

errors.

After Supermon is relocated to the top of your memory, use a

ML SAVE to save it in its final form. Instructions are on screen after

RUN.

SUPERMON SUMMARY

COMMODORE MONITOR INSTRUCTIONS:

G GO RUN

L LOAD FROM TAPE OR DISK

M MEMORY DISPLAY

R REGISTER DISPLAY

S SAVE TO TAPE OR DISK

X EXIT TO BASIC
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SUPERMON ADDITIONAL INSTRUCTIONS: { .

A SIMPLE ASSEMBLER ' I
D DISASSEMBLER

F FILL MEMORY

H HUNT MEMORY !_j
I SINGLE INSTRUCTION

P PRINTING DISASSEMBLER

T TRANSFER MEMORY ! J
SUPERMON WILL LOAD ITSELF INTO THE ^
TOP OF MEMORY .. WHEREVER THAT HAPPENS

TO BE ON YOUR MACHINE.

YOU MAY THEN SAVE THE MACHINE CODE

FOR FASTER LOADING IN THE FUTURE.

BE SURE TO NOTE THE SYS COMMAND WHICH

LINKS SUPERMON TO THE COMMODORE

MONITOR.

SIMPLE ASSEMBLER

.A 2000 LDA #$12

.A 2002 STA $8000fX

.A 2005 (RETURN)

IN THE ABOVE EXAMPLE THE USER

STARTED ASSEMBLY AT 2000 HEX. THE

FIRST INSTRUCTION WAS LOAD A REGISTER

WITH IMMEDIATE 12 HEX. IN THE SECOND

LINE THE USER DID NOT NEED TO TYPE THE

A AND ADDRESS. THE SIMPLE ASSEMBLER

PROMPTS WITH THE NEXT ADDRESS. TO EXIT

THE ASSEMBLER TYPE A RETURN AFTER THE

THE ADDRESS PROMPT. SYNTAX IS THE SAME

AS THE DISASSEMBLER OUTPUT.

DISASSEMBLER

.D 2000

(SCREEN CLEARS)

. , 2000 A9 12 LDA #$12

. , 2002 9D 00 80 STA $8000,X

. , 2005 AA TAX

. , 2006 AA TAX

(FULL PAGE OF INSTRUCTIONS)

DISASSEMBLES 22 INSTRUCTIONS

STARTING AT 2000 HEX. THE THREE BYTES

FOLLOWING THE ADDRESS MAY BE MODIFIED.
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USE THE CRSR KEYS TO MOVE TO AND MODIFY

THE BYTES. HIT RETURN AND THE BYTES

IN MEMORY WILL BE CHANGED. SUPERMON

WILL THEN DISASSEMBLE THAT PAGE AGAIN.

PRINTING DISASSEMBLER

.P 2000,2040

2000 A9 12 LDA #$12

2002 9D 00 80 STA $8000fXY.

2005 AA TAX

203F*A2 00 LDX #$00
TO ENGAGE PRINTER, SET UP BEFOREHAND:

OPEN 4,4:CMD4

ON 4.0, ACCESS THE MONITOR VIA A CALL

SYS 54386 (*NOT* A BREAK) COMMAND

SINGLE STEP

.1

ALLOWS A MACHINE LANGUAGE PROGRAM

TO BE RUN STEP BY STEP.

CALL REGISTER DISPLAY WITH .R AND SET

THE PC ADDRESS TO THE DESIRED FIRST

INSTRUCTION FOR SINGLE STEPPING.

THE .1 WILL CAUSE A SINGLE STEP TO

EXECUTE AND WILL DISASSEMBLE THE NEXT.

CONTROLS:

< FOR SINGLE STEP;

RVS FOR SLOW STEP;

SPACE FOR FAST STEPPING;

STOP TO RETURN TO MONITOR.

[ON BUSINESS KEYBOARDS—

USE 8,^,6 AND STOP].

FILL MEMORY

•F 1000 1100 FF

FILLS THE MEMORY FROM 1000 HEX TO

1100 HEX WITH THE BYTE FF HEX.

GO RUN

GO TO THE ADDRESS IN THE PC

REGISTER DISPLAY AND BEGIN RUN CODE.

ALL THE REGISTERS WILL BE REPLACED

WITH THE DISPLAYED VALUES.

.G 1000
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GO TO ADDRESS 1000 HEX AND BEGIN i ;

RUNNING CODE. »—I

HUNT MEMORY ,]

.H C000 D000 'READ O

HUNT THRU MEMORY FROM C000 HEX TO

D000 HEX FOR THE ASCII STRING READ AND

PRINT THE ADDRESS WHERE IT IS FOUND. A ^J
MAXIMUM OF 32 CHARACTERS MAY BE USED.

.H C000 D000 20 D2 FF

HUNT MEMORY FROM C000 HEX TO D000

HEX FOR THE SEQUENCE OF BYTES 20 D2 FF

AND PRINT THE ADDRESS. A MAXIMUM OF 32

BYTES MAY BE USED.

LOAD

.L

LOAD ANY PROGRAM FROM CASSETTE #1.

.L "RAM TEST"

LOAD FROM CASSETTE #1 THE PROGRAM

NAMED RAM TEST.

.L "RAM TEST",08

LOAD FROM DISK (DEVICE 8) THE PROGRAM

NAMED RAM TEST.

THIS COMMAND LEAVES BASIC POINTERS

UNCHANGED.

MEMORY DISPLAY

•M 0000 0080

.: 0000 00 01 02 03 04 05 06 07

.: 0008 08 09 0A 0B 0C 0D 0E 0F

DISPLAY MEMORY FROM 0000 HEX TO ^

0080 HEX. THE BYTES FOLLOWING THE .: | |

CAN BE ALTERED BY TYPING OVER THEM ^
THEN TYPING A RETURN.

REGISTER DISPLAY [_}
.R

PC IRQ SR AC XR YR SP

.; 0000 E62E 01 02 03 04 05 j j

DISPLAYS THE REGISTER VALUES SAVED

WHEN SUPERMON WAS ENTERED. THE VALUES

MAY BE CHANGED WITH THE EDIT FOLLOWED ~i

BY A RETURN. k^

LJ
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0 USE THIS INSTRUCTION TO SET UP THE

' ^ PC VALUE BEFORE SINGLE STEPPING WITH
.1

1 \ SAVE
.S "PROGRAM NAME",01,0800,0C80

<~- SAVE TO CASSETTE #1 MEMORY FROM

r I 0800 HEX UP TO BUT NOT INCLUDING 0C80
HEX AND NAME IT PROGRAM NAME.

.S "0:PROGRAM NAME",08,1200,1F50

SAVE TO DISK DRIVE #0 MEMORY FROM

1200 HEX UP TO BUT NOT INCLUDING 1F50

HEX AND NAME IT PROGRAM NAME.

TRANSFER MEMORY

.T 1000 1100 5000

TRANSFER MEMORY IN THE RANGE 1000

HEX TO 1100 HEX AND START STORING IT AT

ADDRESS 5000 HEX.

EXIT TO BASIC

.X

RETURN TO BASIC READY MODE.

THE STACK VALUE SAVED WHEN ENTERED WILL

BE RESTORED. CARE SHOULD BE TAKEN THAT

THIS VALUE IS THE SAME AS WHEN THE

MONITOR WAS ENTERED. A CLR IN

BASIC WILL FIX ANY STACK PROBLEMS.

Program I.CONTROL.

i \ 100 PRINT"{CLEAR}{02 DOWN}{REV} SUP
ERMON!!"

n 110 PRINT"{DOWN} DISSASSEMBLER "

' ! {REV}D{OFF} BY WOZNIAK/BAU
M

^ 120 PRINT" SINGLE STEP {REV}l

■ J {OFF} BY JIM RUSSO
130 PRINT"MOST OTHER STUFF {REV},HA

_, LT{OFF} BY BILL SEILER

L^\ 150 PRINT"{DOWNjTIDIED & WRAPPED BY

JIM BUTTERFIELD"

259



Appendix F
u

170 L=PEEK(52)+PEEK(53)*256:SYS1536

:M=PEEK(33):N=PEEK(34)

180 POKE52,M:POKE53,N:POKE48,M:POKE

49,N:N=M+N*256

210 PRINT"{02 DOWN}LINK TO MONITOR "

— SYS";N

220 PRINT:PRINT"SAVE WITH MLM:"

2 30 PRINT".S ";CHR$(34);"SUPERMON";

CHR$(34);",01";:X=N/4096:G

OSUB250

240 X=L/4096:GOSUB250:END

2 50 PRINT",";:FORJ=1TO4:X%=X:X=(X-X

%)*16:IFX%>9THENX%=X%+7

260 PRINTCHR$(X%+48);:NEXTJrRETURN

i I

Program 2. SUPERMON 4.0

0600

0608

0610

0618

0620

0628

0630

0638

0640

0648

0650

0658

0660

0668

0670

0678

0680

0688

0690

0698

06A0

A9

A5

A0

38

06

35

20

A5

Bl

C6

A9

60

AA

AA

AA

AA

AD

FF

8D

FB

FF

CB

34

00

06

18

20

50

IF

IF

22

80

AA

AA

AA

AA

AA

FE

00

FA

03

00

85

85

20

F0

65

43

06

D0

60

C6

C5

AA

AA

AA

AA

AA

FF

85

03

00

D0

IF

21

38

11

34

06

90

02

48

21

IF

AA

AA

AA

AA

AA

00

35

AD

00

0E

A9

A5

06

85

AA

8A

DB

C6

A5

68

A9

AA

AA

AA

AA

AA

85

AD

FD

A2

86

0C

35

D0

23

A5

20

60

20

21

91

06

AA

AA

AA

AA

AA

34

FC

FF

08

B4

85

85

16

20

23

43

EA

C6

D0

21

E5

AA

AA

AA

AA

AA

AD

FF

00

DD

8A

20

22

20

38

65

06

EA

IF

02

60

20

AA

AA

AA

AA

AA

FF

00

8D

DE

0A

\ [

u

u
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n

n

06A8

06B0

06B8

06C0

06C8

06D0

06D8

06E0

06E8

06F0

06F8

0700

0708

0710

0718

0720

0728

0730

0738

0740

0748

0750

0758

0760

0768

0770

0778

0780

0788

0790

0798

07A0

07A8

07B0

07B8

07C0

07C8

07D0

07D8

AA

FF

9A

00

02

20

A9

79

D7

54

4C

FA

60

02

D0

02

FE

E5

81

FA

FA

D7

Cl

FD

D0

IB

FE

DE

Cl

00

00

20

98

B5

00

39

4C

44

D7

BD

00

FA

B4

E6

98

00

FA

90

D7

A4

60

A2

95

Fl

4C

38

FC

FA

00

00

90

FA

20

EB

02

85

D0

FA

20

20

92

D7

A6

90

D5

BA

D7

20

E9

48

00

FB

DE

D7

00

00

09

B0

D7

E6

02

FA

60

CE

E5

A8

00

20

20

15

00

A8

20

65

FE

3D

00

68

31

FA

20

DE

0C

D0

D4

20

98

FF

60

A2

D0

D6

C9

8D

20

60

DE

20

FD

B5

68

AD

FA

FB

0D

20

AF

CA

A6

90

FA

Cl

FD

20

Al

B0

FA

FA

00

63

D0

A5

EE

20

92

D7

00

CA

02

08

FC

20

00

6B

20

AE

31

D0

FA

9D

0B

00

8D

IB

44

FA

FA

DE

60

00

FA

85

AF

FB

34

00

00

20

D7

11

B5

4C

81

FA

A2

48

10

2C

B4

D6

F0

00

D7

98

06

D5

02

48

0A

02

A5

IB

02

D7

00

00

D0

Al

20

00

FD

FA

81

20

4C

20

44

90

20

81

9A

FA

00

00

BD

EA

A2

FC

FB

F9

01

20

D7

02

CA

E6

BD

02

AC

FD

02

60

20

20

20

65

FB

39

18

98

00

FD

65

IB

44

D7

14

CA

FB

FA

00

20

00

E8

4C

00

D0

60

60

20

57

20

9A

D0

FE

0A

CA

0C

A4

98

20

92

92

44

20

81

D5

AD

65

A6

20

FA

FB

D7

20

85

FA

20

00

20

44

20
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07E0

07E8

07F0

07F8

0800

0808

0810

0818

0820

0828

0830

0838

0840

0848

0850

0858

0860

0868

0870

0878

0880

0888

0890

0898

08A0

08A8

08B0

08B8

08C0

08C8

08D0

08D8

08E0

08E8

08F0

08F8

0900

0908

98

D7

C9

F0

D7

CF

D7

B4

00

0C

17

A6

B0

00

02

02

FF

00

FC

D2

79

A2

00

D3

13

C9

FC

0E

00

45

68

98

20

02

65

90

13

00

D7

9D

0D

1C

90

FF

90

20

00

C8

D7

DE

DD

8D

A9

8E

A9

20

C6

FF

D5

00

48

FC

AC

E8

00

BD

BD

FD

FC

20

22

38

FB

0B

29

FF

C9

10

F0

8E

C6

C9

B6

34

Bl

E8

20

D0

4C

0D

04

0A

16

64

B5

4C

20

00

20

00

1C

Bl

88

51

57

00

00

5C

D7

A4

90

4A

07

00

27

02

22

00

9D

0D

E0

D5

FB

E4

31

92

BA

02

A2

02

85

FC

D0

BA

17

Al

BB

A2

02

FB

D0

FF

FF

CA

AA

FC

A6

FC

01

B0

09

B0

D0

E8

E0

00

10

F0

20

A2

DD

B4

D5

20

D4

A5

00

A9

B5

00

F2

D4

D7

FB

FC

06

F0

B0

F2

00

00

D0

E8

00

B4

AA

C8

17

80

04

14

20

20

01

02

09

D0

00

10

D0

20

CA

20

FC

00

93

20

85

A9

A0

20

20

00

E0

0E

1C

06

20

F0

D4

D0

8A

60

10

60

C9

4A

4A

20

CF

D0

20

E8

20

EC

00

02

F3

39

FA

81

8D

8D

20

06

FB

91

2C

31

74

68

03

A5

20

FF

45

03

60

01

86

AD

01

A8

22

AA

4A

98

FF

Fl

6B

20

63

86

A0

D0

20

D5

00

FA

0E

09

D2

FC

84

20

20

D5

FC

20

D0

FF

5C

90

FD

20

20

C8

B4

1C

88

4A

F0

BD

4A

U
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0910 4A 29 0F D0 04 A0 80 A9

0918 00 00 AA BD 44 FF 00 85

! \

n

n

0920

0928

0930

0938

0940

0948

0950

0958

0960

0968

0970

0978

0980

0988

0990

0998

09A0

09A8

09B0

09B8

09C0

09C8

09D0

09D8

09E0

09E8

09F0

09F8

0A00

0A08

FF

8F

0B

88

Bl

20

90

F0

0B

02

02

69

4C

44

D7

02

0B

FB

20

D4

B5

F8

02

0A

A9

0A

FF

85

13

00

29

AA

4A

D0

FB

Al

F0

60

02

A9

2E

3F

31

D7

A9

8E

FC

84

CA

20

20

AD

85

02

03

02

00

91

E8

00

03

98

90

FA

20

FA

A2

A8

B9

00

0B

20

D5

20

04

0A

00

FC

FA

81

98

0D

FC

F0

A2

20

85

A9

A9

8D

8D

A0

08

C8

5C

00

03

B9

9E

00

02

D2

20

92

A2

02

20

20

00

FA

D7

02

4C

03

24

34

90

A0

2E

49

1C

03

4A

88

FC

CC

CC

5E

FF

A0

2A

FF

81

FA

00

20

64

35

B0

00

20

85

E7

20

8D

D5

AD

8D

8D

E8

02

E0

4A

D0

00

1C

09

FF

00

05

88

CA

FA

00

00

34

FC

F3

E9

A9

0B

FB

FB

D2

09

78

FB

4E

48

AE

98

8A

09

F2

A2

02

02

00

8D

0E

D0

D0

00

20

8D

D5

00

F0

4C

03

D5

AD

00

FF

02

AD

FF

E8

E8

06

29

F0

20

60

01

C8

90

8D

0C

0C

F6

EA

20

44

09

20

85

05

BA

85

D0

0E

CD

60

8E

FA

00

CE

A9

02

0A10 9A 4C 55 D6 20 C0 FC 68

0A18 8D 05 02 68 8D 04 02 68

0A20 8D 03 02 68 8D 02 02 68

0A28 8D 01 02 68 8D 00 00 02

0A30 BA 8E 06 02 58 20 34 D5
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0A38 20 23 D5 85 B5 A0 00 00

0A40 20 FE D4 20 31 D5 AD 00

0A48 00 02 85 FC AD 01 02 85

0A50 FB 20 17 D7 20 0E FC 00

0A58 20 35 F3 C9 F7 F0 F9 20

0A60

0A68

0A70

0A78

0A80

0A88

0A90

0A98

0AA0

0AA8

0AB0

0AB8

0AC0

0AC8

0AD0

0AD8

0AE0

0AE8

0AF0

0AF8

0B00

0B08

0B10

0B18

0B20

0B28

0B30

0B38

0B40

0B48

0B50

0B58

35

FF

81

02

CA

3F

10

A2

IE

00

84

02

8E

F0

00

00

5E

E0

03

A5

20

FE

FF

51

B3

FE

D0

9D

2F

20

05

FA

F3

F0

FA

A2

D0

A0

02

02

C9

B0

FC

E8

0B

04

86

A6

FF

FE

D0

FF

E6

00

90

FF

CA

00

A4

20

AD

CA

AE

00

D0

F4

00

03

F9

05

88

20

20

0F

85

9D

02

E6

B5

FF

00

00

1A

C9

FE

D0

0B

00

D0

D0

AD

44

0C

FA

IB

C8

03

4C

20

20

A2

4A

D0

CF

F0

20

FB

10

A2

DE

A5

8E

BD

D0

AC

E8

00

C5

BC

20

D0

A9

0B

D7

02

00

02

D0

4C

5B

44

79

03

6E

F6

FF

F5

78

A9

02

00

F0

DE

0C

9E

E2

1C

A9

D0

88

57

E0

F0

20

02

AC

C9

90

10

FA

BA

FD

D7

FA

68

11

CA

C9

20

D7

30

E8

00

7B

20

02

FF

A2

02

30

CA

D0

FF

FE

0A

DF

C5

1C

9D

0B

0B

AE

D4

00

8E

00

38

02

D0

0D

F7

A4

9D

D0

86

A2

74

AA

00

06

F0

B0

20

EB

00

00

20

FE

B5

02

D0

98

4C

IB

C9

20

11

48

E9

6E

ED

F0

FE

FB

10

DB

DE

00

FC

BC

20

E0

15

21

E8

06

BD

D0

DF

00

D0

F0

20

D0

9A

02

LJ

U

u

\ I

u
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n

n

n

0B60

0B68

0B70

0B78

0B80

0B88

0B90

0B98

0BA0

0BA8

0BB0

0BB8

0BC0

0BC8

0BD0

0BD8

0BE0

0BE8

0BF0

0BF8

0C00

0C08

0C10

0C18

0C20

0C28

0C30

0C38

0C40

0C48

0C50

0C58

0C60

0C68

0C70

0C78

0C80

0C88

10

D0

88

64

41

31

E6

86

E8

30

40

30

40

40

00

00

44

40

40

21

4D

29

58

23

23

19

IB

1A

AE

00

53

A0

88

94

28

A4

74

00

F5

03

D0

FC

20

D5

FE

B4

86

90

02

22

02

02

00

00

9A

09

09

81

91

2C

24

5D

9D

AE

23

5B

A8

15

84

D8

54

00

6E

8A

74

00

CA

B9

F8

00

79

4C

00

A6

B5

03

45

45

45

45

22

11

10

10

62

82

92

23

24

8B

8B

69

24

5B

AD

9C

13

62

44

00

74

00

72

22

CA

FC

A5

85

D5

D8

D0

B5

A6

C9

03

33

33

B3

44

22

22

22

13

00

86

28

00

IB

ID

A8

53

A5

29

6D

34

5A

C8

B4

F4

00

44

00

8A

00

DE

FB

20

FD

11

DD

B4

47

D0

D0

D0

D0

33

44

44

44

78

00

4A

24

00

Al

Al

19

19

69

00

9C

11

48

54

08

CC

AA

68

00

AC

00

91

84

17

00

98

10

28

60

08

08

08

08

D0

33

33

33

A9

00

85

59

1C

9D

00

23

Al

24

00

A5

A5

26

68

84

4A

A2

B2

1A

1C

91

FB

FC

D7

A8

F0

02

60

38

40

40

40

40

8C

D0

D0

D0

00

00

9D

00

8A

8A

00

24

00

24

7C

69

69

62

44

74

72

A2

32

1A

02

FB

20

A0

20

20

0E

08

C9

60

09

09

09

09

44

8C

08

08

00

59

2C

00

1C

ID

29

53

00

AE

00

29

23

94

E8

B4

F2

74

B2

26
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0C90 26 72 72 88 C8 C4 CA 26

0C98 48 44 44 A2 C8 54 46 48

0CA0 44 50 2C 41 49 4E 00 00

0CA8 DB FA 00 30 FB 00 5E FB

0CB0 00 Dl FB 00 F8 FC 00 28

0CB8 FD 00 D4 FD 00 4D FD 00

0CC0 B9 D4 7F FD 00 4A FA 00

0CC8 33 FA 00 AA AA AA AA AA

Program 3. Changes For SUPERMON 3.0.

06D0 20 EB E7 C9 20 F0 F9 60

06E0 79 FA 00 20 BE E7 20 AA

06E8 E7 90 09 60 20 EB E7 20

06F0 A7 E7 B0 DE AE 06 02 9A

06F8 4C F7 E7 20 CD FD CA D0

0738 81 FA 00 20 97 E7 20 92

0748 FA 00 20 CA FA 00 20 97

0750 E7 90 15 A6 DE D0 65 20

0760 FD 20 A8 FA 00 20 D5 FD,

0798 00 20 81 FA 00 20 97 E7

07A0 20 92 FA 00 20 97 E7 20

07A8 EB E7 20 B6 E7 90 14 85

07C0 D5 FD D0 EE 4C 9A FA 00

07C8 4C 56 FD 20 81 FA 00 20

07D0 97 E7 20 92 FA 00 20 97

07D8 E7 20 EB E7 A2 00 00 20

07E0 EB E7 C9 27 D0 14 20 EB

07E8 E7 9D 10 02 E8 20 CF FF

07F8 F0 1C 8E 00 00 01 20 BE

0800 E7 90 C6 9D 10 02 E8 20

0808 CF FF C9 0D F0 09 20 B6

0810 E7 90 B6 E0 20 D0 EC 86

0818 B4 20 D0 FD A2 00 00 A0

0830 6A E7 20 CD FD 20 D5 FD

0840 B0 DD 4C 56 FD 20 81 FA
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0878 D2 FF 4C 56 FD A0 2C 20

0880 15 FE 20 6A E7 20 CD FD

08E0 20 75 E7 A6 B4 60 AD 1C

0980 4C CD FD 20 81 FA 00 20

0988 97 E7 20 92 FA 00 20 97

0990 E7 A9 04 A2 00 00 8D 09

0998 02 8E 0A 02 20 D0 FD 20

09A8 FB 84 FC 20 01 F3 F0 05

09B0 20 CA FA 00 B0 E9 4C 56

09B8 FD 20 81 FA 00 A9 03 85

09C0 B5 20 EB E7 20 A7 FD D0

09E8 0A 02 20 D0 FD 78 AD FA

0A10 9A 4C Fl FE 20 7B FC 68

0A30

0A38

0A40

0A50

0A58

0A60

0A70

0AA8

0B38

0B80

0B88

BA

20

20

FB

20

01

81

00

9D

41

CD

8E

BF

9A

20

01

F3

FA

B0

20

20

FD

06

FD

FD

6A

F3

D0

00

0F

97

15

4C

02

85

20

E7

C9

03

20

20

E7

FE

D8

58

B5

CD

20

F7

4C

97

CB

AC

20

FD

20

A0

FD

0E

F0

56

E7

E7

1C

6A

00

D0

00

AD

FC

F9

FD

8E

A4

02

E7

A8

FD

00

00

00

20

C9

11

FB

F0

20

20

0CC0 55 FD 7F FD 00 4A FA

Program 4. SUPERMON 4.0 Checksum.

100 REM SUPERMON 4 CHECKSUM

110 DATA7331,12186,10071,10387,1082

9,917 5,10 314,9823,9715,8 71

4,8852

120 DATA8850,9748,7754,10247,10423,

10948,10075,6093,5492,780 5

:S=1536
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' " U

130 FORB=1TO21:READX:FORI=STOS+79:N ; |

=PEEK(I):Y=Y+N W

140 NEXTI:IFYOXTHENPRINT"ERR0R IN ~

BLOCK #"B:GOTO160 ) ')

150 PRINT"BLOCK #"B" IS CORRECT" ^
160 S=I:Y=0:NEXTB:PRINT"CHECK THE F

INAL, SHORT BLOCK BY HAND" ) (

Program 5. Changes For SUPERMON 3.0 Checksum.

100 REM SUPERMON 3 CHECKSUM

110 DATA7331,12186,10467,10880,1112

4,10005,10906,10196,9951,8

813

120 DATA8852,9 329,10239,84 57,10334,

10423,11047,10311,6093,549

2,7805:S=1536
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n PET MICROMON

-. An Enhanced Machine

Language Monitor

]"—l Micromon is for Upgrade and 4.0 BASICs, all memory sizes, all

[ keyboards and is in the public domain. If you have enough memory,
you can add the additional commands of "Micromon Plus" as well.

"Plus" is from $5B00 to $5F48 and you will want to move Micromon

from $1000 up to $6000.

There is quite a bit of typing here so there are two checksum

programs which will find and flag any errors. See the instructions for

typing in Supermon.

Micromon Instructions

SIMPLE ASSEMBLER

.A 2000 LDA#$12

.A 2002 STA $8000,X

.A 2005 DEXrGARBAGE

In the above example, the user started assembly at 2000 hex. The first

instruction was load a register with immediate 12 hex. In the second

line the user did not need to type the A and address. The simple

assembler retypes the last entered line and prompts with the next

address. To exit the assembler, type a return after the address

prompt. Syntax is the same as the Disassembler output. A colon (:)

can be used to terminate a line.

BREAK SET

.B 1000 OOFF

The example sets a break at 1000 hex on the FF hex occurrence of the

instruction at 1000. Break set is used with the QUICK TRACE

command. A BREAK SET with count blank stops at the first

pl occurrence of the break address.

COMPARE MEMORY

r—| .C 1000 2000 C000

i i Compares memory from hex 1000 to hex 2000 to memory beginning at

hex C000. Compare will print the locations of the unequal bytes.

f*1 DISASSEMBLER

' > .D 2000 3000
., 2000 A9 12 LDA#$12

., 2002 9D 00 80 STA $8000,X

Pi ., 2005 AA TAX
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Disassembles from 2000 to 3000. The three bytes following the

address may be modified. Use the CRSR KEYS to move to and

modify the bytes. Hit return and the bytes in memory will be

changed. Micromon will then disassemble that line again.

Disassembly can be done under the control of the cursor. To

disassemble one at a time from $1000.

.D 1000

If the cursor is on the last line, one instruction can be disassembled

for each pressing of the cursor down key. If it is held down, the key

will repeat and continuous disassembly will occur. Disassembly can

even be in reverse! If the screen is full of a disassembly listing, place

the cursor at the top line of the screen and press the cursor up key.

EXIT MICROMON

.E

Combine the killing of Micromon and exit to BASIC.

FILL MEMORY

.F 1000 1100 FF

Fills the memory from 1000 hex to 1100 hex with the byte FF hex.

GO RUN

.G

Go to the address in the PC Register display and begin run code. All

the registers will be replaced with the displayed values.

.G 1000

Go to address 1000 hex and begin running code.

HUNT MEMORY

.H C000 D000 'READ

Hunt through memory from C000 hex to D000 hex for the ASCII

string "read" and print the address where it is found. Maximum of

32 characters may be used.

.H C000 D000 20 D2 FF

Hunt memory from C000 hex to D000 hex for the sequence of bytes 20

D2 FF and print the address. A maximum of 32 bytes may be used.

Hunt can be stopped with the STOP key.

KILL MICROMON

.K

Restore the Break vector and IRQ that was saved before Micromon

was called and break into the TIM monitor. A return to Micromon can

be done with a Go to the value in the PC register.

LOAD

.L"RAMTEST",08
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Load the program named RAM TEST from the disk. Note for cassette

users: To load or save to cassette. Kill Micromon with the K command

to return to the TIM monitor. Then use the TIM monitor L and S

^^ commands to load and save to the cassettes. This has to be done

I ; because of the repeat keys of Micromon. BASIC 4.0 users then can

return to Micromon with a Go command to the PC value, but BASIC

2.0 users should return to BASIC, then SYS to Micromon because the

p^ TIM overwrites the IRQ value for loads and saves with a filename.

MEMORY DISPLAY

.M 0000 0008

.: 0000 30 31 32 33 34 35 36 37 1234567

.: 0008 38 41 42 43 44 45 46 47 89ABCDE

Display memory from 0000 hex to 0008 in hex and ASCII. The bytes

following the address may be modified by editing and then typing a

RETURN.

Memory display can also be done with the cursor control keys.

NEWLOCATER

.N 1000 17FF 6000 1000 1FFF

.N 1FB0 1FFF 6000 1000 1FFF W

The first line fixes all three byte instructions in the range 1000 hex to

1FFF hex by adding 6000 hex offset to the bytes following the

instruction. New Locater will not adjust any instruction outside of the

1000 hex to 1FFF hex range. The second line adjusts Word values in

the same range as the first line. New Locater stops and disassembles

on any bad op code.

CALCULATE BRANCH OFFSET

.O 033A 033A FE

Calculate the offset for branch instructions. The first address is the

starting address and the second address is the target address. The

offset is then displayed.

QUICK TRACE

r- .q
(v . .Q 1000

The first example begins trace at the address in the PC of the register

r—* display. The second begins at 1000 hex. Each instruction is executed

■ \ as in the WALK command, but no disassembly is shown. The Break
Address is checked for the break on Nth occurrence. The execution

^ may be stopped by pressing the STOP and = (left arrow on business)

| [ keys at the same time.

REGISTER DISPLAY

f=-t .R

j \ PC IRQ SR AC XR YR SP
.: 0000 E455 01 02 03 04 05
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Displays the register values saved when Micromon was entered. The ) '(

values may be changed with the edit followed by a RETURN. L-J

SAVE

.S"l:PROGRAMNAME",08,0800,0C80 M

Save to disk drive #1 memory from 0800 hex up to, but not including,

0C80 hex and name it PROGRAM NAME. See note in LOAD

command for cassette users. ^ ~\

TRANSFER MEMORY WJ
.T 1000 1100 5000

Transfer memory in the range 1000 hex to 1100 hex and start storing it

at address 5000 hex.

WALK CODE

.w

Single step starting at address in register PC.

.w iooo

Single step starting at address 1000 hex. Walk will cause a single step

to execute and will disassemble the next instruction. Stop key stops

walking. The J key finishes a subroutine that is walking, then

continues with the walk.

EXIT TO BASIC

.x

Return to BASIC READY mode. The stack value saved when entered

will be restored. Care should be taken that this value is the same as

when the monitor was entered. A CLR in BASIC will fix any stack

problems. Do not X to BASIC then return to Micromon via a SYS to

the cold start address. Return via a SYS to BRK (SYS 1024) or SYS to

the Warm start of Micromon (Warm start=Cold start+3). An X and

cold start will write over the TIM break vector that was saved.

CHANGE CHARACTER SETS

Change from uppercase/graphics to lower/uppercase mode or vice i_fj)

versa.

HEX CONVERSION ]'(

.$4142 16706 A B 0100 0001 0100 0010 u-^'

A hex number is input and the decimal value, the ASCII for the two

bytes, and the binary values are returned. The ASCII control values

are returned in reverse.

Hex conversion can also be scrolled with the cursor control keys.

DECIMAL CONVERSION

.#16706 4142 A B 0100 0001 0100 0010
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A decimal number is input and the hex value, the ASCII for the two

bytes, and the binary values are returned.

BINARY CONVERSION

.%0100000101000010 4142 16706 A B

A binary number is input and the hex value, the decimal number, and

the ASCII values are returned.

ASCII CONVERSION

."A 41 65 0100 0001

An ASCII character is input and the hex value, decimal value, and

binary values are returned. Because of the quote, the control characters

can be determined also.

ADDITION

.+ 1111 2222 3333

The two hex numbers input are added, and the sum displayed.

SUBTRACTION

.-3333 1111 2222

The second number is subtracted from the first number and the

difference displayed.

CHECKSUM

.& A000 AFFF 67E2

The checksum between the two addresses is calculated and

displayed.

MICROMON INSTRUCTIONS:

A SIMPLE ASSEMBLE

B BREAK SET

C COMPARE MEMORY

D DISASSEMBLER

E EXIT MICROMON

F FILL MEMORY

G GO RUN

H HUNT MEMORY

K KILL MICROMON

L LOAD

M MEMORY DISPLAY

N NEWLOCATER

O CALCULATE BRANCH

Q QUICK TRACE

R REGISTER DISPLAY

S SAVE

T TRANSFER MEMORY

W WALK CODE

X EXIT TO BASIC

Z CHANGE CHARACTER SETS

$ HEX CONVERSION

# DECIMAL CONVERSION

273



Appendix F

LJ

% BINARY CONVERSION v ,

" ASCII CONVERSION LJ
+ ADDITION

- SUBTRACTION

& CHECKSUM )■ ■

Micromon also has repeat for all keys. —'

Micromon is executed by the following: SYS 4096 as listed in

Program 2, where it resides in $1000 to $1FFF. , y

For 8032, make the following changes for Micromon operation. ^ )
In location the X stands for the start of Micromon. Values in hex.

Location

X3E7

X3EC

X3F6

X427

XD18

XDA3

XCFC

XD7B

XE16

XE20

XE24

XE26

XE37

XE46

X681

Old Value

08

08

08

08

08

08

28

28

83

28

CO

04

27

28

24

New Value

10 To display 16 instead

10 of 8 bytes.

10

10

10

10

50 To fix scroll.

50

87

50

80

08

4F

50

00 To print all characters

in Walk command.

Micromon Plus Instructions

PRINTING DISASSEMBLER

.(Shift) D 1000 1FFF

The same as the Disassembler but no ., printed before each line. Also

the ASCII values for the bytes are output at the end of the line.

FORM FEED SET

.i

Sets a form feed for printout. Gives 57 printed lines per page. Works

with the Shift D and Shift M commands.

.1 "Heading"

Sets form feed with a message to be printed at the top of each page.

.IX

Cancels form feed. \ f

PRINT LOAD ADDRESS

J "File name"

Read the load address of the file and print it in hex. Device number 8

is used.
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KILL MICROMON ADDITIONS

.(Shift) K

Kill Micromon and its additions and BRK to the TIM monitor. This is

the same as the unshifted K command except now a G command will

reinitialize Micromon and the additions.

LOAD FROM DISK

.(Shift) L "filename"

This is the same as the normal load command except that the disk

(device #8) is used as the default, not the cassette.

PRINTING MEMORY DUMP

.(Shift) M F000 F100

The same as the normal Memory dump, but does not print the .: and

prints out 16 hex bytes and the ASCII for them.

PRINT SWITCHER

.P

If the output is to the CRT then switch the output to the printer

(device #4). If the output is not to the CRT then clear the output

device and restore the output to the CRT.

.P06

Make device #6 the output device if the current output is to the CRT.

SEND TO PROM PROGRAMMER

.U06 7000 7FFF

This command will send out bytes to a PROM programmer on the

IEEE bus. The first byte is the device number and the two addresses

are the range of memory to output. A CHR$(2) is sent first to start the

programmer. This is followed by the memory bytes as ASCII

characters separated by spaces. After all bytes have been sent, a

CHR$(3) is sent to stop the programmer. Micromon then does a

checksum on the range to compare against the programmer

checksum. Although this is for a particular programmer, it could be

modified for others.

SPECIFY LOAD ADDRESS

.Y 7000 "Filename"

This command allows a file to be loaded starting at the address you

specify and not the load address it would normally load into. The disk

(device #8) is used for loading.

TEXT FLIP FOR 8032 & FAT 40's

.(Shift) Z

This is for 8032 and Fat 40's to go from Text to Graphics mode or vice

versa.
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U

DOS SUPPORT l (

,@ or. > L-J

This reads the error channel from disk device number 8.

.@ disk command or. > disk command -

This sends the disk command to disk device number 8. I !
.@$0or.>$0

This reads the directory from disk device number 8. The SPACE BAR ,

will hold the display, any other key will start it again, and the STOP ] )
key will return to command mode.

CONTROL CHARACTERS

.(Uparrow)g

This command will print the control character of the ASCII character

input.

Examples of controls:

g Ring bell

i Tab set and clear

M Insert line

n Text mode

N Graphics mode

q Cursor down

Q Cursor up

s Home cursor

S Clear screen

u Delete line

v Erase end

V Erase begin

MICROMON PLUS INSTRUCTIONS

(Shift) D PRINTING DISASSEMBLER

I HEADING AND FORM FEED CONTROL

J PRINT LOAD ADDRESS

(Shift) K KILL MICROMON ADDITIONS

(Shift) L LOAD FROM DISK

(Shift) M PRINT MEMORY DISPLAY

P PRINTER SWITCHING .

U SEND TO PROM PROGRAMMER ! I
Y SPECIFY LOAD ADDRESS ( '

(Shift) Z TEXT/GRAPHICS FLIP

> DOS SUPPORT COMMANDS

@ DOS SUPPORT COMMANDS

(Up arrow) CONTROL CHARACTERS

u

G
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Program I. Checksum For Micromon.

10 DATA 15463,14894,14290,11897r12

4 53,13919,14116,11715,1257

5,14571

20 DATA 13693,11853,12903,14513,12

137,15006,12654,13291,1243

6,13899

30 DATA 15366,9999,11834,13512,128

9 2,1447 5,15149,14896,15782

,9511

40 DATA 12171,8985

100 Q=4096

110 FOR BLOCK=1TO32

120 FOR BYTE=0TO127

130 X=PEEK(Q+BYTE) :CK=CK+X

140 NEXT BYTE

150 READ SUM

160 IF SUM <> CK THEN PRINT" ERROR '

IN BLOCK #"BLOCK:GOTO170

165 PRINT" BLOCK"

BLOCK" IS CORRECT

170 CK=0:Q=Q+128

180 NEXT BLOCK

Program 2. Micromon.

1000 4C 0C 10 4C 6F 10 4C CF

1008 FF 4C D2 FF 78 A5 92 A6

1010 93 8D E5 02 8E E6 02 AD

1018 F6 IF AE F7 IF 8D E3 02

1020 8E E4 02 AD F0 IF AE Fl

1028 IF 85 92 86 93 A5 90 A6

1030 91 CD EE IF D0 05 EC EF

1038 IF F0 10 8D 9E 02 8E 9F

1040 02 AD EE IF AE EF IF 85

1048 90 86 91 AD EC IF AE ED

1050 IF E0 80 B0 08 85 34 86

1058 35 85 30 86 31 A9 10 8D

1060 84 02 8D 85 02 A9 00 8D
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1068 86 02 8D A2 02 58 00 38

1070 AD 7B 02 E9 01 8D 7B 02

1078 AD 7A 02 E9 00 8D 7A 02

1080 20 55 19 A2 42 A9 2A 20

1088 29 18 A9 52 D0 23 A9 3F

1090 20 09 10 20 55 19 A9 2E LJ
1098 20 09 10 A9 00 8D 94 02

10A0 8D A2 02 A2 FF 9A 20 A4

10A8 18 C9 2E F0 F9 C9 20 F0

10B0 F5 A2 ID DD 92 IF D0 13

10B8 8D 87 02 8A 0A AA BD B0

10C0 IF 85 FB BD Bl IF 85 FC

10C8 6C FB 00 CA 10 E5 6C E3

10D0 02 A2 02 D0 02 A2 00 B4

10D8 FB D0 09 B4 FC D0 03 EE

10E0 94 02 D6 FC D6 FB 60 A9

10E8 00 8D 8C 02 20 4F 12 A2

10F0 09 20 52 19 CA D0 FA 60

10F8 A2 02 B5 FA 48 BD 91 02

1100 95 FA 68 9D 91 02 CA D0

1108 Fl 60 AD 92 02 AC 93 02

1110 4C 17 11 A5 FD A4 FE 38

1118 E5 FB 8D 91 02 98 E5 FC

1120 A8 0D 91 02 60 A9 00 F0

1128 02 A9 01 8D 95 02 20 E6

1130 17 20 55 19 20 13 11 20

1138 3C 18 90 IB 20 0A 11 B0

1140 03 4C C5 11 20 7F 11 E6 i_J
1148 FD D0 02 E6 FE 20 3B 19

1150 AC 94 02 D0 45 F0 E5 20

1158 0A 11 18 AD 91 02 65 FD if
1160 85 FD 98 65 FE 85 FE 20

1168 F8 10 20 7F 11 20 0A 11

1170 B0 53 20 Dl 10 20 D5 10 ]|
1178 AC 94 02 D0 ID F0 EB A2
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1180 00 Al FB AC 95 02 F0 02

1188 81 FD Cl FD F0 0B 20 13

1190 18 20 52 19 20 AE 18 F0

1198 01 60 4C 93 10 20 01 18

11A0 20 0B 18 20 A4 18 20 6F

11A8 18 90 17 8D 89 02 AE 94

11B0 02 D0 12 20 13 11 90 0D

11B8 AD 89 02 81 FB 20 3B 19

11C0 D0 EC 4C 8E 10 4C 93 10

11C8 20 01 18 20 0B 18 20 A4

11D0 18 A2 00 20 A4 18 C9 27

11D8 D0 14 20 A4 18 9D A3 02

11E0 E8 20 06 10 C9 0D F0 22

11E8 E0 20 D0 Fl F0 1C 8E 97

11F0 02 20 77 18 90 CC 9D A3

11F8 02 E8 20 06 10 C9 0D F0

1200 09 20 6F 18 90 BC E0 20

1208 D0 EC 8E 88 02 20 55 19

1210 A2 00 A0 00 Bl FB DD A3

1218 02 D0 0A C8 E8 EC 88 02

1220 D0 F2 20 8E 11 20 3B 19

1228 AC 94 02 D0 05 20 13 11

1230 B0 DE 4C 93 10 20 39 14

1238 20 13 11 90 0D A0 2C 20

1240 E7 10 20 AB 12 20 AE 18

1248 D0 EE 20 B3 15 D0 E3 20

1250 47 19 20 13 18 20 52 19

1258 20 0E IE 48 20 0B 13 68

1260 20 22 13 A2 06 E0 03 D0

1268 14 AC 8B 02 F0 0F AD 96

1270 02 C9 E8 Bl FB B0 ID 20

1278 Al 12 88 D0 Fl 0E 96 02

1280 90 0E BD E9 IE 20 AD 15

1288 BD EF IE F0 03 20 AD 15

1290 CA D0 D2 60 20 B7 12 AA

1298 E8 D0 01 C8 98 20 Al 12

12A0 8A 8E 88 02 20 1A 18 AE

12A8 88 02 60 AD 8B 02 20 B6

12B0 12 85 FB 84 FC 60 38 A4
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12B8 FC AA 10 01 88 65 FB 90 ,

12C0 01 C8 60 A8 4A 90 0B 4A L-J

12C8 B0 17 C9 22 F0 13 29 07

12D0 09 80 4A AA BD 98 IE B0 ( -

12D8 04 4A 4A 4A 4A 29 0F D0 LJ
12E0 04 A0 80 A9 00 AA BD DC

12E8 IE 8D 96 02 29 03 8D 8B

12F0 02 98 29 8F AA 98 A0 03 LJ
12F8 E0 8A F0 0B 4A 90 08 4A

1300 4A 09 20 88 D0 FA C8 88

1308 D0 F2 60 Bl FB 20 Al 12

1310 A2 01 20 Fl 10 CC 8B 02

1318 C8 90 F0 A2 03 C0 03 90

1320 Fl 60 A8 B9 F6 IE 8D 92

1328 02 B9 36 IF 8D 93 02 A9

1330 00 A0 05 0E 93 02 2E 92

1338 02 2A 88 D0 F6 69 3F 20

1340 09 10 CA D0 EA 4C 52 19

1348 20 01 18 A9 03 20 AC 13

1350 A0 2C 4C 50 15 BD 05 01

1358 CD F8 IF D0 0B BD 06 01

1360 CD F9 IF D0 03 20 D7 18

1368 A5 97 CD 83 02 F0 0A 8D

1370 83 02 A9 10 8D 84 02 D0

1378 24 C9 FF F0 20 AD 84 02

1380 F0 05 CE 84 02 D0 16 CE

1388 85 02 D0 11 A9 02 8D 85 ^ ,

1390 02 A5 9E D0 08 A9 00 85 cJ
1398 97 A9 02 85 A8 AD F3 IF

13A0 48 AD F2 IF 48 08 48 48 , f

13A8 48 6C 9E 02 8D 89 02 48 <-J
13B0 20 A4 18 20 19 19 D0 F8

13B8 68 49 FF 4C AE 12 20 39 , ,

13C0 14 AE 94 02 D0 0D 20 13 LJ
13C8 11 90 08 20 D6 13 20 AE

13D0 18 D0 EE 4C 4A 12 20 55 ) ,

13D8 19 A2 2E A9 3A 20 29 18 LJ

13E0 20 52 19 20 13 18 A9 08
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n

<—» 13E8 20 03 19 A9 08 20 B9 13

' l 13F0 A9 12 20 09 10 A0 08 A2
13F8 00 Al FB 29 7F C9 20 B0

1400 02 A9 2E 20 09 10 C9 22

1408 F0 04 C9 62 D0 0A A9 14

1410 20 09 10 A9 22 20 09 10

1418 20 3B 19 88 D0 DB A9 92

1420 4C 09 10 20 01 18 A9 08

1428 20 AC 13 20 B3 15 20 D6

1430 13 A9 3A 8D 6F 02 4C 5C

1438 15 20 01 18 85 FD 86 FE

1440 20 06 10 C9 0D F0 03 20

1448 06 18 4C 55 19 20 4C 18

1450 85 FD 86 FE A2 00 8E A4

1458 02 20 A4 18 C9 20 F0 F4

1460 9D 8D 02 E8 E0 03 D0 Fl

1468 CA 30 14 BD 8D 02 38 E9

1470 3F A0 05 4A 6E A4 02 6E

1478 A3 02 88 D0 F6 F0 E9 A2

1480 02 20 06 10 C9 0D F0 22

1488 C9 3A F0 IE C9 20 F0 Fl

1490 20 A4 15 B0 0F 20 84 18

1498 A4 FB 84 FC 85 FB A9 30

14A0 9D A3 02 E8 9D A3 02 E8

14A8 D0 D7 8E 92 02 A2 00 8E

14B0 94 02 A2 00 8E 89 02 AD

14B8 94 02 20 C3 12 AE 96 02

14C0 8E 93 02 AA BD 36 IF 20

14C8 84 15 BD F6 IE 20 84 15

14D0 A2 06 E0 03 D0 14 AC 8B

14D8 02 F0 0F AD 96 02 C9 E8

14E0 A9 30 B0 IE 20 81 15 88

14E8 D0 Fl 0E 96 02 90 0E BD

14F0 E9 IE 20 84 15 BD EF IE

14F8 F0 03 20 84 15 CA D0 D2

1500 F0 06 20 81 15 20 81 15

1508 AD 92 02 CD 89 02 F0 03
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u

1510 4C 91 15 20 3C 18 AC 8B , ,

1518 02 F0 2E AD 93 02 C9 9D L-J
1520 D0 IF 20 13 11 90 0A 98

1528 D0 6F AE 91 02 30 6A 10 , ,

1530 08 C8 D0 65 AE 91 02 10 LJ
1538 60 CA CA 8A AC 8B 02 D0

1540 03 B9 FC 00 91 FB 88 D0 . ,

1548 F8 AD 94 02 91 FB A0 41 Lj
1550 8C 6F 02 20 B3 15 20 E7

1558 10 20 AB 12 A9 20 8D 70

1560 02 8D 75 02 A5 FC 20 B8

1568 15 8E 71 02 8D 72 02 A5

1570 FB 20 B8 15 8E 73 02 8D

1578 74 02 A9 07 85 9E 4C 93

1580 10 20 84 15 8E 88 02 AE

1588 89 02 DD A3 02 F0 0D 68

1590 68 EE 94 02 F0 03 4C B2

1598 14 4C 8E 10 E8 8E 89 02

15A0 AE 88 02 60 C9 30 90 03

15A8 C9 47 60 38 60 CD 8C 02

15B0 D0 03 60 A9 91 4C 09 10

15B8 48 4A 4A 4A 4A 20 32 18

15C0 AA 68 29 0F 4C 32 18 8D

15C8 7D 02 08 68 29 EF 8D 7C

15D0 02 8E 7E 02 8C 7F 02 68

15D8 18 69 01 8D 7B 02 68 69

15E0 00 8D 7A 02 A9 80 8D 86

15E8 02 D0 21 AD 13 E8 10 03

15F0 4C 55 13 D8 68 8D 7F 02

15F8 68 8D 7E 02 68 8D 7D 02 J_J

1600 68 8D 7C 02 68 8D 7B 02 M
1608 68 8D 7A 02 A5 90 8D 82

1610 02 A5 91 8D 81 02 BA 8E

1618 80 02 20 D7 18 AD 12 E8 jj
1620 58 AD 7C 02 29 10 F0 03

1628 4C 6F 10 2C 86 02 50 IF

1630 AD 7A 02 CD 99 02 D0 6D $
1638 AD 7B 02 CD 98 02 D0 65 ' '
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1640 AD 9C 02 D0 5D AD 9D 02

1648 D0 55 A9 80 8D 86 02 30

1650 14 4E 86 02 90 D2 AE 80

1658 02 9A AD F5 IF 48 AD F4

1660 IF 48 4C IF 17 20 55 19

1668 20 30 19 8D 89 02 A0 00

1670 20 0B 19 AD 7B 02 AE 7A

1678 02 85 FB 86 FC 20 52 19

1680 A9 24 8D 8C 02 20 52 12

1688 20 E4 FF F0 FB C9 03 D0

1690 03 4C 93 10 C9 4A D0 56

1698 A9 01 8D 86 02 D0 4F CE

16A0 9D 02 CE 9C 02 AD 12 E8

16A8 C9 EE F0 04 C9 6F D0 3E

16B0 A2 53 4C 85 10 A9 00 F0

16B8 12 AD 9A 02 AE 9B 02 8D

16C0 9C 02 8E 9D 02 A9 40 D0

16C8 02 A9 80 8D 86 02 20 06

16D0 10 C9 0D F0 11 C9 20 D0

16D8 5C 20 60 18 20 FC 18 20

16E0 06 10 C9 0D D0 4F 20 55

16E8 19 AD 86 02 F0 22 78 A9

16F0 A0 8D 4E E8 CE 13 E8 2C

16F8 12 E8 AD F0 IF AE Fl IF

1700 8D 82 02 8E 81 02 A9 3B

1708 A2 00 8D 43 E8 8E 49 E8

1710 AE 80 02 9A 78 AD 81 02

1718 85 91 AD 82 02 85 90 AD

1720 7A 02 48 AD 7B 02 48 AD

1728 7C 02 48 AD 7D 02 AE 7E

1730 02 AC 7F 02 40 4C 8E 10

1738 20 4C 18 8D 98 02 8E 99

1740 02 A9 00 8D 9A 02 8D 9B

1748 02 20 5D 18 8D 9A 02 8E

1750 9B 02 4C 93 10 20 E6 17

1758 8D A0 02 8E Al 02 20 5D

1760 18 8D 8D 02 8E 8E 02 20

1768 5D 18 8D 8F 02 8E 90 02
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1770 20 06 10 C9 0D F0 0A 20 j i

1778 06 10 C9 57 D0 03 EE 8C uj

1780 02 20 3C 18 AE 94 02 D0

1788 18 20 0A 11 90 13 AC 8C

1790 02 D0 1A Bl FB 20 C3 12

1798 AA BD F6 IE D0 06 20 E7

17A0 10 4C 93 10 AC 8B 02 C0

17A8 02 D0 33 F0 03 8C 8B 02

17B0 88 38 Bl FB AA ED 8D 02

17B8 C8 Bl FB ED 8E 02 90 IE

17C0 88 AD 8F 02 Fl FB C8 AD

17C8 90 02 Fl FB 90 10 88 18

17D0 8A 6D A0 02 91 FB C8 Bl

17D8 FB 6D Al 02 91 FB 20 3B

17E0 19 88 10 FA 30 9E 20 4C

17E8 18 85 FD 86 FE 20 5D 18

17F0 8D 92 02 8E 93 02 20 A4

17F8 18 20 60 18 85 FB 86 FC

1800 60 20 4C 18 B0 F6 20 60

1808 18 B0 03 20 5D 18 85 FD

1810 86 FE 60 A5 FC 20 1A 18

1818 A5 FB 48 4A 4A 4A 4A 20

1820 32 18 AA 68 29 0F 20 32

1828 18 48 8A 20 09 10 68 4C

1830 09 10 18 69 F6 90 02 69

1838 06 69 3A 60 A2 02 B5 FA

1840 48 B5 FC 95 FA 68 95 FC

1848 CA D0 F3 60 A9 00 8D 97 |_J
1850 02 20 A4 18 C9 20 F0 F9

1858 20 84 18 B0 08 20 A4 18

1860 20 6F 18 90 07 AA 20 6F LJ
1868 18 90 01 60 4C 8E 10 A9

1870 00 8D 97 02 20 A4 18 C9

1878 20 D0 09 20 A4 18 C9 20

1880 D0 0F 18 60 20 99 18 0A

1888 0A 0A 0A 8D 97 02 20 A4
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1890 18 20 99 18 0D 97 02 38

1898 60 C9 3A 08 29 0F 28 90

18A0 02 69 08 60 20 06 10 C9

18A8 0D D0 F8 4C 93 10 A5 9B

18B0 C9 EF D0 07 08 20 CC FF

18B8 85 9E 28 60 20 C6 18 AD

18C0 13 E8 6A 90 F7 60 20 AE

18C8 18 D0 0B 20 D7 18 A9 03

18D0 85 B0 A9 00 85 AF 60 08

18D8 78 AD 40 E8 09 10 8D 40

18E0 E8 A9 7F 8D 4E E8 A9 3C

18E8 8D 11 E8 A9 3D 8D 13 E8

18F0 AD EE IF 85 90 AD EF IF

18F8 85 91 28 60 8D 7B 02 8E

1900 7A 02 60 8D 89 02 A0 00

1908 20 52 19 Bl FB 20 1A 18

1910 20 3B 19 CE 89 02 D0 F0

1918 60 20 6F 18 90 0B A2 00

1920 81 FB Cl FB F0 03 4C 8E

1928 10 20 3B 19 CE 89 02 60

1930 A9 7C 85 FB A9 02 85 FC

1938 A9 05 60 E6 FB D0 07 E6

1940 FC D0 03 EE 94 02 60 98

1948 48 20 55 19 68 A2 2E 20

1950 29 18 A9 20 2C A9 0D 4C

1958 09 10 A2 00 BD 76 IF 20

1960 09 10 E8 E0 1C D0 F5 A0

1968 3B 20 47 19 AD 7A 02 20

1970 1A 18 AD 7B 02 20 1A 18

1978 20 52 19 AD 81 02 20 1A

1980 18 AD 82 02 20 1A 18 20

1988 30 19 20 03 19 4C 93 10

1990 4C 8E 10 20 4C 18 20 FC

1998 18 20 5D 18 8D 82 02 8E

19A0 81 02 20 30 19 8D 89 02

19A8 20 A4 18 20 19 19 D0 F8

19B0 F0 DB 20 60 1C AE 80 02

19B8 9A 6C 94 00 4C 8E 10 A0
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U

19C0 01 84 D4 88 84 Dl 84 96 , ,

19C8 84 9D A9 02 85 DB A9 A3 UJ

19D0 85 DA 20 06 10 C9 20 F0

19D8 F9 C9 0D F0 1A C9 22 D0 s ,

19E0 DB 20 06 10 C9 22 F0 36 lJ
19E8 C9 0D F0 0B 91 DA E6 Dl

19F0 C8 C0 10 F0 C7 D0 EA AD , ,

19F8 87 02 C9 4C D0 El AD 00 Lj

1A00 C0 C9 40 D0 06 20 22 F3

1A08 4C 12 1A C9 4C D0 AD 20

1A10 56 F3 20 BC 18 A5 96 29

1A18 10 D0 El 4C 93 10 20 06

1A20 10 C9 0D F0 D2 C9 2C D0

1A28 F0 20 6F 18 29 0F F0 C3

1A30 C9 03 F0 FA 85 D4 20 06

1A38 10 C9 0D F0 BA C9 2C D0

1A40 E6 20 F9 17 20 06 10 C9

1A48 2C D0 F4 20 60 18 85 C9

1A50 86 CA 20 06 10 C9 20 F0

1A58 F9 C9 0D D0 EC AD 87 02

1A60 C9 53 D0 F7 AD 00 C0 C9

1A68 40 D0 06 20 A4 F6 4C 93

1A70 10 C9 4C D0 D4 20 E3 F6

1A78 4C 93 10 20 01 18 20 3B

1A80 19 20 3B 19 20 0B 18 20

1A88 52 19 20 13 11 90 0A 98

1A90 D0 15 AD 91 02 30 10 10

1A98 08 C8 D0 0B AD 91 02 10 ) |

1AA0 06 20 1A 18 4C 93 10 4C (—'

1AA8 8E 10 20 01 18 20 C0 1A

1AB0 4C 93 10 20 55 19 A2 2E \ I

1AB8 A9 24 20 29 18 20 13 18 Lj
1AC0 20 2F IB 20 E6 1A 20 52

1AC8 19 20 CC 1A 20 CF 1A 20 ) i

1AD0 52 19 A2 04 A9 30 18 0E ^
1AD8 92 02 2E 93 02 69 00 20

1AE0 09 10 CA D0 EF 60 A5 FC i |

1AE8 A6 FB 8D 93 02 8E 92 02 'L—'
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1AF0 20 52 19 A5 FC 20 FA 1A

1AF8 A5 FB AA 20 52 19 8A 29

1B00 7F C9 20 08 B0 0A A9 12

1B08 20 09 10 8A 18 69 40 AA

1B10 8A 20 09 10 C9 22 F0 04

1B18 C9 62 D0 0A A9 14 20 09

1B20 10 A9 22 20 09 10 28 B0

1B28 05 A9 92 20 09 10 60 20

1B30 52 19 A6 FB A5 FC AC 00

1B38 C0 C0 40 D0 03 4C D9 DC

1B40 C0 4C D0 03 4C 83 CF 4C

1B48 8E 10 20 5B IB B0 F8 20

1B50 52 19 20 13 18 20 C3 1A

1B58 4C 93 10 A2 04 A9 00 85

1B60 FC 20 17 1C 20 83 IB 85

1B68 FB 20 78 IB 20 92 IB CA

1B70 D0 F7 08 20 52 19 28 60

1B78 20 06 10 C9 0D F0 0F C9

1B80 20 F0 0B C9 30 90 C0 C9

1B88 3A B0 BC 29 0F 60 68 68

1B90 18 60 85 FE A5 FC 48 A5

1B98 FB 48 06 FB 26 FC 06 FB

1BA0 26 FC 68 65 FB 85 FB 68

1BA8 65 FC 85 FC 06 FB 26 FC

1BB0 A5 FE 65 FB 85 FB A9 00

1BB8 65 FC 85 FC 60 20 17 1C

,_, 1BC0 8D 93 02 48 48 20 52 19

I i 1BC8 20 52 19 68 20 1A 18 20

1BD0 52 19 68 AA A9 00 20 36

fmn 1BD8 IB 20 52 19 20 CC 1A 4C

j i 1BE0 93 10 20 F4 IB 20 52 19

1BE8 20 13 18 20 2F IB 20 E6

1BF0 1A 4C 93 10 A2 0F A9 00

1 1 1BF8 85 FB 85 FC 20 17 1C 20

1C00 83 IB 20 11 1C 20 78 IB

1C08 20 11 1C CA D0 F7 4C 52
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1C10 19 4A 26 FB 26 FC 60 20

1C18 A4 18 C9 20 F0 F9 60 A9

1C20 02 4D 4C E8 8D 4C E8 4C

1C28 93 10 20 0B 18 4C F6 17

1C30 20 2A 1C 18 A5 FB 65 FD

1C38 85 FB A5 FC 65 FE 85 FC

1C40 4C 50 1C 20 2A 1C 20 13

1C48 11 84 FC AD 91 02 85 FB

1C50 20 52 19 20 13 18 4C 93

1C58 10 20 60 1C 00 6C EC IF

1C60 78 AD E5 02 AE E6 02 85

1C68 92 86 93 AD 9E 02 AE 9F

1C70 02 85 90 86 91 58 60 20

1C78 2A 1C 20 3C 18 20 52 19

1C80 A0 00 8C 92 02 8C 93 02

1C88 20 13 11 90 iD AD 94 02

1C90 D0 18 A0 00 18 Bl FB 6D

1C98 92 02 8D 92 02 98 6D 93

1CA0 02 8D 93 02 20 3B 19 4C

1CA8 88 1C AD 93 02 20 1A 18

1CB0 AD 92 02 20 1A 18 4C 93

1CB8 10 AD A2 02 D0 04 A5 9E

1CC0 D0 06 68 A8 68 AA 68 40

1CC8 AD 6F 02 C9 11 D0 7D A5

1CD0 D8 C9 18 D0 ED A5 C4 85

1CD8 FD A5 C5 85 FE A9 19 8D

1CE0 9C 02 A0 01 20 8C IE C9

1CE8 3A F0 1A C9 2C F0 16 C9

1CF0 24 F0 12 CE 9C 02 F0 CA

1CF8 38 A5 FD E9 28 85 FD B0 LJ

1D00 El C6 FE D0 DD 8D 87 02 |_|
1D08 20 45 IE B0 B5 AD 87 02

1D10 C9 3A D0 11 18 A5 FB 69

1D18 08 85 FB 90 02 E6 FC 20 j_J
1D20 D6 13 4C 39 ID C9 24 F0

1D28 1A 20 0E IE 20 AB 12 A9

1D30 00 8D 8C 02 A0 2C 20 4F |_J
1D38 12 A9 00 85 9E 4C 4A 12
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1D40 4C C2 1C 20 3B 19 20 B3

1D48 1A 4C 39 ID C9 91 D0 F0

1D50 A5 D8 D0 EC A5 C4 85 FD

1D58 A5 C5 85 FE A9 19 8D 9C

1D60 02 A0 01 20 8C IE C9 3A

1D68 F0 1A C9 2C F0 16 C9 24

1D70 F0 12 CE 9C 02 F0 15 18

1D78 A5 FD 69 28 85 FD 90 El

1D80 E6 FE D0 DD 8D 87 02 20

1D88 45 IE 90 03 4C C2 1C AD

1D90 87 02 C9 3A F0 06 C9 24

1D98 F0 ID D0 27 20 15 IE 38

1DA0 A5 FB E9 08 85 FB B0 02

1DA8 C6 FC 20 D9 13 A9 00 85

1DB0 9E 20 40 IE 4C 96 10 20

1DB8 15 IE 20 D5 10 20 B6 1A

1DC0 4C AD ID 20 15 IE A5 FB

1DC8 A6 FC 85 FD 86 FE A9 10

1DD0 8D 9C 02 38 A5 FD ED 9C

1DD8 02 85 FB A5 FE E9 00 85

1DE0 FC 20 0E IE 20 AB 12 20

1DE8 13 11 F0 07 B0 F3 CE 9C

1DF0 02 D0 E0 EE 8B 02 AD 8B

1DF8 02 20 B9 13 A2 00 Al FB

1E00 8E 8C 02 A9 2C 20 4D 19

1E08 20 52 12 4C AD ID A2 00

r-, 1E10 Al FB 4C C3 12 A9 83 85

I i 1E18 C8 85 FE A9 00 85 C7 A9
1E20 28 85 FD A0 C0 A2 04 88

, i 1E28 Bl C7 91 FD 98 D0 F8 C6

I | 1E30 C8 C6 FE CA D0 Fl A2 27
1E38 A9 20 9D 00 80 CA 10 FA

,_«, 1E40 A9 13 4C 09 10 C0 28 D0

i 1 1E48 02 38 60 20 8C IE C9 20

1E50 F0 F3 88 20 75 IE AA 20

1E58 75 IE 85 FB 86 FC A9 FF

1\ 1E60 8D A2 02 85 A7 A5 AA F0
1E68 0A A5 A9 A4 C6 91 C4 A9
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u

1E70 00 85 AA 18 60 20 8C IE c .

1E78 20 99 18 0A 0A 0A 0A 8D LJ

\ I
1E80 97 02 20 8C IE 20 99 18 <w»

1E88 0D 97 02 60 Bl FD C8 29

1E90 7F C9 20 B0 02 09 40 60 , ,

1E98 40 02 45 03 D0 08 40 09 LJ

1EA0 30 22 45 33 D0 08 40 09

1EA8 40 02 45 33 D0 08 40 09

1EB0 40 02 45 B3 D0 08 40 09

1EB8 00 22 44 33 D0 8C 44 00

1EC0 11 22 44 33 D0 8C 44 9A

1EC8 10 22 44 33 D0 08 40 09

1ED0 10 22 44 33 D0 08 40 09

1ED8 62 13 78 A9 00 21 81 82

1EE0 00 00 59 4D 91 92 86 4A

1EE8 85 9D 2C 29 2C 23 28 24

1EF0 59 00 58 24 24 00 1C 8A

1EF8 1C 23 5D 8B IB Al 9D 8A

1F00 ID 23 9D 8B ID Al 00 29

1F08 19 AE 69 A8 19 23 24 53

1F10 IB 23 24 53 19 Al 00 1A

1F18 5B 5B A5 69 24 24 AE AE

1F20 A8 AD 29 00 7C 00 15 9C

1F28 6D 9C A5 69 29 53 84 13

1F30 34 11 A5 69 23 A0 D8 62

1F38 5A 48 26 62 94 88 54 44

1F40 C8 54 68 44 E8 94 00 B4 i ,

1F48 08 84 74 B4 28 6E 74 F4 LJ
1F50 CC 4A 72 F2 A4 8A 00 AA

1F58 A2 A2 74 74 74 72 44 68 , ,

1F60 B2 32 B2 00 22 00 1A 1A Li
1F68 26 26 72 72 88 C8 C4 CA

1F70 26 48 44 44 A2 C8 0D 20 . .

1F78 20 20 20 50 43 20 20 49 LJ
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1F80

1F88

1F90

1F98

1FA0

1FA8

1FB0

1FB8

1FC0

1FC8

1FD0

1FD8

1FE0

1FE8

1FF0

1FF8

52

43

53

48

57

2B

4D

9D

BE

BF

48

4A

7B

77

EB

BC

51

20

50

4C

58

2D

14

11

13

19

13

IB

1A

1C

15

18

20

58

41

4D

2C

4F

38

B5

55

29

23

BD

IF

B2

B9

30

20

52

42

4E

3A

5A

17

16

17

11

14

IB

1C

19

1C

35

53

20

43

51

3B

4B

25

C8

B9

C9

93

30

59

00

C6

32

52

59

44

52

24

25

11

11

16

16

19

1C

1C

10

15

37

20

52

46

53

23

26

35

BF

5A

B5

AA

43

E2

55

8E

38

Appendix F

41

20

47

54

22

45

12

19

19

19

1A

1C

IB

13

10

31

I \

n

I \

Program 3. Checksum For Micromon Plus.

10 DATA 15965,14778,13059,14282,14

416,17693,12979,12903,1767

6,21760

20 DATA 14416,17693,12979,12903

100 Q=23296

110 FOR BLOCK=1TO8

120 FOR BYTE=0TO127

130 X=PEEK(Q+BYTE):CK=CK+X

140 NEXT BYTE

150 READ SUM

160 IF SUM <> CK THEN PRINT" ERROR "

IN BLOCK #"BLOCK:GOTO170

165 PRINT" BLOCK"

BLOCK" IS CORRECT

170 CK=0:Q=Q+128

180 NEXT BLOCK

190 PRINT"ANY REMAINING PROBLEMS AR

E EITHER WITHIN THE FINAL"

200 PRINT"SHORT BLOCK OR WITHIN DAT

A STATEMENTS IN THIS PROGR

AM."
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Program 4. Micromon Plus. l (

LJ
5B00 78 A5 90 A6 91 CD EE 6F

5B08 D0 05 EC EF 6F F0 30 8D

5B10 9E 02 8E 9F 02 AD EE 6F (_J
5B18 AE EF 6F 85 90 86 91 A5

5B20 92 A6 93 8D E5 02 8E E6

5B28 02 AD 3C 5F AE 3D 5F 8D LJ
5B30 E3 02 8E E4 02 AD F0 6F

5B38 AE Fl 6F 85 92 86 93 AD

5B40 3E 5F AE 3F 5F E0 80 B0

5B48 08 85 34 86 35 85 30 86

5B50 31 A9 10 8D 84 02 8D 85

5B58 02 A9 00 8D 86 02 8D A2

5B60 02 8D E7 02 8D E8 02 58

5B68 00 A2 0C DD 15 5F D0 13

5B70 8D 87 02 8A 0A AA BD 22

5B78 5F 85 FB BD 23 5F 85 FC

5B80 6C FB 00 CA 10 E5 4C 8E

5B88 60 20 39 64 20 13 61 90

5B90 17 20 EF 60 8E 8C 02 20

5B98 52 62 20 AB 5B 20 AB 62

5BA0 20 93 5C 20 AE 68 D0 E4

5BA8 4C 9B 60 A2 IE 20 Fl 60

5BB0 A0 00 Bl FB 20 60 5C CC

5BB8 8B 02 C8 90 F5 60 A5 B0

5BC0 C9 03 D0 19 20 06 60 AA

5BC8 A9 04 E0 0D F0 09 20 6F

5BD0 68 29 IF C9 04 90 AF 20 ! I

5BD8 E3 5B 4C 9B 60 20 CC FF '*-"*
5BE0 4C 93 60 85 B0 85 D4 20

5BE8 09 5C AE 00 C0 E0 40 D0 I {

5BF0 0B 20 BA F0 20 2D Fl A5 L~/
5BF8 96 D0 E2 60 E0 4C D0 5D

LJ
5C00 20 D5 F0 20 48 Fl 4C F7

5C08 5B A9 00 85 96 8D FC 03 M

5C10 85 0D 8D E8 02 60 20 39 ^
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5C18 64 AE 94 02 D0 10 20 13

5C20 61 90 0B 20 31 5C 20 93

5C28 5C 20 AE 68 D0 EB 4C A8

5C30 5B A2 05 20 Fl 60 20 13

5C38 68 A2 02 20 Fl 60 A9 10

5C40 20 03 69 A9 10 20 B9 63

5C48 A2 04 20 Fl 60 A0 10 A2

5C50 00 Al FB 20 60 5C 20 3B

5C58 69 88 D0 F5 60 4C 8E 60

5C60 29 7F C9 20 B0 02 A9 20

5C68 4C 09 60 20 06 60 C9 0D

5C70 F0 19 C9 20 D0 03 20 17

5C78 6C C9 58 F0 50 20 71 5D

5C80 8E E8 02 A2 02 20 A7 5C

5C88 4C 9B 60 A2 04 20 Cl 5C

5C90 4C 9B 60 20 55 69 AE E7

5C98 02 F0 31 CE E7 02 D0 2C

5CA0 AE E8 02 F0 1A A2 06 20

5CA8 Cl 5C A2 14 20 Fl 60 BD

5CB0 A3 02 20 09 60 E8 EC E8

5CB8 02 D0 F4 A2 03 D0 02 A2

5CC0 09 20 55 69 CA D0 FA A9

5CC8 39 8D E7 02 60 A9 00 8D

5CD0 E7 02 8D E8 02 4C 9B 60

5CD8 20 09 5C 20 CC FF 20 06

5CE0 60 C9 0D F0 16 C9 24 F0

5CE8 24 48 20 9E 5D 68 20 09

5CF0 60 20 06 60 C9 0D D0 F6

5CF8 4C DD 5B 20 52 69 20 C5

5D00 5D 20 06 60 C9 0D F0 F0

5D08 20 09 60 D0 F4 A2 00 20

5D10 82 5D 20 8B 5D 20 55 69

5D18 20 55 69 A0 03 D0 02 A0

5D20 02 84 Dl A9 08 85 AF 20

5D28 06 60 AA A4 96 D0 36 20

5D30 06 60 A4 96 D0 2F C6 Dl

5D38 D0 ED 20 36 6B 20 52 69

5D40 20 06 60 F0 05 20 09 60
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5D48 D0 F6 20 55 69 A9 00 85

5D50 AF 20 E4 FF F0 C9 D0 05

5D58 20 E4 FF F0 FB C9 20 F0

5D60 F7 C9 03 D0 BA 20 12 5E

5D68 20 55 69 4C 93 60 20 17

5D70 6C C9 22 D0 7B A2 00 20

5D78 06 60 C9 0D F0 0C C9 22

5D80 F0 08 9D A3 02 E8 E0 40

5D88 90 ED 60 86 Dl A9 A3 85

5D90 DA A9 02 85 DB 20 CC FF

5D98 20 F3 5D 4C C9 5D A9 08

5DA0 85 D4 85 B0 AC 00 C0 C0

5DA8 40 D0 0B 20 BA F0 A9 6F

5DB0 20 28 Fl 4C F7 5B C0 4C

5DB8 D0 36 20 D5 F0 A9 6F 20

5DC0 43 Fl 4C F7 5B A9 6F 85

5DC8 D3 A9 08 85 D4 85 AF AC

5DD0 00 C0 C0 40 D0 0B 20 B6

5DD8 F0 A5 D3 20 64 Fl 4C F7

5DE0 5B C0 4C D0 0B 20 D2 F0

5DE8 A5 D3 20 93 Fl 4C F7 5B

5DF0 4C 8E 60 A9 08 85 D4 A9

5DF8 60 85 D3 AD 00 C0 C9 40

5E00 D0 06 20 66 F4 4C F7 5B

5E08 C9 4C D0 E4 20 A5 F4 4C

5E10 F7 5B A9 00 85 AF AD 00

5E18 C0 C9 40 D0 03 4C 8F F3 ^ ,

5E20 C9 4C D0 CC 4C CE F3 A9 LJ

5E28 02 2C 4C E8 08 A9 0E 28

5E30 F0 02 09 80 20 09 60 4C

5E38 93 60 20 09 5C 20 6E 5D U
5E40 20 8B 5D 20 06 60 8D FB

5E48 00 20 06 60 8D FC 00 20

5E50 12 5E 20 52 69 A9 24 A2 LJ
5E58 20 20 29 68 20 13 68 4C

5E60 93 60 20 60 6C 00 6C 3E

5E68 5F A0 08 84 D4 A0 4C 8C lJ
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I i

5E70 87 02 A0 00 AC C4 69 20

5E78 17 6C 29 9F 4C 34 5E 4C

5E80 8E 60 20 A4 68 20 6F 68

5E88 29 IF C9 04 90 Fl 85 D4

5E90 20 2A 6C A5 FD A6 FE 8D

5E98 92 02 8E 93 02 20 3C 68

5EA0 A5 D4 20 E3 5B A9 02 20

5EA8 09 60 20 52 69 20 13 61

5EB0 90 0F AE 94 02 D0 0A Al

5EB8 FB 20 1A 68 20 3B 69 D0

5EC0 E9 A9 03 20 09 60 20 EF

5EC8 60 20 CC FF 20 F8 60 4C

5ED0 7D 6C 20 09 5C 20 01 68

5ED8 20 6E 5D 86 Dl 20 04 5F

5EE0 20 8D 5D 20 06 60 20 06

5EE8 60 A9 00 85 AF AD 00 C0

5EF0 C9 40 D0 06 20 52 F3 4C

5EF8 01 5F C9 4C D0 81 20 8C

5F00 F3 4C 12 6A AD 00 C0 C9

5F08 40 D0 03 4C 0A F4 C9 4C

5F10 D0 EA 4C 49 F4 50 C4 49

5F18 CD 40 3E DA 4A CB CC 5E

5F20 55 59 BE 5B 89 5B 6B 5C

5F28 16 5C D8 5C D8 5C 27 5E

5F30 3A 5E 62 5E 69 5E 77 5E

5F38 82 5E D2 5E 69 5B 00 5B

5F40 31 30 32 31 38 31 AA AA
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VIC Micromon u

VIC machine language programmers: here's one of the most valuable ^ I

tools there is for working in machine language. Thirty-four t—J
commands are at your disposal including single-step, hex conversion,

search, EPROM routines, and a relocator. If you aren't yet working s \

with machine language, the instructions for entering and using this \—i

program are easy to follow. As presented, this program takes up 4K

of memory from $4000 (16384 decimal) to $4FFF (20479), but there are

instructions for locating it elsewhere in RAM memory. To enter

Micromon directly, see the Tiny PEEKer/POKEr program with

Supermon 64 (in this Appendix). The commands for VIC Micromon

are the same as the PET/CBM version except as noted below.

VIC Micromon Instructions

Initialize Memory And Screen Pointers

.1 1000 1E00 IE

Define low memory as $1000 and high memory as $lE00 regardless of

the memory present. The screen is defined to start at the $1E page of

memory. The screen memory should always be on an even page

within the range of $1000 to $lE00. Odd page values result in

incorrect setup and operation of the VIC display. Although 3K of

RAM can be added at $400 to $FFF, this memory is not accessible for

use as screen memory.

Memory pages at $000 and $200 are accessible, but are not usable

since they are used for BASIC and kernal storage, working buffers,

and stack area. If the screen page is within the low to high memory

range specified, there can be usage conflict of the screen memory

pages. If the "I" command is used and exit is made to BASIC, the

NEW command must be invoked in the BASIC environment to clean

up the memory pointers used by BASIC.

Jump To Micromon Subroutine \ J
J 2000

The subroutine at $2000 is called while remaining in the VIC

Micromon environment. The assembly language subroutine should [ J
exit by using a RTS instruction, which causes a return to the

command input section of VIC Micromon. The machine image as

shown by the Register display command is not used, nor is it ! j

disturbed when the subroutine returns to the VIC Micromon. {—*

Load

.L 2000 "TEST FILE" 01 [ j

Search for and, if found, load into memory the data file on device #1

named TEST FILE. If the name is not specified, the first file found is
I /
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loaded. The data is loaded into memory starting at location $2000.

The last address loaded is determined by the length of the binary data

file. If the device number is not specified, it defaults to device #1,

which is the VIC cassette tape. The original memory addresses and

name of the last file read can be inspected by doing a Memory display

of the tape buffer which is at $375 for VIC Micromon.

Print Switcher

.p

If the output is to the screen, then switch the ouput to the RS-232

channel (device #2). If the output is not to the screen, restore the

output to the screen with the RS-232 channel left active until the

RS-232 output buffer is drained. Note that opening the RS-232

channel grabs 512 bytes for I/O buffering from the top of memory,

.p oooo

Regardless of the output, clear the RS-232 channel and set

output to the screen.

.P CCBB

If the output is to the screen, set CC into the RS-232 command

register at location $294 and BB into the RS-232 control register at

location $293. Output is then switched to the RS-232 channel. This

command is invalid if output is not currently to the screen.

Command Register Format

n

n

H

n

n

Field

7,6,5

4

3,2,1

0

Use

Parity Options

Duplex

Unused

Handshake

Value

-0

001

011

101

111

0

1

0

1

Description

Parity disabled

Odd parity

Even parity

Mark transmitted

Space transmitted

Full duplex

Half duplex

3 line

xline
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Control Register Format

Field

7

6,5

4

3,2,1,0

Use

Stop Bits

Word Length

Unused

Baud Rate

Value

0

1

00

01

10

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

Description

1 stop bit

2 stop bits

8 bits

7 bits

6 bits

5 bits

User rate

50 Baud

75

110

134.5

150

300

600

1200

1800

2400

u

u

u

u

u

Save

.S 2000 3000 "TEST FILE" 01

Save memory from $2000 up to, but not including, $3000 onto device

#1, which is the VIC cassette tape. If the device number is not

specified, it defaults to device #1. The name TEST FILE is placed in

the file header for the file saved.

Verify

.V 2000 "TEST FILE" 01

Search for and verify, if found, the data file on device #1 named

"TEST FILE." If the name is not specified, the first file found is

verified. The data is verified by reading the file and comparing it to

the data in memory starting at location $2000. If not specified, the

device defaults to device #1. If there is a mismatch, the message

ERROR is output to the screen at the end of the file verification.

Command End Tone

.(

Enable the command end tone. A continuous tone will be generated

at the end of execution of the next command. The tone can be turned

off but still be enabled by just hitting the carriage return. No tone is
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n !

i—I generated if there is a syntax error while inputting the next

> command.

.)

n Disable the command end tone.

Program EPROM

.ir 2800 2FFF 00

|~| Program the 2716 type EPROM via the EPROM programmer on the

VIC User I/O port with data read from memory starting at location

$2800 and ending at location $2FFF. The last input parameter specifies

in hex the starting 256 byte page offset on the EPROM. If the low

order byte of the starting memory address is zero and the offset is

zero, then the programming starts with the first byte of the EPROM.

For example, to program only the last byte of the 2K EPROM with a

data byte from location $2FFF in memory, the command would be:

.7T 2FFF 2FFF 07

During programming, a compare of EPROM to memory is done

for each data byte just after it is written to the EPROM. Any mismatch

due to failure to program the EPROM results in output to the screen

of the mismatched memory location. If programming must be

terminated early, just hit the STOP key. No other means should be

used to abort EPROM programming. A warm restart or power down

while programming can damage the EPROM.

Read EPROM

.£ 2000 27FF00

Load memory starting at location $2000 and ending at location $27FF

with data read from the EPROM via the EPROM programmer on the

VIC User I/O port. The last input parameter specifies in hex the

starting 256 byte page offset on the EPROM. If the low order byte of

the starting memory address is zero and the offset is zero, then

reading starts with the first byte of the EPROM. For example, to read

only the last byte of the 2K EPROM and load that byte into memory at

n location $10FF, the command would be:

.£ 10FF 10FF 07

During memory load, a compare of EPROM to memory is done

nforeach data byte just after it is written to memory. Any mismatch

because of failure to write the memory with data from the EPROM

results in output to the screen of the mismatched memory location.

_ The STOP key can be used to terminate the command early.

■ Compare EPROM

. = 3000 37FF 00

P"t Compare memory starting at location $3000 and ending at location

* $37FF with data read from the EPROM via the EPROM programmer

on the VIC User I/O port. The last input parameter specifies in hex
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the starting 256 byte page offset on the EPROM. If the low order byte i .

of the starting memory address is zero and the offset is zero, then the \ i

reading starts with the first byte of the EPROM. For example, to read

only the last byte of the 2K EPROM and compare that with the data

byte in memory at location $37FF, the command would be: ] j
. = 37FF 37FF 07

Any mismatch between the EPROM and corresponding memory

data results in output to the screen of the mismatched memory

location. The STOP key can be used to terminate the command early.

Commands for VIC Micromon

VIC Micromon Instruction

SIMPLE ASSEMBLER

BREAK SET

COMPARE MEMORY

DISASSEMBLER

EXIT VIC MICROMON

FILL MEMORY

GO RUN

HUNT MEMORY

INITIAL MEMORY & SCREEN PTRS

JUMPTO SUBROUTINE

LOAD MEMORY FROM DEVICE

MEMORY DISPLAY

NEWLOCATER

OFFSET OR BRANCH CALCULATE

PRINT SWITCHER

QUICK TRACE

REGISTER DISPLAY

SAVE MEMORYTO DEVICE

TRANSFER MEMORY

VERIFY MEMORY FROM DEVICE

WALKCODE

EXIT TO BASIC

ASCII CONVERSION

DECIMAL CONVERSION

HEXADECIMAL CONVERSION

BINARY CONVERSION

CHECKSUM MEMORY

COMMAND END TONE ENABLE

COMMAND END TONE DISABLE

ADDITION

SUBTRACTION

LOAD MEMORY FROM EPROM

PROGRAM EPROM FROM MEMORY

COMPARE EPROM TO MEMORY

Command

A

B

C

D

E

F

G

H

I

J
L

M

N

O

P

Q
R

S

T

V

W

X

#

$
%

&

(

)

+

-

£

=

LJ

U

U

u

U
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f***! Of the set of commands available on the PET version of

r ! Micromon, only two were removed in the conversion to the VIC.

These were the K (Kill Micromon) and Z (change character sets)

_ commands. The K command is not necessary since the VIC doesn't

I \ have the TIM monitor. The function of the Z command, which is to
change character sets, is already provided for on the VIC by pressing

the VIC shift and Commodore keys at the same time. The rest of the

y\ commands described for the PET Micromon (see elsewhere in this

appendix) all apply identically to the commands for VIC Micromon,

\yith the exception of the LOAD and SAVE commands, which have

different formats.

VIC Micromon is always entered from VIC BASIC by a SYS

16384 when it resides at $4000 to $4FFF. Either the E (Exit VIC

Micromon) or the X (Exit to BASIC) command would be used to exit

VIC Micromon and return to the BASIC environment. The difference

between these two commands is that the X command leaves the VIC

Micromon vectors in the IRQ and BRK interrupt vector locations

while in the BASIC environment. Also, the tape buffer is left defined

as beginning at $375. Thus, certain IRQ interrupt conditions such as

the moving of the cursor to the top or bottom of the screen with

output from a D, M, or $ command displayed will cause scrolling and

reentry into VIC Micromon. Also, if a BRK instruction is executed,

VIC Micromon will be reentered via its BRK interrupt handler.

The E command restores the IRQ and BRK interrupt vectors and

resets the tape buffer pointer to a value of $33C prior to exit to the VIC

BASIC environment. Thus all active linkages and vectors to VIC

Micromon are removed, and the VIC behaves as if VIC Micromon

never existed. In particular, the E command should be used to exit

VIC Micromon when the normal VIC cassette tape LOAD, SAVE, and

VERIFY commands are to be used in the BASIC environment.

Otherwise, invalid results are likely to occur with some tape

operations.

Both the E and X commands expect the stack pointer value (as

["""! shown for SP by the Register display command) to be the same as
when VIC Micromon was first entered via the BASIC SYS command.

If the value of SP or the part of the stack pointed to by SP is

[—7 overwritten, such as by the execution of faulty code, a clean exit to

1 { BASIC by the E and X commands is unlikely. However, both the E

and X commands do check if BASIC has been initialized, and if not,

exit to BASIC is via an indirect jump to the address given at location

$C000. The address given in location $C000 is $E378, which is the

entry to initialize BASIC. In this case, the value of SP and the

contents of the stack aren't important. Once in BASIC and regardless

of how the exit from VIC Micromon was made, any subsequent

access to VIC Micromon at $4000 is always by a SYS16384.
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Location

6018

602A

6392

6650

66E7

6897

Old Value

45

43

4C

45

45

43

New Value

65

63

6C

65

65

63

LJ

VIC Micromon as given here is located from $4000 to $4FFF. It

can be relocated to any 256 byte page boundary by making the

changes, as shown in the following example, which relocate VIC

Micromon from $4000 to $6000.

The example begins with VIC Micromon at $4000 and ends with

a relocated VIC Micromon in RAM at $6000 as well as the original at
$4000.

.T 4000 4FFF 6000

.N 6000 6003 2000 4000 4FFF

.N 6012 6E6D 2000 4000 4FFF

.N 6FB5 6FFE 2000 4000 4FFF W

! i.

LJ

In order to access the relocated VIC Micromon at $6000, exit

using the E command and then from BASIC use SYS24576.

Cartridge And Checksum

The VIC-20 treats cartridge programs located at $A000 in a special

way. On power-up, a test is made for the existence of the $A000

cartridge program, and if one exists, an indirect jump is made to the

address specified at location $A000. This jump is made after the stack

pointer is initialized, but before anything else is done. Because kernal

initialization has not occurred, any cartridge program using kernal

I/O routines must do kernal initialization before using those routines.

VIC Micromon as presented here has the kernal initialization

calls built in so that it can easily be relocated and used as a cartridge

program at $A000. Besides making the changes to relocate it to $A000,

the only additional changes are to the first four bytes of VIC

Micromon.

Location

A000

A001

A002

A003

Contents

09

A0

C7

FE
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p"^ Power-up with VIC Micromon installed as a cartridge at $A000 will

' > result in immediate entry into VIC Micromon. Because BASIC is not

initialized when the E or X command is used after power-up, the exit

ntoBASIC will be via an indirect jump to the address given in location

$C000, which is the entry to initialization of BASIC. Once in BASIC,

subsequent access of VIC Micromon at $A000 must be made to

location $A012, which is done via a SYS40978.

r""l There is one last point, or rather one last byte, in VIC Micromon
which is not used for anything other than to make the 4K byte

checksum of VIC Micromon come out to a rounded up page value.

For example, the VIC Micromon from $4000 to $4FFF has a data byte

value of $E6 at location $4FFF that results in a checksum of $BF00.

This provides an easy way to verify the integrity of VIC Micromon

without having to memorize or look up a checksum.

Three Notes On VIC Micromon

Using the VIC Micromon tape commands L, S, and V on a VIC-20

with 3K of RAM installed at $400 to $FFF will result in overwrite of

$400 to $438 with file header characters (blanks). This is due to the

tape buffer being relocated to $375 while in VIC Micromon from the

normal $33C. The normal VIC cassette commands will work properly

and not overwrite this area when you EXIT from VIC Micromon. This

is because VIC Micromon restores the tape buffer pointer value to

$33C when an EXIT is done. This problem does not occur if the 3K

RAM at $400 to $FFF is not installed.

If the I (Initialize memory and screen pointers) command was

used in VIC Micromon and you EXIT, then the RUN/STOP plus

RESTORE should be used in addition to the NEW command to clean

up the BASIC environment.

Any binary image saved on cassette tape with the VIC

Micromon "S" command can be loaded in the normal VIC-20 BASIC

environment by using the command: LOAD"",!,! which looks for

the next program on tape and LOADs it into the same part of memory

-*. that it came from (see page 9 of VIC-20 Programmer's Reference Guide).

Checksum

There's a good amount of typing to do to enter the VIC Micromon
<-—| program. Use the following BASIC program (after you've SAVEd a

1 » copy of your efforts) to locate any errors you might have made.

! f Program I. Micromon Checksum.

^ 1 IFPEEK(20478)=67ANDPEEK(20479)=73THENRUN10
I I 2 PRINT"VIC20 MICROMON LOAD &":PRINT"VERIFIC

ATION PROGRAM.11:PRINT
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u

3 PRINT:PRINT:PRINT"AT LEAST 4K BYTES OF":PR , ~\

INT"RAM MUST BE INSTALLED" j
4 PRINT"AT 16384 ($4000) ELSE":PRINT"LOAD WI

LL FAIL.":PRINT

5 PRINT" IF LOADED & VERIFIED": PRINT"OK, MICR

OMON WILL BE":PRINT"ENTERED AUTOMATIC
ALLY."

6 LOAD" ",1,1 [_J
10 DATA 13328,16867,15061,13732,14507,13829,1

3267,12747,16288,13920

20 DATA 14355,11977,11877,13583,11338,15173,1
2337,14852,14051,15713

30 DATA 13442,15242,14746,15059,13134,15848,1
5858,17856,13327,8601

40 DATA 12171,10074
100 Q=16384

110 FOR BLOCK=1TO32

120 FOR BYTE=0TO127

130 X=PEEK(Q+BYTE):CK=CK+X

140 NEXT BYTE

150 READ SUM

160 IF SUM <> CK THEN PRINT"ERROR IN BLOCK #"B

LOCK:ERR=1:GOTO170

165 PRINT"BLOCK #"BLOCK" OK"

170 CK=0:Q=Q+128

180 NEXT BLOCK

190 IFERR=1THENPRINT"LOAD FAILED":END

200 SYS16384

Program 2. VIC Micromon.

4000 78 4C 15 40 41 30 C3 C2

4008 CD 20 8D FD 20 52 FD 20

4010 18 E5 20 F9 FD A9 DF A2

4018 45 8D 16 03 8E 17 03 AD L_J
4020 14 03 AE 15 03 C9 91 D0

4028 04 E0 43 F0 09 8D 60 03

4030 8E 61 03 20 94 48 A9 75

4038 85 B2 A9 80 8D 8A 02 85

4040 9D A2 D6 20 5D 4E 8E 48

4048 03 8E 64 03 58 00 CE 3D

4050 03 D0 03 CE 3C 03 20 AE
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n

4058 45 A2 42 A9 2A 4C 3D 49

4060 A9 3F 20 D2 FF A9 00 2C

4068 A9 0F 8D 0E 90 20 AE 45

4070 A9 2E 20 D2 FF A9 00 8D

4078 4E 03 8D 56 03 8D 64 03

4080 A2 7F 9A 20 8C 48 C9 2E

4088 F0 F9 C9 20 F0 F5 A2 24

4090 DD 90 4F D0 13 8D 49 03

4098 8A 0A AA BD B5 4F 85 FB

40A0 BD B6 4F 85 FC 6C FB 00

40A8 CA 10 E5 4C 60 40 A2 02

40B0 D0 02 A2 00 B4 FB D0 09

40B8 B4 FC D0 03 EE 56 03 D6

40C0 FC D6 FB 60 A9 00 8D 4E

40C8 03 20 13 42 A2 09 20 38

40D0 49 CA D0 FA 60 A2 02 B5

40D8 FA 48 BD 53 03 95 FA 68

40E0 9D 53 03 CA D0 Fl 60 AD

40E8 54 03 AC 55 03 4C F4 40

40F0 A5 FD A4 FE 38 E5 FB 8D

40F8 53 03 98 E5 FC A8 0D 53

4100 03 60 A9 00 F0 02 A9 01

4108 8D 57 03 20 CB 47 20 AE

4110 45 20 F0 40 20 21 48 90

4118 18 20 E7 40 90 7F 20 59

4120 41 E6 FD D0 02 E6 FE 20

4128 IF 49 AC 56 03 D0 6E F0

|j 4130 E8 20 E7 40 18 AD 53 03

4138 65 FD 85 FD 98 65 FE 85

4140 FE 20 D5 40 20 59 41 20

f"7 4148 E7 40 B0 51 20 AE 40 20
1 4150 B2 40 AC 56 03 D0 46 F0

4158 EB A2 00 Al FB AC 57 03

p 4160 F0 02 81 FD Cl FD F0 0B
] 4168 20 F8 47 20 38 49 20 El

4170 FF F0 2A 60 20 E6 47 20

!"*f 4178 Al 49 F0 IE AE 56 03 D0

305



Appendix F

4180 1C 20 F0 40 90 17 60 20

4188 54 48 8D 4B 03 20 7C 41

4190 AD 4B 03 81 FB 20 IF 49

4198 D0 F3 4C 60 40 4C 68 40

41A0 20 74 41 20 8C 48 C9 27

41A8 D0 12 20 8C 48 9D 65 03

41B0 E8 20 A4 49 F0 20 E0 20

41B8 D0 F3 F0 1A 8E 59 03 20

41C0 5F 48 90 D6 9D 65 03 E8

41C8 20 A4 49 F0 09 20 57 48

41D0 90 C8 E0 20 D0 EE 8E 4A

41D8 03 20 AE 45 A2 00 A0 00

41E0 Bl FB DD 65 03 D0 0A C8

41E8 E8 EC 4A 03 D0 F2 20 68

41F0 41 20 IF 49 20 7C 41 B0

41F8 E3 20 2B 44 20 F0 40 90

4200 0D A0 2C 20 C4 40 20 6F

4208 42 20 El FF D0 EE 20 B6

4210 45 D0 8A 20 2D 49 20 F8

4218 47 20 38 49 20 C9 4D 48

4220 20 CF 42 68 20 E6 42 A2

4228 06 E0 03 D0 14 AC 4D 03

4230 F0 0F AD 58 03 C9 E8 Bl

4238 FB B0 ID 20 65 42 88 D0

4240 Fl 0E 58 03 90 0E BD E9

4248 4E 20 99 45 BD EF 4E F0

4250 03 20 99 45 CA D0 D2 60

4258 20 7B 42 AA E8 D0 01 C8

4260 98 20 65 42 8A 8E 4A 03

4268 20 FF 47 AE 4A 03 60 AD

4270 4D 03 20 7A 42 85 FB 84

4278 FC 60 38 A4 FC AA 10 01

4280 88 65 FB 90 01 C8 60 A8

4288 4A 90 0B 4A B0 17 C9 22

4290 F0 13 29 07 09 80 4A AA

4298 BD 98 4E B0 04 4A 4A 4A

42A0 4A 29 0F D0 04 A0 80 A9

42A8 00 AA BD DC 4E 8D 58 03

42B0 29 03 8D 4D 03 98 29 8F
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r*» 42B8 AA 98 A0 03 E0 8A F0 0B

' - 42C0 4A 90 08 4A 4A 09 20 88
42C8 D0 FA C8 88 D0 F2 60 Bl

r—| 42D0 FB 20 65 42 A2 01 20 CE

• l 42D8 40 CC 4D 03 C8 90 F0 A2

42E0 03 C0 03 90 Fl 60 A8 B9

r^ 42E8 F6 4E 8D 54 03 B9 36 4F

< l 42F0 8D 55 03 A9 00 A0 05 0E
42F8 55 03 2E 54 03 2A 88 D0

4300 F6 69 3F 20 D2 FF CA D0

4308 EA 4C 38 49 20 E6 47 A9

4310 03 20 9E 43 A0 2C 4C 3C

4318 45 00 00 00 A9 3C 8D 13

4320 91 20 3A 43 A9 FF 8D 12

4328 91 A5 FB A0 18 20 34 43

4330 A5 FF A0 14 8D 10 91 8C

4338 11 91 A0 1C 8C 11 91 60

4340 20 54 48 85 FF 20 AE 45

4348 20 6E 41 20 7C 41 20 1C

4350 43 AD 49 03 0A 08 90 17

4358 Al FB 8D 10 91 78 A9 C4

4360 8D 19 91 A9 3C 8D 11" 91

4368 A9 20 2C ID 91 F0 FB 20

4370 3A 43 58 8E 12 91 A9 0C

4378 8D 11 91 AD 10 91 28 B0

4380 04 10 02 81 FB Cl FB F0

4388 03 20 68 41 20 IF 49 D0

4390 B7 A9 4C 48 A9 77 48 08

4398 48 48 48 6C 60 03 8D 4B

43A0 03 48 20 8C 48 20 00 49

43A8 D0 F8 68 49 FF 4C 72 42

43B0 20 2B 44 AE 56 03 D0 0D

43B8 20 F0 40 90 08 20 C8 43

43C0 20 El FF D0 EE 4C 0E 42

43C8 20 AE 45 A2 2E A9 3A 20

43D0 0E 48 20 38 49 20 F8 47

43D8 A9 08 20 EA 48 A9 08 20

43E0 AB 43 20 38 49 20 38 49

43E8 A9 12 20 D2 FF A0 08 A2
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43F0 00 Al FB 29 7F C9 20 B0 ) ,

43F8 02 A9 2E 20 D2 FF A9 00 w

4400 85 D4 EAEA EA EA EA EA |l
4408 EA EA EAEA 20 IF 49 88

4410 D0 DF 4C DF 4A 20 E6 47

4418 A9 08 20 9E 43 20 B6 45 M
4420 20 C8 43 A9 3A 8D 77 02

4428 4C 48 45 20 E6 47 85 FD

4430 86 FE 20 A4 49 F0 03 20

4438 EB 47 4C AE 45 20 31 48

4440 85 FD 86 FE A2 00 8E 66

4448 03 20 8C 48 C9 20 F0 F4

4450 9D 4F 03 E8 E0 03 D0 Fl

4458 CA 30 14 BD 4F 03 38 E9

4460 3F A0 05 4A 6E 66 0.3 6E

4468 65 03 88 D0 F6 F0 E9 A2

4470 02 20 A4 49 F0 22 C9 3A

4478 F0 IE C9 20 F0 F3 20 90

4480 45 B0 0F 20 6C 48 A4 FB

4488 84 FC 85 FB A9 30 9D 65

4490 03 E8 9D 65 03 E8 D0 D9

4498 8E 54 03 A2 00 8E 56 03

44A0 A2 00 8E 4B 03 AD 56 03

44A8 20 87 42 AE 58 03 8E 55

44B0 03 AA BD 36 4F 20 70 45

44B8 BD F6 4E 20 70 45 A2 06

44C0 E0 03 D0 14 AC 4D 03 F0

44C8 0F AD 58 03 C9 E8 A9 30

44D0 B0 IE 20 6D 45 88 D0 Fl

44D8 0E 58 03 90 0E BD E9 4E

44E0 20 70 45 BD EF 4E F0 03

44E8 20 70 45 CA D0 D2 F0 06

44F0 20 6D 45 20 6D 45 AD 54

44F8 03 CD 4B 03 D0 7F 20 21

4500 48 AC 4D 03 F0 2F AD 55

4508 03 C9 9D D0 20 20 F0 40

4510 90 01 88 C8 D0 6F 98 2A

308



' Appendix F

\ 1

r-t 4518 AE 53 03 E0 82 A8 D0 03

• ^ 4520 B0 03 38 B0 60 CA CA 8A
4528 AC 4D 03 D0 03 B9 FC 00

r-» 4530 91 FB 88 D0 F8 AD 56 03

■<J\ 4538 91 FB A0 41 8C 77 02 20
4540 B6 45 20 C4 40 20 6F 42

r-t 4548 A9 20 8D 78 02 8D 7D 02

i ! 4550 A5 FC 20 9F 45 8E 79 02
4558 8D 7A 02 A5 FB 20 9F 45

4560 8E 7B 02 8D 7C 02 A9 07

4568 85 C6 4C 68 40 20 70 45

4570 8E 4A 03 AE 4B 03 DD 65

4578 03 F0 0D 68 68 EE 56 03

4580 F0 03 4C A0 44 4C 60 40

4588 E8 8E 4B 03 AE 4A 03 60

4590 C9 30 90 03 C9 47 60 38

4598 60 CD 4E 03 D0 1A 60 48

45A0 4A 4A 4A 4A 20 17 48 AA

45A8 68 29 0F 4C 17 48 A9 0D

45B0 20 D2 FF A9 0A 2C A9 91

45B8 4C D2 FF 8D 3F 03 08 68

45C0 29 EF 8D 3E 03 8E 40 03

45C8 8C 41 03 68 18 69 01 8D

45D0 3D 03 68 69 00 8D 3C 03

45D8 A9 80 8D 48 03 D0 26 A9

45E0 C0 8D 2E 91 A9 3F 8D 2E

45E8 91 20 94 48 D8 68 8D 41

45F0 03 68 8D 40 03 68 8D 3F

45F8 03 68 8D 3E 03 68 8D 3D

4600 03 68 8D 3C 03 AD 14 03

4608 8D 44 03 AD 15 03 8D 43

4610 03 BA 8E 42 03 58 AD 3E

4618 03 29 10 F0 03 4C 4E 40

4620 2C 48 03 50 IF AD 3C 03

4628 CD 5B 03 D0 6B AD 3D 03

4630 CD 5A 03 D0 63 AD 5E 03

4638 D0 5B AD 5F 03 D0 53 A9

4640 80 8D 48 03 30 12 4E 48
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4648 03 90 D2 AE 42 03 9A A9

4650 45 48 A9 BA 48 4C 06 47 *—'

4658 20 AE 45 20 14 49 8D 4B

4660 03 A0 00 20 F2 48 AD 3D r

4668 03 AE 3C 03 85 FB 86 FC C^
4670 20 38 49 A9 24 8D 4E 03

4678 20 16 42 20 E4 FF F0 FB , ,

4680 C9 03 D0 03 4C 68 40 C9

4688 4A D0 4E A9 01 8D 48 03

4690 D0 47 CE 5F 03 CE 5E 03

4698 AD 21 91 C9 FE D0 3A A2

46A0 53 4C 5B 40 A9 00 F0 12

46A8 AD 5C 03 AE 5D 03 8D 5E

46B0 03 8E 5F 03 A9 40 D0 02

46B8 A9 80 8D 48 03 20 A4 49

46C0 F0 0F C9 20 D0 56 20 45

46C8 48 20 E3 48 20 A4 49 D0

46D0 4B 20 AE 45 AD 48 03 F0

46D8 IF 78 A9 A0 8D 2E 91 A9

46E0 5F 8D 2E 91 A9 DF A2 45

46E8 8D 44 03 8E 43 03 A9 49

46F0 A2 00 8D 28 91 8E 29 91

46F8 AE 42 03 9A 78 AD 44 03

4700 AE 43 03 20 98 48 AD 3C

4708 03 48 AD 3D 03 48 AD 3E

4710 03 48 AD 3F 03 AE 40 03

4718 AC 41 03 40 4C 60 40 20

4720 31 48 8D 5A 03 8E 5B 03

4728 A9 00 8D 5C 03 8D 5D 03

4730 20 42 48 8D 5C 03 8E 5D

4738 03 4C 68 40 20 CB 47 8D

4740 62 03 8E 63 03 20 42 48

4748 8D 4F 03 8E 50 03 20 42

4750 48 8D 51 03 8E 52 03 20

4758 A4 49 F0 0A 20 CF FF C9

4760 57 D0 03 EE 4E 03 20 21

4768 48 AE 56 03 D0 18 20 E7

4770 40 90 13 AC 4E 03 D0 1A

4778 Bl FB 20 87 42 AA BD F6
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4780 4B D0 06 20 C4 40 4C 68

4788 40 AC 4D 03 C0 02 D0 33

4790 F0 03 8C 4D 03 88 38 Bl

4798 FB AA ED 4F 03 C8 Bl FB

47A0 ED 50 03 90 IE 88 AD 51

47A8 03 Fl FB C8 AD 52 03 Fl

47B0 FB 90 10 88 18 8A 6D 62

47B8 03 91 FB C8 Bl FB 6D 63

47C0 03 91 FB 20 IF 49 88 10

47C8 FA 30 9E 20 31 48 85 FD

47D0 86 FE 20 42 48 8D 54 03

47D8 8E 55 03 20 8C 48 20 45

47E0 48 85 FB 86 FC 60 20 31

47E8 48 B0 F6 20 45 48 B0 03

47F0 20 42 48 85 FD 86 FE 60

47F8 A5 FC 20 FF 47 A5 FB 48

4800 4A 4A 4A 4A 20 17 48 AA

4808 68 29 0F 20 17 48 48 8A

4810 20 D2 FF 68 4C D2 FF 18

4818 69 F6 90 02 69 06 69 3A

4820 60 A2 02 B5 FA 48 B5 FC

4828 95 FA 68 95 FC CA D0 F3

4830 60 A9 00 8D 59 03 20 8C

4838 48 C9 20 F0 F9 20 6C 48

4840 B0 08 20 8C 48 20 57 48

4848 90 07 AA 20 57 48 90 01

4850 60 4C 60 40 20 74 41 A9

4858 00 8D 59 03 20 8C 48 C9

4860 20 D0 09 20 8C 48 C9 20

4868 D0 0F 18 60 20 81 48 0A

4870 0A 0A 0A 8D 59 03 20 8C

4878 48 20 81 48 0D 59 03 38

4880 60 C9 3A 08 29 0F 28 90

4888 02 69 08 60 20 A4 49 D0

4890 FA 4C 65 40 A9 91 A2 43

4898 8D 14 03 8E 15 03 60 20

48A0 A4 49 F0 37 20 E6 47 A5

48A8 FB 05 FC F0 22 A5 9A C9

48B0 03 D0 9E A5 FB 8D 93 02
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48B8 A5 FC 8D 94 02 A9 02 AA i {

48C0 A8 20 BA FF 20 C0 FF A2 (—>

48C8 02 20 C9 FF 4C 75 40 A9

48D0 02 20 C3 FF A9 03 85 9A , ,

48D8 4C 68 40 A5 9A C9 03 F0 W
48E0 DC D0 Fl 8D 3D 03 8E 3C

48E8 03 60 8D 4B 03 A0 00 20

48F0 38 49 Bl FB 20 FF 47 20

48F8 IF 49 CE 4B 03 D0 F0 60

4900 20 57 48 90 08 A2 00 81

4908 FB Cl FB D0 69 20 IF 49

4910 CE 4B 03 60 A9 3E 85 FB

4918 A9 03 85 FC A9 05 60 E6

4920 FB D0 09 E6 FF E6 FC D0

4928 03 EE 56 03 60 98 48 20

4930 AE 45 68 A2 2E 20 0E 48

4938 A9 20 4C D2 FF 20 0E 48

4940 A2 00 BD 76 4F 20 D2 FF

4948 E8 E0 1C D0 F5 A0 3B 20

4950 2D 49 AD 3C 03 20 FF 47

4958 AD 3D 03 20 FF 47 20 38

4960 49 AD 43 03 20 FF 47 AD

4968 44 03 20 FF 47 20 14 49

4970 20 EA 48 4C 68 40 4C 60

4978 40 20 31 48 20 E3 48 20

4980 42 48 8D 44 03 8E 43 03

4988 20 14 49 8D 4B 03 20 8C

4990 48 20 00 49 D0 F8 F0 DB \"\
4998 20 CF FF C9 20 F0 F9 D0 uJ
49A0 06 20 F0 47 20 CF FF C9

49A8 0D 60 A0 01 84 BA A9 00 j [

49B0 A2 65 A0 03 20 BD FF A8 ^
49B8 20 E6 47 AD 49 03 C9 53

49C0 D0 08 20 A4 49 F0 AF 20 j j

49C8 EB 47 20 98 49 F0 29 C9 O
49D0 22 D0 A3 20 CF FF C9 22

49D8 F0 0B 91 BB E6 B7 C8 C0 [ |

49E0 51 90 F0 B0 91 20 A4 49 '*—'

n
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49E8 F0 0E 20 57 48 29 IF F0

49F0 85 85 BA 20 98 49 D0 D9

49F8 A9 00 85 B9 AD 49 03 C9

4A00 53 D0 0C A9 FB A6 FD A4

— 4A08 FE 20 D8 FF 4C 68 40 49

\Jl 4A10 4C F0 02 A9 01 A6 FB A4
4A18 FC 20 D5 FF A5 90 29 10

4A20 F0 EA A9 69 A0 C3 20 IE

4A28 CB 4C 60 40 20 E6 47 20

4A30 A5 40 4C 68 40 20 E6 47

4A38 20 IF 49 20 IF 49 20 F0

4A40 47 20 38 49 20 F0 40 90

4A48 0A 96 D0 15 AD 53 03 30

4A50 10 10 08 C8 D0 0B AD 53

4A58 03 10 06 20 FF 47 4C 68

4A60 40 4C 60 40 20 E6 47 20

4A68 7A 4A 4C 68 40 20 AE 45

4A70 A2 2E A9 24 20 0E 48 20

4A78 F8 47 20 EA 4A 20 A0 4A

4A80 20 38 49 20 86 4A 20 89

4A88 4A 20 38 49 A2 04 A9 30

4A90 18 0E 54 03 2E 55 03 69

4A98 00 20 D2 FF CA D0 EF 60

4AA0 A5 FC A6 FB 8D 55 03 8E

4AA8 54 03 20 38 49 A5 FC 20

4AB0 B4 4A A5 FB AA 20 38 49

4AB8 8A 29 7F C9 20 08 B0 0A

4AC0 A9 12 20 D2 FF 8A 18 69

4AC8 40 AA 8A 20 D2 FF A9 00

4AD0 85 D4 EA EA EA EA EA EA

4AD8 EA EA EA EA 28 B0 C0 A9
4AE0 92 2C A9 14 2C A9 22 4C

4AE8 D2 FF 20 38 49 A6 FB A5

4AF0 FC 4C CD DD 20 05 4B B0

4AF8 41 20 38 49 20 F8 47 20

4B00 7D 4A 4C 68 40 A2 04 A9

4B08 00 85 FC 20 C2 4B 20 2B
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4B10 4B 85 PB 20 22 4B 20 3D

4B18 4B CA D0 F7 08 20 38 49

4B20 28 60 20 A4 49 F0 0F C9

4B28 20 F0 0B C9 30 90 0B C9

4B30 3A B0 07 29 0F 60 68 68

4B38 18 60 4C 60 40 85 FE A5

4B40 FC 48 A5 FB 48 06 FB 26

4B48 FC 06 FB 26 FC 68 65 FB

4B50 85 FB 68 65 FC 85 FC 06

4B58 FB 26 FC A5 FE 65 FB 85

4B60 FB A9 00 65 FC 85 FC 60

4B68 20 C2 4B 8D 55 03 48 48

4B70 20 38 49 20 38 49 68 20

4B78 FF 47 20 38 49 68 AA A9

4B80 00 20 Fl 4A 20 38 49 20

4B88 86 4A 4C 68 40 20 9F 4B

4B90 20 38 49 20 F8 47 20 EA

4B98 4A 20 A0 4A 4C 68 40 A2

4BA0 0F A9 00 85 FB 85 FC 20

4BA8 C2 4B 20 2B 4B 20 BC 4B

4BB0 20 22 4B 20 BC 4B CA D0

4BB8 F7 4C 38 49 4A 26 FB 26

4BC0 FC 60 20 8C 48 C9 20 F0

4BC8 F9 60 20 54 48 8D 88 02

4BD0 A6 FB A4 FC 20 8A FE A6

4BD8 FD A4 FE 20 7B FE 20 18

4BE0 E5 20 A4 E3 4C 68 40 20

4BE8 F0 47 4C DB 47 20 E7 4B

4BF0 18 A5 FB 65 FD 85 FB A5

4BF8 FC 65 FE 85 FC 4C 0D 4C M

4C00 20 E7 4B 20 F0 40 84 FC

4C08 AD 53 03 85 FB 20 38 49 {[
4C10 20 F8 47 4C 68 40 A9 F0 ^
4C18 2C A9 00 8D 0B 90 4C 65

4C20 40 78 20 52 FD 58 A9 3C (I
4C28 85 B2 AE 42 03 9A A5 73 ^
4C30 C9 E6 F0 95 6C 00 C0 20

4C38 E7 4B 20 21 48 20 38 49

4C40 A0 00 8C 54 03 8C 55 03
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— 4C48 20 F0 40 90 IB AC 56 03

' 1 4C50 D0 16 18 Bl FB 6D 54 03
4C58 8D 54 03 98 6D 55 03 8D

,—, 4C60 55 03 20 IF 49 4C 48 4C

J \ 4C68 AD 55 03 20 FF 47 AD 54

4C70 03 20 FF 47 4C 68 40 AD

— 4C78 64 03 D0 04 A5 C6 D0 03

4C80 4C 56 FF AD 77 02 C9 11

4C88 D0 7D A5 D6 C9 16 D0 F0

4C90 A5 Dl 85 FD A5 D2 85 FE

4C98 A9 17 8D 5E 03 A0 01 20

4CA0 51 4E C9 3A F0 1A C9 2C

4CA8 F0 16 C9 24 F0 12 CE 5E

4CB0 03 F0 CD 38 A5 FD E9 16

4CB8 85 FD B0 El C6 FE D0 DD

4CC0 8D 49 03 20 0A 4E B0 B8

4CC8 AD 49 03 C9 3A D0 11 18

4CD0 A5 FB 69 08 85 FB 90 02

4CD8 E6 FC 20 C8 43 4C F4 4C

4CE0 C9 24 F0 1A 20 C9 4D 20

4CE8 6F 42 A9 00 8D 4E 03 A0

4CF0 2C 20 13 42 A9 00 85 C6

4CF8 4C 0E 42 4C 56 FF 20 IF

4D00 49 20 6D 4A 4C F4 4C C9

4D08 91 D0 F0 A5 D6 D0 EC A5

4D10 Dl 85 FD A5 D2 85 FE A9

4D18 17 8D 5E 03 A0 01 20 51

4D20 4E C9 3A F0 1A C9 2C F0

4D28 16 C9 24 F0 12 CE 5E 03

4D30 F0 15 18 A5 FD 69 16 85

4D38 FD 90 El E6 FE D0 DD 8D

4D40 49 03 20 0A 4E 90 03 4C

4D48 56 FF AD 49 03 C9 3A F0

4D50 06 C9 24 F0 ID D0 27 20

4D58 D0 4D 38 A5 FB E9 08 85

4D60 FB B0 02 C6 FC 20 CB 43

4D68 A9 00 85 C6 20 05 4E 4C

4D70 70 40 20 D0 4D 20 B2 40

4D78 20 70 4A 4C 68 4D 20 D0

n
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4D80 4D A5 PB A6 FC 85 FD 86 ] ]

4D88 FE A9 10 8D 5E 03 38 A5 <-J

4D90 FD ED 5E 03 85 FB A5 FE

4D98 E9 00 85 FC 20 C9-4D 20 . ,

4DA0 6F 42 20 F0 40 F0 07 B0 LJ
4DA8 F3 CE 5E 03 D0 E0 EE 4D

4DB0 03 AD 4D 03 20 AB 43 A2 .-■-

4DB8 00 Al FB 8E 4E 03 A9 2C LJ
4DC0 20 33 49 20 16 42 4C 68

4DC8 4D A2 00 Al FB 4C 87 42

4DD0 A6 D2 20 D7 4D A6 F4 E8

4DD8 86 AD 86 FE A2 00 86 AC

4DE0 A9 2C 85 FD A0 CE E8 88

4DE8 Bl AC 91 FD 98 D0 F8 C6

4DF0 AD C6 FE CA 10 Fl A9 20

4DF8 A6 D2 86 FE 84 FD A0 2B

4E00 91 FD 88 10 FB A9 13 4C

4E08 D2 FF C0 16 D0 02 38 60

4E10 20 51 4E C9 20 F0 F3 88

4E18 20 3A 4E AA 20 3A 4E 85

4E20 FB 86 FC A9 FF 8D 64 03

4E28 85 CC A5 CF F0 0A A5 CE

4E30 A4 D3 91 Dl A9 00 85 CF

4E38 18 60 20 51 4E 20 81 48

4E40 0A 0A 0A 0A 8D 59 03 20

4E48 51 4E 20 81 48 0D 59 03

4E50 60 Bl FD C8 29 7F C9 20

4E58 B0 02 09 40 60 BD 98 4D

4E60 20 D2 FF E8 D0 F7 60 00

4E68 00 00 00 00 00 00 0D 56

4E70 49 43 32 30 20 4D 49 43

4E78 52 4F 4D 4F 4E 20 56 31

U
4E80 2E 32 20 20 20 42 49 4C

4E88 4C 20 59 45 45 20 32 32 ; (

4E90 20 4A 41 4E 20 20 38 33 ^
4E98 40 02 45 03 D0 08 40 09

4EA0 30 22 45 33 D0 08 40 09

4EA8 40 02 45 33 D0 08 40 09

4EB0 40 02 45 B3 D0 08 40 09
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4EB8 00 22 44 33 D0 8C 44 00

4EC0 11 22 44 33 D0 8C 44 9A

4EC8 10 22 44 33 D0 08 40 09

4ED0 10 22 44 33 D0 08 40 09

4ED8 62 13 78 A9 00 21 81 82

4EE0 00 00 59 4D 91 92 86 4A

4EE8 85 9D 2C 29 2C 23 28 24

4EF0 59 00 58 24 24 00 1C 8A

4EF8 1C 23 5D 8B IB Al 9D 8A

4F00 ID 23 9D 8B ID Al 00 29

4F08 19 AE 69 A8 19 23 24 53

4F10 IB 23 24 53 19 Al 00 1A

4F18 5B 5B A5 69 24 24 AE AE

4F20 A8 AD 29 00 7C 00 15 9C

4F28 6D 9C A5 69 29 53 84 13

4F30 34 11 A5 69 23 A0 D8 62

4F38 5A 48 26 62 94 88 54 44

4F40 C8 54 68 44 E8 94 00 B4

4F48 08 84 74 B4 28 6E 74 F4

4F50 CC 4A 72 F2 A4 8A 00 AA

4F58 A2 A2 74 74 74 72 44 68

4F60 B2 32 B2 00 22 00 1A 1A

4F68 26 26 72 72 88 C8 C4 CA

4F70 26 48 44 44 A2 C8 0D 20

4F78 20 20 20 50 43 20 20 49

4F80 52 51 20 20 53 52 20 41

4F88 43 20 58 52 20 59 52 20

4F90 53 50 41 42 43 44 46 47

4F98 48 4C 4D 4E 51 52 28 54

4FA0 57 58 2C 3A 3B 24 23 22

4FA8 2B 2D 4F 49 4A 25 26 45

4FB0 56 29 3D 5C FF AA 49 9F

4FB8 48 3D 44 IF 47 02 41 F9

4FC0 41 87 41 A4 46 A0 41 AA
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4FC8 49 B0 43 3C 47 A8 46 40

4FD0 49 16 4C 06 41 B8 46 2A Lj
4FD8 4C 0C 43 15 44 79 49 64

4FB0 4A F4 4A 68 4B ED 4B 00 ^

4FE8 4C 35 4A CA 4B 2C 4A 8D U
4FF0 4B 37 4C 21 4C AA 49 19

4FF8 4C 40 43 40 43 40 43 49

u

LJ

U
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/ \ Supermon64

Supermon64 is your gateway to machine language programming on

the Commodore 64. Supermon, in several versions, has been popular

over the years as a major programming tool for Commodore users.

Supermon64 itself is in machine language, but you can type it in

without knowing what it means. Using the Tiny PEEKer/POKEr

(Program 1), or via the built-in monitor of a PET, type it in and SAVE

it. The fastest way to check for errors is to type in Program 3 on a

regular PET. Then load Supermon64 into the PET. It will come in

above your BASIC. Then RUN the checksum and it will report the

location of any errors. Type POKE 8192,0 and hit RETURN. Then

type POKE 44,32 followed by NEW.

Enter the following:

Program I. Tiny PEEKer/POKEr.

100 PRINT "TINY PEEKER/POKER11
110 X$="*":INPUT X$:IF X$="*" THEN END

120 GOSUB 500

130 IF E GOTO 280

140 A=V

150 IF J>LEN(X$) GOTO 300

160 FOR 1=0 TO 7

170 P=J:GOSUB 550

180 C(I)=V

190 IF E GOTO 280

200 NEXT I

210 T=0

220 FOR 1=0 TO 7

230 POKE A+I,C(I)

240 T=T+C(l)

250 NEXT I

260 PRINT "CHECKSUM^1 ;T

270 GOTO 110

280 PRINT MID$(X$,1,J);"??":GOTO 110

300 T=0

310 FOR 1=0 TO 7

320 V=PEEK(A+I)

3 30 T=T+V

340 V=V/16

3 50 PRINT " ";

360 FOR J=l TO 2

3 70 V%=V
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380 V=(V-V%)*16 i (

390 IF V%>9 THEN V%=V%+7 LJ
400 PRINT CHR$(V%+48);

410 NEXT J

420 NEXT I x [
430 PRINT "/"tT
440 GOTO 110

500 P=l \ (

510 L=4 ^
520 GOTO 600

5 50 P=J

560 L=2

600 E=0

610 V=0

620 FOR J=P TO LEN(X$)

630 X=ASC(MID$(X$,J))

640 IF X=32 THEN NEXT J

650 IF J>LEN(X$) GOTO 790

660 P=J

670 FOR J=P TO LEN(X$)

680 X=ASC(MID$(X$,J))

690 IF X<>32 THEN NEXT J

700 IF J-POL GOTO 790

710 FOR K=P TO J-l

720 X=ASC(MID$(X$,K))

7 30 IF X<58 THEN X=X-48

740 IF X>64 THEN X=X-55

750 IF X<0 OR X>15 GOTO 790

760 V=V*16+X

770 NEXT K

780 RETURN

790 E=-l

800 RETURN

This program is a very tiny monitor. It will allow you to enter

information into memory, eight bytes at a time. To do this: wait for

the question mark, and then type in monitor-format the address and

contents:

?0800 00 1A 08 64 00 99 22 93

The program will return a checksum value to you, which you J (
can use to insure that you have entered the information correctly. To

view memory, type in only the address: the contents will be

displayed. \ j
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Completing The Job

When you have finished entering all that data, you can make

Supermon64 happen quite easily. Three last POKE commands and a

CLR:

POKE 44,8

POKE 45,235

POKE 46,17

CLR

You have Supermon64. Save it with a conventional BASIC SAVE

before you do anything else.

Now you may RUN it — and learn how to use it.

NOTE: Before entering the hex numbers with Tiny PEEKer/

POKEr, type in the memory partitioning POKES: POKE 8192,0 and

POKE 44,32, and then type NEW. When you've finished entering

all the hex numbers, type: POKE 44,8: POKE 45,235: POKE 46,17:

CLR. You can then SAVE Supermon64 in the ordinary, BASIC way,

to tape or disk. It's ready now to LOAD or RUN. Note also that the

checksum program on page 333 checks 129 bytes at a time. This

can have the effect of attributing a typing error to the wrong block

if the error occurs near the beginning or the end of a block.

• Simple assembler

.A 2000 LDA #$12

.A 2002 STA $8000,X

.A 2005 (RETURN)

In the above example the user started assembly at 2000 hex. The

first instruction was load a register with immediate 12 hex. In the

second line the user did not need to type the A and address. The

simple assembler prompts with the next address. To exit the

assembler type a return after the address prompt. Syntax is the same

as the disassembler output.

• Disassembler

.D 2000

(SCREEN CLEARS)

2000 A9 12 LDA #$12
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2002 9D 00 80 STA $8000,X

2005 AA TAX

2006 AA TAX

(Full page of instructions)

Disassembles 22 instructions starting at 2000 hex. The three

bytes following the address may be modified. Use the CRSR keys to

move to and modify the bytes. Hit return and the bytes in memory

will be changed. Supermon64 will then disassemble that page again.

• Printing disassembler

•P 2000,2040

2000 A9 12 LDA #$12

2002 9D 00 80 STA $8000#X

2005 AA TAX

203F A2 00 LDX #$00

To engage printer, set up beforehand:

OPEN4/4:CMD4

• Fill memory

.F 1000 1100 FF

Fills the memory from 1000 hex to 1100 hex with the byte FF hex.

• Go run

.G

Go to the address in the PC register display and begin RUN » t

code. All the registers will be replaced with the displayed values. ! I

.G 1000
u

Go to address 1000 hex and begin running code.

• Hunt memory ) >

•H C000 D000 'READ

Hunt through memory from C000 hex to D000 hex for the ASCII \ i

string read and print the address where it is found. A maximum of 32 '—»

characters may be used.
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n

.H C000 D000 20 D2 FF

Hunt through memory from C000 hex to D000 hex for the

sequence of bytes 20 D2 FF and print the address. A maximum of 32
bytes may be used.

•Load

Load any program from cassette #1.

•L "RAM TEST"

Load from cassette #1 the program named RAM TEST.

.L "RAM TEST"#08

Load from disk (device 8) the program named RAM TEST. This

command leaves BASIC pointers unchanged.

• Memory display

.M 0000 0080

.: 0000 00 01 02 03 04 05 06 07

•: 0008 08 09 0A 0B 0C 0D 0E 0F

Display memory from 0000 hex to 0080 hex. The bytes following

the .: can be altered by typing over them, then typing a return.

• Register display

.R

_ PC IRQ SR AC XR YR SP

I i 0000 E62E 01 02 03 04 05

Displays the register values saved when Supermon64 was

j] entered. The values may be changed with the edit followed by a
return.

,_^ • Save

.S "PROGRAM NAME",01,0800,0C80

SAVE to cassette #1 memory from 0800 hex up to but not
including 0C80 hex and name it PROGRAM NAME.
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LJ

.S "0:PROGRAM NAME",08,1200,1F50

SAVE to disk drive #0 memory from 1200 hex up to but not

including 1F50 hex and name it PROGRAM NAME.

) (
• Transfer memory *—>

.T 1000 1100 5000

Transfer memory in the range 1000 hex to 1100 hex and start

storing it at address 5000 hex.

•Exit to BASIC

.X

Return to BASIC ready mode. The stack value SAVEd when

entered will be restored. Care should be taken that this value is the

same as when the monitor was entered. A CLR in BASIC will fix any

stack problems.

Program 2. Supermon64.

0800 00 1A 04 64 00 99 22 93

0808 12 ID ID ID ID 53 55 50

0810 45 52 20 36 34 2D 4D 4F

0818 4E 00 31 04 6E 00 99 22

0820 11 20 20 20 20 20 20 20

0828 20 20 20 20 20 20 20 20

0830 00 4B 04 78 00 99 22 11

0838 20 2E 2E 4A 49 4D 20 42

0840 55 54 54 45 52 46 49 45

0848 4C 44 00 66 04 82 00 9E LJ
0850 28 C2 28 34 33 29 AA 32

0858 35 36 AC C2 28 34 34 29

0860 AA 31 32 37 29 00 00 00 LJ
0868 AA AA AA AA AA AA AA AA

0870 AA AA AA AA AA AA AA AA

0878 AA AA AA AA AA AA AA AA 1_J
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0880 A5 2D 85 22 A5 2E 85 23

0888 A5 37 85 24 A5 38 85 25

0890 A0 00 A5 22 D0 02 C6 23

0898 C6 22 Bl 22 D0 3C A5 22

08A0 D0 02 C6 23 C6 22 Bl 22

08A8 F0 21 85 26 A5 22 D0 02

08B0 C6 23 C6 22 Bl 22 18 65

08B8 24 AA A5 26 65 25 48 A5

08C0 37 D0 02 C6 38 C6 37 68

08C8 91 37 8A 48 A5 37 D0 02

08D0 C6 38 C6 37 68 91 37 18

08D8 90 B6 C9 4F D0 ED A5 37

08E0 85 33 A5 38 85 34 6C 37

08E8 00 4F 4F 4F 4F AD E6 FF

08F0 00 8D 16 03 AD E7 FF 00

08F8 8D 17 03 A9 80 20 90 FF

0900 00 00 D8 68 8D 3E 02 68

0908 8D 3D 02 68 8D 3C 02 68

0910 8D 3B 02 68 AA 68 A8 38

0918 8A E9 02 8D 3A 02 98 E9

0920 00 00 8D 39 02 BA 8E 3F

0928 02 20 57 FD 00 A2 42 A9

0930 2A 20 57 FA 00 A9 52 D0

0938 34 E6 Cl D0 06 E6 C2 D0

0940 02 E6 26 60 20 CF FF C9

0948 0D D0 F8 68 68 A9 90 20

0950 D2 FF A9 00 00 85 26 A2

r-7 0958 0D A9 2E 20 57 FA 00 A9

' > 0960 05 20 D2 FF 20 3E F8 00

0968 C9 2E F0 F9 C9 20 F0 F5

r—f 0970 A2 0E DD B7 FF 00 D0 0C

1 S 0978 8A 0A AA BD C7 FF 00 48
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0980 BD C6 FF 00 48 60 CA 10 , ;

0988 EC 4C ED FA 00 A5 Cl 8D Lj
0990 3A 02 A5 C2 8D 39 02 60

0998 A9 08 85 ID A0 00 00 20 , ,

09A0 54 FD 00 Bl Cl 20 48 FA LJ
09A8 00 20 33 F8 00 C6 ID D0

09B0 Fl 60 20 88 FA 00 90 0B ) ■■-,

09B8 A2 00 00 81 Cl Cl Cl F0 LJ
09C0 03 4C ED FA 00 20 33 F8

09C8 00 C6 ID 60 A9 3B 85 Cl

09D0 A9 02 85 C2 A9 05 60 98

09D8 48 20 57 FD 00 68 A2 2E

09E0 4C 57 FA 00 A9 90 20 D2

09E8 FF A2 00 00 BD EA FF 00

09F0 20 D2 FF E8 E0 16 D0 F5

09F8 A0 3B 20 C2 F8 00 AD 39

0A00 02 20 48 FA 00 AD 3A 02

0A08 20 48 FA 00 20 B7 F8 00

0A10 20 8D F8 00 F0 5C 20 3E

0A18 F8 00 20 79 FA 00 90 33

0A20 20 69 FA 00 20 3E F8 00

0A28 20 79 FA 00 90 28 20 69

0A30 FA 00 A9 90 20 D2 FF 20

0A38 El FF F0 3C A6 26 D0 38

0A40 A5 C3 C5 Cl A5 C4 E5 C2

0A48 90 2E A0 3A 20 C2 F8 00

0A50 20 41 FA 00 20 8B F8 00

0A58 F0 E0 4C ED FA 00 20 79

0A60 FA 00 90 03 20 80 F8 00 \ I
0A68 20 B7 F8 00 D0 07 20 79 ' '
0A70 FA 00 90 EB A9 08 85 ID

0A78 20 3E F8 00 20 Al F8 00 j_J

0A80 D0 F8 4C 47 F8 00 20 CF

0A88 FF C9 0D F0 0C C9 20 D0

0A90 Dl 20 79 FA 00 90 03 20

LJ
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pi 0A98 80 F8 00 A9 90 20 D2 FF

' 1 0AA0 AE 3F 02 9A 78 AD 39 02
0AA8 48 AD 3A 02 48 AD 3B 02

|—J 0AB0 48 AD 3C 02 AE 3D 02 AC

' [ 0AB8 3E 02 40 A9 90 20 D2 FF
0AC0 AE 3F 02 9A 6C 02 A0 A0

(—7 0AC8 01 84 BA 84 B9 88 84 B7

1 ( 0AD0 84 90 84 93 A9 40 85 BB
0AD8 A9 02 85 BC 20 CF FF C9

0AE0 20 F0 F9 C9 0D F0 38 C9

0AE8 22 D0 14 20 CF FF C9 22

0AF0 F0 10 C9 0D F0 29 91 BB

0AF8 E6 B7 C8 C0 10 D0 EC 4C

0B00 ED FA 00 20 CF FF C9 0D

0B08 F0 16 C9 2C D0 DC 20 88

0B10 FA 00 29 0F F0 E9 C9 03

0B18 F0 E5 85 BA 20 CF FF C9

0B20 0D 60 6C 30 03 6C 32 03

0B28 20 96 F9 00 D0 D4 A9 90

0B30 20 D2 FF A9 00 00 20 EF

0B38 F9 00 A5 90 29 10 D0 C4

0B40 4C 47 F8 00 20 96 F9 00

0B48 C9 2C D0 BA 20 79 FA 00

0B50 20 69 FA 00 20 CF FF C9

0B58 2C D0 AD 20 79 FA 00 A5

0B60 Cl 85 AE A5 C2 85 AF 20

0B68 69 FA 00 20 CF FF C9 0D

0B70 D0 98 A9 90 20 D2 FF 20

0B78 F2 F9 00 4C 47 F8 00 A5

0B80 C2 20 48 FA 00 A5 Cl 48

0B88 4A 4A 4A 4A 20 60 FA 00

0B90 AA 68 29 0F 20 60 FA 00

0B98 48 8A 20 D2 FF 68 4C D2

0BA0 FF 09 30 C9 3A 90 02 69

0BA8 06 60 A2 02 B5 C0 48 B5
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0BB0 C2 95 C0 68 95 C2 CA D0

0BB8 F3 60 20 88 FA 00 90 02

U

U
0BC0 85 C2 20 88 FA 00 90 02

0BC8 85 Cl 60 A9 00 00 85 2A

0BD0 20 3E F8 00 C9 20 D0 09 -—>

0BD8 20 3E F8 00 C9 20 D0 0E

0BE0 18 60 20 AF FA 00 0A 0A \ i

0BE8 0A 0A 85 2A 20 3E F8 00 --

0BF0 20 AF FA 00 05 2A 38 60

0BF8 C9 3A 90 02 69 08 29 0F

0C00 60 A2 02 2C A2 00 00 B4

0C08 Cl D0 08 B4 C2 D0 02 E6

0C10 26 D6 C2 D6 Cl 60 20 3E

0C18 F8 00 C9 20 F0 F9 60 A9

0C20 00 00 8D 00 00 01 20 CC

0C28 FA 00 20 8F FA 00 20 7C

0C30 FA 00 90 09 60 20 3E F8

0C38 00 20 79 FA 00 B0 DE AE

0C40 3F 02 9A A9 90 20 D2 FF

0C48 A9 3F 20 D2 FF 4C 47 F8

0C50 00 20 54 FD 00 CA D0 FA

0C58 60 E6 C3 D0 02 E6 C4 60

0C60 A2 02 B5 C0 48 B5 27 95

0C68 C0 68 95 27 CA D0 F3 60

0C70 A5 C3 A4 C4 38 E9 02 B0

0C78 0E 88 90 0B A5 28 A4 29

0C80 4C 33 FB 00 A5 C3 A4 C4

0C88 38 E5 Cl 85 IE 98 E5 C2 \ i

0C90 A8 05 IE 60 20 D4 FA 00 '—1
0C98 20 69 FA 00 20 E5 FA 00

0CA0 20 0C FB 00 20 E5 FA 00

0CA8 20 2F FB 00 20 69 FA 00

0CB0 90 15 A6 26 D0 64 20 28

0CB8 FB 00 90 5F Al Cl 81 C3 j ,

0CC0 20 05 FB 00 20 33 F8 00 <-J
0CC8 D0 EB 20 28 FB 00 18 A5

0CD0 IE 65 C3 85 C3 98 65 C4 , ,

0CD8 85 C4 20 0C FB 00 A6 26 i—S
0CE0 D0 3D Al Cl 81 C3 20 28

U
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0CE8 FB 00 B0 34 20 B8 FA 00

0CF0 20 BB FA 00 4C 7D FB 00

0CF8 20 D4 FA 00 20 69 FA 00

0D00 20 E5 FA 00 20 69 FA 00

0D08 20 3E F8 00 20 88 FA 00

0D10 90 14 85 ID A6 26 D0 11

0D18 20 2F FB 00 90 0C A5 ID

0D20 81 Cl 20 33 F8 00 D0 EE

0D28 4C ED FA 00 4C 47 F8 00

0D30 20 D4 FA 00 20 69 FA 00

0D38 20 E5 FA 00 20 69 FA 00

0D40 20 3E F8 00 A2 00 00 20

0D48 3E F8 00 C9 27 D0 14 20

0D50 3E F8 00 9D 10 02 E8 20

0D58 CF FF C9 0D F0 22 E0 20

0D60 D0 Fl F0 1C 8E 00 00 01

0D68 20 8F FA 00 90 C6 9D 10

0D70 02 E8 20 CF FF C9 0D F0

0D78 09 20 88 FA 00 90 B6 E0

0D80 20 D0 EC 86 1C A9 90 20

0D88 D2 FF 20 57 FD 00 A2 00

0D90 00 A0 00 00 Bl Cl DD 10

0D98 02 D0 0C C8 E8 E4 1C D0

0DA0 F3 20 41 FA 00 20 54 FD

0DA8 00 20 33 F8 00 A6 26 D0

0DB0 8D 20 2F FB 00 B0 DD 4C

0DB8 47 F8 00 20 D4 FA 00 85

0DC0 20 A5 C2 85 21 A2 00 00

0DC8 86 28 A9 93 20 D2 FF A9

0DD0 90 20 D2 FF A9 16 85 ID

0DD8 20 6A FC 00 20 CA FC 00

0DE0 85 Cl 84 C2 C6 ID D0 F2

0DE8 A9 91 20 D2 FF 4C 47 F8

0DF0 00 A0 2C 20 C2 F8 00 20

0DF8 54 FD 00 20 41 FA 00 20

0E00 54 FD 00 A2 00 00 Al Cl

0E08 20 D9 FC 00 48 20 IF FD
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0E10 00 68 20 35 FD 00 A2 06

0E18 E0 03 D0 12 A4 IF F0 0E

0E20 A5 2A C9 E8 Bl Cl B0 1C

0E28 20 C2 FC 00 88 D0 F2 06

0E30 2A 90 0E BD 2A FF 00 20

0E38 A5 FD 00 BD 30 FF 00 F0

0E40 03 20 A5 FD 00 CA D0 D5

0E48 60 20 CD FC 00 AA E8 D0

0E50 01 C8 98 20 C2 FC 00 8A

0E58 86 1C 20 48 FA 00 A6 1C

0E60 60 A5 IF 38 A4 C2 AA 10

0E68 01 88 65 Cl 90 01 C8 60

0E70 A8 4A 90 0B 4A B0 17 C9

0E78 22 F0 13 29 07 09 80 4A

0E80 AA BD D9 FE 00 B0 04 4A

0E88 4A 4A 4A 29 0F D0 04 A0

0E90 80 A9 00 00 AA BD ID FF

0E98 00 85 2A 29 03 85 IF 98

0EA0 29 8F AA 98 A0 03 E0 8A

0EA8 F0 0B 4A 90 08 4A 4A 09

0EB0 20 88 D0 FA C8 88 D0 F2

0EB8 60 Bl Cl 20 C2 FC 00 A2

0EC0 01 20 FE FA 00 C4 IF C8

0EC8 90 Fl A2 03 C0 04 90 F2

0ED0 60 A8 B9 37 FF 00 85 28

0ED8 B9 77 FF 00 85 29 A9 00

0EE0 00 A0 05 06 29 26 28 2A

0EE8 88 D0 F8 69 3F 20 D2 FF

0EF0 CA D0 EC A9 20 2C A9 0D

0EF8 4C D2 FF 20 D4 FA 00 20

0F00 69 FA 00 20 E5 FA 00 20

0F08 69 FA 00 A2 00 00 86 28

0F10 A9 90 20 D2 FF 20 57 FD

0F18 00 20 72 FC 00 20 CA FC

0F20 00 85 Cl 84 C2 20 El FF

0F28 F0 05 20 2F FB 00 B0 E9

0F30 4C 47 F8 00 20 D4 FA 00

0F38 A9 03 85 ID 20 3E F8 00

330



Appendix F

0F40 20 Al F8 00 D0 F8 A5 20

0F48 85 Cl A5 21 85 C2 4C 46

0F50 FC 00 C5 28 F0 03 20 D2

0F58 FF 60 20 D4 FA 00 20 69

0F60 FA 00 8E 11 02 A2 03 20

0F68 CC FA 00 48 CA D0 F9 A2

0F70 03 68 38 E9 3F A0 05 4A

0F78 6E 11 02 6E 10 02 88 D0

0F80 F6 CA D0 ED A2 02 20 CF

0F88 FF C9 0D F0 IE C9 20 F0

0F90 F5 20 D0 FE 00 B0 0F 20

0F98 9C FA 00 A4 Cl 84 C2 85

0FA0 Cl A9 30 9D 10 02 E8 9D

0FA8 10 02 E8 D0 DB 86 28 A2

0FB0 00 00 86 26 F0 04 E6 26

0FB8 F0 75 A2 00 00 86 ID A5

0FC0 26 20 D9 FC 00 A6 2A 86

0FC8 29 AA BC 37 FF 00 BD 77

0FD0 FF 00 20 B9 FE 00 D0 E3

0FD8 A2 06 E0 03 D0 19 A4 IF

0FE0 F0 15 A5 2A C9 E8 A9 30

0FE8 B0 21 20 BF FE 00 D0 CC

0FF0 20 Cl FE 00 D0 C7 88 D0

0FF8 EB 06 2A 90 0B BC 30 FF

1000 00 BD 2A FF 00 20 B9 FE

1008 00 D0 B5 CA D0 Dl F0 0A

1010 20 B8 FE 00 D0 AB 20 B8

1018 FE 00 D0 A6 A5 28 C5 ID

1020 D0 A0 20 69 FA 00 A4 IF

1028 F0 28 A5 29 C9 9D D0 1A

1030 20 1C FB 00 90 0A 98 D0

1038 04 A5 IE 10 0A 4C ED FA

1040 00 C8 D0 FA A5 IE 10 F6

1048 A4 IF D0 03 B9 C2 00 00

1050 91 Cl 88 D0 F8 A5 26 91

1058 Cl 20 CA FC 00 85 Cl 84

1060 C2 A9 90 20 D2 FF A0 41

1068 20 C2 F8 00 20 54 FD 00
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1070 20 41 FA 00 20 54 FD 00

1078 A9 05 20 D2 FF 4C B0 FD

u

u

1080 00 A8 20 BF FE 00 D0 11 LJ
1088 98 F0 0E 86 1C A6 ID DD

1090 10 02 08 E8 86 ID A6 1C \ ,

1098 28 60 C9 30 90 03 C9 47 uJ
10A0 60 38 60 40 02 45 03 D0

10A8 08 40 09 30 22 45 33 D0

10B0 08 40 09 40 02 45 33 D0

10B8 08 40 09 40 02 45 B3 D0

10C0 08 40 09 00 00 22 44 33

10C8 D0 8C 44 00 00 11 22 44

10D0 33 D0 8C 44 9A 10 22 44

10D8 33 D0 08 40 09 10 22 44

10E0 33 D0 08 40 09 62 13 78

10E8 A9 00 00 21 81 82 00 00

10F0 00 00 59 4D 91 92 86 4A

10F8 85 9D 2C 29 2C 23 28 24

1100 59 00 00 58 24 24 00 00

1108 1C 8A 1C 23 5D 8B IB Al

1110 9D 8A ID 23 9D 8B ID Al

1118 00 00 29 19 AE 69 A8 19

1120 23 24 53 IB 23 24 53 19

1128 Al 00 00 1A 5B 5B A5 69

1130 24 24 AE AE A8 AD 29 00

1138 00 7C 00 00 15 9C 6D 9C

1140 A5 69 29 53 84 13 34 11

1148 A5 69 23 A0 D8 62 5A 48 LJ
1150 26 62 94 88 54 44 C8 54

1158 68 44 E8 94 00 00 B4 08

1160 84 74 B4 28 6E 74 F4 CC LJ
1168 4A 72 F2 A4 8A 00 00 AA

1170 A2 A2 74 74 74 72 44 68

1178 B2 32 B2 00 00 22 00 00 LJ

1180 1A 1A 26 26 72 72 88 C8 LJ
1188 C4 CA 26 48 44 44 A2 C8
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1190 3A 3B 52 4D 47 58 4C 53

1198 54 46 48 44 50 2C 41 42

11A0 F9 00 35 F9 00 CC F8 00

11A8 F7 F8 00 56 F9 00 89 F9

11B0 00 F4 F9 00 0C FA 00 3E

11B8 FB 00 92 FB 00 C0 FB 00

11C0 38 FC 00 5B FD 00 8A FD

11C8 00 AC FD 00 46 F8 00 FF

11D0 F7 00 ED F7 00 0D 20 20

11D8 20 50 43 20 20 53 52 20

11E0 41 43 20 58 52 20 59 52

11E8 20 53 50 AA AA AA AA AA

Program 3. Supermon64 Checksum.

100 REM SUPERMON64 CHECKSUM PROGRAM

110 DATA 10170,13676,15404,14997,15136,

16221,16696,12816,16228,14554

120 DATA14677,15039,14551,15104,15522,

16414,15914,8958,11945 :S=2048

130 FORB=1TO19:READX:FORI=STOS+128:N=P

EEK(I):Y=Y+N

140 NEXTI:IFY<>XTHENPRINTHERROR IN

BLOCK #"B:GOTO160

150 PRINT"BLOCK #"B" IS CORRECT11

160 S=I:Y=0:NEXTB:REM CHECK LAST SHORT

BLOCK BY HAND
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The Wedge

r—i One of the best reasons to learn machine language is that it can

' \ improve your BASIC programming significantly. There are two main

ways that machine language can assist BASIC programming: adding

commands to BASIC itself and replacing parts of a BASIC program

with a high-velocity machine language subroutine. To add an ML

subroutine to a BASIC program, you SYS, USR, or CALL (from

Microsoft, Atari, or Apple BASICs respectively). That's fairly

straightforward. To make changes to the BASIC language itself,

however, we need to wedge into BASIC somehow.

You can make BASIC a customized language with a wedge. Do

you want auto-numbering when writing a program in BASIC? Add it.

Does your BASIC lack a RENUMBER facility? You can give it one. Do

you want all your BASIC programs to contain a REM line with your

name in it? This could be automatically put into each of your

programs if you know machine language. Using a wedge to a

machine language program, you can communicate directly to your

machine, bypass BASIC'S limitations, and do pretty much what you

want to do.

How To Wedge In

Adding commands to BASIC is a matter of interrupting a loop. This is

often referred to as adding a wedge into BASIC. Under the control of

the BASIC language, the computer is looking to see if a BASIC word

has been typed in, followed by a hit on the RETURN key. Or, during

a RUN, the computer examines the program in memory to see what

you want accomplished.

These, then, are the two contexts in which the computer

PI analyzes a BASIC word: in a program or in "direct mode." In direct

] mode, you can type the word "LIST'' onto the screen and hit the
RETURN key. The computer looks up the meaning of "LIST" in a

r—) table of words which includes the addresses of the appropriate ML

' 1 subroutines. It then JSR's (Jumps to a SubRoutine) somewhere in the
vast ML of your computer's BASIC. This subroutine performs the

n actions necessary to provide you with a listing of the program in your

computer's memory. If you could add some additional words to this

table, you could add to BASIC. You could customize it.

Here's how. When you first turn on a computer which uses

!""] Microsoft BASIC, one of the first things that happens is that the
operating system puts some important ML instructions into a zone in
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the first 256 memory locations (this area of RAM is called zero page).

These instructions are put into zero page to handle the loop — often

called the CHRGETloop (which means "character get") — where the

operating system will forever after jump while power is on. This

location is of great importance to BASIC; it is the "did they type any

BASIC into the computer?" subroutine. It's where BASIC analyzes

what it finds on screen or in a program, looking at something

character by character to see what it adds up to.

If you type "LIST," this little zero page ML subroutine looks at
the "L" then the "I" and so on. The exact location of CHRGET

differs on the various computers:

PET (Original BASIC): decimal address 194-217
PET/CBM (Upgrade & 4.0): 112-135

VIC: 115-138

64: 115-138

Apple: 177-200

The CHRGET ML program looks like this:

0070

0072

0074

0076

0079

007B

007D

007F

0081

0082

0084

0085

0087

E6 77

DO 02

E6 78

AD 03

C9 3A

B0 0A

C9 20

F0 EF

38

E9 30

38

E9 DO

60

INC

BNE

INC

02 LDA

CMP

BCS

CMP

BEQ

SEC

SBC

SEC

SBC

RTS

$77

$0076

$78

$0203

#$3A

$0087

#$20

$0070

#$30

#$D0

This is put into your zero page RAM within the first few seconds

after you turn on the computer. You can change it (RAM memory can

be changed) to jump (JMP) to your own ML program by replacing the

first three bytes of code. In our example above, we will replace the

three bytes at hexadecimal location 0070 (the exact address will vary

according to the CHRGET location as listed above for the different

computers). Here is how the replacement looks in the example

CHRGET routine:

LJ

U

U

LJ

0070 4C 00 75 JMP $7500

0073 02 ???
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0074

0076

0079

007B

007D

007F

0081

0082

0084

0085

0087

E6

AD

C9

BO

C9

FO

38

E9

38

E9

60

78

02

3A

OA

20

EF

30

DO

INC

02 LDA

CMP

BCS

CMP

BEQ

SEC

SBC

SEC

SBC

RTS

$78

$0202

#$3A

$0087

#$20

$0070

#$30

#$D0

The effect that this has is dramatic. Whenever the computer

looks for a character in BASIC mode, it will jump first (because you

forced it to) to your personal ML "wedged" routine located at $7500.

The subroutine at $7500 could be anything you wanted it to be,

anything you've put at address $7500. For an example, we've caused

an "A" to appear on the PET/CBM screen:

7500 E6 77

7502 DO 02

7504 E6 78

7506 A9 41

INC $77

BNE $7506

INC $78

LDA #$41

7508 8D 00 80 STA $8000

750B 4C 76 00 JMP $0076

Notice that we had to first perform the actions that the CHRGET

would have performed. Before we can start our LDA #$41 to put an

"A" on screen, we had to replace the early part of CHRGET that we

wrote over (see 7500 to 7505 in Example 3). And, after we're done

with our custom routine, we jump back into CHRGET at 750B.

Adding a wedge to Atari BASIC is somewhat more involved. A

clear and complete exposition of the techniques involved appears in

an article by my colleague Charles Brannon, "The Atari Wedge"

(COMPUTE! Magazine, November 1982).
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n Index

n A
A or AC register (see Accumulator)

(I Absolute addressing 25, 40-42, 45, 46, 48, 51, 56, 68, 69, 75, 81
Absolute, X and Absoute, Y addressing 48, 51, 68, 69, 75, 81

Accumulator 19, 26, 31, 33, 39, 56, 66

Accumulator mode 51

ADC 20, 56, 58, 68,149

Addresses 1, 2,19, 20, 47, 54, 77, 85, 99,124,127,128,130,139,140,

146

get a character address 1

last key pressed 77

safe place address 1, 2

start of RAM 1,99

start print address 1

which key is pressed? 1, 54,127,128

Addressing 18, 22, 40

Addressing modes 12, 33-34, 37-51, 68, 69, 75, 81,149-166, 223, 224

Absolute 25, 40-42, 45, 46, 48, 51, 56, 68, 69, 75, 81

Absolute, X and Absolute, Y 48, 51, 68, 69, 75, 81

Accumulator mode 51

Immediate 25, 33, 34, 43, 51, 66, 68, 69

Implied 43-45, 55, 81

Indirect Indexed 74,125,141

Indirect X 51, 68, 69

Indirect Y 42, 49, 51, 57, 58, 69, 70, 74, 77, 85

Relative 25, 45-47, 69

Zero Page 33, 34, 42-43, 51, 55, 65, 68, 69, 75

Zero Page, X 48, 68, 69, 75

j ! Zero Page, Y 51
"Alphabetic" mode 54

AND 39, 88, 89,149

j""| Arcade game programming in ML vi

1 S Argument viii, 40, 55, 69, 70, 77, 81, 223, 224
ASCII code 3, 9, 53, 70, 78,131,144

pn ASL 51, 59, 68, 89,149

! ! ASM mode (Atari monitor) 27, 28,110

Assembler vii, 2, 35, 45, 46, 61,140, 223

.«-«, assembler program 18

i | traditional conventions, list of 224

two-pass assemblers 72, 223, 225

n
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Index __ U

u

Assembler Editor (Atari) 23, 26, 28,110,130,143 i »

Assembly language vii (see machine language) 1—I
Assignment of value (see LET)

Atari monitor (see Assembler Editor; DEBUG)

Atari source code 143 j j
ATASCII3,144

Attract mode 124

Auto-booting 125 j )

B

BASIC v-vi, vii-xii, 1-4, 7,19, et passim

advantages of xii

commands vii, 63,121-147

ASC144

CHR$ 144

CLR121-22

CONT86,122

DATA xii, 122-23,140

DIM 123

END 63,124-25

FOR-NEXT125-26

FOR-NEXT-STEP126-27

GET 40, 93,127-28,131

GOSUB 81,128-29,141,142

GOTO 18,84, 85,129-30

IF-THEN 69, 71,131

INPUT 131-32,133

LEFTS 144,145

LEN145

LET 132-34

LIST xi, 134

LOAD 30, 92,134-35

MID$145 j I
NEW 121,135-36

ON GOSUB 71,136,137

ON GOTO 69, 71, 74,137 I i

PRINT x, 40,137-40 L-i
READ 140

REM 140 . ,

RETURN 5,131,141 LJ

RIGHTS 145-46

RUN 141-43

SAVE 30,110,143 jl
SPC146-47

STOP 122,124,143
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n TAB 146,147

j ; loaders 19

Microsoft BASIC vii, 2, 4,17, 91, 93,105,135,141,144, 224, 335

words xi

p. BCC 45, 59, 61, 69, 71, 74, 75,131,150

1 ' BCS 45, 59, 61, 69, 71, 74, 75,150
BEQ 25,45,47,59,69,71,77,131,151

j—| Binary numbers 7,8, 9,15,243-50

1 ' program for printing table of 16

BIT 89,151

Bits and bytes 8, 9,10,12-15

BMI45, 59, 61, 68, 71, 74, 75,151

BNE 24, 45, 59, 61, 69, 71, 72, 74, 75, 77,131,151

BPL 24,45,59, 61, 68, 71, 74, 75,152

Branch address 47

Branches:

ON-GOTO 74

forward 78

Branching instructions 25,45,46,47,59,67, 68,69, 71-72,73,88

BRANCHTARGET 72,74

Breakpoints 86,87,143

BRK 29,30, 34,37,45, 61,67,86-87,90,122,124,134,143,152

Buffer 42,98

BUG 28,142

Bugs 31, 33-34

BVC 45,63, 68, 71,152

BVS 45, 68, 71,152

CALL instruction viii, x, xi, 23, 65,141

Carriage return 54,144

Carry flag 37,39,45,56,58,68,69

I—i Cassette buffer 1

- i CHRGET loop 336
CHRGETML program 336

Circumflex 26,223

M CLC 43,56,58, 68,109,153

CLD 43,56,68,153

CLI89,153

[~1 CLV63,153
CMP instruction 8, 33, 34, 61, 69, 70, 71, 75, 77,89,127,128,131,136,

145,154

r—\ Code 53

i ! "Cold start" address 124
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Index

Comma, use of 79, 223-24

Commands:

BASIC 63,121-47

machine language 63, 64-90,149-66

Commodore character codes 144 \> f

Commodore Monitor Extension 26

Comparisons 70

Compiled code 92 \ i

Compilers 92-93 UJ
Conditional branch 129,131

Control characters 273, 276

Counter variable 125

Counters 125-26

CPU (central processing unit) 8,18,37, 39

CPX70,154

CPY70,154

Cursor address 77

Cursor controls (PET) 30

Cursor management 77

Cursor position 140,147

Data table 31,121, 225

Debug xii

DEBUG (Atari monitor mode) 26, 28, 29,142,143

commands in 28-30

Debugger 23, 36

Debugging 86

methods 87-88

DEC 75,155

Decimal address 19

Decimal flag 56

Decimal numbers 8, 9,10,14,16, 243-50 s ]

Default 92 Li
Delay loop 83-84,125-26,129

Delimiter 78,138,145,146

DEX 45, 75, 84,155 M
DEY45,75,155

Dimensioned memory 123

Direct mode 4, 335

Disassembler viii, 20,134

Disassembly viii, ix, 20,140

Disassembly listings 25

Dollar sign ($) 10,12, 28, 223

Do-nothing loop (see Delay loop)

342



n
1 Index

I—| DOS (disk operating system) xi, 135

' i Double compare 59

n E
Echo 131

EDIT mode (Atari monitor) 27, 28, 30,143

f 1 Effective address 85
END 4 (see Pseudo-ops)

Endless loop 33, 54, 74, 76,124,125,145

EOR39,88,156

Equates 72

Error messages 26, 48, 77

Fields 25, 27

Filename 143

FILL instruction 67

"Fill memory" option 135

FIND command (Atari) 110-118

Flags 8,12, 31, 37, 39, 45, 56, 61, 66-67, 68, 69, 77f 131

B flag 68, 86

C or Carry flag 37, 39, 45, 56, 58, 68, 69

D flag 68

I flag 68, 86

interrupt flag 89

N or Negative flag 64, 66, 68, 69, 75, 89

status register flags 68,131

V or overthrow flag 45, 68, 89

Z or Zero flag 39, 64, 66, 67, 68, 69, 71, 75, 77, 78, 89,130,

131,138,145

Floating point accumulator 141

j| Floating point arithmetic 59,142

H G
' GET#93

n h
Hexadecimal numbers viii, 1-2, 7,8, 9,10,11-12,16-17,45,243-50

'—-> conventions of 12

1 I Hex dump 19, 20, 24
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i

Immediate addressing 25, 33, 34,43, 51, 66, 68, 69

Immediate mode 141

Implied addressing 43-45, 55, 81

INC75,156

Indirect-indexed addressing 74,125,141

Indirect jump 85, 224

Indirect X addressing 51, 68, 69

Indirect Y addressing 42, 49, 51, 57, 68, 69, 70, 74, 77, 85

Initialization routine 121

"Instant action" keys 54

Instruction field (see Fields)

INT mode 25

Interactivity 34-35

Interpreter 125,133

Interrupt request 31, 86

Interrupts:

maskable 89

non-maskable 90

INX 45, 55, 75,156

INY45,75,157

IRQ 31,37,39,86

JMP instruction 18,24,34,81,82,84-85, 91,128,129,130,157

JSR 24,25,45,67, 71, 72,80,81, 82,91, 92,124,129,130,136,141,143,

157

Kernal91

Kernal jump table 91, 92,94,128 j j

Label table 72 •—^
Languages vii, xi

FORTH 82 j |

{see also BASIC; Machine language) <—>

LDA 20, 25, 26, 29, 33, 39, 40, 43,45, 48, 55, 61, 63, 64, 66, 69, 71,158

LDX 51, 64,66,158

LDY 33,34,64,66,159 L^j
Loaders ix-x
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i i
Loops 67, 75-84,125-28, 335

delay 83-84,125-26,129

endless 33,54, 74, 76,124,125,145

—» FOR-NEXT 46, 47, 75,125-26

! \ indexed 48
nested 76,127

timing 76

H LSB (Least Significant Byte) 49,51,58,70,85,126,139,141, 243-50
LSR 51, 59, 68, 89,159

M

Machine language (ML)

advantages of viii, xi

equivalents of BASIC commands 121-47

INPUT subroutine 131-32

instruction groups 64-90

arithmetic 39, 68-69

debuggers 86-90

decision-makers 69-75

loop 75-81

subroutine and jump 81-86

transporters 64-68

instructions vii, 121-47,149-66

monitor 253, 269-333

strings 77-80,144-47

subroutines 31, 91-96

Maps 42

Atari Memory Map 205

Commodore 64 Memory Map 193-204

PET/CBM 4.0 BASIC ROM Routines 175-80

PET/CBM 4.0 BASIC. Zero Page 172-75

A PET Original and Upgrade BASIC 167-69

jj Upgrade PET/CBM 169-72

VIC Zero Page and BASIC ROMs 181-92

Masking 88-89

I—"! Mass-move 80

1 Memory addresses 1, 2, 20
Memory dump, 24, 28-29, 30, 275

r**^ Memory map 1 (see also Maps)

! ( Memory mapped video 70
Memory zones 133

^^ Message table 138

\ j Message zone 77

Micromon 23, 31,130, 269-333

VIC Micromon 296-318
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Index

Mnemonics 18, 20,149-66

Modes:

BASIC mode 142

monitor mode 19, 26,142,143

(see also Addressing modes)

Monitor 18,22, 23-37

Apple II monitor 23-26,143

Atari monitor 26-28 (see also ASM; Assembler Editor; Debugger)

interactive monitors 34-35

monitor extensions 253-334

PET, VIC, and Commodore 64 monitor 30

"resident" monitor 30, 253

(see also Micromon; Supermon)

"Move it" routine 130

MSB (Most Significant Byte) 49, 51, 58, 70, 85, 99,126,138,139,141,

243-50

Multiple branch test 136

N

Natural numbers 7

NOP45,86,169

uses of 87-88

Number tables (hex, binary, decimal) 243-50

Object code 18, 22, 28, 47, 225, 226

Opcode 18, 20, 55, 66, 223, 224

Operand 55 (see Argument)

ORA160

OS (operating system) 42

Page 33

page one 42 [__j
page six 68,110

page zero 33,42,51,56,57, 98,139,140,336

Parameters 67,83,128,141 I I

PET ASCII 3 L-J
PHA 45, 67, 81, 82,160

PHP45, 67,160 j-,

PLA 3,4, 5, 45, 67, 82,161 LJ
PLP45,67,161

346 LJ



Index

p-j Pointers 49, 51, 57, 98,109

zero page 77

Pound sign (#) 25, 43, 55

n Powers of a number 7-9

PRINT routines 140

Program counter 37, 39,55, 65,141

n Programs:

j I Adding the Conversion Pseudo-op 226

Apple Version (of Search BASIC Loader) 119-20

Atari Disassembler 240-42

Atari Hex-Decimal Converter 11

BASIC Loader 19

Binary Quiz for All Computers 15-16

CHRGET ML program 336

Decimal to Hex, Microsoft BASIC 17

Disassembler 237-40

Double Compare 60

FIND Utility for Atari BASIC 112-18

for printing out table of binary numbers 16

Full Assembly Listing 21

Labelled Assembly 21

Micromon 269-333

Microsoft Hex-Decimal Converter 10-11

Microsoft Table Printer 250-51

PET Search (4.0 BASIC Version) 100-104

Simple Assembler 227-36

Atari Version 231-36

VIC, PET, Apple, 64 Version 227-30

64 Search BASIC Loader 119

The Source Code by Itself 22

Supermon 253-68

Supermon64 319-33

VIC Micromon 303-18

r"| VIC-20 Search BASIC Loader 120

Prompts 31

Pseudo-ops 4, 27, 28, 29, 47, 224-26

r-> PUT#693
I \

i I RAM (Random Access Memory) viii, xi, 1, 2,4,9,12,19,31,33, 37,
42, 80, 97, 98, 225

,»■, Reference sources 221

I i Registers 26,28, 30-31,57,66, 70, 82
Relative addressing 25,45-47, 69

REM statements xii, 20

!"""! "Resolving" labels 225
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Index

0

ROL51,89,161 f t

ROM (Read Only Memory) xi, 1,12,23, 25,26,128,253 <—'
ROR 51, 63,89,162

RTI63,89,90,162 |-(

RTS 20. 25,45,67,81,124,129,136,141,143,162 LJ

S U
Safe areas 2-3,42, 68, 97-98, 99,105

SBC 61, 68,163

Screen address 139,140

Screen position (see STA)

Search bloader 119-20

Search routine 88

SEC 43, 58, 61, 68,163

SED 43, 56, 63,163

SEI89-90,164

SGN command 63

Simple Assembler 1, 2, 3, 4, 5,10,17, 22, 25, 26, 27, 28, 35,43, 47, 57,

73, 74, 79, 223-36

Single-stepping 87

6502 machine language (see Machine language)

Softkeyl32

Source code 18,19, 22, 28,49, 72, 225

Source program 140, 225

Spaces, important 224

STA 20, 40, 49, 51, 55, 56, 57, 63, 64, 65, 67,164

Stack 42, 67-68, 81-83,141

Stack pointers 26, 28, 37, 39

Status Register 8, 26, 28, 31, 39, 56, 66, 68, 82

Step 26, 29-30, 31,126-27

String handling 77-80,144-47

Structured programming 85

STX 51, 64, 67,164 [i
STY 64, 67,165 •

Subroutines 31, 91-96

Supermon 23, 31,130, 253-68

Supermon64 319-333

Symbols 53

SYS instruction v, viii, x, xi, 19, 25, 30, 65,124,141

TAN command 63

Target address 130,139,146

TAX 64, 66,165
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Index

P TAY64,66,165

TIM (terminal interface monitor) 142, 270, 271, 272, 275
Toggle 88-89

r-j Trace 26, 29,31

1 > TRACE 87

Transfer 130

, , ''Truth tables" 89

| i TSX67,165
Two-pass assemblers 72, 223, 225

TXA 43,45, 55, 64, 66,166

TXS67,166

TYA 39, 43, 64, 65, 66,166

u

Unconditional branch 129,130

Unmatched RTS141,143

Upward arrow 223 (see also Circumflex)

USR instruction v, viii, x, xi, 3,4,19, 63, 64, 67,110, 111, 124,141,142

Variable x-xi, 132-34,140

storing 57

Vector 86

w

"Warm start" address 124

Wedge 335-37

X register 46,51,67, 75,125,126

X and Y registers 26,31,39,45,48, 66, 75, 93, 94

Y

Y register 26,34,39,57,70,147

Z

Zero address 47

Zero page 33, 42, 51, 55, 56, 57, 98,139,140, 336
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u

Zero page addressing 33, 34, 42-43, 51, 55, 65, 68, 69, 75 ) j

Zero page locations 49, 99 ^^
Zero page snow 68

Zero page, X addressing 48, 68, 69, 75 I ^

Zero page, Y addressing 51 ^

Zone of variables 133,134

LJ
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If you've enjoyed the articles in this book, you'll find the

i I same style and quality in every monthly issue of COM

PUTE! Magazine. Use this form to order your subscription

_ to COMPUTE!.
i I
i I

For Fastest Service

H Call Our Toil-Free US Order Line

800-334-0868
n In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ TI-99/4A □ Timex/Sinclair □ VIC-20 □ PET
□ Radio Shack Color Computer □ Apple □ Atari □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $42 Europe, Australia, New Zeland/Air Delivery
□ $52 Middle East, North Africa, Central America/Air Mail
□ $72 Elsewhere/Air Mail
□ $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

"] Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /

Your subscription will begin with the next available issue.

Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.
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For Fastest Service

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTED Gazette
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other_

□ $24 One Year US Subscription

□ $45 Two Year US Subscription

□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada

□ $45 Air Mail Delivery

□ $30 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

Subscription prices subject to change at any time.

□ Payment Enclosed □ Visa

D MasterCard □ American Express

Acct. No. Expires /

The COMPUTEI's Gazette subscriber list is made available to carefully screened

organizations with a product or service which may be of interest to our readers. If you

prefer not to receive such mailings, please check this box D.
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H COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order

p| directly from COMPUTE!.

Call toll free (in US) 800-334-0868 (in NC 919-275-
^ 9809) or write COMPUTE! Books, P.O. Box 5406,

I I Greensboro, NC 27403.

Quantity Title Price* Total

Machine Language for Beginners (11-6) $14.95

The Second Book of Machine Language (53-1) $14.95

COMPUTED Guide to Adventure Games (67-1) $12.95

Computing Together: A Parents & Teachers
Guide to Computing with Young Children (51-5) $12.95

Personal Telecomputing (47-7) $12.95

BASIC Programs for Small Computers (38-8) $12.95

Programmer's Reference Guide to the
Color Computer (19-1) $ 12.95

Home Energy Applications (10-8) $14.95

The Home Computer Wars:
An Insider's Account of Commodore and Jack Tramiel

Hardback (75-2) $16.95

Paperback (78-7) $ 9.95

The Book of BASIC (61-2) $12.95

Every Kid's First Book of Robots and Computers

(05-1) $ 4.95t

The Beginner's Guide to Buying a

Personal Computer (22-1) $ 3.95t

* Add $2.00 per book for shipping and handling.

t Add $1.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping ft handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

NC residents add 4.5% sales tax.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date.

Name

Address

City State Zip.
•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.
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