(DK)
 QoeenShal

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

‘ COMMODORE

] S
PHIL CORNES -4 S M3y

O m EERENE
Seen

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

COMMODORE 64

RAFNICS

THE DK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the DK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
learning how to program in BASIC. Following the success of this
completely new concept in teach-yourself computing, the series
now carries on to explore the speed and potential of machine-code
graphics. Fully illustrated in the Screen-Shot style, the series
continues to set new standards in the world of computer books.

BOOKS ABOUT THE COMMODORE 64
This is Book Four in a series of guides to programming the
Commodore 64. |t contains a complete sprite-programming course
for the Commodore, and features its own sprite editor which
enables you to design and store sprites directly from the keyboard.
Together with its companion volumes, it builds up into a complete
programming and graphics system.

ALSO AVAILABLE IN THE SERIES
Step-by-Step Programming for the ZX Spectrum-+
Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the Apple lic

PHIL CORNES

After taking a B.A. in Mathematics and Computing, Phil Cornes has
been involved in system development of computer-based
education at British Telecom’s National Training College. He has
been a part-time technical author since 1978, and has become a
regular contributor to personal computer magazines such as
Personal Computer Worid, Computing Today and Electronics Today
International. He has written a book and a large number of articles
on programming and using the Commodore 64.

|
|
————1————1—T—1T—T—11T—+—1 S =1 2 = e e e
[S e A L

. = _-!‘___ ! : | Il r
| i
gmeu E2EE
PROGRAMMING SERIES =i 7 | i

STEP-BYSTEP |
PROGRAMMING |

| COMMODOREE4 | i

%5? ﬁfg SEEEERAE

PHIL CORNES

GUILD PUBLISHING LONDON END”

|
I I | 1 | | | |
! . | | | .
— t B e T - . _.|_ + —t - — + R 1- H —— - ey
| ' | i \ ¥ 1
o] see] | || B] L Lo it) o 1 e e |] SR BT | /

CONTENTS

12

18

[6

INTRODUCING SPRITES

SPRITE
CARTOONS

14

i 8

SPRITE
PROGRAMMING

USING
BACKGROUNDS

SPRITE GAMES 1

20

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited.

Designer Hugh Schermuly
Photographer Vincent Oliver
Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

Copyright © 1985 by Dorling
Kindersley Limited, London

This edition published 1985 by Book
Club Associates by arrangement with
Dorling Kindersley Limited.

The term Commodore is a trade mark
of Commodore Business Machines, Inc.

10 1 e
KEYBOARD DETECTING
ANIMATION COLLISIONS

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

and E. E. Burman Limited, London
Printed and bound in Italy by A.
Mondadori, Verona

SPRITE GAMES 2
i

r.

- I
1

22

SPRITE GAMES 3

24

]

SPRITE EDITOR 1

26

SPRITE EDITOR 2

SPRITE @

12 13 14 1S
16 AT 18 19
20 24 22 23
24 25 28 27

28 28 30 31

SPRITE EDITOR 3

|

EE

11] [D g

] I

I 30 =
SPRITE EDITOR 4 = n
| EX
SPRITE EDITOR 5
it
| . |
USING THE
SPRITE DIRECTORY
| - 34 60 I
SPRITE DIRECTORY MACHINE-CODE
ROUTINES
| 62 5
SPRITEMAKING
g CHECKLIST
‘ 63 =
- | SPRITEMAKING GRID
H m&m"‘ ". “’11 !'u li 64 |

INDEX

R R el e | o [R S
INTRODUCING SPRITES

Sprites are blocks of pixels that have a very special
character. They move smoothly over the screen giving
superb animation, and they can be stretched, over-
lapped or collided with each other. Most importantly,
they can be displayed and moved either independently
of anything else already on the screen, or they can be
programmed to interact in different ways with what is
already there.

The Commodore 64 is particularly good at producing
sprites, allowing you to have up to eight on the screen at
once. You can have up to 32 separate sprite designs
simultaneously in memory, each of which can be called
up onto the screen in a split-second.

If you have read Books One and Two in this series,
you will already know something about how to program
sprites, and what they can do. If you have not, you will
find all this information and much more in the following
pages. This book shows you how to make the most of
Commodore sprites In it you will find-out not only all
about programming sprites, but also you will find a
special sprite editor, which does most of the hard work
for you. To help you produce the best designs, the
second half of the book consists of a directory of sprites
giving you over 200 ideas for sprite shapes.

However, before you launch into sprite
programming, you will probably need to know a little
more about how sprites are made up.

How sprites are made up and controlled
A spriteis a block of 504 pixels arranged in 21 rows each
24 pixels wide. You can see a typical sprite design below,
as you would draw it up before incorporating it into a
program. When it is displayed on the screen, all its
characteristics—its shape, color and position—will be
controlled by a single chip inside the Commodore, the
Video Interface Circuit (VIC).

Inside the VIC chip there are 47 special internal memory
locations called registers. Of these, 34 are used to
control all the actions of sprites. The numbers in these
registers are specified with the POKE command. The
key to successful sprite programming is understanding
what numbers to POKE into which registers.

To program sprites, you need to give the computer
two sets of instructions. Firstly, you need to set aside a
section of memory for your sprites and then enter the
sprite information to be stored there. Secondly, you
need to retrieve the sprites from memory and put them
on the screen. On these two pages you will find out how
to complete the first part.

You can see how to set aside an area of memory in the
panel below. The direct commands shown on the screen
set aside a 16K block of memory from location 0 to
16383 for sprites, and move the BASIC storage area,
which normally uses this part of memory, elsewhere.

IMPORTANT

DESIGNING A SPRITE

The Commodore needs some special instructions before
you can use the sprite programs in this book. After you
turn on the computer you mustkey in these commands:

SPRITE MEMORY AREA COMMANDS

POKE 642,64
READY.

POKE 44,6+
READY.

POKE 16384.,8
READY.

NEH

READY .
|

The commands reorganize the Commodore’s memory.
There is no area permanently set aside in the
Commodore for sprites or high-resolution graphics, so
you need to tell the computer where to reserve space for
them. The VIC chip can be switched so that it uses any
one of four separate 16K areas available within the 64K
RAM. The commands above make it use the first of
these areas. The programs in this book will not
work if you forget to key in these commands.

The commands must not be typed in as part of a
program. If you try to enter them as a program, it may
destroy itself.

T R | 1 |

Sprites and machine-code graphics
Although some of the programs in this book produce
sprites with low-resolution (text mode) backgrounds,
others feature complex high-resolution backgrounds
instead. To create these backgrounds quickly, these
programs use the machine-code graphics routines
featured in Book Three in this series. If you want to
run these programs, it is essential that you have the
required machine-code in memory.

You can do this either by loading a copy of the
routines from Book Three, or, if you haven’t read
Book Three, by following the instructions and keying
in the machine-code routine listings shown on pages
60-61. The text with every program will state if any
machine-code routines are needed.

Coding a sprite

After you have sketched out a sprite, you need to trans-
late it into a sequence of numbers that the VIC chip can
understand. For each sprite the computer has to store a
pattern of 504 pixels, each either on or off. Information
in the Commodore is stored in bytes—binary numbers
— consisting of 8 separate bits (digits that are either 0 or
1). This means that, using one bit to specify whether a
single pixel is on or off, each row of 24 pixels can be
stored in 24 bits, or three bytes. The 21 rows in a sprite
therefore need 21x3 or 63 bytes. However, because
computers normally carry out all calculations in binary
arithmetic which is based on powers of 2, itis simplest to
add a 64th byte. This is included as padding, and is not
actually used.

How to store sprites
The best way to store the pixel information for a spriteis
as a series of DATA statements. What you do is to add
together the “bit values” of each lit pixel in each 8-pixel
row. These bit values increase in powers of 2 from the
right-hand side of the row. The right-hand pixel has a
value of 1 if lit, while the left-hand pixel has a value of
128 iflit. Unlit pixels all have a value of 0. Adding eight
of these values together gives you a decimal number
from 0-255, one of the 63 numbers used as DATA. The
64th DATA number, which has no effect, is set to 0.
Below you can see a sprite and the DATA that defines
it. The program contains a loop which POKEs the 64
DATA numbers into memory, starting at location 2048
(you can find out how this location is specified on page
9). Once you know how to compile spritc DATA like
this, you can then set about making the Commodore
retrieve this information from memory and transform it
into a sprite on the screen.

STORING A SPRITE

Bit values

128
(2]
3
1
12
3L
12
16
12%
[iE3
32
16

% - 04— w o i —

I 11 o] 126] 193
| 0] 126] 240

3| 255] 248

4 0] 240
12| 254 228
12| 254] 204
12| 254] 220}
8| 254] 188
9| 235] 122
28 0] 252
w1 254 252
AI| 254] 757
61| 254] 252
1251 234| 252
125 | 254] 254
127| 255] 0

1] 0] 124

HOW A SPRITE IS CODED

Each horizontal 8-pixel block of a sprite is coded by a single byte. A
whole 504-pixel sprite is coded by 63 bytes. A 64th byte, set to 0, is
usually added to make the total a power of two.

127 | 255 252
15| 255] 248
7| 353] 240
3| 233 224

Byte Byte Byte

4] 1 2

3

4

5

(i}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3

32

33

34

33

36

37

38

39

40

+1

12

3

44

45

46

47

48

49

50

3l

52

33

bE)

35

56

57

38

39

60

61

62

SPRITE DATA PROGRAM

w
-
]

CNm N
o

= V0T
QLo
=
M-
+
-
w
-
-t
m

o

ha R
4]
3]

=LNONANTN O
(4]

o] s] s]]]] e [T}
22DB2DIDOD
e PO R
COR=CAMINY COLN I
SN e N
LU Y, | i Y AN
NE=fs Oy & QOp
O INbspsp B
=R LN
v . ARNNRL- -

MRS U

e PPN
QU= WOMIE-
s PN bl
WH=r - OM
s U P -
NPIPIN CARIPD
P UM L datN i
PR Ll - L

SONce Lroro

MO RNONMNMNG

MWO=IDUNLWN OO DD
<OOLOOUoRooTMOMO
= DDIDIDIIDIDRKRDN

20000000000

2

L
L
2
3
4
5
5
5
3
]
5
5
5
5
5
R
i

SPRITE PROGRAMMING

When you program the computer to display a sprite, you
must give it four types of instruction. You must turn on
the sprite, you must tell it where to put the sprite on the
screen and what color or colors to display it in, and
finally you must tell it where to find the sprite’s DATA.
The order doesn’t really matter. Because all these
instructions feature registersin the VIC chip, itis easiest
to refer to them all in a shorthand way by letting a
variable V represent the first register in the chip.

Turning sprites on and off

All eight sprites can be turned on or off by the separate
bits that make up the byte in register V+21. Bit 0
controls sprite 0, bit 1 sprite 1, and so on up to bit 7
which controls sprite 7. Each bit that is set to 1 within
the V421 byte turns its respective sprite on, and each bit
set to 0 turns its respective sprite off.

How to position sprites
To specify the position of a sprite on the screen, you
need to supply the VIC chip with a pair of coordinates.
The coordinates refer to the top-left pixel in the sprite.
Each sprite has a horizontal (X) position register and a
vertical (Y) position register. If you call the first register
in the VIC chip V, then the first sprite’s position
registers are V (horizontal) and V+1 (vertical). The
second sprite is controlled by V+2 (horizontal) and V+3
(vertical) and so on as far as V+15. POKEing values
into these locations will position a sprite when it is
displayed. The range of values that can be used for the
sprite positions are 0-255 for the vertical coordinate,
and 0-511 for the horizontal coordinate.

You can see these registers being used in the program
that follows. The sprite is positioned and turned on by
line 10090.

SIMPLE SPRITE PROGRAM

: POKE 53281.2

XMw

O= M
QM=o
+ Ouwe

Mo~ ~

: POKE U+1,168 POKE VU

POKE VU+28,1

ol

ONNONNRNRNLSCMCCRONDI Uin
=

-~

P U
S SNk N PO
W=-an

Pl CAR D e P L

[

WU OUOAUr FNOFWL L= T
(-
&

AP s s s s W+ OO0

NUWANOUANDRD + ~ +O CO-COMOLID
el S LT TN T pTaeToe 0

DU LOUNS s 30 O
LIRIPION=J00 N
D=~ W= O N
e O P O
WrIW L= DrI -
uiry- COPI=JCNLA b=
=t o U
P A0 = O
Lop LS8 TR T AT ST T
LU~ LMWL
~ AN WO O
P Qi P P
WRIRI -G S PO LA~
M ~ WL Ur
ALY ol S

OO POLIGOMPIN
IR =IrO00 fu LN

e e e = = = = e = X D K X D 7T D WY e PN
&L\ -

MOUAIUMNANNNCOFO00OOOROD00
POOOOOOTOCOHNOOOO0O0DO®
DOOBRINLWONDCr OO-NNU W -
COOOO0O0000000D000ODO0DE
COPDDODDODSD VI DX VXMV UC
IPIDIDIDIDIDIOO0 COOMOMORE I
IDIIDIIOTTDOMOMMM—MO

i
i
i
i
i
1
i
i
i
i
+
i
i
i
i
|
i
i
i
i
i
i
R
|

SIMPLE SPRITE DISPLAY

In line 10090, the first two POKEs determine the
position of the sprite. POKE V,100 sets the horizontal
position of the sprite’s top-left corner to 100 pixels from
the left while POKE V+1,100 sets the vertical position
to 100 pixels down from the top. The third statement,
POKE V+16,0 can be used to modify the horizontal
position. In this program, it is set to zero, and hence
doesn’t do anything noticeable. However on page 10
you will see why it is included here, and what happens
when you use values other than zero with it. Lastly,
POKE V+21,1 turns the sprite on. It doesn’t matter
where this is done in the program, but if you leave it out,
the sprite will be put into memory but will fail to appear
on the screen.

Setting sprite colors
The previous program also contains several "POKE
statements which refer to VIC memory locations that
control color. The first two locations, V+32 and V+33,
control the border and screen background colors
respectively. The color of an individual sprite is
controlled by VIC locations V+39 to V+46. The first
location controls the color of sprite 0, the second sprite
1, and so on. The color code is POKEd into the
appropriate address, thereby setting the color of the
sprite. You will find a complete Commodore color
combination chart on page 62. It is possible to use more
than one color with sprites, although resolution drops
when you do this. You can see some examples of multi-
color sprites on page 21. Finally, line 10070 in the
program tells the computer where to find the DATA.
The next program produces a more complex display
by making eight sprites from the same DATA. In this
program the eight colors are specified by the loop
between lines 10070 and 10100.

e e ara [

MULTI-SPRITE PROGRAM

b G
i S
0O 0
2% DU

o ZIMoOW

=i 2N
[T
OO0

0
5
1
[-
3
3
5
g

o

o

w0
rrc
~0W0+
QBnan
~= WO
M= O

%50'0-21,255 : POKE U+2

K
el
: POKE 53281,6
47)
3
B
iipﬂKE 2840+C, 32
éﬂ)*297+48 : POKE U+

2DDD0M OOOMOMo
=== DI X D 20
DIDIDO-ZXMM =M

WOWhr UMW O O+ +0
v NEBMNWOHWE

Srohre W
R ot T

PNON » 00

5
S
(1]
§
5]
8
1)
1)
i}
)+
]
8
8
i
2
<
g

et o e e o e e, e i e e e
DODODOODODOOE VUM E VNN
OO WM ORI A S S || (N

:
Dm)ii!

Specifying sprite DATA

You can define and store up to 32 sprite designs in
memory at once, but you can only switch on and display
a maximum of eight sprites at any one time. However,
each of the eight sprites can be any of 32 designs. The
way that the VIC chip knows which of the 32 sprite
DATA areas aie to be used for each of the eight spritesis
by leoking at the contents of memory locations 2040 to
2047. Location 2040 controls sprite 0, 2041 controls
sprite 1 and so on, up to location 2047 which controls
sprite 7. There are 256 different starting positions that
can be specified for a block of sprite DATA. These
starting positions begin at location 0 and are spaced at
locations 64 bytes apart. So, for example, if you key in

How to alter bits within a byte

The technique for changing one bit only within a byte is
called bit masking. This technique, which is described
fully in Book Three, is achieved with the aid of the AND
and OR logical operators. To set a single bit within a
byte to 1, you use the OR function. Toreset abitto 0 you
use the AND function. The table below shows the values
to use with AND and OR to reset or set any desired bit
within a byte. For example, to turn on just sprite 4 you
would use the line:

POKE V+21,PEEK (V+21) OR 16
and to turn off sprite 6 you would use the line
POKE V+21, PEEK(V+21) AND 191

Sprite no. To turn on To turn off

0 OR 1 AND 254
1 OR 2 AND 253
2 OR 4 AND 251
3 OR 8 AND 47

4 OR 16 AND 239
] OR 32 AND 223
6 OR 64 AND 191
7 OR 128 AND 127

POKE 2040,40 the computer will make up sprite 0 from
the DATA beginning at starting position 40, which is at
memory address 40x64=2560.

The program on this page shows how you can alter
the setting in location 2040 so that different sprites are
all made up from the same DATA. The result s 8 sprite
“clones” on the screen.

MULTI-SPRITE
PROGRAM

How the program works
This program makes the
maximum number of sprites
available on the screen at once
out of just one set of sprite
DATA. It does this by altering
the sprite DATA pointers with
a loop.

Line 10000 makes the
variable V equal to the first
register in the VIC chip, and
turns on all eight sprites.
Lines 10030-10060 put ident-
ical DATA for eight sprites
into memory.

Lines 10070-10100 set the
sprite DATA pointers, color
the sprites and then position
them randomly within the
visible screen boundaries.
Lines 15000-15009 contain
the sprite DATA.

KEYBOARD ANIMATION

ane you kno_w hpw to produce sprites on the screen, SINGLE SPRITE ANIMATION PROGRAM
simple animation is quite easy. To move a sprite around

the screen, all you need to do is repeatedly update its
position. The easiest way to do this is by using a loop to
increase or decrease the position registers. You can
move a sprite one pixel at a time, giving really smooth
animation, or, if you want it to move more quickly, you
can use a larger increment.

-

tal |
MM -
LY
o

AN DCACCN I COL

QOODDr 3 +O0 +W0

SO0 m
D=Cx Il N N\ CWh

TVIXTVONVDE

EH==DPTOHO Il 1| OO0
nﬂﬂchHR~MHﬂwg°"

PR

[y
N |1 DOO=G3D -
=)

Il X=iME»HMmM
-

O=CX M

The screen coordinates

If you look at the sprite coordinates grid on page 63, you
can see that a fairly large proportion of the range is off-
screen. This allows sprites to be moved smoothly onto
and off the screen in any direction. Furthermore, you
will see that the horizontal range, 0-511, is twice the
vertical range, 0-255.

If you are familiar with binary arithmetic, you will
know that it is not possible to specify anumber upto 511
with one byte. A byte can only code a number as high as
255, so in addition to the normal horizontal VIC
register, another register is required to hold a ninth bit
which allows the horizontal coordinates to extend to
511. The ninth bit for each sprite is held in register
V+16. Setting a sprite’s bit to 1 in this byteincreases the
sprite’s horizontal coordinate by 256

OON=IND Nk e T
WOWSLIDwD «~ ;M =320
£M=}0 W+rCXMMMMXT
v M XD MR

A==

et e e e e e (O OO = I TV L LI I
ML hat

ONLWN-OOOD
coDoood e
-

mx

r
D

SLN-LI-DNHND
NS00 Jali
- w &5 U om)
el s @M

DOO=VDUNLWNE-D O
22222 DD>IDD

L~
<0000 0TTO0

E DN NN
MoOCOOOOOO0D =

Moving sprites from the keyboard

Many games rely on moving sprites from the keyboard.
The programs on these two pages show how you can do
this for a single and a double sprite. They both work by
checking for key-presses. The keys used by the
programs are the two cursor keys in the bottom right-
hand corner of the keyboard.

The first program is arranged so that sprite move-
ment continues for as long as one of the cursor keys is
held down. Line 90 is the one whi_ch alters the value in SINGLE SPRITE ANIMATION DISPLAY
location V416, allowing the sprite to move over the
halfway point of the horizontal coordinate range.

The program has also been arranged so that the sprite
does not move out of the visible screen boundaries. This
is done by testing the value of the horizontal and vertical
coordinates to see if they are equivalent to those of the
screen boundaries. If they are, the program will not
allow further movement in that direction.

The limits tested for depend on the size of the sprite.
Sprites can be expanded using a technique described on
page 18, and in fact the ones featured on these two pages
are fully expanded. Sprite expansion alters the distance
from the top-left corner to the right and bottom edges.
Normally this is 24 pixels, but it can be increased to 48,
and this must be allowed for when testing for the screen
boundary. In the following program, the test is carried
out by lines 140 and 150.

o e ety | [e b T

How to animate a double sprite DOUBLE SPRITE KEYBOARD ANIMATION PROGRAM
Animating a double sprite under keyboard control uses

the same techniques as single-sprite animation, but with
some modifications. The program on this page lets you
move a horizontal pair of sprites around the screen,
again using the cursor keys.

Programming this kind of animation poses a problem
when you want to move the pair across the mid-point of
the horizontal coordinate range. The program has to be
organized so that the pair can move across the screen
together. This is simple enough over most of the screen,
but when the top-left corner of the leading sprite reaches
horizontal coordinate 253, the sprite’s bit in location
V+16 must then be set to 1 to allow it to move into the
right-hand part of the horizontal coordinate range.
However, for a period the trailing sprite’s bit in location
V+16 must remain at a zero value. Only when the top-
left corner of the trailing sprite reaches the half-way
point must the second sprite’s bit change. The reverse
applies when the sprites are moving in the opposite
direction. In the program that follows, movement
across the middle of the horizontal range is taken care of
by lines 110 and 150 using two variables, HA and HB.

N
e

o D D o LD

b= 005 PN
A

n IR
(-]

DuE
[=l=lwT=]T]
atat fatat tatadl)
mm MM mmow
0L

. 0=y

PR

0TNOTM
Cy S)
SN SN | S
SN =D =)0+
S b
e TR
e
DIOM- DREORTVROO
<£H=40 WHXR DmomMmmMmMmMMRXET
e o

A IMN=-DN-DC @
s ECHLO®D

Nt Fatatal MHA
AXOR
 MCIEX XD X> MO
Dt

L]

i
2
3
3
S
6
7
8
9
i
i
i
i
i
i
i
5 §
1
i
2
2

NE=SWR-INNLONSOOSOO0OSO

ooODOOOLODODO
DD UOTVVITIHNOCOE
SMMCHOMBDODD ||

ool

B
m
>
-]
<

o Tme e Jar Lo o e Tt e T

Ll el el el e Tl T T T T T T T

B 1)
DOUBLE SPRITE Lines 70-90 do the same for : SRS
KEYBOARD ANIMATION the second sprite. i B, 6 g
PROGRAM Line 100 sets the initial : 56
How the program works positions and turns on the two i - ;
The position of the pair of sprites. ATA ‘ ;
sprites is controlled from the Lines 110-210 control 5 ATA b 3 B
keyboard by the cursor keys. movement by responding to the READ slie
The sprites move 4 pixels in cursor keys. Both sprites auto-
any direction in response to matically cross the horizontal
one cursor key-press. mid-point.
Lines 40-60 put the first Lines 500-519 contain the

sprite into memory. sprite DATA.

.....

SPRITE CARTO

You may be wondering what the point is of having
facilities for storing DATA for up to 32 sprites in
memory when you can only display eight sprites at a
time on the screen. The main reason for this is that the
VIC chip does not have the capacity for controlling any
more information. However, this apparent limitation
does allow you to produce some interesting effects in a
display, one of the best of these being sprite cartoons.

Switching the DATA pointers

The VIC chip is able to switch its sprite DATA pointers
from one area of the memory to another very quickly.

You saw in the Multi-Sprite program on page 9 how
separate sprite DATA pointers can be made to point to
the same area of DATA, creating cloned sprites. In that
case, the area pointed to by each pointer stayed the
same. But you can control the area indicated by using a
variable instead of a specific number. The following
program does just this. It produces an effect opposite to
that in the Multi-Sprite program — it makes the DATA
pointers for just a single sprite change in a specified way
to point to different areas of sprite DATA, creating a
moving cartoon figure.

Multi-frame animation

The program on these two pages shows you how you can
make a simple cartoon figure using five sets of sprite
DATA. For a single sprite, you could have 32-frame
animation, but the listing for this would be enormous,
needing 2048 separate DATA numbers (although it
wouldn’t be too difficult to produce, as you will find out
on the next page). Similarly, you could have four
8-frame cartoon figures or two 16-frame ones, or in fact
any combination as long as when multiplied together

the total number of sprltes does not exceed 32.

The sprite in this program is a galloping horse which
runs across the screen. It is programmed by storing five
sets of DATA for the horse, showing it in different
positions. The sprite DATA used at any point is linked
to the sprite’s position across the screen.

How to abbreviate sprite DATA

If each frame in a cartoon is significantly different from
the first one, you need to specify a completely new set of
64 DATA numbers to code it. However, if you want to
make a cartoon figure in which the top half, for
example, stays the same, while only the bottom half
changes, you can use some of the first sprite’s DATA for
all the sprites, thereby reducing the amount of program
needed.

The way to do this is to split the DATA up into the
part which is repeated and the parts which are different
for each of the sprites. Make the program put the shared
part of the DATA into the first part of all the DATA
areas, and then put the rest of the DATA onto the end of
the initial parts. This technique is easiest to use with
sprites that are split horizontally. Because of the way
sprite DATA is arranged, splitting sprites vertically is
more tricky.

SPRITE CARTOON Lines 10020-10030 put the
PROGRAM DATA for the five frames of
How the program works the cartoon into memory.

The program creates five Lines 10070-10130 form a
different sprites. It uses these loop which selects sprite DATA
five sets of sprite DATA in according to the horizontal

turn as horizontal coordinate position with POKE 2040,S.
of the single sprite increases on
the screen.

5}
=
o
St
o
P
g 2
(= =
L > - e -
o= oMin e - ——
a. w @ oy - —~
o =
| -4
Al -
s 2 I e HE
s 9
e 5] e mnqﬂ._.l_fd- ©
= o IO = 2 N0 o - =
£ DD - :
= . ~ s QIS+ = DD 2321 00~ -
0 m Sl e e e e =
. Pl R ok ZIIeIves :
m e W DO T OIS PR g reees ——
|) [T A& 0..._85._*.1 A . -
o (@] O SO0 D <0 -
s 0o s a0 0 D S AT A s D
& O |& O=I T =T ==
o L = i L | .A_....Aw.c—u e -
005 (S —HOOS O » =ity 00 OO DN - OO —)
os |© ety Ly LOCINOIN » SEDN, & w DNA-ND e - ~
o & |m oo VAN HHAHD 0 oD e [e i
= o |B T_I.T.-I_IT_mﬁﬁﬁAﬂﬂﬂﬁﬁ_ﬂ.ﬁﬂ OS DD DD~ » -Hril..unn
CCTT b o e e e TCETT [0 T I - SSIIeIT XT3 =
85 |& Doobwmmmmaﬁﬁﬂnn_m_mmmmm_n ® ceeccce =HO=ANND Tt : =
R - - =
-.w = W DD I DDDDDDDD&VDDDM ﬂ._ MMMMM”MMMﬂﬂﬁHﬂﬁﬁﬁNMﬁﬁ e - = - — ll_.l
b DDA - 1N DT 00 M D UM 2 astos ﬁ% == I " A
g < R BiiseeeberCoschanes D S e e
™ - -
(= = 3333333MWWMNBBOBQMMW% o —elu M3333“ﬁﬁﬂ“96123453?39% e e I — <
= MMMMMmMOMMne ol el 0“80300090%“4444444449 - e s
E s S i e S s
D 33333333333“30“802 i ﬂmull 5
(am] vl : . "-‘ - -
— : -
L B W
- e
P nk o C Q E) g o N -
o 2] 3 = o= g ¥
OOImlC Os.levl o o
v ¥ =] dth..D.vgag.Lh o :
b.lta.nmw.. e«nmeum e i e
ﬂnnege as.e v mdShAn 4 i » ﬂ
€333 a5 SO gL BEERR S et
Cawu = T O Oa e 5 = e -~ -
G [T I= oY o 0d o ===z - : -
o W oO— O 3 - o< & < <t w e Ty
§gzowxE &nanﬂdm Fia = ITIITeen
bt e — e e
=i segEes P n.eAHml mrmv. |+ - T e e e e
£ &= g2 2 ¢ 8 50T o8 alS S oY SIEIEII
ga -85 hmeesuivoA = Izt T ten
wECSEB2ug 8 SEL5S0 5o g | tesey sreneeoeeTe: TESELS :
e:mnmoine HaS L S oS SR s e 3
OanJd H_.h..L s g5 e s < 9O P -~ e !
OSEEgQE & .- lv_meMuDaR B e
rwsnf > mnas nro A [-{WN} - - - e -4
& S g5 o FH0° G S>> Lz sl ol o S S e
H2328=F8F 5.0 o= g g @ 2E5|9 O wohe o i SiiIiis sIIIIIIie:
ewchJt%de&OdgrﬂMdmﬁehO S St mw.»,...|ln|h.mm T
ht.lnruwuvw & e e g.du_l_ om0 2 o s
trYouoan.n u.dednoaaOR A EAAD X o ===
G = o i aro..\p .vlttmynﬂ K= ©OwD el ——
nfmmv,,aﬁmnoyaamwts Al R == 2
G 9 wl B 8E = a am.lmm @ | -+ QD= QO NI 10 = Ty
= £ 3 E.EE D', LT E 5 g g g5 = |k o TN ONXT ST R = : v
..% soogs 8 RG] Mo 30Eg = g..ll.v..wm) M.S._ZUU.WHNW._ (gl == . -
BEELEESE g nt s ol E2g S5 IS o i ;
— =il
o [V =" m e LI — g .mw. ol =] .m D = m W o L 2] ﬁMMKKGK..K“ﬂ%Rmﬁﬁﬁﬁﬂﬁﬁ :
- =T o m 3 = & ' Wh w S o ® i sa OO0 I O=~o0 0 Il e o o o o o -
Eo-8paffalge EEZZEG CREXE TR s Basaasas
BEBE ol 2% BpasgeEee 8e000 T
o 5 Lo 9w = o o= 8 B S S G D —
o "z = 0, [
eaE oEEEESE &5 S g ¥o 5T PR PBANODE00eD =
HnmmmumAMTwmert..mam EEEES 22 B=
g -
»w w | O D o © O] e & 8 w e e e e e e A A CH A EDIBON. == =
el s E8E S-S == s
o == Lot
fes > ~-d 4 -
& Y Pkt s .
= e ipiosi = .~
T

USING BACKGROUNDS

So far in this book, you have only seen sprites on other-
wise blank screens. Adding backgrounds makes the dis-
plays much more interesting, particularly because
sprites can be made to interact with them.

The high-resolution backgrounds shown in the
following demonstration programs were created using
the Graphics Editor program featured in Book Three. If
you have read Book Three, you can use the Background
Loader program below to call up any background you
have designed with the Graphics Editor, and then you
can display sprites on it.

BACKGROUND LOADER PROGRAM

-y
V="
M

XD ==
-

VD=—D
D DeOFn
M DLAD- -
nZND

m

o0
G B L T e

. O OOh N

°
AQD=D= STMIWNE S

oroooOVTMLRX-C
ROXOFOMM

TOVNVNOO—N D~
mwm
m

[O e e e o e o e e e ot o .
MOOCCOOOOOOOOOSD =
2O0O00S0000 O
DI D000 =IOV L WO D
<00 00000S00000

M QLOMNNG
RTA A s L g

To use a display file that you have stored on tape or disk
using the Graphics Editor, you need to make sure that
the background is displayed before the sprites. To do
this, make sure that the Background Loader line
numbers are lower than your sprite program (you may
have to edit them). Also, you will need the routines in
block A which appears on page 60. You must also use the
restore routine in your sprite program to make sure that
the DATA is READ from the right place, and take out
any screen color or clearing commands. You can see two
examples of the sort of displays you can produce by this
method below. If you haven’t used the Graphics
Editor, vou will find that the effects described next can
be seen with low-resolution (text mode) backgrounds as
well.

Setting priorities

There are two different ways in which objects can
interact on the screen. A sprite can either pass in front of
or behind another sprite, or it can pass in front of or
behind a background object.

that they pass in front of the
background.

Line 30040 sets the initial
background priorities.

Lines 30080-30100 position
the sprites.

Line 30110 resets the
priorities with POKE V+27,0.

BACKGROUND
PRIORITIES PROGRAM
How the program works
The program creates a pair of
sprites. After the trailing sprite
has reached horizontal
coordinate 190, the priorities
of both sprites are changed so

,255,255

" & D & 4D
DD =ity
X

OwT W~ N0
SO -
DOWTONMNNOOO=DM=HNNND

00

in the following displays what happens as

the ship gradually moves across the background,

CCCCCETECECCECTEECET
QOO00O0a0A00A0000aa

S OI0NTINDOD= 0 DO~ O T UHOP= 0N
SODOODDDDD A=
O0O000OODODIODDODODDRE
SO000000000BD0000000L
b L R R

LIST 400

BACKGROUND PRIORITIES PROGRAM (CONTD.)
changing priorities after a particular point is reached.
BACKGROUND PRIORITIES DISPLAYS

You can see

1

because
its associated sprite will move

front or
behind lit background pixels. This is controlled by the
contents of VIC register V+27

sprite 0,

1. Sprite-

priorities are slightly different
shows both

-

where bit 0 is used for

]

while if the same bit is reset
front. Thefollowing program,

which uses a Graphics Editor background

kinds of back

LRMMONTE-HC KT WED
Odd nonay B2 = S
=00 =[OMOUW D@

NS T NN
O @ e o (o e

I N@DND=DDIDV | AADD
Qn = Lok hahel

LY Ll e L L L 56 96 96 2C Lad bl
QENE | 2LENE || Sl Il Sl 2
CO00OO=OEOLOLLED
e e 96 O O O 5 O e e Pt X et bt O, B

then

bit 1 for sprite 1 and so on. If a bit is set to
ground priority.

within this register,
BACKGROUND PRIORITIES PROGRAM

LIST 30018-30160

Lelae I i Dy Do T T T To T T T Ly Ly |

[SEEURET)
S 0
r.FnLu
2o B
Lo
© o=
S O 5K
L
e
€82
22 g
5 EO
.I..u&
i
< 7]
5.2 0
==
LS
O &
e
v 8=
= o=
i ©
.80
& w .=
Cen
17 =¥
tSS
v g ¥
...mpc
» A,
v >
S« B
Ew 5

the same sprite always passes behind sprite
each sprite can be set individually to move in

background
behind background objects,

to 0, the sprite will pass in

DETECTING COLLISIONS

The Commodore’s VIC chip allows collision detection
with simple programming. Whenever a lit pixel is about
to be plotted on the screen in a position already occupied
by another one, the VIC chip signals that a collision has
occurred.

Eight sprite-sprite collision detectors are contained in
VIC register V+30 in the usual 1-bit-per-sprite arrange-
ment. Similarly, eight sprite-background collision
detectors are contained in VIC register V+31. When a
collision takes place, the VIC chip records it by setting
the appropriate bit in register V430 or V+31 to 1. To
check for a collision, you just need to PEEK the
contents of the appropriate VIC register to see if the
sprite’s bit is 1. If it 1s, the bit will then be reset to 0.

The following program shows collision detection in
action. In it, one sprite slowly creeps up on another.
When they meet the stationary sprite shows a sudden
reaction triggered by the collision.

SPRITE COLLISION PROGRAM

POKE 5328

<
"
wn

4a
NXXIM | WOMMm M Mo

POKE 20648
POKE 2848

& -
TOX VD + MmN

<O O Or

XC ODCrI= Il
OXCOe L
SN ODWE - WD
rRMOm o ox
L1 S | e CR o % T T /% O T

NMES—+

N+ DORM- 41
s O=CORQMXO-Cr -

0>
OCHMAICO VMM D
(o il =
= X+
TUNSHMW - WM |

i
a
2
3
+
4
+
9
5
7
8
9
i

i
i
i
i
i
i
i
i
i

DX I =0V VLOXOOO00CO0: -
OLXMNE ACNI O O =M=t -

DO LN EOCOOONEO0E O
COOOODO0OD
ETMOOMDOO—R || || XX 20—

=
=+ C

The octopus moves towards the fish until its collision
detector in line 140 signals that it has touched another
sprite. At this point, the loop that moves the octopus is
interrupted and instead the fish moves to the left. It
moves much faster than the octopus because its

horizontal coordinate is changed by 15 pixels each move.

Detecting collisions in a game

The program opposite uses a technique you saw earlier
for moving a sprite under keyboard control. The
program draws a random maze out of colored blocks.
You have to guide the farmer, who starts on the left,
through the maze to reach the pig on the right. The
object of the game is to make the farmer and the pig
collide. The keys for moving the farmer up and down
are S and X, while the comma and full point keys move
him left and right. The program uses sprite-background
and sprite-sprite collision detection.

SPRITE COLLISION PROGRAM (CONTD.)

-
-
(-}

Lo [ow Lol Lo Low Lo Lo Lom L Lo Lo S Lo Lo Lo Lo e T T B
2222 DIDHID

e e e e e e e e e e e] e e e e e e e {
m

dabs - e DD

RT3 (s i~
T o

“JUPIE=Re M

= DT
s e =l

m\.h\\.v\-@&
Ot =

LR [Ta 1T Lanl R enlan]

DL DD O
- mhﬁ -

B ORI (O~ &

,,...H
[e PR AT ST e

ORI OPI -
U L0
T s
T O B B
Lt & o

UM >

Ok L=INW=1N OULOS M
U R

w v P

OOWNNFS Ik kNSO
s o QUMD LN« =ILAL « ODOD
DM L~ R e s LALA=IC D
S L s UG sl - O G-

COn DONLARD = CFth O ~
OO LAMERe - O

v UIUININ fas
PR R T (TR
o s v oW 3- -

[+
22222 LD2IIIDIITDDIIT OO
|

D UE=Pahr-

I 70 1 e e e e e o e e e e ot ke e ot e e [
MU U DN AN =
POOOOONODDODOOOODDHHDED ¥
0 e e e e e e e e e (2 0 0D 0 £ O 0 (D D
D=1 LIPS = ED D COmITI U] fa O e
DD I oo R 13 € 0 e e o e 3 = (5)

SPRITE MAZE
PROGRAM

How the program works
The program creates a random
maze and two sprites, one of
which you ecan control from the
keyboard, It detects collisions
between the two sprites and
between the moving sprite and
the background.

Line 230 tests to see if the
sprite-sprite collision register
has recorded any collisions. If
it has, the game is brought to
an end after the score appears.
Line 240 tests to see if the
moving sprite has touched the
maze. If it has, the movement
controls are reversed.

111.

e the collision detection comes

SPRITE MAZE DISPLAYS

wher :
he does touch, you get a two-second time

and the controls then reverse the direction in

S

sides. This 1
Every time
penalty

which you travel.

RETURN

@
&
L ne
L ML
-]
mm R
-l TOMIN0
L oW
-y e X Ly
(3N 1To Y.
UL O \ LUy W Mn
IS >4+w \OXC SN
DM D btrb= = N = D D B A Ak
WOWT o= T W EXON~- & = = L B R R oM AN - .
(=TT - I -] 00 ladlad I Ll A d+WIT—+ES D H@=-MDD=ND DW=-MNININWES
a1 bl o o MDEMINOO0 . A DMOEEDI A0 O A A AT AT e OOIN
A0 X O +¥I OxOoLM® W o O AT HETOODAAHN 2 s o o s s D0
O @ OUN4+OOMXIeL 0L O @ T LI AO=E W= DRTOUNT a4
FORETY SV RRY SV I R oV I 3= EREY IS =aX i B @ ~ STWINNW—
v @ @RS o OA CTCH++O T AL W SO O s s
W M T M OXTOO ~ 0 NOD e U s S RN~ x DINM=HOMDO- @ 4 T - D
TWORME Ao+ T Ow-Hr-M: ¢ MO - NT]I T I A= e M i I T 1 Lot Lo 1T
o s D SO0 Tk ke n sl + =D HEJ)VS:.ESW(I. DD D=~ @OW NeOINWT

[
=l L]
= O
L o]
i
o o
—-om To
+ oty
To=s o

farmer touch the

you have to try to get
SPRITE MAZE PROGRAM

PEEK(U+31)
HRS(B))

C_:

gs more interesting,

MDOWOWFwOLY MY WM Il MDND0 >0 @ A0 O OO X0 s - T | BEEY

N0 Q4 0 T MDD P e N T DO =r=0NMD

I O OOX o DOWD+ +0OFX0 WKAAN M Tl DE skl b= D SN ATECY A A 8 el

=200 @ o | N-HEND DN W WLV v E MDD O DI=MMOI=D OO DO @EMNNONDD

L' BT [N | IO 16 3 (=] i WM COI00E S (S (R)

R T o et o oo PV Y LY T, PPV] LASS | D Wew+TUWEWEER WE

W o X oaedatnaeauinae @ i DO 1] 11 3t 5 et ot b o S

DUANKMNE~XOLOOWOO | 00N * b e e e 11 DLUOICD 1] 1) OO0 0 06l D lae

OO NS IS || Ol 0.0 0 A o= > bt et 55 L €22 O 23 23 9 28 e O e e 0 L £ O >

Ol -l ol aQ o
OOOOODo000000 < OO0OODOOOODOONOIODODD L

DOOODOODDDDCIMNTINO=0ND-HN W T 0 W= 0 M DI T NI~ D@~ W

B L [A T 171 o e (R R DR RN T T TR | CICICICICICICIMMMMGMMMmnTTET <l

MMMﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬂﬂﬂﬁﬁ
CCECCCCCECTTECECTECE
DDDDDDDDDDDODDDDDDDDM
D= CJ 0T IDLO b= 00 DD~ I T D= 0N T
D0) D D 5 D € e e e e el e e e e e
DNBIPVBBN VBBV EE

LIST S88-

e
(9]

N =
S
€2
U«
ht
et

o 2
ED >
3w
- =
£ 0
S C
LB
=)
S g
£
5 0
T
EE
E

O (2]
—
@ &
=

o &
-

(D g
E g
= kD
,,mm
S A
..“e
<=

through the maze without letting the

make thin

SPRITE GAMES 1

The next six pages will give you two examples of sprite
games, using the sprite facilities you have seen so far,
and also some that might be new to you. The program
on this page is a fairly short listing which uses sprites and
low-resolution graphics. Pages 20-23 feature a longer
game which uses more sprites, this time displayed on a
high-resolution background. This is created using
machine-code graphics routines.

Expanding your sprites

The program on this page uses sprites that are horizon-
tally expanded. You may have noticed that some of the
sprites in earlier programs were larger than the normal
size. This effect is easy to achieve. A standard sprite can
cover an area on the screen up to 24x21 pixels, but with
the Commodore’s built-in sprite expansion facility, this
can be increased by a factor of 2 in either or both the
horizontal and vertical directions. This means that a fully
expanded sprite can cover 48x42 pixels on the screen,
four times the unexpanded area.

The expansion of all sprites is controlled by two
separate VIC registers, one for expansion in the
horizontal direction and one for expansion in the vertical
direction. Register V+29 controls horizontal expansion
and register V+23 controls vertical expansion. With
these two registers, expansions for each sprite can be
controlled individually with the usual 1-bit-per-sprite
arrangement. Any bit thatis setto 1 inregisters V+23 or
V+29 signifies that the associated sprite is expanded
either horizontally, vertically or both, and any bit reset
to 0 indicates that the sprite is of normal size. By using
these registers, you can stretch sprites in different direc-
tions to create complex mobile shapes with a limited
amount of DATA.

For example, to expand just sprite 6 vertically, you
would apply the technique shown on page 9 and arrive at
the following line of programming:

POKE V+23,PEEK(V+23) OR 64

When you use the sprite expansion facility, all that
changes is the size that each of the normal sprite’s 24x21
pixels is plotted on the screen. There is no increase in
resolution so that the amount of DATA required to
specify a sprite does not increase. This means that the
sprites will be larger but coarser.

Programming a darts game

The following program uses sprites to simulate a game of
darts. The three darts are sprites made from the same set
of DATA, and each one is expanded horizontally. The
program uses animation to make the darts move, both
under keyboard control and direct program control, and
it also checks the positions of the sprites after throwing to

calculate your score. To try out the game, key in the
three screens of listing that follow.

SPRITE DARTS PROGRAM

P
[T

b b I O
~ 0

®:

= 3= R A
00 0000 ~¢-
= e DTN D

AV nmaEom
it e 1 D

MEDOVONDHDC
< OUTIXTONTD TN TOMDOONCOE ||
] | Ky
-
G P O sl

CHEI MNECCIMGE ==
ol e B v T M [IENCISVINPTY) I, 1o |
LA D U G L=
o
~RHED TDOEMM A AT~
MCr K | =XM== =N M
wm

DoDNE O

~ b @

r OO XD @

EMMMM . M —~—~—0
nox ~ mu

2RO~
+OFGQ MMZRMMO 0~

B Tt T S o e o]
eI LI fae

PO I | ORI T e

MO0 0000 O 5 i — X
« OOT= - WRLL—HLDN
e N=O N SO+ OO

M=y
b [T P

QM @=C =0
o ot ol [T s SR
M@ D

b=
(Y

T 1= 00 60 = T) 0 e 53 50 0 510 5 20 0 0
e

T OOOOESSSEE0E0 S0

B0 PRI i e e e e e e e 0 0] 5 € e 30
o

(75

>
=

M I
BRI ME

m
€ TE—XEM

- DBIO
x| WAl o

SOL— TOD
b 4

Fatatatl = . . IR
=7

PO -

I~

QU RIDDIIEDC M
2

A A e e
—C-+ 1 ©m

I S PO~ OO~ TI LN fa) e
N 0 o i 1 0 0 0 0 0 O
OHTVCCCLCACED s hN@CA

L D I L LIIMIPIPIPIPIRORS

IIXITXXO+
ITITIMM
= TMmMmMmMmXx
OXXIXIX

X OO0 Wi
IR | TR

i b s T N PONAS
COX-IGAMNN = AN =Dk

—ND LD

w

B e FaTaTatal Sl pa ol 434 [« - B g {nalu}

{A
i4
i7
49
+0
=1
o=
TC
U,
U+
U+
835
i1
3 e
ig
i5
21
S
=1

ONOMTIMMMQQQ- || S ™M™M™
XM -C-C-C-C=CMMM=~D

>
2
2
2
>
P
T

O D=

o
om

L DD b bt bt = D O D I S T T e
|

=)

wn

[}

[~}
|

-

QW

raraen

@ P L v D0

DRC AW)
 D=IPILPICEe s
= U O SO
PaD QPPN
% W L PO
SNSrIN =1 i
U U s s DN
(et o T T L N TR o
L A

T WOO-1MLA LIPSO
o

=)

BOOOOOOOOOOSOAN —
MOOODODODOHO S0 -
Bl Lol T Lo L T T T T T
Bl e e e e e e e o e

A =~y
2D
00 C0 CDD P b e 05 3)

To play the game, you need to move one dart ata time to
the position you want to throw it from, and then tell the
computer how fast you want to throw it. You move the
darts into the throwing position with the up and down
cursor keys, and then you select a throwing speed with
keys 1-9. The number you use determines the strength
with which the dart is launched (1 is slowest, 9 fastest).

Controlling position and speed

The Sprite Darts program is written so that you can
control two characteristics of a sprite—its position and
the speed with which it moves. Your input from the key-
board is monitored by line 220. The program then gives

SPRITE DARTS DISPLAY

T
i 'l.

=l=‘= i

the variable A the character code of the key you have
pressed, checks this number, and then either moves the
sprite vertically, launches it, or ignores your input and
starts again. The speed and trajectory of the sprite is
calculated by lines 260-320. If you key in a number, it is
used to produce a variable N with which the computer
fixes each dart’s vertical coordinates as it moves across
the screen. When a dart eventually hits the target, its
vertical position is used to decide what figure should be
added to the total score. You can alter the basic speed of

the darts and the range of scores by changing the values
in these lines. You can also make the score accumulate

for a set number of games.
SPRITE DARTS DISPLAY

SPRITE DARTS
PROGRAM

How the program works
Three darts are produced in
sequence from the same sprite
DATA. You can throw them
one by one at the target,
controlling both throwing
position and speed.

Lines 30-80 PRINT the dart
board.

Lines 90-100 produce the
darts.

Line 220 checks for key-
presses.

Lines 240-250 control the
darts.

Lines 260-300 work out the
speed and trajectory for each
dart.

Lines 340-400

calculate the score, which is
displayed by line 160.

SPRITE GAMES 2

The program on the next four pages produces a game
which uses single and multi-color sprites to simulate a
fruit machine (one-armed bandit). The display uses a
high-resolution background. To enable the computer to
draw the background, you will first need to key in some
of the machine-code routines shown on pages 60-61
(these are the same as the routines in Book Three). The
routines you need tokey in are listed in the panel below.
Make sure that you have them in memory before you
start keying in the program itself.

FRUIT MACHINE PROGRAM PART 1

000-16168

-

i

o
w
o

=mur
o Q=CPo

=1 TO0 7
U,V,H
uUy=88
U¥=136
U¥=184

L=
o

Mo EOE
- T
DNR O
(]

Uy

e

-]
=]
oc

L MOEDE®MX =~ SN

Q-

DN N

.-
]
[}

w
(]

200 CD o () o
TOWRWEH @ -
GNHNSH & & <

b e (O 1)
- Q.. THINY)

F=rarg

e A A

(xly]
=43t
(e

=JUN00 b e S 00 fa e LDV
RO R
. (-]

.« o

[CR ferleelep]e el SR - TR b -
L1A]

VX0

Un DDOHROH

=AW NT || = | = || XD
(=]

U L = 0 L0 Q0 =T 0 A Gl P e D
COoOOO0O0ODTDODODOE
SUIOHTMOrOrSr-znDeoe
SCM=CO 1 21 26 || HKM=CM=COC
MO L=CrQOror e e

SIS0 C-CO-CH-CC+ MDD

o =

D PR eOOOO0ORO00 O
[

M QOOOQODOCOODDDDD

BP0 e oo o o e o e o e e o e [
L~}
P

FRUIT MACHINE PROGRAM PART 1 (CONTD.)

~-
(4]
[}
[~
T

]

“ .M
(D LIUNP

2l 1o ple~T -]
P =
[P N]
& U M

]
Qe v a0

LIt lO0O0om~
o o e 13 3 3 €79 013 00 o
P (=0 X
ICTCCTEa &

= W ()
NNN<CTES

b8 o LR -

o SadaN

e PIRINY o PO

b el

222D DDIDDDIDIDIDDI
NIQOOQOOE P UAMNO

NN C=DC St =
EC==NNNNNXC=OW Ly v

0 0 e o e e e e e e D D D DD DD L)
m oo

WD =N N La WIS P D TV AL IS =)
LODLOOOOODRDDODDDOOED
b A plan g Low Lo Lo Lo Lo Lo Low Lor [Lo Lo [T o T T
Moo IIDDDID
S 70 70 e e] e e]]] e e e e e —f
11 D N S e 0 3 e 30 0 e P e (1

v EPFECEM OO v v &

M-CXC
LM S 2

M0 S U A NN AU LA LALA LN Oy
-

Pl

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
2
2
2
2
3
i

The game is written so that you can key in parts of it and
test them as you go along. Part 1 of the program
produces the outline display shown below. At this stage,
there are no sprites and no scoring mechanism. When
you have keyed this in and made sure that your copy
works, store it on tape or disk for safety.

When you have a working copy of part 1, add part2to
it. This contains the DATA for the six single or multi-
color sprites shown at the bottom of the next page.
Multi-color sprites need the same amount of DATA but

FRUIT MACHINE
PROGRAM Part 1

How the program works
Part 1 of the program draws
the fruit machine display with
high-resolution graphics.
Lines 10020-10050 define
seven characters.

Lines 10060-10110 use the
block-color routine to create
the display.

Lines 10120-10140 READ
DATA 1o display the score
table characters.

(A R R A R R

fabalabababe NINNIIIN
N U OOOODD o @

ROUTINES USED BY
THIS PROGRAM

A High-resolution
Restore

B Clear-and-color
Block-color

C Plot

D Draw

H ROM-copy
Text

| Define-character

use it in a different way, so that some pixel information
is transferred to coding extra colors. You can see how to
program your own multi-color sprites on page 62. The
combined parts 1 and 2 won’t actually show the sprites
— that happens after you have keyed in part 3.

FRUIT MACHINE PROGRAM PART 2

Lo Lo Lo [e
e
.

02 €0 00 0 €0 03 60 £ £
0

g

DDDDDD DD D DD DD 0

o

000

ol | Lo e Lo Lo T
e e
=D 2D 2D 2D 2 > D D D D D T
=
s

-
e

o p L]l ma]
o
o
w

el Lo [l Le L e e L T e T T T T T e L,
55D =0 2 D D DD =D D D T T

e

3

[

o G
o0
oD 7
[
wrlan e
o

-
o
(o8
2|
)
M
(=]
I
4]
[
[F4]

PORPIPIMPIMIPIPIFIPIFIPIFIPIRIFIPIPIPS O

Lol

AU PO M
PO

SN ORpae L] v UICOLUFI &
P maralwe

e U O
M POU ORI

N e pn POl NGO LA=IRILN L
Lo = « « AR

o fo- - 00
SUINNSMNIUAN « * ~ FIMIWE~ da

WL TS T 8
QUIRNPRENMUMN & P PIfub=pr -

IDIDDDDDDDD
il

o o o ot e o
DIDDDIIDTD

hed ol Lo Lo Lo dow do b e Lo Low Lo Lo Lo
CRCTURUT .~ ST B T CT G

T e e N AL TN LS
Us OROWLS o U WU

DU RN -~ T I ST TATE

ONP @S PRI =IPI U -
U SO SO - - U e

NS RMNE-U0
(<18 [1NN RTaa TH [S BRCRES

NSNS O
PRCRCEUCRCRUN -+
v QRGO
PRI O
s UODOUN

e e o o e e e e e e e e e e e
AN AN LU LA LR LnenCn
QI L LG LI LI PITIPORIPIPIFIPIFIPD =i
OGO =1 LN L QIR b DD 00 =100 LN L L P b (D
TN e e e e C D (0 CR) e e I P b e T €D

L
>

[kl
m
>
-]
-

» LALn=arath
[

L e L4
[=~To-Tonlur
PrIRDE
e
omn
1]

(L]

L

VIS SRR
L T, R |
N b

u
“n

Multi-color sprites

In the multi-color mode, the pixels that make up a sprite
are programmed in horizontal pairs. Each of these pairs
can be displayed in one of four colors. Because you
cannot program each pixel in a pair separately, this
means that there are effectively half the normal number
of pixels, with each being twice as wide as usual. In mul-
ticolor sprites, two bits are used to code each pixel pair,
instead of one bit being used to code one pixel. This gives
a total of four different bit combinations for each pair.
As well as specifying whether the pixel pair is turned on
or off, there is enough information available to specify
two extra states as well, and this extra capacity is used to
code two supplementary colors. To produce multi-color
sprites, first turn the multi-color facility on with POKE
V+28 followed by a number from 0-255, to determine
how many sprites are to be multi-color. You can now
specify two extra colors with location V437 and V+38.
All you now have todo is key in the DATA. You can see
how to do that on page 62.

Multi-color sprites

The fruitmachine uses a total of
six sprites — three are normal one-
color sprites, while the rest are
multi-color. The program so far
includes only the DATA from
which the sprites are made —the
conclusion of the listing overleaf
creates the sprites and turns on
the multi-color mode.

_éi'r}iffiiﬁ"mémiﬁ'i

SPRITE GAMES 3

You have already put together most of the programming
required for the visual side of the game. Now you can add
the final part of the program. Part 3 of the listing is con-
cerned with the logic that actually drives the fruit
machine, selecting the sprites to be displayed and working
out your score. You should type part 3 onto the end of the
program from pages 20-21.

To play the game, wait until the fruit machine has been
set up complete with its row of four sprites and then just
press RETURN. If the boxes under the display windows
contain the word HOLD, then before the game has
started you can select any or all of the reels to be held so
that they do not change when the game is played. To set
reels to be held, just press the number keys 1-4 corres-
ponding to the reels. If you make a mistake, pressing the
same keys again will cancel the HOLD on the selected
reels. Now press RETURN again and the game will start
as different sprites are displayed in the windows.

FRUIT MACHINE PROGRAM PART 3(CONTD.)

LIST 18520-

-
<
-

LWary
OD=-DO—D
o
OPNOMNODDIOCO0 <C-COMMpaT
w o
4 Il DD
el T
RMLMOOS
b B s L L)
PO+~

b
L e e T

o s O M W MN=l+MXI =X
KOHIMM @

NEXT C

=]
T O X

PR3 0= X0 CLIGILI P |1

A== B
m=pS
SN WWOWEPID MWD~ LT iy -
P O D0 = = s

LRl
It =

PN PIOIES = =

P

POKE V+23, PEEK

POKE U+28,.PEEK
,8) - RETURN

b
T = =HUOOOONOT WU e

bl
mon Lm0

AR A

[
@A+ LrE D0

bat]
LU Ol -
+ |+
welil

)
G
5
S
(3]
S
S
3
3
=)
6
3
=
3
8
8
+
a8
+
3]
A

M Cra ChH =IO 000 00 +00
DW= DF = D= 2

IO AR A PP b e b b ot e e o e 50 e o 11
COHNDNOOODOSDDED

FRUIT MACHINE PROGRAM PART 3

I8}
=

wom

[fo [o)
mm

[Y
-1
i
m xm
==
i

@

r

OO +0O
raF=mraco m

- X
T O

=]
o Mo
el

Ior MESr MUO+TVo -

<~ IX I OvWOMONn OO LOIE
en Ok

I + P+ WO
=+

o m
wo Cr
WAt <+

URp il o e i bl]
=
~
o
-’
1l
o

S RT @O~
Yol

e A = I T T T T
-]

-
ACHOD TEDDI
ikt A W]

(]
P

A RNE Attt D00
fana]

CODOCOOODDDODOD
M- ~ONCSCciicrnll
PO e+ CIPIPIP LIS

LT DA S 30D K =10
oW DX U Lt > W
= WA 0 =t e 5 0 8 [T D P TIM 0

L7}
=] g
2

i
[
@

]

= = DUHSDTE
=HLOAT PACOEOwR~C U0

Wl W
X Doln
“w
K= O
(s an]

NPl 250 ~100 U1 L LIPI~ DD 00 ~I)
0

e e et (e e ot e i e e e e ot e e
{ee[uelnaaaTnn] pulus Tan T TunTue Tun Tan Ton T afusTonl afunfonl e}
LI LI D LI PIFIFIPI LI PIPICID [e e e e
TIMTM CTVOAMMOoO0

* I XOX ITIM

TG
WA X -

b=

Dol L
(o)

(AR

oDooo
>
IND>D
DS
D
{[JE7] ools =i
v 270
|
T W=
O =~
o Lm
“~
Il
e |
+

T D= ODORX VT DT
m

]

H(A>=8 THEN SYS H2,48*A+31,128,
TO 18
T =

W
8
i)

i
GES

(=
b

LI,
by 4

2000

=
Ll 2
i e |

S
0 =

PO || POt DY e] e () e 4
OACATID + OO v~
N MO—i~—

T NXO O 000 Wil
[N T T S [
1 A

R A= M M oI

- HNEO=OATTG KOO 0
ORMM + =0T

10 s e e b e o e s T e e e e T
oo%oumfafaoam+mm ooTo
NS o dado o fada fa o D L) GO0
+ = A OOW=1T U L O - e
LTI MOTMATIOS OO0 Mo

{ el] 8 e Joaf st T fa Ton Tn Lon [L] e T

o W
OAZAR A || ACZRTOE

- © O OO0 IrRNLM
e N T XWX +M™M

[097 o D]
1120 1

When you run the program, part 3 decides at random
whether the hold facility is available or not. If it is
available, you can specify from the keyboard which of the
reels are to be held. It also ensures that the sprites in the
marked windows stay unaltered while the others change.
When you next press RETURN, the sprites in the
windows that are not held will change at random, while
the value of the credit window is reduced by one.

HO81D HOLD HOLD

TR

T ——— g P e s

Each time you press RETURN, the sprites are altered and
the new combination of four sprites in the display
windows is checked for a winning line. If a win has
occurred, the value in the credit window is increased by
the amount shown in the score table. Finally, after each
game, the value in the credit window is checked for a zero
reading. If this value is detected, it means that you have
run out of credit and the game has ended. Provided you
are still in credit, this whole procedure will be repeated
once again.

In this program, all six sprites are enlarged in both
directions, and some of the sprites appear in the multi-
color mode. The multi-colors are specified by line 10180.

FRUIT MACHINE Line 10350 indicates which
PROGRAM windows are being held.

How the program works The Line 10410 indicates your
program sets up the machine and current credit.

selects four of its six sprites at Lines 21000-21030 select and

random. These are displayed.
Pressing the RETURN key then
alters the sequence of sprites and
your remaining credit.

Lines 10160-10170 POKE the
DATA for six sprites into
memory.

Line 10180 sets up two multi-
colors.

Lines 10250-10260 sclect a
random number from 0-5 four

color the sprites.

times,
Line 10300 produces the HOLD
line.

Setting the odds

The program you have now completed produces a com-
pletely fair game — the odds of any winning combination
coming up are just those dictated by change. If you want to,
you can alter them so that the machine ismore mean. There
are a number of ways of doing this. The display selection
uses the RND function which for practical purposes com-
pletely random. But it isn’t difficult to make the computer
reject some results which are potential wins. If the program
detects a score-line, for example, you can make it carry out
another sprite alteration so that the line loses, or you can
make it reject one or more of the sprites a certain proportion
of the time. This will give you results very like those with
real machines, where sophisticated programming ensures
that, on average, the machine wins. Your commodore fruit
machine can be biased in just the same way! You can also
alter the odds of a player winning by changing the likeli-
hood of the HOLD option being activiated, thereby
changing the amount of skill needed to play.

- - -

AL A A2 A

YV

TR
L A A 4

FE L T

o e e i o PIRIFIFIP I

QOGN QOE

oo

1555 4
Apas
*xEE
sEFH

11
. o

avarae ™

ARAR=

TRE=-
S~

el el el S N N TN T T T T

N d QOOOAG QOO

- -
““--

-
“---

SPRITE EDITOR 1

Creating and displaying sprites on the Commodore is SPRITE EDITOR PART 1
straightforward but at the same time quite time-
consuming. The individual programming steps
involved are simple, but together they produce listings
that are difficult to adapt or debug. If you do program a
sprite and then want to modify its design in some way,
you will soon find yourself trying to unscramble a block
of DATA, which is never an easy process.

Over the next seven pages, you can develop a
program which provides an answer to these problems.
It’s a powerful Sprite Editor, a program which enables
you to create sprites on a giant-sized grid, flip them
horizontally or vertically, merge them with other
sprites, store them on tape or disk and even convert
them automatically to DATA which you can then use in
your own programis.

In order to speed up its running time, the Sprite
Editor uses some machine-code graphics routines.
Like the programs in Book Three, the Sprite Editoris
designed to be added to the end of these routines.
Before you can run the Sprite Editor, you will need to
load or key in the routine blocks on pages 60-61. If
you do not have these machine-code graphics
routines in memory before you start adding
the Sprite Editor listing, the editor will not
work.

w

rJ-C

DMK I DD P

o
P+ =; =MD « @ ra

e o s ot
DDOODDEDD
b Lo 10 WATHY RTSES
[yl o [V, TS01T Y
L O=CT-C
m
IO TMD>
11 P9Il P Cn=r=
LI N R 4, T
WM =DM
A

0 O D 0 D o
D@ -3 fy e

2000
=M

-

KXx*g
/7BX%3ZO+INT (X /8r=8+(Y

WCHI =MD MIN T

Il 1XOM< || <Moot
OOON 11 70 LTI XTI 0T
WOM | RMT KOT

PG o 7 [P Ja SO 7% 0

* RKOCOIS 4+ I~

-PIICHK AL

Tl K W—=IILNSE

0= LN L QO
=000 ODDOHOD

'

m EOODOmOEDDmoDD
ey)

D b e o e e e

WD Db b b e b e o o e e
o
.<

L
[Ly e =
m
- KoM

I B [

DUVCO HS-
s R AT S

w0 e O~ DO
Ll)
O T N T
I |
b D
(] "
OISO D000

COM=COMCO-CM-CHXM rS
=N ICNTDUINHW || 27T

e =Cle |1 D || PICIPINN D

(]

[IR -]

IO e b b o e e o et e

MOOOOODDODDEHE
T Lo)
DENTENMNNZNNEZT &

How to key in the editor

The Sprite Editor is arranged so that you can build it up
in small stages, testing each one as you go to make sure
thatitis correct. Before you start keying in part 1, make
sure that you have moved the BASIC storage area (see
page 6), and that you also have the machine-code gra-
phics routines in memory. Finally, if you know how to
use the merge routine from Book Three, remember not 1 PART 1 DISPLAY
touseit here as the program’s lines are not always added i
in strict numerical order.

Clearing memory and creating the grid |
The first part of the Sprite Editor clears out a block of
memory large enough to store 32 sprites. This clearing
out process only takes place when you first run the pro-
gram each time you switch on.

Next, the editor sets up a sprite bank, showing images
of all the sprites currently in its 32-sprite block. It also
produces a large grid which you will be able to use for
designing your sprites when you have added some more
parts of the listing.

When you run this part of the program for the first
time, all the sprites will be undefined. Rather than just
showing a blank sprite bank, the editor displays sprite
numbers from 0-31 in the 32 separate positions.

The “current sprite” and the cursor

Part 2 of the program sets the current sprite number to
0. What this means is that the sprite which you can
create on the large grid will be stored as the first sprite in
the 32-sprite bank. Most of the work of part 2 is carried
out by three subroutines at lines 20000, 22000 and
24000. These highlight a position in the sprite bank,
copy the design onto the sprite grid and produce the
cursor.

SPRITE EDITOR PART 2

b
oo
LI
SatIP)
0
110
“<oxX
Wil
(=]
Tm
T
N
WLy

TP D
CUOON+T W-CH I M-~
HMLE M-C
TCml=b RN DI
Al 2 4

x0
WLy W

S XA O
a
S om =

W -
.

(o]

X

< = mm VR

44+
PETAT T DO
o]
NS NN

RO

MRRRNNNNOOOO0ODOOOEE
COOO0COORSDDODODLIL
QU P = D00 =100 LN L Lot = D D LA
QOO0S0OODOOODOOO0ED
oG oG- M CM=C OO =CTINCC || OIC
WO XWX Il ==
e e e e Q0 e =S] I e
ok X=-CHT AN W

MNP

NNNVNEHNENTITMO=TNO00

2 HICHC
rereeerr
L

m
>
=
<

| JRRSTISTNTST NS TR TR TORT S TART KTOETET AT AT

SPRITE EDITOR PART 2 (CON

[+
1

=
r
P
[o]

| 00009) =3
(~Jg+]
Loy Fal o]
(7] pod
HPIps I C=C ==l =70
@S +M

~t0

W-CXC DD + TICCLm™m

COS TN =TT ™
Mo

U et
v o MM AR Al

XCOOXT: ~ W+ QOO K=

-
000 2 v MEDDO+ X

Al AU THTE] e gl Te s TSRTT Y
M-COOM-C-CTMOEC || N-C

XN
.

m-

DO OOODREDOOE O
=

S P A A AR OGN A Y Y T e
SOIN = CIHO 001 0V O fa GO e g
<ODOOO0O00000000

W OMIPIPIPARI FIPIPIPIFIPIFI LTINS

When you run parts 1 and 2 for the first time, the pro-
gram will simply highlight the first space in the sprite
bank and produce a cursor in the top left of the grid.
Later, when you run the complete program, the design
held in memory for sprite 0 will appear in position 0 in
the sprite bank, and the whole sprite will appear greatly
enlarged on the grid. The cursor shows the place where
sprite editing instructions will be carried out. At this
stage, you cannot move it.

SPRITE 8

With these preliminaries completed, you can add part 3
of the program. This allows you to move the cursor
around the sprite grid and make it leave a trail of lit or
unlit pixels.

The cursor on the grid is moved with the usual cur-
sor keys, but in addition, it responds to three other keys.
If you press the + key, the cursor will leave a trail of lit
pixels after it when it is moved. Pressing the — key
makes the cursor leave a trail of unlit pixels, while press-
ing the * key lets the cursor move over anything already
on the grid without changing it. These commands make
use of a new subroutine at line 23000. As you draw out
your design, it will also appear in the highlighted square
in the sprite bank.

When you try out parts 1-3 you will find thatkey auto-
repeat is activated. When you are designing sprites, be
careful not to hold any cursor keys down for too long or
you may “overshoot”.

SPRITE ©

v
1o

W
A A A AW
OV DN O G

s B |

Ll el o
TR L

DOODODOD
Pl bt P D et 5
1T omm

R @ e -

el)
IO+

FIF SO0 =10
oooooon

P AN A TATRTR
) o 00 ot et 2)) et et P

L]

>
FOIOTOKID

1= I PG PTG OO MY

(g l=]
IO DT~ | ==+

QX0 O=XD OXT0S

QoM ST gﬂl‘ﬂ‘ﬂ
L
=

=il
SOHEMHPOOHSODIOONSOT

[e el |
O]
o ma
1) X
=l
VOO~ DOMY DODUNEHEDHEX ||

= hw

OWw rPOOW M
[
Ll L~

Il A=+
e FIEDNA b PSP IS D

X~

NN COICUr CODClr-: 4y«

)
Q= Em

SXEMTMOCOMMOS<COTTI™m
(=}
e
c

0100060 3 (00 (5 00100 0 00 0 60
NN NN Ta Lo o Lo o o
QNI G P e L0 0= T3
SHOO0OID0O0O0GCDo

e e e
=
=1
w
o
o

S O

[=]o]
ML=~ P

SPRITE ©

EN 18438

=3080
B

18540

23880
a8

T e S e o ' BRSO R . |

SPRITE EDITOR PART 3 (CONTD.)

([

I+ OOkpririn

DAy
DT KON DT =D AAO O =W oo

Q===

o MNXE+FE™
PILI T -C M
LD XI—

(4]

(g ENIRT (6
WD

x.-

COLWAC A€ DX
<+ o

R o I L Y e
L HPILRT MX -

TP MM M T
S SN

-

+
i
1
o
3
T
a8
2
B
2
B
T
6
>
i
i
i
i

MO+~

.
00
m-Cx
=M
-
noc

WOrOrI PRI IR SIS

J
When you have keyed in and tested parts 1 to 3 of the
sprite editor, store a copy on tape or disk so that what
you have written so far is safe.

How to clear the current sprite

Now that you can create and edit a sprite, you can add
some new commands to make the editor more useful.
With a copy of the program so far (parts 1-3) in memory,
add part 4.

When you run parts 1-4, you should find that you can
now clear the current sprite, making the grid blank
again. This clears three things—the main grid, the
display in the sprite bank and the area of memory
occupied by the current sprite. This is activated by
pressing the C key. Because this is something that could
easily be done by accident, the program has a security
device. It asks you to confirm that you really do want to
clear the sprite. You can do this by keying in the number
1 in answer to the question-mark that is displayed. The
sprite will then be cleared.

SPRITE EDITOR PART 4

-
(7]
et

DD -
glelesls ol
DO =1 L
CLODDDO
CHLOMLEID LT
D= M
=[] [R -

M0 00 0/ 2D 2 0 (0 00 0
HeNTOHTWOD o=
RO X

I 00 o e et e e e e s e e e
CODOOOEOE

How to change the current sprite

So far, all your designs have been stored as sprite
number 0. The next part of the program lets you change
the current sprite number so that the program stores the
current sprite design and then lets you move on from
there to create another one.

After you have added part 5 of the program, pressing
the W key will produce the message SPRITE#?2? on the
screen. Thisis asking for the new current sprite number.
If you key in a number from 0-31 and press RETURN,
the computer will highlight that sprite in the sprite bank
and draw it on the grid. If the number you enter is not
within the correct range, your entry will be ignored and
vou will be re-prompted to enter a valid number.

When you change current sprites, the previous cur-
rent sprite will no longer be highlighted. The subroutine
at line 21000 is used by the program to move the high-
light in the sprite bank. You can see in the display below
the effect of designing sprite 0, and then changing the
current sprite number to 8. You can change the current
sprite number as frequently as you want.

SPRITE EDITOR PART 5

e o
0D OOOEE
100 00000 & =)
B W=D
COQDDLDODHD
Il =c™
L [e177]
L] W0 0n =
+ ¢

e] 61 LT

,_
)EI)Tt D O e

WmAT~AGD
WRNOmD

NMMLE ~ == DQSO0 |

NOCSE KD
(=
o FENZICO00 Do

Il OSST-Climim
o

o [
PRI =—=-CrI N I

<O

m=
>

=
I XNV~ X D

Tfry——

EN 20858

i) P
e 3 D o o

OB E0=1 N fu LRI D D LB O =TI L
TMk=X

DO 0 EEHE D WHH0 000000
COODDDDDOEDE DD

TP e e o o e e e 5 €5 £ 5 €23
OO NMOGE
O=CM
-

O XA QD0
D AR

(=]

i
i
i
i
i
14
i
i
i
2
2
2
2
2
2
2
2
2
2
B
L]

'S

parts 6 and

THEN 18368
E4xSN+Y%3

o
b4

3
>

[~]
DOENLI0
[l Dl 4Py
DO0 OO0
BN eda -
NG
w’oo
O DO
HNDDDWHD
D @O NN ORAE -
Q=M MOD00 « WOX= W
P ww OO0 Ml T
Pt ol [R R [-
S Il e e DG
Wl Ll L A
CAD AOw@t O \NEET
O I 11 BEHEIE || D= (| T =Z
b @O0) SN @ I I
= OL XK EEEXOTOTE-EE

key. You can see

SPRITE EDITOR PART 7

[Tl vl e v Tie v lvnlonfim vl
(=000 @ = (YO IO D OO D A I T D
DEDAAAAH A A A A DDDODE
e el s e e el e e e v el e~ LU LDLO UL
el el e e e e o e e el e e U I O IO T

Part 7 of the program is complementary to the last
one—a reflection in a vertical plane. Because of the way
sprites are stored, you will find that this command takes
a little longer to be carried out than the inversion. It

activated by pressing the V

7 in action below.

3+ (Y

a8

d to wait some

THEN 198369

ou can move on to some of the more advanced

features of the editor. Part 6 a
current sprite upside do

llows you to turn the

320+INT(X/8)=

3, PEEK (2848 +B4%SN+K)

to carry out a considerable
GOTO 18368

wn by pressing H. Doing this
amount of calculating, so be prepare

D kK
I \HQOTTA O Yol

SPRITE EDITOR PART 6

(VB Zlaldelia]

the computer

) .
G0 1D 00 (0 (0 0 0 20 50 £ €20 3 £ e D (D) D D ED D=
DANITINO=-OMD N TS
OO DDODHDHHDODEOADEDEEDT
1 0 700 20 20 () ()) €0 00 red e el 2 e e e e el L
L o L L e R B B e e L+ 1]

.

requires

seconds before the inverted sprite appears.

Now y

I e) P SR O | s [y v)

How to change colors

Although the Sprite Editor colors are initially set, you
can change them if you want to. The coloring is quite
complex because some parts of the display, like the
sprite shown in the main grid, can be produced by more
than one section of the program. Each section has its
own color controls. For example, the main sprite is
drawn by one subroutine when it is taken directly from
memory, but it is drawn by another when you use the

cursor. In each case, there are separate color controls.

All this gives you the opportunity to produce a large
number of different color combinations. If you want to
test some out, try experimenting with the block-color
settings in lines 21030, 23050, 23080, 24070, 24080
and 24120. You can also change colors in the sprite bank
by altering the value of Cin lines 20000 and 21000. The
two displays below show just two alternative color
combinations which you can create.

ALTERED COLOR DISPLAY |

1 ALTERED COLOR DISPLAY

|

|

HigiH
i

nh

SPRITE EDITOR 4

Part 8 of the editor allows you to make more use of the
inversion and reflection facilities on pages 28-29. It
programs a new function which is activated by the M
key. This allows you to merge the pixel pattern of any
specified sprite in the sprite bank with that of the
current sprite. This means that you can design one
sprite and then add another to it.

Merging sprites is useful in two ways. Youcan useit to
create symmetrical sprites by designing just one half,
reflecting it, and then merging the two halves. You can
also use it in cartooning if you want to add a detail to an
initial sprite design.

SPRITE EDITOR PART 8

-
—
w
-

2

DEDAT=ACD Tin

DL SNSLAY NN

0D -

W+ OO0+ W 02
TOH=HDWVADO W

XNV NE DD
WODN -

T e e e o o e e ot e e ot e e
DLW NIPIPIPI PIPIPI PP e
DM 0 W0 =1 LW =W
OO0 OO000D
QXTI N E =0 TS =
QMOVOOTM=C Il MI M| -t™
Q=M CSX XDU

o]

i
i
i
i
i
i
i
i
i
i
£
sk
i
i
b §
R
n

When you press the M key, the editor will ask for the
number of the sprite to be merged with the current
sprite, by giving the message SPRITE#??. In response
to this prompt, enter a number in the range from 0-31
followed by RETURN (if your entry is out of range, it
will be ignored and you will be prompted again). There
will then be a pause as the computer combines the two
sprites in its memory, and then the current working
sprite will gradually be overprinted to give the merged
design. Thisis displayed both on thelarge grid and in the
sprite bank. The sprite merged with the current sprite is
left unaltered.

Making symmetrical sprites

One particularly effective use of the merge facility is in
the creation of symmetrical sprites. Suppose you want
to create a symmetrical shape. The easiest way to do this
is to create half of it, say the left half, then change the
current sprite number to an undefined sprite. You then
merge the left-hand display with this “empty” sprite to
give another copy of the left-hand display. Now, using
the V key, you can reflect this second left-hand half to
give the right-hand half. Having done this, you can then

merge the right-hand half with the original left-hand
half to give the complete symmetrical design which is
certain to be accurate.

REFLECTING AND MERGING A SPRITE

SPRITE 8

The displays on these two pages show the sequence in
action. The first small display on the left is the original
left-hand half (the only part which you actually have to
design). The small display on the right is the reflected
half, and the large display below them is the result of
merging the two.

REFLECTING AND MERGING A SPRITE

SPRITE 1

e i R W RhE

Automatic sprite DATA

So far the editor enables you to create and modify
sprites, but it doesn’t help you to produce sprite DATA
which could be used in your own programs. This is the
job of part 9 of the listing.

When you have added part 9 to parts 1-8, you will find
that pressing the D key switches the Commodore back
to low resolution and PRINTS a series of DATA state-
ments. These are all the DATA for the current sprite,
automatically presented as numbered program lines. At
this point, the editor comes to a halt with the cursor
positioned at the beginning of the pre-PRINTed word
RUN.

To store the DATA as part of the Sprite Editor, just
move the cursor to the first DATA line and press
RETURN, repeating this for each line. To storeitas a
separate program, type NEW over the place of RUN
and then enter the lines as before. With the DATA in
memory, you can now use the numbers with any other
program. Alternatively, if you do not want to store the
DATA, just press RETURN to restart the editor.

SPRITE EDITOR PART 9

DO dn oo i fa e LIS LIWRILS O

' THEN 11588
(147>
ﬁE 211,90
PRINKT POKE 211,80
18=SH+K;"DATA *';

X
L

[t T

M=M= =f= -
ROV XA ey
b TS0 2 =
OOUIVLODOUNECMIAY
DXMAD @
Rrgtn, 1. P
T

mx—Cxm X mMmxXxTmx
P

D OWO=IN UL IFI OO0 NN LG —

s TwaTunlnalnnlaalanloe [Lare T Jan Tan Tun LonTanTosTox1

| OMUTE=TDEN VTV D DOU-~
SXOMMTO | OO0 DO-E™
OO0 =T 0 0 et e P e)

L
1
s L
1]
11
i
1
1]
ii
1]
i1
i
1]
3
1]
i
i
i
4
4
| |

-
a=rm
x>
1~J
<

GO LI LI
OOOODDDOO0
OHOODODEDHE
PRINIFINIRIRIPIFIRY
LOOO=ITIEN Ja G Py
DODUDDODOD
DDDIDLDDDD
o o e e e
DDDDIDDDDD
O\ e b] (DD
WWUNDLN= =
[i Ll 13-
DR TR T S
b G) T e

SPRITE EDITOR 5

The final Sprite Editor facility lets you SAVE and
LOAD the memory copy of a 32-sprite bank onto tape
or disk. The SAVE and LOAD commands are activated
using the S and L keys respectively. In both cases, you
will be asked to specify tape or disk and then to specify a
filename. Do this by answering the first question with 1
(for tape) or 2 (for disk), and then by keying in a file-
name in response to the second question $=2.

Two extra lines send DATA to a Commodore printer:

11375 OPEN 4,4 : CMD 4
11445 CLOSE 4

SPRITE EDITOR CONTROL KEYS

SPRITE EDITOR PART 10

N
AWM=

[o L o 0 0

D=I=INOH DN O N DOHD NN
D= W0 =1 L W=D =100

i
i
1
i
i
1
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
R
|

<OOOOOOODOOODOODODIDDDD

HEN 1903689

>
=== D

M @

VA
5
&4

H
i~
zx
=1

N
TN
o

DX X0-CT
Lon L b - LT
<
e
<
]
@

* THEN DEU=1

»

o
CEDXCX

v QD DD Uy

v X
MMz
NACOVZINON OOWEM
+ DN
=

e
-

= Mitr——
CIZONE=ON ONG—-

ORI SO |l il
w0

m
2MMO>D
0 00

=4

Bepe »)l DA~ ||
nh-

O 4= A~

ZDTIO O E O TS Ot D T D bt
Ciw

MROTVMMEMSTVDVMMZO™,
=TOMM 3T =M

—-X ZXO-ME ZITOD

m® s~ TrA

HANNRSR i ADOED

=1]

1 Moves cursor up

| Moves cursor down
“— Moves cursor left

— Moves cursor right

~+ Switches on design mode

- Switches off design mode

* Switches on neutral mode

C Clears current sprite

W' Changes current sprite number

H Reflects current sprite in horizontal plane
V Reflects current sprite in vertical plane
M Merges current sprite with another

D Converts current sprite to DATA

S Saves current sprite bank

L Loads named sprite bank

o
i oA # » h:
i - "'l‘w_ :
i s
i = 1 =
i = : == % & o
=1 £
i =E
i izl
i ey L
=
i HET
i i i
i -
i t 1 i i
x> E 5 : - ;

USING THE SPRITE DIRECTORY

During the course of this book, you have probably found
that producing good sprite designs is not always easy.
To get around this problem, you can turn to the Sprite
Directory, a bank of over 200 sprite designs which
makes up the next section of this book. The spritesin the
Directory have been specially created for use in games
and other programs and they have been designed so that

you can either copy them directly, or you can use them-

as a basic idea which you can then develop. The Direc-
tory shows you what each sprite looks like on the screen,
and what DATA numbers are needed to code it.

DIRECTORY SPRITES

JOKER

r——___“____'______W 0,60,0,0,195,224,1

64,48,2,36,76,4,31

| 76,4,31,224,12,223,144
| 29,57,136,62,16,132,126
‘ 68,130,126,170,226,118,0
84,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0

0

[1]

Single and double sprites

The Directory contains two types of sprites mixed
together under theme headings. There are single
sprites, ones which are designed to be used individually,
and double sprites, pairs that are designed to be used
together.

To put any of these sprites into memory, you can
either key in the DATA shown, using it as part of a pro-
gram, or you can use the Sprite Editor and key in the
design directly. This second method lets you produce
the DATA automatically. Once you have a sprite design
in memory, you can recall it and get it moving on the
screen.

You can see how to animate single sprites on pages 10.
If you want to animate double sprites, you will need to
program their coordinates so that they move in step.
You can see how to do this on page 11. If you want to use
any of these designs as multi-color sprites, you will need
to use the mutli-color table on page 62 and the sprite grid
on page 63.

Cartoon sprites

The Directory contains a number of cartoon sequences,
single sprites shown in three different positions. These
are designed so that you can use them in sprite cartoons.
Again, you can either key in the DATA numbers shown,
or you can use the Sprite Directory to put the design into
DATA numbers. If you want to increase the number of
frames in one of these sequences, use the Sprite Editor
and adapt the designs so that you have intermediate
stages. This will give smoother cartooning, although the
figure’s speed across the screen will be reduced. You can
have a maximum of 33 frames with single sprite.

PACIFIC-TYPE LOCO

PACIFIC-TYPE LOCO

DOUBLE SPRITES To use a

0,0,0,0,128,24,252
160,126,126,160,255,75,255
255,75,255,255,75,255,255
75,0,0,126,255,255,127
0,0,38,255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,195,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

0

0,31,123,0,15,0,0
15,64,9,255,224,255,255
224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224,255, 255
224,7,63,240,8,159,217
144,255,255,25%,47,237,98
36,146,252,43,109,144,75
109,8,132,146,7,3,12

0

I

|
Il |

double sprite, you need to set the
sprite positioning controls so that
the sprites are adjacent on the
screen. When you are doing this,
it is important to bear in mind
whether or not you have
expanded the sprites.
Unexpanded sprites will be
adjacent if you set their positions
24 pixels apart.

Expanded sprites need to be 48
pixels apart in order not to
overlap.

BUG

0,129,0,0,66,0,0
36,0,63,24,252,33,255
132,76,195,50,255,255,255
255,80,255,127,255,254,42
165,84,42,165,84,127,255
254,63,255,252,31,255,248
1,255%,128,2,255,64,4
0,32,8,0,16,16,0
8,80,0,10,188,0,61

0

et

TRIPOD

HOPPER

HOPPER

B0O,66,0,80,36,96,32
24,144,35,126,142,36,219
1,73,255,129,75,255,222
40,255,32,36,60,36,36
126,58,68,255,1,137,255
130,147,153,204,163,12,194
68,4,34,8,2,16,186
1,8,32,2,132,64,0
2,224,0,7,160,0,5

0

7,0,112,5,127,80,5
255,208,15,190,248,95,255
253,111,0,123,127,255,255
1}1,255,251,55,255,246,59
255,238,28,0,28,6,193
176,2,193,160,126,193,191
0,193,128,17,128,196,47
0,122,0,0,0,0,0
e,0,0,0,0,0,0

0

7,0,112,5,127,80,5

ROBOT

ROBOT

8$,60,16,4,255,32,3
255,192,7,0,224,7,0

172,55,119,172,5
51,255,204,97,66
231,193,147,231,
166,4,24,32,7,25
0

0,126,0,0,219,0,0
219,0,0,126,0,0,0
0,2,255,64,7,255,224
2,129,64,2,165,64,2
255,64,2,165,64,0,255
0,2,0,64,2,231,64
0,231,0,1,231,128,0
165,0,0,231,0,0,0
0,0,231,0,0,231,0

0

SQUAROID

HUMANOID

“DALEK”

192,34,3,112,65,14,16
128,136,16,65,8,12,34
24,30,20,56,55,255,236
99,255,198,227,165,199,119
165,238,30,255,120,119,165
238,227,165,199,99,255,198
55,255,236,30,165,120,12
0,48,16,0,8,16,0
8,112,0,14,192,0,3

0

69,60,98,40,140,97,199

127,255,252,27,255,176,2
238,128,1,1,0,0,254

115,19%,28,122,170,188,121

12,111,239,236,127,255,252

0,16,0,0,56,0,0
68,16,0,131,232,128,254
16,65,109,0,96,254,11
145,1,20,8,254,36,13
1,96,7,255,192,3,255
128,1,171,0,0,170,0
1,85,0,1,85,0,2
170,128,5,85,64,10,170
160,31,255,248,31,255,248
0

SPACE-FLY

INSECTOID

SEA MONSTER

9,0,0,0,0,0,0
0,0,128,0,2,96,0
12,24,68,48,70,238,196
49,41,24,11,109,160,34
108,136,27,109,176,3,109
128,1,171,0,14,238,224
17,85,16,18,16,144,18
16,144,18,40,144,36,0
72,0,0,0,0,0,0

0

1,0,128,0,129,0,0
126,0,0,219,0,0,36
0,0,24,0,3,255,192
7,255,224,44,0,52,25
255,152,17,255,136,32,0
4,0,255,0,0,255,0
0,0,0,0,126,0,0
126,0,0,0,0,0,60
0,0,24,0,0,0,0

0

33,18,8,18,57,20,84
124,132,178,254,136,130,254
68,69,255,66,69,255,33
41,255,65,36,254,70,36
124,72,20,84,144,83,125
32,72,254,192,135,255,1
129,40,194,78,70,32,144
129,17,167,32,138, 168,72
105,73,132,37,6,3,194

0

BE e
T 11 [N i I
] .
i IR | |
i BB T T
] | 1 l I]
I I
ANDROID JELLY MONSTER HYDRA MAN

0,248,0,32,248,0,33
172,0,253,252,0,188,136
0,140,248,0,205,172,0
15,39,128,15,39,144,1
173,144,1,221,252,1,253
252,1,252,4,1,252,4
1,252,12,1,140,0,3
6,0,7,7,0,12,1
128,24,0,192,16,0,64

0

128,60,6,128,189,9,65
255,144,35,255,204,71,24

71,255,228,111,255,248,19
52,192,2,66,32,12,66
64,16,129,32,32,70,15
24,68,16,9,35,8,50
192,132,66,2,68,129,5
198,129,8,1,129,4,1

0

226,143,219,241,143,255,243

12,0,48,37,0,.164,22
36,104,12,90,48,4,60
32,5,36,160,7,219,224
0,66,0,2,126,64,7
255,224,120,60,30,144,24
9,48,60,12,72,126,18
96,231,6,1,195,128,1
129,128,0,195,0,0,66
0,1,66,128,1,195,128

0

D g s

[X= 3]

[EEE BT

e

EXCURSION VEHICLE

oo
=

SRNMMNRNN O
= E R R -

OB OCOUMNN-

-

Lab Ty

0,0,0,66,0,0
33,0,1,126,128,59,153
220,127,24,254,255,255
199,24,227,197,153,16
126,99,127,255,254

116,21,126,168,14,50,
12,0,48,4,0,32,14
0,112,10,0,80,5%,1
220,59,12%,220,0,0
0

29
.0

TRIBAL SPECTER

64,0,221,
2,0,96,7,10
107,120,127,
216,4,0,16,3,
1,193,224,7,25
255,184,12,12
4,32,28,2,80,8

W I b

J

VAMPIRE

6,30,36,120,30,36,120
62,60,124,63,24,252,63
63,255,252,63,255
252,62,60,124,62,60,124
62,255,124,62,165,124,30
36,120,28,102,56,24,0

24,8,0,16,8,0,16
0

EEe

GHOUL

o

24

,126,0

+128,3

,96,14,219

2,219,124

,255,255,255,0

0,1,129

6,0,0,0,126,0,120
255,30,2%3,255,191,203,255
211,198,255,99,206,126,115
204,60,51,204,189,51,204
165,51,204,36,51,198,102
99,231,255,231,115,153,206
169,153 9,129,149,137
’ 4s5,80,219

,0,255
5,255,244,47,255
,240,7,57,192

1,70,104,130,44
156,28,68,112,0
71,0,15,57

HELICOPTER

0,0,0,0,0,0,0 0,0,0,0,0,0,0
0,0,0,24,0,255,255 96,0,255,255,248,0,96
255,0,24,0,7,255,224 0,3,240,18,5,252,14
4,195,32,5,129,160,7 8,255,252,16,167,226,63
0,224,3,0,192,3,0 167,1,48,255,0,49,255
192,3,0,192,3,255,192 0,15,254,0,4,16,0
29,153,184,23,153,232,28 63,254,0,0,0,0,0
219,56,2,255,64,3,195 0,0,0,0,0,0,0
192,3,129,192,3,129,192 0,0,0,0,0,0,0
0 o
Nl il | -
| !
1
|
il
| | | I |
| | | I N N T T
BIPLANE BIPLANE RECONNAISSANCE PLANE
0,36,0,255,255,255,255 0,0,0,255,192,0,255% 2,12,0,0,14,0,0
255,255,36,0,36,38,24 128,0,51,0,0,51,0 15,0,0,15,0,0,15
100,35,126,196,33,231,132 0,25,128,0,163,152,3 0,0,15,12,0,15,14
33,255,4,33,255,4,255 243,63,135,243,63,255,121 0,15,14,63,127,254,126
255,255,255,195,255,1,126 159,226,112,7,252,48,15 79,254,254,203,241,126,79
128,1,24,128,1,36,128 132,127,255,0,28,64,0 254,63,127,254,0,15,14
3,66,192,3;129,192,3 4,128,0,5,0,0,14 0,15,14,0,15,12,0
0,192,2,0,64,2,0 0,0,18,0,0,18,0 15,0,0,15,0,0,15
64,0,0,0,0,0,0 0,12,0,0,0,0,0 0,0,15,0,0,12,0
(4] 0]
[| [| I
|
]]
-
| 1
|
SEAPLANE SEAPLANE SEAPLANE
0,0,0,0,0,0,0 0,0,0,0,0,0,0
0,0,0,0,0,64,0 0,0,0,0,0,4,0
12,64,0,30,64,56,30 32,4,0,32,7,255,224
64,92,30,127,255,254,245 4,24,32,14,60,112,255
127,254,127,255,252,95,25% 231,255,14,102,112,4,60
240,65,8,0,65,8,0 32,0,60,0,0,24,0
66,4,0,2,4,0,4 4,0,32,4,0,32,4
2,0,4,2,0,127,255 ¢,32,0,0,0,0,0
248,127,255,240,63,255,224 0,0,6,0,0,0,0
9 0

HIGH-ALTITUDE JET STUNT PLANE JET TRAINER
0,8,0,0,8,0,0 32,0,0,248,0,0,252 0,0,0,0,0,0,128
8,0,0,8,0,0,8 0,0,254,0,0,126,0 0,0,192,0,0,160,0
0,0,8,0,0,8,0 0,127,0,0,127,0,0 0,208,0,0,168,0,0 -
0,62,0,0,127,0,0 127,128,0,127,224,0,1 212,0,0,170,7,192,213
247,128,7,227,240,31,62 240,240,127,255,143,1,255 254,32,255,255,16,63,255
124,121,62,79,105,247,203 25%,127,255,255,1,255,255 200,67,3,252,64,240,62
8,255,136,8,156,136,29 127,255,128,1,128,0,127 63,236,1,0,19,254,0
136,220,21,136,212,28,28 0,0,0,0,0,0,0 16,4,0,16,4,0,48
28,0,28,0,0,20,0 0,0,0,0,0,0,0 4,0,48,2,0,0,0
0 [} 0
1 | 1 1 | 1] | :
1 T 1 [
1
11 1 I
[]
i T T
| i 1 | E,
| |
i |
] | B
| 5 T I LT 11 |
HELICOPTER HELICOPTER AIRSHIP
0,0,0,255,255,254,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0 .
16,0,0,16,0,0,16 0,0,255,255,252,0,32 0,0,0,0,0,15,255 i
n,0,56,0,4,56,64 0,0,32,0,0,112,8 3,31,255,231,63,255,255 h
7,199,192,4,124,64,0 0,240,5,7,252,18,10 127,255,255,255,255,240,127
254,0,1,17,0,1,17 131,254,18,129,145,98,254 255,255,63,255,255,31,255
0,3,17,128,5,17,64 4,255,8,0,127,240,0 231,15,255,3,0,0,0
29,147,112,28,254,112,2 15,96,0,0,0,0,1 0,56,0,0,253,0,0
0,128,0,0,0,2,0 128,0,1,128,0,0,0 125,0,0,0,0,0,0
128,2,0,128,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0
0 '] a
! -
| .
1 || a
| Ly 3
]
|
MONOPLANE TRANSPORTER TRANSPORTER
0 0,16,0,0,56,0,0 0,0,0,0,0,0,0
[} 56,0,0,56,0,0,56 0,0,0,0,0,0,0
232,1 0,0,56,0,4,186,64 0,0,128,1,0,184,3
95,7,127 4,186,64,251,125,190,251 0,124,7,6,250,15,31
63,255,126,195 125,190,63,255,248,1,255 119,248,14,151, 255,254,147
128,192,0 0,0,56,0,0,56,0 255,255,61,240, 255,195,128
0,0,6 0,56,0,0,56,0,0 63,254,0,7,252,0,0
0 56,0,0,238,0,0,238 0,0,0,0,0,0,0
] 0,0,108,0,0,16,0 0,0,0,0,0,0,0
0 1}

SHUTTLE

SHUTTLE

v 1281

5 1 3,193,224,1,221
192,0,255,128,0,221,128
7,182,240,127,221,255,1
255,192,2,8,32,2,20
12,7,0,112,5,0,80

0

0
B
0
0
2

0,0,7.0,0,7,0
0,14,0,0,30,0,0
30,0,0,60,0,0,124
0,0,252,0,0,240,7
255,244,31,255,252,115,255
244,255,255,242,255, 255,254
127,0,126,63,255,242,24
60,28,8,4,0,8,4
0,24,6,0,24,6,0

]

0,0,240,0,1,240.0
3,248,0,7,248,0,31
248,0,127,248,1,255,198
14,0,62,63,255,254,119
255,254,247,255,193,119, 255
254,63,255,254,14,0,62
1,255,198,0,127,248,0
311,248,0,7,248,0,3
248,0,1,240,0,0,240

0

LUNAR MODULE

LUNAR LANDER

VIKING

0,0,0,0,0,0,0
0,0,3,255,192,5,245
192,13,245,192,29,245,195
61,245,207,125,245,223,253
255,255,229,255,255,253,255
255,125,255,223,61,255,207
29,255,195,13,255,192,5
62,64,3,255,192,0,0

0,24,0,12,24,0,13
60,0,3,255,192,1,255
0,3,255,128,3,255,128
11,255,192,7,255,224,7
255,240,15,255,248,7, 251
248,3,248,240,0,60,128
15,255,248,19,255,200,43
255,212,39,255,228,123,255

0,128,0,0,192,0,0
196,0,3,244,0,0,212
0,0,212,0,0,148,0
0,21,0,30,149,120,34
151,68,67,255,194,131,24
193,131,36,193,125,231,190
57,255,156,3,255,192,4
219,32,11,0,208,28,0

0,0,0,0,0,0,0 322.54.0.2,224.0,? 56,32,0,4,248,0,31
0 0
| | |
| ||
] I A A A I
SKYLAB SKYLAB VENERA

128,24,1,96,60,6,24
60,24,6,60,96,1,153
128,0,60,0,0,126,0
0,74,0,0,126,0,255
215,255,128,86,1,128,126
1,255,255,255,128,126,1
128,70,1,255,255,255,0
126,0,0,126,0,0,24
0,0,60,0,0,126,0

0

4,68,32,10,34,32,25
18,32,36,137,64,18,70
238,9,33,240,4,205,224
2,223,208,1,63,44,0
127,147,0,255,136,1,255
4,0,254,194,1,253,33
7,250,144,3,210,72,1
129,36,0,128,146,0,0
76,0,0,40,0,0,16

0

0,0,2,0,0,4,0
0,12,0,0,24,0,0
16,255,248,32,145,72,64
74,144,128,42,161,0,31
194,0,15,132,0,1,63
0,7,243,160,13,191,156
29,191,234,97,181,235,29
181,234,13,181,156,7,245
128,0,63,32,15,255,224

0

RAILROAD TRAINS

CARRIAGE

U.S. LOCO

0.60.0,0,24,0,31
255,248,33,0,132,127,255
254,36,36,36,36,36,16
36,36,36,36,36,36,36
36,36,36,36,36,63,255
252,55,247,244,60,60,60
63,255,252,191,255,253,255
255,255,191,255,253,19,36
200,19,36,200,12,195,48

0

i i I 1
I 1 I 1
[| I 1
| =] | = | [
! |
[— T
= ! I I
; | 1 | | I [|
]
| |
|
1 i
= =1 T I B [
ROCKET TENDER CARRIAGE
216,0,0,80,0,0,80 0,7,128,0,11,64,0 127,255,255,33,8,56,63
0,0,80,32,128,82,33 23,160,1,28,224,5,28 255,254,51,156,230,33,3
192,87,35,128,95,247,0 224,15,151,160,31,203,64 - = == == 66,33,8,66,33,8,66
95,254,0,88,41,0,95 127,255,254,127,255,254,98 33,8,66,115,156,231,51
213,224,95,173,224,95,93 36,70,98,36,70,127,255 156,210,51,156,230,51,156
224,111,189,224,17,93,224 254,96,0,6,127,255,254 230,51.156,230,51,156,230
34,45,224,228,53,231,34 110,60,118,255,255,255,32 63,255,254,255,255,255,7
40,56,32,38,68,32,32 129,4,36,129,36,32,12% 0,112,8,128,136,10,128
84,16,64,68,15,128,56 4,17,0,136,14,0,112 o o 168,8,128,136,7,0,112
0 0 0
]]]]] I
| |
|
[
-] [
- f :
1 |
|
]
i [
| =[] | | = HE |
¥ 1 1 | I |
T ! 1 | 11 i
TENDER PACIFIC-TYPE LOCO

0,0,0,0,0,0,0
1,255,1,131,254,15,255
254,31,255,254,63,255,254
48,0,2,47,255,254,48
0,2,47,255,254,63,255
254,63,255,254,191,255,254
255,255,255,191,255,254,9
36,144,22,219,104,22,219
104,9,36,144,6,24,96

a

0,0,0,0,128,24,252
160,126,126,160,255,75,255
255,75,255,255,75,255,255
75,0,0,126,255,255,127
0,0,98,255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,195,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

0

0,31,123,0,15,0,0
15,64,9,255,224,255,255
224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224,255,255
224,7,63,240,8,159,217
144,255,2559,255,47,237,98
35,146,252,43,109,144,75
109,8,132,146,7,3,12

0

| — -

131,252,8,135,254,17,15
254,17,15,194,58,15,220
68,15,162,170,30,85,146
28,73,147,248,73,171,240

128,132,61,176,132,61,129
140,55,129,24,123,129,62
5,131,97,50,130,204,72
255,146,180,255,173,180,0

VETERAN VETERAN SALOON
0,15,254,1,285,254,0 1,255,254,0,129,254,0 3,255,192,7,355,224,8
34,2,0,18,2,0,18 129,198,0,128,198,0,160 0,16,8,0,16,16,255
6,0,10,14,24,10,12 198,0,144,198,0,168,254 8,17,129,136,63,255,252
56,102,12,48,70,12,8 32,192,254,63,255,134,61 127,255,254,127,0,254,204

126,51,133,189,161,133,255
161,204,0,51,255,255,255
128,0,1,230,0,103,254
0,127,255,255,255,240,0

0,1,224,0,1,243,0
1,223,224,1,128,160,3
135,96,19,255,192,125,255
64,50,245,32,109,55,60
94,185,114,49,46,211,33
106,153,127,254,153,33,0
195,51,0,102,30,0,60

0

224,0,1,250,0,193,253
1,254,235,3,255,115,4
31,245,11,239,158,23,247
250,119,251,254,239,251,128
239,27,255,142,172,0,254
77,255,126,175,255,3,24
0,1,240,0,0,224,0

i}

35;53:0:34.55.0.28' 45,72,0,18,48,0,12 15,240,0,15,240,0,15
0 0
| I
| | - ([
- : ! !
| |
| [
I . T 1]
I N I T T O T O O O
MOTORBIKE
0,224,0,1,192,0,1 0,0,224,0,9,240,0 0,0,0,0,0,0,128
64,0,0,160,0,1,194 4,225,0,3,225,0,13 0,0,128,0,0,192,0

0,255,240,0,255,255,248
255,255,196,171,255,254,171
254,14,171,249,244,171,231
250,255,151,250,252,111,254
227,223,31,31,222,175,255
190,76,255,254,172,0,7
28,0,3,248,0,1,240

o

FORKLIFT

255,255,255,255,255,255,255 [0
255,255,255,255,255,255,255
255,255,255,255,255,255,255
255,255,255,255,255, 255,255
255,255,255,255,255, 255,255
255,255,255,255,255, 255,255
255,255,255,152,255, 25,164
2,36,90,6,91,90,0
31,35,0,36,24.0.24

| 10,68,0,19,154,0,1
195,194,19,255,254,11,219%
250,19,219,250,191,21%,250
103,195,250,91,255,186,165
255,75,21%,128,181,219, 254
181,36,0,72,24,0,48

0

0,0,1%2,0,0,192,0
0,192,1,254,192,1,2
192,1,50,192,1,50,192
1,98,1%2,1,122,192,1
118,192,125,114,192,255,254
192,231,242,223,219,238,217
189,222,213,230,179,211,218
173,213,218,173,217,231,243
213,60,30,211,24,12,63

0

T I T) I I

FORMULA 1

124,32,3,255,223,7,255
223,15,0,47,31,255,240
31,249,255,127,240,255,99
246,128,63,240,255,0,25
128,0,31,128,0,15,0

SPORTS SALOON
0,0,0,0,0,0,0 0.,0,0,0,0,0,0
0,0,0,0,0,0,0 0,0,0,0,0,0,0
0,0,0,255,0,3,224 0,192,0,0,160,0,0
0,13,32,0,22,32,0 §0,0,0,72,0,0,63

248,0,239,255,224,47,255
252,238,0,12,12,127,252
252,124,252,255,248,124,0
27,126,255,248,96,0,28
192,0,15,192,0,7,128

63,128,0,63,128,0,63

| 188,248,255,190,250,255,190
250,228,127,34,229,225,174

255,254,255,239,255,127,245

83,191,255,211,191,245,83

191,239,255,127,255,254,255

229,225,174,228,127,34,255

1%0,250,255,190,250,63,188

248,63,128,0,63,128,0

0

0 0
EEEE Jiifi<]
| I i 1 B == = S
I [1 T [I}
LONDON BUS | TRACTOR
= 127,255,255,255,255,255,196 0,0,0,7,0,0,6€ 127,249,0,68,49,0,68
33,19,196,33,19,196,33 24,0,194,111,0,34,23 51,128,36,19,128,37,19

19,255,255,255,234,170,191
213,85,95,255,255,242,196
33,18,196,33,18,196,33
18,196,33,30,255,255,233
252,255,207,251,127,183,244

6,19,53,128,10,242,192
7,191,96,30,185,224,46
255,176,127,255,248,209,136
136,123,223,248,85,168,136
91,216,138,254,127,255,133
160,0,133,160,0,6,96

128,36,147,128,60,177,32
63,255,252,64,255,254,158
112,6,191,55,254,63,183
190,115,150,242,237,214,236
222,215,222,222,215,191,237
255,243,115,131,51,127,128

191,75,251,127,183,251,127
183,4,128,72,3,0,48 0,3,192,0,1,128,0 63.63,0,30, 300,12
0 0
[] 11 I

|

|

i

' I | I I |
FORKLIFT BULLDOZER BULLDOZER

0,0,223,0,0,217,0 0,32,0,0,16,1,0 0,64,0,0,32,0,0
0,213,1,254,211,1,2 16,31,0,16,31,0,56 32,0,0,32,0,0,112
213,1,50,217,1,50,213 31,0,63,255,0,63,248 0,0,112,0,0,112,0

1,98,211,1,122,223,1
118,255,125,114,192,255,254
192,231,242,192,219,238,192
189,222,192,230,179,192,218
173,192,218,173,192,231,243
192,60,30,192,24,12,0

o

224,120,0,243,240,0,210
223,0,253,191,0,251,97
0,214,255,0,45,225,0
127,255,0,191,252,0,109
182,0,146,73,0,146,73
0,109,182,0,63,252,0

224,112,0,249,32,0,233
255,0,255,255,0,224,1
0,223,255,128,63,225,192
127,255,224,191,252,112,109
182,58,146,73,30,146,73
14,109,182,14,63,252,15

0

FREIGHTER SPEEDBOAT (FROM ABOVE) SUBMERSIBLE
0,0,0,0,0,0,0 6,2,16,0,193,8,0 0,0,0,0,3,0,0
0,0,0,0,0,0,0 16,128,128,0,68,64,15 2,0,0,2,0,0,7
0,0,0,0,0,0,0 4,0,255,192,31,229,226 0,0,15,128,0,62,144
0,0,48,64,0,0,112 31,242,242,63,242,136,71 0,127,144,3,255,248,23
0,48,124,0,0,111,1 242,252,67,242,130,71,242 255,252,47,213,126,104,255
252,111,193,84,71,241,252 252,63,242,136,31,242,242 1$5,251,12%,252,104,250,248
127,252,168,127,255,252,127 31,229,226,0,255,192,64 47,251,112,6,15,224,16
255,252,127,255,254,127,255 15,4,128,0,68,0,16 4,36,15,255,248,0,
254,127,255,254,127,255,254 128,0,193,8,6,2,16 2,0,0,0,0,0,0
a 0 o
1 | | [[
| |
| |
Eﬂil]]
[
? I 11] =
I
1
0,224,0,0,236,0,0 0,0,0,0,16,0,0

236,0,31,253,128,21,85
128,79,253,128,117,85,128
127,255,128,111,255,128,123
251,192,126,254,224,127,191
176,127,239,232,127,251, 248
127,254,248,127,255,188,127
255,238,103,255,254,67,255
254,73,255,254,84,63,254

0

16,0,0,112,0,0,120
0,0,120,0,0,120,0
0,120,0,255,255,226,143
255,250,241,255,255,127,2
250,0,0,0,0,0,0

HOVERCRAFT

HOVERCRAFT

0,0,0,32,4,0,32
4,0,24,3,0,40,5
240,40,5,192,8,1,248
8,1,248,63,255,252,53
85,92,53,85,92,127,255
254,127,255,254,0,0,0
127,255,254,255,255,255,255
255,255,255,255,255,127,255
254,63,255,252,63,255,252

0

- =

4,71,240,4,101,96,8
127,230,16,127,254,63,255
254,127,255,254,0,0,0
127,255,254,223,255,252,207
255,248,199,255,240,255,255
224,0,0,0,0,0,0

o

1T

111

TALL SHIP

MAN O’ WAR

FISHING SMACK

0,126,192,0,126,240,4
255,248,4,0,240,12,254
228,12,254,204,12,254,220
28,254 ,188,29,255,124,28
0,252,61,254,252,61,254
252,61,254,252,125,254,252
125,254,254,127,255,0,0
0,124,127,255,252,15,255
248,7,255,240,3,255,224

0

0,120,48,0,120,0,62
0,120,62,252,120,62,252
120,62,252,0,62,252,252
0,252,252,120,0,252,123
254,252,123,254,0,123,25%4
85,3,254,127,171,254,127
255,254,127,255,254,127,126
0,127,63,255,255,30,219%
126,15,255,254,7,255,252

D,0,64,0,0,96,32
8,64,32,12,64,32,31
192,48,31,64,96,31,192
224,31,192,224,63,192,224
63,192,224,63,192,47,191
192,42,128,64,42,128,64
46,128,95,254,135,241,143
252,5,192,0,1,96,0
3,63,255,254,31,255,254

0

6,131,129,68,66
5,132,33,225,228,30,17
92,42,143,34,32,0,31
255,255,329,64,0,15,255
255,7,213,251,7,255,255
0

¢ 16
3,192,32,7,160,64,15
16,141,158,8,133,30,4
255,254,3,0,7,3,255
255,255,0,0,1,255,255
255,234,175,255,255,255,255
0

JUNK

ROWING EIGHT

ROWING EIGHT

PIRRRRNRR
UL

14,248,0,0,0,0,14
248,0,0,3,188,14,248
0,0,3,188,14,248,0
0,3,188,14,248,0,0
3,188,14,248,0,0,3
188,14,248,0,0,1,254
14,249,254,96,1,254,110
249,252,96,1,252,63,255
248,63,255,248,31,255,240
0

.,0,0,0,0

»17,17,0,34
,0,68,68,0,136,136
17,16,2,34,32,15
255,248,250,170,175,15,255
248,0,136,136,0,68,68
0,34,24,0,17,17,0
8,136,0,4,68,0,0
0,0,0,0,0,0,0

0,0,0
0,0,0
34,0,
1,17,

=1

0,0,0,0,0,0,0
0,0,58,68,0,34,34
0,17,17,0,8,136,128
4,68,64,2,34,32,15
255,248,250,170,175,15,255
248,2,34,32,4,68,64
8,136,128,17,17,0,34
34,0,68,68,0,0,0
0,0,0,0,0,0,0

0

HENEEEEEN

il

ELEPHANT

o,0,0,0,0,0,3
128,0,7,207,240,14,63
248,15,223,252,31,223,252
27,223,252,223,223,254,159
223,254,159,31,254,183,255
255,233,255,253,16,255,253
32,255,252,0,127,252,0
120,120,0,112,56,0,%6
24,0,96,24,0,96,24

0

O UaONNOOoOOO

GIBBON

3,255%,255,68,1,0,136
2,0,20,2,0,34,¢
0,0,4,0,0,12,0
112,24,0,158,224
220,0,3,248,0,0
0,3,224,0,7,192
7,128,0,5,128,0,5
128,0,9,0,0,58,0
0,68,0,0,72,0,C

KANGAROO

11,255,249,255,355,254,63
255.252.95.255.252.143.255
252,31,255,248,25,254,243
16,252,124,0,248,52,0
208,36,0,144,68,1,32

SEa e e k patery e A 3 Rimead-1 ts
- . ~ L Hon] Peelntear S eniine? Sk i . il g
TIGER RABBIT
0,0,0,0,0,0,0 0,0 9,0,0,0,0,0,0
0,0,0,0,0,0,0 0,10 o,0,0,0,0,0,0
0,0,0,0,8,192,0 5,222,0 0,0,3,128,0,0,112
6§3,225,224,95,255,240,255 3,25%,128,63 13,240,28,3,254,58,3
255,248,127,255, 244.159 255 248,0,158,240 255,255,1,255,252,1,255
244,7,255,244,1,255,244 4,128,0 224,15,207,128,27,193,192
2,248,250,3,96,221,3 0,0,4 32,0,48,1%2,0,8,0
96,102,6,192,102,13,128 0,0 o,6,0,0,0,0,0
204,0,0,0,0,0,0 0,0 0,0,0;0,0,0,0
0 0
[1 I 11 11
BUFFALO POLAR BEAR
0,0,0,0,0,0,0 0,0,0,0,0,0,0
0,0,0,0,24,0,112 0,0,0,0,0,30,0
4,0,240,2, 1 248 241 0,63,128,0,127,224,0

255,252,0,255,255,16,255
255,252,255,255,251,255,255
255,255,255,254,255,255,241
255,255,224,127,253,224,124
60,248,120,50,120,56,28

132,2,33.3,0,0,0 8,55,28,0,60,30,0
0 0
I | ! — 11
BROWN BEAR CAMEL CROCODILE

1,32,0,0,192,0,1
224,0,2,240,0,7,240
n,1,243,0,2,252,0
0,254,2,3,191,0,7
255,0,5,111,0,6,111
128,0,31,128,0,127,128
0,127,128,0,127,128,0
127,123,0,119,0,0,99
0,0,92,0,0,231,0
0

8,0,0,60,48,192,220
113,1%2,252,113,192,28,251
224,28,251,224,29,255,240
§1,255,243,63,255,252,63
255,252,31,255,250,15,227
250,3,193,250,1,193,112
3,128,176,2,128,80,2
128,80,2,120,80,2, 128
80,2,128,80,5,128,176

0

9,0,0,0,7,0,0
0,0,0,0,0,0,0
9,3,0,0,133,131,224
255,297, 740,131,255, 24R,255
255,252,3,255,25¢4,0,252
255,0,94,63,3,224,19
0,0,246,0,0,12,0
n,120,9,1,192,0,0
n,0,0,0,0,5,0
0

SCORPION

SQUIRREL

SKUNK

0,0,0,2,4,0,25
9,0,60,146,64,108,146
240,196,84,190,136,85,159
128,45,140,192,219,7,226
219,128,126,219,192,62,219
192,2,219,128,0,219,7
0,45,140,0,85,159,0
84,190,0,146,240,0,146
64,1,9,0,2,4,0

0

0,0,56,36,0,124,8
0,252,56,1,254,92,3
254,252,7,255,25¢4,7,239
31,135,231,31,227,227,15%
243,243,15,249,242,63,253
242,39,253,244,33,252,240
3,254,240,7,254,224,7
255,192,7,255,192,0,255
0,3,254,0,15,248,0

0

PIG

MOUSE

FROG

0,0,0,0,0,0,0
0,0,64,0,0,163,252
0,71,254,0,175,255,24
31,255,144,63,255,160,63
255,224,63,255,240,63,255
218,63,255,254,63,255,254
31,255,254,15,255,248,13
247,6,6,6,0,6,4
0,2,4,0,1,2,0

o

%,16,128,4,9,0,2
13,0,2,7,0,4,3
226,8,3,220,16,7,248
32,15,240,32,31,226,32
11,244,32,63,250,32,63
252,48,127,248,24,127,240
8,127,240,12,127,240,6
127,224,3,63,224,3,255
192,1,255,128,0,31,224

0

0,0,1,131,0,30,135
128,49,135,192,96,142,224
192,156,240,192,216,241,224
112,123,250,32,63,252,0
31,252,0,7,252,0,31
252,32,63,252,112,123,250
216,241,224,156,240,192,142
224,192,135,192,96,135,128
49,131,0,30,0,0,1

a

0,15,239,0

255,0,12,62,0,11,191
192,8,28,0,7,15,128
o

WASP

SPIDER

0,1,224,0,6,24,0
8,6,0,16,1,0,112
2,12,246,12,157,249,240
175,254,0,175,253,192,121
203,160,50,167,112,18,162
232,4,179,220,9,17,186
1,16,246,2,16,237,4

7,200,130,24,8,121,96
8,4,129,240,2,6,0
1,8,0,0,0,0,0

107,132,32,8,4,16,8
4,8,16,8,4,32,16
3,64,0,0,0,0,0

]

32,123,8,32,63,0,64
15,0,128,2,1,0,4
0
| I
| |
'i I !
|
|
I I |
"1 [
I =l [[
ANT CRICKET ELY
0,0,0,8,0,0,6 0,0,0,0,0,0,0 0,4,128,0,9,48,128
0,1,129,240,2,96,8 0,0,8,0,0,12,0 18,76,64,99,132,32,158
4,24,8,121,7,200,130 0,14,0,0,11,0,1 4,28,184,8,2,240,16
0,41,28,3,154,32,7 +128,2,8,221,236,11 57,254,32,127,213,192,255
223,112,15,255,224,7,223 110,184,43,110,188,107,186 148,192,63,255,192,255,148
112,3,154,32,0,41,28 236,235,183,228,235,245,160 192,127,213,192,57,254,32

2,240,16,28,184,8,32
158,4,64,99,132,128,18
76,0,%,48,0,4,128

0

BUTTERFLY

DRAGONFLY

DRAGONFLY

96,0,12,248,130,62,206
68,230,21%9,41,182,209,17
22,81,187,20,118,186,220
41,215,40,57,57,56,22
56,208,24,186,48,15,255
224,2,56,128,15,255,224
24,186,48,50,1456,152,53
147,88,51,147,152,25,17
48,15,1,224,6,0,192

0

0,56,0,112,56,28,140
0,98,131,57,130,96,254
12,24,56,48,7,255,192
3,125,128,12,146,96,16
186,16,33,17,8,67,17
132,76,16,100,48,16,24
0,16,0,0,16,0,0
16,0,0,16,0,0,16
0,0,16,0,0,16,0

0

7,0,0,8,128,0,8
64,0,8,32,0,4,16
0,10,8,0,%,132,0
4,98,0,3,26,0,0
1%7,0,0,59,0,0,7
192,0,15,236,0,63,252
0,249,192,1,130,160,2
5,32,4,9,16,8,8
136,16,8,64,32,8,0

0

PELICAN

OWL

ROOSTER

0,224,0,1,223,255,1
240,0,1,255,255,0,227
254,0,112,254,0,56,28
15,158,0,31,207,128,63
247,192,63,255,224,127,255%
240,127,255,240,127,255,240
255,255,240,255,255,240,255
207,224,195,135,192,129,0
0,1,24,0,7,244,0

0

0,16,64,0,15,128,0
18,64,0,45,160,0,45
160,0,34,32,0,1E,64
0,56,192,0,119,64,0 ,
248,224,1,247,96,3,240
96,7,224,96,7,224,192
15,128,128,14,1,0,28
14,0,21,178,0,38,66
0,12,231,0,0,14€,128

0

0,1,160,0,3,192,0
2,224,0,0,160,3,129
240,3,193,192,7,227,176
15,231,176,31,255,128,31
191,192,31,223,224,31,223
96,29,231,96,25,248,224
8,255,192,0,63,128,0
15,0,0,4,0,0,4
0,0,4,0,0,11,0

0

SWAN

DUCK

DUCK

3,128,0,5,192,0,31
224,0,1,224,0,0,96
0,0,225,128,1,195,0
3,143,192,7,31,0,14
63,224,28,127,128,56,255
112,121,255,128,255, 248,127
255,247,252,254,15,240,255
255,224,255,255,192,63,255
128,31,255,0,15,254,0

0

0,0,0,0,0,0,0
248,56,3,255,244,31,2
255,63,254,56,127,252,
255,248,0,7,248,0,29

== 240,0,1,240,0,3,240
=\ 0,3,240,0,3,240,0

= 1,224,0,1,224,0,1
224,0,0,224,0,0,96

o,0,0,0,128,0,1
128,0,3,128,0,7,192
0,15,192,0,15,192,0
15,1%2,0,15,224,0,15
224,0,7,240,0,7,240
0,3,248,56,3,255,244
31,255,255,63,254,56,127
252,0,255,240,0,3,192
0,14,0,0,0,0.0

0,252,0,0,254,0,0

0;67,0,0,35,0,0

0
II: ==
| 5 E
1) il
i
| i
1 i
EAGLE DUCK AND DUCKLINGS PENGUIN
n,36,0,0,40,8,0 6,0,0,0,0,0,0 5 ©,112,0,0,184,0,1
118,18,0,248,20,0,246 G:?,?,G,éﬂzﬁ,ﬂ » | 248,0,0,108,0,0,44
60,0,248,112,0,244,254 i08,0,0,112,0,0,112 0,0,70,0,0,70,0
1,249,248,1,243,254,1 0,0,56,0,0,28,0 0,7%,0,0,63,0,0
231,240,1,239,252,15,255 0,14,0,0,254,16,87 255,0,1,255,0,3,131
224,31,255,144,33,254,0 18,40,172,34,48,200,68 0,2,67,0,4,67,0
16,79,132,8,36,8,121

127,128,0,255,224,1,7
192,7,7,128,8,128,0

227,240,138,33,176,243,195
16,32,130,24,81,67,12
0

35,0,0,19,0,0,119
0,0,11,0,0,56,128
0

]

CRAB WALRUS SEAL
15,231,240,30,0,120,31 0,0,1 0,24 0,0,0,0,0,0,0
231,248,92,0,58,92,0 1,255 254, 0,55,0,0,127,0,0
58,92,66,50,76,255,34 254,0 3.0, 126,0,0,252,0,1,248
167,255,229,147,255,201,143 0,13,2 +63, 0,3,240,0,15,240,0
255,241,71,255,226,63,255 255,2 1325 127,240,3,255,240,31,255
252,7,2595,224,63,255,252 242,.2 3,24 248,63,255,248,127,255,248
67,255,194,141,255,177,144 255,2 0,25 255,255,248,255,255,244,253
126,9,160,0,5,160,0 252 3,24 255,244,252,56,246,127,0
5,16,0,8,8,0,16 22(¢ 140, 238,63,129,199,31,199,129

0 0

0,0,2,0,0,14,0
0,62,0,0,126,0,0
254,0,1,254,0,15,255
0,255,255,3,255,255,13
250,191,63,250,191,127,250
191,255,58,191,252,254,191
115,255,255,3,255,254,0

0,0,0,0,0,0,0

0,3,0,0,6,0,0
12,0,0,28,240,8,56
255,152,120,255,252,240,255

255,224,255,255,224,255,254
240,255,236,112,254,4,56
224,0,12,0,0,0,0

120,90,30,78,255,114,195
255,195,155,255,217,166,126
101,161,255,133,166,36,101
164,230,37,164,129,37,180

31,240,0,3,240,0,0 0,0,0,0,0,0,0 145,37,146,74,105,81,36
240,0,0,48,0,0,0 0,0,0,0,0,0,0 106,8,144,144,4,77,32
0 0 0
1 EE
11
LOBSTER PIRANHA MORAY EEL
0,4,192,0,9,0,0 0,6,0,0,15,0,1 3,224,0,6,28,0,11
18,96,0,148,158,1,85 247,128,7,251,128,15,253 254,0,23,253,0,47,15

48,2,85,62,98,86,113
224,46,198,240,127,152,127
255,224,127,255,192,127,255
224,240,127,152,224,46,198
98,86,113,2,85,62,1
85,48,0,148,158,0,18
96,0,9,0,0,4,192

0

2,31,254,6,61,255,78
126,255,158,119,127,252,63
127,248,223,127,252,126,127
254,126,255,174,57,255,70
31,254,198,15,253,130,3
251,128,0,240,0,0,24
0,0,0,0,0,0,0

1}

1

1
0

0,94,2,130,124,1,65
248,1,194,216,0,196,232
0,164,244,0,228,122,0
230,63,0,162,31,193,194

243,140,0,3,24,0,3

5,113,194,7,131,134,3
76,0,1,224,0,0,128

SHERRIFF

SHERRIFF

0,60,0,0,126,0,1
255,128,0,126,0,0,126
0,0,126,0,0,60,0
7,129,224,9,0,144,18
0,72,36,0,36,72,0
18,144,0,9,255,255,255
15,255,240,7,255,224,3
231,192,1,231,128,3,231
192,7,231,224,7,231,224
o

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,140,0,4,148
0,4,100,0,10,24,0
20,136,0,9,4,0,18
2,64,20,2,132,23,254
134,20,30,255,7,252,255
3,248,252,1,240,68,0
224,170,0,248,145,0,184

0,7.128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,132,0,18
130,128,10,130,132,6,254
134,14,252,255,23,248,255
59,240,252,60,249,68,24
127,170,24,62,145,12,24

0

192,0,206,0,0,126,0
0,191,0,1,223,0,3
239,128,32,135,144,1,131
240,1,129,240,0,192,192
o]

6,0,0,246,0
0,0,124,0,0
0,112,0,0,112
2,0,0,92,0

[[11 | 1
|
T 1
I
|
[|
| I |
HUNCHBACK HUNCHBACK] HUNCHBACK
0,0,0,0,3,128,0 0,3,128,0 0,0,0,0,3,128,0
7.0,0,55,64,0,78 55,64,0,78 7,0,0,55,64,0,78
32,0,132,64,1,16,64 32,64,1,16,64 32,0,132,64,1,16,64
i,161,128,3,207,0,3 128,3,213,0,3 3,149,128,3,213,0,3
158,192,3,158,64,1,143 3,246,0,1,246 247,128,3,240,128,1,255

128,0,254,0,0,125,0
0,251,0,1,247,0,3
239,128,3,135,144,1,131
240,1,129,240,0,192,192
0

DWARF

DWARF

DWARF

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,162
0,0,156,0,0,132,0
0,68,0,0,76,0,0
80,0,0,112,0,0,112
0,0,120,0,0,88,0
aQ

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,34
0,0,92,0,0,68,0
¢,70,0,0,138,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0
o

0,248,0,3,240,0,7
232,0,9,196,0,0,72
0,0,33,128,0,78,128
0,152,128,1,63,0,1
60,0,0,156,0,0,72
0,0,56,0,0,72,0
0,68,0,0,164,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0
0

CHARACTERS

SHERRIFF

SHERRIFF

SHERRIFF

0,7,126,0,15,192,0
63,240,0,14,128,0,12
64,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,68,0,17
34,64,8,146,132,7,78
134,15,188,255,31,248, 255
63,240,252,60,233,68,24
95,170,24,62,145,12,24

n,0,16,7,178,32,14
0,96,14,128,240,12,65
224,8,134,64,4,138,0
5,114,0,10,148,0,18
136,0,18,68,0,17,34
0,8,154,0,7,78,0
15,190,0,7,252,0,3
248,0,1,240,0,0,224
0,0,248,0,0,184,0

0

0,60,0,0,126,0,1
255,128,0,102,0,0,9%0
0,0,66,0,0,126,0
7,153,224,9,60,144,18
126,72,36,126,36,72,60
18,144,24,9,255,231,255
15,255,240,7,255,224,3
231,192,1,231,124,3,231
192,7,231,224,7,231,224

HUNCHBACK

HUNCHBACK

HUNCHBACK

0,3,128,0,7,0,0
55,64,0,78,32,0,244
64,1,128,64,3,153,128
3,166,0,3,174,192,3
222,64,0,255,192,3,127
0,7,191,128,31,223,226

,0,0,0,56,0,0
124,0,0,124,0,3,131
128,4,130,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11, 255
160,19,255,144,9,255,32

0,0,0,0,56,0,0
6€8,0,0,40,0,3,147
128,4,186,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11,255
160,19,255,144,9,255,32

63,231,254,56,0,252,24 1,255,0,1,239,0,1 1,255,0,1,239,0,1
0,48,24,0,0,12,0 239,0,1,239,0,0,238 239,0,1,239,0,0,238
0,0,0,0,0,0,0 0,1,239,0,3,171,128 0,1,239,0,3,171,128
0 0 0
1] I L I I |

i i | 1

|

|
'.!
i
CHARLIE CHAPLIN CHARLIE CHAPLIN CHARLIE CHAPLIN

0,48,0,0,121,192,0 =] o0,48,0,0,120,0,0 0,48,0,0,120,0,0
253,64,0,105,0,0,68 | 252,0,0,104,0,0,68 252,0,0,104,0,0,68
128,0,72,192,0,33,160 | 0,0,72,0,0,32,0 0,0,73,192,0,33,64
0,127,144,0,255,136,1 | o0,120,0,0,120,128,0 0,121,0,0,252,128,1
255,4,1,252,2,0,156 125,64,0,126,64,0,122 254,192,3,247,160,7,123
1,0,120,0,0,120,0 128,0,120,0,0,112,0 144,6,120,8,0,124,4
0,124,0,0,188,0,1 0,112,0,0,112,0,0 0,124,2,0,250,1,1
222,0,3,239,64,1,135 240,0,1,112,0,2,96 246,0,3,239,64,1,135
192,1,131,128,0,193,0 0,0,120,0,0,92,0 192,1,131,128,0,193,0
0 0 0

TYRANNOSAURUS TYRANNOSAURUS ICHTHYOSAURUS
0,0,224,0,1,208,0 0,7,0,0,11,128,0 0,254,0,0,127,0,0
1,248,0,3,204,0,3 31,128,0,51,192,0,47 63,192,0,127,96,0,223
244,0,3,200,0,3,192 192,0,19,192,0,3,192 176,1,191,216,3,127,248
0,2,224,0,6,120,0 0,2,232,0,6,112,0 2,255,248,7,225,232,7
7.224,0,15,224,0,31 7,224,0,15,224,0,31 131,120,15,3,56,14,4
224,0,29,240,128,61,240 224,0,29,240,0,61,240 4,12,0,2,8,0,1
64,59,248,96,123,248,48 0,59,248,0,123,248,128 8,0,0,8,0,0,28
247,184,25,255,48,15,244 247,184,65,255,48,99,244 0,0,62,0,0,99,0
32,7,48,16,2,80,28 32,63,48,1%,28,80,28 0,65,0,0,128,128,0
1] 0 9

L [| [
I
I 1 I] 1 1 m
STEGOSAURUS ALLOSAURUS ALLOSAURUS
0,15,0,0,31,128,0 0.,0,27,0,0,63,0 0,0,27,0,0,63,0
31,128,1,223,184,1,198 0,62,0,0,56,0,0 0,62,0,0,56,0,0
56,1,223,184,0,63,192 120,0,0,240,0,1,152 120,0,0,240,0,1,152
6,127,230,6,255,246,1 0,3,216,0,7,215,0 0,3,120,0,7,116,0
255,248,11,255,250,7,255 15,240,0,31,236,0,63 15,115,0,30,224,0,863
124,23,254,254,13,253,255 240,0,127,248,1,252,124 208,0,127,184,1,255,124
94,255,239,248,221,134,128 135,195,12,127,30,6,0 135,206,12,127,30,12,0
193,140,1,195,152,0,12% 56,6,0,64,6,0,128 56,12,0,64,12,0,64
12,0,0,6,0,0,1 2,1,0,2,1,0,3 4,0,64,4,0,32,2
0 1] 1]
-
.]
]]
-
11 1 1 1 |
BRONTOSAURUS PTERANODON
0,0,3%,0,0,7,0 240,0,0,248,0,0,254 254,0,0,15,128,0,7
0,15,0,0,63,0,0 0,0,255,0,0,255,128 192,0,3,224,0,1,240
25%,0,1,255,0,3,255 0,255,1%92,0,255,224,0 0,0,249,223,0,124,112

0,7,255,0,15,255,0
31,255,208,63,255,248,127
255,29,248,255,15,224,63
7,192,31,0,0,14,0
¢,12,0,0,28,0,0
24,0,0,56,0,0,113

o

255,240,0,255,248,0,255
252,6,255,254,9,255,255
16,255,255,16,255,255,136
255,255,204,255,255,198,14
127,227,199,3,243,195,24
127,195,24,62,135,48,28

0

0,62,224,0,63,128,0
63,128,0,223,192,0,31
192,0,103,224,0,1,224
0,0,112,0,0,48,0
0,48,0,0,16,0,0
16,0,0,16,0,0,16

0

SPOOKS AND SPECTERS

SPIDER

WITCH

BLACK CAT

0,126,0,64,255,2,161
255,133,151,189,233,143,102
241,134,255,97,62,231,124
71,255,226,139,255,209,146
189,73,164,126,37,168,153
21,40,153,20,40,126,20
40,60,20,40,24,20,72
i6,18,8,66,16,8,36
16,16,0,8,0,0,0

B,0,240,8,3,240,8
7,152,28,15,248,28,31
196,127,63,184,34,127,120
67,255,204,39,255,242,31
5 1232,7,255
5,62,0

0,0,6,0,0,9,0

60,1,66,126,2,36,255

2,61,255,132,91,255,196

{ 127,255,232,103,255,240,63

227,240,3,225,240,3,97

176,3,97,176,3,96,144

3,96,216,2,32,216,2

| 32,72,2,32,72,2,32
72,4,16,72,4,16,36

] o]
1 1 T
i I [I
| i | i
1 | |
[EE | 1
17 1
1 1
i | 1 1 !
=] | 1 |
[|
!
| | | |
1 1
e |] ! .
| | il
SPECTER SPOOK SPOOK

56,0,0,68,112,0,35
255,248,193,255,254,50, 255
255,12,127,63,24,94,63
0,80,51,0,208,230,33
145,132,17,51,4,147,98
12,110,66,8,16,131,12
97,1,4,30,1,6,6
1,130,26,0,131,4,3
129,8,5,7,0,9,9

0

48,60,12,120,126,30,124
255,62,255,255,255,255,255
255,255,189,255,239,24,247
199,90,227,207,126,243,143
255,241,159,126,249,31,3¢6
248,31,129,248,63,231,252
63,255,252,63,255,252,127
255,254,127,221,254,245,204
223,164,136,85,164,136,85

1]

] 0,60,0,0,126,0,0
255,0,1,255,128,3,255
192,7,189,224,7,24,224

| 7,90,224,15,126,240,15
255,240,31,255,248,31,231

| 248,31,129,248,63,36,252
63,126,252,63,255,252,127
255,254,127,221,254,245,204
223,164,136,85,164,136,85

0

T

192,5,255,160,1,126,128
0,231,0,0,21%9,0,0
66,0,0,195,0,1,36
128,0,0,0,0,0,0

BAT BAT
128,0,1,64,0,2,96 0,8,0,0,4,0,0
0,6,48,0,12,56,0 12,0,0,30,0,0,14
28,92,0,58,30,0,120 0,0,31,0,0;63,0
15,36,240,15,165,240,23 0,31,0,0,15,0,0
165,232,3,255,192,3,219 31,0,0,63,0,0,127

0,0,63,32,0,31,64
0,14,192,0,63,160,0
255,192,3,254,128,15,248
64,0,12,0,0,2,0

0

GAMES SYMBOLS

56

BANANA APPLE SPADE
0,1,192,6,1,255,0 0,64,0,0,32,0,3 0,16,0,0,16,0,0
0,127,0,0,54,0,0 147,224,15,215,24(,31,255 56,0,0,56,0,0,124
80,0,0,208,0,0,208 192,7,151,0,0,16,C 0,0,124,0,0,254,0
0,1,176,0,1,160,0 3,215,128,7,215,192,15 1,255,0,3,255,128,7
3,96,0,3,96,0,6 254,96,15,254,96,15,255 255,192,15,255,224,31,255

224,0,14,192,0,61,192
0,123,128,1,231,128,15
223,0,126,62,0,129,252
0,127,224,0,15,128,0

0

224,15,255,224,15,255,224
7,255,192,7,255,192,3
255,128,3,255,128,1,255
0,1,255,0,0,238,0

o

63,147,248,31,57,240,14
56,224,4,124,64,0,124
0,0,254,0,1,255,0

o

PINEAPPLE PEAR CLUB
0,16,0,0,214,0,1 0,15,0,0,63,132,0 0,56,0,0,124,0,0
125,0,0,56,0,1,255 255,196,0,63,232,0,31 254,0,1,255,0,1,255
0,2,124,128,4,56,64 16,0,0,40,0,3,204 0,1,255,0,0,254,0
0,68,0,0,170,0,1 0,63,238,15,225,238,24 0,124,0,7,125,192,15

17,0,2,170,128,2,68
128,2,170,128,3,17,128
2,170,126,2,68,128,1
171,0,1,17,0,0,170

15,239,57,255,239,121,255
207,127,255,135,255,254,3
255,248,3,255,248,1,255
240,0,127,224,0,63,224

57,224,31,187,240,63,255
248,63,255,248,63,215,248
31,147,240,15,57,224,7
57,1%2,0,124,0,0,124

0,0,198,0,0,124,0 0,31,192,0,7,128,0 0,0,254,0,1,255,0
0 0
1 | m |
[
CHERRIES STRAWBERRY BELL
0,8,0,0,16,0,0 0,32,0,0,16,0,0 0,24,0,0,126,0,0

16,0,31,39,128,63,175
224,127,255,240,63,167,192
31,80,0,0,136,0,1
4,0,2,3,192,2,3
32,7,7,48,12,143,248
28,207,248,63,239,248,63
231,240,63,227,224,31,193
192,15,128,0,7,0,0

16,0,1,255,0,3,255
128,7,111,192,15,255,224
29,189,176,31,239,240,30
254,176,27,219,240,31,255
112,13,111,224,15,251,96
6,223,192,7,251,192,3
127,128,1,239,0,0,254
0,0,124,0,0,56,0

0

249,0,1,240,128,3,240
64,7,224,32,7,224,32
7,224,32,7,224,32,7
224,32,7,224,32,7,224
32,15,1%2,16,31,128,8
31,128,8,31,255,248,0
52,0,0,52,0,0,24
0,0,0,0,0,0,0

0

[

DIAMOND PAWN ROOK
0,16,0,0,16,0,0 ©,0,0,0,48,0,0 0,0,0,0,0,0,6
56,0,0,56,0,0,124 120,0,0,236,0,0,244 205,128,6,205,128,7,243
0,0,124,0,0,254,0 0,0,244,0,0,252,0 128,7,241,128,1,254,0
1,255,0,3,255,128,7 0,120,0,0,48,0,0 1,250,0,3,243,0,1
255,192,15,255,224,7,255 120,0,0,244,0,0,120 250,0,1,250,0,1,250
192,3,255,128,1,255,0 0,0,120,0,0,244,0 0,1,250,0,1,250,0

1,250,0,3,253,0,7

0,254,0,0,124,0,0 1,250,0,3,253,0,7
124,0,0,56,0,0,56 241,128,7,251,128,3,255 241,128,7,251,128,3,255
0,0,16,0,0,16,0 0,7,249,128,15,255,192 g¢7.249,123,15,255,192
0 0
] I] I
|
| | |
I | |
|
|
|
|
| I.
L]
|
I | ! - HEEN
15 O I
| | | |
| [l | [|
HEART KNIGHT BISHOP

3,1,128,7,131,192,15
199,224,31,199,240,63,23%
248,63,239,248,63,255,248
63,255,248,31,255,240,15
255,224,7,255,192,3,255
128,1,255,0,0,254,0
0,254,0,0,124,0,0
124,0,0,56,0,0,56
0,0,16,0,0,16,0

(1]

¢,8,0,0,56,0,0
220,0,1,250,0,3,249
0,0,253,0,1,61,0
0,121,0,1,250,0,3
242,0,3,228,0,1,252
0,0,120,0,1,238,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192
0

0,48,0,0,48,0,0
120,0,0,252,0,0,124
0,1,58,0,3,157,0
3,191,0,3,255,0,1
254,0,0,252,0,0,120
0,1,254,0,0,252,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192
0

[T

JOKER

KING

QUEEN

0,60,0,0,195,224,1
64,48,2,36,76,4,31
76,4,31,224,12,223,144
29,57,136,62,16,132,126
68,130,126,170,226,118,0
94,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0
0

0,120,0,0,180,0,0
252,0,0;252,0,6,181
128,15,51,192,15,255,192
15,255,192,7,255,128,3
255,0,1,250,0,3,253
0,1,250,0,1,250,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,24%9,128,15,255,192
0

2,49,0,7,123,128,2
49,0,1,122,0,3,255
0,1,254,0,3,255,0
1,250,0,1,250,0,0
244,0,0,244,0,0,244
0,0,244,0,0,244,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
:,?,249,128,15,255,192

SKULL AND CROSSBONES

POINTING HAND

PALM TREE

112,0,14,208.0.11.144
0,9,232,255,23,21,129
168,11,0,208,6,0,96
2,0,64,2,0,64,2
231,64,2,231,64,2,0
64,1,24,128,3,0,192

0,0,0,0,0,0,0
0,0,127,255,0,128,0
195,128,96,111,115,130,27
14,4,11,2,24,11,3
228,11,1,4,11,1,26
11,0,226,11,0,77,11

7,208,.240,15,225,192,28
243,248,56,55,224,99,190
120,79,252,60,159,255,26
€0,63,205,120,119,22%,113
211,196,195,145,226,135,16
160,134,144,32,70,16,16

5,219,160,10,189,80,20 0,49,11,0,38,27,0 2,48,16,4,48,0,0
129,40,232,66,23,144,60 24,107,0,7,143,0,0 96,0,0,224,0,1,192
9,208,0,11,112,0,14 3,0,0,0,0,0,0 0,7,128,0,15,128,0
0 0 0

]
I D O | I 1
ARROW ARROW ARROW

0,8,0,0,20,0,0
34,0,0,€5,0,0,128
128,1,0,64,2,0,32
4,0,16,15,0,120,31
0,112,63,0,96,7,0
64,7,0,¢4,7,0,64
7,0,64,7,0,64,7
0,64,7,0,64,7,255

0,2,0,0,7,0,0
14,128,63,254,64,96,0
32,224,0,16,224,0,8
224,0,4,224,0,2,224
0,1,224,0,2,224,0
4,224,0,8,224,0,16
224,0,32,255,254,64,255
254,128,255,255,0,0,14

0,0,0,0,0,0,0
248,219,1,241,182,3,227
108,7,198,216,15,141,176
31,27,96,62,54,192,124
10%9,128,255,255,224,124,109
128,62,54,192,31,27,96
15,141,176,7,198,216,3
227,108,1,241,182,0,248

192,7,255,128,7,255,0 0,0,12,0,0,8,0 219,0,0,0,0,0,0
1] 0 0
T I T

1 ||
|
I |
-

PENCIL PAINTBRUSH SHAMROCK
0,1,128,0,2,84,0 0,28,0,0,58,0,0 1,199,0,3,199,128,3
4,32,0,12,16,0,30 50,0,0,50,0,0,50 239,128,7,239,192,31,239
8,0,59,4,0,119,130 0,0,50,0,0,20,0 240,63,239,248,63,239,248
0,238,194,1,221,228,3 0,20,0,1,255,192,2 31,255,240,15,255,224,0
187,184,7,119,112,14,238 0,32,2,0,32,2,0 124,0,15,255,224,31,255
224,21,221,192,19,187,128 32,2,170,180,1,85,64 240,63,239,248,63,215,248
17,119,0,16,238,0,16 2,170,160,1,85,64,3 31,215,240,7,147,19%2,3
92,0,24,56,0,28,16 255,224,3,255,224,7,:255 147,128,3,33,128,1,33
0,31,224,0,0,0,0 192,7,255,192,15,255,128 0,0,64,0,0,64,0
0 0 1]

T A

—

HORSE AND JOCKEY

CHARIOT

127,140,0,7,211,128,3
233,224,1,245,208,1,255
200,3,255,228,15,131,98

0,0,0,0,0,0,0
192,0,0,240,0,8,60
0,28,92,0,62,200,0
127,147,128,7,231,192,3
245,224,3,255,208,1,251
208,0,241,136,1,193,72

0,0,0,0,2,0,0
28,0,0,32,0,24,64
0,25,128,0,18,0,0
58,0,8,94,0,28,152
0,62,152,0,127,16,127
248,28,255,240,61,255,240

22,0,184,40,0,72,80 1,33,64,0,146,128,0 62,255,224,126,227,192,78
0,36,160,0,18,32,0 69,0,0,42,0,0,4 96,240,180,33,16,180,82
1,0,0,0,0,0,0 0,0,0,0,0,0,0 32,72,40,64,48,20,128
o 1] o
| 111 |
|] |
1 |
[I
| |
||
5 11 1 I I
TROLLEY TROLLEY FROGMAN
0,0,12,0,0,12,3 48,0,0,48,0,0,33 0,0,1,0,0,10,0
0,132,3,1,76,4,6 0,192,50,128,192,60,96 0,4,0,0,16,0,0
60,12,24,12,28,96,4 32,48,24,48,32,6,56 8,0,0,16,0,0,0
54,152,12,49,24,20,40 48,25,108,40,24,140,36 0,7,192,0,10,32,16
24,36,72,60,34,136,60 24,20,68,60,18,132,60 10,112,143,7,248,65,15
33,204,126,97,255,255,25% 17,134,126,51,255,255,255 248,32,159,180,28,120,131
243,255,207,140,0,49,18 243,255,207,140,0,49,18 6,48,128,3,96,64,1
0,72,45,0,180,45,0 0,72,45,0,180,45,0 1%2,32,0,128,16,0,0
i80,18,0,72,12,0,48 180,18,0,72,12,0,48 0,0,0,0,0,0,0
] 0 0
11 | ||
] I u :
1 1 | | 1
BMX RIDER BMX RIDER MAN IN BOAT
0,56,0,0,40,0,0 0,56,0,0,40,0,0 0,0,0,0,0,0,0
16,0,0,198,0,1,147 16,0,0,198,0,1,147 24,0,0,60,0,0,24
0,3,57,128,0,56,0 0,3,57,128,0,56,0 0,0,24,0,0,0,0

7,69,192,0,56,0,0
22,0,0,22,0,0,198
0,0,214,0,0,214,0
0,208,0,0,214,0,0
56,0,0,208,0,0,16
0,0,16,0,0,16,0

L]

7,69,192,0,56,0,0
208,0,0,208,0,0,198
0,0,214,0,0,214,0
0,22,0,0,214,0,C
56,0,0,22,0,0,1€
¢,0,16,0,0,16,0

0

0,126,0,0,195,0,1
255,128,1,129,128,3,60
192,3,60,192,4,207,32
11,15,208,28,15,248,40
15,244,68,15,226,132,15
225,2,15,192,2,15,192

MACHINE-CODE ROUTINES

The listings featured on these two pages are used to put
machine-code instructions into memory in order to

speed up Commodore graphics programs. If you have BLOCK A
read Book Three in this series, you will recognize them

as a selected number of the routine blocks featured in

that book. If you have not used the routines in these HIGH-RESOLUTION, LOW-RESOLUTI.ON'
blocks before, don’t worry. All you need to do is key RESTORE, RESCUE and MERGE routines
them in when the text says they are required. Don’t try
to key them in and run them on their own, because they
are designed only to be called by a main program. Apart
from making the computer put numbers into its
memory, they will not produce anything if you try torun
them in isolation.

wi L lanlwa Lo Tan L mn Ll men T

OO DN
HODD
DD
O0OO0
OO0
OO0

How to use the routine blocks :
Each block contains one or more machine-code
routines, and these are listed at the top of each block. To
run a program using these routines, you must have
keyed in the appropriate blocks before adding the main
program. :

There are two programs in this book which need
machine-code routines — the Fruit Machine program
on pages 20-23 and the Sprite Editor program on pages
24-32. The Fruit Machine program uses only some of
the routines (you can see which in the panel on page 20)
while the Sprite Editor program needs all of them. 0

To enable any machine-code routine to work, you
must key in the block listing in its entirety. You should
enter the blocks needed before you start on the rest of
the program. Make sure that you enter them in the order
of their lines — don’t, for example, key in block D before :
block C.

When you run a program which uses these routines,
there will first be a pause while the machine-code is put

into memory. Subsequently, this process will be
skipped, and the program will immediately start pro- BLOCK B
ducing results on the screen.

P CLEAR-AND-COLOR and BLOCK- COLOR
routines

DD

0O0=10
‘ol L K o T Tt T oa] mn et
Lo Lo L L Lo [T e

D00=20
T L T T wn [on T oen e T F e
Lo L Lowe L [Lo [T T e

et L r 0] ot | o L em T] et T
DoODDODODDoDOOD
'

)

D

ERASE routme

Note

This routine is used only by the Sprite Editor program. Key it in
directly after the draw routine (block D). Do not attempt to use the
routine in your own programs without first reading the instructions
in Book Three.

DO=10
Lo T T e Lee T T T T

DoODDDmmM

o
rm

]
|l KELTS T [ma [FE g
raln

-

g
oW

D 28378

[wimallll
L 5 Lo |
nx
e
=] =M

-

rS XM
-~ MmoXx
| = |) o

.
[Su'es

D
Wit

-

D=0
an Lo T L T i | o] e T et]]
ol el el el el T
DD TD DD DD

MO XM
~ r.".

DO MX00—
DD T=M=CT
=== || T
2D

~ DM - X
P @ L
Wrak= ~ oW
O~

MW

.
[P

- L fon
THNNYT

IO APNE=CICIN =~
O AN SO0
ST OO T
OO0 N A vl e
w00 0N T=0
HOT QDO =D

OV) el D
PP S
CIOHD = SOIND =~
=0 L=NDN-M
e) el) e e e

CLCTTLTTTTT
——

o Ly
WNDM M (]
MON=l= Mi=1N0=

.l e DT -
L B R e Y~
OOMT =N ~ =i
CIO T =HNON -~

a o owl OO
O] AN LI=D

OISO O) et QD el
CLCTCccT ﬂﬂm

~CJ B
- 3 =0
el o -
W o« 0T
OIS~ v e o
CICJ NDIN OdwCy
a DO 0
SOOI =D ~
b=l & el b=y
e D0 IO
~ o0 SNOM ~-
MWM =i =il ~D
—“NHD M NN
s n DD
MDD »~ » s » =
P09 =TT IO
OO P=INT=0=0d
= o Ll -
D » NN & n w T
NDOMUIND=OINT
HOJOISICI=-NO -
LRI O B
QOMIQMP= MCJ 0
Qomor-r-Lnnno
Ol O e DO el el

mﬁrﬁ-ﬂﬁﬂﬂﬂmm

CCCLCCLLCT
[=ialalalatalatalala]

OLOODOOODO0
D =AM T INWE= 0

CCCTCCLTCCT
[alaTatalaTalatalalal

]

-l
™ =00
ot MO
b= = () D

CC -~ [~ » I IR
ST DM~
= & N=HTOMND
O ST~ vl w0y
WTCIN MO A0 -
el AOJLOINCICILD =
w D AN -
CIN-HD ~ D ~ N
oOm D= ND =
D D0 0NN
n el D el O OO
W0 vl v 4D v
SN PO -
= N0 & DD
O A
b a SDIO0Y - 0D
e T I =N DD
B L BE SN v
IOl OO »
NNT NN WM
ANHTOC =0

CCCTCCTTCTT
b e e ot e o e e
CCCCCECCTT
=Y =Y =0=1=)

00000000 0000000

w0
[

o N O
- @D b
N OO -
U & 8 AN W
L= D OO I

LoD TO o
D D ~ ~D s WD
OO MOINI-D
= a s dNb= L) A A

e DG A0
MWD - ANOTO
HOJ = CIN DI v

CRECRE BN
DO=HM=-JON N~
TOINM LOMEJDID
Lo [t [V E o (4o o Tt LoV Es (o)

CCLLTCTTCTT
P bbb b e b e e
CCCCCTTCTT
(== =Y =T=Y=T=T~

L0000
S =HCIMTINO -0
Leplopbopleploplep loploplor it}

CCECLTCTCT
[=TaTaTalalalaTalaTa)
ODOOOO0DO0
SN T IND-ON

DOO0O000000
CICICI CICICICICICICT

Ol Yl O

CLLTT
o
CCTTE
(Y= =TT~

o000
D—HOIMYT
00000
' pur pur

BLOCK C

BLOCK H

COPY and TEXT rout

PLOT routine

ines

ROM

o aATCCCTCTT

DT 1 b oo b o
L CEETT
O AT Y=Y

ODOOCOLOOO0
O CIM T INOL=-000

=000 = ==
=HD w AW s s s
NQIND ~ ~TNo
~ N SN=OHN N
T WO 0
Q XI A=~ N
=-OO YW ~MiNn
A - DM
ey st
Tt TMOO ~
M s DO
WD el O el
W -
o aANCCCCcec
Ll W o el el st ot
LA CCCTT
lglit]s = of=Talalalala)

D000
DM TINO 0= 000
CICICICICIOIOICICIN
b b b B b b A

S 00 0 O
2 a0 DO D

=D=M D
m

=0 AOMOMNINM
b= 0 = D=0
Iy el lorlaly o b s
O DHTD ~ 0 -
~SO0 » A OICIONCS
wm AT O
- DONININ=- D -
DOCI ~ vl)
MOIO ~ DY iD=
L SVRE o [or b o B0 BV
- VDO v -
AU e s 0
IO SOOI
a8 AT HMOM-
Lo Dl 2 [Ko Y
T 00 SO0

DTSN T

CCCCCTTTCTT
o e e
CTCCCTTCTT
P == === T=r=1=

COOOVODOO0
OHOIMTINOD=-00N
MIMMMIMMMMN
LT

DO~

CELTTT
[e
CCCTT
(Y =Y=T=T=)

oooos
DI

MMM

nm Q ==oon
N @ N NS
- CICIDOION v D
e T ean i 11 Y]
D DT SO0 o
HNWNITOOND vl i)
Tordwib=vd ADHM 4D S

Ol DOCd LIS A
QTN N ST
O OO O N CI=0I =D
S o ¥ B B
—HOTHNNE WN=-HNMM
TOINOOHNHTOW ~TINW
OO o e) D= OO

CCCCTCTCCTCTT
oo
CCCCTCCTTCTCTT
== ===

OLOOOQOOOO000
D=HIMT N0 N D =]
TETE T TTTIO00
TSI Yy

CIDHOMC
MO~ OO
gy Y

i b g b b o |
we o

o ovTCcococococao
DR N bbb
Ll LT
Ll sl dalalalolalalal

DO0000OO00
O —HACINTUNOL-00M
DN

DEFINE-CHARACTER routine

I D= O MO
G VU= Cdd ~ ~
o A e m o sy
O A0 SO D
INDHEINWINN T
Ol Nl OHD =
R RS . 'r

I e DT = O
e BESCRCNNCPES, V]
= SOOIt
TIHDOONOINOD - -
Ot = O = CICOUN

CCCTCTCTCTaTT
bbb b b
CCTLTTCTTLT
(ST NSNS

OOO0OODODO0
01543456733

WO i =T D

W -

o onNCCCCTccT
OECN ===

Lo l-NECCC LT

—HNK—OOOOOOO0

QOOQOOOOOO0OD
D= CIMTINWI=-0NO-—
OO WO LD WO LU=
T TeY

T ICIROID DI
HOd DOl
I e T T I
CICNT IIND 0
AM=DININ M=
el A HCIDHD ~ed
B .

L RN, (7 L]
CICIONNINGD =
THOOINOD ~ <0
S s NP

CCCCCTCTCTTT
L o o Y S e
CCCTCCCCTCTT
(===l a =yt

LOOO000000

DHOWLOUWLWD

A A el el e el

SPRITEMAKING CHECKLIST

The checklist below shows you which sprite feature each
VIC register controls. Some registers control features
that have just two possible states, like “turn sprite on”
and “turn sprite off”. In cases like this, a single register
controls all eight sprites, with individual sprites being

controlled by one bit within the register. The rest of the
registers control features which have more than two
states, like position. In these cases, each register controls
a single sprite and allows any of 256 different states to be
specified.

SPRITE PROGRAMMING REFERENCE CHART

VIC Effect Sprite(s) controlled = How to use the register
by register
V+0-V+14 Set horizontal positions V+0 = sprite 0 Key in register followed by a horizontal
(even numbers) V+14 = sprite 7 coordinate (0-235)
V+1—-V+15 Set vertical positions V+1 = sprite 0 Key in register followed by a vertical
(odd numbers) V+15 = sprite 7 coordinate (0-253)
V+16 Specifies horizontal position All sprites Key in register followed by the total bit
in either left or right half of screen values for the sprites you want to appear
in the right-hand half of the screen
V+21 Turns on sprites All sprites Key in register followed by the total bit values
of the sprites you want to turn on
V+23 Expands sprites vertically All sprites Key in register followed by the total bit values
of the sprites you want to be expanded
V+28 Turns on the multi-color All sprites Key in register followed by the total bit values
mode for one or more sprites of the sprites you want to be multi-color
V+29 Expands sprites horizontally All sprites Key in register followed by the total bit values
of the sprites you want to be expanded
V+30 Records sprite- All sprites PEEK the re%_‘ister. The bit values making this
sprite collisions up indicate which sprite has collided with another
V+31 Records sprite- All sprites PEEK the register. The bit values making this up
background collisions indicate which sprite has collided with
the background
V+37 ‘Sets first multi-color All sprites Key in register followed by code for the first
multi-color
V+38 Sets second multi-color All sprites Key in register followed by code for the second
multi-color
V+39—V+46 Sets sprite color V+39 = sprite 0 Key in register followed by a color code

V+46 = sprite 7

Color and multi-color

Normally, sprites are shown in a single color which is set
by a color code (see the table below). If you want to
produce multi-color sprites, first switch on the multi-
color mode with register V428, and then select two
additional colors by putting a color code into registers
V+37 and V+38. In the multi-color mode, pixels are
treated in pairs — you cannot specify them individually.
To work out a DATA number for each row of a sprite,
take each pixel pair in turn, note its position along its

COMMODORE COLOR CODES

0 Black 4 Purple 8 Orange 12 Medium gray
1 White 5 Green 9 Brown 13 Light green
2 Red 6 Blue 10 Light red 14 Light blue

3 Cyan 7 Yellow 11 Dark gray 15 Light gray

8-pixel row. Select its color and use the table to find
its contribution to the DATA number.

MULTI-COLOR TABLE

Pixel pair number

Color

0 1 2 3
Screen background 0 0 0 0
Multi-color
register 1 (V+37) 64 16 4 1
Color register
(V439 — V+46) 128 32 8 2
Multi-color
register 2 (V+38) 192 48 12 3

To work out DATA values for sprites, you can either use
the Sprite Editor program, which will produce the values
automatically, or you can use the grid below. Each
number can then be POKEd into memory to specify a
sprite row. To use the grid, first pencil in a design, and

then add up the bit values for each group of eight pixels.
You can then record the totals in the columns on the
right, prior to putting them into memory. To code a
multi-color sprite, you will need to compile the DATA1n
a different way, described on the opposite page.

0|1|2(|3(4|5|6|7|8]|9|10]11|12

13

1415

16|17 (18 19|20 |21 |22 |23

DATA values

128/64 (32|16 | 8 |4 | 2 | 1 |128/64 |32 |16 | 8

2

1112864 (32(16 |8 |4 |2 |1

W o || un B W |- D

[
(=]

[
(-

[="
L]

ot
W

[
ES

fu—
un

Jk
(=)

[
~3

ot
[}

ot
-}

b
(]

Positioning sprites

Sprite positioning coordinates can have any value
from 0-255 wvertically or 0-511 horizontally.
However, only part of this range is visible on the
screen. The diagram on the right shows how these
coordinates relate to the screen. The central panel is
the visible area of the screen. This extends from 24 to
343 horizontally and from 30 to 229 vertically. This
means that you can move sprites on and off the
screen smoothly. Because vertical position runs from
0 to 255, it can be controlled by a single byte of
information. Horizontal position, on the other hand,
needs two bytes if the whole of the range from 0 to
511 (=2x255) is to be used. If you want a sprite to
continue moving past horizontal position 255, the
V416 location must be turned on for the sprite
concerned.

W
[—I -]

Vertical coordinate

229
230

255

0

Horizontal coordinate

23 24 343 344 511

Screen area

4‘ Sprite

S ————— e

IN D Ex sprites 8-9 cursor 25
cursor movement 26
) Railroad trains 41 inverting current
Aircraft 38-9 routine 61 Reflection, current sprite 28, 30
Aliens 34-5 Detecting collisions 16~ sprite 29, 30-1 keyingin 24
Animals 46-8 17 Rescue routine 60 LOAD 32
Animation 10-11 Dinosaurs 54 Restore routine 60 merging sprites 30
designing frames 13 Double sprites 33 ROM-copy routine 61 reflection of current
double sprites 11 animation 11 Routine blocks 60-1 sprite 28, 30-1
multi-frame 12 Draw routine 61 SAVE 32
- SAVE 32 sprite banks 24-5
Background Loader Fruit Machine Screen coordinates and sprite DATA 31
program 14-15 program 20-3 10, 63 Sprite games 18-23
Background Priorities Sea creatures 51 Sprite Maze
program 14-15 Games Ships 44-5 program 16-17
Backgrounds 14-15 Darts 18-19 Snails 49 Sprite memory area
Birds 50 detecting collisions Spacecraft 36, 40 commands 6
Bits, changing within a in 16-17 Specters 55 Sprites
byte 9 expanding sprites 18 Speed control 19 coding 7
Block-color routine 60 Fruit Machine Spooks 55 color setting 8
Boats 44-5 program 20-3 Sprite banks 24-5 definition 6
Bugs 49 position control 19 Sprite DATA 9 double 33
setting odds 23 abbreviating 12 expanding 18
Cars 42-3 speed control 19 automatic 31 multi-color 21, 62
Cartoons 12-13, 33 Games symbols 56-8 switching pointers 12 positioning 8, 63
Characters 52-3 Grids 63 Sprite directory 33-59 programming 8-9
Clear-and-color creating 24 aircraft 38-9 storing 7
routine 60 High-resolution aliens 34-5 symmetrical 30-1
Clearing memory 24 backgrounds 14 animals 46-8 turning on and off 8
Coding, sprites 7 birds 50 Storing sprites 7
Collision detection 16= Inverting current boats 44-5 Symmetrical
17 sprite 28, 30 bugs 49 sprites 30-1
Color cars 42-3
changing 29 Keyboard animation characters 52-3 Text routine 61
multi-color sprites 21, 10-11 dinosaurs 54 Trains 41
62 games symbols 56-8 Trucks 42-3
sprites 8, 62 LOAD 32 matchstick men 59
Color codes 62 motorbikes 42-3 Video interface circuit
Commands, sprite Machine-code phantoms 37 (VIC) 6
memory area 6 graphics 7, 24 railroad trains 41
Current sprite routines 60-1 sea creatures 51
changing 27 Maze program 16-17 ships 44-5
clearing 27 Memory, clearing 24 snails 49
cursor and 25 Merge routine 60 spacecraft 36, 40
inverting 28, 30 Merging sprites 30 specters 55
reflecting 29, 30-1 Motorbikes 42-3 spooks 55 Acknowledgments
Cursor Multi-color sprites trucks 42-3 Dorling Kindersley would
current sprite and 25 21,62 Sprite Editor 24-32 like to thank all those
changing color 29 who helped in the
Darts program 18-19 Odds, setting’ 23 changing the current preparation of this book,
DATA sprite 27 especially Steve Wilson
abbreviating sprite 12 | Phantoms 37 clearing the current (design), James Burnie
automatic sprite 31 Plot routine 61 sprite 27 and Rachel Cornes
specifying sprite 9 Positioning sprites clearing memory 24 (program checking), Fred
switching pointers 12 8,19,63 creating the grid 24 Gill (proofreading), and
Define-character Programming current sprite and the Richard Bird (indexing).

The bestselling teach-yourself programming course now offers the
first complete full-colour book on Commodore 64 sprites.

[llustrated with over 300 screen-shot photographs, it contains
programs for single and multicolour sprites, animation, setting
priorities and detecting collisions, and stretching and enlarging, and
includes an easy-to-use sprite generator with which you can design
and save your own sprites. In addition, there is a full-colour design
directory containing over 200 original sprite designs complete with
all the data needed to program them.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for the Commodore 64.

¢¢ Far better than anything else reviewed on these pages. ...
Qutstandingly good 99
BIGK

€¢ Asgood as anything else thatis available, and far
better than most 99
COMPUTING TODAY

€€ Excellent ... Asaseries they could form the best ‘basic
introduction’ fo programming I've seen 99
POPULAR COMPUTING WEEKLY

=L
EE RN mmE N

ISBN 0-8L318-088-Y4

9 "7808637180880

	Commodore 64 Step By Step Programming Graphics Book 4_Page_01
	Commodore 64 Step By Step Programming Graphics Book 4_Page_02
	Commodore 64 Step By Step Programming Graphics Book 4_Page_03
	Commodore 64 Step By Step Programming Graphics Book 4_Page_04
	Commodore 64 Step By Step Programming Graphics Book 4_Page_05
	Commodore 64 Step By Step Programming Graphics Book 4_Page_06
	Commodore 64 Step By Step Programming Graphics Book 4_Page_07
	Commodore 64 Step By Step Programming Graphics Book 4_Page_08
	Commodore 64 Step By Step Programming Graphics Book 4_Page_09
	Commodore 64 Step By Step Programming Graphics Book 4_Page_10
	Commodore 64 Step By Step Programming Graphics Book 4_Page_11
	Commodore 64 Step By Step Programming Graphics Book 4_Page_12
	Commodore 64 Step By Step Programming Graphics Book 4_Page_13
	Commodore 64 Step By Step Programming Graphics Book 4_Page_14
	Commodore 64 Step By Step Programming Graphics Book 4_Page_15
	Commodore 64 Step By Step Programming Graphics Book 4_Page_16
	Commodore 64 Step By Step Programming Graphics Book 4_Page_17
	Commodore 64 Step By Step Programming Graphics Book 4_Page_18
	Commodore 64 Step By Step Programming Graphics Book 4_Page_19
	Commodore 64 Step By Step Programming Graphics Book 4_Page_20
	Commodore 64 Step By Step Programming Graphics Book 4_Page_21
	Commodore 64 Step By Step Programming Graphics Book 4_Page_22
	Commodore 64 Step By Step Programming Graphics Book 4_Page_23
	Commodore 64 Step By Step Programming Graphics Book 4_Page_24
	Commodore 64 Step By Step Programming Graphics Book 4_Page_25
	Commodore 64 Step By Step Programming Graphics Book 4_Page_26
	Commodore 64 Step By Step Programming Graphics Book 4_Page_27
	Commodore 64 Step By Step Programming Graphics Book 4_Page_28
	Commodore 64 Step By Step Programming Graphics Book 4_Page_29
	Commodore 64 Step By Step Programming Graphics Book 4_Page_30
	Commodore 64 Step By Step Programming Graphics Book 4_Page_31
	Commodore 64 Step By Step Programming Graphics Book 4_Page_32
	Commodore 64 Step By Step Programming Graphics Book 4_Page_33
	Commodore 64 Step By Step Programming Graphics Book 4_Page_34
	Commodore 64 Step By Step Programming Graphics Book 4_Page_35
	Commodore 64 Step By Step Programming Graphics Book 4_Page_36
	Commodore 64 Step By Step Programming Graphics Book 4_Page_37
	Commodore 64 Step By Step Programming Graphics Book 4_Page_38
	Commodore 64 Step By Step Programming Graphics Book 4_Page_39
	Commodore 64 Step By Step Programming Graphics Book 4_Page_40
	Commodore 64 Step By Step Programming Graphics Book 4_Page_41
	Commodore 64 Step By Step Programming Graphics Book 4_Page_42
	Commodore 64 Step By Step Programming Graphics Book 4_Page_43
	Commodore 64 Step By Step Programming Graphics Book 4_Page_44
	Commodore 64 Step By Step Programming Graphics Book 4_Page_45
	Commodore 64 Step By Step Programming Graphics Book 4_Page_46
	Commodore 64 Step By Step Programming Graphics Book 4_Page_47
	Commodore 64 Step By Step Programming Graphics Book 4_Page_48
	Commodore 64 Step By Step Programming Graphics Book 4_Page_49
	Commodore 64 Step By Step Programming Graphics Book 4_Page_50
	Commodore 64 Step By Step Programming Graphics Book 4_Page_51
	Commodore 64 Step By Step Programming Graphics Book 4_Page_52
	Commodore 64 Step By Step Programming Graphics Book 4_Page_53
	Commodore 64 Step By Step Programming Graphics Book 4_Page_54
	Commodore 64 Step By Step Programming Graphics Book 4_Page_55
	Commodore 64 Step By Step Programming Graphics Book 4_Page_56
	Commodore 64 Step By Step Programming Graphics Book 4_Page_57
	Commodore 64 Step By Step Programming Graphics Book 4_Page_58
	Commodore 64 Step By Step Programming Graphics Book 4_Page_59
	Commodore 64 Step By Step Programming Graphics Book 4_Page_60
	Commodore 64 Step By Step Programming Graphics Book 4_Page_61
	Commodore 64 Step By Step Programming Graphics Book 4_Page_62
	Commodore 64 Step By Step Programming Graphics Book 4_Page_63
	Commodore 64 Step By Step Programming Graphics Book 4_Page_64
	Commodore 64 Step By Step Programming Graphics Book 4_Page_65
	Commodore 64 Step By Step Programming Graphics Book 4_Page_66

